Multimodal communication system induction and radio and method

Hviid , et al. September 5, 2

Patent Grant 9755704

U.S. patent number 9,755,704 [Application Number 15/244,782] was granted by the patent office on 2017-09-05 for multimodal communication system induction and radio and method. This patent grant is currently assigned to BRAGI GmbH. The grantee listed for this patent is BRAGI GmbH. Invention is credited to Eric Christian Hirsch, Nikolaj Hviid.


United States Patent 9,755,704
Hviid ,   et al. September 5, 2017

Multimodal communication system induction and radio and method

Abstract

A system of wearable or personal area devices includes a first earpiece and a second ear piece each of the first ear piece and the second ear piece comprising an ear piece housing, an induction circuit disposed within the ear piece housing for short range communications, and a radio transceiver disposed within the ear piece housing for radio communications. The induction circuit of the first ear piece and the induction circuit of the second ear piece are adapted for communication there between using high bandwidth audio.


Inventors: Hviid; Nikolaj (Munchen, DE), Hirsch; Eric Christian (Munchen, DE)
Applicant:
Name City State Country Type

BRAGI GmbH

Munchen

N/A

DE
Assignee: BRAGI GmbH (Munchen, DE)
Family ID: 58097002
Appl. No.: 15/244,782
Filed: August 23, 2016

Prior Publication Data

Document Identifier Publication Date
US 20170063434 A1 Mar 2, 2017

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
62211716 Aug 29, 2015

Current U.S. Class: 1/1
Current CPC Class: H04R 1/1016 (20130101); H04R 25/552 (20130101); H04W 4/80 (20180201); H04B 5/0075 (20130101); H04R 1/1041 (20130101); H04R 5/033 (20130101); H04R 2420/07 (20130101); H04R 2201/107 (20130101)
Current International Class: H04M 1/00 (20060101); H04B 5/00 (20060101); H04W 4/00 (20090101); H04R 1/10 (20060101); H04R 25/00 (20060101)
Field of Search: ;455/41.1,569.1,575.2

References Cited [Referenced By]

U.S. Patent Documents
3934100 January 1976 Harada
4150262 April 1979 Ono
4334315 June 1982 Ono et al.
4375016 February 1983 Harada
4588867 May 1986 Konomi
4654883 March 1987 Iwata
4682180 July 1987 Gans
4791673 December 1988 Schreiber
4865044 September 1989 Wallace et al.
5191602 March 1993 Regen et al.
5201007 April 1993 Ward et al.
5280524 January 1994 Norris
5295193 March 1994 Ono
5298692 March 1994 Ikeda et al.
5343532 August 1994 Shugart
5363444 November 1994 Norris
5497339 March 1996 Bernard
5606621 February 1997 Reiter et al.
5613222 March 1997 Guenther
5692059 November 1997 Kruger
5721783 February 1998 Anderson
5749072 May 1998 Mazurkiewicz et al.
5771438 June 1998 Palermo et al.
5802167 September 1998 Hong
5929774 July 1999 Charlton
5933506 August 1999 Aoki et al.
5949896 September 1999 Nageno et al.
5987146 November 1999 Pluvinage et al.
6021207 February 2000 Puthuff et al.
6054989 April 2000 Robertson et al.
6081724 June 2000 Wilson
6094492 July 2000 Boesen
6111569 August 2000 Brusky et al.
6112103 August 2000 Puthuff
6157727 December 2000 Rueda
6167039 December 2000 Karlsson et al.
6181801 January 2001 Puthuff et al.
6208372 March 2001 Barraclough
6275789 August 2001 Moser et al.
6339754 January 2002 Flanagan et al.
6408081 June 2002 Boesen
D464039 October 2002 Boesen
6470893 October 2002 Boesen
D468299 January 2003 Boesen
D468300 January 2003 Boesen
6542721 April 2003 Boesen
6560468 May 2003 Boesen
6654721 November 2003 Handelman
6664713 December 2003 Boesen
6694180 February 2004 Boesen
6718043 April 2004 Boesen
6738485 May 2004 Boesen
6748095 June 2004 Goss
6754358 June 2004 Boesen et al.
6784873 August 2004 Boesen et al.
6823195 November 2004 Boesen
6852084 February 2005 Boesen
6879698 April 2005 Boesen
6892082 May 2005 Boesen
6920229 July 2005 Boesen
6952483 October 2005 Boesen et al.
6987986 January 2006 Boesen
7136282 November 2006 Rebeske
7203331 April 2007 Boesen
7209569 April 2007 Boesen
7215790 May 2007 Boesen et al.
7463902 December 2008 Boesen
7508411 March 2009 Boesen
7983628 July 2011 Boesen
8140357 March 2012 Boesen
2001/0005197 June 2001 Mishra et al.
2001/0027121 October 2001 Boesen
2001/0056350 December 2001 Calderone et al.
2002/0002413 January 2002 Tokue
2002/0007510 January 2002 Mann
2002/0010590 January 2002 Lee
2002/0030637 March 2002 Mann
2002/0046035 April 2002 Kitahara et al.
2002/0057810 May 2002 Boesen
2002/0076073 June 2002 Taenzer et al.
2002/0118852 August 2002 Boesen
2003/0065504 April 2003 Kraemer et al.
2003/0100331 May 2003 Dress et al.
2003/0104806 June 2003 Ruef et al.
2003/0115068 June 2003 Boesen
2003/0125096 July 2003 Boesen
2003/0218064 November 2003 Conner et al.
2004/0070564 April 2004 Dawson et al.
2004/0160511 August 2004 Boesen
2005/0043056 February 2005 Boesen
2005/0125320 June 2005 Boesen
2005/0148883 July 2005 Boesen
2005/0165663 July 2005 Razumov
2005/0196009 September 2005 Boesen
2005/0251455 November 2005 Boesen
2005/0266876 December 2005 Boesen
2006/0029246 February 2006 Boesen
2006/0073787 April 2006 Lair
2006/0074671 April 2006 Farmaner et al.
2006/0074808 April 2006 Boesen
2008/0254780 October 2008 Kuhl et al.
2014/0153768 June 2014 Hagen
2014/0219467 August 2014 Kurtz
2014/0335908 November 2014 Krisch
Foreign Patent Documents
1017252 Jul 2000 EP
2074817 Apr 1981 GB
06292195 Oct 1998 JP
2014043179 Mar 2014 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO

Other References

Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014). cited by applicant .
BRAGI Is on Facebook (2014). cited by applicant .
BRAGI Update--Arrival of Prototype Chassis Parts--More People--Awesomeness (May 13, 2014). cited by applicant .
BRAGI Update--Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015). cited by applicant .
BRAGI Update--First Sleeves From Prototype Tool--Software Development Kit (Jun. 5, 2014). cited by applicant .
BRAGI Update--Let's Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014). cited by applicant .
BRAGI Update--Memories From April--Update on Progress (Sep. 16, 2014). cited by applicant .
BRAGI Update--Memories from May--Update on Progress--Sweet (Oct. 13, 2014). cited by applicant .
BRAGI Update--Memories From One Month Before Kickstarter--Update on Progress (Jul. 10, 2014). cited by applicant .
BRAGI Update--Memories From the First Month of Kickstarter--Update on Progress (Aug. 1, 2014). cited by applicant .
BRAGI Update--Memories From the Second Month of Kickstarter--Update on Progress (Aug. 22, 2014). cited by applicant .
BRAGI Update--New People @BRAGI--Prototypes (Jun. 26, 2014). cited by applicant .
BRAGI Update--Office Tour, Tour to China, Tour to CES (Dec. 11, 2014). cited by applicant .
BRAGI Update--Status on Wireless, Bits and Pieces, Testing--Oh Yeah, Timeline(Apr. 24, 2015). cited by applicant .
BRAGI Update--The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015). cited by applicant .
BRAGI Update--What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014). cited by applicant .
BRAGI Update--Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015). cited by applicant .
BRAGI Update--Alpha 5 and Back to China, Backer Day, on Track(May 16, 2015). cited by applicant .
BRAGI Update--Beta2 Production and Factory Line(Aug. 20, 2015). cited by applicant .
BRAGI Update--Certifications, Production, Ramping Up (Nov. 13, 2015). cited by applicant .
BRAGI Update--Developer Units Shipping and Status(Oct. 5, 2015). cited by applicant .
BRAGI Update--Developer Units Started Shipping and Status (Oct. 19, 2015). cited by applicant .
BRAGI Update--Developer Units, Investment, Story and Status(Nov. 2, 2015). cited by applicant .
BRAGI Update--Getting Close(Aug. 6, 2014). cited by applicant .
BRAGI Update--On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015). cited by applicant .
BRAGI Update--On Track, on Track and Gems Overview (Jun. 24, 2015). cited by applicant .
BRAGI Update--Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015). cited by applicant .
BRAGI Update--Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015). cited by applicant .
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014). cited by applicant .
Staab, Wayne J., et al., "A One-Size Disposable Hearing Aid is Introduced", The Hearing Journal 53(4):36-41) Apr. 2000. cited by applicant .
Stretchgoal--It's Your Dash (Feb. 14, 2014). cited by applicant .
Stretchgoal--The Carrying Case for the Dash (Feb. 12, 2014). cited by applicant .
Stretchgoal--Windows Phone Support (Feb. 17, 2014). cited by applicant .
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014). cited by applicant .
The Dash--A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014). cited by applicant .
Update From BRAGI--$3,000,000--Yipee (Mar. 22, 2014). cited by applicant.

Primary Examiner: Gonzales; April G
Attorney, Agent or Firm: Goodhue, Coleman & Owens, P.C.

Parent Case Text



RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/211,716, filed Aug. 29, 2015, hereby incorporated by reference in its entirety.
Claims



What is claimed is:

1. A system of wearable or personal area devices comprising: a first earpiece comprising (a) a first earpiece housing, (b) an induction circuit disposed within the first earpiece housing for short range communication, (c) a radio transceiver disposed within the first ear piece housing for radio communications, (d) wherein the induction circuit within the first ear piece is adapted for communication using high bandwidth audio; wherein the induction circuit is a near field magnetic induction circuit, (e) wherein the high bandwidth audio is more than 10 kHz with less than 3dB loss; and a second earpiece comprising a second earpiece housing and an induction circuit disposed within the second earpiece housing for short range communication with the first earpiece.

2. The system of claim 1 wherein the induction circuit is a near field magnetic induction circuit.

3. The system of claim 2 wherein the radio transceiver is a Bluetooth radio transceiver.

4. The system of claim 2 wherein the radio transceiver is a frequency modulation (FM) radio transceiver.

5. The system of claim 1 further comprising a mobile device in operative communication with the first earpiece via the radio transceiver disposed within the ear piece housing of the first earpiece.

6. The system of claim 5 wherein the mobile device is in operative communication with the second earpiece via a radio transceiver disposed within the ear piece housing of the second earpiece.

7. An earpiece comprising: an earpiece housing; an induction circuit disposed within the ear piece housing for short range communication; and a radio transceiver disposed within the ear piece housing for radio communications; wherein the induction circuit within the ear piece is adapted for communication using high bandwidth audio; wherein the induction circuit is a near field magnetic induction circuit; wherein the high bandwidth audio is more than 10 kHz with less than 3 dB loss.

8. The earpiece of claim 7 wherein the earpiece is a left earpiece.

9. The earpiece of claim 7 wherein the earpiece is a right earpiece.

10. The earpiece of claim 7 further comprising a battery disposed within the earpiece, the battery operatively connected to the induction circuit and the radio transceiver.

11. The earpiece of claim 7 further comprising an intelligent control disposed within the earpiece housing, the intelligent control operatively connected to the induction circuit and the radio transceiver.

12. The earpiece of claim 7 further comprising at least one microphone associated with the earpiece housing.

13. The earpiece of claim 7 further comprising one or more speakers associated with the earpiece housing.

14. The earpiece of claim 7 further comprising storage disposed within the earpiece for storing a plurality of audio files.

15. An earpiece comprising: an earpiece housing; an induction circuit disposed within the ear piece housing for short range communication; a radio transceiver disposed within the ear piece housing for radio communications; an intelligent control disposed within the earpiece housing; a microphone associated with the earpiece housing; a speaker associated with the earpiece housing; a battery disposed within the earpiece housing and operatively connected to the induction circuit, the radio transceiver and the intelligent control; a storage device disposed within the earpiece housing for storing one or more audio files, the storage device operatively connected to the intelligent control; wherein the induction circuit is adapted for communication using high bandwidth audio of more than 10 kHz with less than a 3 dB loss.

16. The earpiece of claim 15 wherein the induction circuit is a near field magnetic induction circuit.

17. The earpiece of claim 16 wherein the radio transceiver is a Bluetooth transceiver.

18. The earpiece of claim 17 wherein the earpiece housing is water resistant to allow for use of the earpiece when submerged in water.
Description



FIELD OF THE INVENTION

The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to a multimodal communication system using induction and radio communications.

BACKGROUND

One of the problems with wearable devices relates to communications. For purposes here, examples of problems with ear piece systems are described although the present invention is not necessarily limited to this particular context. For example, where there are two earpieces a Bluetooth transmission failure may be detected between the two earpieces precluding an inter-ear system from working. Even with recalibration and RF tuning, a persistent and unacceptable drop in output from the paired earpiece may occur. Such performance is untenable, as devices should work in a number of different use environments and user situations. Using the 2.4 GHz band, this wavelength may be absorbed to a great degree by the surrounding soft tissues of the head, brain and neck. Further, transmission power may be limited by space as well as the requirement of device placement at the external auditory canal. Power requirements using high frequency communications such as those found in the ISM band or Bluetooth standard to adequately transmit to a counterpart wireless earpiece may be physiologically unacceptable. FM transmissions may also have issues with interference, privacy concerns and geographical variances. Additionally, Bluetooth standard transmissions may not be able to accommodate to the anatomic demands of transmission through or around the soft tissues of the cranium. Still further, such a system may be unstable in high humidity environments such as on a beach, walking through snow, on a forest floor or while submerged in water. What is needed is an improved wearable device which may communicate with other wearable devices.

SUMMARY

Therefore, it is a primary object, feature, or advantage to improve over the state of the art.

It is a further object, feature, or advantage to provide an improved earpiece and/or set of ear pieces.

It is a still further object, feature, or advantage to provide the ability to transfer high quality audio and data streams between the two earpieces.

Another object, feature, or advantage is to minimize deterioration of signal between two earpieces.

Yet another object, feature, or advantage is to provide high quality transmission of inter device signals such as inter ear signals.

A further object, feature, or advantage is provide devices such as earpieces which are stable when in proximity to water and high humidity states, forest floors, beaches, skiing, running or walking through the snow, to name but a few examples of environmental conditions.

One or more of these and/or other objects, features, or advantages will become apparent from the specification and claims that follow. No single embodiment need exhibit each and every object, feature, or advantage. It is contemplated that different embodiments will have different objects, features, or advantages.

According to one aspect a system of wearable devices is provided. The system includes a first earpiece and a second ear piece. Each of the earpieces includes an ear piece housing, an induction circuit disposed within the ear piece housing for short range communications, and a radio transceiver disposed within the ear piece housing for radio communications. The induction circuit of the first ear piece and the induction circuit of the second ear piece are adapted for communication there between. The induction circuit may be a near field magnetic induction circuit or other type of induction circuit. The radio transceiver may be a Bluetooth radio transceiver, a frequency modulation (FM) radio transceiver or other type of radio transceiver. The system may further include a mobile device in operative communication with the first earpiece via the radio transceiver disposed within the ear piece housing of the first earpiece. The mobile device may also be in operative communication with the second earpiece via the radio transceiver disposed within the ear piece housing of the second earpiece. The system also may further encompass other devices constituting a personal area network. Such devices are not limited to wearable, ingestible and implantable devices.

According to another aspect, an earpiece includes an earpiece housing, an induction circuit disposed within the ear piece housing for short range communication, and a radio transceiver disposed within the ear piece housing for radio communications. The earpiece may be a left earpiece or a right earpiece. The induction circuit may be a near field induction circuit, a magnetic induction circuit, or other type of induction circuit. The earpiece may further include a battery disposed within the earpiece, the battery operatively connected to the induction circuit and the radio transceiver. There may be an intelligent control disposed within the earpiece housing, the intelligent control operatively connected to the induction circuit and the radio transceiver. There may be at least one microphone associated with the earpiece housing. There may be at least one speaker associated with the earpiece housing.

According to another aspect, an earpiece includes an earpiece housing, an induction circuit disposed within the ear piece housing for short range communication, a radio transceiver disposed within the ear piece housing for radio communications, an intelligent control disposed within the earpiece housing, a microphone associated with the earpiece housing, a speaker associated with the earpiece housing, and a battery disposed within the earpiece housing and operatively connected to the induction circuit, the radio transceiver and the intelligent control. The induction circuit may be a near field magnetic induction circuit or other type of induction circuit. The radio transceiver may be a Bluetooth transceiver or other type of radio transceiver.

According to another aspect, a method for communication between wearable and personal area devices is provided. The method includes providing a first wearable device comprising a wearable device housing, an induction circuit disposed within the wearable device housing for short range communication, and a radio transceiver disposed within the wearable device housing for radio communications. The method further includes providing a second wearable device comprising a wearable or personal area device housing, an induction circuit disposed within the wearable device housing for short range communication, and a radio transceiver disposed within the wearable device housing for radio communications. The method further includes communicating information between the first wearable device and the second wearable device using the induction circuit of the first wearable device and the induction circuit of the second wearable device. The communicating information may include communicating the information through a human body. The first wearable device may be a first earpiece and the second wearable device may be a second earpiece. The step of communicating the information through the human body may include communicating the information through a head. The information may include an audio stream or other data. The method may further include communicating data between the first wearable device and a computing device or mobile device using the radio transceiver of the first wearable or personal area device. Similarly, the method may further include communicating data between the second wearable or personal area device and a computing device or mobile device using the radio transceiver of the second wearable or personal area device. Information communicated with the induction circuitry may include high bandwidth audio including audio greater than that associated with the vocal range, audio more than 7 kHz, 8 kHz, 9 kHz, 10 kHz, 11 kHz, 12 kHz, 13 kHz, 14 kHz, 15 kHz, 16 kHz, 17 kHz, 18 kHz, with less than 3 dB loss.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates one example of a system of wearable devices in the form of a set of ear pieces.

FIG. 2 is a block diagram illustrating one example of a wearable device.

FIG. 3 illustrates an example of a system of wearable devices in operative communication with a computing device in the form of a mobile device.

DETAILED DESCRIPTION

FIG. 1 illustrates one example of a wearable device in the form of a set of earpieces 10 including a left ear piece 12A and a right earpiece 12B. Each of the ear pieces 12A, 12B has an ear piece housing 14A, 14B which may be in the form of a protective shell or casing which is preferably water resistant or water tight to allow the ear pieces to function across a number of different environmental conditions including when submerged in water or in high humidity. A light display area 16A, 16B is present on each of the ear pieces 12A, 12B. The light generation areas 16A, 16B each provide for producing light of one or more colors.

The wearable device may provide for a plurality of different modes of operation. One mode of operation of the device relates to gestural movements. For example, where a user performs a gestural movement which is interpreted by the device the device may light or activate one or more lighting elements to confirm the gestural movement or to indicate that the gestural movement could not be interpreted. In addition, audio feedback may be used to confirm a gestural movement or to indicate that the gestural movement could not be interpreted. As shown, one or more detectors or receivers 24A, 24B may also be present to detect changes in energy fields associated with gestures performed by a user. The receivers 24A, 24B in combination with one or more emitters provide a gesture based user interface.

Also as shown in FIG. 2, an intelligent control 30 which may include one or more processors or other circuits is shown. The intelligent control 30 is operatively connected to one or more sensor(s) 32 which may include one or more microphones, one or more inertial sensors (such as accelerometers, gyro sensors, compass, or magnetometers), one or more physiological parameter sensors (such as a pulse oximeter or temperature sensor), a temperature sensor, or combinations thereof. Preferably at least one of the microphones has a frequency response suitable for ambient or environment sounds including the ability to pick up sounds well above the 7 kHz or so associated with the vocal range. Thus the device may be configured to allow unimpeded or unmodified environmental sounds to be captured and reproduced for the user by capturing the sounds at one side of a barrier formed by the ear piece housing and reproducing the sounds at a speaker 35 at the other side of the barrier. The intelligent control 30 is also operatively connected to the speaker 35. The intelligent control may include a data processor and a signal processor. The intelligent control 30 is also operatively connected to both an induction circuit 34 and a radio transceiver 36 and storage 33. The storage may be used to store one or more audio files and may be a solid state memory or other memory. Thus an audio stream associated with an audio file may be communicated through the induction circuit 34 to another device. A battery (not shown) which is also housed within the wearable device housing may be used in a conventional manner to power the various components of the wearable device.

The wearable devices may communicate with each other to share information. This information may include information related to user input such as gestures performed at one of the devices. This information may also include other information such as audio streams received at one of the devices. Of course, other information may also be communicated between the wearable devices. Each of the wearable devices includes the induction circuit 34 which may be a magnetic induction circuit, a near field induction circuit, or a near field magnetic induction circuit. Use of the induction circuit 34 allows the wearable devices to communicate with one another even through the human body. Where the wearable devices are both earpieces, the induction circuit 34 allows the earpieces to communicate through the human head. A near field magnetic induction (NFMI) circuit may include a core and a plurality of coil turns wrapped around the core. The core may include ferrite or may be an open air core or other type of core.

The wearable devices 14 also include a radio transceiver 36 for wireless communications. Although it is contemplated that the radio transceiver 36 may be of any number of types and use any number of different communication protocols, one example of a radio transceiver that may be used is a Bluetooth radio transceiver. Other examples include ultra-wideband (UWB) transceivers, frequency modulation (FM) radio transceivers, or any number of other types of radio transceivers. One of the purposes of the radio transceiver 36 is for communication with other computing devices including mobile devices. FIG. 3 illustrates one example of a mobile device 60 with a machine readable storage medium upon which a software application or "app" 62 may be stored. The radio transceiver may be used to communicate information between the wearable device and the mobile device 60. The information may include one or more audio streams. For example, the mobile device 60 may communicate an incoming audio stream including a voice signal associated with a phone call or chat session or audio or video conference to the radio transceiver of the wearable device. Similarly, the radio transceiver of the wearable device may communicate an outgoing audio stream including a voice signal associated with the user of the wearable device to the mobile device. Alternatively, music may be streamed to or from the wearable device. Of course, there are many other examples of information which may be communicated between the wearable device and mobile devices or computing devices. This may include user input, sensor readings, audio information, diagnostic information, and other types of information or data. In addition, the mobile device 60 and app 62 may be operatively connected to a network 68 and may communicate user input, sensor readings, audio information, diagnostic information, and other types of information or data across the network 68.

Thus, in operation a method is provided for communication between wearable devices. The method may include communicating information between the first wearable or personal area device and the second wearable or personal area device using the induction circuit of the first wearable device and the induction circuit of the second wearable device. The information may be of any number of types including an audio stream or a stream from an input sensor signal or other type of data. Note that using an induction circuit avoids numerous issues associated with radio communications including the need for frequent recalibration, RF tuning, persistent and unacceptable drops in outputs, and other issues. Moreover, using an induction circuit avoids issues with the body absorbing the RF especially the soft tissues of the head, brain and neck. In addition, use of the induction circuit is appropriate for communications in any number of different environments including high humidity environments such as on a beach, walking through snow, on a forest floor or while submerged in water.

It is to be further understood that where the devices are ear pieces or other wearable or personal area devices, that the induction circuit is configured for high bandwidth audio suitable for music or ambient noise. Note that this is in contrast to devices such as hearing aids which have bandwidths specifically constrained to those associated with the vocal range (e.g. around 7 kHz and under). Thus, preferably the device is configured to provide a bandwidth of more than 7 kHz (with less than 3 dB loss), more than 8 kHz (with less than 3 dB loss), more than 9 kHz (with less than 3 dB loss), more than 10 kHz (with less than 3 dB loss), more than 11 kHz (with less than 3 dB loss), more than 12 kHz (with less than 3 dB loss), more than 13 kHz (with less than 3 dB loss), more than 14 kHz (with less than 3 dB loss), more than 15 kHz (with less than 3 dB loss), more than 16 kHz (with less than 3 dB loss), more than 17 kHz (with less than 3 dB loss), more than 18 kHz (with less than 3 dB loss), more than 19 kHz (with less than 3 dB loss), or more than 20 kHz (with less than 3 dB loss). Therefore, the term "high bandwidth audio" as used herein refers to a bandwidth which is greater than that associated with the vocal range and thus more than 7 kHz with less than 3 dB loss. The induction circuit is configured for high bandwidth audio by selection of the coil parameters and/or other circuitry which achieve the desired bandwidth and loss.

Therefore various examples of wearable or personal area devices and related methodologies and systems have been shown and described. It is to be understood that the present invention contemplates numerous options, variations, and alternatives. Therefore, the present invention is not to be limited to the specific disclosure set forth herein.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed