Chip scale package with heat spreader

Corisis, David J.

Patent Application Summary

U.S. patent application number 11/185364 was filed with the patent office on 2005-11-10 for chip scale package with heat spreader. Invention is credited to Corisis, David J..

Application Number20050248038 11/185364
Document ID /
Family ID26703340
Filed Date2005-11-10

United States Patent Application 20050248038
Kind Code A1
Corisis, David J. November 10, 2005

Chip scale package with heat spreader

Abstract

A dense semiconductor flip-chip device assembly is provided with a heat sink/spreading/dissipating member which is formed as a paddle of a metallic paddle frame in a strip of paddle frames. Dice are bonded to the paddles by e.g. conventional die attach methods, enabling bump attachment and testing to be conducted before detachment from the paddle frame strip.


Inventors: Corisis, David J.; (Meridian, ID)
Correspondence Address:
    TRASK BRITT
    P.O. BOX 2550
    SALT LAKE CITY
    UT
    84110
    US
Family ID: 26703340
Appl. No.: 11/185364
Filed: July 20, 2005

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11185364 Jul 20, 2005
09342789 Jun 29, 1999
09342789 Jun 29, 1999
09028134 Feb 23, 1998
6314639

Current U.S. Class: 257/778 ; 257/706; 257/E21.511; 257/E21.516; 257/E23.051; 257/E23.092
Current CPC Class: H01L 2224/06131 20130101; H01L 2224/81201 20130101; H01L 2924/01322 20130101; H01L 2924/01005 20130101; H01L 23/36 20130101; H01L 2924/01013 20130101; H01L 2924/01029 20130101; H01L 2224/86 20130101; H01L 2924/01006 20130101; H01L 21/6835 20130101; H01L 2224/05026 20130101; H01L 2924/01033 20130101; H01L 2224/05554 20130101; H01L 2924/01079 20130101; H01L 2924/014 20130101; H01L 2224/81801 20130101; H01L 2224/73253 20130101; H01L 2924/12044 20130101; H01L 2224/16 20130101; H01L 2924/07802 20130101; H01L 24/81 20130101; H01L 2924/01047 20130101; H01L 2224/05573 20130101; H01L 2224/812 20130101; H01L 23/49568 20130101; H01L 2924/14 20130101; H01L 2924/00014 20130101; H01L 2924/01082 20130101; H01L 23/4334 20130101; H01L 2924/07802 20130101; H01L 2924/00 20130101; H01L 2924/00014 20130101; H01L 2224/05599 20130101; H01L 2224/86 20130101; H01L 2924/00014 20130101
Class at Publication: 257/778 ; 257/706
International Class: H01L 023/48

Claims



What is claimed is:

1. A semiconductor device assembly of a plurality of semiconductor device assemblies, comprising: a semiconductor die having an active surface having a plurality of bond pads thereon and an opposing second surface; at least one projection connected to at least one bond pad of the plurality of bond pads on the active surface of the semiconductor die for flip-chip bonding to a substrate, the at least one projection including one of at least one solder ball and at least one solder bump; and a paddle frame of a plurality of paddle frames including a pair of side rails, a plurality of cross-members, and a plurality of generally centrally positioned paddles, the pair of side rails and the plurality of cross members connected to a generally centrally positioned paddle of the paddle frame by a plurality of paddle support bars, the second surface of the semiconductor die being secured to the paddle, the paddle being attached to the side rail by at least two of the plurality of paddle support bars and being attached to the cross members by at least two of the plurality of support bars.

2. The semiconductor device assembly of claim 1, further comprising: an electrically conductive adhesive layer securing said second surface of said semiconductor die to said generally centrally positioned paddle.

3. The semiconductor device assembly of claim 2, wherein said electrically conductive adhesive layer comprises a eutectic material.

4. The semiconductor device assembly of claim 2, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

5. The semiconductor device assembly of claim 2, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal filling comprising a heat conductive material.

6. The semiconductor device assembly of claim 2, wherein said electrically conductive adhesive layer comprises conductive polyimide.

7. The semiconductor device assembly of claim 2, wherein said electrically conductive adhesive layer comprises a eutectic material.

8. The semiconductor device assembly of claim 7, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

9. The semiconductor device assembly of claim 2, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal filling comprising a heat conductor.

10. The semiconductor device assembly of claim 2, wherein said electrically conductive layer comprises conductive polyimide.

11. A semiconductor device assembly of a plurality of semiconductor device assemblies, comprising: a semiconductor die having an active surface having at least one bond pad thereon and an opposing second surface; at least one projection secured to the at least one bond pad on the active surface of said semiconductor die for a flip-chip connection to a substrate, the at least one projection including one of at least one solder ball and at least one solder bump; and a metal paddle from a paddle frame having no narrow common electrical leads for connection to the semiconductor die of a plurality of paddle frames connected by a pair of rails having a plurality of cross members therebetween, said second surface of the semiconductor die being attached to the paddle, the metal paddle attached to at least one side rail by at least a plurality of paddle support bars and being attached to a plurality of cross members by the support bars, the paddle support bars not used for electrical leads for the semiconductor die.

12. The semiconductor device assembly of claim 11, further comprising: an electrically conductive adhesive layer securing said second surface of said semiconductor die to said generally centrally positioned paddle.

13. The semiconductor device assembly of claim 12, wherein said electrically conductive adhesive layer comprises a eutectic material.

14. The semiconductor device assembly of claim 12, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

15. The semiconductor device assembly of claim 12, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal filling comprising a heat conductive material.

16. The semiconductor device assembly of claim 12, wherein said electrically conductive adhesive layer comprises conductive polyimide.

17. The semiconductor device assembly of claim 12, wherein said electrically conductive adhesive layer comprises a eutectic material.

18. The semiconductor device assembly of claim 17, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

19. The semiconductor device assembly of claim 12, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal filling comprising a heat conductor.

20. The semiconductor device assembly of claim 12, wherein said electrically conductive layer comprises conductive polyimide.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of application Ser. No. 09/342,789, filed Jun. 29, 1999, pending, which is a divisional of application Ser. No. 09/028,134, filed Feb. 23, 1998, now U.S. Pat. No. 6,314,639, issued Nov. 13, 2001.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates generally to semiconductor device assemblies. More particularly, the invention pertains to a method for producing a chip-on-board semiconductor device assembly with a heat spreading/dissipating member, and the device produced thereby.

[0004] 2. State of the Art

[0005] In the design and production of modern integrated circuits (IC), an important consideration is the dissipation of heat generated in the semiconductor device. Elevated temperatures may cause irreparable damage to the die and its electrical connections.

[0006] Various methods for preventing excessive temperatures in a semiconductor device have been in use.

[0007] Thus, for low-power devices of less than about I watt, the metal lead frame itself may be sufficient to dissipate generated heat. Lead frame configurations for improved heat dissipation are shown in U.S. Pat. No. 5,541,446 of Kierse, U.S. Pat. No. 4,961,107 of Geist et al., and U.S. Pat. No. 5,101,465 of Murphy.

[0008] For higher power packaged devices, a metal heat spreader may be incorporated into the package or attached to the outside of the package. Because of the generally low thermal conductivity of polymers, the heat dissipation design is more critical for polymer-packaged devices than for those packaged in ceramic or metal.

[0009] The use of heat spreaders/heat sinks/heat dissipaters in packaged semiconductor devices are often used to conduct heat to the exterior of the devices, either directly or via the leads. A wide variety of such is illustrated in U.S. Pat. No. 5,596,231 of Combs, U.S. Pat. No. 5,594,282 of Otsuki, U.S. Pat. No. 5,598,034 of Wakefield, U.S. Pat. No. 5,489,801 to Blish II, U.S. Pat. No. 4,024,570 of Hartmann et al., U.S. Pat. Nos. 5,378,924 and 5,387,554 of Liang, U.S. Pat. No. 5,379,187 of Lee et al., U.S. Pat. No. 4,507,675 of Fujii et al., U.S. Pat. No. 4,642,671 of Rohsler et al., U.S. Pat. No. 4,931,852 of Brown et al., U.S. Pat. No. 5,173,764 of Higgins III, U.S. Pat. No. 5,379,186 to Gold et al., U.S. Pat. No. 5,434,105 to Liou, and U.S. Pat. No. 5,488,254 to Nishimura et al.

[0010] The above-indicated references may be characterized as providing complex devices requiring difficult and/or costly processes to achieve the desired heat dissipation. Most of the references are not applicable at all to a high density device attached in a bare state to a substrate such as a circuit board.

[0011] Encapsulation compositions and methods are shown in U.S. Pat. No. 4,358,552 to Shinohara et al. and U.S. Pat. No. 5,194,930 to Papathomas et al.

BRIEF SUMMARY OF THE INVENTION

[0012] The present invention comprises a high density semiconductor device assembly for electrical connection without wires to a substrate such as a circuit board. In a preferred embodiment, the invention comprises a chip-on-board (COB) device with a heat spreader/dissipater on its back side. The active surface on its "front side" may be attached in a bare die state to the substrate by lead bond methods known in the art, preferably by ball-grid array (BGA) methods which simultaneously complete each of the conductive bonds between die and circuit board.

[0013] The present invention also encompasses a "paddle frame" strip for (a) providing a heat spreader/dissipater on each die, (b) supporting the dice for die testing and/or (c) supporting the dice for applying conductive bumps to the bond pads. The paddle frame strip may incorporate any number of paddle frames, and preferably has at least eight paddle frames.

[0014] The present invention further comprises a method for producing the high density semiconductor device with the heat spreader/dissipater.

[0015] The present invention provides significant advantages in the production of dense semiconductor devices, including enhanced reliability, ease of production, and reduced production costs.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0016] The invention is illustrated in the following figures, wherein the elements are not necessarily shown to scale:

[0017] FIG. 1 is a plan view of a portion of a paddle frame and attached semiconductor dice of the heat spreading chip scale package of the invention;

[0018] FIG. 2 is a cross-sectional side view of a die bonded to a paddle frame in accordance with the heat spreading chip scale package of the invention, as taken along line 2-2 of FIG. 1;

[0019] FIG. 3 is an enlarged perspective view of a semiconductor die bonded to a paddle of a paddle frame, furnished with a ball grid array and excised from the paddle frame in accordance with the chip scale package of the invention;

[0020] FIG. 4 is a side view of a circuit board upon which are reversibly mounted paddle-bonded semiconductor dice with ball grid arrays in accordance with the heat spreading chip scale package of the invention; and

[0021] FIG. 5 is a cross-sectional side view of a circuit board upon which are reversibly mounted and resin-packaged, paddle-bonded semiconductor dice with ball grid arrays, in accordance with the heat-spreading chip scale package of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0022] An improved high density semiconductor device assembly is provided by the present invention which is configured to be electrically attached to a substrate such as a circuit board by array bonding. A series of bare semiconductor devices of the invention may be mounted on a substrate in a closely packed arrangement. The semiconductor device is provided with a heat sink/spreading/dissipating member. Following mounting on a substrate, the device or plurality of devices may be "packaged" with a protective polymeric sealer.

[0023] The semiconductor device assembly and a method for producing it are described hereinbelow and illustrated in drawing FIGS. 1-5.

[0024] With reference to the drawings of FIGS. 1 and 2, a metal strip 10 of heat conductive material is configured with multiple paddle frames 12. The metal strip 10 has left and right side rails 14, 16 and a series of sprocket holes 18 in the side rails for precise positioning of processing equipment and a plurality of semiconductor dice 20 which are attached to the metal strip. Each paddle frame 12 includes the side rails 14,16, cross-members 26, and a generally centrally positioned metal paddle 22 which is attached to the side rails 14, 16 by paddle support bars 24 and to cross-members 26 by paddle support bars 28. A semiconductor die 20, having a first major surface 36 and an opposing second major surface 38, has second major surface 38 attached to a metal paddle 22 by die attach methods known in the art. Exemplary of such semiconductor die attachment methods is attachment using a semiconductor die attach layer 30 of electrically non-conductive polymeric adhesive such as epoxy or polyimide. Alternatively, a semiconductor die attach layer 30 may be electrically conductive. As known in the art, a metal filled polymer, an unfilled conductive polymer such as a silver filled epoxy or polyimide, or a conductive gold-silicon eutectic material may be used. Thus, the semiconductor die attach layer 30 may be electrically conductive or insulative, depending upon the circuit configuration of the second major semiconductor die surface 38. Thus, for example, the second major surface 38 may be designed to be grounded to a ground plane surface, which may be the metal paddle 22.

[0025] The metal paddle 22 acts as a heat spreader/dissipater in the final semiconductor device assembly 40. Thus, while the semiconductor die attach layer 30 may be either electrically conductive or insulative, it preferably has an enhanced heat conductivity. Where the metal paddle 22 comprises a metal layer attached to a polymer layer, the semiconductor die attach layer 30 is attached to the metal surface 48 to enhance heat transfer (see drawing FIG. 3).

[0026] Each metal strip 10 with paddle frames 12 may be formed in the same manner as are lead frames in the art. The number of paddle frames 12 which may be incorporated into the metal strip 10 is limited only by the capability of a manufacturer's machines for semiconductor die attachment and die excising.

[0027] The paddle frame 12 includes the left and right side rails 14, 16 which are joined by cross-members 26. The generally centrally located metal paddle 22 is supported from the side rails 14, 16 and cross-members 26 by paddle support bars 24, 28. Generally, no leads for electrical conduction are provided, although one or more of the paddle support bars 24, 28 may be used as leads in certain specific instances. No narrow "leads" common in lead frames are required in the paddle frame 12, resulting in greater ease of manufacture and increased reliability.

[0028] The paddle frame 12 may be formed of a thin film of metal such as aluminum, silver, copper, or Alloy "42." Typically, the metal paddle 22 is sized to completely cover the second major surface 38 of the semiconductor die 20 and preferably be somewhat larger. The thickness 44 of the metal paddle 22 is a function of the quantity of generated thermal energy, the semiconductor die size, the thermal conductivity of the semiconductor die attach material, and whether a packaging material overlies the metal paddle 22 in the final product. For generally low rates of heat generation, the paddle thickness 44 may be the minimum required by structural considerations. However, where the heat generation rate is very high, it may be necessary to increase the paddle thickness 44 to provide an increased heat sink capacity.

[0029] In many cases, the thickness 44 of the metal paddle 22 need only be sufficient to support the semiconductor die 20 prior to excision, and for uniform adherence to the semiconductor die 20. The paddle thickness 44 may typically range from about 0.5 .mu.m to about 5 .mu.m, but may vary from this range, particularly upwardly for enhancing heat sink capability. This range of paddle thickness 44 includes the typical thicknesses of lead frames of the prior art. Paddle frames 12 may be formed and joined to semiconductor dice 20 by tape automated bonding (TAB).

[0030] To singulate each semiconductor device assembly 40, the paddle support bars 24, 28 are excised close to the metal paddle 22 with excisions 50 (see drawing FIG. 3).

[0031] Illustrated in drawing FIG. 1 is a plurality of semiconductor dice 20 with conductive bond pads 32 on the first major surface 36, i.e. the "active" surface. While drawing FIG. 1 shows the conductive bond pads 32 along the periphery of the semiconductor dice, thus limiting the number of conductive bond pads, the invention may be used for semiconductor dice having a full grid array of conductive bond pads as shown in drawing FIGS. 2 and 3.

[0032] In a preferred embodiment, conductive projections 34 such as solder bumps or balls are formed on the conductive bond pads 32, the projections enabling "gang" bonding, i.e. flip-chip bonding, of the semiconductor die bond pads to the conductive traces 46 of a substrate 42 such as a circuit board. This is illustrated in drawing FIGS. 4 and 5, which show a plurality of semiconductor device assemblies 40 flipped and bonded to circuit connections, e.g. conductive traces 46 (see drawing FIG. 5), of a substrate 42 comprising a circuit board. The internal circuitry within the substrate 42 is not shown, being irrelevant to the invention. The semiconductor device assemblies 40 may be bonded to a substrate 42 in a high density pattern and, being "bare" semiconductor dice 20, take up minimal space. The bonding may be completed by standard "flip-chip" methods, including thermal and/or pressure processes.

[0033] Each semiconductor device assembly 40 has a heat sink/spreader/dissipater 52 which was formerly a metal paddle 22 of a metal paddle frame 12. The heat sink/spreader/dissipater 52 has a generally exposed surface 54 for dissipating heat generated in the semiconductor device assembly 40.

[0034] As depicted in drawing FIG. 5, a sealant material 56 may be applied to the periphery of a semiconductor device assembly 40 and the space 58 between the semiconductor device assembly and the substrate 42. The sealant material 56 seals the semiconductor device assembly 40 to the substrate 42 and protects the semiconductor device assembly from moisture, etc. The spaces between adjacent semiconductor device assemblies 40 may be readily filled with sealant material 56. The space 58 may be filled, for example, by injecting sealant material 56 through holes, not shown, in the substrate 42. Preferably, surface 54 of the heat sink/spreader/dissipater 52 is largely left uncovered to provide high heat dissipation.

[0035] Any sealant material 56 useful in packaging semiconductor device assemblies may be used, including e.g. epoxy, polyimide, etc.

[0036] A method of producing the semiconductor device assembly 40 includes the steps of:

[0037] 1. producing a plurality of semiconductor dice 20 with integrated circuits as a wafer, each semiconductor die 20 having a first major surface 36 defined as an active surface with an array of conductive bond pads 32, i.e. input/output (I/O) pads, and a second, opposite major surface 38;

[0038] 2. separating the individual semiconductor die 20 from the wafer;

[0039] 3. providing a conductive "paddle frame" metal strip 10 with multiple paddle frames 12, each paddle frame having a heat conductive metal paddle 22 connected to side rails 14, 16 and cross-members 26 of the paddle frame 12 by paddle support bars 24, 28;

[0040] 4. bonding a semiconductor die 20 to each metal paddle 22 of the paddle frame metal strip 10 with a thin die attach layer 30 of adhesive or adhesive tape of e.g. epoxy or polyimide. The adhesive die attach layer 30 may be provided with enhanced heat conductive properties. Alternatively, the second major surface 38 of the semiconductor die 20 may be bonded to the metal paddle 22 eutectically by formation of e.g. a gold-silicon eutectic die attach layer 30 or other electrically conductive material such as a specially designed polyimide.

[0041] 5. conductive projections 34, i.e. balls or bumps (stud bumps) for reflow may be formed on the I/O conductive bond pads 32 of the semiconductor dice 20 either prior to or following attachment of the semiconductor dice to the metal paddles 22;

[0042] 6. the semiconductor dice 20 may be tested in sequence in strip form, i.e. while the metal paddles 22 with attached semiconductor dice are connected to the paddle frame metal strip 10. A test head (not shown) is placed to make temporary electrical connection with the conductive bond pads 32 or conductive projections 34 for the conduction of parametric and functional tests. The testing may include additional tests typical of "burn-in" testing;

[0043] 7. the paddle support bars 24, 28 connecting the metal paddles 22 to the paddle frame 12 are excised to free each semiconductor device assembly 40;

[0044] The semiconductor device assemblies 40 so produced are configured for mounting in a "flip-chip" configuration, i.e. face down on a substrate 42 such as a circuit board, e.g. by reflowing under heat and/or by pressure or other methods as known in the art.

[0045] The metal paddle 22 attached to the second major surface 38 of each semiconductor die 20 comprises a heat sink/spreader/dissipater 52 which prevents overheating of the semiconductor device assembly 40 (a) during testing (including burn-in), (b) during mounting on the substrate 42, (c) during packaging, and (d) in actual operation.

[0046] Following attachment to a substrate 42 such as a circuit board, the semiconductor device assembly 40 may be sealed with an electrically insulating sealant material 56 to produce a partially encapsulated package. The exposed surface 54 of the heat sink/spreader/dissipater 52 is preferably left largely uncovered, or is only thinly covered with the sealant material 56. The sealant may be any of the polymeric materials commonly used for packaging, including those used for "glob-top." Examples of such materials are epoxy resins and polyimides.

[0047] The invention is particularly applicable to high density integrated circuit semiconductor device assemblies 40 having a large number of interconnections, i.e. conductive bond pads 32. Such devices may produce significant quantities of thermal energy which, if not removed, may lead to destruction of the integrated circuit. The bare semiconductor dice 20 of the invention may be densely mounted on a substrate 42 and then sealed by introducing a sealant material 56 between the substrate and semiconductor dice to surround the electrical connections and the first major or active surfaces 36 and edges 60 of the semiconductor dice 20.

[0048] Major advantages of the invention are as follows:

[0049] 1. The ease of device handling is enhanced. The semiconductor dice 20 are fixed to the unseparated metal paddles 22 of the "paddle frame" 12 during the test process and each semiconductor device assembly 40 can be handled without touching the semiconductor die. Once the semiconductor device assembly 40 is separated from the paddle frame 12 by excision of the paddle support bars 24, 28, the metal paddle 22 becomes a beat sink/spreader/dissipater 52, and the device may be handled and supported solely thereby.

[0050] 2. Current methods of lead frame production may be used to produce the paddle frame metal strip 10. The paddle frames 12 are much simpler in design than lead frames, there being few or no electrical leads.

[0051] 3. Semiconductor dice or multiple chips 20 may be mounted on a single paddle frame metal strip 10, using equipment widely used by device manufacturers. Thus, reliable attachment of the semiconductor dice 20 to the metal paddles 22, testing (and burn-in) of the semiconductor dice, separation of the paddle mounted semiconductor dice from the paddle frame metal strip 10, and mounting of the semiconductor dice on a substrate 42 may be easily accomplished using well-developed and common assembly equipment and methods. The readily aligned semiconductor die attach apparatus, test head, and lead excision apparatus enable accuracy and ease of operation in the device assembly.

[0052] 4. The heat sink/spreader/dissipater 52 of the invention results in better temperature control and increased reliability of the semiconductor device assembly 40.

[0053] 5. Use of known technology and equipment results in a lower assembly cost. No additional specially-designed equipment is required.

[0054] 6. A dense chip-size bare semiconductor device assembly 40 of low profile is produced for dense attachment to a circuit board or other substrate 42.

[0055] It is apparent to those skilled in the art that various changes and modifications may be made to the semiconductor die with a heat spreader/dissipater and the novel method of manufacturing, testing and installing the semiconductor die of the invention as disclosed herein without departing from the spirit and scope of the invention as defined in the following claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed