Variants of CRISPR from Prevotella and Francisella 1 (Cpf1)

Joung; J. Keith ;   et al.

Patent Application Summary

U.S. patent application number 15/659499 was filed with the patent office on 2018-02-01 for variants of crispr from prevotella and francisella 1 (cpf1). The applicant listed for this patent is The General Hospital Corporation. Invention is credited to J. Keith Joung, Benjamin Kleinstiver.

Application Number20180030425 15/659499
Document ID /
Family ID61011478
Filed Date2018-02-01

United States Patent Application 20180030425
Kind Code A1
Joung; J. Keith ;   et al. February 1, 2018

Variants of CRISPR from Prevotella and Francisella 1 (Cpf1)

Abstract

Engineered CRISPR from Prevotella and Francisella 1 (Cpf1) nucleases with altered and improved target specificity and their use in genomic engineering, epigenomic engineering, genome targeting, genome editing, and in vitro diagnostics.


Inventors: Joung; J. Keith; (Winchester, MA) ; Kleinstiver; Benjamin; (Medford, MA)
Applicant:
Name City State Country Type

The General Hospital Corporation

Boston

MA

US
Family ID: 61011478
Appl. No.: 15/659499
Filed: July 25, 2017

Related U.S. Patent Documents

Application Number Filing Date Patent Number
62366976 Jul 26, 2016

Current U.S. Class: 1/1
Current CPC Class: C12N 9/22 20130101; C12N 15/11 20130101; C12N 15/907 20130101; C07K 2319/00 20130101; C12Y 114/11 20130101; C07K 14/39 20130101; C12N 15/1137 20130101; C12N 2310/20 20170501; C07K 2319/80 20130101; C12Y 301/21004 20130101; C12N 9/0071 20130101
International Class: C12N 9/22 20060101 C12N009/22; C12N 15/90 20060101 C12N015/90; C12N 9/02 20060101 C12N009/02; C12N 15/11 20060101 C12N015/11; C07K 14/39 20060101 C07K014/39

Goverment Interests



FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with Government support under Grant No. GM105378 awarded by the National Institutes of Health. The Government has certain rights in the invention.
Claims



1. An isolated CRISPR from Prevotella and Francisella 1 (Cpf1) protein, wherein the protein is: (a) from Lachnospiraceae bacterium ND2006 (LbCpf1), comprising a sequence that is at least 80% identical to the amino acid sequence of amino acids 19-1246 of SEQ ID NO:1, with mutations at one or more of the following positions: S202, N274, N278, K290, K367, K532, K609, K915, Q962, K963, K966, K1002 and/or S1003 of amino acids 1-1228 of SEQ ID NO:10; or (b) from Acidaminococcus sp. BV3L6 (AsCpf1), comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:2, with mutations at one or more of the following positions: N178, S186, N278, N282, R301, T315, S376, N515, K523, K524, K603, K965, Q1013, Q1014, and/or K1054 of SEQ ID NO:2.

2. The isolated protein of claim 1, wherein the protein is LbCpf1 and comprises one or more of the following mutations: S202A, N274A, N278A, K290A, K367A, K532A, K609A, K915A, Q962A, K963A, K966A, K1002A and/or S1003A.

3. The isolated protein of claim 1, wherein the protein is LbCpf1 and further comprises one or more mutations that decrease nuclease activity selected from the group consisting of mutations at D832 and E925.

4. The isolated protein of claim 3, wherein the protein is LbCpf1 and comprises mutations D832A and E925A.

5. The isolated protein of claim 1, wherein the protein is AsCpf1 and comprises one or more of the following mutations: N178A, S186A, N278A, N282A, R301A, T315A, S376A, N515A, K523A, K524A, K603A, K965A, Q1013A, Q1014A, and/or K1054A of SEQ ID NO:2.

6. The isolated protein of claim 5, wherein the protein is AsCpf1 and further comprises one or more mutations that decrease nuclease activity selected from the group consisting of mutations at D908 and/or E993.

7. The isolated protein of claim 6, wherein the protein is AsCpf1 and comprising mutations D908A and/or E993A.

8. A fusion protein comprising the isolated protein of claim 1, fused to a heterologous functional domain, with an optional intervening linker.

9. The fusion protein of claim 8, wherein the heterologous functional domain is a transcriptional activation domain.

10. The fusion protein of claim 9, wherein the transcriptional activation domain is from VP64 or NF-.kappa.B p65.

11. The fusion protein of claim 8, wherein the heterologous functional domain is a transcriptional silencer or transcriptional repression domain.

12. The fusion protein of claim 11, wherein the transcriptional repression domain is a Krueppel-associated box (KRAB) domain, ERF repressor domain (ERD), or mSin3A interaction domain (SID).

13. The fusion protein of claim 11, wherein the transcriptional silencer is Heterochromatin Protein 1 (HP1).

14. The fusion protein of claim 8, wherein the heterologous functional domain is an enzyme that modifies the methylation state of DNA.

15. The fusion protein of claim 14, wherein the enzyme that modifies the methylation state of DNA is a DNA methyltransferase (DNMT) or a TET protein.

16. The fusion protein of claim 15, wherein the TET protein is TET1.

17. The fusion protein of claim 10, wherein the heterologous functional domain is an enzyme that modifies a histone subunit.

18. The fusion protein of claim 8, wherein the enzyme that modifies a histone subunit is a histone acetyltransferase (HAT), histone deacetylase (HDAC), histone methyltransferase (HMT), or histone demethylase.

19. The fusion protein of claim 8, wherein the heterologous functional domain is a biological tether.

20. The fusion protein of claim 19, wherein the biological tether is MS2, Csy4 or lambda N protein.

21. The fusion protein of claim 8, wherein the heterologous functional domain is FokI.

22. An isolated nucleic acid encoding the protein of claim 1.

23. A vector comprising the isolated nucleic acid of claim 22.

24. A host cell, preferably a mammalian host cell, comprising the nucleic acid of claim 22.

25. A method of altering the genome of a cell, the method comprising expressing in the cell, or contacting the cell with, the isolated protein or fusion protein of claim 1, and a guide RNA having a region complementary to a selected portion of the genome of the cell.

26. The method of claim 25, wherein the isolated protein or fusion protein comprises one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag.

27. The method of claim 25, wherein the cell is a stem cell.

28. The method of claim 27, wherein the cell is an embryonic stem cell, mesenchymal stem cell, or induced pluripotent stem cell; is in a living animal; or is in an embryo.

29. A method of altering a double stranded DNA (dsDNA) molecule, the method comprising contacting the dsDNA molecule with the isolated protein of claim 1, and a guide RNA having a region complementary to a selected portion of the dsDNA molecule.

30. The method of claim 29, wherein the dsDNA molecule is in vitro.
Description



CLAIM OF PRIORITY

[0001] This application claims the benefit of U.S. Patent Application Ser. No. 62/366,976, filed on Jul. 26, 2016. The entire contents of the foregoing are hereby incorporated by reference.

TECHNICAL FIELD

[0003] The invention relates, at least in part, to engineered CRISPR from Prevotella and Francisella 1 (Cpf1) nucleases with altered and improved target specificity and their use in genomic engineering, epigenomic engineering, genome targeting, genome editing, and in vitro diagnostics.

BACKGROUND

[0004] CRISPR systems enable efficient genome editing in a wide variety of organisms and cell types. The genome-wide specificity of engineered nucleases, including those derived from CRISPR bacterial immune systems such as Cas9 and Cpf1, is of utmost importance when considering such tools for both research and therapeutic applications.

SUMMARY

[0005] As described herein, Cpf1 Proteins can be engineered to show increased specificity, theoretically by reducing the binding affinity of Cpf1 for DNA. Thus, described herein are a number of Cpf1 variants, e.g., from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively), that have been engineered to exhibit increased specificity (i.e., induce substantially fewer off target effects) as compared to the wild type protein, as well as methods of using them.

[0006] In a first aspect, the invention provides isolated Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) proteins, with one or more mutations listed in Table 1, e.g., with mutations at one, two, three, four, five, six or all seven of the following positions: S202, N274, N278, K290, K367, K532, K609, K915, Q962, K963, K966, K1002 and/or S1003, e.g., comprising a sequence that is at least 80% identical to the amino acid sequence of at least amino acids 23-1246 SEQ ID NO:1 (or at least amino acids 18- of SEQ ID NO:1) with mutations at one, two, three, four, five, six, or seven of the following positions S202, N274, N278, K290, K367, K532, K609, K915, Q962, K963, K966, K1002 and/or S1003, and optionally one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag. A mutation alters the amino acid to an amino acid other than the native amino acid (e.g., 497 is anything but N). In preferred embodiments the mutation changes the amino acid to any amino acid other than the native one, arginine or lysine; in some embodiments, the amino acid is alanine.

[0007] In some embodiments, the variant LbCpf1 proteins comprise one, two, three, or all four of the following mutations: S202A, N274A, N278A, K290A, K367A, K532A, K609A, K915A, Q962A, K963A, K966A, K1002A and/or S1003A.

[0008] In some embodiments, the variant LbCpf1 proteins also comprise one or more mutations that decrease nuclease activity selected from the group consisting of mutations listed in Table A, e.g., mutations at D832 and/or E925, e.g., D832A and E925A.

[0009] Also provided herein are isolated Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) proteins, with one or more mutations listed in Table 1, e.g., with mutations at one, two, three, four, five, or six of the following positions: N178, N278, N282, R301, T315, S376, N515, K523, K524, K603, K965, Q1013, and/or K1054, e.g., comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:2 with mutations at one, two, three, four, or five, or six of the following positions: N178, N278, N282, R301, T315, S376, N515, K523, K524, K603, K965, Q1013, and/or K1054, and optionally one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag. In some embodiments, the AsCpf1 variants described herein include the amino acid sequence of SEQ ID NO:2, with mutations at one, two, three, four, five, or all six of the following positions: N178A, N278A, N282A, R301A, T315A, S376A, N515A, K523A, K524A, K603A, K965A, Q1013A, and/or K1054A.

[0010] In some embodiments, the variant AsCpf1 proteins also comprise one or more mutations that decrease nuclease activity selected from the group consisting of mutations listed in Table A, e.g., mutations at D908 and/or E993, e.g., D908A and/or E993A.

[0011] Also provided herein are fusion proteins comprising the isolated variant Cpf1 proteins described herein fused to a heterologous functional domain, with an optional intervening linker, wherein the linker does not interfere with activity of the fusion protein. In preferred embodiments, the heterologous functional domain acts on DNA or protein, e.g., on chromatin. In some embodiments, the heterologous functional domain is a transcriptional activation domain. In some embodiments, the transcriptional activation domain is from VP64 or NF-.kappa.B p65. In some embodiments, the heterologous functional domain is a transcriptional silencer or transcriptional repression domain. In some embodiments, the transcriptional repression domain is a Kruppel-associated box (KRAB) domain, ERF repressor domain (ERD), or mSin3A interaction domain (SID). In some embodiments, the transcriptional silencer is Heterochromatin Protein 1 (HP1), e.g., HP1.alpha. or HP1.beta.. In some embodiments, the heterologous functional domain is an enzyme that modifies the methylation state of DNA. In some embodiments, the enzyme that modifies the methylation state of DNA is a DNA methyltransferase (DNMT) or the entirety or the dioxygenase domain of a TET protein, e.g., a catalytic module comprising the cysteine-rich extension and the 2OGFeDO domain encoded by 7 highly conserved exons, e.g., the Tet1 catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet3 comprising amino acids 966-1678. In some embodiments, the TET protein or TET-derived dioxygenase domain is from TET1. In some embodiments, the heterologous functional domain is an enzyme that modifies a histone subunit. In some embodiments, the enzyme that modifies a histone subunit is a histone acetyltransferase (HAT), histone deacetylase (HDAC), histone methyltransferase (HMT), or histone demethylase. In some embodiments, the heterologous functional domain is a biological tether. In some embodiments, the biological tether is MS2, Csy4 or lambda N protein. In some embodiments, the heterologous functional domain is FokI.

[0012] Also provided herein are nucleic acids, isolated nucleic acids encoding the variant Cpf1 proteins described herein, as well as vectors comprising the isolated nucleic acids, optionally operably linked to one or more regulatory domains for expressing the variant Cpf1 proteins described herein. Also provided herein are host cells, e.g., bacterial, yeast, insect, or mammalian host cells or transgenic animals (e.g., mice), comprising the nucleic acids described herein, and optionally expressing the variant Cpf1 proteins described herein.

[0013] Also provided herein are methods of altering the genome of a cell, by expressing in the cell isolated variant Cpf1 proteins as described herein, in the presence of at least one guide RNA having a region complementary to a selected portion of the genome of the cell with optimal nucleotide spacing at the genomic target site.

[0014] Also provided herein are methods of altering the genome of a cell, by expressing in the cell an isolated variant Cpf1 protein described herein, in the presence of at least one guide RNA having a region complementary to a selected portion of the genome of the cell with optimal nucleotide spacing at the genomic target site.

[0015] Also provided herein are isolated nucleic acids encoding the Cpf1 variants, as well as vectors comprising the isolated nucleic acids, optionally operably linked to one or more regulatory domains for expressing the variants, and host cells, e.g., mammalian host cells, comprising the nucleic acids, and optionally expressing the variant proteins.

[0016] Also provided herein are methods for altering, e.g., selectively altering, the genome of a cell by contacting the cell with, or expressing in the cell, a variant protein as described herein, and a guide RNA having a region complementary to a selected portion of the genome of the cell. In some embodiments, the isolated protein or fusion protein comprises one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag.

[0017] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.

[0018] Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.

DESCRIPTION OF DRAWINGS

[0019] FIGS. 1A-B are bar graphs showing tolerance of AsCpf1 and LbCpf1 to mismatched crRNAs for DNMT1 sites 1 and 3. (A, B) Endogenous gene modification by AsCpf1 and LbCpf1 using crRNAs that contain pairs of mismatched bases (1A) or singly mismatched bases (1B). Activity determined by T7E1 assay; error bars, s.e.m.; n=3.

[0020] FIGS. 2A-B are bar graphs showing tolerance of LbCpf1 (2A) and AsCpf1 (2B) to singly mismatched crRNAs for DNMT1 site 7. Endogenous gene modification by AsCpf1 and LbCpf1 determined by T7E1 assay; n=1; n.d., not determined.

[0021] FIG. 3 is a bar graph showing wild-type LbCpf1 and alanine substitution variant activity with matched and singly mismatched crRNAs for DNMT1 site 1. Endogenous gene modification determined by T7E1 assay; n=1.

[0022] FIG. 4 is a bar graph showing wild-type LbCpf1 and alanine substitution variant activity with matched and singly mismatched crRNAs for DNMT1 site 3. Endogenous gene modification determined by T7E1 assay; n=1; error bars, s.e.m. for n=2.

[0023] FIG. 5A-B are bar graphs showing wild-type AsCpf1 and alanine substitution variant activity with matched and singly mismatched crRNAs for DNMT1 site 1. Panels A and B are from separate experiments. Endogenous gene modification determined by T7E1 assay; n=1.

[0024] FIG. 6 is a bar graph showing wild-type AsCpf1 and alanine substitution variant activity with matched and singly mismatched crRNAs for DNMT1 site 3. Endogenous gene modification determined by T7E1 assay; n=1.

DETAILED DESCRIPTION

[0025] The on- and off-target activities of two CRISPR-Cas Cpf1 orthologues from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) were recently characterized; see Kleinstiver & Tsai et al., "Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells," Nature Biotechnology 2016 Jun. 27. doi: 10.1038/nbt.3620, Epub ahead of print). Using crRNAs with intentionally mismatched positions (to mimic mismatched off-target sites) and an unbiased genome-wide detection assay named GUIDE-seq (Tsai et al., Nat Biotechnol 33, 187-197 (2015)), it was determined that both AsCpf1 and LbCpf1 have generally high genome-wide specificities but can still tolerate nucleotide mismatches in parts of the crRNA.

[0026] Thus, to generate variants with higher fidelity (i.e., less likelihood of binding to target sites with one or more mismatches, like the Streptococcus pyogenes Cas9 variants (SpCas9-HF) described in Kleinstiver et al., Nature 529, 490-495 (2016)), we made site directed mutations in the Cpf1 coding sequence to improve their genome-wide specificities. The site directed mutations in residues that presumably make contacts to the DNA-backbone of either the target or non-target DNA strand are meant to improve the fidelity of the enzymes by imparting a heightened ability to discriminate against off-target sites. We have identified a number of mutations that can provide such an effect. These studies are performed on AsCpf1 and LbCpf1, enzymes whose specificities have not yet been altered. Importantly, because the Cas9 and Cpf1 enzymes are substantially different at both the primary amino acid sequence level and in their three-dimensional domain organization and structures, it is not at all obvious which amino acid change(s) will be needed to create high-fidelity versions of Cpf1 enzymes. Furthermore, while a crystal structure has been solved for AsCpf1 providing insight into which residues to mutate, for LbCpf1 we are identifying residues to mutate based on alignment with other Cpf1 orthologues.

[0027] These higher fidelity Cpf1 (Cpf1-HF) enzymes are useful in both research and therapeutic settings, e.g., for genomic engineering, epigenomic engineering, genome targeting, and genome editing (for example, if you can target an allele with single nucleotide precision, then you can target either the wild-type (reference genome) sequence or the disease allele. This would allow genotyping at disease loci). Methods for using Cpf1 enzymes are known in the art, see, e.g., Yamano et al., Cell. 2016 May 5; 165(4):949-62; Fonfara et al., Nature. 2016 Apr. 28; 532(7600):517-21; Dong et al., Nature. 2016 Apr. 28; 532(7600):522-6; and Zetsche et al., Cell. 2015 Oct. 22; 163(3):759-71.

[0028] Cpf1

[0029] Clustered, regularly interspaced, short palindromic repeat (CRISPR) systems encode RNA-guided endonucleases that are essential for bacterial adaptive immunity (Wright et al., Cell 164, 29-44 (2016)). CRISPR-associated (Cas) nucleases can be readily programmed to cleave target DNA sequences for genome editing in various organisms.sup.2-5. One class of these nucleases, referred to as Cas9 proteins, complex with two short RNAs: a crRNA and a trans-activating crRNA (tracrRNA).sup.7, 8. The most commonly used Cas9 ortholog, SpCas9, uses a crRNA that has 20nucleotides (nt) at its 5' end that are complementary to the "protospacer" region of the target DNA site. Efficient cleavage also requires that SpCas9 recognizes a protospacer adjacent motif (PAM). The crRNA and tracrRNA are usually combined into a single .about.100-nt guide RNA (gRNA).sup.7, 9-11 that directs the DNA cleavage activity of SpCas9. The genome-wide specificities of SpCas9 nucleases paired with different gRNAs have been characterized using many different approaches.sup.12-15. SpCas9 variants with substantially improved genome-wide specificities have also been engineered.sup.16, 17.

[0030] Recently, a Cas protein named Cpf1 has been identified that can also be programmed to cleave target DNA sequences.sup.1, 18-20. Unlike SpCas9, Cpf1 requires only a single 42-nt crRNA, which has 23 nt at its 3' end that are complementary to the protospacer of the target DNA sequence'. Furthermore, whereas SpCas9 recognizes an NGG PAM sequence that is 3' of the protospacer, AsCpf1 and LbCp1 recognize TTTN PAMs that are found 5' of the protospacer.sup.1. Early experiments with AsCpf1 and LbCpf1 showed that these nucleases can be programmed to edit target sites in human cells.sup.1 but they were tested on only a small number of sites. On-target activities and genome-wide specificities of both AsCpf1 and LbCpf1 were characterized in Kleinstiver & Tsai et al., Nature Biotechnology 2016.

[0031] The present findings provide support for AsCpf1 and LbCpf1 variants, referred to collectively herein as "variants" or "the variants".

[0032] All of the variants described herein can be rapidly incorporated into existing and widely used vectors, e.g., by simple site-directed mutagenesis.

[0033] Thus, provided herein are Cpf1 variants, including LbCpf1 variants. The LbCpf1 wild type protein sequence is as follows:

TABLE-US-00001 Type V CRISPR-associated protein Cpfl [Lachnospiraceae bacterium ND2006], GenBank AccNo. WP_051666128.1 (SEQ ID NO: 1) ##STR00001## 61 RAEDYKGVKK LLDRYYLSFI NDVLHSIKLK NLNNYISLFR KKTRTEKENK ELENLEINLR 121 KEIAKAFKGN EGYKSLFKKD IIETILPEFL DDKDEIALVN SFNGFTTAFT GFFDNRENMF 181 SEEAKSTSIA FRCINENLTR YISNMDIFEK VDAIFDKHEV QEIKEKILNS DYDVEDFFEG 241 EFFNFVLTQE GIDVYNAIIG GFVTESGEKI KGLNEYINLY NQKTKQKLPK FKPLYKQVLS 301 DRESLSFYGE GYTSDEEVLE VFRNTLNKNS EIFSSIKKLE KLFKNFDEYS SAGIFVKNGP 361 AISTISKDIF GEWNVIRDKW NAEYDDIHLK KKAVVTEKYE DDRRKSFKKI GSFSLEQLQE 421 YADADLSVVE KLKEIIIQKV DEIYKVYGSS EKLFDADFVL EKSLKKNDAV VAIMKDLLDS 481 VKSFENYIKA FFGEGKETNR DESFYGDFVL AYDILLKVDH IYDAIRNYVT QKPYSKDKFK 541 LYFQNPQFMG GWDKDKETDY RATILRYGSK YYLAIMDKKY AKCLQKIDKD DVNGNYEKIN 601 YKLLPGPNKM LPKVFFSKKW MAYYNPSEDI QKIYKNGTFK KGDMFNLNDC HKLIDFFKDS 661 ISRYPKWSNA YDFNFSETEK YKDIAGFYRE VEEQGYKVSF ESASKKEVDK LVEEGKLYMF 721 QIYNKDFSDK SHGTPNLHTM YFKLLFDENN HGQIRLSGGA ELFMRRASLK KEELVVHPAN 781 SPIANKNPDN PKKTTTLSYD VYKDKRFSED QYELHIPIAI NKCPKNIFKI NTEVRVLLKH 841 DDNPYVIGID RGERNLLYIV VVDGKGNIVE QYSLNEIINN FNGIRIKTDY HSLLDKKEKE 901 RFEARQNWTS IENIKELKAG YISQVVHKIC ELVEKYDAVI ALEDLNSGFK NSRVKVEKQV 961 YQKFEKMLID KLNYMVDKKS NPCATGGALK GYQITNKFES FKSMSTQNGF IFYIPAWLTS 1021 KIDPSTGFVN LLKIKYTSIA DSKKFISSFD RIMYVPEEDL FEFALDYKNF SRTDADYIKK 1081 WKLYSYGNRI RIFRNPKKNN VFDWEEVCLT SAYKELFNKY GINYQQGDIR ALLCEQSDKA 1141 FYSSFMALMS LMLQMRNSIT GRTDVDFLIS PVKNSDGIFY DSRNYEAQEN AILPKNADAN 1201 GAYNIARKVL WAIGQFKKAE DEKLDKVKIA ISNKEWLEYA QTSVKH

[0034] The LbCpf1 variants described herein can include the amino acid sequence of SEQ ID NO:1, e.g., at least comprising amino acids 23-1246 of SEQ ID NO:1, with mutations (i.e., replacement of the native amino acid with a different amino acid, e.g., alanine, glycine, or serine), at one or more positions in Table 1, e.g., at the following positions: S186, N256, N260, K272, K349, K514, K591, K897, Q944, K945, K948, K984, and/or S985 of SEQ ID NO:10 (or at positions analogous thereto, e.g., S202, N274, N278, K290, K367, K532, K609, K915, Q962, K963, K966, K1002, and/or S1003 of SEQ ID NO:1); amino acids 19-1246 of SEQ ID NO:1 are identical to amino acids 1-1228 of SEQ ID NO:10 (amino acids 1-1228 of SEQ ID NO:10 are referred to herein as LbCPF1 (-18)). In some embodiments, the LbCpf1 variants are at least 80%, e.g., at least 85%, 90%, or 95% identical to the amino acid sequence of SEQ ID NO:1, e.g., have differences at up to 5%, 10%, 15%, or 20% of the residues of SEQ ID NO:1 replaced, e.g., with conservative mutations, in addition to the mutations described herein. In preferred embodiments, the variant retains desired activity of the parent, e.g., the nuclease activity (except where the parent is a nickase or a dead Cpf1), and/or the ability to interact with a guide RNA and target DNA). The version of LbCpf1 used in the present working examples starts at the MSKLEK motif, omitting the first 18 amino acids boxed above as described in Zetsche et al. Cell 163, 759-771 (2015).

TABLE-US-00002 Type V CRISPR-associated protein Cpf1 [Acidaminococcus sp. BV3L6], NCBI Reference Sequence: WP_021736722.1 (SEQ ID NO: 2) 1 MTQFEGFTNL YQVSKTLRFE LIPQGKTLKH IQEQGFIEED KARNDHYKEL KPIIDRIYKT 61 YADQCLQLVQ LDWENLSAAI DSYRKEKTEE TRNALIEEQA TYRNAIHDYF IGRIDNLIDA 121 INKRHAEIYK GLFKAELFNG KVLKQLGTVT TTEHENALLR SFDKFTTYFS GFYENRKNVF 181 SAEDISTAIP HRIVQDNFPK FKENCHIFTR LITAVPSLRE HFENVKKAIG IFVSTSIEEV 241 FSFPFYNQLL TQTQIDLYNQ LLGGISREAG TEKIKGLNEV LNLAIQKNDE TAHIIASLPH 301 RFIPLFKQIL SDRNTLSFIL EEFKSDEEVI QSFCKYKTLL RNENVLETAE ALFNELNSID 361 LTHIFISHKK LETISSALCD HWDTLRNALY ERRISELTGK ITKSAKEKVQ RSLKHEDINL 421 QEIISAAGKE LSEAFKQKTS EILSHAHAAL DQPLPTTLKK QEEKEILKSQ LDSLLGLYHL 481 LDWFAVDESN EVDPEFSARL TGIKLEMEPS LSFYNKARNY ATKKPYSVEK FKLNFQMPTL 541 ASGWDVNKEK NNGAILFVKN GLYYLGIMPK QKGRYKALSF EPTEKTSEGF DKMYYDYFPD 601 AAKMIPKCST QLKAVTAHFQ THTTPILLSN NFIEPLEITK EIYDLNNPEK EPKKFQTAYA 661 KKTGDQKGYR EALCKWIDFT RDFLSKYTKT TSIDLSSLRP SSQYKDLGEY YAELNPLLYH 721 ISFQRIAEKE IMDAVETGKL YLFQIYNKDF AKGHHGKPNL HTLYWTGLFS PENLAKTSIK 781 LNGQAELFYR PKSRMKRMAH RLGEKMLNKK LKDQKTPIPD TLYQELYDYV NHRLSHDLSD 841 EARALLPNVI TKEVSHEIIK DRRFTSDKFF FHVPITLNYQ AANSPSKFNQ RVNAYLKEHP 901 ETPIIGIDRG ERNLIYITVI DSTGKILEQR SLNTIQQFDY QKKLDNREKE RVAARQAWSV 961 VGTIKDLKQG YLSQVIHEIV DLMIHYQAVV VLENLNFGFK SKRTGIAEKA VYQQFEKMLI 1021 DKLNCLVLKD YPAEKVGGVL NPYQLTDQFT SFAKMGTQSG FLFYVPAPYT SKIDPLTGFV 1081 DPFVWKTIKN HESRKHFLEG FDFLHYDVKT GDFILHFKMN RNLSFQRGLP GFMPAWDIVF 1141 EKNETQFDAK GTPFIAGKRI VPVIENHRFT GRYRDLYPAN ELIALLEEKG IVFRDGSNIL 1201 PKLLENDDSH AIDTMVALIR SVLQMRNSNA ATGEDYINSP VRDLNGVCFD SRFQNPEWPM 1261 DADANGAYHI ALKGQLLLNH LKESKDLKLQ NGISNQDWLA YIQELRN

[0035] The AsCpf1 variants described herein can include the amino acid sequence of SEQ ID NO:2, e.g., at least comprising amino acids 1-1307 of SEQ ID NO:2, with mutations (i.e., replacement of the native amino acid with a different amino acid, e.g., alanine, glycine, or serine (except where the native amino acid is serine)), at one or more positions in Table 1, e.g., at the following positions: N178, S186, N278, N282, R301, T315, S376, N515, K523, K524, K603, K965, Q1013, Q1014, and/or K1054 of SEQ ID NO:2 (or at positions analogous thereto, e.g., of SEQ ID NO:8). In some embodiments, the AsCpf1 variants are at least 80%, e.g., at least 85%, 90%, or 95% identical to the amino acid sequence of SEQ ID NO:2, e.g., have differences at up to 5%, 10%, 15%, or 20% of the residues of SEQ ID NO:2 replaced, e.g., with conservative mutations, in addition to the mutations described herein. In preferred embodiments, the variant retains desired activity of the parent, e.g., the nuclease activity (except where the parent is a nickase or a dead Cpf1), and/or the ability to interact with a guide RNA and target DNA).

[0036] To determine the percent identity of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is at least 80% of the length of the reference sequence, and in some embodiments is at least 90% or 100%. The nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein nucleic acid "identity" is equivalent to nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. Percent identity between two polypeptides or nucleic acid sequences is determined in various ways that are within the skill in the art, for instance, using publicly available computer software such as Smith Waterman Alignment (Smith, T. F. and M. S. Waterman (1981) J Mol Biol 147:195-7); "BestFit" (Smith and Waterman, Advances in Applied Mathematics, 482-489 (1981)) as incorporated into GeneMatcher Plus.TM., Schwarz and Dayhof (1979) Atlas of Protein Sequence and Structure, Dayhof, M. O., Ed, pp 353-358; BLAST program (Basic Local Alignment Search Tool; (Altschul, S. F., W. Gish, et al. (1990) J Mol Biol 215: 403-10), BLAST-2, BLAST-P, BLAST-N, BLAST-X, WU-BLAST-2, ALIGN, ALIGN-2, CLUSTAL, or Megalign (DNASTAR) software. In addition, those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the length of the sequences being compared. In general, for proteins or nucleic acids, the length of comparison can be any length, up to and including full length (e.g., 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%). For purposes of the present compositions and methods, at least 80% of the full length of the sequence is aligned.

[0037] For purposes of the present invention, the comparison of sequences and determination of percent identity between two sequences can be accomplished using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

[0038] Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

[0039] In some embodiments, the mutants have alanine in place of the wild type amino acid. In some embodiments, the mutants have any amino acid other than arginine or lysine (or the native amino acid).

[0040] In some embodiments, the Cpf1 variants also include one of the following mutations listed in Table A, which reduce or destroy the nuclease activity of the Cpf1:

TABLE-US-00003 TABLE A Residues involved in DNA and RNA catalysis AsCpf1 LbCpf1 LbCpf1 (-18) FnCpf1 DNA targeting D908 D850 D832 D917 E911 E853 E835 E920 N913 N855 N837 H922 Y916 Y858 Y840 Y925 E993 E943 E925 E1006 R1226 R1156 R1138 R1218 S1228 S1158 S1140 S1220 D1235 D1166 D1148 D1227 D1263 D1198 D1180 D1255 RNA processing H800 H777 H759 H843 K809 K786 K768 K852 K860 K803 K785 K869 F864 F807 F789 F873 Mutations that turn Cpf1 into a nickase R1226A R1156A R1138A R1218A

See, e.g., Yamano et al., Cell. 2016 May 5; 165(4):949-62; Fonfara et al., Nature. 2016 Apr. 28; 532(7600):517-21; Dong et al., Nature. 2016 Apr. 28; 532(7600):522-6; and Zetsche et al., Cell. 2015 Oct. 22; 163(3):759-71. Note that "LbCpf1 (-18)" refers to the sequence of LbCpf1 in Zetsche et al., also shown herein as amino acids 1-1228 of SEQ ID NO:10 and amino acids 19-1246 of SEQ ID NO:1.

[0041] Thus, in some embodiments, for AsCpf1, catalytic activity-destroying mutations are made at D908 and E993, e.g., D908A and E993A; and for LbCpf1 catalytic activity-destroying mutations at D832 and E925, e.g., D832A and E925A.

[0042] Also provided herein are isolated nucleic acids encoding the Cpf1 variants, vectors comprising the isolated nucleic acids, optionally operably linked to one or more regulatory domains for expressing the variant proteins, and host cells, e.g., mammalian host cells, comprising the nucleic acids, and optionally expressing the variant proteins.

[0043] The variants described herein can be used for altering the genome of a cell; the methods generally include expressing the variant proteins in the cells, along with a guide RNA having a region complementary to a selected portion of the genome of the cell. Methods for selectively altering the genome of a cell are known in the art, see, e.g., U.S. Pat. No. 8,993,233; US 20140186958; U.S. Pat. No. 9,023,649; WO/2014/099744; WO 2014/089290; WO2014/144592; WO144288; WO2014/204578; WO2014/152432; WO2115/099850; U.S. Pat. No. 8,697,359; US20160024529; US20160024524; US20160024523; US20160024510; US20160017366; US20160017301; US20150376652; US20150356239; US20150315576; US20150291965; US20150252358; US20150247150; US20150232883; US20150232882; US20150203872; US20150191744; US20150184139; US20150176064; US20150167000; US20150166969; US20150159175; US20150159174; US20150093473; US20150079681; US20150067922; US20150056629; US20150044772; US20150024500; US20150024499; US20150020223; US20140356867; US20140295557; US20140273235; US20140273226; US20140273037; US20140189896; US20140113376; US20140093941; US20130330778; US20130288251; US20120088676; US20110300538; US20110236530; US20110217739; US20110002889; US20100076057; US20110189776; US20110223638; US20130130248; US20150050699; US20150071899; US20150045546; US20150031134; US20150024500; US20140377868; US20140357530; US20140349400; US20140335620; US20140335063; US20140315985; US20140310830; US20140310828; US20140309487; US20140304853; US20140298547; US20140295556; US20140294773; US20140287938; US20140273234; US20140273232; US20140273231; US20140273230; US20140271987; US20140256046; US20140248702; US20140242702; US20140242700; US20140242699; US20140242664; US20140234972; US20140227787; US20140212869; US20140201857; US20140199767; US20140189896; US20140186958; US20140186919; US20140186843; US20140179770; US20140179006; US20140170753; WO/2008/108989; WO/2010/054108; WO/2012/164565; WO/2013/098244; WO/2013/176772; Makarova et al., "Evolution and classification of the CRISPR-Cas systems" 9(6) Nature Reviews Microbiology 467-477 (1-23) (June 2011); Wiedenheft et al., "RNA-guided genetic silencing systems in bacteria and archaea" 482 Nature 331-338 (Feb. 16, 2012); Gasiunas et al., "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria" 109(39) Proceedings of the National Academy of Sciences USA E2579-E2586 (Sep. 4, 2012); Jinek et al., "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity" 337 Science 816-821 (Aug. 17, 2012); Carroll, "A CRISPR Approach to Gene Targeting" 20(9) Molecular Therapy 1658-1660 (September 2012); U.S. Appl. No. 61/652,086, filed May 25, 2012; Al-Attar et al., Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs): The Hallmark of an Ingenious Antiviral Defense Mechanism in Prokaryotes, Biol Chem. (2011) vol. 392, Issue 4, pp. 277-289; Hale et al., Essential Features and Rational Design of CRISPR RNAs That Function With the Cas RAMP Module Complex to Cleave RNAs, Molecular Cell, (2012) vol. 45, Issue 3, 292-302.

[0044] The variant proteins described herein can be used in place of or in addition to any of the Cas9 or Cpf1 proteins described in the foregoing references, or in combination with analogous mutations described therein. When replacing the Cas9, of course a guide RNA appropriate for the selected Cpf1 is used. In addition, the variants described herein can be used in fusion proteins in place of the wild-type Cas9 or other Cas9 mutations (such as the dCas9 or Cas9 nickase) as known in the art, e.g., a fusion protein with a heterologous functional domains as described in U.S. Pat. No. 8,993,233; US 20140186958; U.S. Pat. No. 9,023,649; WO/2014/099744; WO 2014/089290; WO2014/144592; WO144288; WO2014/204578; WO2014/152432; WO2115/099850; U.S. Pat. No. 8,697,359; US2010/0076057; US2011/0189776; US2011/0223638; US2013/0130248; WO/2008/108989; WO/2010/054108; WO/2012/164565; WO/2013/098244; WO/2013/176772; US20150050699; US 20150071899 and WO 2014/124284. For example, the variants, preferably comprising one or more nuclease-reducing or killing mutation, can be fused on the N or C terminus of the Cpf1 to a transcriptional activation domain or other heterologous functional domains (e.g., transcriptional repressors (e.g., KRAB, ERD, SID, and others, e.g., amino acids 473-530 of the ets2 repressor factor (ERF) repressor domain (ERD), amino acids 1-97 of the KRAB domain of KOX1, or amino acids 1-36 of the Mad mSIN3 interaction domain (SID); see Beerli et al., PNAS USA 95:14628-14633 (1998)) or silencers such as Heterochromatin Protein 1 (HP1, also known as swi6), e.g., HP1.alpha. or HP1.beta.; proteins or peptides that could recruit long non-coding RNAs (lncRNAs) fused to a fixed RNA binding sequence such as those bound by the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein; enzymes that modify the methylation state of DNA (e.g., DNA methyltransferase (DNMT) or TET proteins); or enzymes that modify histone subunits (e.g., histone acetyltransferases (HAT), histone deacetylases (HDAC), histone methyltransferases (e.g., for methylation of lysine or arginine residues) or histone demethylases (e.g., for demethylation of lysine or arginine residues)) as are known in the art can also be used. A number of sequences for such domains are known in the art, e.g., a domain that catalyzes hydroxylation of methylated cytosines in DNA. Exemplary proteins include the Ten-Eleven-Translocation (TET)1-3 family, enzymes that converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in DNA.

[0045] Sequences for human TET1-3 are known in the art and are shown in the following table:

TABLE-US-00004 GenBank Accession Nos. Gene Amino Acid Nucleic Acid TET1 NP_085128.2 NM_030625.2 TET2* NP_001120680.1(var 1) NM_001127208.2 NP_060098.3(var 2) NM_017628.4 TET3 NP_659430.1 NM_144993.1 *Variant (1) represents the longer transcript and encodes the longer isoform (a). Variant (2) differs in the 5' UTR and in the 3' UTR and coding sequence compared to variant 1. The resulting isoform (b) is shorter and has a distinct C-terminus compared to isoform a.

[0046] In some embodiments, all or part of the full-length sequence of the catalytic domain can be included, e.g., a catalytic module comprising the cysteine-rich extension and the 2OGFeDO domain encoded by 7 highly conserved exons, e.g., the Tet1 catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet3 comprising amino acids 966-1678. See, e.g., FIG. 1 of Iyer et al., Cell Cycle. 2009 Jun. 1; 8(11):1698-710. Epub 2009 Jun. 27, for an alignment illustrating the key catalytic residues in all three Tet proteins, and the supplementary materials thereof (available at ftp site ftp.ncbi.nih.gov/pub/aravind/DONS/supplementary_material_DONS.html) for full length sequences (see, e.g., seq 2c); in some embodiments, the sequence includes amino acids 1418-2136 of Tet1 or the corresponding region in Tet2/3.

[0047] Other catalytic modules can be from the proteins identified in Iyer et al., 2009.

[0048] In some embodiments, the heterologous functional domain is a biological tether, and comprises all or part of (e.g., DNA binding domain from) the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein. These proteins can be used to recruit RNA molecules containing a specific stem-loop structure to a locale specified by the dCpf1 gRNA targeting sequences. For example, a dCpf1 variant fused to MS2 coat protein, endoribonuclease Csy4, or lambda N can be used to recruit a long non-coding RNA (lncRNA) such as XIST or HOTAIR; see, e.g., Keryer-Bibens et al., Biol. Cell 100:125-138 (2008), that is linked to the Csy4, MS2 or lambda N binding sequence. Alternatively, the Csy4, MS2 or lambda N protein binding sequence can be linked to another protein, e.g., as described in Keryer-Bibens et al., supra, and the protein can be targeted to the dCpf1 variant binding site using the methods and compositions described herein. In some embodiments, the Csy4 is catalytically inactive. In some embodiments, the Cpf1 variant, preferably a dCpf1 variant, is fused to FokI as described in U.S. Pat. No. 8,993,233; US 20140186958; U.S. Pat. No. 9,023,649; WO/2014/099744; WO 2014/089290; WO2014/144592; WO144288; WO2014/204578; WO2014/152432; WO2115/099850; U.S. Pat. No. 8,697,359; US2010/0076057; US2011/0189776; US2011/0223638; US2013/0130248; WO/2008/108989; WO/2010/054108; WO/2012/164565; WO/2013/098244; WO/2013/176772; US20150050699; US 20150071899 and WO 2014/204578.

[0049] In some embodiments, the fusion proteins include a linker between the Cpf1 variant and the heterologous functional domains. Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins. In preferred embodiments, the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine). In some embodiments, the linker comprises one or more units consisting of GGGS (SEQ ID NO:3) or GGGGS (SEQ ID NO:4), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:5) or GGGGS (SEQ ID NO:6) unit. Other linker sequences can also be used.

[0050] In some embodiments, the variant protein includes a cell-penetrating peptide sequence that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetrating peptides, see, e.g., Caron et al., (2001) Mol Ther. 3(3):310-8; Langel, Cell-Penetrating Peptides: Processes and Applications (CRC Press, Boca Raton Fla. 2002); El-Andaloussi et al., (2005) Curr Pharm Des. 11(28):3597-611; and Deshayes et al., (2005) Cell Mol Life Sci. 62(16):1839-49.

[0051] Cell penetrating peptides (CPPs) are short peptides that facilitate the movement of a wide range of biomolecules across the cell membrane into the cytoplasm or other organelles, e.g. the mitochondria and the nucleus. Examples of molecules that can be delivered by CPPs include therapeutic drugs, plasmid DNA, oligonucleotides, siRNA, peptide-nucleic acid (PNA), proteins, peptides, nanoparticles, and liposomes. CPPs are generally 30 amino acids or less, are derived from naturally or non-naturally occurring protein or chimeric sequences, and contain either a high relative abundance of positively charged amino acids, e.g. lysine or arginine, or an alternating pattern of polar and non-polar amino acids. CPPs that are commonly used in the art include Tat (Frankel et al., (1988) Cell. 55:1189-1193, Vives et al., (1997) J. Biol. Chem. 272:16010-16017), penetratin (Derossi et al., (1994) J. Biol. Chem. 269:10444-10450), polyarginine peptide sequences (Wender et al., (2000) Proc. Natl. Acad. Sci. USA 97:13003-13008, Futaki et al., (2001) J. Biol. Chem. 276:5836-5840), and transportan (Pooga et al., (1998) Nat. Biotechnol. 16:857-861).

[0052] CPPs can be linked with their cargo through covalent or non-covalent strategies. Methods for covalently joining a CPP and its cargo are known in the art, e.g. chemical cross-linking (Stetsenko et al., (2000) J. Org. Chem. 65:4900-4909, Gait et al. (2003) Cell. Mol. Life. Sci. 60:844-853) or cloning a fusion protein (Nagahara et al., (1998) Nat. Med. 4:1449-1453). Non-covalent coupling between the cargo and short amphipathic CPPs comprising polar and non-polar domains is established through electrostatic and hydrophobic interactions.

[0053] CPPs have been utilized in the art to deliver potentially therapeutic biomolecules into cells. Examples include cyclosporine linked to polyarginine for immunosuppression (Rothbard et al., (2000) Nature Medicine 6(11):1253-1257), siRNA against cyclin B1 linked to a CPP called MPG for inhibiting tumorigenesis (Crombez et al., (2007) Biochem Soc. Trans. 35:44-46), tumor suppressor p53 peptides linked to CPPs to reduce cancer cell growth (Takenobu et al., (2002) Mol. Cancer Ther. 1(12):1043-1049, Snyder et al., (2004) PLoS Biol. 2:E36), and dominant negative forms of Ras or phosphoinositol 3 kinase (PI3K) fused to Tat to treat asthma (Myou et al., (2003) J. Immunol. 171:4399-4405).

[0054] CPPs have been utilized in the art to transport contrast agents into cells for imaging and biosensing applications. For example, green fluorescent protein (GFP) attached to Tat has been used to label cancer cells (Shokolenko et al., (2005) DNA Repair 4(4):511-518). Tat conjugated to quantum dots have been used to successfully cross the blood-brain barrier for visualization of the rat brain (Santra et al., (2005) Chem. Commun. 3144-3146). CPPs have also been combined with magnetic resonance imaging techniques for cell imaging (Liu et al., (2006) Biochem. and Biophys. Res. Comm. 347(1):133-140). See also Ramsey and Flynn, Pharmacol Ther. 2015 Jul. 22. pii: S0163-7258(15)00141-2.

[0055] Alternatively or in addition, the variant proteins can include a nuclear localization sequence, e.g., SV40 large T antigen NLS (PKKKRRV (SEQ ID NO:7)) and nucleoplasmin NLS (KRPAATKKAGQAKKKK (SEQ ID NO:8)). Other NLSs are known in the art; see, e.g., Cokol et al., EMBO Rep. 2000 Nov. 15; 1(5): 411-415; Freitas and Cunha, Curr Genomics. 2009 December; 10(8): 550-557.

[0056] In some embodiments, the variants include a moiety that has a high affinity for a ligand, for example GST, FLAG or hexahistidine sequences. Such affinity tags can facilitate the purification of recombinant variant proteins.

[0057] For methods in which the variant proteins are delivered to cells, the proteins can be produced using any method known in the art, e.g., by in vitro translation, or expression in a suitable host cell from nucleic acid encoding the variant protein; a number of methods are known in the art for producing proteins. For example, the proteins can be produced in and purified from yeast, E. coli, insect cell lines, plants, transgenic animals, or cultured mammalian cells; see, e.g., Palomares et al., "Production of Recombinant Proteins: Challenges and Solutions," Methods Mol Biol. 2004; 267:15-52. In addition, the variant proteins can be linked to a moiety that facilitates transfer into a cell, e.g., a lipid nanoparticle, optionally with a linker that is cleaved once the protein is inside the cell. See, e.g., LaFountaine et al., Int J Pharm. 2015 Aug. 13; 494(1):180-194.

[0058] Expression Systems

[0059] To use the Cpf1 variants described herein, it may be desirable to express them from a nucleic acid that encodes them. This can be performed in a variety of ways. For example, the nucleic acid encoding the Cpf1 variant can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression. Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the Cpf1 variant for production of the Cpf1 variant. The nucleic acid encoding the Cpf1 variant can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.

[0060] To obtain expression, a sequence encoding a Cpf1 variant is typically subcloned into an expression vector that contains a promoter to direct transcription. Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 2010). Bacterial expression systems for expressing the engineered protein are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al., 1983, Gene 22:229-235). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.

[0061] The promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins. In contrast, when the Cpf1 variant is to be administered in vivo for gene regulation, either a constitutive or an inducible promoter can be used, depending on the particular use of the Cpf1 variant. In addition, a preferred promoter for administration of the Cpf1 variant can be a weak promoter, such as HSV TK or a promoter having similar activity. The promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al., 1998, Gene Ther., 5:491-496; Wang et al., 1997, Gene Ther., 4:432-441; Neering et al., 1996, Blood, 88:1147-55; and Rendahl et al., 1998, Nat. Biotechnol., 16:757-761).

[0062] In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic. A typical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the Cpf1 variant, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.

[0063] The particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the Cpf1 variant, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.

[0064] Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.

[0065] The vectors for expressing the Cpf1 variants can include RNA Pol III promoters to drive expression of the guide RNAs, e.g., the H1, U6 or 7SK promoters. These human promoters allow for expression of Cpf1 variants in mammalian cells following plasmid transfection.

[0066] Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase. High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.

[0067] The elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.

[0068] Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al., 1989, J. Biol. Chem., 264:17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101:347-362 (Wu et al., eds, 1983).

[0069] Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes, microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the Cpf1 variant.

[0070] The present invention also includes the vectors and cells comprising the vectors.

Examples

[0071] The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.

[0072] Sequences

[0073] The following constructs were used in the Examples below.

TABLE-US-00005 Nucleotide sequence of pCAG-humanAsCpfl-NLS-3xHA Human codon optimized AsCpf1 in normal font (NTs 1-3921), NLS in lower case (aaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaag, SEQ ID NO: 3), 3xHA tag (TACCCATACGATGTTCCAGATTACGCTTATCCCTACGACGTGCCTGATTATGCATACCCATAT GATGTCCCCGACTATGCC, SEQ ID NO: 4) in bold ATGACACAGTTCGAGGGCTTTACCAACCTGTATCAGGTGAGCAAGACACTGCGGTTTGAGCTGATCCCACAG GGCAAGACCCTGAAGCACATCCAGGAGCAGGGCTTCATCGAGGAGGACAAGGCCCGCAATGATCACTACAAGGA- GCT GAAGCCCATCATCGATCGGATCTACAAGACCTATGCCGACCAGTGCCTGCAGCTGGTGCAGCTGGATTGGGAGA- ACCT GAGCGCCGCCATCGACTCCTATAGAAAGGAGAAAACCGAGGAGACAAGGAACGCCCTGATCGAGGAGCAGGCCA- CAT ATCGCAATGCCATCCACGACTACTTCATCGGCCGGACAGACAACCTGACCGATGCCATCAATAAGAGACACGCC- GAGA TCTACAAGGGCCTGTTCAAGGCCGAGCTGTTTAATGGCAAGGTGCTGAAGCAGCTGGGCACCGTGACCACAACC- GAG CACGAGAACGCCCTGCTGCGGAGCTTCGACAAGTTTACAACCTACTTCTCCGGCTTTTATGAGAACAGGAAGAA- CGTG TTCAGCGCCGAGGATATCAGCACAGCCATCCCACACCGCATCGTGCAGGACAACTTCCCCAAGTTTAAGGAGAA- TTGT CACATCTTCACACGCCTGATCACCGCCGTGCCCAGCCTGCGGGAGCACTTTGAGAACGTGAAGAAGGCCATCGG- CAT CTTCGTGAGCACCTCCATCGAGGAGGTGTTTTCCTTCCCTTTTTATAACCAGCTGCTGACACAGACCCAGATCG- ACCTG TATAACCAGCTGCTGGGAGGAATCTCTCGGGAGGCAGGCACCGAGAAGATCAAGGGCCTGAACGAGGTGCTGAA- TCT GGCCATCCAGAAGAATGATGAGACAGCCCACATCATCGCCTCCCTGCCACACAGATTCATCCCCCTGTTTAAGC- AGAT CCTGTCCGATAGGAACACCCTGTCTTTCATCCTGGAGGAGTTTAAGAGCGACGAGGAAGTGATCCAGTCCTTCT- GCAA GTACAAGACACTGCTGAGAAACGAGAACGTGCTGGAGACAGCCGAGGCCCTGTTTAACGAGCTGAACAGCATCG- ACC TGACACACATCTTCATCAGCCACAAGAAGCTGGAGACAATCAGCAGCGCCCTGTGCGACCACTGGGATACACTG- AGGA ATGCCCTGTATGAGCGGAGAATCTCCGAGCTGACAGGCAAGATCACCAAGTCTGCCAAGGAGAAGGTGCAGCGC- AGC CTGAAGCACGAGGATATCAACCTGCAGGAGATCATCTCTGCCGCAGGCAAGGAGCTGAGCGAGGCCTTCAAGCA- GAA AACCAGCGAGATCCTGTCCCACGCACACGCCGCCCTGGATCAGCCACTGCCTACAACCCTGAAGAAGCAGGAGG- AGA AGGAGATCCTGAAGTCTCAGCTGGACAGCCTGCTGGGCCTGTACCACCTGCTGGACTGGTTTGCCGTGGATGAG- TCC AACGAGGTGGACCCCGAGTTCTCTGCCCGGCTGACCGGCATCAAGCTGGAGATGGAGCCTTCTCTGAGCTTCTA- CAA CAAGGCCAGAAATTATGCCACCAAGAAGCCCTACTCCGTGGAGAAGTTCAAGCTGAACTTTCAGATGCCTACAC- TGGC CTCTGGCTGGGACGTGAATAAGGAGAAGAACAATGGCGCCATCCTGTTTGTGAAGAACGGCCTGTACTATCTGG- GCAT CATGCCAAAGCAGAAGGGCAGGTATAAGGCCCTGAGCTTCGAGCCCACAGAGAAAACCAGCGAGGGCTTTGATA- AGA TGTACTATGACTACTTCCCTGATGCCGCCAAGATGATCCCAAAGTGCAGCACCCAGCTGAAGGCCGTGACAGCC- CACT TTCAGACCCACACAACCCCCATCCTGCTGTCCAACAATTTCATCGAGCCTCTGGAGATCACAAAGGAGATCTAC- GACCT GAACAATCCTGAGAAGGAGCCAAAGAAGTTTCAGACAGCCTACGCCAAGAAAACCGGCGACCAGAAGGGCTACA- GAG AGGCCCTGTGCAAGTGGATCGACTTCACAAGGGATTTTCTGTCCAAGTATACCAAGACAACCTCTATCGATCTG- TCTAG CCTGCGGCCATCCTCTCAGTATAAGGACCTGGGCGAGTACTATGCCGAGCTGAATCCCCTGCTGTACCACATCA- GCTT CCAGAGAATCGCCGAGAAGGAGATCATGGATGCCGTGGAGACAGGCAAGCTGTACCTGTTCCAGATCTATAACA- AGGA CTTTGCCAAGGGCCACCACGGCAAGCCTAATCTGCACACACTGTATTGGACCGGCCTGTTTTCTCCAGAGAACC- TGGC CAAGACAAGCATCAAGCTGAATGGCCAGGCCGAGCTGTTCTACCGCCCTAAGTCCAGGATGAAGAGGATGGCAC- ACC GGCTGGGAGAGAAGATGCTGAACAAGAAGCTGAAGGATCAGAAAACCCCAATCCCCGACACCCTGTACCAGGAG- CTG TACGACTATGTGAATCACAGACTGTCCCACGACCTGTCTGATGAGGCCAGGGCCCTGCTGCCCAACGTGATCAC- CAAG GAGGTGTCTCACGAGATCATCAAGGATAGGCGCTTTACCAGCGACAAGTTCTTTTTCCACGTGCCTATCACACT- GAACT ATCAGGCCGCCAATTCCCCATCTAAGTTCAACCAGAGGGTGAATGCCTACCTGAAGGAGCACCCCGAGACACCT- ATCA TCGGCATCGATCGGGGCGAGAGAAACCTGATCTATATCACAGTGATCGACTCCACCGGCAAGATCCTGGAGCAG- CGG AGCCTGAACACCATCCAGCAGTTTGATTACCAGAAGAAGCTGGACAACAGGGAGAAGGAGAGGGTGGCAGCAAG- GCA GGCCTGGTCTGTGGTGGGCACAATCAAGGATCTGAAGCAGGGCTATCTGAGCCAGGTCATCCACGAGATCGTGG- ACC TGATGATCCACTACCAGGCCGTGGTGGTGCTGGAGAACCTGAATTTCGGCTTTAAGAGCAAGAGGACCGGCATC- GCC GAGAAGGCCGTGTACCAGCAGTTCGAGAAGATGCTGATCGATAAGCTGAATTGCCTGGTGCTGAAGGACTATCC- AGCA GAGAAAGTGGGAGGCGTGCTGAACCCATACCAGCTGACAGACCAGTTCACCTCCTTTGCCAAGATGGGCACCCA- GTCT GGCTTCCTGTTTTACGTGCCTGCCCCATATACATCTAAGATCGATCCCCTGACCGGCTTCGTGGACCCCTTCGT- GTGGA AAACCATCAAGAATCACGAGAGCCGCAAGCACTTCCTGGAGGGCTTCGACTTTCTGCACTACGACGTGAAAACC- GGCG ACTTCATCCTGCACTTTAAGATGAACAGAAATCTGTCCTTCCAGAGGGGCCTGCCCGGCTTTATGCCTGCATGG- GATAT CGTGTTCGAGAAGAACGAGACACAGTTTGACGCCAAGGGCACCCCTTTCATCGCCGGCAAGAGAATCGTGCCAG- TGAT CGAGAATCACAGATTCACCGGCAGATACCGGGACCTGTATCCTGCCAACGAGCTGATCGCCCTGCTGGAGGAGA- AGG GCATCGTGTTCAGGGATGGCTCCAACATCCTGCCAAAGCTGCTGGAGAATGACGATTCTCACGCCATCGACACC- ATGG TGGCCCTGATCCGCAGCGTGCTGCAGATGCGGAACTCCAATGCCGCCACAGGCGAGGACTATATCAACAGCCCC- GTG CGCGATCTGAATGGCGTGTGCTTCGACTCCCGGTTTCAGAACCCAGAGTGGCCCATGGACGCCGATGCCAATGG- CGC CTACCACATCGCCCTGAAGGGCCAGCTGCTGCTGAATCACCTGAAGGAGAGCAAGGATCTGAAGCTGCAGAACG- GCA TCTCCAATCAGGACTGGCTGGCCTACATCCAGGAGCTGCGCAACaaaaggccggcggccacgaaaaaggccggc- caggcaaaaaagaa aaagGGATCCTACCCATACGATGTTCCAGATTACGCTTATCCCTACGACGTGCCTGATTATGCATACCCATATG- ATGTC CCCGACTATGCCTAA (SEQ ID NO: 5) Amino acid sequence of AsCpf1-NLS-3xHA AsCpf1 in normal font (AAs 1-1306), NLS (krpaatkkagqakkkkgs, SEQ ID NO: 6) in lower case, 3xHA tag (YPYDVPDYAYPYDVPDYAYPYDVPDYA, SEQ ID NO: 7) in bold MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQLDWE- NLS AAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT- TEHENALLRSF DKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTS- IEEVFSFPFYNQ LLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEE- FKSDEEVIQSFCKY KTLLRNENVLETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQ- RSLKHEDINLQE1 ISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFS- ARLTGIKLEM EPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFE- PTEKTSEG FDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAKKT- GDQKGYREAL CKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYN- KDFAKGHHGKP NLHTLYVVTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVN- HRLSHDLSD EARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGERNL- IYITVIDSTGKI LE QRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSK- RTGIAEKAV YQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVW- KTIKNHES RKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENH- RFTGRYRDL YPANELIALLEEKGIVFIRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCF- DSRPQNPEWP MDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRNkrpaatkkagqakkkkgsYPYDVPDY- AYPYDVPDYAYP YDVPDYA (SEQ ID NO: 8) Nucleotide sequence of SQT1665 pCAG-humanLbCpf1-NLS-3xHA Human codon optimized LbCpf1 in normal font, nts 1-3684), NLS (aaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaag, SEQ ID NO: 3) in lower case, 3xHA tag (TACCCATACGATGTTCCAGATTACGCTTATCCCTACGACGTGCCTGATTATGCATACCCATAT GATGTCCCCGACTATGCC, SEQ ID NO: 4) in BOLD ATGAGCAAGCTGGAGAAGTTTACAAACTGCTACTCCCTGTCTAAGACCCTGAGGTTCAAGGCCATCCCTGTG GGCAAGACCCAGGAGAACATCGACAATAAGCGGCTGCTGGTGGAGGACGAGAAGAGAGCCGAGGATTATAAGGG- CGT GAAGAAGCTGCTGGATCGCTACTATCTGTCTTTTATCAACGACGTGCTGCACAGCATCAAGCTGAAGAATCTGA- ACAAT TACATCAGCCTGTTCCGGAAGAAAACCAGAACCGAGAAGGAGAATAAGGAGCTGGAGAACCTGGAGATCAATCT- GCGG AAGGAGATCGCCAAGGCCTTCAAGGGCAACGAGGGCTACAAGTCCCTGTTTAAGAAGGATATCATCGAGACAAT- CCTG CCAGAGTTCCTGGACGATAAGGACGAGATCGCCCTGGTGAACAGCTTCAATGGCTTTACCACAGCCTTCACCGG- CTTC TTTGATAACAGAGAGAATATGTTTTCCGAGGAGGCCAAGAGCACATCCATCGCCTTCAGGTGTATCAACGAGAA- TCTGA CCCGCTACATCTCTAATATGGACATCTTCGAGAAGGTGGACGCCATCTTTGATAAGCACGAGGTGCAGGAGATC- AAGG AGAAGATCCTGAACAGCGACTATGATGTGGAGGATTTCTTTGAGGGCGAGTTCTTTAACTTTGTGCTGACACAG- GAGG GCATCGACGTGTATAACGCCATCATCGGCGGCTTCGTGACCGAGAGCGGCGAGAAGATCAAGGGCCTGAACGAG- TAC ATCAACCTGTATAATCAGAAAACCAAGCAGAAGCTGCCTAAGTTTAAGCCACTGTATAAGCAGGTGCTGAGCGA- TCGGG AGTCTCTGAGCTTCTACGGCGAGGGCTATACATCCGATGAGGAGGTGCTGGAGGTGTTTAGAAACACCCTGAAC- AAGA ACAGCGAGATCTTCAGCTCCATCAAGAAGCTGGAGAAGCTGTTCAAGAATTTTGACGAGTACTCTAGCGCCGGC- ATCTT TGTGAAGAACGGCCCCGCCATCAGCACAATCTCCAAGGATATCTTCGGCGAGTGGAACGTGATCCGGGACAAGT- GGA ATGCCGAGTATGACGATATCCACCTGAAGAAGAAGGCCGTGGTGACCGAGAAGTACGAGGACGATCGGAGAAAG- TCC TTCAAGAAGATCGGCTCCTTTTCTCTGGAGCAGCTGCAGGAGTACGCCGACGCCGATCTGTCTGTGGTGGAGAA- GCTG AAGGAGATCATCATCCAGAAGGTGGATGAGATCTACAAGGTGTATGGCTCCTCTGAGAAGCTGTTCGACGCCGA- TTTT GTGCTGGAGAAGAGCCTGAAGAAGAACGACGCCGTGGTGGCCATCATGAAGGACCTGCTGGATTCTGTGAAGAG- CTT CGAGAATTACATCAAGGCCTTCTTTGGCGAGGGCAAGGAGACAAACAGGGACGAGTCCTTCTATGGCGATTTTG- TGCT GGCCTACGACATCCTGCTGAAGGTGGACCACATCTACGATGCCATCCGCAATTATGTGACCCAGAAGCCCTACT- CTAA GGATAAGTTCAAGCTGTATTTTCAGAACCCTCAGTTCATGGGCGGCTGGGACAAGGATAAGGAGACAGACTATC- GGGC CACCATCCTGAGATACGGCTCCAAGTACTATCTGGCCATCATGGATAAGAAGTACGCCAAGTGCCTGCAGAAGA- TCGA CAAGGACGATGTGAACGGCAATTACGAGAAGATCAACTATAAGCTGCTGCCCGGCCCTAATAAGATGCTGCCAA- AGGT GTTCTTTTCTAAGAAGTGGATGGCCTACTATAACCCCAGCGAGGACATCCAGAAGATCTACAAGAATGGCACAT- TCAAG AAGGGCGATATGTTTAACCTGAATGACTGTCACAAGCTGATCGACTTCTTTAAGGATAGCATCTCCCGGTATCC- AAAGT GGTCCAATGCCTACGATTTCAACTTTTCTGAGACAGAGAAGTATAAGGACATCGCCGGCTTTTACAGAGAGGTG- GAGG AGCAGGGCTATAAGGTGAGCTTCGAGTCTGCCAGCAAGAAGGAGGTGGATAAGCTGGTGGAGGAGGGCAAGCTG- TAT ATGTTCCAGATCTATAACAAGGACTTTTCCGATAAGTCTCACGGCACACCCAATCTGCACACCATGTACTTCAA- GCTGCT GTTTGACGAGAACAATCACGGACAGATCAGGCTGAGCGGAGGAGCAGAGCTGTTCATGAGGCGCGCCTCCCTGA- AGA AGGAGGAGCTGGTGGTGCACCCAGCCAACTCCCCTATCGCCAACAAGAATCCAGATAATCCCAAGAAAACCACA- ACCC TGTCCTACGACGTGTATAAGGATAAGAGGTTTTCTGAGGACCAGTACGAGCTGCACATCCCAATCGCCATCAAT- AAGTG CCCCAAGAACATCTTCAAGATCAATACAGAGGTGCGCGTGCTGCTGAAGCACGACGATAACCCCTATGTGATCG- GCAT CGATAGGGGCGAGCGCAATCTGCTGTATATCGTGGTGGTGGACGGCAAGGGCAACATCGTGGAGCAGTATTCCC- TGA ACGAGATCATCAACAACTTCAACGGCATCAGGATCAAGACAGATTACCACTCTCTGCTGGACAAGAAGGAGAAG- GAGA GGTTCGAGGCCCGCCAGAACTGGACCTCCATCGAGAATATCAAGGAGCTGAAGGCCGGCTATATCTCTCAGGTG- GTG CACAAGATCTGCGAGCTGGTGGAGAAGTACGATGCCGTGATCGCCCTGGAGGACCTGAACTCTGGCTTTAAGAA- TAGC CGCGTGAAGGTGGAGAAGCAGGTGTATCAGAAGTTCGAGAAGATGCTGATCGATAAGCTGAACTACATGGTGGA- CAAG AAGTCTAATCCTTGTGCAACAGGCGGCGCCCTGAAGGGCTATCAGATCACCAATAAGTTCGAGAGCTTTAAGTC- CATGT CTACCCAGAACGGCTTCATCTTTTACATCCCTGCCTGGCTGACATCCAAGATCGATCCATCTACCGGCTTTGTG- AACCT GCTGAAAACCAAGTATACCAGCATCGCCGATTCCAAGAAGTTCATCAGCTCCTTTGACAGGATCATGTACGTGC- CCGAG GAGGATCTGTTCGAGTTTGCCCTGGACTATAAGAACTTCTCTCGCACAGACGCCGATTACATCAAGAAGTGGAA- GCTGT ACTCCTACGGCAACCGGATCAGAATCTTCCGGAATCCTAAGAAGAACAACGTGTTCGACTGGGAGGAGGTGTGC- CTGA CCAGCGCCTATAAGGAGCTGTTCAACAAGTACGGCATCAATTATCAGCAGGGCGATATCAGAGCCCTGCTGTGC- GAGC AGTCCGACAAGGCCTTCTACTCTAGCTTTATGGCCCTGATGAGCCTGATGCTGCAGATGCGGAACAGCATCACA- GGCC GCACCGACGTGGATTTTCTGATCAGCCCTGTGAAGAACTCCGACGGCATCTTCTACGATAGCCGGAACTATGAG- GCCC AGGAGAATGCCATCCTGCCAAAGAACGCCGACGCCAATGGCGCCTATAACATCGCCAGAAAGGTGCTGTGGGCC- ATC GGCCAGTTCAAGAAGGCCGAGGACGAGAAGCTGGATAAGGTGAAGATCGCCATCTCTAACAAGGAGTGGCTGGA-

GTA CGCCCAGACCAGCGTGAAGCACaaaaggccggeggccacgaaaaaggccggccaggcaaaaaagaaaaagGGAT- CCTACCCATACGAT GTTCCAGATTACGCTTATCCCTACGACGTGCCTGATTATGCATACCCATATGATGTCCCCGACTATGCCTAA (SEQ ID NO: 9) Amino acid sequence of LbCpf1-NLS-3xHA LbCpf1 in normal text (AAs 1-1228), NLS (krpaatkkagqakkkkgs, SEQ ID NO: 6) in lower case, 3xHA tag (YPYDVPDYAYPYDVPDYAYPYDVPDYA, SEQ ID NO: 7) in bold MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSIKLKNL- NNYI SLFRKKTRTEKENKELENLEI NLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSE EAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYN- AIIGGFVTESGE KIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKL- FKNFDEYSSA GIFVKNGPAISTISKDIFGEWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADL- SVVEKLKEIIIQ KVDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGDFVLAY- DILLKVDHIY DAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNY- EKINYKLL PGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSET- EKYKDIAG FYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGA- ELFMRRA SLKKEELVVHPANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHD- DNPYVIGIDRGE RNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNVVTSIENIKELKAGYISQVV- HKICELVEKYDAVI ALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFESFKSMSTQNGFIFYI- PAWLTSKID PSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPK- KNNVFDWEEV CLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYD- SRNYEAQEN AILPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKHkrpaatkkagqakkkkgs- YPYDVPDYAYPYD VPDYAYPYDVPDYA (SEQ ID NO: 10) Cpf1 crRNAs Spacer length Sequence with Cpf1 PAM at 5' end Name (nt) (TTTC/TTTA/TTTG) SEQ ID NO DNMT1 DNMT1 site 1 23 TTTCCCTCACTCCTGCTCGGTGAATTT 11. DNMT1 site 1 mm 1&2 23 TTTCggTCACTCCTGCTCGGTGAATTT 12. DNMT1 site 1 mm 3&4 23 TTTCCCagACTCCTGCTCGGTGAATTT 13. DNMT1 site 1 mm 5&6 23 TTTCCCTCtgTCCTGCTCGGTGAATTT 14. DNMT1 site 1 mm 7&8 23 TTTCCCTCACagCTGCTCGGTGAATTT 15. DNMT1 site 1 mm 9&10 23 TTTCCCTCACTCgaGCTCGGTGAATTT 16. DNMT1 site 1 mm 11&12 23 TTTCCCTCACTCCTcgTCGGTGAATTT 17. DNMT1 site 1 mm 13&14 23 TTTCCCTCACTCCTGCagGGTGAATTT 18. DNMT1 site 1 mm 15&16 23 TTTCCCTCACTCCTGCTCccTGAATTT 19. DNMT1 site 1 mm 17&18 23 TTTCCCTCACTCCTGCTCGGacAATTT 20. DNMT1 site 1 mm 19&20 23 TTTCCCTCACTCCTGCTCGGTGttTTT 21. DNMT1 site 1 mm 21&22 23 TTTCCCTCACTCCTGCTCGGTGAAaaT 22. DNMT1 site 1 mm 22&23 23 TTTCCCTCACTCCTGCTCGGTGAATaa 23. DNMT1 site 1 mm 1 23 TTTCgCTCACTCCTGCTCGGTGAATTT 24. DNMT1 site 1 mm 2 23 TTTCCgTCACTCCTGCTCGGTGAATTT 25. DNMT1 site 1 mm 3 23 TTTCCCaCACTCCTGCTCGGTGAATTT 26. DNMT1 site 1 mm 4 23 TTTCCCTgACTCCTGCTCGGTGAATTT 27. DNMT1 site 1 mm 5 23 TTTCCCTCtCTCCTGCTCGGTGAATTT 28. DNMT1 site 1 mm 6 23 TTTCCCTCAgTCCTGCTCGGTGAATTT 29. DNMT1 site 1 mm 7 23 TTTCCCTCACaCCTGCTCGGTGAATTT 30. DNMT1 site 1 mm 8 23 TTTCCCTCACTgCTGCTCGGTGAATTT 31. DNMT1 site 1 mm 9 23 TTTCCCTCACTCgTGCTCGGTGAATTT 32. DNMT1 site 1 mm 10 23 TTTCCCTCACTCCaGCTCGGTGAATTT 33. DNMT1 site 1 mm 11 23 TTTCCCTCACTCCTcCTCGGTGAATTT 34. DNMT1 site 1 mm 12 23 TTTCCCTCACTCCTGgTCGGTGAATTT 35. DNMT1 site 1 mm 13 23 TTTCCCTCACTCCTGCaCGGTGAATTT 36. DNMT1 site 1 mm 14 23 TTTCCCTCACTCCTGCTgGGTGAATTT 37. DNMT1 site 1 mm 15 23 TTTCCCTCACTCCTGCTCcGTGAATTT 38. DNMT1 site 1 mm 16 23 TTTCCCTCACTCCTGCTCGcTGAATTT 39. DNMT1 site 1 mm 17 23 TTTCCCTCACTCCTGCTCGGaGAATTT 40. DNMT1 site 1 mm 18 23 TTTCCCTCACTCCTGCTCGGTcAATTT 41. DNMT1 site 1 mm 19 23 TTTCCCTCACTCCTGCTCGGTGtATTT 42. DNMT1 site 1 mm 20 23 TTTCCCTCACTCCTGCTCGGTGAtTTT 43. DNMT1 site 1 mm 21 23 TTTCCCTCACTCCTGCTCGGTGAAaTT 44. DNMT1 site 1 mm 22 23 TTTCCCTCACTCCTGCTCGGTGAATaT 45. DNMT1 site 1 mm 23 23 TTTCCCTCACTCCTGCTCGGTGAATTa 46. DNMT1 site 1 26 TTTCCCTCACTCCTGCTCGGTGAATTTGGC 47. DNMT1 site 1 25 TTTCCCTCACTCCTGCTCGGTGAATTTGG 48. DNMT1 site 1 24 TTTCCCTCACTCCTGCTCGGTGAATTTG 49. DNMT1 site 1 22 TTTCCCTCACTCCTGCTCGGTGAATT 50. DNMT1 site 1 21 TTTCCCTCACTCCTGCTCGGTGAAT 51. DNMT1 site 1 20 TTTCCCTCACTCCTGCTCGGTGAA 52. DNMT1 site 1 mm 1 20 TTTCgCTCACTCCTGCTCGGTGAA 53. DNMT1 site 1 mm 2 20 TTTCCgTCACTCCTGCTCGGTGAA 54. DNMT1 site 1 mm 3 20 TTTCCCaCACTCCTGCTCGGTGAA 55. DNMT1 site 1 mm 4 20 TTTCCCTgACTCCTGCTCGGTGAA 56. DNMT1 site 1 mm 5 20 TTTCCCTCtCTCCTGCTCGGTGAA 57. DNMT1 site 1 mm 6 20 TTTCCCTCAgTCCTGCTCGGTGAA 58. DNMT1 site 1 mm 7 20 TTTCCCTCACaCCTGCTCGGTGAA 59. DNMT1 site 1 mm 8 20 TTTCCCTCACTgCTGCTCGGTGAA 60. DNMT1 site 1 mm 9 20 TTTCCCTCACTCgTGCTCGGTGAA 61. DNMT1 site 1 mm 10 20 TTTCCCTCACTCCaGCTCGGTGAA 62. DNMT1 site 1 mm 11 20 TTTCCCTCACTCCTcCTCGGTGAA 63. DNMT1 site 1 mm 12 20 TTTCCCTCACTCCTGgTCGGTGAA 64. DNMT1 site 1 mm 13 20 TTTCCCTCACTCCTGCaCGGTGAA 65. DNMT1 site 1 mm 14 20 TTTCCCTCACTCCTGCTgGGTGAA 66. DNMT1 site 1 mm 15 20 TTTCCCTCACTCCTGCTCcGTGAA 67. DNMT1 site 1 mm 16 20 TTTCCCTCACTCCTGCTCGcTGAA 68. DNMT1 site 1 mm 17 20 TTTCCCTCACTCCTGCTCGGaGAA 69. DNMT1 site 1 mm 18 20 TTTCCCTCACTCCTGCTCGGTcAA 70. DNMT1 site 1 mm 19 20 TTTCCCTCACTCCTGCTCGGTGtA 71. DNMT1 site 1 mm 20 20 TTTCCCTCACTCCTGCTCGGTGAt 72. DNMT1 site 1 19 TTTCCCTCACTCCTGCTCGGTGA 73. DNMT1 site 1 18 TTTCCCTCACTCCTGCTCGGTG 74. DNMT1 site 1 17 TTTCCCTCACTCCTGCTCGGT 75. DNMT1 site 1 16 TTTCCCTCACTCCTGCTCGG 76. DNMT1 site 2 23 TTTGAGGAGTGTTCAGTCTCCGTGAAC 77. DNMT1 site 3 23 TTTCCTGATGGTCCATGTCTGTTACTC 78. DNMT1 site 3 mm 1&2 23 TTTCgaGATGGTCCATGTCTGTTACTC 79. DNMT1 site 3 mm 3&4 23 TTTCCTctTGGTCCATGTCTGTTACTC 80. DNMT1 site 3 mm 5&6 23 TTTCCTGAacGTCCATGTCTGTTACTC 81. DNMT1 site 3 mm 7&8 23 TTTCCTGATGcaCCATGTCTGTTACTC 82. DNMT1 site 3 mm 9&10 23 TTTCCTGATGGTggATGTCTGTTACTC 83. DNMT1 site 3 mm 11&12 23 TTTCCTGATGGTCCtaGTCTGTTACTC 84. DNMT1 site 3 mm 13&14 23 TTTCCTGATGGTCCATcaCTGTTACTC 85. DNMT1 site 3 mm 15&16 23 TTTCCTGATGGTCCATGTgaGTTACTC 86. DNMT1 site 3 mm 17&18 23 TTTCCTGATGGTCCATGTCTcaTACTC 87. DNMT1 site 3 mm 19&20 23 TTTCCTGATGGTCCATGTCTGTatCTC 88. DNMT1 site 3 mm 21&22 23 TTTCCTGATGGTCCATGTCTGTTAgaC 89. DNMT1 site 3 mm 22&23 23 TTTCCTGATGGTCCATGTCTGTTACag 90. DNMT1 site 3 mm 1 23 TTTCgTGATGGTCCATGTCTGTTACTC 91. DNMT1 site 3 mm 2 23 TTTCCaGATGGTCCATGTCTGTTACTC 92. DNMT1 site 3 mm 3 23 TTTCCTcATGGTCCATGTCTGTTACTC 93. DNMT1 site 3 mm 4 23 TTTCCTGtTGGTCCATGTCTGTTACTC 94. DNMT1 site 3 mm 5 23 TTTCCTGAaGGTCCATGTCTGTTACTC 95. DNMT1 site 3 mm 6 23 TTTCCTGATcGTCCATGTCTGTTACTC 96. DNMT1 site 3 mm 7 23 TTTCCTGATGcTCCATGTCTGTTACTC 97. DNMT1 site 3 mm 8 23 TTTCCTGATGGaCCATGTCTGTTACTC 98. DNMT1 site 3 mm 9 23 TTTCCTGATGGTgCATGTCTGTTACTC 99. DNMT1 site 3 mm 10 23 TTTCCTGATGGTCgATGTCTGTTACTC 100. DNMT1 site 3 mm 11 23 TTTCCTGATGGTCCtTGTCTGTTACTC 101. DNMT1 site 3 mm 12 23 TTTCCTGATGGTCCAaGTCTGTTACTC 102. DNMT1 site 3 mm 13 23 TTTCCTGATGGTCCATcTCTGTTACTC 103. DNMT1 site 3 mm 14 23 TTTCCTGATGGTCCATGaCTGTTACTC 104. DNMT1 site 3 mm 15 23 TTTCCTGATGGTCCATGTgTGTTACTC 105. DNMT1 site 3 mm 16 23 TTTCCTGATGGTCCATGTCaGTTACTC 106. DNMT1 site 3 mm 17 23 TTTCCTGATGGTCCATGTCTcTTACTC 107. DNMT1 site 3 mm 18 23 TTTCCTGATGGTCCATGTCTGaTACTC 108. DNMT1 site 3 mm 19 23 TTTCCTGATGGTCCATGTCTGTaACTC 109. DNMT1 site 3 mm 20 23 TTTCCTGATGGTCCATGTCTGTTtCTC 110. DNMT1 site 3 mm 21 23 TTTCCTGATGGTCCATGTCTGTTAgTC 111.

DNMT1 site 3 mm 22 23 TTTCCTGATGGTCCATGTCTGTTACaC 112. DNMT1 site 3 mm 23 23 TTTCCTGATGGTCCATGTCTGTTACTg 113. DNMT1 site 3 26 TTTCCTGATGGTCCATGTCTGTTACTCGCC 114. DNMT1 site 3 25 TTTCCTGATGGTCCATGTCTGTTACTCGC 115. DNMT1 site 3 24 TTTCCTGATGGTCCATGTCTGTTACTCG 116. DNMT1 site 3 22 TTTCCTGATGGTCCATGTCTGTTACT 117. DNMT1 site 3 21 TTTCCTGATGGTCCATGTCTGTTAC 118. DNMT1 site 3 20 TTTCCTGATGGTCCATGTCTGTTA 119. DNMT1 site 3 mm 1 20 TTTCgTGATGGTCCATGTCTGTTA 120. DNMT1 site 3 mm 2 20 TTTCCaGATGGTCCATGTCTGTTA 121. DNMT1 site 3 mm 3 20 TTTCCTcATGGTCCATGTCTGTTA 122. DNMT1 site 3 mm 4 20 TTTCCTGtTGGTCCATGTCTGTTA 123. DNMT1 site 3 mm 5 20 TTTCCTGAaGGTCCATGTCTGTTA 124. DNMT1 site 3 mm 6 20 TTTCCTGATcGTCCATGTCTGTTA 125. DNMT1 site 3 mm 7 20 TTTCCTGATGcTCCATGTCTGTTA 126. DNMT1 site 3 mm 8 20 TTTCCTGATGGaCCATGTCTGTTA 127. DNMT1 site 3 mm 9 20 TTTCCTGATGGTgCATGTCTGTTA 128. DNMT1 site 3 mm 10 20 TTTCCTGATGGTCgATGTCTGTTA 129. DNMT1 site 3 mm 11 20 TTTCCTGATGGTCCtTGTCTGTTA 130. DNMT1 site 3 mm 12 20 TTTCCTGATGGTCCAaGTCTGTTA 131. DNMT1 site 3 mm 13 20 TTTCCTGATGGTCCATcTCTGTTA 132. DNMT1 site 3 mm 14 20 TTTCCTGATGGTCCATGaCTGTTA 133. DNMT1 site 3 mm 15 20 TTTCCTGATGGTCCATGTgTGTTA 134. DNMT1 site 3 mm 16 20 TTTCCTGATGGTCCATGTCaGTTA 135. DNMT1 site 3 mm 17 20 TTTCCTGATGGTCCATGTCTcTTA 136. DNMT1 site 3 mm 18 20 TTTCCTGATGGTCCATGTCTGaTA 137. DNMT1 site 3 mm 19 20 TTTCCTGATGGTCCATGTCTGTaA 138. DNMT1 site 3 mm 20 20 TTTCCTGATGGTCCATGTCTGTTt 139. DNMT1 site 3 19 TTTCCTGATGGTCCATGTCTGTT 140. DNMT1 site 3 18 TTTCCTGATGGTCCATGTCTGT 141. DNMT1 site 3 17 TTTCCTGATGGTCCATGTCTG 142. DNMT1 site 3 16 TTTCCTGATGGTCCATGTCT 143. DNMT1 site 4 23 TTTATTTCCCTTCAGCTAAAATAAAGG 144. DNMT1 site 5 23 TTTATTTTAGCTGAAGGGAAATAAAAG 145. DNMT1 site 6 23 TTTTATTTCCCTTCAGCTAAAATAAAG 146. DNMT1 site 7 23 TTTGGCTCAGCAGGCACCTGCCTCAGC 147. DNMT1 site 7 mm 1&2 23 TTTGcgTCAGCAGGCACCTGCCTCAGC 148. DNMT1 site 7 mm 3&4 23 TTTGGCagAGCAGGCACCTGCCTCAGC 149. DNMT1 site 7 mm 5&6 23 TTTGGCTCtcCAGGCACCTGCCTCAGC 150. DNMT1 site 7 mm 7&8 23 TTTGGCTCAGgtGGCACCTGCCTCAGC 151. DNMT1 site 7 mm 9&10 23 TTTGGCTCAGCAccCACCTGCCTCAGC 152. DNMT1 site 7 mm 11&12 23 TTTGGCTCAGCAGGgtCCTGCCTCAGC 153. DNMT1 site 7 mm 13&14 23 TTTGGCTCAGCAGGCAggTGCCTCAGC 154. DNMT1 site 7 mm 15&16 23 TTTGGCTCAGCAGGCACCacCCTCAGC 155. DNMT1 site 7 mm 17&18 23 TTTGGCTCAGCAGGCACCTGggTCAGC 156. DNMT1 site 7 mm 19&20 23 TTTGGCTCAGCAGGCACCTGCCagAGC 157. DNMT1 site 7 mm 21&22 23 TTTGGCTCAGCAGGCACCTGCCTCtcC 158. DNMT1 site 7 mm 22&23 23 TTTGGCTCAGCAGGCACCTGCCTCAcg 159. DNMT1 site 7 26 TTTGGCTCAGCAGGCACCTGCCTCAGCTGC 160. DNMT1 site 7 25 TTTGGCTCAGCAGGCACCTGCCTCAGCTG 161. DNMT1 site 7 24 TTTGGCTCAGCAGGCACCTGCCTCAGCT 162. DNMT1 site 7 22 TTTGGCTCAGCAGGCACCTGCCTCAG 163. DNMT1 site 7 21 TTTGGCTCAGCAGGCACCTGCCTCA 164. DNMT1 site 7 20 TTTGGCTCAGCAGGCACCTGCCTC 165. DNMT1 site 7 19 TTTGGCTCAGCAGGCACCTGCCT 166. DNMT1 site 7 18 TTTGGCTCAGCAGGCACCTGCC 167. DNMT1 site 7 17 TTTGGCTCAGCAGGCACCTGC 168. DNMT1 site 7 16 TTTGGCTCAGCAGGCACCTG 169. EMX1 EMX1 site 1 23 TTTCTCATCTGTGCCCCTCCCTCCCTG 170. EMX1 site 2 23 TTTGTCCTCCGGTTCTGGAACCACACC 171. EMX1 site 3 23 TTTGTGGTTGCCCACCCTAGTCATTGG 172. EMX1 site 4 23 TTTGTACTTTGTCCTCCGGTTCTGGAA 173. FANCF FANCF site 1 23 TTTGGGCGGGGTCCAGTTCCGGGATTA 174. FANCF site 2 23 TTTGGTCGGCATGGCCCCATTCGCACG 175. FANCF site 3 23 TTTTCCGAGCTTCTGGCGGTCTCAAGC 176. FANCF site 4 23 TTTCACCTTGGAGACGGCGACTCTCTG 177. RUNX1 RUNX1 site 1 23 TTTTCAGGAGGAAGCGATGGCTTCAGA 178. RUNX1 site 2 23 TTTCGCTCCGAAGGTAAAAGAAATCAT 179. RUNX1 site 3 23 TTTCAGCCTCACCCCTCTAGCCCTACA 180. RUNX1 site 4 23 TTTCTTCTCCCCTCTGCTGGATACCTC 181. mm: mismatched positions; mismatches which are shown in lower case SpCas9 gRNAs Spacer length Name (nt) Spacer Sequence DNMT1 Spacer length Name (nt) Spacer Sequence DNMT1 site 1 20 GTCACTCTGGGGAACACGCC 182. DNMT1 site 2 20 GAGTGCTAAGGGAACGTTCA 183. DNMT1 site 3 20 GAGACTGAACACTCCTCAAA 184. DNMT1 site 4 20 GGAGTGAGGGAAACGGCCCC 185. SpCas9 gRNAs Spacer length Name (nt) Spacer Sequence EMX1 EMX1 site 1 20 GAGTCCGAGCAGAAGAAGAA 186. EMX1 site 2 20 GTCACCTCCAATGACTAGGG 187. FANCF FANCF site 1 20 GGAATCCCTTCTGCAGCACC 188. FANCF site 2 20 GCTGCAGAAGGGATTCCATG 189. RUNX1 RUNX1 site 1 20 GCATTTTCAGGAGGAAGCGA 190. RUNX1 site 2 20 GGGAGAAGAAAGAGAGATGT 191.

Example 1. Tolerance of AsCpf1 and LbCpf1 to Mismatches in crRNA:Target Site Duplex

[0074] In a recent publication (Kleinstiver & Tsai et al., Nature Biotechnology 2016) using 3 different crRNAs targeted to endogenous sites in the human DNMT1 gene, it was determined that both AsCpf1 and LbCpf1 are nearly completely intolerant to pairs of adjacent mismatches in their crRNA:target-site duplex (FIG. 1a). Compared to the indel formation activity with any of the 3 perfectly matched crRNAs, pairs of mismatches in the crRNA between positions 1/2 to 17/18 nearly completely eliminated detectable indel formation. We also tested the tolerance of both Cpf1s to single mismatches across the length of two different sites and found that AsCpf1 and LbCpf1 could generally discriminate against sites where the crRNA contained a single mismatch at positions 2-6 and 13-17 (FIG. 1b). Conversely, both Cpf1 orthologues could tolerate single mismatches at positions 1 and 7-12 with varying degrees of efficiency (FIG. 1b). From both singly- and doubly-mismatched crRNA experiments, it was clear that Cpf1 did not have specificity at positions 18-23 of the spacer and could tolerate single and double mismatches in this region.

[0075] More recently, the tolerance of LbCpf1 and AsCpf1 to single mismatches across a third spacer sequence was also examined; while single mismatches at positions 1-4 and 6 abolished cleavage, the remainder of singly-mismatched crRNAs were competent to generate indel mutations with LbCpf1 and AsCpf1 (FIGS. 2A and 2B, respectively).

[0076] Overall, these combined experiments demonstrate that although both AsCpf1 and LbCpf1 generally have high genome-wide specificity and can be intolerant to single mismatches across their target site spacer regions, there are a number of positions at which single substitutions are tolerated and could potentially lead to off-target effects. Thus, we were interested in taking a rational approach to engineer high-fidelity Cpf1 (Cpf1-HF) variants that would be unable to tolerate any singly mismatched positions across the entire spacer sequence. These Cpf1-HF variants would be useful for studies that require single-nucleotide resolution in genome-editing applications, such as distinguishing and preferentially editing alleles that differ by a single base change (such as SNPs).

Example 2. Cpf1-HF

[0077] A recent crystal structure of AsCpf1 (Yamano et al., Cell 2016) enabled us to look carefully at the 3D-structure of Cpf1 and examine potential amino acid side chains that make non-specific contacts to the DNA backbone (Table 1). We identified a number of AsCpf1 residues whose side-chains appeared to be within contact distance of either the target or non-target DNA strands as candidates to mutate. Similar amino acid positions of LbCpf1 (for which no crystal structure is publicly available) were predicted by generating sequence alignments with AsCpf1 and other Cpf1 orthologues, and then identifying residues that are in homologous positions and contain similar functional groups (Table 1).

TABLE-US-00006 TABLE 1 Amino acids of AsCpf1 and LbCpf1 that are predicted to I tried make non-specific contacts to the target and non-target DNA strands Target strand contacts Non-target strand contacts AsCpf1 LbCpf1 (-18)* AsCpf1 LbCpf1 (-18)* N178 N160 K85 K83 S186 S168 K87 R86 N278 N256 R92 K89, K92 N282 N260 N93 N91 R301 K272 R113 N112 T315 S286 K200 R182 S376 K349 R210 K192 N515 D505 K403 K380 R518 R508 K406 R385, R386, K387 N519 N509 Q611 K600 K523 Q513 K613 K601 K524 K514 N647 N607 K603 K591 K653 K614 K780 R737 Q656 K617, N618 Q784 G741 K661 K622 R951 R883 K662 K623 K965 K897 K887 K811 Q1013 K944 R909 R833 Q1014 S945 K1086 K1017 K1017 K948i R1094 K1025, K1026 K1054 K1118 -- R1121 K1050 R1127 R1054 R1174 K1096 R1220 -- K1288 K1200, K1205 N1291 K1208 *amino acids 1-1228 of SEQ ID NO: 10.

[0078] To test the hypothesis of whether alanine substitution of amino acids that potentially make non-specific contacts to the target strand DNA can reduce tolerance of mismatches in the crRNA:target duplex, the activity of multiple LbCpf1 variants was first examined. Using crRNAs that were either matched (for on-target activity) or contained mismatches at positions 8 or 9 (to mimic off-target sites) targeted to DNMT1 sites 1 and 3 (FIGS. 3 and 4, respectively), a number of variants appear to reduce activities with the mismatched crRNAs without dramatic effects on on-target activities.

[0079] Given these initial results, it is very likely that combinations of mutations that show improved specificities individually may show even more substantial improvements in specificities. The activities of such variants are examined using an expanded panel of matched and mismatched crRNAs.

[0080] Next, to perform an initial screen of AsCpf1 variants whose mutations are homologous to those of the LbCpf1 variants that appeared most promising, the activity of a subset of possible variants was examined using the crRNAs that were matched for DNMT1 site 1 or contained single mismatches at positions 8 or 9 (FIGS. 5A and 5B). A larger number of AsCpf1 variants were tested using crRNAs that were either matched (for on-target activity) or contained mismatches at positions 8 or 9 (to mimic off-target sites) targeted to DNMT1 site 3 (FIG. 6). A number of variants appear to reduce activities with the mismatched crRNAs without dramatic effects on on-target activities. Additional untested mutations and combinations thereof may yield improvements in their abilities to discriminate against mismatched sites.

REFERENCES

[0081] 1. Zetsche, B. et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163, 759-771 (2015). [0082] 2. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355 (2014). [0083] 3. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014). [0084] 4. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014). [0085] 5. Maeder, M. L. & Gersbach, C. A. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther (2016). [0086] 6. Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 164, 29-44 (2016). [0087] 7. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012). [0088] 8. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011). [0089] 9. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems.

[0090] Science 339, 819-823 (2013). [0091] 10. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013). [0092] 11. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013). [0093] 12. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197 (2015). [0094] 13. Frock, R. L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33, 179-186 (2015). [0095] 14. Wang, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33, 175-178 (2015). [0096] 15. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243, 231 p following 243 (2015). [0097] 16. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 (2016). [0098] 17. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 (2016). [0099] 18. Schunder, E., Rydzewski, K., Grunow, R. & Heuner, K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int J Med Microbiol 303, 51-60 (2013). [0100] 19. Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736 (2015). [0101] 20. Fagerlund, R. D., Staals, R. H. & Fineran, P. C. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16, 251 (2015). [0102] 21. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475 (2014). [0103] 22. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284 (2014). [0104] 23. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol (2015). [0105] 24. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered specificities. Nature 523, 481-485 (2015). [0106] 25. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol (2016). [0107] 26. Bolukbasi, M. F. et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Methods (2015). [0108] 27. Friedland, A. E. et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16, 257 (2015). [0109] 28. Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32, 569-576 (2014). [0110] 29. Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30, 460-465 (2012). [0111] 30. Tsai, S. Q., Topkar, V. V., Joung, J. K. & Aryee, M. J. Open-source guideseq software for analysis of GUIDE-seq data. Nat Biotechnol 34, 483 (2016).

Other Embodiments

[0112] It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Sequence CWU 1

1

19811246PRTUnknownDescription of Unknown Lachnospiraceae bacterium polypeptide 1Met Leu Lys Asn Val Gly Ile Asp Arg Leu Asp Val Glu Lys Gly Arg 1 5 10 15 Lys Asn Met Ser Lys Leu Glu Lys Phe Thr Asn Cys Tyr Ser Leu Ser 20 25 30 Lys Thr Leu Arg Phe Lys Ala Ile Pro Val Gly Lys Thr Gln Glu Asn 35 40 45 Ile Asp Asn Lys Arg Leu Leu Val Glu Asp Glu Lys Arg Ala Glu Asp 50 55 60 Tyr Lys Gly Val Lys Lys Leu Leu Asp Arg Tyr Tyr Leu Ser Phe Ile 65 70 75 80 Asn Asp Val Leu His Ser Ile Lys Leu Lys Asn Leu Asn Asn Tyr Ile 85 90 95 Ser Leu Phe Arg Lys Lys Thr Arg Thr Glu Lys Glu Asn Lys Glu Leu 100 105 110 Glu Asn Leu Glu Ile Asn Leu Arg Lys Glu Ile Ala Lys Ala Phe Lys 115 120 125 Gly Asn Glu Gly Tyr Lys Ser Leu Phe Lys Lys Asp Ile Ile Glu Thr 130 135 140 Ile Leu Pro Glu Phe Leu Asp Asp Lys Asp Glu Ile Ala Leu Val Asn 145 150 155 160 Ser Phe Asn Gly Phe Thr Thr Ala Phe Thr Gly Phe Phe Asp Asn Arg 165 170 175 Glu Asn Met Phe Ser Glu Glu Ala Lys Ser Thr Ser Ile Ala Phe Arg 180 185 190 Cys Ile Asn Glu Asn Leu Thr Arg Tyr Ile Ser Asn Met Asp Ile Phe 195 200 205 Glu Lys Val Asp Ala Ile Phe Asp Lys His Glu Val Gln Glu Ile Lys 210 215 220 Glu Lys Ile Leu Asn Ser Asp Tyr Asp Val Glu Asp Phe Phe Glu Gly 225 230 235 240 Glu Phe Phe Asn Phe Val Leu Thr Gln Glu Gly Ile Asp Val Tyr Asn 245 250 255 Ala Ile Ile Gly Gly Phe Val Thr Glu Ser Gly Glu Lys Ile Lys Gly 260 265 270 Leu Asn Glu Tyr Ile Asn Leu Tyr Asn Gln Lys Thr Lys Gln Lys Leu 275 280 285 Pro Lys Phe Lys Pro Leu Tyr Lys Gln Val Leu Ser Asp Arg Glu Ser 290 295 300 Leu Ser Phe Tyr Gly Glu Gly Tyr Thr Ser Asp Glu Glu Val Leu Glu 305 310 315 320 Val Phe Arg Asn Thr Leu Asn Lys Asn Ser Glu Ile Phe Ser Ser Ile 325 330 335 Lys Lys Leu Glu Lys Leu Phe Lys Asn Phe Asp Glu Tyr Ser Ser Ala 340 345 350 Gly Ile Phe Val Lys Asn Gly Pro Ala Ile Ser Thr Ile Ser Lys Asp 355 360 365 Ile Phe Gly Glu Trp Asn Val Ile Arg Asp Lys Trp Asn Ala Glu Tyr 370 375 380 Asp Asp Ile His Leu Lys Lys Lys Ala Val Val Thr Glu Lys Tyr Glu 385 390 395 400 Asp Asp Arg Arg Lys Ser Phe Lys Lys Ile Gly Ser Phe Ser Leu Glu 405 410 415 Gln Leu Gln Glu Tyr Ala Asp Ala Asp Leu Ser Val Val Glu Lys Leu 420 425 430 Lys Glu Ile Ile Ile Gln Lys Val Asp Glu Ile Tyr Lys Val Tyr Gly 435 440 445 Ser Ser Glu Lys Leu Phe Asp Ala Asp Phe Val Leu Glu Lys Ser Leu 450 455 460 Lys Lys Asn Asp Ala Val Val Ala Ile Met Lys Asp Leu Leu Asp Ser 465 470 475 480 Val Lys Ser Phe Glu Asn Tyr Ile Lys Ala Phe Phe Gly Glu Gly Lys 485 490 495 Glu Thr Asn Arg Asp Glu Ser Phe Tyr Gly Asp Phe Val Leu Ala Tyr 500 505 510 Asp Ile Leu Leu Lys Val Asp His Ile Tyr Asp Ala Ile Arg Asn Tyr 515 520 525 Val Thr Gln Lys Pro Tyr Ser Lys Asp Lys Phe Lys Leu Tyr Phe Gln 530 535 540 Asn Pro Gln Phe Met Gly Gly Trp Asp Lys Asp Lys Glu Thr Asp Tyr 545 550 555 560 Arg Ala Thr Ile Leu Arg Tyr Gly Ser Lys Tyr Tyr Leu Ala Ile Met 565 570 575 Asp Lys Lys Tyr Ala Lys Cys Leu Gln Lys Ile Asp Lys Asp Asp Val 580 585 590 Asn Gly Asn Tyr Glu Lys Ile Asn Tyr Lys Leu Leu Pro Gly Pro Asn 595 600 605 Lys Met Leu Pro Lys Val Phe Phe Ser Lys Lys Trp Met Ala Tyr Tyr 610 615 620 Asn Pro Ser Glu Asp Ile Gln Lys Ile Tyr Lys Asn Gly Thr Phe Lys 625 630 635 640 Lys Gly Asp Met Phe Asn Leu Asn Asp Cys His Lys Leu Ile Asp Phe 645 650 655 Phe Lys Asp Ser Ile Ser Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp 660 665 670 Phe Asn Phe Ser Glu Thr Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr 675 680 685 Arg Glu Val Glu Glu Gln Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser 690 695 700 Lys Lys Glu Val Asp Lys Leu Val Glu Glu Gly Lys Leu Tyr Met Phe 705 710 715 720 Gln Ile Tyr Asn Lys Asp Phe Ser Asp Lys Ser His Gly Thr Pro Asn 725 730 735 Leu His Thr Met Tyr Phe Lys Leu Leu Phe Asp Glu Asn Asn His Gly 740 745 750 Gln Ile Arg Leu Ser Gly Gly Ala Glu Leu Phe Met Arg Arg Ala Ser 755 760 765 Leu Lys Lys Glu Glu Leu Val Val His Pro Ala Asn Ser Pro Ile Ala 770 775 780 Asn Lys Asn Pro Asp Asn Pro Lys Lys Thr Thr Thr Leu Ser Tyr Asp 785 790 795 800 Val Tyr Lys Asp Lys Arg Phe Ser Glu Asp Gln Tyr Glu Leu His Ile 805 810 815 Pro Ile Ala Ile Asn Lys Cys Pro Lys Asn Ile Phe Lys Ile Asn Thr 820 825 830 Glu Val Arg Val Leu Leu Lys His Asp Asp Asn Pro Tyr Val Ile Gly 835 840 845 Ile Asp Arg Gly Glu Arg Asn Leu Leu Tyr Ile Val Val Val Asp Gly 850 855 860 Lys Gly Asn Ile Val Glu Gln Tyr Ser Leu Asn Glu Ile Ile Asn Asn 865 870 875 880 Phe Asn Gly Ile Arg Ile Lys Thr Asp Tyr His Ser Leu Leu Asp Lys 885 890 895 Lys Glu Lys Glu Arg Phe Glu Ala Arg Gln Asn Trp Thr Ser Ile Glu 900 905 910 Asn Ile Lys Glu Leu Lys Ala Gly Tyr Ile Ser Gln Val Val His Lys 915 920 925 Ile Cys Glu Leu Val Glu Lys Tyr Asp Ala Val Ile Ala Leu Glu Asp 930 935 940 Leu Asn Ser Gly Phe Lys Asn Ser Arg Val Lys Val Glu Lys Gln Val 945 950 955 960 Tyr Gln Lys Phe Glu Lys Met Leu Ile Asp Lys Leu Asn Tyr Met Val 965 970 975 Asp Lys Lys Ser Asn Pro Cys Ala Thr Gly Gly Ala Leu Lys Gly Tyr 980 985 990 Gln Ile Thr Asn Lys Phe Glu Ser Phe Lys Ser Met Ser Thr Gln Asn 995 1000 1005 Gly Phe Ile Phe Tyr Ile Pro Ala Trp Leu Thr Ser Lys Ile Asp 1010 1015 1020 Pro Ser Thr Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr Ser 1025 1030 1035 Ile Ala Asp Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile Met 1040 1045 1050 Tyr Val Pro Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr Lys 1055 1060 1065 Asn Phe Ser Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys Leu 1070 1075 1080 Tyr Ser Tyr Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys Lys 1085 1090 1095 Asn Asn Val Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala Tyr 1100 1105 1110 Lys Glu Leu Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly Asp 1115 1120 1125 Ile Arg Ala Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr Ser 1130 1135 1140 Ser Phe Met Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn Ser 1145 1150 1155 Ile Thr Gly Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val Lys 1160 1165 1170 Asn Ser Asp Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala Gln 1175 1180 1185 Glu Asn Ala Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala Tyr 1190 1195 1200 Asn Ile Ala Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys Lys 1205 1210 1215 Ala Glu Asp Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser Asn 1220 1225 1230 Lys Glu Trp Leu Glu Tyr Ala Gln Thr Ser Val Lys His 1235 1240 1245 21307PRTAcidaminococcus sp. 2Met Thr Gln Phe Glu Gly Phe Thr Asn Leu Tyr Gln Val Ser Lys Thr 1 5 10 15 Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Lys His Ile Gln 20 25 30 Glu Gln Gly Phe Ile Glu Glu Asp Lys Ala Arg Asn Asp His Tyr Lys 35 40 45 Glu Leu Lys Pro Ile Ile Asp Arg Ile Tyr Lys Thr Tyr Ala Asp Gln 50 55 60 Cys Leu Gln Leu Val Gln Leu Asp Trp Glu Asn Leu Ser Ala Ala Ile 65 70 75 80 Asp Ser Tyr Arg Lys Glu Lys Thr Glu Glu Thr Arg Asn Ala Leu Ile 85 90 95 Glu Glu Gln Ala Thr Tyr Arg Asn Ala Ile His Asp Tyr Phe Ile Gly 100 105 110 Arg Thr Asp Asn Leu Thr Asp Ala Ile Asn Lys Arg His Ala Glu Ile 115 120 125 Tyr Lys Gly Leu Phe Lys Ala Glu Leu Phe Asn Gly Lys Val Leu Lys 130 135 140 Gln Leu Gly Thr Val Thr Thr Thr Glu His Glu Asn Ala Leu Leu Arg 145 150 155 160 Ser Phe Asp Lys Phe Thr Thr Tyr Phe Ser Gly Phe Tyr Glu Asn Arg 165 170 175 Lys Asn Val Phe Ser Ala Glu Asp Ile Ser Thr Ala Ile Pro His Arg 180 185 190 Ile Val Gln Asp Asn Phe Pro Lys Phe Lys Glu Asn Cys His Ile Phe 195 200 205 Thr Arg Leu Ile Thr Ala Val Pro Ser Leu Arg Glu His Phe Glu Asn 210 215 220 Val Lys Lys Ala Ile Gly Ile Phe Val Ser Thr Ser Ile Glu Glu Val 225 230 235 240 Phe Ser Phe Pro Phe Tyr Asn Gln Leu Leu Thr Gln Thr Gln Ile Asp 245 250 255 Leu Tyr Asn Gln Leu Leu Gly Gly Ile Ser Arg Glu Ala Gly Thr Glu 260 265 270 Lys Ile Lys Gly Leu Asn Glu Val Leu Asn Leu Ala Ile Gln Lys Asn 275 280 285 Asp Glu Thr Ala His Ile Ile Ala Ser Leu Pro His Arg Phe Ile Pro 290 295 300 Leu Phe Lys Gln Ile Leu Ser Asp Arg Asn Thr Leu Ser Phe Ile Leu 305 310 315 320 Glu Glu Phe Lys Ser Asp Glu Glu Val Ile Gln Ser Phe Cys Lys Tyr 325 330 335 Lys Thr Leu Leu Arg Asn Glu Asn Val Leu Glu Thr Ala Glu Ala Leu 340 345 350 Phe Asn Glu Leu Asn Ser Ile Asp Leu Thr His Ile Phe Ile Ser His 355 360 365 Lys Lys Leu Glu Thr Ile Ser Ser Ala Leu Cys Asp His Trp Asp Thr 370 375 380 Leu Arg Asn Ala Leu Tyr Glu Arg Arg Ile Ser Glu Leu Thr Gly Lys 385 390 395 400 Ile Thr Lys Ser Ala Lys Glu Lys Val Gln Arg Ser Leu Lys His Glu 405 410 415 Asp Ile Asn Leu Gln Glu Ile Ile Ser Ala Ala Gly Lys Glu Leu Ser 420 425 430 Glu Ala Phe Lys Gln Lys Thr Ser Glu Ile Leu Ser His Ala His Ala 435 440 445 Ala Leu Asp Gln Pro Leu Pro Thr Thr Leu Lys Lys Gln Glu Glu Lys 450 455 460 Glu Ile Leu Lys Ser Gln Leu Asp Ser Leu Leu Gly Leu Tyr His Leu 465 470 475 480 Leu Asp Trp Phe Ala Val Asp Glu Ser Asn Glu Val Asp Pro Glu Phe 485 490 495 Ser Ala Arg Leu Thr Gly Ile Lys Leu Glu Met Glu Pro Ser Leu Ser 500 505 510 Phe Tyr Asn Lys Ala Arg Asn Tyr Ala Thr Lys Lys Pro Tyr Ser Val 515 520 525 Glu Lys Phe Lys Leu Asn Phe Gln Met Pro Thr Leu Ala Ser Gly Trp 530 535 540 Asp Val Asn Lys Glu Lys Asn Asn Gly Ala Ile Leu Phe Val Lys Asn 545 550 555 560 Gly Leu Tyr Tyr Leu Gly Ile Met Pro Lys Gln Lys Gly Arg Tyr Lys 565 570 575 Ala Leu Ser Phe Glu Pro Thr Glu Lys Thr Ser Glu Gly Phe Asp Lys 580 585 590 Met Tyr Tyr Asp Tyr Phe Pro Asp Ala Ala Lys Met Ile Pro Lys Cys 595 600 605 Ser Thr Gln Leu Lys Ala Val Thr Ala His Phe Gln Thr His Thr Thr 610 615 620 Pro Ile Leu Leu Ser Asn Asn Phe Ile Glu Pro Leu Glu Ile Thr Lys 625 630 635 640 Glu Ile Tyr Asp Leu Asn Asn Pro Glu Lys Glu Pro Lys Lys Phe Gln 645 650 655 Thr Ala Tyr Ala Lys Lys Thr Gly Asp Gln Lys Gly Tyr Arg Glu Ala 660 665 670 Leu Cys Lys Trp Ile Asp Phe Thr Arg Asp Phe Leu Ser Lys Tyr Thr 675 680 685 Lys Thr Thr Ser Ile Asp Leu Ser Ser Leu Arg Pro Ser Ser Gln Tyr 690 695 700 Lys Asp Leu Gly Glu Tyr Tyr Ala Glu Leu Asn Pro Leu Leu Tyr His 705 710 715 720 Ile Ser Phe Gln Arg Ile Ala Glu Lys Glu Ile Met Asp Ala Val Glu 725 730 735 Thr Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ala Lys 740 745 750 Gly His His Gly Lys Pro Asn Leu His Thr Leu Tyr Trp Thr Gly Leu 755 760 765 Phe Ser Pro Glu Asn Leu Ala Lys Thr Ser Ile Lys Leu Asn Gly Gln 770 775 780 Ala Glu Leu Phe Tyr Arg Pro Lys Ser Arg Met Lys Arg Met Ala His 785 790 795 800 Arg Leu Gly Glu Lys Met Leu Asn Lys Lys Leu Lys Asp Gln Lys Thr 805 810 815 Pro Ile Pro Asp Thr Leu Tyr Gln Glu Leu Tyr Asp Tyr Val Asn His 820 825 830 Arg Leu Ser His Asp Leu Ser Asp Glu Ala Arg Ala Leu Leu Pro Asn 835 840 845 Val Ile Thr Lys Glu Val Ser His Glu Ile Ile Lys Asp Arg Arg Phe 850 855 860 Thr Ser Asp Lys Phe Phe Phe His Val Pro Ile Thr Leu Asn Tyr Gln 865 870 875 880 Ala Ala Asn Ser Pro Ser Lys Phe Asn Gln Arg Val Asn Ala Tyr Leu 885 890 895 Lys Glu His Pro Glu Thr Pro Ile Ile Gly Ile Asp Arg Gly Glu Arg 900 905 910 Asn Leu Ile Tyr Ile Thr Val Ile Asp Ser Thr Gly Lys Ile Leu Glu 915 920 925 Gln Arg Ser Leu Asn Thr Ile Gln Gln Phe Asp Tyr Gln Lys Lys Leu 930 935 940 Asp Asn Arg Glu Lys Glu Arg Val Ala Ala Arg Gln Ala Trp Ser Val 945 950 955 960 Val Gly Thr Ile Lys Asp Leu Lys Gln Gly Tyr Leu Ser Gln Val Ile 965 970 975 His Glu Ile Val Asp Leu Met Ile His Tyr Gln Ala Val Val Val Leu 980 985 990 Glu Asn Leu Asn Phe Gly Phe Lys Ser Lys Arg Thr Gly Ile Ala Glu 995 1000 1005 Lys Ala Val Tyr Gln Gln Phe Glu Lys Met Leu Ile Asp Lys Leu 1010 1015 1020 Asn Cys Leu Val Leu Lys Asp Tyr Pro Ala Glu Lys Val Gly Gly

1025 1030 1035 Val Leu Asn Pro Tyr Gln Leu Thr Asp Gln Phe Thr Ser Phe Ala 1040 1045 1050 Lys Met Gly Thr Gln Ser Gly Phe Leu Phe Tyr Val Pro Ala Pro 1055 1060 1065 Tyr Thr Ser Lys Ile Asp Pro Leu Thr Gly Phe Val Asp Pro Phe 1070 1075 1080 Val Trp Lys Thr Ile Lys Asn His Glu Ser Arg Lys His Phe Leu 1085 1090 1095 Glu Gly Phe Asp Phe Leu His Tyr Asp Val Lys Thr Gly Asp Phe 1100 1105 1110 Ile Leu His Phe Lys Met Asn Arg Asn Leu Ser Phe Gln Arg Gly 1115 1120 1125 Leu Pro Gly Phe Met Pro Ala Trp Asp Ile Val Phe Glu Lys Asn 1130 1135 1140 Glu Thr Gln Phe Asp Ala Lys Gly Thr Pro Phe Ile Ala Gly Lys 1145 1150 1155 Arg Ile Val Pro Val Ile Glu Asn His Arg Phe Thr Gly Arg Tyr 1160 1165 1170 Arg Asp Leu Tyr Pro Ala Asn Glu Leu Ile Ala Leu Leu Glu Glu 1175 1180 1185 Lys Gly Ile Val Phe Arg Asp Gly Ser Asn Ile Leu Pro Lys Leu 1190 1195 1200 Leu Glu Asn Asp Asp Ser His Ala Ile Asp Thr Met Val Ala Leu 1205 1210 1215 Ile Arg Ser Val Leu Gln Met Arg Asn Ser Asn Ala Ala Thr Gly 1220 1225 1230 Glu Asp Tyr Ile Asn Ser Pro Val Arg Asp Leu Asn Gly Val Cys 1235 1240 1245 Phe Asp Ser Arg Phe Gln Asn Pro Glu Trp Pro Met Asp Ala Asp 1250 1255 1260 Ala Asn Gly Ala Tyr His Ile Ala Leu Lys Gly Gln Leu Leu Leu 1265 1270 1275 Asn His Leu Lys Glu Ser Lys Asp Leu Lys Leu Gln Asn Gly Ile 1280 1285 1290 Ser Asn Gln Asp Trp Leu Ala Tyr Ile Gln Glu Leu Arg Asn 1295 1300 1305 348DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 3aaaaggccgg cggccacgaa aaaggccggc caggcaaaaa agaaaaag 48481DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 4tacccatacg atgttccaga ttacgcttat ccctacgacg tgcctgatta tgcataccca 60tatgatgtcc ccgactatgc c 8154059DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 5atgacacagt tcgagggctt taccaacctg tatcaggtga gcaagacact gcggtttgag 60ctgatcccac agggcaagac cctgaagcac atccaggagc agggcttcat cgaggaggac 120aaggcccgca atgatcacta caaggagctg aagcccatca tcgatcggat ctacaagacc 180tatgccgacc agtgcctgca gctggtgcag ctggattggg agaacctgag cgccgccatc 240gactcctata gaaaggagaa aaccgaggag acaaggaacg ccctgatcga ggagcaggcc 300acatatcgca atgccatcca cgactacttc atcggccgga cagacaacct gaccgatgcc 360atcaataaga gacacgccga gatctacaag ggcctgttca aggccgagct gtttaatggc 420aaggtgctga agcagctggg caccgtgacc acaaccgagc acgagaacgc cctgctgcgg 480agcttcgaca agtttacaac ctacttctcc ggcttttatg agaacaggaa gaacgtgttc 540agcgccgagg atatcagcac agccatccca caccgcatcg tgcaggacaa cttccccaag 600tttaaggaga attgtcacat cttcacacgc ctgatcaccg ccgtgcccag cctgcgggag 660cactttgaga acgtgaagaa ggccatcggc atcttcgtga gcacctccat cgaggaggtg 720ttttccttcc ctttttataa ccagctgctg acacagaccc agatcgacct gtataaccag 780ctgctgggag gaatctctcg ggaggcaggc accgagaaga tcaagggcct gaacgaggtg 840ctgaatctgg ccatccagaa gaatgatgag acagcccaca tcatcgcctc cctgccacac 900agattcatcc ccctgtttaa gcagatcctg tccgatagga acaccctgtc tttcatcctg 960gaggagttta agagcgacga ggaagtgatc cagtccttct gcaagtacaa gacactgctg 1020agaaacgaga acgtgctgga gacagccgag gccctgttta acgagctgaa cagcatcgac 1080ctgacacaca tcttcatcag ccacaagaag ctggagacaa tcagcagcgc cctgtgcgac 1140cactgggata cactgaggaa tgccctgtat gagcggagaa tctccgagct gacaggcaag 1200atcaccaagt ctgccaagga gaaggtgcag cgcagcctga agcacgagga tatcaacctg 1260caggagatca tctctgccgc aggcaaggag ctgagcgagg ccttcaagca gaaaaccagc 1320gagatcctgt cccacgcaca cgccgccctg gatcagccac tgcctacaac cctgaagaag 1380caggaggaga aggagatcct gaagtctcag ctggacagcc tgctgggcct gtaccacctg 1440ctggactggt ttgccgtgga tgagtccaac gaggtggacc ccgagttctc tgcccggctg 1500accggcatca agctggagat ggagccttct ctgagcttct acaacaaggc cagaaattat 1560gccaccaaga agccctactc cgtggagaag ttcaagctga actttcagat gcctacactg 1620gcctctggct gggacgtgaa taaggagaag aacaatggcg ccatcctgtt tgtgaagaac 1680ggcctgtact atctgggcat catgccaaag cagaagggca ggtataaggc cctgagcttc 1740gagcccacag agaaaaccag cgagggcttt gataagatgt actatgacta cttccctgat 1800gccgccaaga tgatcccaaa gtgcagcacc cagctgaagg ccgtgacagc ccactttcag 1860acccacacaa cccccatcct gctgtccaac aatttcatcg agcctctgga gatcacaaag 1920gagatctacg acctgaacaa tcctgagaag gagccaaaga agtttcagac agcctacgcc 1980aagaaaaccg gcgaccagaa gggctacaga gaggccctgt gcaagtggat cgacttcaca 2040agggattttc tgtccaagta taccaagaca acctctatcg atctgtctag cctgcggcca 2100tcctctcagt ataaggacct gggcgagtac tatgccgagc tgaatcccct gctgtaccac 2160atcagcttcc agagaatcgc cgagaaggag atcatggatg ccgtggagac aggcaagctg 2220tacctgttcc agatctataa caaggacttt gccaagggcc accacggcaa gcctaatctg 2280cacacactgt attggaccgg cctgttttct ccagagaacc tggccaagac aagcatcaag 2340ctgaatggcc aggccgagct gttctaccgc cctaagtcca ggatgaagag gatggcacac 2400cggctgggag agaagatgct gaacaagaag ctgaaggatc agaaaacccc aatccccgac 2460accctgtacc aggagctgta cgactatgtg aatcacagac tgtcccacga cctgtctgat 2520gaggccaggg ccctgctgcc caacgtgatc accaaggagg tgtctcacga gatcatcaag 2580gataggcgct ttaccagcga caagttcttt ttccacgtgc ctatcacact gaactatcag 2640gccgccaatt ccccatctaa gttcaaccag agggtgaatg cctacctgaa ggagcacccc 2700gagacaccta tcatcggcat cgatcggggc gagagaaacc tgatctatat cacagtgatc 2760gactccaccg gcaagatcct ggagcagcgg agcctgaaca ccatccagca gtttgattac 2820cagaagaagc tggacaacag ggagaaggag agggtggcag caaggcaggc ctggtctgtg 2880gtgggcacaa tcaaggatct gaagcagggc tatctgagcc aggtcatcca cgagatcgtg 2940gacctgatga tccactacca ggccgtggtg gtgctggaga acctgaattt cggctttaag 3000agcaagagga ccggcatcgc cgagaaggcc gtgtaccagc agttcgagaa gatgctgatc 3060gataagctga attgcctggt gctgaaggac tatccagcag agaaagtggg aggcgtgctg 3120aacccatacc agctgacaga ccagttcacc tcctttgcca agatgggcac ccagtctggc 3180ttcctgtttt acgtgcctgc cccatataca tctaagatcg atcccctgac cggcttcgtg 3240gaccccttcg tgtggaaaac catcaagaat cacgagagcc gcaagcactt cctggagggc 3300ttcgactttc tgcactacga cgtgaaaacc ggcgacttca tcctgcactt taagatgaac 3360agaaatctgt ccttccagag gggcctgccc ggctttatgc ctgcatggga tatcgtgttc 3420gagaagaacg agacacagtt tgacgccaag ggcacccctt tcatcgccgg caagagaatc 3480gtgccagtga tcgagaatca cagattcacc ggcagatacc gggacctgta tcctgccaac 3540gagctgatcg ccctgctgga ggagaagggc atcgtgttca gggatggctc caacatcctg 3600ccaaagctgc tggagaatga cgattctcac gccatcgaca ccatggtggc cctgatccgc 3660agcgtgctgc agatgcggaa ctccaatgcc gccacaggcg aggactatat caacagcccc 3720gtgcgcgatc tgaatggcgt gtgcttcgac tcccggtttc agaacccaga gtggcccatg 3780gacgccgatg ccaatggcgc ctaccacatc gccctgaagg gccagctgct gctgaatcac 3840ctgaaggaga gcaaggatct gaagctgcag aacggcatct ccaatcagga ctggctggcc 3900tacatccagg agctgcgcaa caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa 3960aagaaaaagg gatcctaccc atacgatgtt ccagattacg cttatcccta cgacgtgcct 4020gattatgcat acccatatga tgtccccgac tatgcctaa 4059618PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 6Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys 1 5 10 15 Gly Ser 727PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 7Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Tyr Pro Tyr Asp Val Pro Asp 1 5 10 15 Tyr Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 20 25 81352PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 8Met Thr Gln Phe Glu Gly Phe Thr Asn Leu Tyr Gln Val Ser Lys Thr 1 5 10 15 Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Lys His Ile Gln 20 25 30 Glu Gln Gly Phe Ile Glu Glu Asp Lys Ala Arg Asn Asp His Tyr Lys 35 40 45 Glu Leu Lys Pro Ile Ile Asp Arg Ile Tyr Lys Thr Tyr Ala Asp Gln 50 55 60 Cys Leu Gln Leu Val Gln Leu Asp Trp Glu Asn Leu Ser Ala Ala Ile 65 70 75 80 Asp Ser Tyr Arg Lys Glu Lys Thr Glu Glu Thr Arg Asn Ala Leu Ile 85 90 95 Glu Glu Gln Ala Thr Tyr Arg Asn Ala Ile His Asp Tyr Phe Ile Gly 100 105 110 Arg Thr Asp Asn Leu Thr Asp Ala Ile Asn Lys Arg His Ala Glu Ile 115 120 125 Tyr Lys Gly Leu Phe Lys Ala Glu Leu Phe Asn Gly Lys Val Leu Lys 130 135 140 Gln Leu Gly Thr Val Thr Thr Thr Glu His Glu Asn Ala Leu Leu Arg 145 150 155 160 Ser Phe Asp Lys Phe Thr Thr Tyr Phe Ser Gly Phe Tyr Glu Asn Arg 165 170 175 Lys Asn Val Phe Ser Ala Glu Asp Ile Ser Thr Ala Ile Pro His Arg 180 185 190 Ile Val Gln Asp Asn Phe Pro Lys Phe Lys Glu Asn Cys His Ile Phe 195 200 205 Thr Arg Leu Ile Thr Ala Val Pro Ser Leu Arg Glu His Phe Glu Asn 210 215 220 Val Lys Lys Ala Ile Gly Ile Phe Val Ser Thr Ser Ile Glu Glu Val 225 230 235 240 Phe Ser Phe Pro Phe Tyr Asn Gln Leu Leu Thr Gln Thr Gln Ile Asp 245 250 255 Leu Tyr Asn Gln Leu Leu Gly Gly Ile Ser Arg Glu Ala Gly Thr Glu 260 265 270 Lys Ile Lys Gly Leu Asn Glu Val Leu Asn Leu Ala Ile Gln Lys Asn 275 280 285 Asp Glu Thr Ala His Ile Ile Ala Ser Leu Pro His Arg Phe Ile Pro 290 295 300 Leu Phe Lys Gln Ile Leu Ser Asp Arg Asn Thr Leu Ser Phe Ile Leu 305 310 315 320 Glu Glu Phe Lys Ser Asp Glu Glu Val Ile Gln Ser Phe Cys Lys Tyr 325 330 335 Lys Thr Leu Leu Arg Asn Glu Asn Val Leu Glu Thr Ala Glu Ala Leu 340 345 350 Phe Asn Glu Leu Asn Ser Ile Asp Leu Thr His Ile Phe Ile Ser His 355 360 365 Lys Lys Leu Glu Thr Ile Ser Ser Ala Leu Cys Asp His Trp Asp Thr 370 375 380 Leu Arg Asn Ala Leu Tyr Glu Arg Arg Ile Ser Glu Leu Thr Gly Lys 385 390 395 400 Ile Thr Lys Ser Ala Lys Glu Lys Val Gln Arg Ser Leu Lys His Glu 405 410 415 Asp Ile Asn Leu Gln Glu Ile Ile Ser Ala Ala Gly Lys Glu Leu Ser 420 425 430 Glu Ala Phe Lys Gln Lys Thr Ser Glu Ile Leu Ser His Ala His Ala 435 440 445 Ala Leu Asp Gln Pro Leu Pro Thr Thr Leu Lys Lys Gln Glu Glu Lys 450 455 460 Glu Ile Leu Lys Ser Gln Leu Asp Ser Leu Leu Gly Leu Tyr His Leu 465 470 475 480 Leu Asp Trp Phe Ala Val Asp Glu Ser Asn Glu Val Asp Pro Glu Phe 485 490 495 Ser Ala Arg Leu Thr Gly Ile Lys Leu Glu Met Glu Pro Ser Leu Ser 500 505 510 Phe Tyr Asn Lys Ala Arg Asn Tyr Ala Thr Lys Lys Pro Tyr Ser Val 515 520 525 Glu Lys Phe Lys Leu Asn Phe Gln Met Pro Thr Leu Ala Ser Gly Trp 530 535 540 Asp Val Asn Lys Glu Lys Asn Asn Gly Ala Ile Leu Phe Val Lys Asn 545 550 555 560 Gly Leu Tyr Tyr Leu Gly Ile Met Pro Lys Gln Lys Gly Arg Tyr Lys 565 570 575 Ala Leu Ser Phe Glu Pro Thr Glu Lys Thr Ser Glu Gly Phe Asp Lys 580 585 590 Met Tyr Tyr Asp Tyr Phe Pro Asp Ala Ala Lys Met Ile Pro Lys Cys 595 600 605 Ser Thr Gln Leu Lys Ala Val Thr Ala His Phe Gln Thr His Thr Thr 610 615 620 Pro Ile Leu Leu Ser Asn Asn Phe Ile Glu Pro Leu Glu Ile Thr Lys 625 630 635 640 Glu Ile Tyr Asp Leu Asn Asn Pro Glu Lys Glu Pro Lys Lys Phe Gln 645 650 655 Thr Ala Tyr Ala Lys Lys Thr Gly Asp Gln Lys Gly Tyr Arg Glu Ala 660 665 670 Leu Cys Lys Trp Ile Asp Phe Thr Arg Asp Phe Leu Ser Lys Tyr Thr 675 680 685 Lys Thr Thr Ser Ile Asp Leu Ser Ser Leu Arg Pro Ser Ser Gln Tyr 690 695 700 Lys Asp Leu Gly Glu Tyr Tyr Ala Glu Leu Asn Pro Leu Leu Tyr His 705 710 715 720 Ile Ser Phe Gln Arg Ile Ala Glu Lys Glu Ile Met Asp Ala Val Glu 725 730 735 Thr Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ala Lys 740 745 750 Gly His His Gly Lys Pro Asn Leu His Thr Leu Tyr Trp Thr Gly Leu 755 760 765 Phe Ser Pro Glu Asn Leu Ala Lys Thr Ser Ile Lys Leu Asn Gly Gln 770 775 780 Ala Glu Leu Phe Tyr Arg Pro Lys Ser Arg Met Lys Arg Met Ala His 785 790 795 800 Arg Leu Gly Glu Lys Met Leu Asn Lys Lys Leu Lys Asp Gln Lys Thr 805 810 815 Pro Ile Pro Asp Thr Leu Tyr Gln Glu Leu Tyr Asp Tyr Val Asn His 820 825 830 Arg Leu Ser His Asp Leu Ser Asp Glu Ala Arg Ala Leu Leu Pro Asn 835 840 845 Val Ile Thr Lys Glu Val Ser His Glu Ile Ile Lys Asp Arg Arg Phe 850 855 860 Thr Ser Asp Lys Phe Phe Phe His Val Pro Ile Thr Leu Asn Tyr Gln 865 870 875 880 Ala Ala Asn Ser Pro Ser Lys Phe Asn Gln Arg Val Asn Ala Tyr Leu 885 890 895 Lys Glu His Pro Glu Thr Pro Ile Ile Gly Ile Asp Arg Gly Glu Arg 900 905 910 Asn Leu Ile Tyr Ile Thr Val Ile Asp Ser Thr Gly Lys Ile Leu Glu 915 920 925 Gln Arg Ser Leu Asn Thr Ile Gln Gln Phe Asp Tyr Gln Lys Lys Leu 930 935 940 Asp Asn Arg Glu Lys Glu Arg Val Ala Ala Arg Gln Ala Trp Ser Val 945 950 955 960 Val Gly Thr Ile Lys Asp Leu Lys Gln Gly Tyr Leu Ser Gln Val Ile 965 970 975 His Glu Ile Val Asp Leu Met Ile His Tyr Gln Ala Val Val Val Leu 980 985 990 Glu Asn Leu Asn Phe Gly Phe Lys Ser Lys Arg Thr Gly Ile Ala Glu 995 1000 1005 Lys Ala Val Tyr Gln Gln Phe Glu Lys Met Leu Ile Asp Lys Leu 1010 1015 1020 Asn Cys Leu Val Leu Lys Asp Tyr Pro Ala Glu Lys Val Gly Gly 1025 1030 1035 Val Leu Asn Pro Tyr Gln Leu Thr Asp Gln Phe Thr Ser Phe Ala 1040 1045 1050 Lys Met Gly Thr Gln Ser Gly Phe Leu Phe Tyr Val Pro Ala Pro 1055 1060 1065 Tyr Thr Ser Lys Ile Asp Pro Leu Thr Gly Phe Val Asp Pro Phe 1070 1075 1080 Val Trp Lys Thr Ile Lys Asn His Glu Ser Arg Lys His Phe Leu 1085 1090 1095 Glu Gly Phe Asp Phe Leu His Tyr Asp Val Lys Thr Gly Asp Phe 1100 1105 1110 Ile Leu His Phe Lys Met Asn Arg Asn Leu Ser Phe Gln Arg Gly 1115 1120 1125 Leu Pro Gly Phe Met Pro Ala Trp Asp Ile Val Phe Glu Lys Asn 1130 1135 1140 Glu Thr Gln Phe Asp Ala Lys Gly Thr Pro Phe Ile Ala Gly Lys 1145 1150 1155 Arg Ile Val Pro Val Ile Glu Asn His Arg Phe Thr Gly Arg Tyr 1160 1165 1170 Arg Asp Leu Tyr Pro Ala Asn Glu Leu Ile Ala Leu Leu Glu Glu 1175 1180 1185 Lys Gly Ile Val Phe Arg Asp Gly Ser Asn Ile Leu Pro Lys Leu 1190 1195 1200 Leu Glu Asn Asp Asp Ser His Ala Ile Asp Thr Met Val Ala Leu 1205 1210 1215 Ile Arg Ser Val Leu Gln Met Arg Asn Ser Asn Ala Ala Thr Gly 1220 1225 1230 Glu Asp

Tyr Ile Asn Ser Pro Val Arg Asp Leu Asn Gly Val Cys 1235 1240 1245 Phe Asp Ser Arg Phe Gln Asn Pro Glu Trp Pro Met Asp Ala Asp 1250 1255 1260 Ala Asn Gly Ala Tyr His Ile Ala Leu Lys Gly Gln Leu Leu Leu 1265 1270 1275 Asn His Leu Lys Glu Ser Lys Asp Leu Lys Leu Gln Asn Gly Ile 1280 1285 1290 Ser Asn Gln Asp Trp Leu Ala Tyr Ile Gln Glu Leu Arg Asn Lys 1295 1300 1305 Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys 1310 1315 1320 Gly Ser Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Tyr Pro Tyr Asp 1325 1330 1335 Val Pro Asp Tyr Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1340 1345 1350 93822DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 9atgagcaagc tggagaagtt tacaaactgc tactccctgt ctaagaccct gaggttcaag 60gccatccctg tgggcaagac ccaggagaac atcgacaata agcggctgct ggtggaggac 120gagaagagag ccgaggatta taagggcgtg aagaagctgc tggatcgcta ctatctgtct 180tttatcaacg acgtgctgca cagcatcaag ctgaagaatc tgaacaatta catcagcctg 240ttccggaaga aaaccagaac cgagaaggag aataaggagc tggagaacct ggagatcaat 300ctgcggaagg agatcgccaa ggccttcaag ggcaacgagg gctacaagtc cctgtttaag 360aaggatatca tcgagacaat cctgccagag ttcctggacg ataaggacga gatcgccctg 420gtgaacagct tcaatggctt taccacagcc ttcaccggct tctttgataa cagagagaat 480atgttttccg aggaggccaa gagcacatcc atcgccttca ggtgtatcaa cgagaatctg 540acccgctaca tctctaatat ggacatcttc gagaaggtgg acgccatctt tgataagcac 600gaggtgcagg agatcaagga gaagatcctg aacagcgact atgatgtgga ggatttcttt 660gagggcgagt tctttaactt tgtgctgaca caggagggca tcgacgtgta taacgccatc 720atcggcggct tcgtgaccga gagcggcgag aagatcaagg gcctgaacga gtacatcaac 780ctgtataatc agaaaaccaa gcagaagctg cctaagttta agccactgta taagcaggtg 840ctgagcgatc gggagtctct gagcttctac ggcgagggct atacatccga tgaggaggtg 900ctggaggtgt ttagaaacac cctgaacaag aacagcgaga tcttcagctc catcaagaag 960ctggagaagc tgttcaagaa ttttgacgag tactctagcg ccggcatctt tgtgaagaac 1020ggccccgcca tcagcacaat ctccaaggat atcttcggcg agtggaacgt gatccgggac 1080aagtggaatg ccgagtatga cgatatccac ctgaagaaga aggccgtggt gaccgagaag 1140tacgaggacg atcggagaaa gtccttcaag aagatcggct ccttttctct ggagcagctg 1200caggagtacg ccgacgccga tctgtctgtg gtggagaagc tgaaggagat catcatccag 1260aaggtggatg agatctacaa ggtgtatggc tcctctgaga agctgttcga cgccgatttt 1320gtgctggaga agagcctgaa gaagaacgac gccgtggtgg ccatcatgaa ggacctgctg 1380gattctgtga agagcttcga gaattacatc aaggccttct ttggcgaggg caaggagaca 1440aacagggacg agtccttcta tggcgatttt gtgctggcct acgacatcct gctgaaggtg 1500gaccacatct acgatgccat ccgcaattat gtgacccaga agccctactc taaggataag 1560ttcaagctgt attttcagaa ccctcagttc atgggcggct gggacaagga taaggagaca 1620gactatcggg ccaccatcct gagatacggc tccaagtact atctggccat catggataag 1680aagtacgcca agtgcctgca gaagatcgac aaggacgatg tgaacggcaa ttacgagaag 1740atcaactata agctgctgcc cggccctaat aagatgctgc caaaggtgtt cttttctaag 1800aagtggatgg cctactataa ccccagcgag gacatccaga agatctacaa gaatggcaca 1860ttcaagaagg gcgatatgtt taacctgaat gactgtcaca agctgatcga cttctttaag 1920gatagcatct cccggtatcc aaagtggtcc aatgcctacg atttcaactt ttctgagaca 1980gagaagtata aggacatcgc cggcttttac agagaggtgg aggagcaggg ctataaggtg 2040agcttcgagt ctgccagcaa gaaggaggtg gataagctgg tggaggaggg caagctgtat 2100atgttccaga tctataacaa ggacttttcc gataagtctc acggcacacc caatctgcac 2160accatgtact tcaagctgct gtttgacgag aacaatcacg gacagatcag gctgagcgga 2220ggagcagagc tgttcatgag gcgcgcctcc ctgaagaagg aggagctggt ggtgcaccca 2280gccaactccc ctatcgccaa caagaatcca gataatccca agaaaaccac aaccctgtcc 2340tacgacgtgt ataaggataa gaggttttct gaggaccagt acgagctgca catcccaatc 2400gccatcaata agtgccccaa gaacatcttc aagatcaata cagaggtgcg cgtgctgctg 2460aagcacgacg ataaccccta tgtgatcggc atcgataggg gcgagcgcaa tctgctgtat 2520atcgtggtgg tggacggcaa gggcaacatc gtggagcagt attccctgaa cgagatcatc 2580aacaacttca acggcatcag gatcaagaca gattaccact ctctgctgga caagaaggag 2640aaggagaggt tcgaggcccg ccagaactgg acctccatcg agaatatcaa ggagctgaag 2700gccggctata tctctcaggt ggtgcacaag atctgcgagc tggtggagaa gtacgatgcc 2760gtgatcgccc tggaggacct gaactctggc tttaagaata gccgcgtgaa ggtggagaag 2820caggtgtatc agaagttcga gaagatgctg atcgataagc tgaactacat ggtggacaag 2880aagtctaatc cttgtgcaac aggcggcgcc ctgaagggct atcagatcac caataagttc 2940gagagcttta agtccatgtc tacccagaac ggcttcatct tttacatccc tgcctggctg 3000acatccaaga tcgatccatc taccggcttt gtgaacctgc tgaaaaccaa gtataccagc 3060atcgccgatt ccaagaagtt catcagctcc tttgacagga tcatgtacgt gcccgaggag 3120gatctgttcg agtttgccct ggactataag aacttctctc gcacagacgc cgattacatc 3180aagaagtgga agctgtactc ctacggcaac cggatcagaa tcttccggaa tcctaagaag 3240aacaacgtgt tcgactggga ggaggtgtgc ctgaccagcg cctataagga gctgttcaac 3300aagtacggca tcaattatca gcagggcgat atcagagccc tgctgtgcga gcagtccgac 3360aaggccttct actctagctt tatggccctg atgagcctga tgctgcagat gcggaacagc 3420atcacaggcc gcaccgacgt ggattttctg atcagccctg tgaagaactc cgacggcatc 3480ttctacgata gccggaacta tgaggcccag gagaatgcca tcctgccaaa gaacgccgac 3540gccaatggcg cctataacat cgccagaaag gtgctgtggg ccatcggcca gttcaagaag 3600gccgaggacg agaagctgga taaggtgaag atcgccatct ctaacaagga gtggctggag 3660tacgcccaga ccagcgtgaa gcacaaaagg ccggcggcca cgaaaaaggc cggccaggca 3720aaaaagaaaa agggatccta cccatacgat gttccagatt acgcttatcc ctacgacgtg 3780cctgattatg catacccata tgatgtcccc gactatgcct aa 3822101273PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 10Met Ser Lys Leu Glu Lys Phe Thr Asn Cys Tyr Ser Leu Ser Lys Thr 1 5 10 15 Leu Arg Phe Lys Ala Ile Pro Val Gly Lys Thr Gln Glu Asn Ile Asp 20 25 30 Asn Lys Arg Leu Leu Val Glu Asp Glu Lys Arg Ala Glu Asp Tyr Lys 35 40 45 Gly Val Lys Lys Leu Leu Asp Arg Tyr Tyr Leu Ser Phe Ile Asn Asp 50 55 60 Val Leu His Ser Ile Lys Leu Lys Asn Leu Asn Asn Tyr Ile Ser Leu 65 70 75 80 Phe Arg Lys Lys Thr Arg Thr Glu Lys Glu Asn Lys Glu Leu Glu Asn 85 90 95 Leu Glu Ile Asn Leu Arg Lys Glu Ile Ala Lys Ala Phe Lys Gly Asn 100 105 110 Glu Gly Tyr Lys Ser Leu Phe Lys Lys Asp Ile Ile Glu Thr Ile Leu 115 120 125 Pro Glu Phe Leu Asp Asp Lys Asp Glu Ile Ala Leu Val Asn Ser Phe 130 135 140 Asn Gly Phe Thr Thr Ala Phe Thr Gly Phe Phe Asp Asn Arg Glu Asn 145 150 155 160 Met Phe Ser Glu Glu Ala Lys Ser Thr Ser Ile Ala Phe Arg Cys Ile 165 170 175 Asn Glu Asn Leu Thr Arg Tyr Ile Ser Asn Met Asp Ile Phe Glu Lys 180 185 190 Val Asp Ala Ile Phe Asp Lys His Glu Val Gln Glu Ile Lys Glu Lys 195 200 205 Ile Leu Asn Ser Asp Tyr Asp Val Glu Asp Phe Phe Glu Gly Glu Phe 210 215 220 Phe Asn Phe Val Leu Thr Gln Glu Gly Ile Asp Val Tyr Asn Ala Ile 225 230 235 240 Ile Gly Gly Phe Val Thr Glu Ser Gly Glu Lys Ile Lys Gly Leu Asn 245 250 255 Glu Tyr Ile Asn Leu Tyr Asn Gln Lys Thr Lys Gln Lys Leu Pro Lys 260 265 270 Phe Lys Pro Leu Tyr Lys Gln Val Leu Ser Asp Arg Glu Ser Leu Ser 275 280 285 Phe Tyr Gly Glu Gly Tyr Thr Ser Asp Glu Glu Val Leu Glu Val Phe 290 295 300 Arg Asn Thr Leu Asn Lys Asn Ser Glu Ile Phe Ser Ser Ile Lys Lys 305 310 315 320 Leu Glu Lys Leu Phe Lys Asn Phe Asp Glu Tyr Ser Ser Ala Gly Ile 325 330 335 Phe Val Lys Asn Gly Pro Ala Ile Ser Thr Ile Ser Lys Asp Ile Phe 340 345 350 Gly Glu Trp Asn Val Ile Arg Asp Lys Trp Asn Ala Glu Tyr Asp Asp 355 360 365 Ile His Leu Lys Lys Lys Ala Val Val Thr Glu Lys Tyr Glu Asp Asp 370 375 380 Arg Arg Lys Ser Phe Lys Lys Ile Gly Ser Phe Ser Leu Glu Gln Leu 385 390 395 400 Gln Glu Tyr Ala Asp Ala Asp Leu Ser Val Val Glu Lys Leu Lys Glu 405 410 415 Ile Ile Ile Gln Lys Val Asp Glu Ile Tyr Lys Val Tyr Gly Ser Ser 420 425 430 Glu Lys Leu Phe Asp Ala Asp Phe Val Leu Glu Lys Ser Leu Lys Lys 435 440 445 Asn Asp Ala Val Val Ala Ile Met Lys Asp Leu Leu Asp Ser Val Lys 450 455 460 Ser Phe Glu Asn Tyr Ile Lys Ala Phe Phe Gly Glu Gly Lys Glu Thr 465 470 475 480 Asn Arg Asp Glu Ser Phe Tyr Gly Asp Phe Val Leu Ala Tyr Asp Ile 485 490 495 Leu Leu Lys Val Asp His Ile Tyr Asp Ala Ile Arg Asn Tyr Val Thr 500 505 510 Gln Lys Pro Tyr Ser Lys Asp Lys Phe Lys Leu Tyr Phe Gln Asn Pro 515 520 525 Gln Phe Met Gly Gly Trp Asp Lys Asp Lys Glu Thr Asp Tyr Arg Ala 530 535 540 Thr Ile Leu Arg Tyr Gly Ser Lys Tyr Tyr Leu Ala Ile Met Asp Lys 545 550 555 560 Lys Tyr Ala Lys Cys Leu Gln Lys Ile Asp Lys Asp Asp Val Asn Gly 565 570 575 Asn Tyr Glu Lys Ile Asn Tyr Lys Leu Leu Pro Gly Pro Asn Lys Met 580 585 590 Leu Pro Lys Val Phe Phe Ser Lys Lys Trp Met Ala Tyr Tyr Asn Pro 595 600 605 Ser Glu Asp Ile Gln Lys Ile Tyr Lys Asn Gly Thr Phe Lys Lys Gly 610 615 620 Asp Met Phe Asn Leu Asn Asp Cys His Lys Leu Ile Asp Phe Phe Lys 625 630 635 640 Asp Ser Ile Ser Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp Phe Asn 645 650 655 Phe Ser Glu Thr Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr Arg Glu 660 665 670 Val Glu Glu Gln Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser Lys Lys 675 680 685 Glu Val Asp Lys Leu Val Glu Glu Gly Lys Leu Tyr Met Phe Gln Ile 690 695 700 Tyr Asn Lys Asp Phe Ser Asp Lys Ser His Gly Thr Pro Asn Leu His 705 710 715 720 Thr Met Tyr Phe Lys Leu Leu Phe Asp Glu Asn Asn His Gly Gln Ile 725 730 735 Arg Leu Ser Gly Gly Ala Glu Leu Phe Met Arg Arg Ala Ser Leu Lys 740 745 750 Lys Glu Glu Leu Val Val His Pro Ala Asn Ser Pro Ile Ala Asn Lys 755 760 765 Asn Pro Asp Asn Pro Lys Lys Thr Thr Thr Leu Ser Tyr Asp Val Tyr 770 775 780 Lys Asp Lys Arg Phe Ser Glu Asp Gln Tyr Glu Leu His Ile Pro Ile 785 790 795 800 Ala Ile Asn Lys Cys Pro Lys Asn Ile Phe Lys Ile Asn Thr Glu Val 805 810 815 Arg Val Leu Leu Lys His Asp Asp Asn Pro Tyr Val Ile Gly Ile Asp 820 825 830 Arg Gly Glu Arg Asn Leu Leu Tyr Ile Val Val Val Asp Gly Lys Gly 835 840 845 Asn Ile Val Glu Gln Tyr Ser Leu Asn Glu Ile Ile Asn Asn Phe Asn 850 855 860 Gly Ile Arg Ile Lys Thr Asp Tyr His Ser Leu Leu Asp Lys Lys Glu 865 870 875 880 Lys Glu Arg Phe Glu Ala Arg Gln Asn Trp Thr Ser Ile Glu Asn Ile 885 890 895 Lys Glu Leu Lys Ala Gly Tyr Ile Ser Gln Val Val His Lys Ile Cys 900 905 910 Glu Leu Val Glu Lys Tyr Asp Ala Val Ile Ala Leu Glu Asp Leu Asn 915 920 925 Ser Gly Phe Lys Asn Ser Arg Val Lys Val Glu Lys Gln Val Tyr Gln 930 935 940 Lys Phe Glu Lys Met Leu Ile Asp Lys Leu Asn Tyr Met Val Asp Lys 945 950 955 960 Lys Ser Asn Pro Cys Ala Thr Gly Gly Ala Leu Lys Gly Tyr Gln Ile 965 970 975 Thr Asn Lys Phe Glu Ser Phe Lys Ser Met Ser Thr Gln Asn Gly Phe 980 985 990 Ile Phe Tyr Ile Pro Ala Trp Leu Thr Ser Lys Ile Asp Pro Ser Thr 995 1000 1005 Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr Ser Ile Ala Asp 1010 1015 1020 Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile Met Tyr Val Pro 1025 1030 1035 Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr Lys Asn Phe Ser 1040 1045 1050 Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys Leu Tyr Ser Tyr 1055 1060 1065 Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys Lys Asn Asn Val 1070 1075 1080 Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala Tyr Lys Glu Leu 1085 1090 1095 Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly Asp Ile Arg Ala 1100 1105 1110 Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr Ser Ser Phe Met 1115 1120 1125 Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn Ser Ile Thr Gly 1130 1135 1140 Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val Lys Asn Ser Asp 1145 1150 1155 Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala Gln Glu Asn Ala 1160 1165 1170 Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala Tyr Asn Ile Ala 1175 1180 1185 Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys Lys Ala Glu Asp 1190 1195 1200 Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser Asn Lys Glu Trp 1205 1210 1215 Leu Glu Tyr Ala Gln Thr Ser Val Lys His Lys Arg Pro Ala Ala 1220 1225 1230 Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys Gly Ser Tyr Pro 1235 1240 1245 Tyr Asp Val Pro Asp Tyr Ala Tyr Pro Tyr Asp Val Pro Asp Tyr 1250 1255 1260 Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1265 1270 1127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 11tttccctcac tcctgctcgg tgaattt 271227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 12tttcggtcac tcctgctcgg tgaattt 271327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 13tttcccagac tcctgctcgg tgaattt 271427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 14tttccctctg tcctgctcgg tgaattt 271527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 15tttccctcac agctgctcgg tgaattt 271627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 16tttccctcac tcgagctcgg tgaattt 271727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 17tttccctcac tcctcgtcgg tgaattt 271827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 18tttccctcac tcctgcaggg tgaattt 271927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 19tttccctcac tcctgctccc tgaattt 272027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 20tttccctcac tcctgctcgg acaattt 272127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 21tttccctcac tcctgctcgg tgttttt 272227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 22tttccctcac tcctgctcgg tgaaaat 272327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 23tttccctcac tcctgctcgg tgaataa

272427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 24tttcgctcac tcctgctcgg tgaattt 272527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 25tttccgtcac tcctgctcgg tgaattt 272627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 26tttcccacac tcctgctcgg tgaattt 272727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 27tttccctgac tcctgctcgg tgaattt 272827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 28tttccctctc tcctgctcgg tgaattt 272927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 29tttccctcag tcctgctcgg tgaattt 273027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 30tttccctcac acctgctcgg tgaattt 273127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 31tttccctcac tgctgctcgg tgaattt 273227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 32tttccctcac tcgtgctcgg tgaattt 273327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 33tttccctcac tccagctcgg tgaattt 273427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 34tttccctcac tcctcctcgg tgaattt 273527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 35tttccctcac tcctggtcgg tgaattt 273627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 36tttccctcac tcctgcacgg tgaattt 273727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 37tttccctcac tcctgctggg tgaattt 273827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 38tttccctcac tcctgctccg tgaattt 273927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 39tttccctcac tcctgctcgc tgaattt 274027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 40tttccctcac tcctgctcgg agaattt 274127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 41tttccctcac tcctgctcgg tcaattt 274227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 42tttccctcac tcctgctcgg tgtattt 274327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 43tttccctcac tcctgctcgg tgatttt 274427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 44tttccctcac tcctgctcgg tgaaatt 274527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 45tttccctcac tcctgctcgg tgaatat 274627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 46tttccctcac tcctgctcgg tgaatta 274730DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 47tttccctcac tcctgctcgg tgaatttggc 304829DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 48tttccctcac tcctgctcgg tgaatttgg 294928DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 49tttccctcac tcctgctcgg tgaatttg 285026DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 50tttccctcac tcctgctcgg tgaatt 265125DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 51tttccctcac tcctgctcgg tgaat 255224DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 52tttccctcac tcctgctcgg tgaa 245324DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 53tttcgctcac tcctgctcgg tgaa 245424DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 54tttccgtcac tcctgctcgg tgaa 245524DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 55tttcccacac tcctgctcgg tgaa 245624DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 56tttccctgac tcctgctcgg tgaa 245724DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 57tttccctctc tcctgctcgg tgaa 245824DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 58tttccctcag tcctgctcgg tgaa 245924DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 59tttccctcac acctgctcgg tgaa 246024DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 60tttccctcac tgctgctcgg tgaa 246124DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 61tttccctcac tcgtgctcgg tgaa 246224DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 62tttccctcac tccagctcgg tgaa 246324DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 63tttccctcac tcctcctcgg tgaa 246424DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 64tttccctcac tcctggtcgg tgaa 246524DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 65tttccctcac tcctgcacgg tgaa 246624DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 66tttccctcac tcctgctggg tgaa 246724DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 67tttccctcac tcctgctccg tgaa 246824DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 68tttccctcac tcctgctcgc tgaa 246924DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 69tttccctcac tcctgctcgg agaa 247024DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 70tttccctcac tcctgctcgg tcaa 247124DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 71tttccctcac tcctgctcgg tgta 247224DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 72tttccctcac tcctgctcgg tgat 247323DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 73tttccctcac tcctgctcgg tga 237422DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 74tttccctcac tcctgctcgg tg 227521DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 75tttccctcac tcctgctcgg t 217620DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 76tttccctcac tcctgctcgg 207727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 77tttgaggagt gttcagtctc cgtgaac 277827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 78tttcctgatg gtccatgtct gttactc 277927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 79tttcgagatg gtccatgtct gttactc 278027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 80tttcctcttg gtccatgtct gttactc 278127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 81tttcctgaac gtccatgtct gttactc 278227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 82tttcctgatg caccatgtct gttactc 278327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 83tttcctgatg gtggatgtct gttactc 278427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 84tttcctgatg gtcctagtct gttactc 278527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 85tttcctgatg gtccatcact gttactc 278627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 86tttcctgatg gtccatgtga gttactc 278727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 87tttcctgatg gtccatgtct catactc 278827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 88tttcctgatg gtccatgtct gtatctc 278927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 89tttcctgatg gtccatgtct gttagac 279027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 90tttcctgatg gtccatgtct gttacag 279127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 91tttcgtgatg gtccatgtct gttactc 279227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 92tttccagatg gtccatgtct gttactc 279327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 93tttcctcatg gtccatgtct gttactc 279427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 94tttcctgttg gtccatgtct gttactc 279527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 95tttcctgaag gtccatgtct gttactc 279627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 96tttcctgatc gtccatgtct gttactc 279727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 97tttcctgatg ctccatgtct gttactc 279827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 98tttcctgatg gaccatgtct gttactc 279927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 99tttcctgatg gtgcatgtct gttactc 2710027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 100tttcctgatg gtcgatgtct gttactc 2710127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 101tttcctgatg gtccttgtct gttactc 2710227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 102tttcctgatg gtccaagtct gttactc 2710327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 103tttcctgatg gtccatctct gttactc 2710427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 104tttcctgatg gtccatgact gttactc 2710527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 105tttcctgatg gtccatgtgt gttactc 2710627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 106tttcctgatg gtccatgtca gttactc 2710727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 107tttcctgatg gtccatgtct cttactc 2710827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 108tttcctgatg gtccatgtct gatactc 2710927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 109tttcctgatg gtccatgtct gtaactc 2711027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 110tttcctgatg gtccatgtct gtttctc 2711127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 111tttcctgatg gtccatgtct gttagtc 2711227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 112tttcctgatg gtccatgtct gttacac 2711327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 113tttcctgatg gtccatgtct gttactg 2711430DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 114tttcctgatg gtccatgtct gttactcgcc 3011529DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 115tttcctgatg gtccatgtct gttactcgc 2911628DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 116tttcctgatg gtccatgtct gttactcg 2811726DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 117tttcctgatg gtccatgtct gttact 2611825DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 118tttcctgatg gtccatgtct gttac 2511924DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 119tttcctgatg gtccatgtct gtta 2412024DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 120tttcgtgatg gtccatgtct gtta 2412124DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 121tttccagatg gtccatgtct gtta 2412224DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 122tttcctcatg gtccatgtct gtta 2412324DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 123tttcctgttg gtccatgtct gtta 2412424DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 124tttcctgaag gtccatgtct gtta 2412524DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 125tttcctgatc gtccatgtct gtta 2412624DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 126tttcctgatg ctccatgtct gtta 2412724DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 127tttcctgatg gaccatgtct gtta 2412824DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 128tttcctgatg gtgcatgtct gtta 2412924DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 129tttcctgatg

gtcgatgtct gtta 2413024DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 130tttcctgatg gtccttgtct gtta 2413124DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 131tttcctgatg gtccaagtct gtta 2413224DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 132tttcctgatg gtccatctct gtta 2413324DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 133tttcctgatg gtccatgact gtta 2413424DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 134tttcctgatg gtccatgtgt gtta 2413524DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 135tttcctgatg gtccatgtca gtta 2413624DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 136tttcctgatg gtccatgtct ctta 2413724DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 137tttcctgatg gtccatgtct gata 2413824DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 138tttcctgatg gtccatgtct gtaa 2413924DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 139tttcctgatg gtccatgtct gttt 2414023DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 140tttcctgatg gtccatgtct gtt 2314122DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 141tttcctgatg gtccatgtct gt 2214221DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 142tttcctgatg gtccatgtct g 2114320DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 143tttcctgatg gtccatgtct 2014427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 144tttatttccc ttcagctaaa ataaagg 2714527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 145tttattttag ctgaagggaa ataaaag 2714627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 146ttttatttcc cttcagctaa aataaag 2714727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 147tttggctcag caggcacctg cctcagc 2714827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 148tttgcgtcag caggcacctg cctcagc 2714927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 149tttggcagag caggcacctg cctcagc 2715027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 150tttggctctc caggcacctg cctcagc 2715127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 151tttggctcag gtggcacctg cctcagc 2715227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 152tttggctcag cacccacctg cctcagc 2715327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 153tttggctcag cagggtcctg cctcagc 2715427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 154tttggctcag caggcaggtg cctcagc 2715527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 155tttggctcag caggcaccac cctcagc 2715627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 156tttggctcag caggcacctg ggtcagc 2715727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 157tttggctcag caggcacctg ccagagc 2715827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 158tttggctcag caggcacctg cctctcc 2715927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 159tttggctcag caggcacctg cctcacg 2716030DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 160tttggctcag caggcacctg cctcagctgc 3016129DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 161tttggctcag caggcacctg cctcagctg 2916228DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 162tttggctcag caggcacctg cctcagct 2816326DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 163tttggctcag caggcacctg cctcag 2616425DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 164tttggctcag caggcacctg cctca 2516524DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 165tttggctcag caggcacctg cctc 2416623DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 166tttggctcag caggcacctg cct 2316722DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 167tttggctcag caggcacctg cc 2216821DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 168tttggctcag caggcacctg c 2116920DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 169tttggctcag caggcacctg 2017027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 170tttctcatct gtgcccctcc ctccctg 2717127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 171tttgtcctcc ggttctggaa ccacacc 2717227DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 172tttgtggttg cccaccctag tcattgg 2717327DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 173tttgtacttt gtcctccggt tctggaa 2717427DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 174tttgggcggg gtccagttcc gggatta 2717527DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 175tttggtcggc atggccccat tcgcacg 2717627DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 176ttttccgagc ttctggcggt ctcaagc 2717727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 177tttcaccttg gagacggcga ctctctg 2717827DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 178ttttcaggag gaagcgatgg cttcaga 2717927DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 179tttcgctccg aaggtaaaag aaatcat 2718027DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 180tttcagcctc acccctctag ccctaca 2718127DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 181tttcttctcc cctctgctgg atacctc 2718220DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 182gtcactctgg ggaacacgcc 2018320DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 183gagtgctaag ggaacgttca 2018420DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 184gagactgaac actcctcaaa 2018520DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 185ggagtgaggg aaacggcccc 2018620DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 186gagtccgagc agaagaagaa 2018720DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 187gtcacctcca atgactaggg 2018820DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 188ggaatccctt ctgcagcacc 2018920DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 189gctgcagaag ggattccatg 2019020DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 190gcattttcag gaggaagcga 2019120DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 191gggagaagaa agagagatgt 201925PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 192Gly Gly Gly Gly Ser 1 5 1937PRTSimian virus 40 193Pro Lys Lys Lys Arg Arg Val 1 5 19416PRTUnknownDescription of Unknown Nucleoplasmin NLS peptide 194Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys 1 5 10 15 1954PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 195Gly Gly Gly Ser 1 1966PRTArtificial SequenceDescription of Artificial Sequence Synthetic 6xHis tag 196His His His His His His 1 5 19727DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 197tttccagttg gtccatgtct gttactc 271986PRTUnknownDescription of Unknown Lachnospiraceae bacterium peptide 198Met Ser Lys Leu Glu Lys 1 5

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed