Fan system and temperature-sensing module

Chen; Chien-Hua ;   et al.

Patent Application Summary

U.S. patent application number 11/591475 was filed with the patent office on 2007-05-17 for fan system and temperature-sensing module. This patent application is currently assigned to DELTA ELECTRONICS, INC.. Invention is credited to Chien-Hua Chen, Wen-Shi Huang, Chia-Pin Wei.

Application Number20070110558 11/591475
Document ID /
Family ID38040989
Filed Date2007-05-17

United States Patent Application 20070110558
Kind Code A1
Chen; Chien-Hua ;   et al. May 17, 2007

Fan system and temperature-sensing module

Abstract

A fan system, which receives an input voltage from exterior, includes a first fan module, a second fan module, a first starting module, a second starting module, a temperature-sensing element and a first controlling module. The first starting module receives the input voltage and starts the first fan module. The second starting module, which is electrically connected to the second fan module, receives the input voltage. The temperature-sensing element produces a sensing signal in accordance with an ambient temperature. The first controlling module controls the second starting module in accordance with the sensing signal so as to start the second fan module.


Inventors: Chen; Chien-Hua; (Taoyuan Hsien, TW) ; Wei; Chia-Pin; (Taoyuan Hsien, TW) ; Huang; Wen-Shi; (Taoyuan Hsien, TW)
Correspondence Address:
    BIRCH STEWART KOLASCH & BIRCH
    PO BOX 747
    FALLS CHURCH
    VA
    22040-0747
    US
Assignee: DELTA ELECTRONICS, INC.

Family ID: 38040989
Appl. No.: 11/591475
Filed: November 2, 2006

Current U.S. Class: 415/47 ; 415/148
Current CPC Class: F04D 25/166 20130101; F04D 27/00 20130101
Class at Publication: 415/047 ; 415/148
International Class: F04D 15/00 20060101 F04D015/00; F04D 29/56 20060101 F04D029/56

Foreign Application Data

Date Code Application Number
Nov 11, 2005 TW 094139638

Claims



1. A fan system for receiving an input voltage from exterior, the fan system comprising: a first fan module; a second fan module; a first starting module for receiving the input voltage so as to start the first fan module; a second starting module electrically connected with the second fan module for receiving the input voltage; a temperature-sensing element for producing a sensing signal in accordance with an ambient temperature; and a first controlling module for controlling the second starting module to start the second fan module in accordance with the sensing signal.

2. The fan system according to claim 1, wherein both the first starting module and the second starting module comprise: a first switch element having a terminal for receiving the input voltage to start the corresponding one of the first fan module and the second fan module; and a second switch element electrically connected with the first switch element for controlling the first switch element.

3. The fan system according to claim 2, wherein both the first starting module and the second starting module further comprises a capacitor having a terminal for electrically connected with the first switch element.

4. The fan system according to claim 2, wherein both the first starting module and the second starting module further comprise at least one diode having a first terminal for receiving the input voltage and a second terminal for electrically connecting with the first switch element.

5. The fan system according to claim 2, wherein both the first switch element and the second switch element are a transistor.

6. The fan system according to claim 1, wherein the first controlling module further comprises a first comparator having a first input terminal for receiving a first reference signal, a second input terminal for receiving the sensing signal, and an output terminal electrically connected with the second starting module for controlling the second starting module to start the second fan module.

7. The fan system according to claim 6, wherein the output terminal and the second input terminal of the first comparator are connected with each other through a resistor.

8. The fan system according to claim 1, wherein the temperature-sensing element is a thermistor or a negative temperature coefficient (NTC) thermistor.

9. The fan system according to claim 1, further comprising: a third fan module; a third starting module electrically connected with the third fan module and receiving the input voltage; and a second controlling module for controlling the third starting module to start the third fan module in accordance with the sensing signal.

10. The fan system according to claim 9, wherein the second controlling module comprises a second comparator having a first input terminal for receiving a second reference signal, a second input terminal for receiving the sensing signal, and an output terminal electrically connected with the third starting module for controlling the third starting module to start the third fan module.

11. The fan system according to claim 10, wherein the output terminal and the second input terminal of the second comparator are connected with each other through a resistor.

12. A temperature-sensing module for receiving an input voltage from exterior and cooperating with a fan module, the temperature-sensing module comprising: a starting unit electrically connected with the fan module and receiving the input voltage; a temperature-sensing element for producing a sensing signal in accordance with an ambient temperature; and a controlling unit for controlling the starting unit to start the fan module in accordance with the sensing signal.

13. The temperature-sensing module according to claim 12, wherein the starting unit comprises: a first switch element having a terminal for receiving the input voltage to start the fan module; and a second switch element electrically connected with the first switch element for controlling the first switch element.

14. The temperature-sensing module according to claim 13, wherein the starting unit further comprises a capacitor having a terminal for electrically connected with the first switch element.

15. The temperature-sensing module according to claim 13, wherein the starting unit further comprises at least one diode having a first terminal for receiving the input voltage and a second terminal for electrically connecting with the first switch element.

16. The temperature-sensing module according to claim 13, wherein both the first switch element and the second switch element are a transistor.

17. The temperature-sensing module according to claim 12, wherein the controlling unit comprises a comparator having a first input terminal for receiving a reference signal, a second input terminal for receiving the sensing signal, and an output terminal electrically connected with the starting unit for controlling the starting unit to start the fan module.

18. The temperature-sensing module according to claim 17, wherein the output terminal and the second input terminal of the comparator are connected with each other through a resistor.

19. The temperature-sensing module according to claim 12, wherein the temperature-sensing element is a thermistor or a negative temperature coefficient (NTC) thermistor.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This Non-provisional application claims priority under 35 U.S.C. .sctn.119(a) on Patent Application No(s). 094139638 filed in Taiwan, Republic of China on Nov. 11, 2005, the entire contents of which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of Invention

[0003] The invention relates to a fan system and a temperature-sensing module and, in particular, to a fan system and a temperature-sensing module, which can start a plurality of fan modules according to the temperature difference.

[0004] 2. Related Art

[0005] Generally speaking, a large electronic system is always equipped with a fan system to ensure that the electronic system can be kept at the normal working temperature such that the electronic system can operate normally.

[0006] FIG. 1 is a schematic illustration showing a conventional fan system 1. The fan system 1 receives an input voltage V.sub.in from exterior to serve as an operation voltage. The fan system 1 mainly has a plurality of fan modules 11a to 11ic and a plurality of starting modules 12a to 12c. After the starting modules 12a to 12c receive the input voltage V.sub.in, the fan modules 11a to 11c are started simultaneously to dissipate the heat. However, when the fan modules 11a to 11c are started simultaneously, an extremely large start-up current and inrush current are generated at the moment of starting. Thus, the electronic system or the fan system 1 may crash or have unpredictable malfunction, or even the electronic system or the fan system 1 may be damaged.

[0007] In view of the above-mentioned problems, the prior art adopts an analog starting control chip 13 for starting the fan modules 11a to 11c sequentially, or a software module to control the starting sequence of the fan modules 11a to 11c. Thus, the prior art provides a protection mechanism for respectively starting the fan modules 11a to 11c at different time instants so as to avoid the malfunction caused when the fan modules 11a to 11c are simultaneously started. However, the analog starting control chip 13 has a high price, and the software module has a complicated architecture. Thus, the overall manufacturing cost of the conventional fan system 1 is too high. In addition, the analog starting control chip 13 only can delay the starting time of each of the fan modules 11a to 11c and cannot provide the function of soft-start.

[0008] Thus, it is an important subject of the invention to provide a fan system and a temperature-sensing module to overcome the above-mentioned problems.

SUMMARY OF THE INVENTION

[0009] In view of the foregoing, the invention is to provide a fan system and a temperature-sensing module for starting a plurality of fan modules at different time based on the temperature difference so as to avoid the malfunction caused when the fan modules are started simultaneously and to reduce the power consumption.

[0010] To achieve the above, a fan system of the invention is for receiving an input voltage from exterior. The fan system includes a first fan module, a second fan module, a first starting module, a second starting module, a temperature-sensing element and a first controlling module. The first starting module receives the input voltage and starts the first fan module. The second starting module, which is electrically connected to the second fan module, receives the input voltage. The temperature-sensing element produces a sensing signal in accordance with an ambient temperature. The first controlling module controls the second starting module in accordance with the sensing signal so as to start the second fan module.

[0011] To achieve the above, the invention also discloses a temperature-sensing module for receiving an input voltage from exterior and cooperating with a fan module. The temperature-sensing module includes a starting unit, a temperature-sensing element and a controlling unit. The starting unit is electrically connected with the fan module and receives the input voltage. The temperature-sensing element produces a sensing signal in accordance with an ambient temperature. The controlling unit controls the starting unit to start the fan module in accordance with the sensing signal.

[0012] As mentioned above, the fan system and the temperature-sensing module according to the invention include the temperature-sensing element for producing the sensing signal. Then, the controlling module can individually start the fan modules at different temperatures in accordance with the sensing signal so as to avoid the malfunction caused by the extremely large start-up current and inrush current, which are generated by instantaneously starting the fan modules. Compared with the prior art, the fan system and temperature-sensing module of the invention utilize the temperature-sensing element to sense the operating temperature and then correspondingly start sufficient fan modules. Therefore, the fan modules are started in a time-sharing manner to ensure that the fan system can operate normally, reduce the power consumption, and replace the analog starting control chip to reduce the overall manufacturing cost.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The invention will become more fully understood from the detailed description given herein below illustration only, and thus is not limitative of the present invention, and wherein:

[0014] FIG. 1 is a schematic illustration showing a conventional fan system;

[0015] FIG. 2 is a schematic illustration showing a fan system according to a preferred embodiment of the invention;

[0016] FIG. 3 is a circuit diagram showing a fan system according to the preferred embodiment of the invention; and

[0017] FIG. 4 is a schematic illustration showing a temperature-sensing module according to the embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0018] The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.

[0019] FIG. 2 is a schematic illustration showing a fan system 2 according to a preferred embodiment of the invention. As shown in FIG. 2, the fan system 2 receives an input voltage 91 from exterior to serve as an operation voltage. In the embodiment, the fan system 2 may be applied to an electronic system (not shown) in order to dissipate heat, and the input voltage 91 may be supplied from the electronic system.

[0020] The fan system 2 includes a plurality of fan modules 21a to 21c, a plurality of starting modules 22a to 22c, a plurality of controlling modules 23a and 23b, and a temperature-sensing element 24.

[0021] Each of the fan modules 21a to 21c has a fan. Of course, the user may dispose a plurality of fans in each of the fan modules 21a to 21c according to the heat dissipating requirement so as to enhance the heat dissipating effect.

[0022] The starting modules 22a to 22c receive the input voltage 91 and are electrically connected with the fan modules 21a to 21c, respectively.

[0023] The temperature-sensing element 24 produces a sensing signal V.sub.t in accordance with an ambient temperature. The temperature-sensing element 24 may be a thermistor (thermal resistor). In this embodiment, the temperature-sensing element 24 is a negative temperature coefficient (NTC) thermistor. The ambient temperature may be the internal temperature of the electronic system, so that the temperature-sensing element 24 produces the sensing signal V.sub.t, e.g. a voltage value, in accordance with the internal temperature. Based on the characteristic of the NTC thermistor in this embodiment, the resistance of the temperature-sensing element 24 decreases and the voltage of the sensing signal V.sub.t decreases when the internal temperature of the electronic system increases. On the contrary, the voltage of the sensing signal V.sub.t increases when the internal temperature of the electronic system decreases.

[0024] The controlling modules 23a and 23b are electrically connected with the starting modules 22b and 22c, respectively. In the embodiment, the starting module 22a receives the input voltage 91 so as to start the fan module 21a, and the controlling modules 23a and 23b control the starting modules 22b and 22c according to the sensing voltage V.sub.t so as to start the fan modules 21b and 21c.

[0025] As shown in FIG. 3, each of the starting modules 22a to 22c includes a plurality of diodes D.sub.1 and D.sub.2, a plurality of resistors R.sub.1 and R.sub.2, two switch elements Q.sub.1 and Q.sub.2 and a capacitor C. Each of the first switch element Q.sub.1 and the second switch element Q.sub.2 may be a transistor or any other electronic element with the switch function. In this embodiment, the first switch element Q.sub.1 is a PMOS transistor, and the second switch element Q.sub.2 is an NMOS transistor.

[0026] In addition, the diodes D.sub.1 and D.sub.2 are connected in parallel. Each of the diodes D.sub.1 and D.sub.2 has a first terminal for receiving the input voltage 91. In this embodiment, each of the diodes D.sub.1 and D.sub.2 may be a Schottky diode for avoiding the reverse current. One terminal of the resistor R.sub.1 is electrically connected with a second terminal of each of the diodes D.sub.1 and D.sub.2.

[0027] A source S of the first switch element Q.sub.1 is electrically connected with the second terminals of the diodes D.sub.1 and D.sub.2, and a drain D of the first switch element Q.sub.1 is electrically connected with corresponding one of the fan modules 21a to 21c. A gate G of the first switch element Q.sub.1 is electrically connected with a drain D of the second switch element Q.sub.2.

[0028] The drain D of the second switch element Q.sub.2 is electrically connected with a second terminal of the resistor R.sub.1. A source S of the second switch element Q.sub.2 is grounded. A first terminal of the capacitor C is electrically connected with the source S of the first switch element Q.sub.1 and a first terminal of the resistor R.sub.1. A first terminal of the resistor R.sub.2 is electrically connected with a second terminal of the capacitor C, and a second terminal of the resistor R.sub.2 is grounded.

[0029] The controlling modules 23a and 23b include a comparator U.sub.1 and a comparator U.sub.2, respectively. Each of the comparators U.sub.1 and U.sub.2 has a first input terminal input.sub.1, a second input terminal input.sub.2 and an output terminal output. The second input terminal input.sub.2 and the output terminal output are electrically connected with each other through a resistor R to provide the comparator U.sub.1 or U.sub.2 a precise temperature transition characteristic. The resistor R is set between the second input terminal input.sub.2 and the output terminal output of the comparator U.sub.1 for compensating the feedback voltage value. Therefore, the comparator U.sub.1 can precisely control the starting module 22b to start the fan module 21b. Accordingly, the precise temperature transition characteristic can be achieved. Similarly, in the controlling module 23b, the resistor R is set between the second input terminal input.sub.2 and the output terminal output of the comparator U.sub.2 for compensating the feedback voltage value. Therefore, the comparator U.sub.2 can precisely control the starting module 22c to start the fan module 21c, so that the precise temperature transition characteristic can be achieved. In this embodiment, the first input terminal input.sub.1 is a noninverting input terminal and the second input terminal input.sub.2 is an inverting input terminal.

[0030] Regarding to the controlling module 23a, the first input terminal input.sub.1 of the comparator U.sub.1 receives a first reference signal V.sub.ref1, and the second input terminal input.sub.2 receives the sensing signal V.sub.t. The output terminal output is electrically connected with the gate G of the second switch element Q.sub.2 of the starting module 22b for controlling the second switch element Q.sub.2 of the starting module 22b. In the embodiment, when the sensing signal V.sub.t is lower than the first reference signal V.sub.ref1, the output terminal output delivers a positive voltage signal to start the second switch element Q.sub.2 of the starting module 22b. Accordingly, the fan module 21b is started.

[0031] Regarding to the controlling module 23b, the first input terminal input.sub.1 of the comparator U.sub.2 receives a second reference signal V.sub.ref2, and the second input terminal input.sub.2 receives the sensing signal V.sub.t. The output terminal output is electrically connected with the gate G of the second switch element Q.sub.2 of the starting module 22c for controlling the second switch element Q.sub.2 of the starting module 22c. In the embodiment, when the sensing signal V.sub.t is lower than the second reference signal V.sub.ref2, the output terminal output delivers a positive voltage signal to start the second switch element Q.sub.2 of the starting module 22c. Accordingly, if the second reference signal V.sub.ref2 is lower than the first reference signal V.sub.ref1, the fan module 22b is started when the internal temperature of the electronic system rises.

[0032] The operation principle of the fan system 2 will be described in the following. Once the fan system 2 is connected with the electronic system, it receives the input voltage 91. In this case, the diodes D1 and D2 of the starting module 22a receive the input voltage 91 to start the switch element Q2 and to charge the capacitor C. When the voltage of the capacitor C reaches the starting voltage of the switch element Q1, the switch element Q1 is started to enable the fan module 21a. To be noted, the capacitor C and the resistor R.sub.2 form a charging circuitry that enables the current flowing through the fan module 21a to increase at a slow rate such that the effect of soft starting can be achieved.

[0033] Since the electronic system is just started, the internal temperature thereof is not raised too much. At this moment, the sensing signal V.sub.t is not less than the first reference signal V.sub.ref1 and the second reference V.sub.ref2, so the fan modules 21b and 21c are not started yet. After the electronic system has operated for a period of time, the internal temperature thereof begins to rise so that the voltage of the sensing signal V.sub.t decreases. If the sensing signal V.sub.t is less than the first reference signal V.sub.ref1, the controlling module 23a will control the starting module 22b to start the fan module 21b.

[0034] If the internal temperature of the electronic system keeps rising, which leads to the sensing voltage V.sub.t less than the second reference signal V.sub.ref2, the controlling module 23b will control the starting module 22c to start the fan module 21c. As a result, the fan modules 21a to 21c can be started in accordance with the different temperatures so as to avoid the malfunction caused by the extremely large start-up current and inrush current. Thus, the heat dissipation requirement and the power consumption issue can be achieved.

[0035] In addition, the fan system 2 of the embodiment provides the backup heat-dissipating device in advance, so that the backup heat dissipating device, such as the fan module, can be enabled to increase the heat dissipation efficiency as the load of the electronic system increases, which generates more heat. In this manner, the electronic system can operate normally.

[0036] For example, assuming that the electronic system needs only one fan module 22a for normal operation, the preset two fan modules 22b and 22c can be used as the backup fan modules in the fan system 2 of the embodiment. Therefore, when the load of the electronic system increases, which leads to the higher internal temperature in the electronic system, the temperature-sensing element 24 will sense the temperature variation for starting the fan modules 22b and 22c. In this manner, the heat-dissipating efficiency can be enhanced for maintaining the normal operation of the electronic system.

[0037] With reference to FIG. 4, the invention further discloses a temperature-sensing module 3, which receives an input voltage 91 from exterior and cooperates with a fan module 31. The temperature-sensing module 3 includes a starting unit 32, a controlling unit 33, and a temperature-sensing element 34. In this embodiment, the fan module 31, the starting unit 32, the controlling unit 33, and the temperature-sensing element 34 have the same constructions and functions as those of the above mentioned fan module 21b, the starting unit 22b, the controlling unit 23a, and the temperature-sensing element 24, so the detailed descriptions thereof will be omitted for concise purpose.

[0038] In summary, the fan system and the temperature-sensing module according to the invention include the temperature-sensing element for producing the sensing signal. Then, the controlling modules can individually start the fan modules at different temperatures in accordance with the sensing signal so as to avoid the malfunction caused by the extremely large start-up current and inrush current, which are generated by instantaneously starting the fan modules. Compared with the prior art, the fan system and temperature-sensing module of the invention utilize the temperature-sensing element to sense the operating temperature and then correspondingly start sufficient fan modules. Therefore, the fan modules are started in a time-sharing manner to ensure that the fan system can operate normally, reduce the power consumption, and replace the analog starting control chip to reduce the overall manufacturing cost. In addition, the fan system of the invention has the advantage of preparing the backup heat-dissipating devices in advance, which can enhance the flexibility in usage.

[0039] Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed