Method For Reducing Stress-induced Voids For 0.25u And Smaller Semiconductor Chip Technology By Annealing Interconnect Lines And Using Low Bias Voltage And Low Interlayer Dielectric Deposition Rate And Semiconductor Chip Made Thereby

NGO, MINH VAN ;   et al.

Patent Application Summary

U.S. patent application number 09/105775 was filed with the patent office on 2002-01-10 for method for reducing stress-induced voids for 0.25u and smaller semiconductor chip technology by annealing interconnect lines and using low bias voltage and low interlayer dielectric deposition rate and semiconductor chip made thereby. Invention is credited to BESSER, PAUL R., BUYNOSKI, MATTHEW, CAFFALL, JOHN, HUANG, RICHARD J., MACCRAE, NICK, NGO, MINH VAN, TRAN, KHANH.

Application Number20020003306 09/105775
Document ID /
Family ID22307709
Filed Date2002-01-10

United States Patent Application 20020003306
Kind Code A1
NGO, MINH VAN ;   et al. January 10, 2002

METHOD FOR REDUCING STRESS-INDUCED VOIDS FOR 0.25U AND SMALLER SEMICONDUCTOR CHIP TECHNOLOGY BY ANNEALING INTERCONNECT LINES AND USING LOW BIAS VOLTAGE AND LOW INTERLAYER DIELECTRIC DEPOSITION RATE AND SEMICONDUCTOR CHIP MADE THEREBY

Abstract

A method for making 0.25 micron semiconductor chips includes annealing the metal interconnect lines prior to depositing an inter-layer dielectric (ILD) between the lines. During annealing, an alloy of aluminum and titanium forms, which subsequently volumetrically contracts, with the contraction being absorbed by the aluminum. Because the alloy is reacted prior to ILD deposition, however, the aluminum is not constrained by the ILD when it attempts to absorb the contraction of the alloy. Consequently, the likelihood of undesirable void formation in the interconnect lines is reduced. The likelihood of undesirable void formation is still further reduced during the subsequent ILD gapfill deposition process by using relatively low bias power to reduce vapor deposition temperature, and by using relatively low source gas deposition flow rates to reduce flow-induced compressive stress on the interconnect lines during ILD formation.


Inventors: NGO, MINH VAN; (UNION CITY, CA) ; BESSER, PAUL R.; (SUNNYVALE, CA) ; BUYNOSKI, MATTHEW; (PALO ALTO, CA) ; CAFFALL, JOHN; (SAN CARLOS, CA) ; MACCRAE, NICK; (SAN JOSE, CA) ; HUANG, RICHARD J.; (CUPERTINO, CA) ; TRAN, KHANH; (SAN JOSE, CA)
Correspondence Address:
    LARIVIERE, GRUBMAN & PAYNE, LLP
    1 LOWER RAGSDALE, BLDG. 1, SUITE 130
    P.O. BOX 3140
    MONTEREY
    CA
    93942
    US
Family ID: 22307709
Appl. No.: 09/105775
Filed: June 26, 1998

Current U.S. Class: 257/765 ; 257/E21.576; 257/E21.589; 257/E23.16
Current CPC Class: H01L 2924/00 20130101; H01L 21/7685 20130101; H01L 21/76837 20130101; H01L 2924/0002 20130101; H01L 21/76858 20130101; H01L 21/76885 20130101; H01L 2221/1078 20130101; H01L 2924/0002 20130101; H01L 23/53223 20130101
Class at Publication: 257/765
International Class: H01L 029/40; H01L 023/52; H01L 023/48; H01L 023/02

Claims



What is claimed is:

1. A method for making a semiconductor chip having electrically conductive lines, comprising: providing at least one substrate; establishing at least one predetermined pattern of electrically conductive lines on the substrate; annealing the electrically conductive lines; then depositing an inter-layer dielectric (ILD) between the lines using a source gas at a flow rate no more than sixty five standard cubic centimeters per minute (65 SCCM).

2. The method of claim 1, further comprising disposing the substrate on a support and applying a bias power of less than three thousand four hundred (3400) watts to the support.

3. The method of claim 2, wherein the flow rate is no more than sixty standard cubic centimeters per minute (60 SCCM).

4. The method of claim 3, wherein the flow rate is between forty (40) SCCM and 60 SCCM, and the bias power is no more than 3000 watts.

5. The method of claim 1, wherein each line establishes a stack including at least one layer having aluminum therein, and wherein an alloy of titanium and aluminum is formed during the annealing step.

6. The method of claim 5, wherein the annealing step is undertaken by heating the electrically conductive lines to a temperature of between three hundred fifty degrees Celsius and four hundred fifty degrees Celsius (350.degree. C.-450.degree. C.) for a period of between ten minutes and ninety minutes.

7. The method of claim 1, wherein the ILD is TEOS, and the TEOS is deposited by directing TEOS onto the lines while simultaneously removing excess TEOS by sputtering.

8. A chip made according to the method of claim 1.

9. A computing device incorporating the chip of claim 8.

10. A semiconductor chip, comprising: at least one substrate; at least one predetermined pattern of aluminum lines supported by the substrate, adjacent lines being separated by distances equal to or less than about three-eighths of a micron; and an alloy of aluminum and titanium on the lines, the alloy being reacted prior to insulating the lines from each other, the lines being insulated from each other by vapor deposition of an inter layer dielectric (ILD) therebetween using a source gas at a rate of no more than sixty standard cubic centimeters per minute (60 SCCM).

11. A method for making a semiconductor chip, comprising: establishing plural electrically conductive lines on at least one substrate, at least first lines being separated from second lines by distances equal to or less than three-eighths of a micron; and depositing a dielectric between at least two lines that are adjacent each other using a source gas at a vapor deposition rate of no more than sixty five standard cubic centimeters per minute (65 SCCM).

12. The method of claim 11, further comprising: reacting a metal alloy on the lines before the depositing step, such that the dielectric substantially does not constrain the lines during the deposition step.

13. The method of claim 12, wherein the reacting step is undertaken by annealing the electrically conductive lines to a temperature of between three hundred fifty degrees Celsius and four hundred fifty degrees Celsius (350.degree. C.-450.degree. C.) for a period of between ten minutes and ninety minutes.

14. The method of claim 13, wherein the electrically conductive lines are exposed to one or more annealing gases during the reacting step, the annealing gases including nitrogen and hydrogen.

15. The method of claim 13, wherein the dielectric is TEOS, and the TEOS is deposited by directing TEOS onto the lines while simultaneously removing excess TEOS by sputtering.

16. The method of claim 11, further comprising disposing the substrate on a support and applying a bias power of no more than three thousand watts to the support.

17. The method of claim 16, wherein the flow rate is between 40 SCCM and 60 SCCM, and the bias power is no more than three thousand watts.

18. A chip made according to the method of claim 11.

19. A computing device incorporating the chip of claim 18.
Description



TECHNICAL FIELD

[0001] The present invention relates generally to semiconductor fabrication, and more particularly to methods for improving the reliability of 0.25.mu. technology semiconductors by alleviating stress in interconnect lines that might otherwise result in the formation of voids in the interconnect lines.

BACKGROUND OF THE INVENTION

[0002] Semiconductor chips or wafers are used in many applications, including as integrated circuits and as flash memory for hand held computing devices, wireless telephones, and digital cameras. Regardless of the application, it is desirable that a semiconductor chip hold as many circuits or memory cells as possible per unit area. In this way, the size, weight, and energy consumption of devices that use semiconductor chips advantageously is minimized, while nevertheless improving the memory capacity and computing power of the devices.

[0003] In chips that hold integrated circuits, the individual circuit components are interconnected by conductive elements referred to as "interconnect lines". These interconnect lines are typically arranged in a multi-layered pattern that is deposited on a semiconductive substrate such as silicon. To insulate the interconnect lines from each other, insulative material is deposited between adjacent interconnect line layers.

[0004] With the above in mind, so-called 0.25 micron technology has been developed, in which the distance between adjacent layers of interconnect lines in an integrated circuit on a semiconductor chip is equal to or less than about three-eighths of a micron. With such a small spacing between interconnect lines, which have heights of about 1.1 microns, the size of the circuits on the chip can be reduced to result in the above-noted advantages.

[0005] Typically, each electrically conductive interconnect line is made of a "stack" of metal layers that typically includes a layer made of aluminum or aluminum alloy, and one or more other metal layers. The aluminum is deposited as a film over the substrate and is then lithographically patterned and chemically etched to form a desired pattern for the circuit's connector lines. Then, a process referred to as high density plasma (HDP) inter-layer dielectric (ILD) formation is used to fill the gaps between adjacent metal stacks with an electrically non-conductive material. Ordinarily, the ILD deposition step is undertaken at relatively high temperature, incidentally precipitating the formation of an intermetallic structure. In current applications, titanium is commonly used as an underlayer for the aluminum, and the intermetallic structure that forms in such a device is TiAl.sub.3. Also, an overlayer that includes TiN anti-reflective coating (ARC) is disposed over the stacks, for lithography purposes.

[0006] As understood herein, however, voids caused by hydrostatic stresses undesirably can form in the aluminum, and the voiding of the aluminum can be accelerated by the formation of the intermetallic structure. This is undesirable, because when a void forms in a thin aluminum line, the current path through the line unfortunately is diverted, thereby adversely affecting the reliability of the chip.

[0007] The present invention understands that the above-mentioned hydrostatic stresses arise because the thermal expansion coefficient of the aluminum layer is different from the thermal expansion coefficient of the encapsulating ILD and the silicon substrate, both of which mechanically constrain the aluminum. Furthermore, when an intermetallic structure such as TiAl.sub.3 is formed, the intermetallic structure can volumetrically contract (by 5.9%, in the case of TiAl.sub.3), and the aluminum in the intermetallic structure, which is the most compliant metal in the stack, will consequently absorb the contraction-induced strain and thus have an even higher stress state as a result. Additionally, we have discovered that the undesirable voiding can be accelerated by relatively high compressive stress caused by high silane flow rates of sixty six standard cubic meters per minute (66 SCCM) and higher and relatively high temperatures (caused by applying relatively high bias power of 3500 watts and higher) during ILD deposition.

[0008] Fortunately, the present invention recognizes that contrary to previous methods based on larger-geometry chips, in which pre-annealing interconnect lines prior to ILD deposition would have undesirably formed hillocks, i.e., extrusions of metal, in the chip structure, it is possible to anneal the metal stacks prior to ILD deposition in 0.25.mu. semiconductors, when only the substrate, and not the ILD, constrains the aluminum in the stacks. As recognized by the present invention, the consequence is that the likelihood of void formation in the interconnect lines is reduced, thereby improving 0.25.mu. chip reliability. The present invention moreover understands that relatively low temperatures and silane flow rates during ILD deposition can be used to further reduce the likelihood of void formation in the interconnect lines.

BRIEF SUMMARY OF THE INVENTION

[0009] A method is disclosed for making a semiconductor chip having electrically conductive interconnect lines. The method includes providing at least one substrate, and establishing at least one predetermined pattern of electrically conductive interconnect lines on the substrate. In accordance with the present invention, prior to depositing a dielectric layer between the interconnect lines, the lines are annealed, and then the dielectric layer (ILD) is deposited from a source gas with a flow rate of no more than sixty five standard cubic centimeters per minute (65 SCCM).

[0010] In a preferred embodiment, the substrate is disposed on a support, and a bias power of no more than three thousand four hundred (3400) watts is applied to the support. More preferably, the bias power is no more than 3000 watts. Further, when the source gas is silane, the particularly preferred flow rate of the source gas used to deposit the ILD is less than sixty standard cubic centimeters per minute (60 SCCM), and can be between forty (40) SCCM and 60 SCCM.

[0011] As intended by the present invention, each line establishes a stack including at least one layer having aluminum, and an alloy of titanium and aluminum is formed during the annealing step. As disclosed in detail below, the annealing step is undertaken by heating the electrically conductive lines to a temperature of between three hundred fifty degrees Celsius and four hundred fifty degrees Celsius (350.degree. C.-450.degree. C.) for a period of between ten minutes and ninety minutes. If desired, the ILD can be silane or TEOS, and the ILD is deposited by directing ILD onto the lines while simultaneously removing excess ILD by sputtering. A chip made according to the method, and a computing device incorporating the chip, are also disclosed.

[0012] In another aspect, a semiconductor chip includes at least one substrate and at least one predetermined pattern of aluminum lines supported by the substrate. Adjacent lines are separated by distances equal to or less than about three-eighths of a micron. An alloy of aluminum and titanium is formed on the lines, with the alloy being reacted prior to insulating the lines from each other. In accordance with the present invention, the lines are insulated from each other by vapor deposition of an inter layer dielectric (ILD) from a source gas at a rate of no more than sixty standard cubic centimeters per minute (60 SCCM).

[0013] In still another aspect, a method for making a semiconductor chip includes establishing plural electrically conductive lines on at least one substrate. The lines are spaced from each other by distances equal to or less than three-eighths of a micron. The method further includes depositing a dielectric between at least two lines that are adjacent each other using a source gas at a flow rate of no more than sixty five standard cubic centimeters per minute (65 SCCM).

[0014] Other features of the present invention are disclosed or apparent in the section entitled: "DETAILED DESCRIPTION OF THE INVENTION."

BRIEF DESCRIPTION OF DRAWINGS

[0015] For fuller understanding of the present invention, reference is made to the accompanying drawing in the following detailed description of the Best Mode of Carrying Out the Present Invention. In the drawings:

[0016] FIG. 1 is a flow chart of the present process for making a 0.25.mu. technology semiconductor chip;

[0017] FIG. 2 is a schematic diagram of the substrate showing the chip after conductor line stack formation;

[0018] FIG. 3 is a schematic cross-sectional diagram of the substrate showing the chip after ILD deposition/etching, schematically showing a computing device that incorporates the chip; and

[0019] FIG. 4 is a schematic diagram of a high density plasma gap fill deposition chamber.

[0020] Reference numbers refer to the same or equivalent parts of the present invention throughout the several figures of the drawing. In the description, the terms "vertical" and "horizontal" refer to the orientations of the figures shown, for purposes of disclosure, and do not necessarily refer to the orientation of the present wafer once the wafer is embodied in a computing device.

DETAILED DESCRIPTION OF THE INVENTION

[0021] Referring initially to FIGS. 1 and 2, the process of the present invention in producing 0.25.mu. technology computer chips can be understood. Commencing at block 10 in FIG. 1 and as shown in FIG. 2, plural stacks 12 are formed on a substrate 14. Each stack 12 is a metallic, electrically-conductive stack that defines a respective interconnect line for an integrated circuit chip, generally designated 16. The chip 16 can establish an integrated circuit such as a microprocessor or a flash memory chip (e.g., an electrically programmable memory (EPROM)) for use in the computer arts. Although only two stacks 12 are shown for clarity of disclosure, it is to be understood that more than two stacks typically are formed on the substrate 14.

[0022] Preferably, the substrate 14 includes a semiconductor such as silicon. Also, the substrate 14 can include a number of devices, such as metal oxide silicon field effect transistor (MOSFET) devices, that are electrically connected to one or more of the stacks 12 via connector plugs.

[0023] In the preferred embodiment, each stack 12 includes a respective lower titanium layer 18 abutting the substrate 14, an upper titanium layer 20 parallel to and spaced from the lower titanium layer 18, and an aluminum layer 22 sandwiched therebetween. The titanium layers can be titanium or a titanium alloy such as titanium nitride. It is to be understood that greater or fewer layers can be provided. In a preferred embodiment, the aluminum layer 22 is made of aluminum or an aluminum alloy including aluminum and from 0.1% to about 10% by weight of one or more of copper, nickel, zinc, gold, titanium, indium, chromium, silver, palladium, silicon, and platinum.

[0024] The stacks are patterned on the wafer substrate 14 in accordance with means known in the art, e.g., by depositing the various metallic layers as films, covering the films with a mask, and then directing ultraviolet light against the exposed portions of the films. After lithographic patterning, chemical etching is used to remove portions of metal not in the pattern to establish the predetermined pattern of aluminum conductive lines of the chip 16, as shown in FIG. 2.

[0025] As can be appreciated in reference to FIG. 2, the chip 16 a so-called "quarter micron chip", in that the distance 6 between adjacent stacks 12 is about equal to or less than three-eighths of a micron (0.375.mu.).

[0026] Moving to block 24 in FIG. 1, after forming the stacks 12, the stacks 12 are annealed to form an intermetallic the stacks 12, with an alloy structure 25 being formed at the interface between each layer of aluminum and a layer of titanium (only a single alloy structure 25 shown for clarity of disclosure). In the preferred embodiment, the metal alloy is an alloy of aluminum and titanium, and more specifically is TiAl.sub.3. Preferably, the annealing at block 24 is undertaken by heating the stacks 12 to a temperature of between three hundred fifty degrees Celsius and four hundred fifty degrees Celsius (350.degree. C.-450.degree. C.) for a period of between ten minutes and ninety minutes. Also, during the annealing step the stacks 12 are exposed to one or more annealing gases, preferably nitrogen at a flow rate of between eleven standard liters per minute and fourteen standard liters per minute (11.0 slm-14.0 slm) and hydrogen at a flow rate of between one standard liter per minute and two standard liters per minute (1.0 slm-2.0 slm).

[0027] After annealing, the chip 16 is cooled. Accordingly, as provided by the present invention the TiAl.sub.3, which would otherwise form during ILD deposition and contract during the subsequent cool down when the stacks 12 are constrained by the ILD, is instead formed prior to ILD deposition, thus permitting the aluminum in the stacks 12 to absorb contraction from the TiAl.sub.3 before the stacks 12 are constrained by the ILD. This reduces the likelihood that voids will undesirably form in the interconnect lines of the chip 16.

[0028] Moving to block 26 of FIG. 1 and referring to FIG. 3, an interlayer dielectric (ILD) 28 is deposited between the stacks 12 to insulate the stacks 12. While the present invention envisions using any appropriate high density plasma (HDP) ILD such as silane ((SiH.sub.4), tetraethoxy silane (TEOS) can also be used to avoid the production of free hydrogen that could otherwise embrittle the aluminum.

[0029] To understand the preferred embodiment cross-reference is made to FIGS. 3 and 4. A high density plasma (HDP) chamber 30 (FIG. 4) is enclosed by a wall 32. A support 34 is disposed in the chamber 30, and the support 34 may include an e-chuck 36. One or more wafers or substrates 22 are in turn disposed on the e-chuck 36.

[0030] To provide for depositing ILD on the wafer 22, a source gas inlet 38 and an oxygen inlet 40 are associated with the chamber wall 32 to respectively direct a source gas (such as silane) and oxygen into the chamber 30, and a source power lead 42 is likewise associated with the chamber 30. In the preferred embodiment, a source gas such as silane is directed into the chamber 30 at a rate ranging from 40 standard cubic centimeters per minute (SCCM) to sixty five standard cubic centimeters per minute (65 SCCM), and more preferably at a rate of no more than 60 SCCM. In contrast, oxygen is directed into the chamber 30 at a rate ranging from one hundred ten standard cubic centimeters per minute to one hundred thirty standard cubic centimeters per minute (110 SCCM-130 SCCM). The pressure within the chamber 30 is maintained between one milliTorr and six milliTorr (1 mTorr-6 mTorr), and the source power applied to the chamber 30 is between two thousand watts and five thousand watts (2000 w-5000 w). In accordance with the present invention, the solid ILD is subsequently established from the source gas that is deposited by vapor deposition as described.

[0031] To provide for simultaneous sputtering of the ILD while it is being deposited, an etchant inlet 44 is associated with the wall 32 to port a gaseous sputtering agent, preferably argon, into the chamber 30. Also, a bias power lead 46 is connected to the e-chuck 36, and bias power is maintained at no more than three thousand four hundred watts (3400 w), and more preferably at no more than 3000 watts.

[0032] If desired, both the annealing step and the subsequent ILD deposition step can be undertaken in the chamber 30. If the annealing step is to be undertaken in the chamber 30, nitrogen and hydrogen inlets (not shown) are provided in the chamber 30.

[0033] The completion of the chip 16 may proceed in any such manner as is required by its design. The resulting chip 16 can be incorporated into a computing device 50 (FIG. 3), e.g., a computer, digital camera, wireless telephone, or hand held computer, for use by the computing device 50.

[0034] The principles of the present invention are equally applicable to a wide range of semiconductor and integrated circuit design and manufacture regimens, including but not necessarily limited to the production of non-volatile memory devices. All such implementations are specifically contemplated by the principles of the present intention.

[0035] The present invention has been particularly shown and described with respect to certain preferred embodiments and features thereof. However, it should be readily apparent to those of ordinary skill in the art that various changes and modifications in form and detail may be made without departing from the spirit and scope of the inventions as set forth in the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more". The inventions illustratively disclosed herein may be practiced without any element which is not specifically disclosed herein.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed