Multi-voltage and multi-brightness LED lighting devices and methods of using same

Miskin , et al. February 11, 2

Patent Grant 8648539

U.S. patent number 8,648,539 [Application Number 13/322,796] was granted by the patent office on 2014-02-11 for multi-voltage and multi-brightness led lighting devices and methods of using same. This patent grant is currently assigned to Lynk Labs, Inc.. The grantee listed for this patent is Robert L. Kottritsch, Michael Miskin. Invention is credited to Robert L. Kottritsch, Michael Miskin.


United States Patent 8,648,539
Miskin ,   et al. February 11, 2014

Multi-voltage and multi-brightness LED lighting devices and methods of using same

Abstract

A single chip multi-voltage or multi-brightness LED lighting device having at least two LED circuits having at least two LEDs connected se.pi.es, and electrically unconnected in a parallel relationship, a forward operating d.pi.ve voltage of at least six volts and are monolithically integrated on a single substrate, configurable by means of connecting the circuits so as to provide optional operating voltage level and/or desired brightness level wherein the electrical connection at the LED packaging level when the single chips are integrated into the LED package Alternatively, the LED package may have external electrical contacts that match the integrated chips within Optionally allowable, the drive voltage level and/or the brightness level select-ability may be passed on through to the exterior of the LED package and may be selected by the LED package user, the PCB assembly facility, or the end product manufacturer.


Inventors: Miskin; Michael (Sleepy Hollow, IL), Kottritsch; Robert L. (Shefford, GB)
Applicant:
Name City State Country Type

Miskin; Michael
Kottritsch; Robert L.

Sleepy Hollow
Shefford

IL
N/A

US
GB
Assignee: Lynk Labs, Inc. (Elgin, IL)
Family ID: 43223005
Appl. No.: 13/322,796
Filed: May 28, 2010
PCT Filed: May 28, 2010
PCT No.: PCT/US2010/001597
371(c)(1),(2),(4) Date: November 28, 2011
PCT Pub. No.: WO2010/138211
PCT Pub. Date: December 02, 2010

Prior Publication Data

Document Identifier Publication Date
US 20120069560 A1 Mar 22, 2012

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
12287267 Oct 6, 2008 8179055
61217215 May 28, 2009
60997771 Oct 6, 2007

Current U.S. Class: 315/185R; 362/227; 29/592.1
Current CPC Class: H05B 45/40 (20200101); H05B 45/42 (20200101); H05B 45/00 (20200101); H05B 45/30 (20200101); Y10T 29/49002 (20150115)
Current International Class: H05B 37/00 (20060101)

References Cited [Referenced By]

U.S. Patent Documents
3869641 March 1975 Goldberg
4218627 August 1980 Kiesel
4298869 November 1981 Okuno
5699218 December 1997 Kadah
5790013 August 1998 Hauck
6107744 August 2000 Bavaro et al.
6541919 April 2003 Roach et al.
6614103 September 2003 Durocher et al.
6781570 August 2004 Arrigo et al.
7053560 May 2006 Ng
7489086 February 2009 Miskin et al.
7859196 December 2010 Lee et al.
8129917 March 2012 Kim et al.
8148905 April 2012 Miskin et al.
8179055 May 2012 Miskin et al.
2003/0043611 March 2003 Bockle et al.
2003/0122502 July 2003 Clauberg et al.
2003/0169014 September 2003 Kadah
2003/0175004 September 2003 Garito et al.
2004/0075399 April 2004 Hall
2004/0080941 April 2004 Jiang et al.
2004/0183380 September 2004 Otake
2004/0189218 September 2004 Leong et al.
2004/0201988 October 2004 Allen
2005/0040773 February 2005 Lebens et al.
2005/0110426 May 2005 Shao
2005/0173990 August 2005 Anderson et al.
2006/0038542 February 2006 Park et al.
2006/0103913 May 2006 Handschy et al.
2006/0138971 June 2006 Uang et al.
2006/0158130 July 2006 Furukawa
2006/0256826 November 2006 Lin et al.
2007/0069663 March 2007 Burdalski et al.
2007/0273299 November 2007 Miskin et al.
2008/0116816 May 2008 Neuman et al.
2008/0136347 June 2008 Lin et al.
2008/0158915 July 2008 Williams
2008/0203405 August 2008 Rooymans
2008/0203936 August 2008 Mariyama et al.
2008/0211421 September 2008 Lee et al.
2008/0218098 September 2008 Lee et al.
2009/0021185 January 2009 Ng
2009/0295300 December 2009 King
2010/0039794 February 2010 Ghanem et al.
2010/0072905 March 2010 Kim et al.
2012/0043897 February 2012 Miskin et al.
2013/0051001 February 2013 Miskin
Foreign Patent Documents
1 215 944 Jun 2002 EP
08-137429 May 1996 JP
11-016683 Jan 1999 JP
11-330561 Nov 1999 JP
03/075126 Sep 2003 WO
2005/084080 Sep 2005 WO
2007001116 Jan 2007 WO
2008124701 Oct 2008 WO
2011049613 Apr 2011 WO
2011082168 Jul 2011 WO
2011143510 Nov 2011 WO

Other References

European Search Report dated Oct. 22, 2012 in related European Application, seven (7) pages. cited by applicant .
International Search Report and Written Opinion for International Application No. PCT/US2010/001597 mailed Jul. 30, 2010 containing 14 pages. cited by applicant.

Primary Examiner: Hammond; Crystal L
Attorney, Agent or Firm: Factor Intellectual Property Law Group, Ltd.

Parent Case Text



RELATED APPLICATIONS

The present application is a 35 U.S.C. 371 national phase filing of International Application No. PCT/US2010/001597, filed May 28, 2010, which claims priority to U.S. Provisional Patent Application No. 61/217,215, filed May 28, 2009 and is a continuation-in-part of U.S. patent application Ser. No. 12/287,267, filed Oct. 6, 2008, which claims the priority to U.S. Provisional Application No. 60/997,771, filed Oct. 6, 2007; the contents of each of these applications are expressly incorporated herein by reference.
Claims



We claim:

1. An LED lighting device comprising: a. at least two LED circuits; b. each of the at least two LED circuits having at least two LEDs connected together in series; c. each of the at least two LED circuits being electrically unconnected to each other in a parallel relationship; d. the at least two LED circuits having a forward operating drive voltage of at least 6 volts; and, e. the at least two LED circuits being integrated on a single substrate.

2. The LED lighting device of claim 1 wherein the at least two LED circuits have at least two LEDs connected to each other in opposing parallel relation.

3. The LED lighting device of claim 1 wherein each of the two electrically unconnected circuits may be connected in a series or parallel configuration.

4. The LED lighting device of claim 3 wherein each of the two electrically unconnected circuits may also be connected in an anti-parallel configuration.

5. The LED lighting device of claim 1 wherein each of the two electrically unconnected circuits may be connected in a series or parallel configuration using each of the voltage input electrical contacts and the ends of each of the at least two circuits.

6. The LED lighting device of claim 5 wherein each of the two electrically unconnected circuits may be connected in an anti-parallel configuration using each of the voltage input electrical contacts and the ends of each of the at least two circuits.

7. An LED lighting device comprising: a. at least two LED circuits; b. each of the at least two LED circuits having at least two LEDs connected together in series; c. each of the at least two LED circuits being electrically unconnected to each other in a parallel relationship; d. the at least two LED circuits having a forward operating drive voltage of at least 6 volts; and, e. the at least two LED circuits being integrated within a substrate.

8. The LED lighting device of claim 7 wherein each of the at least two LED circuits have at least two LEDs connected to each other in opposing parallel relation.

9. The LED lighting device of claim 7 wherein each of the two electrically unconnected circuits may be connected in a series or parallel configuration.

10. The LED lighting device of claim 9 wherein each of the two electrically unconnected circuits may also be connected in an anti-parallel configuration.

11. An single chip multi-voltage-LED lighting device comprising: a. at least two LED circuits; b. each of the at least two LED circuits having at least two LEDs electrically connected together in series configuration; c. each of the at least two LED circuits having separate and distinct voltage input electrical contacts at opposing ends of each LED circuit; d. the at least two LED circuits having a forward operating drive voltage of at least 6 volts; and, e. the at least two LED circuits being integrated on a single substrate.

12. The LED lighting device of claim 11 wherein each of the separate and distinct voltage input electrical contacts may be connected in a manner so that the at least two LED circuits may be connected in series or parallel configuration.

13. The LED lighting device of claim 12 wherein each of the separate and distinct voltage input electrical contacts may be connected in a manner so that the at least two LED circuits may be connected in an anti-parallel configuration.

14. A single chip multi-voltage LED lighting device comprising: a. at least two LED circuits; b. each of the at least two LED circuits being electrically unconnected to each other in a parallel relationship; c. the at least two LED circuits having voltage input electrical contacts at opposing ends of each LED circuit; d. the at least two LED circuits having a forward operating drive voltage of at least 6 volts; and, e. the at least two LED circuits being monolithically integrated on a single substrate.

15. The single chip multi-voltage LED lighting device of claim 14 being driven by a frequency higher than mains AC frequency.

16. The single chip multi-voltage LED lighting device of claim 14 being driven by a frequency lower than mains AC frequency.

17. A method of constructing an LED lighting device, the method comprising the steps of: forming at least two LED circuits each LED circuit having at least two LEDs connected in series; connecting electrical contacts at each end of each of the at least two LED circuits; integrating the at least two LED circuits on a substrate in a manner such that the at least two LED circuits and respective electrical contacts are electrically unconnected to each other.

18. An LED lighting device comprising: a. at least two LED circuits; b. each of the at least two LED circuits having at least two LEDs connected together electrically in series; and c. at least three voltage input electrical contacts, wherein at least one voltage input electrical contact is connected to one end of each series circuit, and at least one voltage input electrical contact is connected to one end of both of the at least two circuits.

19. An LED lighting device comprising: a. at least two LED circuits; b. each of the at least two LED circuits having a bridge rectifier and at least two LEDs connected in series across the outputs of each respective bridge rectifier; and c. at least three voltage input electrical contacts, wherein a first voltage input electrical contact is electrically connected to an input of the bridge rectifier for each of the at least two LED circuits, and a separate and distinct voltage electrical input contact is connected to an opposing input of the bridge rectifier for each of the at least two LED circuits.

20. An LED lighting device comprising: a. at least two LED circuits, each of the at least two LED circuits having two LEDs connected in series, the at least two LED circuits being connected in parallel; b. four voltage input electrical contacts, the four voltage input electrical contacts being configured so that each anode and cathode of each of the LEDs in the at least two LED circuits have one voltage input electrical contact connected thereto so that the combination of parallel connected LED circuits and four voltage inputs form a full-wave AC voltage rectifier capable of providing rectified AC voltage to any circuits connected to the LED lighting device.
Description



TECHNICAL FIELD

The present invention generally relates to light emitting diodes ("LEDs") for AC operation. The present invention specifically relates to multiple voltage level and multiple brightness level LED devices, packages and lamps.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

None.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to light emitting diodes ("LEDs") for multi-voltage level and/or multi-brightness level operation. The present invention specifically relates to multiple voltage level and multiple brightness level light emitting diode circuits, single chips, packages and lamps "devices" for direct AC voltage power source operation, bridge rectified AC voltage power source operation or constant DC voltage power source operation.

2. Description of the Related Art

LEDs are semiconductor devices that produce light when a current is supplied to them. LEDs are intrinsically DC devices that only pass current in one polarity and historically have been driven by DC voltage sources using resistors, current regulators and voltage regulators to limit the voltage and current delivered to the LED. Some LEDs have resistors built into the LED package providing a higher voltage LED typically driven with 5V DC or 12V DC.

With proper design considerations LEDs may be driven more efficiently with direct AC or rectified AC than with constant voltage or constant current DC drive schemes.

Some standard AC voltage in the world include 12VAC, 24VAC, 100VAC, 110VAC, 120VAC, 220VAC, 230VAC, 240VAC and 277VAC. Therefore, it would be advantageous to have a single chip LED or multi-chip single LED packages that could be easily configured to operate at multiple voltages by simply selecting a voltage and/or current level when packaging the multi-voltage and/or multi-current single chip LEDs or by selecting a specific voltage and/or current level when integrating the LED package onto a printed circuit board or within a finished lighting product. It would also be advantageous to have multi-current LED chips and/or packages for LED lamp applications in order to provide a means of increasing brightness in LED lamps by switching in additional circuits just as additional filaments are switched in for standard incandescent lamps.

U.S. Pat. No. 7,525,248 discloses a chip-scale LED lamp including discrete LEDs capable of being built upon electrically insulative, electrically conductive, or electrically semi conductive substrates. Further, the construction of the LED lamp enables the lamp to be configured for high voltage AC or DC power operation. The LED based solid-state light emitting device or lamp is built upon an electrically insulating layer that has been formed onto a support surface of a substrate. Specifically, the insulating layer may be epitaxially grown onto the substrate, followed by an LED buildup of an n-type semiconductor layer, an optically active layer, and a p-type semiconductor layer, in succession. Isolated mesa structure of individual, discrete LEDs is formed by etching specific portions of the LED buildup down to the insulating layer, thereby forming trenches between adjacent LEDs. Thereafter, the individual LEDs are electrically coupled together through conductive elements or traces being deposited for connecting the n-type layer of one LED and the p-type layer of an adjacent LED, continuing across all of the LEDs to form the solid-state light emitting device. The device may therefore be formed as an integrated AC/DC light emitter with a positive and negative lead for supplied electrical power. For instance, the LED lamp may be configured for powering by high voltage DC power (e.g., 12V, 24V, etc.) or high voltage AC power (e.g., 110/120V, 220/240V, etc.).

U.S. Pat. No. 7,213,942 discloses a single-chip LED device through the use of integrated circuit technology, which can be used for standard high AC voltage (110 volts for North America, and 220 volts for Europe, Asia, etc.) operation. The single-chip AC LED device integrates many smaller LEDs, which are connected in series. The integration is done during the LED fabrication process and the final product is a single-chip device that can be plugged directly into house or building power outlets or directly screwed into incandescent lamp sockets that are powered by standard AC voltages. The series connected smaller LEDs are patterned by photolithography, etching (such as plasma dry etching), and metallization on a single chip. The electrical insulation between small LEDs within a single-chip is achieved by etching light emitting materials into the insulating substrate so that no light emitting material is present between small LEDs. The voltage crossing each one of the small LEDs is about the same as that in a conventional DC operating LED fabricated from the same type of material (e.g., about 3.5 volts for blue LEDs).

Accordingly, single chip LEDs have been limited and have not been integrated circuits beyond being fixed series or fixed parallel circuit configurations until the development of AC LEDs. The AC LEDs have still however been single circuit, fixed single voltage designs.

LED packages have historically not been integrated circuits beyond being fixed series or fixed parallel circuit configurations.

The art is deficient in that it does not provide a multi-voltage and/or multi-current circuit monolithically integrated on a single substrate which would be advantageous.

It would further be advantageous to have a multi-voltage and/or multi-brightness circuit that can provide options in voltage level, brightness level and/or AC or DC powering input power preference.

It would further be advantageous to provide multiple voltage level and/or multiple brightness level light emitting LED circuits, chips, packages and lamps "multi-voltage and/or multi-brightness LED devices" that can easily be electrically configured for at least two forward voltage drive levels with direct AC voltage coupling, bridge rectified AC voltage coupling or constant voltage DC power source coupling. This invention comprises circuits and devices that can be driven with more than one AC or DC forward voltage "multi-voltage" at 6V or greater based on a selectable desired operating voltage level that is achieved by electrically connecting the LED circuits in a series or parallel circuit configuration and/or more than one level of brightness "multi-brightness" based on a switching means that connects and/or disconnects at least one additional LED circuit to and/or from a first LED circuit. The desired operating voltage level and/or the desired brightness level electrical connection may be achieved and/or completed at the LED packaging level when the multi-voltage and/or multi-brightness, circuits and/or single chips are integrated into the LED package, or the LED package may have external electrical contacts that match the integrated multi-voltage and/or multi-brightness circuits and/or single chips within, thus allowing the drive voltage level and/or the brightness level select-ability to be passed on through to the exterior of the LED package and allowing the voltage level or brightness level to be selected at the LED package user, or the PCB assembly facility, or the end product manufacturer.

It would further be advantageous to provide at least two integrated circuits having a forward voltage of at least 12VAC or 12VDC or greater on a single chip or within a single LED package that provide a means of selecting a forward voltage when packaging a multi-voltage and/or multi-brightness circuit using discrete die (one LED chip at a time) and wire bonding them into a circuit at the packaging level or when packaging one or more multi-voltage and/or multi-brightness level single chips within a LED package.

It would further be advantageous to provide multi-voltage and/or multi-brightness level devices that can provide electrical connection options for either AC or DC voltage operation at preset forward voltage levels of 6V or greater.

It would further be advantageous to provide multi-brightness LED devices that can be switched to different levels of brightness by simply switching additional circuits on or off in addition to a first operating circuit within a single chip and or LED package. This would allow LED lamps to switch to higher brightness levels just like 2-way or 3-way incandescent lamps do today.

The benefits of providing multi-voltage circuits of 6V or greater on a single chip is that an LED packager can use this single chip as a platform to offer more than one LED packaged product with a single chip that addresses multiple voltage levels for various end customer design requirements. This also increase production on a single product for the chip maker and improves inventory control. This also improves buying power and inventory control for the LED packager when using one chip.

The present invention provides for these advantages and solves the deficiencies in the art.

SUMMARY OF THE INVENTION

According to one aspect of the invention at least two single voltage AC LED circuits are formed on a single chip or on a substrate providing a multi-voltage AC LED device for direct AC power operation. Each single voltage AC LED circuit has at least two LEDs connected to each other in opposing parallel relation.

According to another aspect of the invention, each single voltage AC LED circuit is designed to be driven with a predetermined forward voltage of at least 6VAC and preferably each single voltage AC LED circuit has a matching forward voltage of 6VAC, 12VAC, 24VAC, 120VAC, or other AC voltage levels for each single voltage AC LED circuit.

According to another aspect of the invention, each multi-voltage AC LED device would be able to be driven with at least two different AC forward voltages resulting in a first forward voltage drive level by electrically connecting the two single voltage AC LED circuits in parallel and a second forward voltage drive level by electrically connecting the at least two single voltage level AC LED circuits in series. By way of example, the second forward voltage drive level of the serially connected AC LED circuits would be approximately twice the level of the first forward voltage drive level of the parallel connected AC LED circuits. The at least two parallel connected AC LED circuits would be twice the current of the at least two serially connected AC LED circuits. In either circuit configuration, the brightness would be approximately the same with either forward voltage drive selection of the multi-voltage LED device.

According to another aspect of the invention, at least two single voltage series LED circuits, each of which have at least two serially connected LEDs, are formed on a single chip or on a substrate providing a multi-voltage AC or DC operable LED device.

According to another aspect of the invention, each single voltage series LED circuit is designed to be driven with a predetermined forward voltage of at least 6V AC or DC and preferably each single voltage series LED circuit has a matching forward voltage of 6V, 12V, 24V, 120V, or other AC or DC voltage levels. By way of example, each multi-voltage AC or DC LED device would be able to be driven with at least two different AC or DC forward voltages resulting in a first forward voltage drive level by electrically connecting the two single voltage series LED circuits in parallel and a second forward voltage drive level by electrically connecting the at least two single voltage level series LED circuits in series. The second forward voltage drive level of the serially connected series LED circuits would be approximately twice the level of the first forward voltage drive level of the parallel connected series LED circuits. The at least two parallel connected series LED circuits would be twice the current of the at least two serially connected series LED circuits. In either circuit configuration, the brightness would be approximately the same with either forward voltage drive selection of the multi-voltage series LED device.

According to another aspect of the invention, at least two single voltage AC LED circuits are formed on a single chip or on a substrate providing a multi-voltage and/or multi-brightness AC LED device for direct AC power operation.

According to another aspect of the invention, each single voltage AC LED circuit has at least two LEDs connected to each other in opposing parallel relation. Each single voltage AC LED circuit is designed to be driven with a predetermined forward voltage of at least 6VAC and preferably each single voltage AC LED circuit has a matching forward voltage of 6VAC, 12VAC, 24VAC, 120VAC, or other AC voltage levels for each single voltage AC LED circuit. The at least two AC LED circuits within each multi-voltage and/or multi current AC LED device would be left able to be driven with at least two different AC forward voltages resulting in a first forward voltage drive level by electrically connecting the two single voltage AC LED circuits in parallel and a second forward voltage drive level by electrically connecting the at least two single voltage level AC LED circuits in series. The second forward voltage drive level of the serially connected AC LED circuits would be approximately twice the level of the first forward voltage drive level of the parallel connected AC LED circuits. The at least two parallel connected AC LED circuits would be twice the current of the at least two serially connected AC LED circuits. In either circuit configuration, the brightness would be approximately the same with either forward voltage drive selection of the multi-voltage LED device.

According to another aspect of the invention at least two single voltage LED circuits are formed on a single chip or on a substrate, and at least one bridge circuit made of LEDs is formed on the same single chip or substrate providing a multi-voltage and/or multi-brightness LED device for direct DC power operation. Each single voltage LED circuit has at least two LEDs connected to each other in series. Each single voltage LED circuit is designed to be driven with a predetermined forward voltage and preferably matching forward voltages for each circuit such as 12VDC, 24VDC, 120VDC, or other DC voltage levels for each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device would be able to be driven with at least two different DC forward voltages resulting in a first forward voltage drive level when the two single voltage LED circuits are connected in parallel and a second forward voltage drive level that is twice the level of the first forward voltage drive level when the at least two LED circuits are connected in series.

According to another aspect of the invention at least two single voltage LED circuits are formed on a single chip or on a substrate providing a multi-voltage and/or multi-brightness LED device for direct DC power operation. Each single voltage LED circuit has at least two LEDs connected to each other in series. Each single voltage LED circuit is designed to be driven with a predetermined forward voltage and preferably matching forward voltages for each circuit such as 12VAC, 24VAC, 120VAC, or other DC voltage levels for each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device would be able to be driven with at least two different DC forward voltages resulting in a first forward voltage drive level when the two single voltage LED circuits are connected in parallel and a second forward voltage drive level that is twice the level of the first forward voltage drive level when the at least two LED circuits are connected in series.

According to another aspect of the invention at least two single voltage LED circuits are formed on a single chip or on a substrate, and at least one bridge circuit made of LEDs is formed on the same single chip or substrate providing a multi-voltage and/or multi-brightness LED device for direct DC power operation. Each single voltage LED circuit has at least two LEDs connected to each other in series. Each single voltage LED circuit is designed to be driven with a predetermined forward voltage and preferably matching forward voltages for each circuit such as 12VDC, 24VDC, 120VDC, or other DC voltage levels for each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device would be able to be driven with at least two different DC forward voltages resulting in a first forward voltage drive level when the two single voltage LED circuits are connected in parallel and a second forward voltage drive level that is twice the level of the first forward voltage drive level when the at least two LED circuits are connected in series.

According to another aspect of the invention a multi-voltage and/or multi-current AC LED circuit is integrated within a single chip LED. Each multi-voltage and/or multi-current single chip AC LED LED comprises at least two single voltage AC LED circuits. Each single voltage AC LED circuit has at least two LEDs in anti-parallel configuration to accommodate direct AC voltage operation. Each single voltage AC LED circuit may have may have at least one voltage input electrical contact at each opposing end of the circuit or the at least two single voltage AC LED circuits may be electrically connected together in series on the single chip and have at least one voltage input electrical contact at each opposing end of the two series connected single voltage AC LED circuits and one voltage input electrical contact at the center junction of the at least two single voltage AC LED circuits connected in series. The at least two single voltage AC LED circuits are integrated within a single chip to form a multi-voltage and/or multi-current single chip AC LED.

According to another aspect of the invention, at least one multi-voltage and/or multi-brightness LED devices may be integrated within a LED lamp. The at least two individual LED circuits within the multi-voltage and/or multi-brightness LED device(s) may be wired in a series or parallel circuit configuration by the LED packager during the LED packaging process thus providing for at least two forward voltage drive options, for example 12VAC and 24VAC or 120VAC and 240VAC that can be selected by the LED packager.

According to another aspect of the invention a multi-voltage and/or multi-current AC LED package is provided, comprising at least one multi-voltage and/or multi-current single chip AC LED integrated within a LED package. The multi-voltage and/or multi-current AC LED package provides matching electrical connectivity pads on the exterior of the LED package to the electrical connectivity pads of the at least one multi-voltage and/or multi-current single chip AC LED integrated within the LED package thus allowing the LED package user to wire the multi-voltage and/or multi-current AC LED package into a series or parallel circuit configuration during the PCB assembly process or final product integration process and further providing a AC LED package with at least two forward voltage drive options.

According to another aspect of the invention multiple individual discrete LED chips are used to form at least one multi-voltage and/or multi-current AC LED circuit within a LED package thus providing a multi-voltage and/or multi current AC LED package. Each multi-voltage and/or multi-current AC LED circuit within the package comprises at least two single voltage AC LED circuits. Each single voltage AC LED circuit has at least two LEDs in anti-parallel configuration to accommodate direct AC voltage operation The LED package provides electrical connectivity pads on the exterior of the LED package that match the electrical connectivity pads of the at least two single voltage AC LED circuits integrated within the multi-voltage and/or multi-current AC LED package thus allowing the LED package to be wired into a series or parallel circuit configuration during the PCB assembly process and further providing a LED package with at least two forward voltage drive options.

According to another aspect of the invention a multi-voltage and/or multi-current single chip AC LED and/or multi-voltage and/or multi current AC LED package is integrated within an LED lamp. The LED lamp having a structure that comprises a heat sink, a lens cover and a standard lamp electrical base. The multi-voltage and/or multi-current single chip AC LED and/or package is configured to provide a means of switching on at least one additional single voltage AC LED circuit within multi-voltage and/or multi-current AC LED circuit to provide increased brightness from the LED lamp.

According to another broad aspect of the invention at least one multi-current AC LED single chip is integrated within a LED package.

According to another aspect of the invention, at least one single chip multi-current LED bridge circuit is integrated within a LED lamp having a standard lamp base. The single chip multi-current LED bridge circuit may be electrically connected together in parallel configuration but left open to accommodate switching on a switch to the more than one on the single chip and have at least one accessible electrical contact at each opposing end of the two series connected circuits and one accessible electrical contact at the center junction of the at least two individual serially connected LED circuits. The at least two individual circuits are integrated within a single chip.

According to another aspect of the invention When the at least two circuits are left unconnected on the single chip and provide electrical pads for connectivity during the packaging process, the LED packager may wire them into series or parallel connection based on the desired voltage level specification of the end LED package product offering.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic view of a preferred embodiment of the invention;

FIG. 2 shows a schematic view of a preferred embodiment of the invention;

FIG. 3 shows a schematic view of a preferred embodiment of the invention;

FIG. 4 shows a schematic view of a preferred embodiment of the invention;

FIG. 5 shows a schematic view of a preferred embodiment of the invention;

FIG. 6 shows a schematic view of a preferred embodiment of the invention;

FIG. 7 shows a schematic view of a preferred embodiment of the invention;

FIG. 8 shows a schematic view of a preferred embodiment of the invention;

FIG. 9 shows a schematic view of a preferred embodiment of the invention;

FIG. 10 shows a schematic view of a preferred embodiment of the invention;

FIG. 11 shows a schematic view of a preferred embodiment of the invention; and,

FIG. 12 shows a schematic view of a preferred embodiment of the invention;

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

FIG. 1 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 10. The multi-voltage and/or multi-brightness LED lighting device 10 comprises at least two AC LED circuits 12 configured in a imbalanced bridge circuit, each of which have at least two LEDs 14. The at least two AC LED circuits have electrical contacts 16a, 16b, 16c, and 16d at opposing ends to provide various connectivity options for an AC voltage source input. For example, if 16a and 16c are electrically connected together and 16b and 16d are electrically connected together and one side of the AC voltage input is applied to 16a and 16c and the other side of the AC voltage input is applied to 16b and 16d, the circuit becomes a parallel circuit with a first operating forward voltage. If only 16a and 16c are electrically connected and the AC voltage inputs are applied to electrical contacts 16b and 16d, a second operating forward voltage is required to drive the single chip 18. The single chip 18 may also be configured to operate at more than one brightness level "multi-brightness" by electrically connecting for example 16a and 16b and applying one side of the line of an AC voltage source to 16a ad 16b and individually applying the other side of the line from the AC voltage source a second voltage to 26b and 26c.

FIG. 2 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 20 similar to the multi-voltage and/or multi-brightness LED lighting device 10 described above in FIG. 1. The at least two AC LED circuits 12 are integrated onto a substrate 22. The at least two AC LED circuits 12 configured in a imbalanced bridge circuit, each of which have at least two LEDs 14. The at least two AC LED circuits have electrical contacts 16a, 16b, 16c, and 16d on the exterior of the substrate 22 and can be used to electrically configure and/or control the operating voltage and/or brightness level of the multi-voltage and/or multi-brightness LED lighting device.

FIG. 3 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 30 similar to the multi-voltage and/or multi-brightness LED lighting device 10 and 20 described in FIGS. 1 and 2. The multi-voltage and/or multi-brightness LED lighting device 30 comprises at least two AC LED circuits 32 having at least two LEDs 34 connected in series and anti-parallel configuration. The at least two AC LED circuits 32 have electrical contacts 36a, 36b, 36c, and 36d at opposing ends to provide various connectivity options for an AC voltage source input. For example, if 36a and 36c are electrically connected together and 36b and 36d are electrically connected together and one side of the AC voltage input is applied to 36a and 36c and the other side of the AC voltage input is applied to 36b and 36d, the circuit becomes a parallel circuit with a first operating forward voltage. If only 36a and 36c are electrically connected and the AC voltage inputs are applied to electrical contacts 36b and 36d, a second operating forward voltage is required to drive the multi-voltage and/or multi-brightness lighting device 30. The multi-voltage and/or multi-brightness lighting device 30 may be a monolithically integrated single chip 38, a monolithically integrated single chip integrated within a LED package 38 or a number of individual discrete die integrated onto a substrate 38 to form a multi-voltage and/or multi-brightness lighting device 30.

FIG. 4 discloses a schematic diagram of the same multi-voltage and/or multi-brightness LED device 30 as described in FIG. 3 having the at least two AC LED circuits 32 connected in parallel configuration to an AC voltage source and operating at a first forward voltage. A resistor 40 may be used to limit current to the multi-voltage and/or multi-brightness LED lighting device 30.

FIG. 5 discloses a schematic diagram of the same multi-voltage and/or multi-brightness LED device 30 as described in FIG. 3 having the at least two AC LED circuits 32 connected in series configuration to an AC voltage source and operating at a second forward voltage that is approximately two times greater than the first forward voltage of the parallel circuit as described in FIG. 4. A resistor may be used to limit current to the multi-voltage and/or multi-brightness LED lighting device.

FIG. 6 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 50. The multi-voltage and/or multi-brightness LED lighting device 50 comprises at least two AC LED circuits 52, each of which have at least two LEDs 54 in series and anti-parallel relation. The at leak two AC LED circuits 52 have at least three electrical contacts 56a, 56b and 56c. The at least two AC LED circuits 52 are electrically connected together in parallel at one end 56a and left unconnected at the opposing ends of the electrical contacts 56b and 56c. One side of an AC voltage source line is electrically connected to 56a and the other side of an AC voltage source line is individually electrically connected to 56b and 56c with either a fixed connection or a switched connection thereby providing a first brightness when AC voltage is applied to 56a and 56b and a second brightness when an AC voltage is applied to 56a, 56b and 56c. It is contemplated that the multi-voltage and/or multi-brightness LED lighting device 50 is a single chip, an LED package, an LED assembly or an LED lamp. The multi-brightness switching capability

FIG. 7 discloses a schematic diagram similar to the multi-voltage and/or multi-brightness LED device 50 shown in FIG. 6 integrated within a lamp 58 and connected to a switch 60 to control the brightness level of the multi-voltage and/or multi-brightness LED lighting device 50.

FIG. 8 discloses a schematic diagram a multi-brightness LED lighting device 62 having at least two bridge rectified 68 series LED circuits 69. Each of the at least two bridge rectified 68 series LED circuits 69 that are connected to and rectified with an LED bridge circuit 68 comprising four LEDs 70 configured in a bridge circuit 68. The at least two bridge rectified 68 series LED circuits 69 have at least two LEDs 71 connected in series and electrical contacts 72a, 72b and 72c. When one side of an AC voltage is applied to 72a and the other side of an AC voltage line is applied to 72b and 72c individually, the brightness level of the multi-brightness LED lighting device 62 can be increased and/or decreased I a fixed manner or a switching process.

FIG. 9 discloses a schematic diagram the multi-brightness LED lighting device 62 as shown above in FIG. 8 with a switch 74 electrically connected between the multi-brightness LED lighting device 62 and the AC voltage source 78.

FIG. 9 discloses a schematic diagram of at least two single voltage LED circuits integrated with a single chip or within a substrate and forming a multi-voltage and/or multi-brightness LED device.

FIG. 10 discloses a schematic diagram of a single chip LED bridge circuit 80 having four LEDs 81 configured into a bridge circuit and monolithically integrated on a substrate 82. The full wave LED bridge circuit has electrical contacts 86 to provide for AC voltage input connectivity and DC voltage output connectivity.

FIG. 11 discloses a schematic diagram of another embodiment of a single chip multi-voltage and/or multi-brightness LED lighting device 90. The multi-voltage and/or multi-brightness LED lighting device 90 has at least two series LED circuits 92 each of which have at least two LEDs 94 connected in series. The at least two series LED circuits 92 have electrical contacts 96 at opposing ends to provide a means of electrical connectivity. The at least two series LED circuits are monolithically integrated into a single chip 98. The electrical contacts 96 are used to wire the at least two series LEDs circuit 92 into a series circuit, a parallel circuit or an AC LED circuit all within a single chip.

FIG. 12 discloses a schematic diagram of the same multi-voltage and/or multi-brightness LED lighting device 90 as shown above in FIG. 11. The multi-voltage and/or multi-brightness LED lighting device 90 has at least two series LED circuits 92 each of which have at least two LEDs 94 connected in series. The at least two series LED circuits can be monolithically integrated within a single chip or discrete individual die can be integrated within a substrate to form an LED package 100. The LED package 100 has electrical contacts 102 that are used to wire the at least two series LEDs circuit into a series circuit, a parallel circuit or in anti-parallel to form an AC LED circuit all within a single LED package.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed