Substrate For Flip Chip Bonding And Method Of Fabricating The Same

OH; Hueng Jae ;   et al.

Patent Application Summary

U.S. patent application number 14/164908 was filed with the patent office on 2014-05-22 for substrate for flip chip bonding and method of fabricating the same. This patent application is currently assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD.. The applicant listed for this patent is SAMSUNG ELECTRO-MECHANICS CO., LTD.. Invention is credited to Jin Won CHOI, Tae Joon CHUNG, Dong Gyu LEE, Seon Jae MUN, Hueng Jae OH.

Application Number20140138821 14/164908
Document ID /
Family ID43305438
Filed Date2014-05-22

United States Patent Application 20140138821
Kind Code A1
OH; Hueng Jae ;   et al. May 22, 2014

SUBSTRATE FOR FLIP CHIP BONDING AND METHOD OF FABRICATING THE SAME

Abstract

Disclosed herein is substrate for flip chip bonding, in which a base solder layer is formed between a pad and a metal post, thereby increasing impact resistance and mounting reliability. A method of fabricating the substrate for flip chip bonding is also provided.


Inventors: OH; Hueng Jae; (Gyunggi-do, KR) ; CHUNG; Tae Joon; (Gyunggi-do, KR) ; LEE; Dong Gyu; (Gyunggi-do, KR) ; MUN; Seon Jae; (Gyunggi-do, KR) ; CHOI; Jin Won; (Jeollabuk-do, KR)
Applicant:
Name City State Country Type

SAMSUNG ELECTRO-MECHANICS CO., LTD.

GYUNGGI-DO

KR
Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
GYUNGGI-DO
KR

Family ID: 43305438
Appl. No.: 14/164908
Filed: January 27, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12554762 Sep 4, 2009 8671564
14164908

Current U.S. Class: 257/737
Current CPC Class: H01L 2224/13147 20130101; H01L 24/05 20130101; H01L 2224/13083 20130101; H01L 2224/13111 20130101; H05K 3/3485 20200801; H01L 24/03 20130101; H01L 2924/01006 20130101; H01L 24/11 20130101; H01L 2224/1146 20130101; H01L 2924/01019 20130101; H01L 2224/023 20130101; H01L 2224/13022 20130101; H01L 2924/01078 20130101; Y10T 29/49165 20150115; H05K 2201/1025 20130101; H01L 2224/11901 20130101; H01L 2924/01079 20130101; H01L 2224/16 20130101; H01L 2924/01046 20130101; H01L 2924/12042 20130101; H01L 2224/13155 20130101; H01L 2224/1308 20130101; H01L 2224/1147 20130101; H01L 2924/01029 20130101; H01L 2224/05001 20130101; H01L 2224/13144 20130101; H01L 2924/00013 20130101; H01L 2224/05644 20130101; H01L 2924/01005 20130101; H01L 2224/05026 20130101; H01L 2224/05155 20130101; H01L 2924/01033 20130101; H01L 2224/05164 20130101; H01L 2924/01047 20130101; H01L 2224/13164 20130101; H01L 23/49811 20130101; H05K 3/243 20130101; H01L 2224/05611 20130101; H01L 2224/131 20130101; H01L 2924/01327 20130101; H01L 2224/05647 20130101; H01L 2224/05144 20130101; H01L 2224/05568 20130101; Y10T 29/49147 20150115; H01L 24/13 20130101; H01L 2224/05022 20130101; H01L 2224/05655 20130101; H01L 2224/13084 20130101; Y02P 70/50 20151101; H05K 3/3436 20130101; H01L 2224/13144 20130101; H01L 2924/00014 20130101; H01L 2224/13147 20130101; H01L 2924/00014 20130101; H01L 2224/13111 20130101; H01L 2924/00014 20130101; H01L 2224/13155 20130101; H01L 2924/00014 20130101; H01L 2224/13164 20130101; H01L 2924/00014 20130101; H01L 2224/131 20130101; H01L 2924/014 20130101; H01L 2224/1308 20130101; H01L 2224/131 20130101; H01L 2924/014 20130101; H01L 2924/00013 20130101; H01L 2224/13099 20130101; H01L 2924/12042 20130101; H01L 2924/00 20130101; H01L 2224/05611 20130101; H01L 2924/00014 20130101; H01L 2224/05644 20130101; H01L 2924/00014 20130101; H01L 2224/05647 20130101; H01L 2924/00014 20130101; H01L 2224/05655 20130101; H01L 2924/00014 20130101; H01L 2224/05144 20130101; H01L 2924/00014 20130101; H01L 2224/05155 20130101; H01L 2924/00014 20130101; H01L 2224/05164 20130101; H01L 2924/00014 20130101; H01L 2224/023 20130101; H01L 2924/0001 20130101
Class at Publication: 257/737
International Class: H01L 23/498 20060101 H01L023/498

Foreign Application Data

Date Code Application Number
Jun 10, 2009 KR 10-2009-0051605

Claims



1. A substrate for flip chip bonding, comprising: a base substrate having a pad; a solder resist layer formed on the base substrate to expose the pad; a base solder layer formed on the pad; and a metal post formed above the base solder layer, the metal post being formed as a substrate contact, wherein, the base solder layer is provided at the interface of the pad and the metal post, and in area contact with them.

2. The substrate for flip chip bonding as set forth in claim 1, wherein the base substrate is a semiconductor substrate.

3. The substrate for flip chip bonding as set forth in claim 1, wherein a first surface treatment layer is formed between the base solder layer and the metal post, the first surface treatment layer being composed of a nickel plating layer or a nickel alloy plating layer with or without thereon any one selected from among a palladium plating layer, a gold plating layer and sequentially disposed palladium plating layer and gold plating layer.

4. The substrate for flip chip bonding as set forth in claim 3, wherein a first Ni.sub.x--Sn.sub.y-based intermetallic compound layer is formed at an interface between the base solder layer and the first surface treatment layer.

5. The substrate for flip chip bonding as set forth in claim 1, wherein a solder cap is formed on the metal post.

6. The substrate for flip chip bonding as set forth in claim 5, wherein a second surface treatment layer is formed between the metal post and the solder cap, the second surface treatment layer being composed of a nickel plating layer or a nickel alloy plating layer with or without thereon any one selected from among a palladium plating layer, a gold plating layer and sequentially disposed palladium plating layer and gold plating layer.

7. The substrate for flip chip bonding as set forth in claim 6, wherein a second Ni.sub.x--Sn.sub.y-based intermetallic compound layer is formed at an interface between the second surface treatment layer and the solder cap.

8. The substrate for flip chip bonding as set forth in claim 1, wherein an outer surface treatment layer is formed on an outer surface of the metal post.
Description



RELATED APPLICATION

[0001] This application is a continuation application of U.S. patent application Ser. No. 12/554,762, filed on Sep. 4, 2009, and claims the benefit of and priority to Korean Patent Application No. KR 10-2009-0051605, filed on Jun. 10, 2009, all of which are incorporated herein by reference in their entirety into this application.

BACKGROUND

[0002] 1. Field of the Invention

[0003] The present invention relates to a substrate for flip chip bonding and a method of fabricating the same.

[0004] 2. Description of the Related Art

[0005] With the recent advancement of the electronics industry, there is a demand for increasing performance and functionality of electronic components and reducing the size thereof. Accordingly, high integration, slimness and fine circuit patterning are also required on a substrate for surface mounting components, such as SIP (System in Package), 3D package, etc.

[0006] In particular, in techniques for mounting electronic components on the surface of a substrate, a wire bonding process or a flip chip bonding process is utilized for forming an electrical connection between a semiconductor chip and a printed circuit board (PCB). In the case of the wire bonding process, because the connection of the chin to the PCB is performed using a wire, the size of a module is increased and an additional process is required. As well, limitations are imposed on realizing a circuit pattern having a fine pitch. So, the flip chip bonding process is mainly employed.

[0007] The flip chip bonding process includes forming an external connection terminal (i.e., a bump) having a size of tens of .mu.m to hundreds of .mu.m on a semiconductor chip using a material such as gold, solder or another metal, flipping the semiconductor chip having the bump so that the surface thereof faces the substrate, and mounting the semiconductor chip on the substrate, unlike the mounting operation based on the wire bonding.

[0008] Moreover, in order to correspond to a circuit pattern having an ultrafine pitch, the flip chip bonding process is developed to form a new structure using a metal post. The use of such a metal post is receiving attention as an alternative for achieving a fine pitch, ensuring a distance between a PCB and a semiconductor chip to thus facilitate the fabrication of a package, and improving heat dissipation performance.

[0009] FIG. 1 is a cross-sectional view showing a semiconductor substrate for flip chip bonding according to a conventional technique.

[0010] As shown in FIG. 1, the semiconductor substrate 10 for flip chip bonding according to the conventional technique includes a silicon wafer 12 having pads 14, a solder resist layer 16 formed on the silicon wafer 12 and having open portions for exposing the pads 14, metal posts 18 formed on the pads 14, and solder bumps 20 formed on the metal posts 18.

[0011] Although the semiconductor substrate 10 for flip chip bonding according to the conventional technique is evaluated to be superior in terms of height uniformity and mounting reliability, it is not easy to relieve stress applied to the metal posts 18, and thus the metal posts 18 suffer from necking defects and mounting reliability is reduced.

[0012] As well, the above metal post structure employed in the conventional semiconductor substrate has a limitation in applying it to a package substrate on which the semiconductor substrate 10 is mounted. This is because the formation of the metal posts having the same height is difficult when the metal posts are plated on the package substrate which warps in the manufacturing process unlike the silicon wafer 12.

SUMMARY

[0013] Accordingly, embodiments of the present invention has been made keeping in mind the problems encountered in the related art and the present invention intends to provide a substrate for flip chip bonding, which has improved impact resistance and mounting reliability, and a method of fabricating the same.

[0014] Embodiments of the present invention also provide a substrate for flip chip bonding, which includes metal posts applicable not only to a semiconductor substrate but also to a package substrate, and a method of fabricating the same.

[0015] An embodiment of the present invention, provides a substrate for flip chip bonding, including a base substrate having a pad, a solder resist layer formed on the base substrate to expose the pad, a base solder layer formed on the pad, and a metal post formed on the base solder layer.

[0016] In accordance with an embodiment, the base substrate is a semiconductor substrate.

[0017] In accordance with an embodiment, a first surface treatment layer is formed between the base solder layer and the metal post, the first surface treatment layer being composed of a nickel plating layer or a nickel alloy plating layer with or without thereon any one selected from among a palladium plating layer, a gold plating layer and sequentially disposed palladium plating layer and gold plating layer.

[0018] In accordance with an embodiment, a first Ni.sub.x--Sn.sub.y-based intermetallic compound layer is formed at an interface between the base solder layer and the first surface treatment layer.

[0019] In accordance with an embodiment, a solder cap is formed on the metal post.

[0020] In accordance with an embodiment, a second surface treatment layer is formed between the metal post and the solder cap, the second surface treatment layer being composed of a nickel plating layer or a nickel alloy plating layer with or without thereon any one selected from among a palladium plating layer, a gold plating layer and sequentially disposed palladium plating layer and gold plating layer.

[0021] In accordance with an embodiment, a second Ni.sub.x--Sn.sub.y-based intermetallic compound layer is formed at an interface between the second surface treatment layer and the solder cap.

[0022] In accordance with an embodiment, an outer surface treatment layer is formed on an outer surface of the metal post.

[0023] In accordance with another embodiment of the present invention, there is provided a method of fabricating the substrate for flip chip bonding, including (A) forming on a base substrate having a pad a solder resist layer having an open portion for exposing the pad, (B) applying a photosensitive resist on the solder resist layer and the exposed pad, and forming an opening in the photosensitive resist to expose the pad, (C) filling a part of the opening with a solder paste, thus forming a base solder layer connected to the pad, (D) forming a metal post connected to the base solder layer in the opening, and (E) removing the photosensitive resist.

[0024] In accordance with an embodiment, the base substrate is a semiconductor substrate.

[0025] In accordance with an embodiment, a step of (C1) forming a first surface treatment layer on the base solder layer is performed between (C) and (D), the first surface treatment layer being composed of a nickel plating layer or a nickel alloy plating layer with or without thereon any one selected from among a palladium plating layer, a gold plating layer and sequentially disposed palladium plating layer and gold plating layer.

[0026] In accordance with an embodiment, a first Ni.sub.x--Sn.sub.y-based intermetallic compound layer is formed at an interface between the base solder layer and the first surface treatment layer.

[0027] In accordance with an embodiment, a step of (D1) applying a solder paste on the metal post thus forming a solder cap is performed between (D) and (E).

[0028] In accordance with an embodiment, a step of (D2) forming a second surface treatment layer on the metal post is performed between (D) and (D1), the second surface treatment layer being composed of a nickel plating layer or a nickel alloy plating layer with or without thereon any one selected from among a palladium plating layer, a gold plating layer and sequentially disposed palladium plating layer and gold plating layer.

[0029] In accordance with an embodiment, a second Ni.sub.x--Sn.sub.y-based intermetallic compound layer is formed at an interface between the metal post and the second surface treatment layer.

[0030] In accordance with an embodiment, a step of (E1) forming an outer surface treatment layer on an outer surface of the metal post is performed after (E).

[0031] Various objects, advantages and features of the invention will become apparent from the following description of embodiments with reference to the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0032] These and other features, aspects, and advantages of the invention are better understood with regard to the following Detailed Description, appended Claims, and accompanying Figures. It is to be noted, however, that the Figures illustrate only various embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it may include other effective embodiments as well.

[0033] FIG. 1 is a cross-sectional view showing a semiconductor substrate for flip chip bonding according to a conventional technique.

[0034] FIG. 2 is a cross-sectional view showing a substrate for flip chip bonding, in accordance with an embodiment of the invention,

[0035] FIG. 3 is a cross-sectional view showing a substrate for flip chip bonding, in accordance with an embodiment of the invention.

[0036] FIGS. 4 to 9 are cross-sectional views sequentially showing a process of fabricating the substrate for flip chip bonding of FIG. 2, in accordance with an embodiment of the invention.

[0037] FIGS. 10 to 13 are cross-sectional views sequentially showing a process of fabricating the substrate for flip chip bonding of FIG. 3, in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

[0038] The present invention will now be described more fully hereinafter with reference to the accompanying drawings, which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. Prime notation, if used, indicates similar elements in alternative embodiments.

Substrate for Flip Chip Bonding

1.sup.st Embodiment

[0039] FIG. 2 is a cross-sectional view showing the substrate having metal posts, in accordance with an embodiment of the invention. Below, the substrate 100a having the metal posts according to the present embodiment is described with reference to the above drawing.

[0040] As seen in FIG. 2, the substrate 100a for flip chip bonding according to the present embodiment includes a base substrate 102, a solder resist layer 106, a base solder layer 114, and metal posts 116.

[0041] The base substrate 102 has pads 104 formed thereon, and the solder resist layer 106 having open portions 108 for exposing the pads 104 is formed on the base substrate 102. Examples of the base substrate 102 may include a semiconductor substrate and a package substrate.

[0042] The base solder layer 114 functions to relieve impact applied to the metal posts 116 and improve height uniformity and mounting reliability, and is formed on the pads 104.

[0043] The metal posts 116 enable the fine pitching of a wiring pattern and the fast signal transfer between a substrate and a semiconductor chip, ensure a distance between chips, and perform a heat dissipation function. The metal posts 116 are formed to protrude from the upper surface of the solder resist layer 106 while being connected to the base solder layer 114. The metal posts 116 may have a cylindrical shape, and may be formed of a material such as copper (Cu), nickel (Ni), tin (Sn) or gold (Au).

[0044] Also, in order to enhance the force of adhesion between the base solder layer 114 and the metal posts 116, a first surface treatment layer (not shown) is thinly formed therebetween, which is composed of a Ni plating layer or a Ni alloy plating layer with or without thereon any one selected from among a palladium (Pd) plating layer, an Au plating layer and sequentially disposed Pd plating layer and Au plating layer.

[0045] The first surface treatment layer is bonded with the base solder layer 114 made of Sn, thus forming a first Ni.sub.x--Sn.sub.y-based intermetallic compound (IMC) layer at the interface there between.

[0046] Furthermore, an outer surface treatment layer (not shown) may be formed on the outer surfaces of the metal posts 116 to prevent corrosion and oxidation thereof.

Substrate for Flip Chip Bonding

2.sup.nd Embodiment

[0047] FIG. 3 is a cross-sectional view showing a substrate for flip chip bonding, in accordance with an embodiment of the invention. In the description of the second embodiment, elements which are the same as or similar to those of the first embodiment are designated by the same reference numerals, and redundant descriptions are omitted.

[0048] As shown in FIG. 3, the substrate 100b for flip chip bonding according to the second embodiment is configured such that solder caps 118 are formed on the metal posts 116 of the substrate 100a of FIG. 2.

[0049] The solder caps 118 produce a buffering effect upon packaging of the substrate for flip chip bonding and also assure height uniformity.

[0050] Also, in order to enhance the force of adhesion between the metal posts 116 and the solder caps 118, a second surface treatment layer (not shown) is thinly formed therebetween, which is composed of a Ni plating layer or a Ni alloy plating layer with or without thereon any one selected from among a Pd plating layer, an Au plating layer and sequentially disposed Pd plating layer and Au plating layer.

[0051] The second surface treatment layer is bonded with the solder caps 118 made of Sn, thus forming a second Ni.sub.x--Sn.sub.y-based IMC layer at the interface therebetween.

[0052] Furthermore, an outer surface treatment layer (not shown) may be formed on the outer surfaces of the metal posts 116 to prevent corrosion and oxidation thereof

Method of Fabricating the Substrate for Flip Chip Bonding

1.sup.st Embodiment

[0053] FIGS. 4 to 9 are cross-sectional views sequentially showing the process of fabricating the substrate for flip chip bonding as shown in FIG. 2, in accordance with an embodiment of the invention. Below, the method of fabricating the substrate 100a for flip chip bonding according to the present embodiment is described with reference to the above drawings.

[0054] As shown in FIG. 4, the solder resist layer 106 is formed on the base substrate 102 having the pads 104, and the open portions 108 for exposing the pads 104 are formed in the solder resist layer 106. The open portions 108 may be formed through a mechanical process such as LDA (Laser Direct Ablation) or through UV light exposure and development.

[0055] Next, as shown in FIG. 5, a photosensitive resist 110 is applied on the solder resist layer 106.

[0056] As the photosensitive resist 110, a high heat-resistant dry film may be used so as to endure a reflow process at high temperature of 260.degree. C. or more, and may have a thickness of 60 .mu.m or more to form post bumps having an appropriate height.

[0057] Next, as shown in FIG. 6, openings 112 for exposing the pads 104 are formed in the photosensitive resist 110 through exposure and development.

[0058] As such, the openings 112 are formed in a manner such that portions of the photosensitive resist 110 other than portions thereof applied on the pads 104 are exposed to UV light using a predetermined mask pattern (not shown) and the unexposed portions of the photosensitive resist 110 are removed using a developing solution such as sodium carbonate (Na.sub.2CO.sub.3) or potassium carbonate (K.sub.2CO.sub.3).

[0059] Next, as shown in FIG. 7, a solder paste is applied on the pads 104 exposed by the openings 112, thus forming the base solder layer 114.

[0060] The base solder layer 114 is formed in parts of the openings 112 through screen printing or the like.

[0061] Furthermore, the first surface treatment layer may be formed on the base solder layer 114 in order to enhance the force of adhesion between the metal posts 116 which are to be formed through a subsequent plating process and the base solder layer 114.

[0062] The first surface treatment layer may be composed of a Ni plating layer or a Ni alloy plating layer with or without thereon any one selected from among a Pd plating layer, an Au plating layer and sequentially disposed Pd plating layer and Au plating layer. The first surface treatment layer is bonded with the base solder layer 114 made of Sn, so that the first Ni.sub.x--Sn, based IMC layer is formed at the interface therebetween.

[0063] Next, as shown in FIG. 8, the metal posts 116 are formed in the openings 112.

[0064] The metal posts 116 are formed through Cu plating (including electroless Cu plating and Cu electroplating), and have the same height as that of the photosensitive resist 110.

[0065] Finally, as shown in FIG. 9, the photosensitive resist 110 is stripped, thus manufacturing the substrate 100a for flip chip bonding as seen in FIG.

[0066] As such, the photosensitive resist 110 may be stripped using a stripping solution such as NaOH or KOH. In the course of bonding the Off of the stripping solution with the COOH.sup.+ of the dry film resist, the exposed dry film resist may come off and may thus be stripped.

[0067] Further the outer surface treatment layer may be formed on the upper and outer surfaces of the metal posts 116 to prevent corrosion and oxidation thereof.

Method of Fabricating the Substrate for Flip Chip Bonding

2.sup.nd Embodiment

[0068] FIGS. 10 to 13 are cross-sectional views sequentially showing the process of fabricating the substrate for flip chip bonding as shown in FIG. 3, in accordance with an embodiment of the invention. In the description of the present embodiment, redundant descriptions for fabrication procedures which are the same as or corresponding to those of the prior embodiment are omitted. Below, the method of fabricating the substrate for flip chip bonding according to the present embodiment is described with reference to the above drawings.

[0069] As shown in FIG. 10, a solder paste is applied on the pads 104 exposed by the openings 112 as shown in FIG. 7 so that parts of the openings are filled therewith, thus preparing the base substrate 102 having the base solder layer 114.

[0070] Next, as shown in FIG. 11, the metal posts 116 are formed on the base solder layer 114 so that the parts of the openings 112 are further filled therewith.

[0071] Also, the second surface treatment layer may be formed on the metal posts 116 in order to enhance the force of adhesion of the metal posts 116 to the solder caps 118.

[0072] The second surface treatment layer may be composed of a Ni plating layer or a Ni alloy plating layer with or without thereon any one selected from among a Pd plating layer, an Au plating layer and sequentially disposed Pd plating layer and Au plating layer. The second surface treatment layer is bonded with the solder caps 118 made of Sn, thus forming the second Ni.sub.x--Sn.sub.y-based IMC layer at the interface therebetween.

[0073] Next, as shown in FIG. 12, a solder paste is printed on the metal posts 116 exposed by the openings 112, thus forming the solder caps 118.

[0074] Finally, as shown in FIG. 13, the photosensitive resist 110 is stripped, thus manufacturing the substrate 100b for flip chip bonding as seen in FIG. 3.

[0075] As described hereinbefore, embodiments of the present invention provide a substrate for flip chip bonding and a method of fabricating the same. According to various embodiments, a base solder layer producing a buffering effect owing to its high softness is formed under metal posts, thus increasing impact resistance, thereby reducing the generation of necking defects on copper posts.

[0076] Also, according to various embodiments, the base solder layer and/or solder caps are used, thus solving problems of height and position non-uniformity, thereby reducing the generation of mounting defects.

[0077] Also, according to various embodiments, the base solder layer producing a buffering effect and/or the solder caps are used, thus forming metal posts having improved height uniformity and mounting reliability not only on a semiconductor substrate but also on a package substrate.

[0078] Embodiments of the present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.

[0079] The terms and words used in the present specification and claims should not be interpreted as being limited to typical meanings or dictionary definitions, but should be interpreted as having meanings and concepts relevant to the technical scope of the present invention based on the rule according to which an inventor can appropriately define the concept of the term to describe the best method he or she knows for carrying out the invention.

[0080] The singular forms "a," "an," and "the" include plural referents, unless the context clearly dictates otherwise.

[0081] As used herein and in the appended claims, the words "comprise," "has," and "include" and all grammatical variations thereof are each intended to have an open, non-limiting meaning that does not exclude additional elements or steps.

[0082] Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.

[0083] Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereupon without departing from the principle and scope of the invention. Accordingly, the scope of the present invention should be determined by the following claims and their appropriate legal equivalents.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed