System and method for controlling operation of an LED-based light

Ivey , et al. February 23, 2

Patent Grant 9271367

U.S. patent number 9,271,367 [Application Number 13/934,607] was granted by the patent office on 2016-02-23 for system and method for controlling operation of an led-based light. This patent grant is currently assigned to iLumisys, Inc.. The grantee listed for this patent is iLumisys, Inc.. Invention is credited to John Ivey, Hoan Ngo, Brian Nickol, Anthony J. Norton, David L. Simon.


United States Patent 9,271,367
Ivey ,   et al. February 23, 2016

System and method for controlling operation of an LED-based light

Abstract

In one aspect of an embodiment for controlling operation of a light source, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.


Inventors: Ivey; John (Farmington Hills, MI), Simon; David L. (Grosse Pointe Woods, MI), Ngo; Hoan (Sterling Heights, MI), Norton; Anthony J. (Ann Arbor, MI), Nickol; Brian (Macomb, MI)
Applicant:
Name City State Country Type

iLumisys, Inc.

Troy

MI

US
Assignee: iLumisys, Inc. (Troy, MI)
Family ID: 49877999
Appl. No.: 13/934,607
Filed: July 3, 2013

Prior Publication Data

Document Identifier Publication Date
US 20140009068 A1 Jan 9, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
61669319 Jul 9, 2012

Current U.S. Class: 1/1
Current CPC Class: H05B 45/357 (20200101); H05B 47/155 (20200101); H05B 47/175 (20200101); H05B 47/19 (20200101); H05B 45/30 (20200101); H05B 45/10 (20200101)
Current International Class: H05B 37/02 (20060101); H05B 33/08 (20060101)

References Cited [Referenced By]

U.S. Patent Documents
D79814 November 1929 Hoch
D80419 January 1930 Kramer
D84763 July 1931 Stange
D119797 April 1940 Winkler et al.
D125312 February 1941 Logan
2826679 March 1958 Rosenburg
2909097 October 1959 Alden et al.
3272977 September 1966 Holmes
3318185 May 1967 Kott
3561719 February 1971 Grindle
3586936 June 1971 Mcleroy
3601621 August 1971 Ritchie
3612855 October 1971 Juhnke
3643088 February 1972 Osteen et al.
3739336 June 1973 Burland
3746918 July 1973 Drucker et al.
3818216 June 1974 Larraburu
3832503 August 1974 Crane
3858086 December 1974 Anderson et al.
3909670 September 1975 Wakamatsu et al.
3924120 December 1975 Cox, III
3958885 May 1976 Stockinger et al.
3969720 July 1976 Nishino
3974637 August 1976 Bergey et al.
3993386 November 1976 Rowe
4001571 January 1977 Martin
4054814 October 1977 Fegley et al.
4070568 January 1978 Gala
4082395 April 1978 Donato et al.
4096349 June 1978 Donato
4102558 July 1978 Krachman
4107581 August 1978 Abernethy
4189663 February 1980 Schmutzer et al.
4211955 July 1980 Ray
4241295 December 1980 Williams, Jr.
4261029 April 1981 Mousset
4262255 April 1981 Kokei et al.
4271408 June 1981 Teshima et al.
4271458 June 1981 George, Jr.
4272689 June 1981 Crosby et al.
4273999 June 1981 Pierpoint
4298869 November 1981 Okuno
4329625 May 1982 Nishizawa et al.
4339788 July 1982 White et al.
4342947 August 1982 Bloyd
4344117 August 1982 Niccum
4367464 January 1983 Kurahashi et al.
D268134 March 1983 Zurcher
4382272 May 1983 Quella et al.
4388567 June 1983 Yamazaki et al.
4388589 June 1983 Molldrem, Jr.
4392187 July 1983 Bornhorst
4394719 July 1983 Moberg
4420711 December 1983 Takahashi et al.
4455562 June 1984 Dolan et al.
4500796 February 1985 Quin
4521835 June 1985 Meggs et al.
4531114 July 1985 Topol et al.
4581687 April 1986 Nakanishi
4597033 June 1986 Meggs et al.
4600972 July 1986 MacIntyre
4607317 August 1986 Lin
4622881 November 1986 Rand
4625152 November 1986 Nakai
4635052 January 1987 Aoike et al.
4647217 March 1987 Havel
4656398 April 1987 Michael et al.
4661890 April 1987 Watanabe et al.
4668895 May 1987 Schneiter
4669033 May 1987 Lee
4675575 June 1987 Smith et al.
4682079 July 1987 Sanders et al.
4686425 August 1987 Havel
4687340 August 1987 Havel
4688154 August 1987 Nilssen
4688869 August 1987 Kelly
4695769 September 1987 Schweickardt
4698730 October 1987 Sakai et al.
4701669 October 1987 Head et al.
4705406 November 1987 Havel
4707141 November 1987 Havel
D293723 January 1988 Buttner
4727289 February 1988 Uchida
4739454 April 1988 Federgreen
4740882 April 1988 Miller
4748545 May 1988 Schmitt
4753148 June 1988 Johnson
4758173 July 1988 Northrop
4765708 August 1988 Becker et al.
4771274 September 1988 Havel
4780621 October 1988 Bartleucci et al.
4794373 December 1988 Harrison
4794383 December 1988 Havel
4801928 January 1989 Minter
4810937 March 1989 Havel
4818072 April 1989 Mohebban
4824269 April 1989 Havel
4837565 June 1989 White
4843627 June 1989 Stebbins
4845481 July 1989 Havel
4845745 July 1989 Havel
4851972 July 1989 Altman
4854701 August 1989 Noll et al.
4857801 August 1989 Farrell
4863223 September 1989 Weissenbach et al.
4870325 September 1989 Kazar
4874320 October 1989 Freed et al.
4887074 December 1989 Simon et al.
4894832 January 1990 Colak
4901207 February 1990 Sato et al.
4904988 February 1990 Nesbit et al.
4912371 March 1990 Hamilton
4922154 May 1990 Cacoub
4929936 May 1990 Friedman et al.
4934852 June 1990 Havel
4941072 July 1990 Yasumoto et al.
4943900 July 1990 Gartner
4962687 October 1990 Belliveau et al.
4965561 October 1990 Havel
4973835 November 1990 Kurosu et al.
4977351 December 1990 Bavaro et al.
4979081 December 1990 Leach et al.
4979180 December 1990 Muncheryan
4980806 December 1990 Taylor et al.
4991070 February 1991 Stob
4992704 February 1991 Stinson
5003227 March 1991 Nilssen
5008595 April 1991 Kazar
5008788 April 1991 Palinkas
5010459 April 1991 Taylor et al.
5018054 May 1991 Ohashi et al.
5027037 June 1991 Wei
5027262 June 1991 Freed
5032960 July 1991 Katoh
5034807 July 1991 Von Kohorn
5036248 July 1991 McEwan et al.
5038255 August 1991 Nishihashi et al.
5065226 November 1991 Kluitmans et al.
5072216 December 1991 Grange
5078039 January 1992 Tulk et al.
5083063 January 1992 Brooks
5088013 February 1992 Revis
5089748 February 1992 Ihms
5103382 April 1992 Kondo et al.
5122733 June 1992 Havel
5126634 June 1992 Johnson
5128595 July 1992 Hara
5130909 July 1992 Gross
5134387 July 1992 Smith et al.
5136483 August 1992 Schoniger et al.
5140220 August 1992 Hasegawa
5142199 August 1992 Elwell
5151679 September 1992 Dimmick
5154641 October 1992 McLaughlin
5161879 November 1992 McDermott
5161882 November 1992 Garrett
5164715 November 1992 Kashiwabara et al.
5184114 February 1993 Brown
5194854 March 1993 Havel
5198756 March 1993 Jenkins et al.
5209560 May 1993 Taylor et al.
5220250 June 1993 Szuba
5225765 July 1993 Callahan et al.
5226723 July 1993 Chen
5254910 October 1993 Yang
5256948 October 1993 Boldin et al.
5278542 January 1994 Smith et al.
5282121 January 1994 Bornhorst et al.
5283517 February 1994 Havel
5287352 February 1994 Jackson et al.
5294865 March 1994 Haraden
5298871 March 1994 Shimohara
5301090 April 1994 Hed
5303124 April 1994 Wrobel
5307295 April 1994 Taylor et al.
5321593 June 1994 Moates
5323226 June 1994 Schreder
5329431 July 1994 Taylor et al.
5344068 September 1994 Haessig
5350977 September 1994 Hamamoto et al.
5357170 October 1994 Luchaco et al.
5365411 November 1994 Rycroft et al.
5371618 December 1994 Tai et al.
5374876 December 1994 Horibata et al.
5375043 December 1994 Tokunaga
D354360 January 1995 Murata
5381074 January 1995 Rudzewicz et al.
5388357 February 1995 Malita
5402702 April 1995 Hata
5404094 April 1995 Green et al.
5404282 April 1995 Klinke et al.
5406176 April 1995 Sugden
5410328 April 1995 Yoksza et al.
5412284 May 1995 Moore et al.
5412552 May 1995 Fernandes
5420482 May 1995 Phares
5421059 June 1995 Leffers, Jr.
5430356 July 1995 Ference et al.
5432408 July 1995 Matsuda et al.
5436535 July 1995 Yang
5436853 July 1995 Shimohara
5450301 September 1995 Waltz et al.
5461188 October 1995 Drago et al.
5463280 October 1995 Johnson
5463502 October 1995 Savage, Jr.
5465144 November 1995 Parker et al.
5473522 December 1995 Kriz et al.
5475300 December 1995 Havel
5481441 January 1996 Stevens
5489827 February 1996 Xia
5491402 February 1996 Small
5493183 February 1996 Kimball
5504395 April 1996 Johnson et al.
5506760 April 1996 Giebler et al.
5513082 April 1996 Asano
5519496 May 1996 Borgert et al.
5530322 June 1996 Ference et al.
5544809 August 1996 Keating et al.
5545950 August 1996 Cho
5550440 August 1996 Allison et al.
5559681 September 1996 Duarte
5561346 October 1996 Byrne
D376030 November 1996 Cohen
5575459 November 1996 Anderson
5575554 November 1996 Guritz
5581158 December 1996 Quazi
5592051 January 1997 Korkala
5592054 January 1997 Nerone et al.
5600199 February 1997 Martin, Sr. et al.
5607227 March 1997 Yasumoto et al.
5608290 March 1997 Hutchisson et al.
5614788 March 1997 Mullins et al.
5621282 April 1997 Haskell
5621603 April 1997 Adamec et al.
5621662 April 1997 Humphries et al.
5622423 April 1997 Lee
5633629 May 1997 Hochstein
5634711 June 1997 Kennedy et al.
5640061 June 1997 Bornhorst et al.
5640141 June 1997 Myllymaki
5642129 June 1997 Zavracky et al.
5655830 August 1997 Ruskouski
5656935 August 1997 Havel
5661374 August 1997 Cassidy et al.
5661645 August 1997 Hochstein
5673059 September 1997 Zavracky et al.
5682103 October 1997 Burrell
5684523 November 1997 Satoh et al.
5688042 November 1997 Madadi et al.
5697695 December 1997 Lin et al.
5701058 December 1997 Roth
5712650 January 1998 Barlow
5713655 February 1998 Blackman
5721471 February 1998 Begemann et al.
5725148 March 1998 Hartman
5726535 March 1998 Yan
5731759 March 1998 Finucan
5734590 March 1998 Tebbe
5751118 May 1998 Mortimer
5752766 May 1998 Bailey et al.
5765940 June 1998 Levy et al.
5769527 June 1998 Taylor et al.
5784006 July 1998 Hochstein
5785227 July 1998 Akiba
5790329 August 1998 Klaus et al.
5803579 September 1998 Turnbull et al.
5803580 September 1998 Tseng
5803729 September 1998 Tsimerman
5806965 September 1998 Deese
5808689 September 1998 Small
5810463 September 1998 Kawahara et al.
5812105 September 1998 Van de Ven
5813751 September 1998 Shaffer
5813753 September 1998 Vriens et al.
5821695 October 1998 Vilanilam et al.
5825051 October 1998 Bauer et al.
5828178 October 1998 York et al.
5831522 November 1998 Weed et al.
5836676 November 1998 Ando et al.
5848837 December 1998 Gustafson
5850126 December 1998 Kanbar
5851063 December 1998 Doughty et al.
5852658 December 1998 Knight et al.
5854542 December 1998 Forbes
RE36030 January 1999 Nadeau
5859508 January 1999 Ge et al.
5865529 February 1999 Yan
5890794 April 1999 Abtahi et al.
5896010 April 1999 Mikolajczak et al.
5904415 May 1999 Robertson et al.
5907742 May 1999 Johnson et al.
5909378 June 1999 De Milleville
5912653 June 1999 Fitch
5917287 June 1999 Haederle et al.
5917534 June 1999 Rajeswaran
5921660 July 1999 Yu
5924784 July 1999 Chliwnyj et al.
5927845 July 1999 Gustafson et al.
5934792 August 1999 Camarota
5936599 August 1999 Reymond
5943802 August 1999 Tijanic
5946209 August 1999 Eckel et al.
5949347 September 1999 Wu
5951145 September 1999 Iwasaki et al.
5952680 September 1999 Strite
5959547 September 1999 Tubel et al.
5961072 October 1999 Bodle
5962989 October 1999 Baker
5962992 October 1999 Huang et al.
5963185 October 1999 Havel
5966069 October 1999 Zmurk et al.
5974553 October 1999 Gandar
5980064 November 1999 Metroyanis
5998925 December 1999 Shimizu et al.
5998928 December 1999 Hipp
6000807 December 1999 Moreland
6007209 December 1999 Pelka
6008783 December 1999 Kitagawa et al.
6010228 January 2000 Blackman et al.
6011691 January 2000 Schreffler
6016038 January 2000 Mueller et al.
6018237 January 2000 Havel
6019493 February 2000 Kuo et al.
6020825 February 2000 Chansky et al.
6025550 February 2000 Kato
6028694 February 2000 Schmidt
6030099 February 2000 McDermott
6031343 February 2000 Recknagel et al.
D422737 April 2000 Orozco
6056420 May 2000 Wilson et al.
6068383 May 2000 Robertson et al.
6069597 May 2000 Hansen
6072280 June 2000 Allen
6084359 July 2000 Hetzel et al.
6086220 July 2000 Lash et al.
6091200 July 2000 Lenz
6092915 July 2000 Rensch
6095661 August 2000 Lebens et al.
6097352 August 2000 Zavracky et al.
6116748 September 2000 George
6121875 September 2000 Hamm et al.
6127783 October 2000 Pashley et al.
6132072 October 2000 Turnbull et al.
6135604 October 2000 Lin
6135620 October 2000 Marsh
6139174 October 2000 Butterworth
6149283 November 2000 Conway et al.
6150774 November 2000 Mueller et al.
6151529 November 2000 Batko
6153985 November 2000 Grossman
6158882 December 2000 Bischoff, Jr.
6166496 December 2000 Lys et al.
6175201 January 2001 Sid
6175220 January 2001 Billig et al.
6181126 January 2001 Havel
D437947 February 2001 Huang
6183086 February 2001 Neubert
6183104 February 2001 Ferrara
6184628 February 2001 Ruthenberg
6196471 March 2001 Ruthenberg
6203180 March 2001 Fleischmann
6211626 April 2001 Lys et al.
6215409 April 2001 Blach
6217190 April 2001 Altman et al.
6219239 April 2001 Mellberg et al.
6227679 May 2001 Zhang et al.
6238075 May 2001 Dealey, Jr. et al.
6241359 June 2001 Lin
6249221 June 2001 Reed
6250774 June 2001 Begemann et al.
6252350 June 2001 Alvarez
6252358 June 2001 Xydis et al.
6268600 July 2001 Nakamura et al.
6273338 August 2001 White
6275397 August 2001 McClain
6283612 September 2001 Hunter
6292901 September 2001 Lys et al.
6293684 September 2001 Riblett
6297724 October 2001 Bryans et al.
6305109 October 2001 Lee
6305821 October 2001 Hsieh et al.
6307331 October 2001 Bonasia et al.
6310590 October 2001 Havel
6315429 November 2001 Grandolfo
6323832 November 2001 Nishizawa et al.
6325651 December 2001 Nishihara et al.
6334699 January 2002 Gladnick
6340868 January 2002 Lys et al.
6354714 March 2002 Rhodes
6361186 March 2002 Slayden
6362578 March 2002 Swanson et al.
6369525 April 2002 Chang et al.
6371637 April 2002 Atchinson et al.
6373733 April 2002 Wu et al.
6379022 April 2002 Amerson et al.
D457667 May 2002 Piepgras et al.
D457669 May 2002 Piepgras et al.
D457974 May 2002 Piepgras et al.
6388393 May 2002 Illingworth
6394623 May 2002 Tsui
6396216 May 2002 Noone et al.
D458395 June 2002 Piepgras et al.
6400096 June 2002 Wells et al.
6404131 June 2002 Kawano et al.
6411022 June 2002 Machida
6411045 June 2002 Nerone
6422716 July 2002 Henrici et al.
6428189 August 2002 Hochstein
6429604 August 2002 Chang
D463610 September 2002 Piepgras et al.
6445139 September 2002 Marshall et al.
6448550 September 2002 Nishimura
6448716 September 2002 Hutchison
6459919 October 2002 Lys et al.
6464373 October 2002 Petrick
6469457 October 2002 Callahan
6471388 October 2002 Marsh
6472823 October 2002 Yen
6473002 October 2002 Hutchison
D468035 December 2002 Blanc et al.
6488392 December 2002 Lu
6495964 December 2002 Muthu et al.
6511204 January 2003 Emmel et al.
6517218 February 2003 Hochstein
6521879 February 2003 Rand et al.
6527411 March 2003 Sayers
6528954 March 2003 Lys et al.
6528958 March 2003 Hulshof et al.
6538375 March 2003 Duggal et al.
6540381 April 2003 Douglass, II
6541800 April 2003 Barnett et al.
6548967 April 2003 Dowling et al.
6568834 May 2003 Scianna
6573536 June 2003 Dry
6577072 June 2003 Saito et al.
6577080 June 2003 Lys et al.
6577512 June 2003 Tripathi et al.
6577794 June 2003 Currie et al.
6578979 June 2003 Truttmann-Battig
6582103 June 2003 Popovich et al.
6583550 June 2003 Iwasa et al.
6583573 June 2003 Bierman
D477093 July 2003 Moriyama et al.
6585393 July 2003 Brandes et al.
6586890 July 2003 Min et al.
6590343 July 2003 Pederson
6592238 July 2003 Cleaver et al.
6596977 July 2003 Muthu et al.
6598996 July 2003 Lodhie
6608453 August 2003 Morgan et al.
6608614 August 2003 Johnson
6609804 August 2003 Nolan et al.
6609813 August 2003 Showers et al.
6612712 September 2003 Nepil
6612717 September 2003 Yen
6612729 September 2003 Hoffman
6621222 September 2003 Hong
6623151 September 2003 Pederson
6624597 September 2003 Dowling et al.
D481484 October 2003 Cuevas et al.
6634770 October 2003 Cao
6634779 October 2003 Reed
6636003 October 2003 Rahm et al.
6639349 October 2003 Bahadur
6641284 November 2003 Stopa et al.
6652117 November 2003 Tsai
6659622 December 2003 Katogi et al.
6660935 December 2003 Southard et al.
6666689 December 2003 Savage, Jr.
6667623 December 2003 Bourgault et al.
6674096 January 2004 Sommers
6676284 January 2004 Wynne Willson
6679621 January 2004 West et al.
6681154 January 2004 Nierlich et al.
6682205 January 2004 Lin
6683419 January 2004 Kriparos
6700136 March 2004 Guida
6712486 March 2004 Popovich et al.
6717376 April 2004 Lys et al.
6717526 April 2004 Martineau et al.
6720745 April 2004 Lys et al.
6726348 April 2004 Gloisten
6736525 May 2004 Chin
6741324 May 2004 Kim
D491678 June 2004 Piepgras
D492042 June 2004 Piepgras
6744223 June 2004 Laflamme et al.
6748299 June 2004 Motoyama
6762562 July 2004 Leong
6768047 July 2004 Chang et al.
6774584 August 2004 Lys et al.
6777891 August 2004 Lys et al.
6781329 August 2004 Mueller et al.
6787999 September 2004 Stimac et al.
6788000 September 2004 Appelberg et al.
6788011 September 2004 Mueller et al.
6791840 September 2004 Chun
6796680 September 2004 Showers et al.
6799864 October 2004 Bohler et al.
6801003 October 2004 Schanberger et al.
6803732 October 2004 Kraus et al.
6806659 October 2004 Mueller et al.
6814470 November 2004 Rizkin et al.
6814478 November 2004 Menke
6815724 November 2004 Dry
6846094 January 2005 Luk
6851816 February 2005 Wu et al.
6851832 February 2005 Tieszen
6853150 February 2005 Clauberg et al.
6853151 February 2005 Leong et al.
6853563 February 2005 Yang et al.
6857924 February 2005 Fu et al.
6860628 March 2005 Robertson et al.
6866401 March 2005 Sommers et al.
6869204 March 2005 Morgan et al.
6871981 March 2005 Alexanderson et al.
6874924 April 2005 Hulse et al.
6879883 April 2005 Motoyama
6883929 April 2005 Dowling
6883934 April 2005 Kawakami et al.
6888322 May 2005 Dowling et al.
6897624 May 2005 Lys et al.
D506274 June 2005 Moriyama et al.
6909239 June 2005 Gauna
6909921 June 2005 Bilger
6918680 July 2005 Seeberger
6921181 July 2005 Yen
6926419 August 2005 An
6936968 August 2005 Cross et al.
6936978 August 2005 Morgan et al.
6940230 September 2005 Myron et al.
6948829 September 2005 Verdes et al.
6953261 October 2005 Jiao et al.
6957905 October 2005 Pritchard et al.
6963175 November 2005 Archenhold et al.
6964501 November 2005 Ryan
6965197 November 2005 Tyan et al.
6965205 November 2005 Piepgras et al.
6967448 November 2005 Morgan et al.
6969179 November 2005 Sloan et al.
6969186 November 2005 Sonderegger et al.
6969954 November 2005 Lys
6975079 December 2005 Lys et al.
6979097 December 2005 Elam et al.
6982518 January 2006 Chou et al.
6995681 February 2006 Pederson
6997576 February 2006 Lodhie et al.
6999318 February 2006 Newby
7004603 February 2006 Knight
D518218 March 2006 Roberge et al.
7008079 March 2006 Smith
7014336 March 2006 Ducharme et al.
7015650 March 2006 McGrath
7018063 March 2006 Michael et al.
7018074 March 2006 Raby et al.
7021799 April 2006 Mizuyoshi
7021809 April 2006 Iwasa et al.
7024256 April 2006 Krzyzanowski et al.
7029145 April 2006 Frederick
7031920 April 2006 Dowling et al.
7033036 April 2006 Pederson
7038398 May 2006 Lys et al.
7038399 May 2006 Lys et al.
7042172 May 2006 Dowling et al.
7048423 May 2006 Stepanenko et al.
7049761 May 2006 Timmermans et al.
7052171 May 2006 Lefebvre et al.
7053557 May 2006 Cross et al.
7064498 June 2006 Dowling et al.
7064674 June 2006 Pederson
7067992 June 2006 Leong et al.
7077978 July 2006 Setlur et al.
7080927 July 2006 Feuerborn et al.
7086747 August 2006 Nielson et al.
7088014 August 2006 Nierlich et al.
7088904 August 2006 Ryan, Jr.
7102902 September 2006 Brown et al.
7113541 September 2006 Lys et al.
7114830 October 2006 Robertson et al.
7114834 October 2006 Rivas et al.
7118262 October 2006 Negley
7119503 October 2006 Kemper
7120560 October 2006 Williams et al.
7121679 October 2006 Fujimoto
7122976 October 2006 Null et al.
7128442 October 2006 Lee et al.
7128454 October 2006 Kim et al.
D532532 November 2006 Maxik
7132635 November 2006 Dowling
7132785 November 2006 Ducharme
7132804 November 2006 Lys et al.
7135824 November 2006 Lys et al.
7139617 November 2006 Morgan et al.
7144135 December 2006 Martin et al.
7153002 December 2006 Kim et al.
7161311 January 2007 Mueller et al.
7161313 January 2007 Piepgras et al.
7161556 January 2007 Morgan et al.
7164110 January 2007 Pitigoi-Aron et al.
7164235 January 2007 Ito et al.
7165863 January 2007 Thomas et al.
7165866 January 2007 Li
7167777 January 2007 Budike, Jr.
7168843 January 2007 Striebel
D536468 February 2007 Crosby
7178941 February 2007 Roberge et al.
7180252 February 2007 Lys et al.
D538950 March 2007 Maxik
D538952 March 2007 Maxik et al.
D538962 March 2007 Elliott
7186003 March 2007 Dowling et al.
7186005 March 2007 Hulse
7187141 March 2007 Mueller et al.
7190126 March 2007 Paton
7192154 March 2007 Becker
7198387 April 2007 Gloisten et al.
7201491 April 2007 Bayat et al.
7201497 April 2007 Weaver, Jr. et al.
7202613 April 2007 Morgan et al.
7204615 April 2007 Arik et al.
7204622 April 2007 Dowling et al.
7207696 April 2007 Lin
7210818 May 2007 Luk et al.
7210957 May 2007 Mrakovich et al.
7211959 May 2007 Chou
7213934 May 2007 Zarian et al.
7217004 May 2007 Park et al.
7217012 May 2007 Southard et al.
7217022 May 2007 Ruffin
7218056 May 2007 Harwood
7218238 May 2007 Right et al.
7220015 May 2007 Dowling
7220018 May 2007 Crabb et al.
7221104 May 2007 Lys et al.
7221110 May 2007 Sears et al.
7224000 May 2007 Aanegola et al.
7226189 June 2007 Lee et al.
7228052 June 2007 Lin
7228190 June 2007 Dowling et al.
7231060 June 2007 Dowling et al.
7233115 June 2007 Lys
7233831 June 2007 Blackwell
7236366 June 2007 Chen
7237924 July 2007 Martineau et al.
7237925 July 2007 Mayer et al.
7239532 July 2007 Hsu et al.
7241038 July 2007 Naniwa et al.
7242152 July 2007 Dowling et al.
7246926 July 2007 Harwood
7246931 July 2007 Hsieh et al.
7248239 July 2007 Dowling et al.
7249269 July 2007 Motoyama
7249865 July 2007 Robertson
D548868 August 2007 Roberge et al.
7252408 August 2007 Mazzochette et al.
7253566 August 2007 Lys et al.
7255457 August 2007 Ducharme et al.
7255460 August 2007 Lee
7256554 August 2007 Lys
7258458 August 2007 Mochiachvili et al.
7258467 August 2007 Saccomanno et al.
7259528 August 2007 Pilz
7262439 August 2007 Setlur et al.
7262559 August 2007 Tripathi et al.
D550379 September 2007 Hoshikawa et al.
7264372 September 2007 Maglica
7267467 September 2007 Wu et al.
7270443 September 2007 Kurtz et al.
7271794 September 2007 Cheng et al.
7273300 September 2007 Mrakovich
7274045 September 2007 Chandran et al.
7274160 September 2007 Mueller et al.
D553267 October 2007 Yuen
7285801 October 2007 Eliashevich et al.
7288902 October 2007 Melanson
7288904 October 2007 Numeroli et al.
7296912 November 2007 Beauchamp
7300184 November 2007 Ichikawa et al.
7300192 November 2007 Mueller et al.
D556937 December 2007 Ly
D557854 December 2007 Lewis
7303300 December 2007 Dowling et al.
7306353 December 2007 Popovich et al.
7307391 December 2007 Shan
7308296 December 2007 Lys et al.
7309965 December 2007 Dowling et al.
7318658 January 2008 Wang et al.
7319244 January 2008 Liu et al.
7319246 January 2008 Soules et al.
7321191 January 2008 Setlur et al.
7326964 February 2008 Lim et al.
7327281 February 2008 Hutchison
7329024 February 2008 Lynch et al.
7329031 February 2008 Liaw et al.
D563589 March 2008 Hariri et al.
7344278 March 2008 Paravantsos
7345320 March 2008 Dahm
7348604 March 2008 Matheson
7350936 April 2008 Ducharme et al.
7350952 April 2008 Nishigaki
7352138 April 2008 Lys et al.
7352339 April 2008 Morgan et al.
7353071 April 2008 Blackwell et al.
7358679 April 2008 Lys et al.
7358929 April 2008 Mueller et al.
7370986 May 2008 Chan
7374327 May 2008 Schexnaider
7378805 May 2008 Oh et al.
7378976 May 2008 Paterno
7385359 June 2008 Dowling et al.
7391159 June 2008 Harwood
D574093 July 2008 Kitagawa et al.
7396142 July 2008 Laizure, Jr. et al.
7396146 July 2008 Wang
7401935 July 2008 VanderSchuit
7401945 July 2008 Zhang
D576749 September 2008 Kitagawa et al.
7423548 September 2008 Kontovich
7427840 September 2008 Morgan et al.
7429117 September 2008 Pohlert et al.
7434964 October 2008 Zheng et al.
7438441 October 2008 Sun et al.
D580089 November 2008 Ly et al.
D581556 November 2008 To et al.
7449847 November 2008 Schanberger et al.
D582577 December 2008 Yuen
7470046 December 2008 Kao et al.
D584428 January 2009 Li et al.
D584429 January 2009 Pei et al.
7476002 January 2009 Wolf et al.
7476004 January 2009 Chan
7478924 January 2009 Robertson
D586484 February 2009 Liu et al.
D586928 February 2009 Liu et al.
7490957 February 2009 Leong et al.
7497596 March 2009 Ge
7498753 March 2009 McAvoy et al.
7507001 March 2009 Kit
7510299 March 2009 Timmermans et al.
7510400 March 2009 Glovatsky et al.
7514876 April 2009 Roach, Jr.
7520635 April 2009 Wolf et al.
7521872 April 2009 Bruning
7524089 April 2009 Park
D592766 May 2009 Zhu et al.
D593223 May 2009 Komar
7530701 May 2009 Chan-Wing
7534002 May 2009 Yamaguchi et al.
D594999 June 2009 Uchida et al.
7549769 June 2009 Kim et al.
7556396 July 2009 Kuo et al.
7559663 July 2009 Wong et al.
7562998 July 2009 Yen
D597686 August 2009 Noh
7569981 August 2009 Ciancanelli
7572030 August 2009 Booth et al.
7575339 August 2009 Hung
7579786 August 2009 Soos
7583035 September 2009 Shteynberg et al.
7583901 September 2009 Nakagawa et al.
7594738 September 2009 Lin et al.
D601726 October 2009 Mollaert et al.
7598681 October 2009 Lys et al.
7598684 October 2009 Lys et al.
7600907 October 2009 Liu et al.
7602559 October 2009 Jang et al.
7618157 November 2009 Galvez et al.
7619366 November 2009 Diederiks
7635201 December 2009 Deng
7635214 December 2009 Perlo
7639517 December 2009 Zhou et al.
7648251 January 2010 Whitehouse et al.
D610724 February 2010 Chiang et al.
7661839 February 2010 Tsai
D612528 March 2010 McGrath et al.
7690813 April 2010 Kanamori et al.
7710047 May 2010 Shteynberg et al.
7710253 May 2010 Fredricks
7712918 May 2010 Siemiet et al.
7748886 July 2010 Pazula et al.
7758207 July 2010 Zhou et al.
7759881 July 2010 Melanson
D621975 August 2010 Wang
7784966 August 2010 Verfuerth et al.
7800511 September 2010 Hutchison et al.
7815338 October 2010 Siemiet et al.
7815341 October 2010 Steedly et al.
7828471 November 2010 Lin
7843150 November 2010 Wang et al.
7848702 December 2010 Ho et al.
7850341 December 2010 Mrakovich et al.
RE42161 February 2011 Hochstein
7878683 February 2011 Logan et al.
7887216 February 2011 Patrick
7887226 February 2011 Huang et al.
7889051 February 2011 Billig et al.
D634452 March 2011 de Visser
7926975 April 2011 Siemiet et al.
7938562 May 2011 Ivey et al.
7946729 May 2011 Ivey et al.
7976196 July 2011 Ivey et al.
7990070 August 2011 Nerone
7997770 August 2011 Meurer
8013472 September 2011 Adest et al.
D650097 December 2011 Trumble et al.
D650494 December 2011 Tsao et al.
D652968 January 2012 Aguiar et al.
8093823 January 2012 Ivey et al.
D654192 February 2012 Maxik et al.
8118447 February 2012 Simon et al.
8159152 April 2012 Salessi
D660472 May 2012 Aguiar et al.
8167452 May 2012 Chou
8177388 May 2012 Yen
8179037 May 2012 Chan et al.
8183989 May 2012 Tsai
D662236 June 2012 Matsushita
8203445 June 2012 Recker et al.
8214084 July 2012 Ivey et al.
8247985 August 2012 Timmermans et al.
8251544 August 2012 Ivey et al.
8262249 September 2012 Hsia et al.
8272764 September 2012 Son
8287144 October 2012 Pedersen et al.
8297788 October 2012 Bishop
8299722 October 2012 Melanson
8304993 November 2012 Tzou et al.
8313213 November 2012 Lin et al.
8319407 November 2012 Ke
8319433 November 2012 Lin et al.
8319437 November 2012 Carlin et al.
8322878 December 2012 Hsia et al.
8324817 December 2012 Ivey et al.
8337071 December 2012 Negley et al.
8376579 February 2013 Chang
8376588 February 2013 Yen
8382322 February 2013 Bishop
8382327 February 2013 Timmermans et al.
8382502 February 2013 Cao et al.
8398275 March 2013 Wang et al.
8403692 March 2013 Cao et al.
8405314 March 2013 Jensen
8434914 May 2013 Li et al.
8454193 June 2013 Simon et al.
2001/0033488 October 2001 Chliwnyj et al.
2001/0045803 November 2001 Cencur
2002/0011801 January 2002 Chang
2002/0015297 February 2002 Hayashi et al.
2002/0038157 March 2002 Dowling et al.
2002/0044066 April 2002 Dowling et al.
2002/0047516 April 2002 Iwasa et al.
2002/0047569 April 2002 Dowling et al.
2002/0047624 April 2002 Stam et al.
2002/0047628 April 2002 Morgan et al.
2002/0048169 April 2002 Dowling et al.
2002/0057061 May 2002 Mueller et al.
2002/0060526 May 2002 Timmermans et al.
2002/0070688 June 2002 Dowling et al.
2002/0074559 June 2002 Dowling et al.
2002/0074958 June 2002 Crenshaw
2002/0078221 June 2002 Blackwell et al.
2002/0101197 August 2002 Lys et al.
2002/0113555 August 2002 Lys et al.
2002/0130627 September 2002 Morgan et al.
2002/0145394 October 2002 Morgan et al.
2002/0145869 October 2002 Dowling
2002/0152045 October 2002 Dowling et al.
2002/0152298 October 2002 Kikta et al.
2002/0153851 October 2002 Morgan et al.
2002/0158583 October 2002 Lys et al.
2002/0163316 November 2002 Lys et al.
2002/0171365 November 2002 Morgan et al.
2002/0171377 November 2002 Mueller et al.
2002/0171378 November 2002 Morgan et al.
2002/0176259 November 2002 Ducharme
2002/0179816 December 2002 Haines et al.
2002/0195975 December 2002 Schanberger et al.
2003/0011538 January 2003 Lys et al.
2003/0021117 January 2003 Chan
2003/0028260 February 2003 Blackwell
2003/0031015 February 2003 Ishibashi
2003/0048641 March 2003 Alexanderson et al.
2003/0052599 March 2003 Sun
2003/0057884 March 2003 Dowling et al.
2003/0057886 March 2003 Lys et al.
2003/0057887 March 2003 Dowling et al.
2003/0057890 March 2003 Lys et al.
2003/0076281 April 2003 Morgan et al.
2003/0085710 May 2003 Bourgault et al.
2003/0095404 May 2003 Becks et al.
2003/0100837 May 2003 Lys et al.
2003/0102810 June 2003 Cross et al.
2003/0133292 July 2003 Mueller et al.
2003/0137258 July 2003 Piepgras et al.
2003/0185005 October 2003 Sommers et al.
2003/0185014 October 2003 Gloisten
2003/0189412 October 2003 Cunningham
2003/0218879 November 2003 Tieszen
2003/0222587 December 2003 Dowling, Jr. et al.
2003/0234342 December 2003 Gaines et al.
2004/0003545 January 2004 Gillespie
2004/0007980 January 2004 Shibata
2004/0012959 January 2004 Robertson et al.
2004/0036006 February 2004 Dowling
2004/0037088 February 2004 English et al.
2004/0052076 March 2004 Mueller et al.
2004/0062041 April 2004 Cross et al.
2004/0075572 April 2004 Buschmann et al.
2004/0080960 April 2004 Wu
2004/0090191 May 2004 Mueller et al.
2004/0090787 May 2004 Dowling et al.
2004/0105261 June 2004 Ducharme et al.
2004/0105264 June 2004 Spero
2004/0113568 June 2004 Dowling et al.
2004/0114371 June 2004 Lea et al.
2004/0116039 June 2004 Mueller et al.
2004/0124782 July 2004 Yu
2004/0130908 July 2004 McClurg et al.
2004/0130909 July 2004 Mueller et al.
2004/0141321 July 2004 Dowling et al.
2004/0145886 July 2004 Fatemi et al.
2004/0155609 August 2004 Lys et al.
2004/0160199 August 2004 Morgan et al.
2004/0178751 September 2004 Mueller et al.
2004/0189262 September 2004 McGrath
2004/0212320 October 2004 Dowling et al.
2004/0212321 October 2004 Lys et al.
2004/0212993 October 2004 Morgan et al.
2004/0223328 November 2004 Lee et al.
2004/0240890 December 2004 Lys et al.
2004/0251854 December 2004 Matsuda et al.
2004/0257007 December 2004 Lys et al.
2005/0013133 January 2005 Yeh
2005/0024877 February 2005 Frederick
2005/0030744 February 2005 Ducharme et al.
2005/0035728 February 2005 Schanberger et al.
2005/0036300 February 2005 Dowling et al.
2005/0040774 February 2005 Mueller et al.
2005/0041161 February 2005 Dowling et al.
2005/0041424 February 2005 Ducharme
2005/0043907 February 2005 Eckel et al.
2005/0044617 March 2005 Mueller et al.
2005/0047132 March 2005 Dowling et al.
2005/0047134 March 2005 Mueller et al.
2005/0062440 March 2005 Lys et al.
2005/0063194 March 2005 Lys et al.
2005/0078477 April 2005 Lo
2005/0093488 May 2005 Hung et al.
2005/0099824 May 2005 Dowling et al.
2005/0107694 May 2005 Jansen et al.
2005/0110384 May 2005 Peterson
2005/0116667 June 2005 Mueller et al.
2005/0128751 June 2005 Roberge et al.
2005/0141225 June 2005 Striebel
2005/0151489 July 2005 Lys et al.
2005/0151663 July 2005 Tanguay
2005/0154494 July 2005 Ahmed
2005/0162093 July 2005 Timmermans et al.
2005/0162100 July 2005 Romano et al.
2005/0162101 July 2005 Leong et al.
2005/0174473 August 2005 Morgan et al.
2005/0174780 August 2005 Park
2005/0184667 August 2005 Sturman et al.
2005/0201112 September 2005 Machi et al.
2005/0206529 September 2005 St.-Germain
2005/0213320 September 2005 Kazuhiro et al.
2005/0213352 September 2005 Lys
2005/0213353 September 2005 Lys
2005/0218838 October 2005 Lys
2005/0218870 October 2005 Lys
2005/0219860 October 2005 Schexnaider
2005/0219872 October 2005 Lys
2005/0225979 October 2005 Robertson et al.
2005/0231133 October 2005 Lys
2005/0236029 October 2005 Dowling
2005/0236998 October 2005 Mueller et al.
2005/0242742 November 2005 Cheang et al.
2005/0243577 November 2005 Moon
2005/0248299 November 2005 Chemel et al.
2005/0253533 November 2005 Lys et al.
2005/0259424 November 2005 Zampini et al.
2005/0264474 December 2005 Rast
2005/0265019 December 2005 Sommers et al.
2005/0275626 December 2005 Mueller et al.
2005/0276051 December 2005 Caudle et al.
2005/0276053 December 2005 Nortrup et al.
2005/0276064 December 2005 Wu et al.
2005/0281030 December 2005 Leong et al.
2005/0285547 December 2005 Piepgras et al.
2006/0002110 January 2006 Dowling et al.
2006/0012987 January 2006 Ducharme et al.
2006/0012997 January 2006 Catalano et al.
2006/0016960 January 2006 Morgan et al.
2006/0022214 February 2006 Morgan et al.
2006/0028155 February 2006 Young
2006/0028837 February 2006 Mrakovich
2006/0034078 February 2006 Kovacik et al.
2006/0050509 March 2006 Dowling et al.
2006/0050514 March 2006 Opolka
2006/0056855 March 2006 Nakagawa et al.
2006/0066447 March 2006 Davenport et al.
2006/0076908 April 2006 Morgan et al.
2006/0081863 April 2006 Kim et al.
2006/0092640 May 2006 Li
2006/0098077 May 2006 Dowling
2006/0104058 May 2006 Chemel et al.
2006/0109648 May 2006 Trenchard et al.
2006/0109649 May 2006 Ducharme et al.
2006/0109661 May 2006 Coushaine et al.
2006/0126325 June 2006 Lefebvre et al.
2006/0126338 June 2006 Mighetto
2006/0132061 June 2006 McCormick et al.
2006/0132323 June 2006 Grady
2006/0146531 July 2006 Reo et al.
2006/0152172 July 2006 Mueller et al.
2006/0158881 July 2006 Dowling
2006/0170376 August 2006 Piepgras et al.
2006/0192502 August 2006 Brown et al.
2006/0193131 August 2006 McGrath et al.
2006/0197661 September 2006 Tracy et al.
2006/0198128 September 2006 Piepgras et al.
2006/0208667 September 2006 Lys et al.
2006/0215422 September 2006 Laizure et al.
2006/0220595 October 2006 Lu
2006/0221606 October 2006 Dowling
2006/0221619 October 2006 Nishigaki
2006/0227558 October 2006 Osawa et al.
2006/0232974 October 2006 Lee et al.
2006/0238884 October 2006 Jang et al.
2006/0262516 November 2006 Dowling et al.
2006/0262521 November 2006 Piepgras et al.
2006/0262544 November 2006 Piepgras et al.
2006/0262545 November 2006 Piepgras et al.
2006/0265921 November 2006 Korall et al.
2006/0273741 December 2006 Stalker, III
2006/0274529 December 2006 Cao
2006/0285325 December 2006 Ducharme et al.
2007/0035255 February 2007 Shuster et al.
2007/0035538 February 2007 Garcia et al.
2007/0035965 February 2007 Holst
2007/0040516 February 2007 Chen
2007/0041220 February 2007 Lynch
2007/0047227 March 2007 Ducharme
2007/0053182 March 2007 Robertson
2007/0053208 March 2007 Justel et al.
2007/0064419 March 2007 Gandhi
2007/0064425 March 2007 Frecska et al.
2007/0070621 March 2007 Rivas et al.
2007/0070631 March 2007 Huang et al.
2007/0081423 April 2007 Chien
2007/0086754 April 2007 Lys et al.
2007/0086912 April 2007 Dowling et al.
2007/0097678 May 2007 Yang
2007/0109763 May 2007 Wolf et al.
2007/0115658 May 2007 Mueller et al.
2007/0115665 May 2007 Mueller et al.
2007/0120463 May 2007 Hayashi et al.
2007/0120594 May 2007 Balakrishnan et al.
2007/0127234 June 2007 Jervey, III
2007/0133202 June 2007 Huang et al.
2007/0139938 June 2007 Petroski et al.
2007/0145915 June 2007 Roberge et al.
2007/0146126 June 2007 Wang
2007/0147046 June 2007 Arik et al.
2007/0152797 July 2007 Chemel et al.
2007/0152808 July 2007 LaCasse
2007/0153514 July 2007 Dowling et al.
2007/0159828 July 2007 Wang
2007/0165402 July 2007 Weaver et al.
2007/0165405 July 2007 Chen
2007/0173978 July 2007 Fein et al.
2007/0177382 August 2007 Pritchard et al.
2007/0182387 August 2007 Weirich
2007/0188114 August 2007 Lys et al.
2007/0188427 August 2007 Lys et al.
2007/0189026 August 2007 Chemel et al.
2007/0195526 August 2007 Dowling et al.
2007/0195527 August 2007 Russell
2007/0195532 August 2007 Reisenauer et al.
2007/0200725 August 2007 Fredericks et al.
2007/0205712 September 2007 Radkov et al.
2007/0206375 September 2007 Piepgras et al.
2007/0211461 September 2007 Harwood
2007/0211463 September 2007 Chevalier et al.
2007/0228999 October 2007 Kit
2007/0235751 October 2007 Radkov et al.
2007/0236156 October 2007 Lys et al.
2007/0236358 October 2007 Street et al.
2007/0237284 October 2007 Lys et al.
2007/0240346 October 2007 Li et al.
2007/0241657 October 2007 Radkov et al.
2007/0242466 October 2007 Wu et al.
2007/0247450 October 2007 Lee
2007/0247842 October 2007 Zampini et al.
2007/0247847 October 2007 Villard
2007/0247851 October 2007 Villard
2007/0252161 November 2007 Meis et al.
2007/0258231 November 2007 Koerner et al.
2007/0258240 November 2007 Ducharme et al.
2007/0263379 November 2007 Dowling
2007/0274070 November 2007 Wedell
2007/0281520 December 2007 Insalaco et al.
2007/0285926 December 2007 Maxik
2007/0285933 December 2007 Southard et al.
2007/0290625 December 2007 He et al.
2007/0291483 December 2007 Lys
2007/0296350 December 2007 Maxik et al.
2008/0003664 January 2008 Tysoe et al.
2008/0007945 January 2008 Kelly et al.
2008/0012502 January 2008 Lys
2008/0012506 January 2008 Mueller et al.
2008/0013316 January 2008 Chiang
2008/0013324 January 2008 Yu
2008/0018261 January 2008 Kastner
2008/0024067 January 2008 Ishibashi
2008/0037226 February 2008 Shin et al.
2008/0037245 February 2008 Chan
2008/0037284 February 2008 Rudisill
2008/0049434 February 2008 Marsh
2008/0055894 March 2008 Deng
2008/0062680 March 2008 Timmermans et al.
2008/0068838 March 2008 Galke et al.
2008/0068839 March 2008 Matheson
2008/0074872 March 2008 Panotopoulos
2008/0089075 April 2008 Hsu
2008/0092800 April 2008 Smith et al.
2008/0093615 April 2008 Lin et al.
2008/0093998 April 2008 Dennery et al.
2008/0094819 April 2008 Vaish
2008/0094837 April 2008 Dobbins et al.
2008/0129211 June 2008 Lin et al.
2008/0130267 June 2008 Dowling et al.
2008/0150444 June 2008 Usui et al.
2008/0151535 June 2008 de Castris
2008/0158871 July 2008 McAvoy et al.
2008/0158887 July 2008 Zhu et al.
2008/0164826 July 2008 Lys
2008/0164827 July 2008 Lys
2008/0164854 July 2008 Lys
2008/0175003 July 2008 Tsou et al.
2008/0180036 July 2008 Garrity et al.
2008/0186704 August 2008 Chou et al.
2008/0192436 August 2008 Peng et al.
2008/0198598 August 2008 Ward
2008/0211386 September 2008 Choi et al.
2008/0211419 September 2008 Garrity
2008/0218993 September 2008 Li
2008/0224629 September 2008 Melanson
2008/0224636 September 2008 Melanson
2008/0253125 October 2008 Kang et al.
2008/0258631 October 2008 Wu et al.
2008/0258647 October 2008 Scianna
2008/0265799 October 2008 Sibert
2008/0278092 November 2008 Lys et al.
2008/0285257 November 2008 King
2008/0285266 November 2008 Thomas
2008/0290814 November 2008 Leong et al.
2008/0291675 November 2008 Lin et al.
2008/0298080 December 2008 Wu et al.
2008/0310119 December 2008 Giacoma
2008/0315773 December 2008 Pang
2008/0315784 December 2008 Tseng
2009/0002995 January 2009 Lee et al.
2009/0016063 January 2009 Hu
2009/0021140 January 2009 Takasu et al.
2009/0046473 February 2009 Tsai et al.
2009/0052186 February 2009 Xue
2009/0059557 March 2009 Tanaka
2009/0059559 March 2009 Pabst et al.
2009/0059603 March 2009 Recker et al.
2009/0067170 March 2009 Bloemen et al.
2009/0067182 March 2009 Hsu et al.
2009/0072945 March 2009 Pan et al.
2009/0085500 April 2009 Zampini, II et al.
2009/0086492 April 2009 Meyer
2009/0091929 April 2009 Faubion
2009/0091938 April 2009 Jacobson et al.
2009/0101930 April 2009 Li
2009/0139690 June 2009 Maerz et al.
2009/0140285 June 2009 Lin et al.
2009/0175041 July 2009 Yuen et al.
2009/0185373 July 2009 Grajcar
2009/0195186 August 2009 Guest et al.
2009/0196034 August 2009 Gherardini et al.
2009/0213588 August 2009 Manes
2009/0219713 September 2009 Siemiet et al.
2009/0231831 September 2009 Hsiao et al.
2009/0268461 October 2009 Deak et al.
2009/0273924 November 2009 Chiang
2009/0273926 November 2009 Deng
2009/0284169 November 2009 Valois
2009/0290334 November 2009 Ivey et al.
2009/0295776 December 2009 Yu et al.
2009/0303720 December 2009 McGrath
2009/0316408 December 2009 Villard
2010/0008085 January 2010 Ivey et al.
2010/0019689 January 2010 Shan
2010/0027259 February 2010 Simon et al.
2010/0033095 February 2010 Sadwick
2010/0033964 February 2010 Choi et al.
2010/0046222 February 2010 Yang
2010/0073944 March 2010 Chen
2010/0079085 April 2010 Wendt et al.
2010/0096992 April 2010 Yamamoto et al.
2010/0096998 April 2010 Beers
2010/0103664 April 2010 Simon et al.
2010/0103673 April 2010 Ivey et al.
2010/0109550 May 2010 Huda et al.
2010/0109558 May 2010 Chew
2010/0141173 June 2010 Negrete
2010/0148650 June 2010 Wu et al.
2010/0149806 June 2010 Yiu
2010/0157608 June 2010 Chen et al.
2010/0164404 July 2010 Shao et al.
2010/0181178 July 2010 Chang et al.
2010/0207547 August 2010 Kuroki et al.
2010/0220469 September 2010 Ivey et al.
2010/0265732 October 2010 Liu
2010/0270925 October 2010 Withers
2010/0277069 November 2010 Janik et al.
2010/0289418 November 2010 Langovsky
2010/0308733 December 2010 Shao
2010/0320922 December 2010 Palazzol et al.
2011/0006658 January 2011 Chan et al.
2011/0090682 April 2011 Zheng et al.
2011/0109454 May 2011 McSheffrey, Sr. et al.
2011/0112661 May 2011 Jung et al.
2011/0156584 June 2011 Kim
2011/0176298 July 2011 Meurer et al.
2011/0199723 August 2011 Sato
2011/0199769 August 2011 Bretschneider et al.
2011/0291588 December 2011 Tagare
2012/0014086 January 2012 Jonsson
2012/0043892 February 2012 Visser et al.
2012/0063140 March 2012 Kong
2012/0098439 April 2012 Recker et al.
2012/0106144 May 2012 Chang
2012/0113628 May 2012 Burrow et al.
2012/0127726 May 2012 Yen
2012/0146503 June 2012 Negley et al.
2012/0147597 June 2012 Farmer
2012/0153865 June 2012 Rolfes et al.
2012/0155073 June 2012 McCanless et al.
2012/0161666 June 2012 Antony et al.
2012/0194086 August 2012 Liu et al.
2012/0195032 August 2012 Shew
2012/0212951 August 2012 Lai et al.
2012/0212953 August 2012 Bloom et al.
2012/0230044 September 2012 Zhang et al.
2012/0236533 September 2012 Nakamura et al.
2012/0236554 September 2012 Rust
2012/0243216 September 2012 Lai et al.
2012/0243217 September 2012 Szprengiel et al.
2012/0274214 November 2012 Radermacher et al.
2012/0275154 November 2012 Hood et al.
2012/0293991 November 2012 Lin
2012/0293996 November 2012 Thomas et al.
2012/0300445 November 2012 Chu et al.
2012/0300468 November 2012 Chang et al.
2012/0307524 December 2012 Schapira et al.
2012/0320598 December 2012 Son
2013/0039051 February 2013 Wu
2013/0044471 February 2013 Chen
2013/0044476 February 2013 Bretschneider et al.
2013/0050997 February 2013 Bretschneider et al.
2013/0050998 February 2013 Chu et al.
2013/0057146 March 2013 Chao
2013/0058079 March 2013 Dellian et al.
2013/0063944 March 2013 Lodhie et al.
2013/0077297 March 2013 Wu et al.
2013/0094200 April 2013 Dellian et al.
2013/0148349 June 2013 Pasqualini et al.
Foreign Patent Documents
1584388 Feb 2005 CN
2766345 Mar 2006 CN
2869556 Feb 2007 CN
101016976 Aug 2007 CN
101075605 Nov 2007 CN
201129681 Oct 2008 CN
201184574 Jan 2009 CN
101737664 Jun 2010 CN
19651140 Jun 1997 DE
19624087 Dec 1997 DE
29819966 Mar 1999 DE
29817609 Jan 2000 DE
20018865 Feb 2001 DE
0013782 Mar 1983 EP
0091172 Oct 1983 EP
0124924 Sep 1987 EP
0174699 Nov 1988 EP
0197602 Nov 1990 EP
0714556 Jan 1991 EP
0214701 Mar 1992 EP
0262713 Jun 1992 EP
0203668 Feb 1993 EP
0272749 Aug 1993 EP
0337567 Nov 1993 EP
0390262 Dec 1993 EP
0359329 Mar 1994 EP
0403011 Apr 1994 EP
0632511 Jan 1995 EP
0432848 Apr 1995 EP
0659531 Jun 1995 EP
0403001 Aug 1995 EP
0525876 May 1996 EP
0889283 Jul 1999 EP
0458408 Sep 1999 EP
0578302 Sep 1999 EP
0723701 Jan 2000 EP
1142452 Mar 2001 EP
0787419 May 2001 EP
1016062 Aug 2002 EP
1195740 Jan 2003 EP
1149510 Feb 2003 EP
1056993 Mar 2003 EP
0766436 May 2003 EP
0924281 May 2003 EP
0826167 Jun 2003 EP
1147686 Jan 2004 EP
1145602 Mar 2004 EP
1422975 May 2004 EP
0890059 Jun 2004 EP
1348319 Jun 2005 EP
1037862 Jul 2005 EP
1346609 Aug 2005 EP
1321012 Dec 2005 EP
1610593 Dec 2005 EP
1624728 Feb 2006 EP
1415517 May 2006 EP
1415518 May 2006 EP
1438877 May 2006 EP
1166604 Jun 2006 EP
1479270 Jul 2006 EP
1348318 Aug 2006 EP
1399694 Aug 2006 EP
1461980 Oct 2006 EP
1110120 Apr 2007 EP
1440604 Apr 2007 EP
1047903 Jun 2007 EP
1500307 Jun 2007 EP
0922305 Aug 2007 EP
0922306 Aug 2007 EP
1194918 Aug 2007 EP
1833035 Sep 2007 EP
1048085 Nov 2007 EP
1852648 Nov 2007 EP
1763650 Dec 2007 EP
1776722 Jan 2008 EP
1873012 Jan 2008 EP
1459599 Feb 2008 EP
1887836 Feb 2008 EP
1579733 Apr 2008 EP
1145282 Jul 2008 EP
1157428 Sep 2008 EP
1000522 Dec 2008 EP
1502483 Dec 2008 EP
1576858 Dec 2008 EP
1646092 Jan 2009 EP
1579736 Feb 2009 EP
1889519 Mar 2009 EP
1537354 Apr 2009 EP
1518445 May 2009 EP
1337784 Jun 2009 EP
2013530 Aug 2009 EP
1461982 Sep 2009 EP
2430888 Mar 2012 EP
2469155 Jun 2012 EP
2573457 Mar 2013 EP
2554895 Jun 2013 EP
2813115 Feb 2002 FR
2215024 Sep 1989 GB
2324901 Nov 1998 GB
2447257 Sep 2008 GB
2472345 Feb 2011 GB
2486410 Jun 2012 GB
06-054289 Feb 1994 JP
H6-54103 Jul 1994 JP
07-249467 Sep 1995 JP
7264036 Oct 1995 JP
08-162677 Jun 1996 JP
11-135274 May 1999 JP
H11-162234 Jun 1999 JP
H11-260125 Sep 1999 JP
2001-238272 Aug 2001 JP
2001-291406 Oct 2001 JP
2002-141555 May 2002 JP
2002-289373 Oct 2002 JP
3098271 Feb 2004 JP
2004-119078 Apr 2004 JP
2004-273234 Sep 2004 JP
2004-335426 Nov 2004 JP
2005-158363 Jun 2005 JP
2005-166617 Jun 2005 JP
2005-347214 Dec 2005 JP
2006-507641 Mar 2006 JP
2005-322866 Dec 2006 JP
2007-227342 Sep 2007 JP
3139714 Feb 2008 JP
2008-186758 Aug 2008 JP
2008-258124 Oct 2008 JP
2008-293753 Dec 2008 JP
2009-283183 Mar 2009 JP
3154200 Sep 2009 JP
2010-192229 Sep 2010 JP
2010-205553 Sep 2010 JP
10-2004-0008244 Jan 2004 KR
10-2006-0112113 Oct 2006 KR
20-0430022 Nov 2006 KR
10-2006-0133784 Dec 2006 KR
10-2007-0063595 Jun 2007 KR
10-0781652 Dec 2007 KR
10-0844538 Jul 2008 KR
10-0888669 Mar 2009 KR
10-0927851 Nov 2009 KR
M337036 Jul 2008 TW
M349465 Jan 2009 TW
99-06759 Feb 1999 WO
99-10867 Mar 1999 WO
99-31560 Jun 1999 WO
99/45312 Sep 1999 WO
99/57945 Nov 1999 WO
00/01067 Jan 2000 WO
WO0225842 Mar 2002 WO
02-061330 Aug 2002 WO
WO02069306 Sep 2002 WO
WO02091805 Nov 2002 WO
WO02098182 Dec 2002 WO
WO02099780 Dec 2002 WO
WO03026358 Mar 2003 WO
WO03055273 Jul 2003 WO
WO03067934 Aug 2003 WO
WO03090890 Nov 2003 WO
WO03096761 Nov 2003 WO
WO2004021747 Mar 2004 WO
WO2004023850 Mar 2004 WO
WO2004032572 Apr 2004 WO
WO2004057924 Jul 2004 WO
WO2004100624 Nov 2004 WO
WO2005031860 Apr 2005 WO
WO2005052751 Jun 2005 WO
WO2005060309 Jun 2005 WO
WO2005084339 Sep 2005 WO
WO2005089293 Sep 2005 WO
WO2005089309 Sep 2005 WO
WO2005103555 Nov 2005 WO
WO2005116519 Dec 2005 WO
WO2006023149 Mar 2006 WO
WO2006044328 Apr 2006 WO
WO2006046207 May 2006 WO
WO2006056120 Jun 2006 WO
WO2006093889 Sep 2006 WO
WO2006095315 Sep 2006 WO
WO2006095316 Sep 2006 WO
WO2006127666 Nov 2006 WO
WO2006127785 Nov 2006 WO
WO2006133272 Dec 2006 WO
WO2006137686 Dec 2006 WO
WO2007004679 Jan 2007 WO
WO2007081674 Jul 2007 WO
WO2007090292 Aug 2007 WO
WO2007094810 Aug 2007 WO
WO2008018002 Feb 2008 WO
WO2008027093 Mar 2008 WO
WO2008061991 May 2008 WO
WO2008110978 Sep 2008 WO
WO2008129488 Oct 2008 WO
WO2008137460 Nov 2008 WO
WO2009061124 May 2009 WO
WO2009067074 May 2009 WO
WO2009111978 Sep 2009 WO
WO2009143047 Nov 2009 WO
WO2010014437 Feb 2010 WO
WO2010030509 Mar 2010 WO
WO2010047896 Apr 2010 WO
WO2010047898 Apr 2010 WO
WO2010047973 Apr 2010 WO
WO2010069983 Jun 2010 WO
WO2010083370 Jul 2010 WO
WO2010088105 Aug 2010 WO
WO2010097737 Sep 2010 WO
WO2010132625 Nov 2010 WO
WO2010141537 Dec 2010 WO
WO2011005562 Jan 2011 WO
WO2011005579 Jan 2011 WO
WO2011072308 Jun 2011 WO
WO2011113709 Sep 2011 WO
WO2011117059 Sep 2011 WO
WO2012001584 Jan 2012 WO
WO2012004708 Jan 2012 WO
WO2012007899 Jan 2012 WO
WO2012025626 Mar 2012 WO
WO2012063174 May 2012 WO
WO2012117018 Sep 2012 WO
WO2012129301 Sep 2012 WO
WO2012131522 Oct 2012 WO
WO2012131547 Oct 2012 WO
WO2013028965 Feb 2013 WO
WO2013029960 Mar 2013 WO
WO2013030128 Mar 2013 WO
WO2013045255 Apr 2013 WO
WO2013045439 Apr 2013 WO
WO2013057660 Apr 2013 WO
WO2013079242 Jun 2013 WO
WO2013088299 Jun 2013 WO
2013/097823 Jul 2013 WO
2013/098700 Jul 2013 WO

Other References

Saha et al, "Location Determination of a Mobile Device using IEEE 802.11 Access Point Signals", May 5, 2002 in 20 pages. cited by applicant .
Hightower et al, "A Survey and Taxonomy of Location Systems for Ubiquitous Computing", University of Washington, Computer Science and Engineering, Technical Report UW-CSE 01-08-03, IEEE, Aug. 24, 2001 in 29 pages. cited by applicant .
International Search Report and Written Opinion dated Oct. 10, 2013 for the corresponding International Application No. PCT/US2013/0494257 filed Jul. 5, 2013. cited by applicant .
Best Practice Guide--Commercial Office Buildings--Central HVAC System. [online], [Retrieved on Jan. 17, 2008] Retrieved from Flex Your Power Organization web page using Internet <URL: http://www.fypower.org/bpg/module.html?b=offices&m+Central HVAC Systems&s=Contr . . . >. cited by applicant .
International Search Report and Written Opinion dated Feb. 9, 2012 from the corresponding International Application No. PCT/US2011/043524 filed on Jul. 11, 2011. cited by applicant .
Airport International. Fly High With Intelligent Airport Building and Security Solutions [online], [retrieved on Oct. 24, 2008]. Retrieved from Airport International web page using Internet <URL: http://www.airport-int.com/categories/airport-building-and-security-solut- ions/fly-high-with-intelligent-airport-building-and-security-solutions.htm- l>. cited by applicant .
Cornell University. Light Canopy--Cornell University Solar Decathlon, [online], [retrieved on Jan. 17, 2008] Retrieved from Cornell University web page using Internet <URL: http://cusd.cornell.edu/cusd/web/index.php/page/show/section/Design/page/- controls>. cited by applicant .
D.N.A.-III, [online], [retrieved Mar. 10, 2009] Retrieved from the PLC Lighting Web Page using Internet <URL: http://www.plclighting.com/product.sub.--info.php?cPath=1&products.sub.--- id=92>. cited by applicant .
E20112-22 Starburst Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20112-22>. cited by applicant .
E20116-18 Larmes Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20116-18>. cited by applicant .
E20524-10 & E20525-10 Curva Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20524-10 & E20525-10>. cited by applicant .
E20743-09 Stealth Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20743-09>. cited by applicant .
E22201-44 Esprit Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E22201-44>. cited by applicant .
Experiment Electronic Ballast. Electronic Ballast for Fluorescent Lamps [online], Revised Fall of 2007. [Retrieved on Sep. 1, 1997]. Retrieved from Virginia Tech Web Page using Internet <URL: http://www.ece.vt.edu/ece3354/labs/ballast.pdf.>. cited by applicant .
Henson, Keith. The Benefits of Building Systems Integration, Access Control & Security Systems Integration, Oct. 1, 2000, Penton Media. [online], [retrieved on Oct. 24, 2008] Retrieved from Security Solutions Web page using Internet <URL: http://securitysolutions.com/mag/security.sub.--benefits.sub.--building.s- ub.--systems/>. cited by applicant .
Lawrence Berkeley National Labratory. Lighting Control System--Phase Cut Carrier. University of California, [online] [retrieved on Jan. 14, 2008] Retrieved from Lawrence Berkeley National Labratory web page using Internet <URL: http://www.lbl.gov/tt/techs/lbnl1871.html>. cited by applicant .
LCD Optics 101 Tutorial [online]. 3M Corporation, [retrieved on Jan. 6, 2010]. Retrieved from the internet: <URL: http://solutions.3m.com/wps/portal/3M/en.sub.--US/Vikuiti1/BrandProducts/- secondary/optics101/>. cited by applicant .
LED Lights, Replacement LED lamps for any incandescent light, [online], [retrieved on Jan. 13, 2000] Retrieved from LED Lights Web Page using Internet <URL: http://www.ledlights.com/replac.htm>. cited by applicant .
Ledtronics, Ledtronics Catalog, 1996, p. 10, Ledtronics, Torrance, California. cited by applicant .
Phason Electronic Control Systems, Light Level Controller (LLC) case study. Nov. 30, 2004. 3 pages, Phason Inc., Winnipeg, Manitoba, Canada. cited by applicant .
Philips. Sense and Simplicity--Licensing program for LED Luminaires and Retrofits, Philips Intellectual Property & Standards, May 5, 2009. cited by applicant .
Piper. The Best Path to Efficiency. Building Operating Management, Trade Press Publishing Company May 2000 [online], [retrieved on Jan. 17, 2008]. Retrieved from Find Articles Web Page using Internet <URL:http://findarticles.com/p/articles/mi.sub.--qu3922/is.sub.--20000- 5/ai.sub.--n8899499/>. cited by applicant .
PLC-81756-AL "Fireball" Contemporary Pendant Light, [online], [retrieved on Feb. 27, 2009] Retrieved from the Arcadian Lighting Web Page using Internet <URL: http://www.arcadianlighting .com/plc-81756-al.html>. cited by applicant .
PLC-96973-PC PLC Lighting Elegance Modern/Contemporary Pendant Light, [online], [retrieved on Feb. 27, 2009] Retrieved from the Arcadian Lighting Web Page using Internet <URL: http/www.arcadianlighting.com/plc-96978-pc.html>. cited by applicant .
Sensor Switch, nLight Lighting Control System, [online], [retrieved on Jan. 11, 2008] Retrieved from Sensor Switch web page using Internet <URL: http://www.sensorswitch.com>. cited by applicant .
Six Strategies, [online], [retrieved on Jan. 11, 2008] Retrieved from Encelium Technologies Inc. Web Page using Internet <URL: http://www.encelium.com/products/strategies.html>. cited by applicant .
Spencer, Eugene. High Sales, Low Utilization. Green Intelligent Buildings, Feb. 1, 2007. [online]. Retrieved from Green Intelligent Buildings web page using Internet <URL: http://www.greenintelligentbuildings.com/CDA/IBT.sub.--Archive/BNP.sub.--- GUID.sub.--9-5-2006.sub.--A.sub.--10000000000000056772>. cited by applicant .
Telecite Products & Services--Display Options, [online], [retrieved on Jan. 13, 2000] Retrieved from Telecite Web page using Internet <URL: http://www.telecite.com/en/products/options en.htm>. cited by applicant .
Traffic Signal Products--Transportation Products Group, [online], [retrieved on Jan. 13, 2000] Retrieved from the Dialight Web Page using Internet <URL: http://www.dialight.com/trans.htm>. cited by applicant .
Truck-Lite, LEDSelect--LED, Model 35, Clearance & Marker Lighting, [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds14.html>. cited by applicant .
Truck-Lite, LEDSelect--LED, Model 45, Stop, Turn & Tail Lighting [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds4.html>. cited by applicant .
Truck-Lite, LEDSelect--LED, Super 44, Stop, Turn & Tail Lighting, [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds2.html>. cited by applicant .
Wolsey, Robert. Interoperable Systems: The Future of Lighting Control, Lighting Research Center, Jan. 1, 1997, vol. 2 No. 2, Rensselaer Polytechnic Institute, Troy, New York [online]. Retrieved Lighting Research Center Web Page using Internet <URL: http://www.lrc.rpi.edu/programs/Futures/LF-BAS/index.asp>. cited by applicant .
International Search Report and Written Opinion dated Feb. 15, 2013 from the corresponding International Application No. PCT/US2012/052244 filed on Aug. 24, 2012. cited by applicant .
International Search Report and Written Opinion dated Aug. 30, 2011 for the corresponding International Application No. PCT/US2011/029994 filed Mar. 25, 2011. cited by applicant .
Notification of Transmittal, the International Search Report and the Written Opinion of the International Searching Authority dated May 7, 2012, from the corresponding International Application No. PCT/US2011/064151. cited by applicant .
Supplementary European Search Report for corresponding European Application No. 09822381.1 mailed Jan. 4, 2013 in 5 pages. cited by applicant .
Supplementary European Search Report dated Feb. 22, 2012 from European Patent Application No. 09822424.9. cited by applicant .
International Report on Patentability dated May 24, 2010 from the corresponding International Application No. PCT/US2009/060087 filed Oct. 9, 2009. cited by applicant .
Extended European Search Report for co-pending European Application No. 10 73 2124 mailed on Dec. 13, 2012 in 8 pages. cited by applicant .
Extended European Search Report for co-pending European Application No. 09822425.6 mailed on Aug. 30, 2012 in 9 pages. cited by applicant .
Extended European Search Report for co-pending European Application No. 10797596.3 mailed on Jan. 17, 2013 in 11pages. cited by applicant .
Extended European Search Report for co-pending European Application No. 10736237.8 mailed on Oct. 19, 2012 in 5 pages. cited by applicant .
Extended European Search Report for co-pending European Application No. 10738925.6 mailed on Oct. 1, 2012 in 7 pages. cited by applicant .
Examination and Search Report mailed on Jul. 2, 2012 in cooresponding United Kingdom Application No. 1018896.9 in 4 pages. cited by applicant .
International Search Report and Written Opinion dated Jan. 4, 2010 from the corresponding International Application No. PCT/US2009/044313 filed May 18, 2009. cited by applicant .
International Search Report and Written Opinion dated Feb. 7, 2011 from the corresponding International Application No. PCT/US2010/039678 filed Jun. 23, 2010. cited by applicant .
International Search Report and Written Opinion dated May 7, 2010 from the corresponding International Application No. PCT/US2009/057109 filed on Sep. 16, 2009. cited by applicant .
International Search Report and Written Opinion dated Apr. 8, 2010 from the corresponding International Application No. PCT/2009/055114 filed on Aug. 27, 2009. cited by applicant .
International Search Report and Written Opinion dated Feb. 8, 2011 from the corresponding International Application No. PCT/US2010/039608 filed Jun. 23, 2010. cited by applicant .
International Search Report and Written Opinion dated Dec. 13, 2010 from the corresponding International.Application No. PCT/US2010/037006 filed Jun. 2, 2010. cited by applicant .
International Search Report and Written Opinion dated Mar. 13, 2012 from the corresponding International Application No. PCT/US2011/052995 filed on Sep. 23, 2011. cited by applicant .
International Search Report and Written Opinion dated May 14, 2010 from the corresponding International Application No. PCT/US2009/060085 filed Oct. 9, 2009. cited by applicant .
International Search Report and Written Opinion dated Aug. 16, 2010 from the corresponding International Application No. PCT/US2010/021131 filed on Jan. 15, 2010. cited by applicant .
International Search Report and Written Opinion dated Jul. 16, 2009 from the corresponding International Application No. PCT/US2008/084650 filed Nov. 25, 2008. cited by applicant .
International Search Report and Written Opinion dated Aug. 17, 2010 from the corresponding International Application No. PCT/US2010/021489 filed on Jan. 20, 2010. cited by applicant .
International Search Report and Written Opinion dated Jul. 17, 2009 from the corresponding International Application No. PCT/US2008/085118 filed Dec. 1, 2008. cited by applicant .
International Search Report and Written Opinion dated Nov. 21, 2011 from the corresponding International Application No. PCT/US2011/029932 filed on Mar. 25, 2011. cited by applicant .
International Search Report and Written Opinion dated Mar. 22, 2010 from the corresponding International Application No. PCT/US2009/053853 filed Aug. 14, 2009. cited by applicant .
International Search Report and Written Opinion dated Nov. 23, 2011 from the corresponding International Application No. PCT/US2011/042761 filed on Jul. 1, 2011. cited by applicant .
International Search Report and Written Opinion dated Nov. 23, 2011 from the corresponding International Application No. PCT/US2011/042775 filed on Jul. 1, 2011. cited by applicant .
International Search Report and Written Opinion dated Dec. 24, 2010 from the corresponding International Application No. PCT/US2010/034635 filed May 13, 2010. cited by applicant .
International Search Report and Written Opinion dated May 24, 2010 from the corresponding International Application No. PCT/2009/060083 filed Oct. 9, 2009. cited by applicant .
Notification of Transmittal, the International Search Report and the Written Opinion of the International Searching Authority dated May 7, 2012 from the corresponding International Application No. PCT/US2011/058312. cited by applicant .
International Search Report and Written Opinion dated Aug. 25, 2009 from corresponding International Application No. PCT/US2009/031049 filed Jan. 15, 2009. cited by applicant .
International Search Report and Written Opinion dated Jan. 25, 2010 from the corresponding International Application No. PCT/US2009/048623 filed Jun. 25, 2009. cited by applicant .
International Search Report and Written Opinion dated Feb. 26, 2010 from the corresponding International Application No. PCT/US2009/050949 filed Jul. 17, 2009. cited by applicant .
International Search Report and Written Opinion dated Apr. 30, 2010 from the corresponding International Application No. PCT/US2009/057072 filed on Sep. 16, 2009. cited by applicant .
International Search Report and Written Opinion dated Jul. 30, 2010 from the corresponding International Application No. PCT/US2010/021448 filed on Jan. 20, 2010. cited by applicant .
International Search Report and Written Opinion dated Sep. 30, 2011 from the corresponding International Application No. PCT/US2011/029905 filed on Mar. 25, 2011. cited by applicant.

Primary Examiner: Kim; Jung
Attorney, Agent or Firm: Young Basile

Parent Case Text



CROSS REFERENCE TO RELATED APPLICATION

This application claims priority benefit to U.S. Provisional Patent Application No. 61/669,319 filed Jul. 9, 2012, the contents of which is hereby incorporated by reference in its entirety.
Claims



What is claimed is:

1. A method of associating a light source with an area for which the light source is positioned to provide lighting, comprising: receiving, with a plurality of spatially distributed communications units, one or more location signals from the area; determining the physical position of the light source based on the location signals; transmitting the determined physical position of the light source to a processor; identifying, based on the determined physical position of the light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; controlling, using the processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.

2. The method of claim 1, further comprising: comparing the determined physical position of the light source against known physical positions of the plurality of areas to identify the area for which the light source is positioned to provide lighting.

3. The method of claim 1, further comprising: receiving the determined physical position of the light source.

4. The method of claim 1, wherein the light source is an LED-based replacement for a fluorescent light.

5. A lighting control system, comprising: a light source positioned to provide lighting for an area; a control unit configured to: identify, based on a determined physical position of the light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting, identify at least one desired lighting condition for the identified area, and control operation of the light source based on the identified at least one desired lighting condition for the identified area; and a plurality of spatially distributed communications units, the communications units configured to receive one or more location signals from the area, determine the physical position of the light source based on the location signals, and transmit the determined physical position of the light source to the control unit.

6. The lighting control system of claim 5, wherein the control unit is further configured to: compare the determined physical position of the light source against known physical positions of the plurality of areas to identify the area for which the light source is positioned to provide lighting.

7. The lighting control system of claim 5, wherein the control unit is further configured to: receive the determined physical position of the light source.

8. The lighting control system of claim 5, further comprising: a transmitter, the transmitter located in the area proximate to the light source and configured to transmit the location signals from the area to the communications units.

9. The lighting control system of claim 8, wherein the transmitter is included in the light source.

10. The lighting control system of claim 5, further comprising: a switching unit responsive to the control unit to regulate a supply of power to the light source, the switching unit located in the area proximate to the light source and including a transmitter configured to transmit the location signals from the area to the communications units.

11. The lighting control system of claim 10, wherein the switching unit is included in the light source.

12. The lighting control system of claim 5, wherein the plurality of communications units are included in respective spatially distributed light sources different from the light source positioned to provide lighting for the area.

13. The lighting control system of claim 5, wherein the light source is an LED-based replacement for a fluorescent light.
Description



TECHNICAL FIELD

The embodiments disclosed herein relate in general to a light emitting diode (LED)-based light for replacing a conventional light in a standard light fixture, and in particular to a lighting control system for controlling the operation of an LED-based light.

BACKGROUND

Fluorescent lights are widely used in a variety of locations, such as schools and office buildings. Although conventional fluorescent lights have certain advantages over, for example, incandescent lights, they also pose certain disadvantages including, inter alia, disposal problems due to the presence of toxic materials within the light.

LED-based lights designed as one-for-one replacements for fluorescent lights have appeared in recent years. LED-based lights can be used in a building with a control system capable of managing various aspects of the building, including its lighting conditions. A lighting control system can be designed to regulate the lighting conditions in a building through selective control of the operation of LED-based lights, in order to, for example, improve usability of the building or to optimize its energy use. Some of these lighting control systems can remotely regulate individual lighting conditions of multiple different areas within the building. Such individualized regulation requires some form of association between each LED-based light and the particular area in which the LED-based light is positioned to illuminate. Association can entail, for example, manually assigning an LED-based light positioned to illuminate a particular area with a logical address designated within the lighting control system to correspond to that area. Once associated, the lighting control system can correctly control operation of an LED-based light based upon the desired lighting conditions for its respective area.

SUMMARY

Disclosed herein are embodiments of methods and systems for controlling operation of a light source. In one aspect, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.

In another aspect, alighting control system comprises: a light source positioned to provide lighting for an area; and a control unit configured to: identify, based on a determined physical position of the light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting, identify at least one desired lighting condition for the identified area, and control operation of the light source based on the identified at least one desired lighting condition for the identified area.

In yet another aspect, a method of selecting a lighting condition for controlling operation of a light source comprises: storing, in memory, a plurality of position-dependent lighting conditions; and selecting, using a processor in communication with the memory, one of the position-dependent lighting conditions for controlling operation of the light source based on a determined physical position of the light source, such that the operation of the light source is controlled based on the selected position-dependent lighting condition.

These and other aspects will be described in additional detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features, advantages and other uses of the present system and methods will become more apparent by referring to the following detailed description and drawings in which:

FIG. 1 is a system view of a lighting control system configured to control operation of an LED-based light;

FIG. 2 is a flow chart illustrating a process including operations for installing and associating the LED-based light of FIG. 1 within the lighting control system;

FIG. 3 is an exploded perspective view of an example of an LED-based light for use in the lighting control system of FIG. 1; and

FIG. 4 is an exploded perspective view of an alternative example of an LED-based light for use in the lighting control system of FIG. 1.

DETAILED DESCRIPTION

Manual association between an LED-based light and the particular area in which the LED-based light is positioned to illuminate can be time consuming and error-prone. Further, associations can be broken if a logically addressable LED-based light is moved and/or replaced during service, which can cause incorrect control over the operation of the LED-based light.

Disclosed herein are example configurations of a lighting control system for a building that can use information relating to the position of an LED-based light to associate the LED-based light with a particular area for purposes of regulating the lighting conditions for that area. Further disclosed herein are exemplary configurations of a control system that can reduce the amount of user input required to determine the information relating to the position of the LED-based light.

A building can include systems for managing various aspects of the building. These aspects can generally include the environmental conditions of the building, such as heating, ventilation and air conditioning (HVAC) conditions, security conditions and/or lighting conditions, for example. A "smart" building can include a control system, such as a building automation system, that can automatically manage the environmental conditions of the building in accordance with desired environmental conditions. Such buildings can include one or more areas located throughout the building, with each area lending itself to individualized regulation of one or more of its environmental conditions.

A representative building 10 including a building automation system implementing a lighting control system 12 for regulating the lighting conditions of multiple areas 14 throughout the building 10 is shown in FIG. 1. The terms "building" and "building automation system" are used herein to describe the lighting control system 12 with reference to a representative setting in which the lighting control system 12 can be implemented. However, the lighting control system 12 could be implemented in other settings, such as outdoors, for example, or in other settings in which a number of different areas 14 lending themselves to individualized regulation with respect to their lighting conditions can be defined.

Regulation of the environmental conditions of the multiple areas 14 located throughout the building 10 can include a process of defining the areas 14 to be controlled. Each area 14, as it relates to individualized regulation of its environmental conditions, can correspond to some characteristic of the building 10 or its contents, or can correspond to some characteristic of the defined area 14. With respect to regulation of lighting conditions with the lighting control system 12, for example, the area 14 could be defined as an individual room or group of rooms located within the building 10. The area 14 could additionally or alternatively be defined in terms of its physical surroundings, such as an area adjacent to source of light extrinsic to the lighting control system 12, for instance a window supplying natural light. The area 14 could also be defined in relation to its particular functional considerations and/or constraints with respect to lighting conditions. For example, the area 14 could be defined above a workstation, or the area 14 could correspond to a particular type of room within the building 10, such as an office, a conference room, a hallway or a bathroom, for example. Similarly, the area 14 could be defined in relation to its particular requirements with respect to lighting conditions, which could involve requirements of performance lighting, efficient lighting, safety lighting, comfort lighting and/or alarm lighting, for example. As a non-limiting example, an area 14A could be an individual room located within the building 10, an area 14B could be located adjacent an east facing window receiving natural light and thereby requiring less artificial light from the lighting control system 12, and an area 14C could be located adjacent a desk or other workstation.

An area 14 could be one discrete individual location within the building 10, or could comprise some grouping of locations lending themselves to similar regulation of their environmental conditions. A building 10 could include a single area 14 or multiple areas 14, and each area 14 of a building 10 need not be defined according to an approach used to define another area 14 of the building 10. The building 10 can include more or less than the illustrated areas 14A, 14B and 14C, and the building 10 can include alternative and/or additional areas 14 depending upon which of a variety of environmental conditions is regulated. That is, with respect to regulation of environmental conditions other than lighting conditions, areas 14 could be defined within the building 10 other than as the areas 14A, 14B and 14C described above, and alternative and/or additional areas 14 could be defined for purposes of individualized regulation of the various other environmental conditions.

A building automation system for the building 10 can implement the lighting control system 12 to individually regulate the lighting conditions for each of the areas 14 located throughout the building 10. The illustrated lighting control system 12 may include one or more LED-based lights 16 positioned to illuminate each of the areas. The lighting conditions for the area 14 in which an LED-based light 16 is positioned can be regulated through selective control of the operation the LED-based light 16. For ease of understanding, the lighting control system 12 is generally described below with reference to a single LED-based light 16 positioned to illuminate a singular area 14. However, it should be understood that the lighting control system 12 can include a plurality of areas 14A, 14B and 14C, each of which can include one or more respective LED-based lights 16 positioned to illuminate the areas 14A, 14B and 14C.

The lighting control system 12 includes one or more devices for controlling the operation of the LED-based light 16. In a basic lighting system, operation of an LED-based light 16 could be controlled by electrically connecting a device such as a light switch, dimmer or other similar operator actuated device between the LED-based light 16 and a power supply. These devices control operation of the LED-based light 16 by regulating a supply of AC or DC electrical power to the LED-based light 16. For example, a supply of electrical power to the LED-based light 16 can be selectively switched to control an on/off function of the LED-based light 16, and a supply of electrical power to the LED-based light 16 can be selectively modulated to control a dimming function of the LED-based light 16.

The illustrated implementation of the lighting control system 12 includes a control unit 20 configured to control the operation of the LED-based light 16 by selectively controlling a supply of electrical power to the LED-based light 16. The control unit 20 can be or include one or more controllers configured for controlling the operation of multiple LED-based lights 16 positioned in different areas 14 located throughout the building 10. A controller could be a programmable controller, such as a microcomputer including a random access memory (RAM), a read-only memory (ROM) and a central processing unit (CPU) in addition to various input and output connections. Generally, the control functions described herein can be implemented by one or more software programs stored in internal or external memory and are performed by execution by the CPU. However, some or all of the functions could also be implemented by hardware components. Although the control unit 20 is shown and described as a single central controller for performing multiple functions related to multiple areas 14, the functions described herein could be implemented by separate controllers which collectively comprise the illustrated control unit 20.

The control unit 20 can be electrically connected between the LED-based light 16 and a power supply and configured to control operation of the LED-based light 16 by directly switching and/or modulating a supply of electrical power to LED-based light 16. Alternatively, the control unit 20 can be configured to control operation of the LED-based light 16 by indirectly controlling a supply of electrical power to the LED-based light 16, for example by communicating a control signal .alpha. to a switching device. For example, as shown in FIG. 1, lighting control system 12 may include a switching unit 22 communicatively coupled to the control unit 20.

The switching unit 22 is electrically connected between the LED-based light 16 and a power supply and is configured to receive the control signal .alpha. and, in response to the control signal .alpha., selectively regulate a supply of electrical power to the LED-based light 16. The switching unit 22 can control an on/off function of the LED-based light 16 by including a relay or other mechanical, electrical or electromechanical switch configured to selectively switch a supply of electrical power to the LED-based light 16. The switching unit 22 can alternatively or additionally be or include components configured to selectively modulate a supply of electrical power to the LED-based light 16 to control a dimming function of the LED-based light 16. The switching unit 22 can selectively regulate a supply of electrical power to the LED-based light 16 to control operation of the LED-based light 16 in a variety of other manners. For example, in addition to controlling on/off and dimming functions of the LED-based light 16, the switching unit 22 can also be configured to regulate a supply of electrical power to the LED-based light 16 to achieve continuous, intermittent or other non-continuous operation of the LED-based light 16. For example, the LED-based light 16 could be operated steadily, variably, or could be blinked, flashed or amplified according to some timed pattern by the switching unit 22, depending upon the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate.

Each area 14 located throughout the building 10 can lend itself to individualized regulation of its lighting conditions in accordance with respective desired lighting conditions. The lighting control system 12 includes the control unit 20 for controlling the lighting conditions of the area 14 through selective control of the operation of the LED-based light 16 positioned to illuminate the area 14. As described above, the control unit 20 controls the operation of the LED-based light 16 by communicating a control signal .alpha. to the switching unit 22 configured to selectively regulate a supply of electrical power to the LED-based light 16. The control signal .alpha. generally corresponds to the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate. The control signal .alpha. can be representative of a setpoint illumination level for the area 14, or could be representative of some other particular requirement or characteristic with respect to the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the control signal .alpha. could be representative of a requirement for performance lighting, efficient lighting, safety lighting, comfort lighting and/or alarm lighting in the area 14.

The control unit 20 is configured to determine the desired lighting conditions for the area 14 in which the LED-based light 16 is positioned to illuminate, and to generate the control signal .alpha. corresponding to the desired lighting conditions. The control unit 20 can generate the control signal .alpha. with logic implementing various algorithmic or heuristics techniques. As non-limiting examples, the control unit 20 can include logic implementing timers, alarms, and/or rules relating to occupancy sensing, daylight harvesting or manual override control.

The lighting control system 12 can further include one or more input devices 24 corresponding to each of the areas 14. The input devices 24 are configured to relay information relating to the actual or desired lighting conditions and/or other environmental conditions of the area 14 to the control unit 20. The lighting control system 12 can utilize the information from an input device 24 for purposes of individualized regulation of the lighting conditions for its area 14. The input devices 24 are configured to generate one or more input signals .beta.. The input devices 24 are communicatively coupled to the control unit 20, and the logic of the control unit 20 can be responsive to the input signals .beta. to generate the control signal .alpha. for communication to the switching unit 22.

The illustrated input devices 24 can include a user interface 26 and various sensors 28. The user interface 26 is configured to receive information from a user of the building 10 relating to requested lighting conditions for the area 14 to which the user interface 26 corresponds, and to generate corresponding input signals .beta. for communication to the control unit 20. The user interface 26 can be or include a switch, dimmer or other user actuated device. The user interface 26 could also include a web-based or similar computer-based component for receiving information relating to requested lighting conditions for an area 14.

The lighting control system 12 can incorporate the input signals .beta. communicated from the user interface 26 to varying degrees as compared to input signals .beta. communicated from other input devices 24. For example, the lighting control system 12 could give priority to the user interface 26 by providing for manual override control of the operation of the LED-based light 16 on the basis of a user's actuation of the user interface 26. In this example, the control unit 20 could include logic for generating a control signal .alpha. directing the switching unit 22 to regulate a supply of electrical power to the LED-based light 16 in direct accordance with an operator's requested lighting conditions. Alternatively, the lighting control system 12 could be arranged such that a supply of electrical power to LED-based light 16 is regulated directly by the user interface 26 in accordance with an operator's requested lighting conditions without regard to a control signal .alpha. generated by the control unit 20.

The sensors 28 may be configured for measuring, monitoring and/or estimating various environmental conditions within a corresponding area 14 and for generating corresponding input signals .beta. for communication to the control unit 20. Sensors 28 can include, for example, a sensor for measuring the actual lighting conditions of the area 14, or sensors 28 could include a sensor for monitoring or estimating occupancy of the area 14. The sensors 28 could include a motion sensor, a voice-activated sensor or a clock or calendar, for example. Similar to the input signals .beta. from the user interface 26, the input signals .beta. from the sensors 28 can be incorporated into the logic of the control unit 20 for generation of the control signal .alpha..

An exemplary communications link 40 is included in the lighting control system 12 for communicatively coupling the components of the lighting control system 12. The communications link 40 may generally be configured to support digital and/or analog communication between the components included in the lighting control system 12. For example, the communications link 40 may be configured to communicatively couple the control unit 20, the switching unit 22 and the input devices 24. The communications link 40 can include wired and/or wireless communications channels using any industry standard or proprietary protocols. As a non-limiting example, a wired communications link 40 could be implemented with 0-10V signals, DALI or Ethernet. As a further non-limiting example, a wireless communications link 40 could be implemented, for example, with wireless DALI, IEEE 802.11, Wi-Fi, Bluetooth or RF channels, or through infrared, ultrasonic or modulated visible light, such as light emitted from the LED-based lights 16. Further, the communications link 40 could be implemented with multiple communications channels, each using differing protocols.

The illustrated lighting control system 12 can provide localized regulation of the lighting conditions for multiple different areas 14 with the control unit 20 by selectively controlling the operation of the respective LED-based lights 16 positioned to illuminate the respective areas 14. The control unit 20 can determine differing desired lighting conditions for each of the areas 14. For example, the desired lighting conditions for area 14A could necessitate that the LED-based light 16 positioned to illuminate area 14A be controlled to an on state, the desired lighting conditions for area 14B could necessitate that the LED-based light 16 positioned to illuminate area 14B be controlled to an off state, and the desired lighting conditions for area 14C could necessitate that the LED-based light 16 positioned to illuminate area 14C be controlled to a modulated state.

In order for the lighting control system 12 to efficiently regulate the lighting conditions in multiple areas 14, the lighting control system 12 may be configured to control the LED-based light 16 positioned to illuminate a particular area 14 without affecting the operation of LED-based lights 16 positioned to illuminate other areas 14. Proper functioning of the lighting control system 12 generally requires some association between each LED-based light 16 and the area 14 in which the LED-based light 16 is positioned to illuminate. Association can entail, for example, manually landing wires between terminals of the control unit 20 and switching units 22 and/or corresponding LED-based lights 16. Alternatively, association could entail manually assigning a switching unit 22 and/or corresponding LED-based light 16 with a logical address designated within the lighting control system 12, for example within the logic of the control unit 20, to correspond to a particular area 14. Once associated, the lighting control system 12 can control operation of an LED-based light 16 to regulate the lighting conditions for its respective area 14 according to its desired lighting conditions.

The illustrated lighting control system 12 may include a plurality of communications units 42 configured to receive information relating to the position of an LED-based light 16 within the building 10. The lighting control system 12 is configured to use the information relating to the position of the LED-based light 16 within the building 10 to associate the LED-based light 16 with the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the lighting control system 12 can be configured to compare the position of an LED-based light 16 with known or determined positions of the areas 14 located throughout the building 10. The lighting control system 12 can then correlate the position of the LED-based light 16 with a particular area 14 in which the LED-based light 16 is positioned to illuminate. Once a correlation is drawn between a particular LED-based light 16 and the area 14 in which the LED-based light 16 is positioned to illuminate, the lighting control system 12 can associate the LED-based light 16 to the area 14 for purposes of future regulation of the lighting conditions for that area 14.

The communications units 42 may be communicatively coupled to the lighting control system 12 through one or more communications channels that can be included in the communications link 40. As shown in FIG. 1, the communications units 42 may be communicatively coupled to the switching units 22. Each of the communications units 42 may include a communications device 44 configured to receive a location signal .gamma. from a communications device 46 included in the switching units 22. The communications devices 44 and 46 can be configured for communication through a communications channel implemented to communicatively couple the communications units 42 and the switching units 22, and the communications channel need not be the same as used elsewhere in the communication link 40. For example, an existing building automation system for the building 10 may already include wired communications channels for communicatively coupling the control unit 20, the switching unit 22 and the input devices 24. The building automation system for the building 10 could be retrofitted to implement the lighting control system 12 by including a wireless communications channel configured to communicatively couple the communications units 42 to the switching units 22. In this non-limiting example, the communications devices 44 and 46 can be the illustrated transceivers 44 and 46. However, the communications devices 44 and 46 could be other devices known to those skilled in the art configured to send and/or receive the location signal .gamma. over a chosen communications channel included in the communications link 40.

As shown in FIG. 1, the communications units 42 may be communicatively coupled to switching units 22 to receive the location signal .gamma. from the communications devices 46. The switching units 22 including the communications devices 46 can be located adjacent to or included in corresponding LED-based lights 16, such that the location signal .gamma. conveys information generally relating to the position of the LED-based light 16. Although the communications devices 46 are described with reference to the switching units 22, the communications devices 46 could alternatively be included in the LED-based lights 16, or could be otherwise included in the lighting control system 12 according to some known or determinable spatial relationship with the LED-based light 16.

The lighting control system 12 is configured to determine, or estimate, the physical position of each of the LED-based lights 16 based at least partially upon the location signal .gamma.. The position of an LED-based light 16 could be determined absolutely, for example, or could be determined relative to some aspect relating to the building 10 or lighting control system 12. In the exemplary implementation of the lighting control system 12, multiple communications units 42 form a spatially distributed network of communications units 42. The communications units 42 can be distributed within and/or without the building 10 to form the spatially distributed network of communications units 42. The location signal .gamma. can be received by one or more of the communications units 42, which can be configured to determine the position of the LED-based lights 16, either individually, in some combination with each other, and/or in combination with the control unit 20 or other components of the lighting control system 12.

The lighting control system 12 can be configured to determine the position of the LED-based light 16 using various techniques, either individually or in some combination. As non-limiting examples, the position of an LED-based light 16 can be determined based upon time of arrival (TOA) of RF, infrared or ultrasonic signals, or based upon TOA of light signals, such as visible light signals emitted from the LED-based lights 16; the position of an LED-based light 16 can be determined based upon direction finding (DF) of RF, infrared or ultrasonic signals, or based upon DF of light signals, such as visible light signals emitted from the LED-based lights 16; the position of an LED-based light 16 could be determined by superimposing currents on power lines forming a power grid, or though other branch circuit monitoring methods; or the position of an LED-based light 16 could be determined by monitoring the strength of the location signal .gamma. throughout the spatially distributed network of communications units 42. The position of an LED-based light 16 could also be determined through communication with components external from the lighting control system 12, for example by using 3g or 4g signals to communicate with global positioning systems (GPSs) or other external location systems. The position of the LED-based light 16 could also be determined more accurately through some combination of the above techniques.

A process of installing an LED-based light 16 into the lighting control system 12 of a building 10 is illustrated in FIG. 2. In step S10, information relating to the positions of each of the areas 14 located throughout the building 10 is stored in the lighting control system 12. The lighting control system 12 can be configured to know or determine the positions of each of the areas 14. Similar to the positions of the LED-based lights 16, the positions of the areas 14 could be known or determined absolutely, for example, or relative to some aspect relating to the building 10 or the lighting control system 12. For example, the physical aspects of the building 10, such as floor plans or power supply structures, could be stored in memory on the control unit 20, along with information relating to the relative positions of the areas 14 within the building 10.

In step S12, an LED-based light 16 is installed into the lighting control system 12. In step S14, the LED-based light 16 joins the lighting control system 12 by communicating with the control unit 20 through the communications link 40, and in step S16, the control unit 20 recognizes the LED-based light 16 as newly installed into (or newly positioned within) the lighting control system 12. The LED-based light 16 can have a logical address readable by the control unit 20, for example, or can be otherwise recognizable by the control unit 20 as a distinct lighting element.

In step S18, the location signal .gamma. is communicated to the spatially distributed network of communications units 42. The location signal .gamma. can be communicated autonomously, for example, or at the direction of the installer or at the direction of the lighting control system 12 or control unit 20. In step S20, the position of the LED-based light 16 is determined using one or more of the above described location techniques, as well as others. The logic for determining the position of the LED-based light 16 can be implemented by one or more of the communications units 42, or can be distributed between one or more of the communications units 42 and the other components of the lighting control system 12. The position of an LED-based light 16 could also be determined physically externally from the lighting control system 12, for example through communication with a GPS or other location system. The position of the newly installed LED-based 16 could also be determined and/or verified with reference to one or more LED-based lights 16 whose positions are manually determined.

In step S22, the lighting control system 12 can use the determined position of the LED-based light 16 to associate the LED-based light 16 with the area 14 in which the LED-based light 16 is positioned to illuminate. For example, the lighting control system 12 can implement logic using the control unit 20 to compare the determined position of the LED-based light 16 with the known or determined positions of the areas 14 located throughout the building 10. By correlating the determined position of the LED-based light 16 with a position of a particular area 14, the control unit 20 can determine that the LED-based light 16 is positioned to illuminate that particular area 14. Finally, in step S24, the lighting control system 12 can associate the LED-based light 16 to the area 14 within the control unit 20 for purposes of future regulation of the lighting conditions for that area 14.

FIG. 3 illustrates an example of an LED-based light 116 for use in the lighting control system 12. The LED-based light 116 is configured to replace a conventional light in a standard light fixture 110. The light fixture 110 can be designed to accept conventional fluorescent lights, such as T5, T8 or T12 fluorescent tube lights, or can be designed to accept other standard lights, such as incandescent bulbs. The light fixture 110 could alternatively be designed to accept non-standard lights, such as lights installed by an electrician. The light fixture 110 can connect to a power supply, and can optionally include a ballast connected between the power supply and the LED-based light 116. The switching unit 22 could be compatible with the fixture 110 to electrically connect between the power supply and the LED-based light 116, or the switching unit 22 could be included in the fixture 110, for example.

In some implementations, the LED-based light 116 includes a housing 112 at least partially defined by a high dielectric light transmitting lens 114. The lens 114 can be made from polycarbonate, acrylic, glass or other light transmitting material (i.e., the lens 114 can be transparent or translucent). The term "lens" as used herein means a light transmitting structure, and not necessarily a structure for concentrating or diverging light. The LED-based light 116 can include features for uniformly distributing light to an environment to be illuminated in order to replicate the uniform light distribution of a conventional fluorescent light. For example, the lens 114 can be manufactured to include light diffracting structures, such as ridges, dots, bumps, dimples or other uneven surfaces formed on an interior or exterior of the lens 114. The light diffracting structures can be formed integrally with the lens 114, for example, by molding or extruding, or the structures can be formed in a separate manufacturing step such as surface roughening. In addition to or as an alternative to light diffracting structures, a light diffracting film can be applied to the exterior of the lens 114 or placed in the housing 112, or, the material from which the lens 114 is formed can include light refracting particles. For example, the lens 114 can be made from a composite, such as polycarbonate, with particles of a light refracting material interspersed in the polycarbonate. In other embodiments, the LED-based light 116 may not include any light diffracting structures or film.

The housing 112 can include a light transmitting tube at least partially defined by the lens 114. Alternatively, the housing 112 can be formed by attaching multiple individual parts, not all of which need be light transmitting. For example, the housing 112 can be formed in part by attaching the lens 114 to an opaque lower portion. The housing 112 can additionally include other components, such as one or more highly thermally conductive structures for enhancing heat dissipation. While the illustrated housing 112 is cylindrical, a housing having a square, triangular, polygonal, or other cross sectional shape can alternatively be used. Similarly, while the illustrated housing 112 is linear, housings having an alternative shape, e.g., a U-shape or a circular shape can alternatively be used. The LED-based light 116 can have any suitable length. For example, the LED-based light 116 may be approximately 48'' long, and the housing 112 can have a 0.625'', 1.0'' or 1.5'' diameter for engagement with a common standard fluorescent light fixture.

The LED-based light 116 can include an electrical connector 118 positioned at each end of the housing 112. In the illustrated example, the electrical connector 118 is a bi-pin connector carried by an end cap 120. A pair of end caps 120 can be attached at opposing longitudinal ends of the housing 112 for physically connecting the LED-based light 116 to a standard fluorescent light fixture 110. The end caps 120 can be the sole physical connection between the LED-based light 116 and the fixture 110. At least one of the end caps 120 can additionally electrically connect the LED-based light 116 to the fixture 110 to provide power to the LED-based light 116. Each end cap 120 can include two pins 122, although two of the total four pins can be "dummy pins" that provide physical but not electrical connection to the fixture 110. Bi-pin electrical connector 118 is compatible with many standard fluorescent fixtures, although other types of electrical connectors can be used, such as single pin connector or screw type connector.

The LED-based light 116 can include a circuit board 124 supported within the housing 112. The circuit board 124 can include at least one LED 126, a plurality of series-connected or parallel-connected LEDs 126, an array of LEDs 126 or any other arrangement of LEDs 126. Each of the illustrated LEDs 126 can include a single diode or multiple diodes, such as a package of diodes producing light that appears to an ordinary observer as coming from a single source. The LEDs 126 can be surface-mount devices of a type available from Nichia, although other types of LEDs can alternatively be used. For example, the LED-based light 116 can include high-brightness semiconductor LEDs, organic light emitting diodes (OLEDs), semiconductor dies that produce light in response to current, light emitting polymers, electro-luminescent strips (EL) or the like.

The circuit board 124 can include power supply circuitry configured to condition an input power received from, for example, the fixture 110 through the electrical connector 118 to a power usable by and suitable for the LEDs 126. In some implementations, the power supply circuitry can include one or more of an inrush protection circuit, a surge suppressor circuit, a noise filter circuit, a rectifier circuit, a main filter circuit, a current regulator circuit and a shunt voltage regulator circuit. The power supply circuitry can be suitably designed to receive a wide range of currents and/or voltages from a power source and convert them to a power usable by the LEDs 126.

The circuit board 124 is illustrated as an elongate printed circuit board. The circuit board 124 can extend a length or a partial length of the housing 112. Multiple circuit board sections can be joined by bridge connectors to create the circuit board 124. The circuit board 124 can be supported within the housing 112 through slidable engagement with a part of the housing 112, though the circuit board 124 can alternatively be clipped, adhered, snap- or friction-fit, screwed or otherwise connected to the housing 112. Also, other types of circuit boards may be used, such as a metal core circuit board. Or, instead of the circuit board 124, other types of electrical connections (e.g., wires) can be used to electrically connect the LEDs 126 to a power source.

The LEDs 126 can emit white light or light within a range of wavelengths. However, LEDs that emit blue light, ultra-violet light or other wavelengths of light can be used in place of or in combination with white light emitting LEDs 126. The number, spacing and orientation of the LEDs 126 can be a function of a length of the LED-based light 116, a desired lumen output of the LED-based light 116, the wattage of the LEDs 126 and/or the viewing angle of the LEDs 126. For a 48'' LED-based light 116, the number of LEDs 126 may vary from about thirty to sixty such that the LED-based light 116 outputs approximately 3,000 lumens. However, a different number of LEDs 126 can alternatively be used, and the LED-based light 116 can output any other amount of lumens. The LEDs 126 can be evenly spaced along the circuit board 124 and arranged on the circuit board 124 to substantially fill a space along a length of the lens 114 between end caps 120 positioned at opposing longitudinal ends of the housing 112. Alternatively, single or multiple LEDs 126 can be located at one or both ends of the LED-based light 116. The LEDs 126 can be arranged in a single longitudinally extending row along a central portion of the LED circuit board 124, as shown, or can be arranged in a plurality of rows or arranged in groups. The spacing of the LEDs 126 can be determined based on, for example, the light distribution of each LED 126 and the number of LEDs 126.

An alternative example of and LED-based light 216 is shown in FIG. 4. The construction of the LED-based light 216 can be similar to the construction of the LED-based light 116 of FIG. 3, and the LED-based light 216 can include the housing 112, the lens 114, the bi-pin 122 electrical connectors 118 carried by a pair of end caps 120, the circuit board 124 and the LEDs 126.

In addition, the LED-based light 216 can incorporate one or more of the above described components of the lighting control system 12. For example, the switching unit 22 can be included the LED-based light 216. The switching unit 22 can be included in the circuit board 124 and can be electrically connected between the fixture 110 conveying electrical power from a power supply and the LEDs 126 of the LED-based light 216. The switching unit 22 of the LED-based light 216 can be configured to receive the control signal .alpha. and, in response to the control signal .alpha., selectively regulate a supply of electrical power to the LEDs 126 to control operation of the LED-based light 216.

The LED-based light 216 can also incorporate one or more of the sensors 28, for example, and can incorporate a communications unit 42 for determining the location of other LED-based lights 216. For example, multiple LED-based lights 216 including a communications unit 42 can together form the spatially distributed network of communications units 42. The positions of one or more LED-based lights 216 including a communications unit 42 can be determined manually, with the positions of the remainder of the LED-based lights 16, 116 or 216 installed into the lighting control system 12 being determined according to the process and techniques described above. In this example, the LED-based light 216 also includes communications devices 44 and/or 46 for sending and receiving location signals .gamma., although the LED-based light 216 could also communicate with the lighting control system 12 through the communications channels of the communications link 40.

The LED-based lights described herein are presented as examples and are not meant to be limiting. The embodiments can be used with any lighting components known to those skilled in the art and compatible with the scope of the disclosure. In addition, the disclosed processes and techniques can be applied in a variety of building automation system implemented control systems to regulate environmental conditions other than lighting conditions. For example, the disclosed processes and techniques can be applied to determine the position of printers, alarm system components and/or HVAC components, and various controllers can be control operation of these components for purpose of regulating related environmental conditions of the building 10.

While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed