Methods of forming silicon germanium tin films and structures and devices including the films

Margetis , et al. February 27, 2

Patent Grant 9905420

U.S. patent number 9,905,420 [Application Number 14/956,115] was granted by the patent office on 2018-02-27 for methods of forming silicon germanium tin films and structures and devices including the films. This patent grant is currently assigned to ASM IP Holding B.V.. The grantee listed for this patent is ASM IP Holding B.V.. Invention is credited to Joe Margetis, John Tolle.


United States Patent 9,905,420
Margetis ,   et al. February 27, 2018

Methods of forming silicon germanium tin films and structures and devices including the films

Abstract

Methods of forming silicon germanium tin (Si.sub.xGe.sub.1-xSn.sub.y) films are disclosed. Exemplary methods include growing films including silicon, germanium and tin in an epitaxial chemical vapor deposition reactor. Exemplary methods are suitable for high volume manufacturing. Also disclosed are structures and devices including silicon germanium tin films.


Inventors: Margetis; Joe (Gilbert, AZ), Tolle; John (Gilbert, AZ)
Applicant:
Name City State Country Type

ASM IP Holding B.V.

Almere

N/A

NL
Assignee: ASM IP Holding B.V. (AP Almere, NL)
Family ID: 58777714
Appl. No.: 14/956,115
Filed: December 1, 2015

Prior Publication Data

Document Identifier Publication Date
US 20170154770 A1 Jun 1, 2017

Current U.S. Class: 1/1
Current CPC Class: H01L 21/02532 (20130101); H01L 21/02452 (20130101); H01L 29/161 (20130101); H01L 21/02505 (20130101); H01L 21/0262 (20130101); H01L 21/0245 (20130101); H01L 21/02535 (20130101); H01L 21/02636 (20130101); H01L 29/165 (20130101)
Current International Class: H01L 21/20 (20060101); H01L 21/36 (20060101); H01L 21/02 (20060101); H01L 29/161 (20060101); H01L 29/165 (20060101)
Field of Search: ;438/478,752,753,933,75 ;257/190,183

References Cited [Referenced By]

U.S. Patent Documents
D56051 August 1920 Cohn
2161626 June 1939 Loughner et al.
2745640 May 1956 Cushman
2990045 September 1959 Root
3089507 May 1963 Drake et al.
3094396 June 1963 Flugge et al.
3232437 February 1966 Hultgren
3833492 September 1974 Bollyky
3854443 December 1974 Baerg
3862397 January 1975 Anderson et al.
3887790 June 1975 Ferguson
4054071 October 1977 Patejak
4058430 November 1977 Suntola et al.
4134425 January 1979 Gussefeld et al.
4145699 March 1979 Hu et al.
4164959 August 1979 Wurzburger
4176630 December 1979 Elmer
4181330 January 1980 Kojima
4194536 March 1980 Stine et al.
4322592 March 1982 Martin
4389973 June 1983 Suntola et al.
4393013 July 1983 McMenamin
4401507 August 1983 Engle
4414492 November 1983 Hanlet
4436674 March 1984 McMenamin
4479831 October 1984 Sandow
4499354 February 1985 Hill et al.
4512113 April 1985 Budinger
4570328 February 1986 Price et al.
4579623 April 1986 Suzuki et al.
D288556 March 1987 Wallgren
4653541 March 1987 Oehlschlaeger et al.
4654226 March 1987 Jackson et al.
4681134 July 1987 Paris
4718637 January 1988 Contin
4722298 February 1988 Rubin et al.
4735259 April 1988 Vincent
4753192 June 1988 Goldsmith et al.
4756794 July 1988 Yoder
4780169 October 1988 Stark et al.
4789294 December 1988 Sato et al.
4821674 April 1989 deBoer et al.
4827430 May 1989 Aid et al.
4837185 June 1989 Yau et al.
4854263 August 1989 Chang et al.
4857137 August 1989 Tashiro et al.
4857382 August 1989 Sheng et al.
4882199 November 1989 Sadoway et al.
4976996 December 1990 Monkowski et al.
4978567 December 1990 Miller
4984904 January 1991 Nakano et al.
4985114 January 1991 Okudaira
4986215 January 1991 Yamada
4987856 January 1991 Hey
4991614 February 1991 Hammel
5013691 May 1991 Lory et al.
5027746 July 1991 Frijlink
5028366 July 1991 Harakal et al.
5060322 October 1991 Delepine
5062386 November 1991 Christensen
5065698 November 1991 Koike
5074017 December 1991 Toya et al.
5098638 March 1992 Sawada
5104514 April 1992 Quartarone
5116018 May 1992 Friemoth et al.
D327534 June 1992 Manville
5119760 June 1992 McMillan et al.
5167716 December 1992 Boitnott et al.
5178682 January 1993 Tsukamoto et al.
5183511 February 1993 Yamazaki et al.
5192717 March 1993 Kawakami
5194401 March 1993 Adams et al.
5199603 April 1993 Prescott
5221556 June 1993 Hawkins et al.
5242539 September 1993 Kumihashi et al.
5243195 September 1993 Nishi
5246500 September 1993 Samata et al.
5271967 December 1993 Kramer et al.
5288684 February 1994 Yamazaki et al.
5306946 April 1994 Yamamoto
5315092 May 1994 Takahashi et al.
5326427 July 1994 Jerbic
5336327 August 1994 Lee
5354580 October 1994 Goela et al.
5356478 October 1994 Chen et al.
5360269 November 1994 Ogawa et al.
5380367 January 1995 Bertone
5382311 January 1995 Ishikawa et al.
5404082 April 1995 Hernandez et al.
5413813 May 1995 Cruse et al.
5415753 May 1995 Hurwitt et al.
5421893 June 1995 Perlov
5422139 June 1995 Fischer
5430011 July 1995 Tanaka et al.
5494494 February 1996 Mizuno et al.
5496408 March 1996 Motoda et al.
5504042 April 1996 Cho et al.
5518549 May 1996 Hellwig
5527417 June 1996 Iida et al.
5531835 July 1996 Fodor et al.
5574247 November 1996 Nishitani et al.
5577331 November 1996 Suzuki
5589002 December 1996 Su
5589110 December 1996 Motoda et al.
5595606 January 1997 Fujikawa et al.
5601641 February 1997 Stephens
5604410 February 1997 Vollkommer et al.
5616947 April 1997 Tamura
5621982 April 1997 Yamashita
5632919 May 1997 MacCracken et al.
D380527 July 1997 Velez
5679215 October 1997 Barnes et al.
5681779 October 1997 Pasch et al.
5683517 November 1997 Shan
5695567 December 1997 Kordina
5718574 February 1998 Shimazu
5724748 March 1998 Brooks
5728223 March 1998 Murakarni et al.
5730801 March 1998 Tepman et al.
5732744 March 1998 Barr et al.
5736314 April 1998 Hayes et al.
5777838 July 1998 Tamagawa et al.
5781693 July 1998 Balance et al.
5782979 July 1998 Kaneno
5796074 August 1998 Edelstein et al.
5801104 September 1998 Schuegraf et al.
5819434 October 1998 Herchen et al.
5827757 October 1998 Robinson, Jr. et al.
5836483 November 1998 Disel
5837320 November 1998 Hampden-Smith et al.
5852879 December 1998 Schumaier
5853484 December 1998 Jeong
5855680 January 1999 Soininen et al.
5855681 January 1999 Maydan et al.
5873942 February 1999 Park
5877095 March 1999 Tamura et al.
5908672 June 1999 Ryu
5916365 June 1999 Sherman
5920798 July 1999 Higuchi et al.
5968275 October 1999 Lee et al.
5975492 November 1999 Brenes
5979506 November 1999 Aarseth
5997588 December 1999 Goodwin
5997768 December 1999 Scully
D419652 January 2000 Hall et al.
6013553 January 2000 Wallace
6015465 January 2000 Kholodenko et al.
6017779 January 2000 Miyasaka
6024799 February 2000 Chen
6035101 March 2000 Sajoto et al.
6042652 March 2000 Hyun
6044860 April 2000 Nue
6050506 April 2000 Guo et al.
6060691 May 2000 Minami et al.
6074443 June 2000 Venkatesh
6083321 July 2000 Lei et al.
6086677 July 2000 Umotoy et al.
6099302 August 2000 Hong et al.
6122036 September 2000 Yamasaki et al.
6124600 September 2000 Moroishi et al.
6125789 October 2000 Gupta et al.
6129044 October 2000 Zhao et al.
6134807 October 2000 Komino
6137240 October 2000 Bogdan et al.
6140252 October 2000 Cho et al.
6148761 November 2000 Majewski et al.
6160244 December 2000 Ohashi
6161500 December 2000 Kopacz et al.
6162323 December 2000 Koshimizu et al.
6180979 January 2001 Hofman et al.
6187691 February 2001 Fukuda
6190634 February 2001 Lieber
6194037 February 2001 Terasaki et al.
6201999 March 2001 Jevtic
6207932 March 2001 Yoo
6212789 April 2001 Kato
6218288 April 2001 Li et al.
6250250 June 2001 Maishev et al.
6271148 August 2001 Kao
6274878 August 2001 Li et al.
6281098 August 2001 Wang
6287965 September 2001 Kang et al.
D449873 October 2001 Bronson
6296909 October 2001 Spitsberg
6299133 October 2001 Waragai et al.
6302964 October 2001 Umotoy et al.
6303523 October 2001 Cheung
6305898 October 2001 Yamagishi et al.
6312525 November 2001 Bright et al.
6315512 November 2001 Tabrizi et al.
D451893 December 2001 Robson
D452220 December 2001 Robson
6325858 December 2001 Wengert
6326597 December 2001 Lubomirsky et al.
6329297 December 2001 Balish
6342427 January 2002 Choi et al.
6347636 February 2002 Xia
6352945 March 2002 Matsuki
6367410 April 2002 Leahey et al.
6368987 April 2002 Kopacz et al.
6370796 April 2002 Zucker
6372583 April 2002 Tyagi
6374831 April 2002 Chandran
6375312 April 2002 Ikeda et al.
D457609 May 2002 Piano
6383566 May 2002 Zagdoun
6383955 May 2002 Matsuki
6387207 May 2002 Janakiraman
6391803 May 2002 Kim et al.
6398184 June 2002 Sowada et al.
6410459 June 2002 Blalock et al.
6413321 July 2002 Kim et al.
6413583 July 2002 Moghadam et al.
6420279 July 2002 Ono et al.
D461233 August 2002 Whalen
D461882 August 2002 Piano
6435798 August 2002 Satoh
6436819 August 2002 Zhang
6437444 August 2002 Andideh
6445574 September 2002 Saw et al.
6446573 September 2002 Hirayama et al.
6450757 September 2002 Saeki
6454860 September 2002 Metzner et al.
6455445 September 2002 Matsuki
6461435 October 2002 Littau et al.
6468924 October 2002 Lee
6472266 October 2002 Yu et al.
6475276 November 2002 Elers et al.
6475930 November 2002 Junker et al.
6478872 November 2002 Chae et al.
6482331 November 2002 Lu et al.
6482663 November 2002 Buckland
6483989 November 2002 Okada et al.
6494065 December 2002 Babbitt
6499533 December 2002 Yamada
6503562 January 2003 Saito et al.
6503826 January 2003 Oda
6511539 January 2003 Raaijmakers
6521295 February 2003 Remington
6521547 February 2003 Chang et al.
6528430 March 2003 Kwan
6528767 March 2003 Bagley et al.
6531193 March 2003 Fonash et al.
6531412 March 2003 Conti et al.
6534395 March 2003 Werkhoven et al.
6558755 May 2003 Berry et al.
6569239 May 2003 Arai et al.
6573030 June 2003 Fairbairn et al.
6576062 June 2003 Matsuse
6576064 June 2003 Griffiths et al.
6576300 June 2003 Berry et al.
6579833 June 2003 McNallan et al.
6583048 June 2003 Vincent et al.
6590251 July 2003 Kang et al.
6594550 July 2003 Okrah
6598559 July 2003 Vellore et al.
6627503 September 2003 Ma et al.
6632478 October 2003 Gaillard et al.
6633364 October 2003 Hayashi
6635117 October 2003 Kinnard et al.
6638839 October 2003 Deng et al.
6645304 November 2003 Yamaguchi
6648974 November 2003 Ogliari et al.
6649921 November 2003 Cekic et al.
6652924 November 2003 Sherman
6673196 January 2004 Oyabu
6682973 January 2004 Paton et al.
D486891 February 2004 Cronce
6688784 February 2004 Templeton
6689220 February 2004 Nguyen
6692575 February 2004 Omstead et al.
6692576 February 2004 Halpin et al.
6699003 March 2004 Saeki
6709989 March 2004 Ramdani et al.
6710364 March 2004 Guldi et al.
6713824 March 2004 Mikata
6716571 April 2004 Gabriel
6723642 April 2004 Lim et al.
6730614 May 2004 Lim et al.
6734090 May 2004 Agarwala et al.
6740853 May 2004 Kitayama et al.
6743475 June 2004 Skarp et al.
6743738 June 2004 Todd et al.
6753507 June 2004 Fure et al.
6756318 June 2004 Nguyen et al.
6759098 July 2004 Han
6760981 July 2004 Leap
6784108 August 2004 Donohoe et al.
6815350 November 2004 Kim et al.
6820570 November 2004 Kilpela et al.
6821910 November 2004 Adomaitis et al.
6824665 November 2004 Shelnut et al.
6825134 November 2004 Law et al.
6846515 January 2005 Vrtis
6847014 January 2005 Benjamin et al.
6858524 February 2005 Haukka et al.
6858547 February 2005 Metzner
6863019 March 2005 Shamouilian
6864041 March 2005 Brown
6872258 March 2005 Park et al.
6872259 March 2005 Strang
6874247 April 2005 Hsu
6874480 April 2005 Ismailov
6875677 April 2005 Conley, Jr. et al.
6876017 April 2005 Goodner
6884066 April 2005 Nguyen et al.
6884319 April 2005 Kim
6889864 May 2005 Lindfors et al.
6895158 May 2005 Alyward et al.
6899507 May 2005 Yamagishi et al.
6909839 June 2005 Wang et al.
6911092 June 2005 Sneh
6913796 July 2005 Albano et al.
6930059 August 2005 Conley, Jr. et al.
6935269 August 2005 Lee et al.
6939817 September 2005 Sandhu et al.
6951587 October 2005 Narushima
6953609 October 2005 Carollo
6955836 October 2005 Kumagai et al.
6972478 December 2005 Waite et al.
6974781 December 2005 Timmermans et al.
6976822 December 2005 Woodruff
6984595 January 2006 Yamazaki
6990430 January 2006 Hosek
7021881 April 2006 Yamagishi
7045430 May 2006 Aim et al.
7049247 May 2006 Gates et al.
7053009 May 2006 Conley, Jr. et al.
7055875 June 2006 Bonora
7071051 July 2006 Jeon et al.
7084079 August 2006 Conti et al.
7088003 August 2006 Gates et al.
7092287 August 2006 Beulens et al.
7098149 August 2006 Lukas
7109098 September 2006 Ramaswamy et al.
7115838 October 2006 Kurara et al.
7122085 October 2006 Shero et al.
7122222 October 2006 Xiao et al.
7129165 October 2006 Basol et al.
7132360 November 2006 Schaeffer et al.
7135421 November 2006 Ahn et al.
7143897 December 2006 Guzman et al.
7147766 December 2006 Uzoh et al.
7153542 December 2006 Nguyen et al.
7163721 January 2007 Zhang et al.
7163900 January 2007 Weber
7172497 February 2007 Basol et al.
7192824 March 2007 Ahn et al.
7192892 March 2007 Ahn et al.
7195693 March 2007 Cowans
7201943 April 2007 Park et al.
7204887 April 2007 Kawamura et al.
7205246 April 2007 MacNeil et al.
7205247 April 2007 Lee et al.
7207763 April 2007 Lee
7208389 April 2007 Tipton et al.
7211524 May 2007 Ryu et al.
7234476 June 2007 Arai
7235137 June 2007 Kitayama et al.
7235482 June 2007 Wu
7235501 June 2007 Ahn et al.
7238596 July 2007 Kouvetakis et al.
7265061 September 2007 Cho et al.
D553104 October 2007 Oohashi et al.
7290813 November 2007 Bonora
7294581 November 2007 Haverkort et al.
7297641 November 2007 Todd et al.
7298009 November 2007 Yan et al.
D557226 December 2007 Uchino et al.
7307178 December 2007 Kiyomori et al.
7312148 December 2007 Ramaswamy et al.
7312162 December 2007 Ramaswamy et al.
7312494 December 2007 Ahn et al.
7323401 January 2008 Ramaswamy et al.
7326657 February 2008 Xia et al.
7327948 February 2008 Shrinivasan
7329947 February 2008 Adachi et al.
7335611 February 2008 Ramaswamy et al.
7354847 April 2008 Chan et al.
7357138 April 2008 Ji et al.
7381644 June 2008 Soubramonium et al.
7393418 July 2008 Yokogawa
7393736 July 2008 Ahn et al.
7393765 July 2008 Hanawa et al.
7396491 July 2008 Marking et al.
7399388 July 2008 Moghadam et al.
7402534 July 2008 Mahajani
7405166 July 2008 Liang et al.
7405454 July 2008 Ahn et al.
7411352 August 2008 Madocks
7414281 August 2008 Fastow
7422653 September 2008 Blahnik et al.
7422775 September 2008 Ramaswamy et al.
7429532 September 2008 Ramaswamy et al.
7431966 October 2008 Derderian et al.
7437060 October 2008 Wang et al.
7442275 October 2008 Cowans
7476291 January 2009 Wang et al.
7479198 January 2009 Guffrey
D585968 February 2009 Elkins et al.
7489389 February 2009 Shibazaki et al.
7494882 February 2009 Vitale
7498242 March 2009 Kumar et al.
7501292 March 2009 Matsushita et al.
7503980 March 2009 Kida et al.
7514375 April 2009 Shanker et al.
7541297 April 2009 Mallick et al.
D593969 June 2009 Li
7547363 June 2009 Tomiyasu et al.
7550396 June 2009 Frohberg et al.
7566891 July 2009 Rocha-Alvarez et al.
7575968 August 2009 Sadaka et al.
7579785 August 2009 DeVincentis et al.
7582555 September 2009 Lang
7589003 September 2009 Kouvetakis et al.
7589029 September 2009 Derderian et al.
D602575 October 2009 Breda
7598513 October 2009 Kouvetakis et al.
7601223 October 2009 Lindfors et al.
7601225 October 2009 Tuominen et al.
7611751 November 2009 Elers
7611980 November 2009 Wells et al.
7618226 November 2009 Takizawa
7629277 December 2009 Ghatnagar
7632549 December 2009 Goundar
7640142 December 2009 Tachikawa et al.
7651583 January 2010 Kent et al.
7651961 January 2010 Clark
D609655 February 2010 Sugimoto
7678197 March 2010 Maki
7678715 March 2010 Mungekar et al.
7682657 March 2010 Sherman
D613829 April 2010 Griffin et al.
D614153 April 2010 Fondurulia et al.
D614267 April 2010 Breda
D614268 April 2010 Breda
7690881 April 2010 Yamagishi
7691205 April 2010 Ikedo
7713874 May 2010 Milligan
7720560 May 2010 Menser et al.
7723648 May 2010 Tsukamoto et al.
7727864 June 2010 Elers
7732343 June 2010 Niroomand et al.
7740705 June 2010 Li
7745346 June 2010 Hausmann et al.
7748760 July 2010 Kushida
7754621 July 2010 Putjkonen
7763869 July 2010 Matsushita et al.
7767262 August 2010 Clark
7771796 August 2010 Kohno et al.
7780440 August 2010 Shibagaki et al.
7789965 September 2010 Matsushita et al.
7790633 September 2010 Tarafdar et al.
7803722 September 2010 Liang
7807578 October 2010 Bencher et al.
7816278 October 2010 Reed et al.
7824492 November 2010 Tois et al.
7825040 November 2010 Fukazawa et al.
7833353 November 2010 Furukawahara et al.
7838084 November 2010 Derderian et al.
7842518 November 2010 Miyajima
7842622 November 2010 Lee et al.
D629874 December 2010 Hermans
7851019 December 2010 Tuominen et al.
7851232 December 2010 van Schravendijk et al.
7865070 January 2011 Nakamura
7884918 February 2011 Hattori
7888233 February 2011 Gauri
D634719 March 2011 Yasuda et al.
7897215 March 2011 Fair et al.
7902582 March 2011 Forbes et al.
7910288 March 2011 Abatchev et al.
7915139 March 2011 Lang
7919416 April 2011 Lee et al.
7925378 April 2011 Gilchrist et al.
7935940 May 2011 Smargiassi
7939447 May 2011 Bauer et al.
7955516 June 2011 Chandrachood
7963736 June 2011 Takizawa et al.
7972980 July 2011 Lee et al.
7981751 July 2011 Zhu et al.
D643055 August 2011 Takahashi
7992318 August 2011 Kawaji
7994721 August 2011 Espiau et al.
7998875 August 2011 DeYoung
8003174 August 2011 Fukazawa
8004198 August 2011 Bakre et al.
8020315 September 2011 Nishimura
8030129 October 2011 Jeong
8038835 October 2011 Hayashi et al.
8041197 October 2011 Kasai et al.
8041450 October 2011 Takizawa et al.
8043972 October 2011 Numakura
8055378 November 2011 Numakura
8060252 November 2011 Gage et al.
8071451 December 2011 Uzoh
8071452 December 2011 Raisanen
8072578 December 2011 Yasuda et al.
8076230 December 2011 Wei
8076237 December 2011 Uzoh
8082946 December 2011 Laverdiere et al.
D652896 January 2012 Gether
8092604 January 2012 Tomiyasu et al.
D653734 February 2012 Sisk
D655055 February 2012 Toll
8119466 February 2012 Avouris
8137462 March 2012 Fondurulia et al.
8137465 March 2012 Shrinivasan et al.
8138676 March 2012 Mills
8142862 March 2012 Lee et al.
8143174 March 2012 Xia et al.
8147242 April 2012 Shibagaki et al.
8173554 May 2012 Lee et al.
8187951 May 2012 Wang
8272516 May 2012 Salvador
8192901 June 2012 Kageyama
8196234 June 2012 Glunk
8197915 June 2012 Oka et al.
8216380 July 2012 White et al.
8231799 July 2012 Bera et al.
D665055 August 2012 Yanagisawa et al.
8241991 August 2012 Hsieh et al.
8242031 August 2012 Mallick et al.
8252114 August 2012 Vukovic
8252659 August 2012 Huyghabaert et al.
8252691 August 2012 Beynet et al.
8278176 October 2012 Bauer
8282769 October 2012 Iizuka
8287648 October 2012 Reed et al.
8293016 October 2012 Bahng et al.
8298951 October 2012 Nakano
8307472 November 2012 Saxon et al.
8309173 November 2012 Tuominen et al.
8323413 December 2012 Son
8329599 December 2012 Fukazawa et al.
8334219 December 2012 Lee et al.
8367528 February 2013 Bauer et al.
8372204 February 2013 Nakamura
8393091 March 2013 Kawamoto
8394466 March 2013 Hong et al.
8415259 April 2013 Lee et al.
8440259 May 2013 Chiang et al.
8444120 May 2013 Gregg et al.
8445075 May 2013 Xu et al.
8465811 June 2013 Ueda
8466411 June 2013 Arai
8470187 June 2013 Ha
8484846 July 2013 Dhindsa
8492170 July 2013 Xie et al.
8496756 July 2013 Cruse et al.
8506713 August 2013 Takagi
8535767 September 2013 Kimura
D691974 October 2013 Osada et al.
8551892 October 2013 Nakano
8563443 October 2013 Fukazawa
8569184 October 2013 Oka
8591659 November 2013 Fang et al.
8592005 November 2013 Ueda
8608885 November 2013 Goto et al.
8617411 December 2013 Singh
8633115 January 2014 Chang et al.
8647722 February 2014 Kobayashi et al.
8664627 March 2014 Ishikawa et al.
8667654 March 2014 Gros-Jean
8668957 March 2014 Dussarrat et al.
8669185 March 2014 Onizawa
8683943 April 2014 Onodera et al.
8711338 April 2014 Liu et al.
D705745 May 2014 Kurs et al.
8720965 May 2014 Hino et al.
8722546 May 2014 Fukazawa et al.
8726837 May 2014 Patalay et al.
8728832 May 2014 Raisanen et al.
8742668 June 2014 Nakano et al.
8764085 July 2014 Urabe
8784950 July 2014 Fukazawa et al.
8784951 July 2014 Fukazawa et al.
8785215 July 2014 Kobayashi et al.
8790749 July 2014 Omori et al.
8802201 August 2014 Raisanen et al.
8820809 September 2014 Ando et al.
8821640 September 2014 Cleary et al.
8841182 September 2014 Chen et al.
8845806 September 2014 Aida et al.
D715410 October 2014 Lohmann
8864202 October 2014 Schrameyer
D716742 November 2014 Jang et al.
8877655 November 2014 Shero et al.
8883270 November 2014 Shero et al.
8901016 December 2014 Ha et al.
8911826 December 2014 Adachi et al.
8912101 December 2014 Tsuji et al.
D720838 January 2015 Yamagishi et al.
8933375 January 2015 Dunn et al.
8940646 January 2015 Chandrasekharan
8946830 February 2015 Jung et al.
8956983 February 2015 Swaminathan
D724701 March 2015 Yamagishi et al.
8967608 March 2015 Mitsumori et al.
8986456 March 2015 Fondurulia et al.
8991887 March 2015 Shin et al.
8993054 March 2015 Jung et al.
D726884 April 2015 Yamagishi et al.
9005539 April 2015 Halpin et al.
9017481 April 2015 Pettinger et al.
9018093 April 2015 Tsuji et al.
9018111 April 2015 Milligan et al.
9021985 May 2015 Alokozai et al.
9023737 May 2015 Beynet et al.
9029253 May 2015 Milligan et al.
9029272 May 2015 Nakano
D732644 June 2015 Yamagishi et al.
D733261 June 2015 Yamagishi et al.
D733843 July 2015 Yamagishi et al.
9096931 August 2015 Yednak et al.
9117657 August 2015 Nakano et al.
9117866 August 2015 Marquardt et al.
9123510 September 2015 Nakano et al.
9136108 September 2015 Matsushita et al.
9142393 September 2015 Okabe et al.
9169975 October 2015 Sarin et al.
9171714 October 2015 Mori
9171716 October 2015 Fukuda
9177784 November 2015 Raisanen et al.
9190263 November 2015 Ishikawa et al.
9196483 November 2015 Lee
9202727 December 2015 Dunn et al.
9299595 March 2016 Dunn et al.
9324811 April 2016 Weeks
9341296 May 2016 Yednak
2001/0017103 August 2001 Takeshita et al.
2001/0018267 August 2001 Shinriki et al.
2001/0019777 September 2001 Tanaka et al.
2001/0019900 September 2001 Hasegawa
2001/0028924 October 2001 Sherman
2001/0046765 November 2001 Cappellani et al.
2001/0049202 December 2001 Maeda et al.
2002/0001974 January 2002 Chan
2002/0011210 January 2002 Satoh et al.
2002/0014204 February 2002 Pyo
2002/0064592 May 2002 Datta et al.
2002/0076507 June 2002 Chiang et al.
2002/0079714 June 2002 Soucy et al.
2002/0088542 July 2002 Nishikawa et al.
2002/0098627 July 2002 Pomarede et al.
2002/0108670 August 2002 Baker et al.
2002/0110991 August 2002 Li
2002/0114886 August 2002 Chou et al.
2002/0115252 August 2002 Haukka et al.
2002/0172768 November 2002 Endo et al.
2002/0187650 December 2002 Blalock et al.
2002/0197849 December 2002 Mandal
2003/0003635 January 2003 Paranjpe et al.
2003/0010452 January 2003 Park et al.
2003/0012632 January 2003 Saeki
2003/0019428 January 2003 Ku et al.
2003/0019580 January 2003 Strang
2003/0025146 February 2003 Narwankar et al.
2003/0040158 February 2003 Saitoh
2003/0042419 March 2003 Katsumata et al.
2003/0049375 March 2003 Nguyen et al.
2003/0054670 March 2003 Wang et al.
2003/0059535 March 2003 Luo et al.
2003/0059980 March 2003 Chen et al.
2003/0066826 April 2003 Lee et al.
2003/0075925 April 2003 Lindfors et al.
2003/0082307 May 2003 Chung et al.
2003/0091938 May 2003 Fairbairn et al.
2003/0094133 May 2003 Yoshidome et al.
2003/0111963 June 2003 Tolmachev et al.
2003/0134038 July 2003 Paranjpe
2003/0141820 July 2003 White et al.
2003/0157436 August 2003 Manger et al.
2003/0168001 September 2003 Sneh
2003/0170583 September 2003 Nakashima
2003/0180458 September 2003 Sneh
2003/0183156 October 2003 Dando
2003/0192875 October 2003 Bieker et al.
2003/0198587 October 2003 Kaloyeros
2003/0209323 November 2003 Yokogaki
2003/0228772 December 2003 Cowans
2003/0232138 December 2003 Tuominen et al.
2004/0009679 January 2004 Yeo et al.
2004/0013577 January 2004 Ganguli et al.
2004/0013818 January 2004 Moon et al.
2004/0016637 January 2004 Yang
2004/0018307 January 2004 Park et al.
2004/0018750 January 2004 Sophie et al.
2004/0023516 February 2004 Londergan et al.
2004/0029052 February 2004 Park et al.
2004/0036129 February 2004 Forbes et al.
2004/0063289 April 2004 Ohta
2004/0071897 April 2004 Verplancken et al.
2004/0077182 April 2004 Lim et al.
2004/0079960 April 2004 Shakuda
2004/0080697 April 2004 Song
2004/0082171 April 2004 Shin et al.
2004/0101622 May 2004 Park et al.
2004/0103914 June 2004 Cheng et al.
2004/0106249 June 2004 Huotari
2004/0124549 July 2004 Curran
2004/0134429 July 2004 Yamanaka
2004/0144980 July 2004 Ahn et al.
2004/0146644 July 2004 Xia et al.
2004/0168627 September 2004 Conley et al.
2004/0169032 September 2004 Murayama et al.
2004/0198069 October 2004 Metzner et al.
2004/0200499 October 2004 Harvey et al.
2004/0209477 October 2004 Buxbaum et al.
2004/0212947 October 2004 Nguyen
2004/0214445 October 2004 Shimizu et al.
2004/0219793 November 2004 Hishiya et al.
2004/0221807 November 2004 Verghese et al.
2004/0247779 December 2004 Selvamanickam et al.
2004/0261712 December 2004 Hayashi et al.
2004/0266011 December 2004 Lee et al.
2005/0003662 January 2005 Jurisch et al.
2005/0008799 January 2005 Tomiyasu et al.
2005/0019026 January 2005 Wang et al.
2005/0020071 January 2005 Sonobe et al.
2005/0023624 February 2005 Ahn et al.
2005/0034674 February 2005 Ono
2005/0037154 February 2005 Koh et al.
2005/0051093 March 2005 Makino et al.
2005/0054228 March 2005 March
2005/0059262 March 2005 Yin et al.
2005/0064207 March 2005 Senzaki et al.
2005/0064719 March 2005 Liu
2005/0066893 March 2005 Soininen
2005/0069651 March 2005 Miyoshi
2005/0070123 March 2005 Hirano
2005/0070729 March 2005 Kiyomori et al.
2005/0072357 April 2005 Shero et al.
2005/0074983 April 2005 Shinriki et al.
2005/0092249 May 2005 Kilpela et al.
2005/0095770 May 2005 Kumagai et al.
2005/0100669 May 2005 Kools et al.
2005/0101154 May 2005 Huang
2005/0106893 May 2005 Wilk
2005/0110069 May 2005 Kil et al.
2005/0120962 June 2005 Ushioda et al.
2005/0123690 June 2005 Derderian et al.
2005/0133161 June 2005 Carpenter et al.
2005/0142361 June 2005 Nakanishi
2005/0145338 July 2005 Park et al.
2005/0153571 July 2005 Senzaki
2005/0173003 August 2005 Laverdiere et al.
2005/0181535 August 2005 Yun et al.
2005/0187647 August 2005 Wang et al.
2005/0191828 September 2005 Al-Bayati et al.
2005/0199013 September 2005 Vandroux et al.
2005/0208718 September 2005 Lim et al.
2005/0212119 September 2005 Shero
2005/0214457 September 2005 Schmitt et al.
2005/0214458 September 2005 Meiere
2005/0218462 October 2005 Ahn et al.
2005/0221618 October 2005 AmRhein et al.
2005/0223994 October 2005 Blomiley et al.
2005/0227502 October 2005 Schmitt et al.
2005/0229848 October 2005 Shinriki
2005/0229972 October 2005 Hoshi et al.
2005/0241176 November 2005 Shero et al.
2005/0241763 November 2005 Huang et al.
2005/0255257 November 2005 Choi et al.
2005/0258280 November 2005 Goto et al.
2005/0260347 November 2005 Narwankar et al.
2005/0260850 November 2005 Loke
2005/0263075 December 2005 Wang et al.
2005/0263932 December 2005 Heugel
2005/0271813 December 2005 Kher et al.
2005/0274323 December 2005 Seidel et al.
2005/0282101 December 2005 Adachi
2005/0287725 December 2005 Kitagawa
2005/0287771 December 2005 Seamons et al.
2006/0013946 January 2006 Park et al.
2006/0014384 January 2006 Lee et al.
2006/0014397 January 2006 Seamons et al.
2006/0016783 January 2006 Wu et al.
2006/0019033 January 2006 Muthukrishnan et al.
2006/0019502 January 2006 Park et al.
2006/0021703 February 2006 Umotoy et al.
2006/0024439 February 2006 Tuominen et al.
2006/0046518 March 2006 Hill et al.
2006/0051520 March 2006 Behle et al.
2006/0051925 March 2006 Ahn et al.
2006/0060930 March 2006 Metz et al.
2006/0062910 March 2006 Meiere
2006/0063346 March 2006 Lee et al.
2006/0068121 March 2006 Lee et al.
2006/0068125 March 2006 Radhakrishnan
2006/0105566 May 2006 Waldfried et al.
2006/0110934 May 2006 Fukuchi
2006/0113675 June 2006 Chang et al.
2006/0113806 June 2006 Tsuji et al.
2006/0128168 June 2006 Ahn et al.
2006/0130767 June 2006 Herchen
2006/0137609 June 2006 Puchacz et al.
2006/0147626 July 2006 Blomberg
2006/0148180 July 2006 Ahn et al.
2006/0163612 July 2006 Kouvetakis et al.
2006/0172531 August 2006 Lin et al.
2006/0191555 August 2006 Yoshida et al.
2006/0193979 August 2006 Meiere et al.
2006/0199357 September 2006 Wan et al.
2006/0205223 September 2006 Smayling
2006/0208215 September 2006 Metzner et al.
2006/0213439 September 2006 Ishizaka
2006/0223301 October 2006 Vanhaelemeersch et al.
2006/0226117 October 2006 Bertram et al.
2006/0228888 October 2006 Lee et al.
2006/0236934 October 2006 Choi et al.
2006/0240574 October 2006 Yoshie
2006/0240662 October 2006 Conley et al.
2006/0251827 November 2006 Nowak
2006/0257563 November 2006 Doh et al.
2006/0257584 November 2006 Derderian et al.
2006/0258078 November 2006 Lee et al.
2006/0258173 November 2006 Xiao et al.
2006/0260545 November 2006 Ramaswamy et al.
2006/0263522 November 2006 Byun
2006/0264060 November 2006 Ramaswamy et al.
2006/0264066 November 2006 Bartholomew
2006/0266289 November 2006 Verghese et al.
2006/0269692 November 2006 Balseanu
2006/0278524 December 2006 Stowell
2007/0006806 January 2007 Imai
2007/0010072 January 2007 Bailey et al.
2007/0020953 January 2007 Tsai et al.
2007/0022954 February 2007 Iizuka et al.
2007/0028842 February 2007 Inagawa et al.
2007/0031598 February 2007 Okuyama et al.
2007/0031599 February 2007 Gschwandtner et al.
2007/0032082 February 2007 Ramaswamy et al.
2007/0037412 February 2007 Dip et al.
2007/0042117 February 2007 Kupurao et al.
2007/0049053 March 2007 Mahajani
2007/0054499 March 2007 Jang
2007/0059948 March 2007 Metzner et al.
2007/0062453 March 2007 Ishikawa
2007/0065578 March 2007 McDougall
2007/0066010 March 2007 Ando
2007/0066079 March 2007 Kolster et al.
2007/0077355 April 2007 Chacin et al.
2007/0082132 April 2007 Shinriki
2007/0084405 April 2007 Kim
2007/0096194 May 2007 Streck et al.
2007/0098527 May 2007 Hall et al.
2007/0107845 May 2007 Ishizawa et al.
2007/0111545 May 2007 Lee et al.
2007/0116873 May 2007 Li et al.
2007/0123037 May 2007 Lee et al.
2007/0125762 June 2007 Cui et al.
2007/0128538 June 2007 Fairbairn et al.
2007/0134942 June 2007 Ahn et al.
2007/0146621 June 2007 Yeom
2007/0148990 June 2007 Deboer et al.
2007/0155138 July 2007 Tomasini et al.
2007/0158026 July 2007 Amikura
2007/0163440 July 2007 Kim
2007/0166457 July 2007 Yamoto et al.
2007/0166966 July 2007 Todd et al.
2007/0166999 July 2007 Vaarstra
2007/0173071 July 2007 Afzali-Ardakani et al.
2007/0175393 August 2007 Nishimura et al.
2007/0175397 August 2007 Tomiyasu et al.
2007/0186952 August 2007 Honda et al.
2007/0207275 September 2007 Nowak et al.
2007/0209590 September 2007 Li
2007/0210890 September 2007 Hsu et al.
2007/0215048 September 2007 Suzuki et al.
2007/0218200 September 2007 Suzuki et al.
2007/0218705 September 2007 Matsuki et al.
2007/0224777 September 2007 Hamelin
2007/0224833 September 2007 Morisada et al.
2007/0232031 October 2007 Singh et al.
2007/0232071 October 2007 Balseanu et al.
2007/0232501 October 2007 Tonomura
2007/0234955 October 2007 Suzuki et al.
2007/0237697 October 2007 Clark
2007/0241688 October 2007 DeVancentis et al.
2007/0248767 October 2007 Okura
2007/0249131 October 2007 Allen et al.
2007/0252532 October 2007 DeVancentis et al.
2007/0251444 November 2007 Gros-Jean et al.
2007/0252244 November 2007 Srividya et al.
2007/0264807 November 2007 Leone et al.
2007/0275166 November 2007 Thridandam et al.
2007/0277735 December 2007 Mokhesi et al.
2007/0281496 December 2007 Ingle et al.
2007/0298362 December 2007 Rocha-Alvarez et al.
2008/0003824 January 2008 Padhi et al.
2008/0003838 January 2008 Haukka et al.
2008/0006208 January 2008 Ueno et al.
2008/0023436 January 2008 Gros-Jean et al.
2008/0026574 January 2008 Brcka
2008/0026597 January 2008 Munro et al.
2008/0029790 February 2008 Ahn et al.
2008/0036354 February 2008 Letz et al.
2008/0038485 February 2008 Lukas
2008/0054332 March 2008 Kim
2008/0054813 March 2008 Espiau et al.
2008/0057659 March 2008 Forbes et al.
2008/0061667 March 2008 Gaertner et al.
2008/0066778 March 2008 Matsushita et al.
2008/0069955 March 2008 Hong et al.
2008/0075881 March 2008 Won et al.
2008/0076266 March 2008 Fukazawa et al.
2008/0081104 April 2008 Hasebe et al.
2008/0081113 April 2008 Clark
2008/0081121 April 2008 Morita et al.
2008/0085226 April 2008 Fondurulia et al.
2008/0092815 April 2008 Chen et al.
2008/0113094 May 2008 Casper
2008/0113096 May 2008 Mahajani
2008/0113097 May 2008 Mahajani et al.
2008/0124197 May 2008 van der Meulen et al.
2008/0124908 May 2008 Forbes et al.
2008/0124946 May 2008 Xiao et al.
2008/0133154 June 2008 Krauss et al.
2008/0149031 June 2008 Chu et al.
2008/0152463 June 2008 Chidambaram et al.
2008/0153311 June 2008 Padhi et al.
2008/0173240 July 2008 Furukawahara
2008/0173326 July 2008 Gu et al.
2008/0176375 July 2008 Erben et al.
2008/0178805 July 2008 Paterson et al.
2008/0179715 July 2008 Coppa
2008/0182075 July 2008 Chopra
2008/0182390 July 2008 Lemmi et al.
2008/0191193 August 2008 Li et al.
2008/0199977 August 2008 Weigel et al.
2008/0203487 August 2008 Hohage et al.
2008/0211423 September 2008 Shinmen et al.
2008/0211526 September 2008 Shinma
2008/0216077 September 2008 Emani et al.
2008/0220619 September 2008 Matsushita et al.
2008/0224240 September 2008 Ahn et al.
2008/0233288 September 2008 Clark
2008/0237572 October 2008 Chui et al.
2008/0241384 October 2008 Jeong
2008/0242116 October 2008 Clark
2008/0248310 October 2008 Kim et al.
2008/0257494 October 2008 Hayashi et al.
2008/0261413 October 2008 Mahajani
2008/0264337 October 2008 Sano et al.
2008/0267598 October 2008 Nakamura
2008/0277715 November 2008 Ohmi et al.
2008/0282970 November 2008 Heys et al.
2008/0295872 December 2008 Riker et al.
2008/0299326 December 2008 Fukazawa
2008/0302303 December 2008 Choi et al.
2008/0305246 December 2008 Choi et al.
2008/0305443 December 2008 Nakamura
2008/0315292 December 2008 Ji et al.
2008/0317972 December 2008 Hendriks
2009/0000550 January 2009 Tran et al.
2009/0000551 January 2009 Choi et al.
2009/0011608 January 2009 Nabatame
2009/0020072 January 2009 Mizunaga et al.
2009/0023229 January 2009 Matsushita
2009/0029528 January 2009 Sanchez et al.
2009/0029564 January 2009 Yamashita et al.
2009/0033907 February 2009 Watson
2009/0035947 February 2009 Horii
2009/0041952 February 2009 Yoon et al.
2009/0041984 February 2009 Mayers et al.
2009/0042344 February 2009 Ye et al.
2009/0045829 February 2009 Awazu
2009/0050621 February 2009 Awazu
2009/0061644 March 2009 Chiang et al.
2009/0061647 March 2009 Mallick et al.
2009/0085156 April 2009 Dewey et al.
2009/0090382 April 2009 Morisada
2009/0093094 April 2009 Ye et al.
2009/0095221 April 2009 Tam et al.
2009/0104789 April 2009 Mallick et al.
2009/0107404 April 2009 Ogliari et al.
2009/0120580 May 2009 Kagoshima et al.
2009/0122293 May 2009 Shibazaki
2009/0136668 May 2009 Gregg et al.
2009/0136683 May 2009 Fukasawa et al.
2009/0139657 June 2009 Lee et al.
2009/0142935 June 2009 Fukazawa et al.
2009/0146322 June 2009 Weling et al.
2009/0156015 June 2009 Park et al.
2009/0209081 August 2009 Matero
2009/0211523 August 2009 Kuppurao et al.
2009/0211525 August 2009 Sarigiannis et al.
2009/0239386 September 2009 Suzaki et al.
2009/0242957 October 2009 Ma et al.
2009/0246374 October 2009 Vukovic
2009/0246399 October 2009 Goundar
2009/0246971 October 2009 Reid et al.
2009/0250955 October 2009 Aoki
2009/0261331 October 2009 Yang et al.
2009/0269506 October 2009 Okura et al.
2009/0275205 November 2009 Kiehlbauch et al.
2009/0277510 November 2009 Shikata
2009/0283041 November 2009 Tomiyasu et al.
2009/0283217 November 2009 Lubomirsky et al.
2009/0286400 November 2009 Heo et al.
2009/0286402 November 2009 Xia et al.
2009/0289300 November 2009 Sasaki et al.
2009/0304558 December 2009 Patton
2009/0311857 December 2009 Todd et al.
2010/0001409 January 2010 Humbert et al.
2010/0006031 January 2010 Choi et al.
2010/0014479 January 2010 Kim
2010/0015813 January 2010 McGinnis et al.
2010/0024727 February 2010 Kim et al.
2010/0025796 February 2010 Dabiran
2010/0041179 February 2010 Lee
2010/0041243 February 2010 Cheng et al.
2010/0055312 March 2010 Kato et al.
2010/0055442 March 2010 Kellock
2010/0075507 March 2010 Chang et al.
2010/0089320 April 2010 Kim
2010/0090149 April 2010 Thompson et al.
2010/0093187 April 2010 Lee et al.
2010/0102417 April 2010 Ganguli et al.
2010/0116209 May 2010 Kato
2010/0124610 May 2010 Aikawa et al.
2010/0124618 May 2010 Kobayashi et al.
2010/0124621 May 2010 Kobayashi et al.
2010/0126605 May 2010 Stones
2010/0130017 May 2010 Luo et al.
2010/0134023 June 2010 Mills
2010/0136216 June 2010 Tsuei et al.
2010/0140221 June 2010 Kikuchi et al.
2010/0144162 June 2010 Lee et al.
2010/0151206 June 2010 Wu et al.
2010/0159638 June 2010 Jeong
2010/0162752 July 2010 Tabata et al.
2010/0170441 July 2010 Won et al.
2010/0178137 July 2010 Chintalapati et al.
2010/0178423 July 2010 Shimizu et al.
2010/0184302 July 2010 Lee et al.
2010/0193501 August 2010 Zucker et al.
2010/0195392 August 2010 Freeman
2010/0221452 September 2010 Kang
2010/0230051 September 2010 Iizuka
2010/0233886 September 2010 Yang et al.
2010/0243166 September 2010 Hayashi et al.
2010/0244688 September 2010 Braun et al.
2010/0255198 October 2010 Cleary et al.
2010/0255625 October 2010 De Vries
2010/0259152 October 2010 Yasuda et al.
2010/0270675 October 2010 Harada
2010/0275846 November 2010 Kitagawa
2010/0285319 November 2010 Kwak et al.
2010/0294199 November 2010 Tran et al.
2010/0301752 December 2010 Bakre et al.
2010/0304047 December 2010 Yang et al.
2010/0307415 December 2010 Shero et al.
2010/0317198 December 2010 Antonelli
2010/0322604 December 2010 Fondurulia et al.
2011/0000619 January 2011 Suh
2011/0006402 January 2011 Zhou
2011/0006406 January 2011 Urbanowicz et al.
2011/0014795 January 2011 Lee
2011/0027999 February 2011 Sparks et al.
2011/0034039 February 2011 Liang et al.
2011/0048642 March 2011 Mihara et al.
2011/0052833 March 2011 Hanawa
2011/0056513 March 2011 Hombach et al.
2011/0056626 March 2011 Brown et al.
2011/0061810 March 2011 Ganguly
2011/0070380 March 2011 Shero et al.
2011/0081519 April 2011 Dillingh
2011/0086516 April 2011 Lee et al.
2011/0089469 April 2011 Merckling
2011/0097901 April 2011 Banna et al.
2011/0107512 May 2011 Gilbert
2011/0108194 May 2011 Yoshioka et al.
2011/0108741 May 2011 Ingram
2011/0108929 May 2011 Meng
2011/0117490 May 2011 Bae
2011/0117737 May 2011 Agarwala
2011/0124196 May 2011 Lee
2011/0139748 June 2011 Donnelly et al.
2011/0143032 June 2011 Vrtis et al.
2011/0143461 June 2011 Fish et al.
2011/0159202 June 2011 Matsushita
2011/0159673 June 2011 Hanawa et al.
2011/0175011 July 2011 Ehrne
2011/0183079 July 2011 Jackson et al.
2011/0183269 July 2011 Zhu
2011/0192820 August 2011 Yeom et al.
2011/0198736 August 2011 Shero et al.
2011/0210468 September 2011 Shannon et al.
2011/0220874 September 2011 Hanrath
2011/0236600 September 2011 Fox et al.
2011/0239936 October 2011 Suzaki et al.
2011/0254052 October 2011 Kouvetakis
2011/0256675 October 2011 Avouris
2011/0256726 October 2011 Lavoie et al.
2011/0256727 October 2011 Beynet et al.
2011/0256734 October 2011 Hausmann et al.
2011/0265549 November 2011 Cruse et al.
2011/0265951 November 2011 Xu et al.
2011/0275166 November 2011 Shero et al.
2011/0281417 November 2011 Gordon et al.
2011/0283933 November 2011 Makarov et al.
2011/0294075 December 2011 Chen et al.
2011/0308460 December 2011 Hong et al.
2012/0003500 January 2012 Yoshida et al.
2012/0024479 February 2012 Palagashvili et al.
2012/0032311 February 2012 Gates
2012/0043556 February 2012 Dube et al.
2012/0052681 March 2012 Marsh
2012/0070136 March 2012 Koelmel et al.
2012/0070997 March 2012 Larson
2012/0090704 April 2012 Laverdiere et al.
2012/0098107 April 2012 Raisanen et al.
2012/0100464 April 2012 Kageyama
2012/0103264 May 2012 Choi et al.
2012/0103939 May 2012 Wu et al.
2012/0107607 May 2012 Takaki et al.
2012/0114877 May 2012 Lee
2012/0121823 May 2012 Chhabra
2012/0122302 May 2012 Weisman et al.
2012/0128897 May 2012 Xiao et al.
2012/0135145 May 2012 Je et al.
2012/0156108 June 2012 Fondurulia et al.
2012/0160172 June 2012 Wamura et al.
2012/0164327 June 2012 Sato
2012/0164837 June 2012 Tan et al.
2012/0164842 June 2012 Watanabe
2012/0171391 July 2012 Won
2012/0171874 July 2012 Thridandam et al.
2012/0207456 August 2012 Kim et al.
2012/0212121 August 2012 Lin
2012/0214318 August 2012 Fukazawa et al.
2012/0220139 August 2012 Lee et al.
2012/0225561 September 2012 Watanabe
2012/0240858 September 2012 Taniyama et al.
2012/0263876 October 2012 Haukka et al.
2012/0270339 October 2012 Xie et al.
2012/0270393 October 2012 Pore et al.
2012/0289053 November 2012 Holland et al.
2012/0295427 November 2012 Bauer
2012/0304935 December 2012 Oosterlaken et al.
2012/0305196 December 2012 Mori et al.
2012/0315113 December 2012 Hiroki
2012/0318334 December 2012 Bedell et al.
2012/0321786 December 2012 Satitpunwaycha et al.
2012/0322252 December 2012 Son et al.
2012/0325148 December 2012 Yamagishi et al.
2012/0328780 December 2012 Yamagishi et al.
2013/0005122 January 2013 Schwarzenbach et al.
2013/0011983 January 2013 Tsai
2013/0014697 January 2013 Kanayama
2013/0014896 January 2013 Shoji et al.
2013/0019944 January 2013 Hekmatshoar-Tabai et al.
2013/0019945 January 2013 Hekmatshoar-Tabari et al.
2013/0023129 January 2013 Reed
2013/0048606 February 2013 Mao et al.
2013/0064973 March 2013 Chen et al.
2013/0068970 March 2013 Matsushita
2013/0078392 March 2013 Xiao et al.
2013/0081702 April 2013 Mohammed et al.
2013/0084156 April 2013 Shimamoto
2013/0084714 April 2013 Oka et al.
2013/0104988 May 2013 Yednak et al.
2013/0104992 May 2013 Yednak et al.
2013/0115383 May 2013 Lu et al.
2013/0115763 May 2013 Takamure et al.
2013/0122712 May 2013 Kim et al.
2013/0126515 May 2013 Shero et al.
2013/0129577 May 2013 Halpin et al.
2013/0134148 May 2013 Tachikawa
2013/0168354 July 2013 Kanarik
2013/0180448 July 2013 Sakaue et al.
2013/0183814 July 2013 Huang
2013/0210241 August 2013 Lavoie et al.
2013/0217239 August 2013 Mallick et al.
2013/0217240 August 2013 Mallick et al.
2013/0217241 August 2013 Underwood et al.
2013/0217243 August 2013 Underwood et al.
2013/0224964 August 2013 Fukazawa
2013/0230814 September 2013 Dunn et al.
2013/0256838 October 2013 Sanchez et al.
2013/0264659 October 2013 Jung
2013/0269612 October 2013 Cheng et al.
2013/0288480 October 2013 Sanchez et al.
2013/0292047 November 2013 Tian et al.
2013/0292676 November 2013 Milligan et al.
2013/0292807 November 2013 Raisanen et al.
2013/0319290 December 2013 Xiao et al.
2013/0320429 December 2013 Thomas
2013/0323435 December 2013 Xiao et al.
2013/0330165 December 2013 Wimplinger
2013/0330911 December 2013 Huang
2013/0330933 December 2013 Fukazawa et al.
2013/0337583 December 2013 Kobayashi et al.
2013/0340619 December 2013 Tammera
2014/0000843 January 2014 Dunn et al.
2014/0014642 January 2014 Elliot et al.
2014/0014644 January 2014 Akiba et al.
2014/0020619 January 2014 Vincent et al.
2014/0027884 January 2014 Tang et al.
2014/0033978 February 2014 Adachi et al.
2014/0036274 February 2014 Marquardt et al.
2014/0048765 February 2014 Ma et al.
2014/0056679 February 2014 Yamabe et al.
2014/0060147 March 2014 Sarin et al.
2014/0062304 March 2014 Nakano et al.
2014/0067110 March 2014 Lawson et al.
2014/0073143 March 2014 Alokozai et al.
2014/0077240 March 2014 Roucka et al.
2014/0084341 March 2014 Weeks
2014/0087544 March 2014 Tolle
2014/0094027 April 2014 Azumo et al.
2014/0096716 April 2014 Chung et al.
2014/0099798 April 2014 Tsuji
2014/0103145 April 2014 White et al.
2014/0116335 May 2014 Tsuji et al.
2014/0120487 May 2014 Kaneko
2014/0127907 May 2014 Yang
2014/0141625 May 2014 Fuzazawa et al.
2014/0159170 June 2014 Raisanen et al.
2014/0174354 June 2014 Arai
2014/0175054 June 2014 Carlson et al.
2014/0182053 July 2014 Huang
2014/0209976 July 2014 Yang
2014/0217065 August 2014 Winkler et al.
2014/0220247 August 2014 Haukka et al.
2014/0225065 August 2014 Rachmady et al.
2014/0227072 August 2014 Lee et al.
2014/0251953 September 2014 Winkler et al.
2014/0251954 September 2014 Winkler et al.
2014/0283747 September 2014 Kasai et al.
2014/0346650 November 2014 Raisanen et al.
2014/0349033 November 2014 Nonaka et al.
2014/0363980 December 2014 Kawamata et al.
2014/0363985 December 2014 Jang et al.
2014/0367043 December 2014 Bishara et al.
2015/0004316 January 2015 Thompson et al.
2015/0004317 January 2015 Dussarrat et al.
2015/0007770 January 2015 Chandrasekharan et al.
2015/0014632 January 2015 Kim et al.
2015/0024609 January 2015 Milligan et al.
2015/0048485 February 2015 Tolle
2015/0078874 March 2015 Sansoni
2015/0086316 March 2015 Greenberg
2015/0091057 April 2015 Xie et al.
2015/0096973 April 2015 Dunn et al.
2015/0099072 April 2015 Takamure et al.
2015/0132212 May 2015 Winkler et al.
2015/0140210 May 2015 Jung et al.
2015/0147483 May 2015 Fukazawa
2015/0147877 May 2015 Jung
2015/0167159 June 2015 Halpin et al.
2015/0170954 June 2015 Agarwal
2015/0174768 June 2015 Rodnick
2015/0184291 July 2015 Alokozai et al.
2015/0187568 July 2015 Pettinger et al.
2015/0217456 August 2015 Tsuji et al.
2015/0240359 August 2015 Jdira et al.
2015/0267295 September 2015 Hill et al.
2015/0267297 September 2015 Shiba
2015/0267299 September 2015 Hawkins
2015/0267301 September 2015 Hill et al.
2015/0284848 October 2015 Nakano et al.
2015/0287626 October 2015 Arai
2015/0308586 October 2015 Shugrue et al.
2015/0315704 November 2015 Nakano et al.
2017/0047446 February 2017 Margetis

Other References

Mosleh et al., Enhancement of Material Quality of (Si)GeSn Films Grown by SnCL4 Precursor, Oct. 2015, ECS Transactions, 69 (5), p. 279-285. cited by examiner.

Primary Examiner: Malsawma; Lex
Assistant Examiner: Ojeh; Nduka
Attorney, Agent or Firm: Snell & Wilmer L.L.P.

Claims



What is claimed is:

1. A method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer on a substrate, the method comprising the steps of: providing a reactor having a reaction space; providing a substrate within the reaction space; providing silane coupled to the reaction space; providing a germanium precursor coupled to the reaction space; providing a tin precursor source coupled to the reaction space; and epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate, wherein a pressure in the reaction space is between about 500 Torr and about 760 Torr and a temperature in the reaction space is between about 200.degree. C. and about 500.degree. C., wherein a ratio of a flowrate of the silane to a flowrate of the tin precursor is between about 2 to about 15, and wherein the Si.sub.xGe.sub.1-xSn.sub.y layer comprises about 2 at % to about 15 at % tin, and about 55 at % to about 65 at % germanium.

2. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the germanium precursor comprises germane.

3. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein, during the step of epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate, an operating pressure of the reaction space is between about 600 Torr and about 760 Torr.

4. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the layer of Si.sub.xGe.sub.1-xSn.sub.y comprises about 3 at % to about 12 at % tin.

5. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the layer of Si.sub.xGe.sub.1-xSn.sub.y comprises greater than 0 to about 30 at % silicon.

6. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the layer of Si.sub.xGe.sub.1-xSn.sub.y comprises about 1 at % to about 2 at % carbon.

7. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein, during the step of epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate, a ratio of the silane to the germanium precursor provided to the reaction space is about 2 to about 15.

8. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein, during the step of epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate, a ratio of the silane to the germanium precursor provided to the reaction space is about 3 to about 12.

9. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein, during the step of epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate, an operating temperature within the reaction space is about 275.degree. C. to about 475.degree. C.

10. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the step of providing a tin precursor comprises providing a tin source selected from one or more of the group of SnCl.sub.4, SnD.sub.4, and a methyl and/or halide substituted stannate.

11. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the step of epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate comprises growing a crystalline layer comprising about 4 at % to about 5 at % carbon.

12. The method of forming a Si.sub.xGe.sub.1-xSn.sub.y layer according to claim 1, wherein the step of epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate comprises growing a crystalline layer comprising 1 at % to about 30 at % silicon.

13. A method of forming a structure comprising a Si.sub.xGe.sub.1-xSn.sub.y layer, the method comprising the steps of: providing a cross-flow reactor comprising a reaction space; providing a substrate within the reaction space; and forming a crystalline layer comprising Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate using silane and germane, wherein, during the step of forming, a pressure in the reaction space is between about 500 Torr and about 760 Torr and a temperature is between about 200.degree. C. and about 500.degree. C., wherein, during the step of forming, a ratio of the silane to the germane provided to the reaction space is about 2 to about 15, wherein a ratio of a flowrate of the silane to a flowrate of a tin precursor is between about 2 to about 15, and wherein the Si.sub.xGe.sub.1-xSn.sub.y layer comprises about 2 at % to about 15 at % tin, and about 60 at % to about 70 at % germanium.

14. The method of forming a structure comprising a Si.sub.xGe.sub.1-xSn.sub.y layer of claim 13, wherein the substrate comprises a layer comprising germanium overlying silicon.

15. The method of forming a structure comprising a Si.sub.xGe.sub.1-xSn.sub.y layer of claim 13, wherein the layer comprising Si.sub.xGe.sub.1-xSn.sub.y comprises about 3 from greater than 0 at % tin to about 12 at % tin.

16. The method of forming a structure comprising a Si.sub.xGe.sub.1-xSn.sub.y layer of claim 13, wherein the layer comprising Si.sub.xGe.sub.1-xSn.sub.y comprises from greater than 0 at % silicon to about 30 at % silicon.

17. The method of forming a structure comprising a Si.sub.xGe.sub.1-xSn.sub.y layer of claim 13, wherein the layer comprising Si.sub.xGe.sub.1-xSn.sub.y comprises about 2 at % germanium to about 3 at % carbon.

18. The method of forming a structure comprising a Si.sub.xGe.sub.1-xSn.sub.y layer of claim 13, further comprising the steps of: forming an insulating layer overlying the substrate; forming a via within the insulating layer, and selectively forming the layer comprising Si.sub.xGe.sub.1-xSn.sub.y within the via.

19. A structure comprising a crystalline layer of Si.sub.xGe.sub.1-xSn.sub.y formed according to the method of claim 13.

20. The structure of claim 19, wherein the structure comprises a layer comprising germanium overlying the crystalline layer of Si.sub.xGe.sub.1-xSn.sub.y.
Description



FIELD OF INVENTION

The present disclosure generally relates to techniques for forming layers including silicon germanium tin and to structures and devices including such layers. More particularly, various embodiments of the disclosure relate to methods of forming silicon germanium tin layers using germane and/or silane, to methods of forming structures and devices including such layers, to systems for forming the layers and structures, and to structures and devices including the layers.

BACKGROUND OF THE DISCLOSURE

Various electronic devices, such as semiconductor devices, and photonic devices, such as lasers and solar devices, include or may desirably include silicon germanium tin (Si.sub.xGe.sub.1-xSn.sub.y) layers. For example, Si.sub.xGe.sub.1-xSn.sub.y layers can be used to form direct band gap devices, quantum well structures, and/or may be used to provide strain in, for example, an adjacent germanium layer to increase carrier mobility in the germanium layer. Si.sub.xGe.sub.1-xSn.sub.y layers can also be used to form tunable band gap devices as well as optical devices having tunable optical properties. To obtain the desired device properties, the Si.sub.xGe.sub.1-xSn.sub.y layers generally have a crystalline structure, which generally follows the crystalline structure of an underlying layer, such as a buffer layer.

Si.sub.xGe.sub.1-xSn.sub.y layers can be deposited or grown using a variety of techniques. For example, vacuum processes, including molecular beam epitaxy and ultra-high vacuum chemical vapor deposition, have been used to form Si.sub.xGe.sub.1-xSn.sub.y films. Unfortunately, such techniques are slow, expensive, and thus generally not well suited for high-volume manufacturing.

The germanium precursor for such processes typically includes digermane (Ge.sub.2H.sub.6) or trigermane (Ge.sub.3H.sub.8). When the film includes silicon, the silicon precursor typically includes a disilane (Si.sub.2H.sub.6), trisilane (Si.sub.3H.sub.8), or other higher order silane compounds, or hetero-nuclear Si--Ge compounds with the general formula of (H.sub.3Ge)xSiH.sub.4-x (x=1-4), (H.sub.3Si)xGeH.sub.4-x (x=1-4).

Although such processes generally work to deposit or grow crystalline Si.sub.xGe.sub.1-xSn.sub.y layers, use of digermane, trigermane, or higher order germane precursors and/or disilane or trisilane, is problematic in several respects. For example, formation of films or layers including Si.sub.xGe.sub.1-xSn.sub.y using digermane or higher order germane precursors, such as trigermane, is not selective when certain carrier gasses (e.g., hydrogen) and/or dopants (e.g., p-type dopants) are used with the precursor. Also, digermane is relatively unstable (explosive) in concentrated form; as a result, an amount of the precursor contained in a vessel may be limited, typically to less than 154 grams, which, in turn, causes throughput of processes using such a precursor to be relatively low. In addition, digermane and higher order germanes are relatively expensive. Similarly, higher order silanes are relatively expensive and can result in relatively slow growth rates. Accordingly, improved processes for forming Si.sub.xGe.sub.1-xSn.sub.y are desired. Further, improved methods suitable for high-volume manufacturing of structures and devices including a layer of Si.sub.xGe.sub.1-xSn.sub.y are desired.

SUMMARY OF THE DISCLOSURE

Various embodiments of the present disclosure relate to methods of forming Si.sub.xGe.sub.1-xSn.sub.y films, to structures and devices including Si.sub.xGe.sub.1-xSn.sub.y films, and to systems for forming the Si.sub.xGe.sub.1-xSn.sub.y films. The methods described herein can be used to form Si.sub.xGe.sub.1-xSn.sub.y films suitable for a variety of applications, including, for example, stressor films in semiconductor devices and tunable bandgap layers in photonic devices. While the ways in which various embodiments of the disclosure address the drawbacks of the prior art methods, films, structures, devices, and systems are discussed in more detail below, in general, the disclosure provides methods of forming Si.sub.xGe.sub.1-xSn.sub.y using silane and/or germane as precursors. Exemplary methods can be used to form films, structures, and/or devices including Si.sub.xGe.sub.1-xSn.sub.y in a cost efficient manner and/or can be used to form such films, structures and/or devices in a time efficient manner. Various methods described herein are particularly well suited for use in high volume manufacturing of structures and devices including Si.sub.xGe.sub.1-xSn.sub.y films.

As used herein, Si.sub.xGe.sub.1-xSn.sub.y films (also referred to herein as layers) are layers that can include the elements silicon, germanium, and tin. In accordance with various embodiments of the disclosure, the Si.sub.xGe.sub.1-xSn.sub.y films are crystalline and are epitaxially formed overlying a crystalline substrate or layer. The films can be in the form of an alloy. Exemplary Si.sub.xGe.sub.1-xSn.sub.y films include from 0 or greater than 0 at % to about 15 at % or about 2 at % to about 15 at % tin, from 0 or greater than 0 at % to about 30 at % or about 1 at % to about 30 at % silicon, or about 55 at % to about 65 at % or about 75 at % to about 95 at % germanium. The layers can include additional elements, such as carbon (e.g., GeSnSiC alloys) and/or other elements, such as phosphorous, boron, or other elements commonly used as dopants, and/or trace amount of other elements.

In accordance with some exemplary embodiments of the disclosure, methods of forming a Si.sub.xGe Sn.sub.Y layer on a substrate include the steps providing a reactor having a reaction space, providing a substrate within the reaction space, providing silane coupled to the reaction space, providing a germanium precursor (e.g., germane) coupled to the reaction space, providing a tin precursor source coupled to the reaction space, and epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate. One or more of the precursors can be mixed at or near an inlet of the reaction chamber--e.g., at an inlet or injection manifold of the reactor. In accordance with further aspects, a cross-flow reactor is used to form the Si.sub.xGe.sub.1-xSn.sub.y layer(s). In accordance with yet further aspects, a ratio of flowrate of silane to the tin precursor (not including carrier gasses) ranges from about 2 to about 5, or about 2 to about 10, or about 2 to about 15. Exemplary methods can further include providing additional precursors, such as carbon precursors and/or dopant precursors, to the reaction space; such additional precursor(s) can be mixed with one or more of the other precursors at or near the inlet of the reaction chamber and/or further upstream of the reactor.

Other exemplary methods of forming a Si.sub.xGe.sub.1-xSn.sub.y layer on a substrate include the steps providing a reactor (e.g., a cross-flow reactor) having a reaction space, providing a substrate within the reaction space, providing a silicon source (e.g., silane) coupled to the reaction space, providing germane coupled to the reaction space, providing a tin precursor source coupled to the reaction space, and epitaxially forming a layer of Si.sub.xGe.sub.1-xSn.sub.y on a surface of the substrate. A ratio of flowrate of silane to the tin precursor ranges from about 2 to about 15 or other silane:tin precursor ratios as set forth herein. Exemplary methods can further include providing additional precursors, such as carbon precursors and/or dopant precursors, to the reaction space; such additional precursor(s) can be mixed with one or more of the other precursors at or near the inlet or further upstream of the reaction chamber.

A reaction space temperature for methods described herein can range from about 200.degree. C. to about 500.degree. C., about 275.degree. C. to about 475.degree. C., or about 300.degree. C. to about 420.degree. C. Exemplary reaction chamber pressures during this step range from about 500 Torr to about 760 Torr, about 600 Torr to about 760 Torr, or about 700 Torr to about 760 Torr. The relatively low temperatures and/or relatively high pressures allow for low throughput times associated with manufacturing structures and devices comprising one or more Si.sub.xGe.sub.1-xSn.sub.y layers formed as described herein.

In accordance with exemplary aspects of various embodiments of the disclosure, a ratio of flowrates or partial pressures of the precursors can be selected to promote high-quality film formation under high volume manufacturing conditions.

In accordance with additional embodiments of the disclosure, a structure includes one or more Si.sub.xGe.sub.1-xSn.sub.y films--e.g., formed using a method disclosed herein. Structures can also include additional layers, such as layers typically used to form devices. For example, the structures can include a germanium layer, which can form a buffer layer, and/or a fin layer as part of a FinFET device.

In accordance with yet additional exemplary embodiments of the disclosure, a device includes or is formed using a structure including one or more Si.sub.xGe.sub.1-xSn.sub.y films.

And, in accordance with yet additional exemplary embodiments of the disclosure, a system for forming one or more Si.sub.xGe.sub.1-xSn.sub.y films includes a gas-phase reactor including a reaction space, a germanium precursor (e.g., germane) source coupled to the reaction chamber, a tin precursor source coupled to the reaction space, and a silicon precursor (e.g., silane) source coupled to the reaction space. The system can be configured to mix (e.g., have an operational control mechanism configured to cause mixing of) one or more of the precursors (e.g., all precursors) at or near an inlet of a reaction chamber (e.g., at an injection manifold).

Both the foregoing summary and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

A more complete understanding of exemplary embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.

FIG. 1 illustrates a system for forming one or more Si.sub.xGe.sub.1-xSn.sub.y films in accordance with exemplary embodiments of the disclosure.

FIG. 2 illustrates a method of forming a Si.sub.xGe.sub.1-xSn.sub.y film in accordance with further exemplary embodiments of the disclosure.

FIG. 3 illustrates an XRD plot showing Si.sub.xGe.sub.1-xSn.sub.y layers of various compositions grown with fixed SiH.sub.4, GeH.sub.4, and SnCl.sub.4 flows formed in accordance with exemplary embodiments of the disclosure.

FIG. 4 illustrates an RBS plot showing an exemplary Si.sub.xGe.sub.1-xSn.sub.y layer on Ge buffer with 5% Sn and 8% Si formed in accordance with exemplary embodiments of the disclosure.

FIG. 5 illustrates Raman spectra of various Si.sub.xGe.sub.1-xSn.sub.y films formed in accordance with exemplary embodiments of the disclosure.

FIGS. 6-13 illustrate exemplary structures according to yet additional exemplary embodiments of the present disclosure.

It will be appreciated that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of illustrated embodiments of the present disclosure.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE DISCLOSURE

The description of exemplary embodiments of methods, systems, structures, and devices provided below is merely exemplary and is intended for purposes of illustration only; the following description is not intended to limit the scope of the disclosure or the claims. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features.

The present disclosure relates, generally, to methods of forming layers, such as crystalline alloy layers including silicon, germanium, and tin, overlying a substrate. The silicon germanium tin (Si.sub.xGe.sub.1-xSn.sub.y) layers can include additional elements, such as carbon, which forms part of a crystalline lattice with the silicon germanium tin layer and/or dopants (e.g., p-type dopants, such as boron (B) and/or n-type dopants, such as phosphorous (P) and Arsenic (As)).

Exemplary Si.sub.xGe.sub.1-xSn.sub.y layers include from 0 or greater than 0 at % to about 15 at % tin, about 2 at % to about 15 at % tin, or about 3 at % to about 12 at % tin. Si.sub.xGe.sub.1-xSn.sub.y can include greater than 0 at % tin, greater than 2 at % tin, or greater than 3 at % tin. The Si.sub.xGe.sub.1-xSn.sub.y layers can additionally or alternatively include from 0 or greater than 0 at % to about 30 at % silicon, or about 1 at % to about 30 at % silicon, or about 3 at % to about 25 at % silicon. Exemplary Si.sub.xGe.sub.1-xSn.sub.y layers can additionally or alternatively include about 55 at % to about 65 at % germanium, or about 60 at % to about 70 at % germanium, or about 80 at % to about 90 at % germanium. When the layers include carbon, the Si.sub.xGe.sub.1-xSn.sub.yC layers can include from 0 or greater than 0 at % to about 1 at % carbon, or about 2 at % to about 3 at % carbon, or about 4 at % to about 5 at % carbon.

The Si.sub.xGe.sub.1-xSn.sub.y layers can be used to form structures and devices suitable for a variety of applications, including strain layers to increase mobility of carriers in other layers in semiconductor devices, as part of quantum well structures and devices, and/or as layers in photonic devices. Exemplary structures and devices are discussed below.

As used herein, a "substrate" refers to any material having a surface onto which material can be deposited. A substrate can include a bulk material such as silicon (e.g., single crystal silicon, single crystal germanium, or other semiconductor wafer) or can include one or more layers overlying the bulk material. Further, the substrate can include various topologies, such as trenches, vias, lines, and the like formed within or on at least a portion of a layer of the substrate. Exemplary substrates include a silicon wafer, a layer comprising germanium overlying silicon, and a layer comprising germanium tin overlying silicon.

Turning now to the figures, FIG. 1 illustrates a system 100 suitable for forming Si.sub.xGe.sub.1-xSn.sub.y layers on a substrate using the methods described herein. In the illustrated example, system 100 includes a reactor 102, a silane source 104, a germanium (e.g., germane) precursor 106 source, a tin precursor source 108, purge and/or carrier gas source 110, an optional mixer 112, an optional intake plenum 114, and an exhaust (e.g., vacuum) source 116. Sources 104-110 may be coupled to mixer 112 or reactor 102 using lines 118-132 and valves 134-140. Although not illustrated, a system, such as system 100, may include additional sources and corresponding delivery lines for other precursors, such as carbon precursors and/or dopants (e.g., n-type dopants such as phosphorous or arsenic or p-type dopants such as boron). Additionally or alternatively, one or more dopants may be included in one or more of the precursor sources 102-108. Further, although separately illustrated, two or more dopants may be mixed in a common source.

The sources can be relatively pure--e.g., about 99.999% or greater pure or can be mixed with a carrier. In the case of silane, silane source 104 can include about 1 to 10 at % silane in a carrier or about 100 at % silane. Similarly, the germanium precursor source 106 (e.g., germane) can include about 1.5% to about 5 at % or about 10 at % germane in a carrier. Further, exemplary systems can comprise, consist essentially of, or consist of the precursors noted herein.

Reactor 102 can be a standalone reactor or part of a cluster tool. Further, reactor 102 can be dedicated to a particular process, such as a deposition process, or reactor 102 may be used for other processes--e.g., for layer passivation, cleaning, and/or etch processing. For example, reactor 102 can include a reactor typically used for epitaxial chemical vapor deposition (CVD) processing, such as an Epsilon.RTM. 2000 Plus, Epsilon.RTM. 3200, or Intrepid XP, available from ASM, and may include direct plasma, and/or remote plasma apparatus (not illustrated) and/or various heating systems, such as radiant, inductive, and/or resistive heating systems (also not illustrated). Using a plasma may enhance the reactivity of one or more precursors. The illustrated reactor is a single-substrate, horizontal-flow (cross-flow) reactor, which enables laminar flow of reactants over a substrate 142, with low residence times, which, in turn, facilitates relatively rapid sequential substrate processing. An exemplary CVD reactor suitable for system 100 is described in U.S. Pat. No. 7,476,627, issued to Pomarede et al. on Jan. 13, 2009, the contents of which are hereby incorporated herein by reference, to the extent such contents do not conflict with the present disclosure. The cross-flow reactor was found to produce high-quality Si.sub.xGe.sub.1-xSn.sub.y layers on a surface of a substrate under conditions that are suitable for high-volume, relatively low-cost manufacturing.

An operating pressure of a reaction chamber 144 of reactor 102 may vary in accordance with various factors. Reactor 102 may be configured to operate at near atmospheric pressure or at lower pressures, which allows relatively fast formation of the Si.sub.xGe.sub.1-xSn.sub.y layers--e.g., compared to ultra-high vacuum or molecular beam epitaxy techniques. By way of examples, an operating pressure of reactor 102 during layer formation steps ranges from about 500 Torr to about 760 Torr, about 600 Torr to about 760 Torr, or about 700 Torr to about 760 Torr. A reaction space temperature can range from about 200.degree. C. to about 500.degree. C., about 275.degree. C. to about 475.degree. C., or about 300.degree. C. to about 420.degree. C.

Silane source 104 includes silane (SiH.sub.4) and can optionally include a carrier. Silane source 104 can optionally include one or more dopant compounds, such as compounds typically used to fabricate photonic and/or semiconductor devices. Exemplary p-type dopant compounds include B.sub.2H.sub.6 and exemplary n-type dopant compounds include PH.sub.3 and AsH.sub.3. Use of silane is advantageous over the use of higher order silane compounds, such as disilane, trisilane, tetrasilane (Si.sub.4H.sub.10), neopentasilane (Si.sub.5H.sub.12), and higher order silanes, because silane is relatively less expensive and is more readily available. The inventors found that using pressures, a cross-flow reactor, and/or the ratio of reactants disclosed herein allows for formation of high-quality Si.sub.xGe.sub.1-xSn.sub.y layers using silane--rather than higher order silanes.

Germanium precursor source 106 can include germane (GeH.sub.4) and may optionally include one or more carrier gasses and/or dopant compounds, such as compounds typically used to fabricate photonic and/or semiconductor devices--e.g., B.sub.2H.sub.6 and/or PH.sub.3, AsH.sub.3.

Use of germane is advantageous over other precursors, such as digermane, trigermane, and other higher-order germanes, used to form Si.sub.xGe.sub.1-xSn.sub.y layers, because germane is relatively selective when mixed with various carrier gasses (e.g., hydrogen, nitrogen, or the like) and is also relatively selective, even when dopants (e.g., p-type dopants) are used with the precursor. Also, germane is relatively safe, compared to higher order digermanes, and thus can be used and/or transported in higher quantities, compared to higher order germanes. Also, germane can be used as a precursor for other layers, such as germanium, and is more readily available and is less expensive, compared to higher-order germane compounds.

Tin precursor source 108 includes any compound suitable for providing tin to a Si.sub.xGe.sub.1-xSn.sub.y layer. Exemplary tin precursors include tin chloride (SnCl.sub.4), deuterated stannane (SnD.sub.4), and methyl and/or halide substituted stannanes, such as compounds having a formula Sn(CH.sub.3).sub.4-nX.sub.n, in which X is H, D (deuterium), Cl, or Br and n is 0, 1, 2, or 3; ZSn(CH.sub.3).sub.3-nX.sub.n, in which Z is H or D, X is Cl or Br, and n is 0, 1, or 2; Z2Sn(CH.sub.3).sub.2-nX.sub.n in which Z is H or D, X is Cl or Br, and n is 0 or 1; or SnBr.sub.4. Some exemplary tin precursors suitable for use with the present disclosure are discussed in more detail in application Ser. No. 13/783,762, filed Mar. 4, 2013, entitled TIN PRECURSORS FOR VAPOR DEPOSITION AND DEPOSITION PROCESSES, the contents of which are hereby incorporated herein by reference, to the extent such contents do not conflict with the present disclosure.

Purge and/or carrier gas source 110 may include any suitable purge or carrier gas. Exemplary gasses suitable as carrier and purge gasses include nitrogen, argon, helium, and hydrogen.

System 100 can also include a gas distribution system. An exemplary gas distribution system, which allows for fast switching between gasses (e.g., from sources 104-110) is set forth in U.S. Pat. No. 8,152,922 to Schmidt et al., issued Apr. 10, 2012, entitled "Gas Mixer and Manifold Assembly for ALD Reactor," the contents of which are hereby incorporated herein by reference, to the extent the contents do not conflict with the present disclosure. The gas distribution system may be used to, for example, mix one or more precursor gasses and a carrier gas (which may be the same or different from a purge gas from gas source 108) prior to the gasses reaching plenum 114 or reactor 102.

Turning now to FIG. 2, an exemplary method 200 of forming a Si.sub.xGe.sub.1-xSn.sub.y layer is illustrated. Method 200 includes the steps of providing a gas-phase reactor (step 202), providing a substrate within the gas-phase reactor (step 204), providing precursors to a reaction space of the reactor (step 206), and forming a Si.sub.xGe.sub.1-xSn.sub.y layer overlying the substrate (step 208). Method 200 can optionally include one or more of forming an insulating layer overlying the substrate (step 210), and/or forming a via within the insulating layer (step 212).

During step 202, a gas-phase reactor, such as a CVD reactor suitable for epitaxial growth, is provided. The reactor can be a single-substrate, laminar cross-flow reactor. Suitable reactors are available from ASM, under the name Epsilon.RTM. 2000 Plus, Epsilon.RTM. 3200, and Intrepid XP.

During step 204, a substrate is provided within a reaction chamber of a reactor. The substrate may be received from a loading load lock of a reactor system and transported to the reaction space, such as a reaction chamber, using a suitable transfer mechanism. During this step, the reaction space can be brought to a suitable pressure and temperature for Si.sub.xGe.sub.1-xSn.sub.y layer formation, such as the pressures and temperatures noted herein.

At step 206, the silane, germanium precursor, and the tin precursor are provided to the reaction space of the reactor. The precursors can comprise, consist essentially of, or consist of these precursors. The silane, germanium precursor, and tin precursor can be mixed (e.g., at mixer 112) prior to entering the chamber. The silane, germanium precursor, and tin precursor can individually or in various combinations be mixed with one or more carrier gasses prior to entering the reaction space. One or more of the precursors, in any combination, can be mixed with a carrier upstream of the reaction chamber, such as at a mixer, upstream of a mixer, and/or within the respective source. During this step, a partial pressure of silane can range from about 5 Torr to about 20 Torr; a partial pressure of the germanium precursor (e.g., germane) can range from about 300 Torr to about 450 Torr; or a partial pressure of the tin precursor (e.g., tin chloride) can range from about 1 Torr to about 3 Torr.

During step 208, a crystalline layer (e.g., an epitaxial layer) of Si.sub.xGe.sub.1-xSn.sub.y is formed overlying a substrate. As noted above, an operating pressure of a reaction space during layer formation steps can range from about 500 Torr to about 760 Torr, about 600 Torr to about 760 Torr, or about 700 Torr to about 760 Torr. And, a reaction space temperature can range from about 200.degree. C. to about 500.degree. C., about 275.degree. C. to about 475.degree. C., or about 300.degree. C. to about 420.degree. C.

During step 210, any suitable insulating layer, such as silicon oxide or silicon nitride, is deposited onto the substrate. Then, during step 212, one or more vias are formed within the insulating layer. Reactive ion etching or other suitable technique can be used to form the one or more vias.

In the cases where steps 210 and 212 are performed, the Si.sub.xGe.sub.1-xSn.sub.y layer formed during step 206 can be selectively formed within the vias. As noted above, use of a germane precursor is advantageous because it is relatively selective when using a variety of carrier gasses, such as hydrogen, and/or when the layer includes one or more dopants, such as p-type dopants.

FIG. 3 illustrates an X-Ray diffraction (XRD) plot of Si.sub.xGe.sub.1-xSn.sub.y layers of various compositions grown with fixed silane, germane, and tin chloride flow rates over a layer of germanium overlying a silicon substrate. A reaction space temperature during the deposition of the films varied between 300.degree. C. and 375.degree. C. The plot illustrates that a composition of the Si.sub.xGe.sub.1-xSn.sub.y layers can be adjusted to be lattice matched to germanium or can be increasingly strained.

FIG. 4 illustrates aligned and random yield of Rutherford backscattering spectra of a Si.sub.xGe.sub.1-xSn.sub.y layer formed overlying a germanium layer on a silicon substrate. The Si.sub.xGe.sub.1-xSn.sub.y includes about 5% tin and about 8% silicon and was grown at a temperature of about 320.degree. C. The low yield of the aligned spectra relative to the random spectra indicates that the Si.sub.xGe.sub.1-xSn.sub.y layer is a substitutional alloy.

FIG. 5 illustrates Raman spectra of Si.sub.xGe.sub.1-xSn.sub.y layers of various compositions, illustrating ternary binding in the films and that the films are substitutional alloys.

FIGS. 6-12 illustrate exemplary structures 600-1200 that can be formed--e.g., using the exemplary systems and/or methods described herein.

Structure 600 includes a substrate 602, a buffer layer 604, and a Si.sub.xGe.sub.1-xSn.sub.y layer 606 (e.g., epitaxially formed overlying layer 604). Substrate 602 can include, for example, a silicon substrate. Substrate 602 can include additional layers of materials used to form electronic or photonic devices. Buffer layer 604 can include or be, for example, a layer of germanium that is epitaxially formed overlying substrate 602. Si.sub.xGe.sub.1-xSn.sub.y layer 606 can be formed using, for example, method 200. Structure 600 can be used to form a variety of electronic or photonic devices.

A thickness of buffer layer 604 can range from, for example, about 0.5 to about 0.7, or about 0.8 to about 0.9, or be about one micron thick. A thickness of Si.sub.xGe.sub.1-xSn.sub.y layer 606 can range from about 1 to about 9, or about 10 nm to about 100 nm in thickness.

Structure 700 is similar to structure 600, except structure 700 includes an additional layer 708. Structure 700 includes a substrate 702, a buffer layer 704, a Si.sub.xGe.sub.1-xSn.sub.y layer 706, and a germanium layer 708. Substrate 702, buffer layer 704, and Si.sub.xGe.sub.1-xSn.sub.y layer 706 can be the same as the corresponding substrate and layers described in connection with FIG. 6 and can have the same thicknesses. A thickness of germanium layer 708 can range from about 1 to about 3, or about 4 to about 9 or be about 10 nm thick. Germanium layer 708 can be epitaxially formed overlying Si.sub.xGe.sub.1-xSn.sub.y layer 706 using, e.g., an epitaxial process with germane as a precursor.

Structure 800 includes a substrate 802, a buffer layer 804, a Si.sub.xGe.sub.1-xSn.sub.y layer 806, and a germanium tin (GeSn) layer 808 epitaxially formed overlying Si.sub.xGe.sub.1-xSn.sub.y layer 806. Substrate 802 and layers 804-806 can be the same or similar to corresponding layers described above in connection with FIGS. 6 and 7 and have the same thicknesses. GeSn layer 808 can have a thickness of about 1 to about 3, or about 4 to about 9, or be about 10 nm. GeSn layer 808 can be formed by, for example, using germane and a tin precursor such as tin chloride. GeSn layer 808 can include, for example, about 1 at % to about 8 at % or about 9 at % to about 15 at % tin.

Structure 900 includes a substrate 902, a germanium layer 904, a GeSn layer 906, and a Si.sub.xGe.sub.1-xSn.sub.y layer 908. The composition of the layers can be the same as the corresponding layers described above in connection with FIG. 8 (with germanium layer 904 corresponding to buffer layer 804). In the illustrated example, buffer layer 904 can have the same thickness as buffer layers 604-804; a thickness of GeSn layer can range from about 100 nm to about 400 nm, or about 500 nm to about 900 nm, or be about 1000 nm. Si.sub.xGe.sub.1-xSn.sub.y layer 908 can have the same thickness as Si.sub.xGe.sub.1-xSn.sub.y layers 606, 706, and 806. Structure 900 is similar to structure 800, except GeSn layer 906 and Si.sub.xGe.sub.1-xSn.sub.y layer 908 are formed in reverse order--compared to the structure illustrated in FIG. 8.

Structure 1000, which is suitable for quantum well structures and devices, includes a substrate 1002, a buffer layer 1004, first Si.sub.xGe.sub.1-xSn.sub.y layer 1006, GeSn layer 1008, and second Si.sub.xGe.sub.1-xSn.sub.y layer 1006. The various layers can be formed as described above. Buffer layer 1004, first and second Si.sub.xGe.sub.1-xSn.sub.y layers 1006 and 1010, and GeSn layer 1008 can have the same thickness noted above. By way of example, buffer layer 1004 can be about 1 micron thick, first Si.sub.xGe.sub.1-xSn.sub.y layer 1006 and second Si.sub.xGe.sub.1-xSn.sub.y layer 1010 can each be about 50 nm thick, and GeSn layer 1008 can be about 10 nm thick. Layers 1008-1010 can be repeated a desired number of times to form a quantum well structure.

FIG. 11 illustrates another structure 1100 that is suitable for use as a quantum well structure or device. Structure 1100 includes a substrate 1102, a buffer layer 1104, a first Si.sub.xGe.sub.1-xSn.sub.y layer 1106, a first Ge layer 1108, a GeSn layer 1110, a second Ge layer 1112, and a second Si.sub.xGe.sub.1-xSn.sub.y layer 1114. Buffer layer 1104, first and second Si.sub.xGe.sub.1-xSn.sub.y layers 1106 and 1114, first and second Ge layers 1108 and 1112, and GeSn layer 1110 can have the same thickness noted above. By way of example, buffer layer 1104 can be about 1 micron thick, first Si.sub.xGe.sub.1-xSn.sub.y layer 1106 can be about 50 nm thick, first Ge layer 1108 and second Ge layer 1112 can be about 50 nm thick, GeSn layer 1110 can be about 10 nm thick, and second Si.sub.xGe.sub.1-xSn.sub.y layer 1114 can be about 10 nm thick. Layers 1106-1114 can be repeated a desired number of times to form a quantum well structure.

FIG. 12 illustrates yet another structure 1200 in accordance with various embodiments of the disclosure. Structure 1200 includes substrate 1202, first Si.sub.xGe.sub.1-xSn.sub.y layer 1204, GeSn layer 1206, and second Si.sub.xGe.sub.1-xSn.sub.y layer 1208. Structure 1200 is similar to structure 1000, except structure 1200 does not include buffer layer 1004. The layers of structure 1200 can be formed using the same techniques used to form structure 1000 and the layers can have the same or similar thicknesses.

FIG. 13 illustrates yet another structure 1300 in accordance with additional exemplary embodiments of the disclosure. Structure 1300 includes a substrate 1302, an insulating layer 1304, a via 1306 formed within insulating layer 1304, a germanium layer 1308 (e.g., epitaxially formed overlying substrate 1302), and a Si.sub.xGe.sub.1-xSn.sub.y layer 1310 (e.g., epitaxially formed overlying layer 1308). Layers 1308 and/or 1310 can be selectively formed within via 1306--e.g., using method 200. Substrate 1302, germanium layer 1308, and Si.sub.xGe.sub.1-xSn.sub.y layer 1310 can be the same or similar to respective layers described above and can have the same or similar thicknesses. Insulating layer 1304 can include silicon oxide, silicon nitride, and/or silicon oxynitride. A thickness of insulating layer 1304 can range from about 1 to about 10 nm, or about 10 to about 100 nm.

It is to be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense. In the case of exemplary methods, specific routines or steps described herein can represent one or more of any number of processing strategies. Thus, the various acts illustrated can be performed in the sequence illustrated, performed in other sequences, performed simultaneously, or omitted in some cases.

The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, layers, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed