Uniform illumination of keys

Leong , et al. June 12, 2

Patent Grant 9997304

U.S. patent number 9,997,304 [Application Number 15/154,723] was granted by the patent office on 2018-06-12 for uniform illumination of keys. This patent grant is currently assigned to APPLE INC.. The grantee listed for this patent is Apple Inc.. Invention is credited to Robert Y. Cao, Mahesh Krishnamurthi, Craig C. Leong, Rong Liu, Dinesh C. Mathew, Jun Qi, Victor H. Yin, Bradford J. Zercoe.


United States Patent 9,997,304
Leong ,   et al. June 12, 2018

Uniform illumination of keys

Abstract

Systems and methods for providing illumination to illuminable portions of keys associated with a keyboard are described. A key includes a light guide positioned below a keycap. The light guide includes one or more sidewalls that exhibit high internal reflection. In many examples, light guide sidewalls are formed with one or more prisms.


Inventors: Leong; Craig C. (Cupertino, CA), Zercoe; Bradford J. (Cupertino, CA), Mathew; Dinesh C. (Cupertino, CA), Krishnamurthi; Mahesh (Cupertino, CA), Cao; Robert Y. (Cupertino, CA), Qi; Jun (Cupertino, CA), Liu; Rong (Cupertino, CA), Yin; Victor H. (Cupertino, CA)
Applicant:
Name City State Country Type

Apple Inc.

Cupertino

CA

US
Assignee: APPLE INC. (Cupertino, CA)
Family ID: 56411876
Appl. No.: 15/154,723
Filed: May 13, 2016

Prior Publication Data

Document Identifier Publication Date
US 20160336124 A1 Nov 17, 2016

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
62161038 May 13, 2015

Current U.S. Class: 1/1
Current CPC Class: H01H 13/83 (20130101); H01H 13/023 (20130101); H01H 13/14 (20130101); H01H 2219/062 (20130101); G06F 3/0202 (20130101); H01H 2219/0622 (20130101); H01H 2219/048 (20130101)
Current International Class: H01H 13/02 (20060101); H01H 13/83 (20060101); H01H 13/14 (20060101); G06F 3/02 (20060101)
Field of Search: ;200/308,310-315,512-521,5A,341,344-345

References Cited [Referenced By]

U.S. Patent Documents
3657492 April 1972 Arndt et al.
3917917 November 1975 Murata
3978297 August 1976 Lynn et al.
4095066 June 1978 Harris
4319099 March 1982 Asher
4349712 September 1982 Michalski
4484042 November 1984 Matsui
4596905 June 1986 Fowler
4598181 July 1986 Selby
4670084 June 1987 Durand et al.
4755645 July 1988 Naoki et al.
4937408 June 1990 Hattori et al.
4987275 January 1991 Miller et al.
5021638 June 1991 Nopper et al.
5092459 March 1992 Uljanic et al.
5136131 August 1992 Komaki
5278372 January 1994 Takagi et al.
5280146 January 1994 Inagaki et al.
5340955 August 1994 Calvillo et al.
5382762 January 1995 Mochizuki
5397867 March 1995 Demeo
5408060 April 1995 Muurinen
5421659 June 1995 Liang
5422447 June 1995 Spence
5457297 October 1995 Chen
5477430 December 1995 LaRose et al.
5481074 January 1996 English
5504283 April 1996 Kako et al.
5512719 April 1996 Okada et al.
5625532 April 1997 Sellers
5804780 September 1998 Bartha
5828015 October 1998 Coulon
5847337 December 1998 Chen
5874700 February 1999 Hochgesang
5876106 March 1999 Kordecki et al.
5878872 March 1999 Tsai
5881866 March 1999 Miyajima et al.
5898147 April 1999 Domzaiski et al.
5924555 July 1999 Sadamori et al.
5935691 August 1999 Tsai
5960942 October 1999 Thornton
5986227 November 1999 Hon
6020565 February 2000 Pan
6068416 May 2000 Kumamoto et al.
6215420 April 2001 Harrison et al.
6257782 July 2001 Maruyama et al.
6259046 July 2001 Iwama et al.
6377685 April 2002 Krishnan
6388219 May 2002 Hsu et al.
6423918 July 2002 King et al.
6482032 November 2002 Szu et al.
6530283 March 2003 Okada et al.
6538801 March 2003 Jacobson et al.
6542355 April 2003 Huang
6552287 April 2003 Janniere
6556112 April 2003 Van Zeeland et al.
6559399 May 2003 Hsu et al.
6560612 May 2003 Yamada et al.
6572289 June 2003 Lo et al.
6573463 June 2003 Ono
6585435 July 2003 Fang
6624369 September 2003 Ito et al.
6706986 March 2004 Hsu
6750414 June 2004 Sullivan
6759614 July 2004 Yoneyama
6762381 July 2004 Kunthady et al.
6765503 July 2004 Chan et al.
6788450 September 2004 Kawai et al.
6797906 September 2004 Ohashi
6850227 February 2005 Takahashi et al.
6860660 March 2005 Hochgesang et al.
6911608 June 2005 Levy
6926418 August 2005 Ostergard et al.
6940030 September 2005 Takeda et al.
6977352 December 2005 Oosawa
6979792 December 2005 Lai
6987466 January 2006 Welch et al.
6987503 January 2006 Inoue
7012206 March 2006 Oikawa
7038832 May 2006 Kanbe
7126499 October 2006 Lin et al.
7129930 October 2006 Cathey et al.
7134205 November 2006 Bruennel
7146701 December 2006 Mahoney et al.
7151236 December 2006 Ducruet et al.
7151237 December 2006 Mahoney et al.
7154059 December 2006 Chou
7166813 January 2007 Soma
7172303 February 2007 Shipman et al.
7189932 March 2007 Kim
7256766 August 2007 Albert et al.
7283119 October 2007 Kishi
7301113 November 2007 Nishimura et al.
7312790 December 2007 Sato et al.
7378607 May 2008 Koyano et al.
7414213 August 2008 Hwang
7429707 September 2008 Yanai et al.
7432460 October 2008 Clegg
7510342 March 2009 Lane et al.
7531764 May 2009 Lev et al.
7541554 June 2009 Hou
7589292 September 2009 Jung et al.
7639187 December 2009 Caballero et al.
7651231 January 2010 Chou et al.
7679010 March 2010 Wingett
7781690 August 2010 Ishii
7813774 October 2010 Perez-Noguera
7842895 November 2010 Lee
7847204 December 2010 Tsai
7851819 December 2010 Shi
7866866 January 2011 Wahlstrom
7893376 February 2011 Chen
7923653 April 2011 Ohsumi
7947915 May 2011 Lee
7999748 August 2011 Ligtenberg et al.
8063325 November 2011 Sung et al.
8080744 December 2011 Yeh et al.
8109650 February 2012 Chang et al.
8119945 February 2012 Lin
8124903 February 2012 Tatehata et al.
8134094 March 2012 Tsao et al.
8143982 March 2012 Lauder et al.
8156172 April 2012 Muehl et al.
8178808 May 2012 Strittmatter et al.
8184021 May 2012 Chou
8212160 July 2012 Tsao
8212162 July 2012 Zhou
8218301 July 2012 Lee
8232958 July 2012 Tolbert
8246228 August 2012 Ko et al.
8253048 August 2012 Ozias
8253052 September 2012 Chen
8263887 September 2012 Chen et al.
8289280 October 2012 Travis
8299382 October 2012 Takemae et al.
8317384 November 2012 Chung et al.
8319298 November 2012 Hsu
8325141 December 2012 Marsden
8330725 December 2012 Mahowald et al.
8354629 January 2013 Lin
8378857 February 2013 Pance
8383972 February 2013 Liu
8384566 February 2013 Bocirnea
8404990 March 2013 Lutgring et al.
8451146 March 2013 Mahowald et al.
8431849 April 2013 Chen
8436265 May 2013 Koike et al.
8462514 June 2013 Myers et al.
8500348 August 2013 Dumont et al.
8502094 August 2013 Chen
8542194 September 2013 Akens et al.
8569639 October 2013 Strittmatter
8575632 November 2013 Kuramoto et al.
8581127 November 2013 Jhuang
8592699 November 2013 Kessler et al.
8592702 November 2013 Tsai
8592703 November 2013 Johnson et al.
8604370 December 2013 Chao
8629362 January 2014 Knighton et al.
8642904 February 2014 Chiba et al.
8651720 February 2014 Sherman et al.
8659882 February 2014 Liang et al.
8731618 May 2014 Jarvis et al.
8748767 June 2014 Ozias
8759705 June 2014 Funakoshi et al.
8760405 June 2014 Nam
8786548 July 2014 Oh et al.
8791378 July 2014 Lan
8835784 September 2014 Hirota
8847090 September 2014 Ozaki
8847711 September 2014 Yang et al.
8853580 October 2014 Chen
8854312 October 2014 Meierling
8870477 October 2014 Merminod et al.
8884174 November 2014 Chou
8921473 December 2014 Hyman
8922476 December 2014 Stewart et al.
8976117 March 2015 Krahenbuhl et al.
8994641 March 2015 Stewart et al.
9007297 April 2015 Stewart et al.
9012795 April 2015 Niu et al.
9024214 May 2015 Niu et al.
9029723 May 2015 Pegg
9063627 June 2015 Yairi et al.
9064642 June 2015 Welch et al.
9086733 July 2015 Pance
9087663 July 2015 Los
9093229 July 2015 Leong et al.
9213416 December 2015 Chen
9223352 December 2015 Smith et al.
9234486 January 2016 Das et al.
9235236 January 2016 Nam
9274654 March 2016 Slobodin et al.
9275810 March 2016 Pance et al.
9300033 March 2016 Han et al.
9305496 April 2016 Kimura
9405369 August 2016 Modarres et al.
9412533 August 2016 Hendren et al.
9443672 September 2016 Martisauskas
9448628 September 2016 Tan et al.
9448631 September 2016 Winter et al.
9449772 September 2016 Leong et al.
9471185 October 2016 Guard
9477382 October 2016 Hicks et al.
9502193 November 2016 Niu et al.
9640347 May 2017 Kwan et al.
9734965 August 2017 Martinez et al.
2002/0079211 June 2002 Katayama et al.
2002/0093436 July 2002 Lien
2002/0149835 October 2002 Kanbe
2003/0169232 September 2003 Ito
2006/0011458 January 2006 Purcocks
2006/0020469 January 2006 Rast
2006/0120790 June 2006 Chang
2006/0181511 August 2006 Woolley
2006/0243987 November 2006 Lai
2007/0200823 August 2007 Bytheway et al.
2007/0285393 December 2007 Ishakov
2008/0131184 June 2008 Brown et al.
2008/0136782 June 2008 Mundt et al.
2008/0251370 October 2008 Aoki
2009/0046053 February 2009 Shigehiro et al.
2009/0103964 April 2009 Takagi et al.
2009/0128496 May 2009 Huang
2009/0262085 October 2009 Wassingbo et al.
2010/0066568 March 2010 Lee
2010/0109921 May 2010 Annerfors
2010/0156796 June 2010 Kim et al.
2010/0253630 October 2010 Homma et al.
2011/0032127 February 2011 Roush
2011/0056817 March 2011 Wu
2011/0056836 March 2011 Tatebe et al.
2011/0205179 August 2011 Braun
2011/0267272 November 2011 Meyer et al.
2011/0284355 November 2011 Yang
2012/0012446 January 2012 Hwa
2012/0090973 April 2012 Liu
2012/0098751 April 2012 Liu
2012/0286701 November 2012 Yang et al.
2012/0298496 November 2012 Zhang
2012/0313856 December 2012 Hsieh
2013/0093500 April 2013 Bruwer
2013/0100030 April 2013 Los et al.
2013/0120265 May 2013 Horii et al.
2013/0161170 June 2013 Fan et al.
2013/0215079 August 2013 Johnson et al.
2013/0270090 October 2013 Lee
2014/0015777 January 2014 Park et al.
2014/0027259 January 2014 Kawana et al.
2014/0071654 March 2014 Chien
2014/0082490 March 2014 Jung et al.
2014/0090967 April 2014 Inagaki
2014/0098042 April 2014 Kuo et al.
2014/0118264 May 2014 Leong et al.
2014/0151211 June 2014 Zhang
2014/0184496 July 2014 Gribetz et al.
2014/0191973 July 2014 Zellers et al.
2014/0218851 August 2014 Klein et al.
2014/0252881 September 2014 Dinh et al.
2014/0291133 October 2014 Fu et al.
2014/0375141 December 2014 Nakajima
2015/0016038 January 2015 Niu et al.
2015/0083561 March 2015 Han et al.
2015/0090571 April 2015 Leong et al.
2015/0270073 September 2015 Yarak, III et al.
2015/0277559 October 2015 Vescovi et al.
2015/0287553 October 2015 Welch et al.
2015/0309538 October 2015 Zhang
2015/0332874 November 2015 Brock et al.
2015/0348726 December 2015 Hendren
2015/0370339 December 2015 Ligtenberg et al.
2015/0378391 December 2015 Huitema et al.
2016/0049266 February 2016 Stringer et al.
2016/0093452 March 2016 Zercoe et al.
2016/0172129 June 2016 Zercoe et al.
2016/0189890 June 2016 Leong et al.
2016/0189891 June 2016 Zercoe et al.
2016/0329166 November 2016 Hou et al.
2016/0336127 November 2016 Leong et al.
2016/0336128 November 2016 Leong et al.
2016/0343523 November 2016 Hendren et al.
2016/0351360 December 2016 Knopf et al.
2016/0365204 December 2016 Cao et al.
2016/0378234 December 2016 Ligtenberg et al.
2016/0379775 December 2016 Leong et al.
2017/0004937 January 2017 Leong et al.
2017/0004939 January 2017 Kwan et al.
2017/0011869 January 2017 Knopf et al.
2017/0090106 March 2017 Cao et al.
2017/0301487 October 2017 Leong et al.
Foreign Patent Documents
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
2672832 Jan 2005 CN
1624842 Jun 2005 CN
1812030 Aug 2006 CN
1838036 Sep 2006 CN
1855332 Nov 2006 CN
101051569 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201054315 Apr 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
101315841 Dec 2008 CN
201210457 Mar 2009 CN
101438228 May 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102119430 Jul 2011 CN
201904256 Jul 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
102197452 Sep 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102280292 Dec 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102496509 Jun 2012 CN
10269527 Aug 2012 CN
102622089 Aug 2012 CN
102629526 Aug 2012 CN
202372927 Aug 2012 CN
102683072 Sep 2012 CN
202434387 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203414880 Jan 2014 CN
103681056 Mar 2014 CN
103699181 Apr 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
103903891 Jul 2014 CN
103956290 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
105097341 Nov 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2202606 Jun 2010 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
S60055477 Mar 1985 JP
S61172422 Oct 1986 JP
S62072429 Apr 1987 JP
S63182024 Nov 1988 JP
H0422024 Apr 1992 JP
H0520963 Jan 1993 JP
H0524512 Aug 1993 JP
H05342944 Dec 1993 JP
H09204148 Aug 1997 JP
H10312726 Nov 1998 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2000339097 Dec 2000 JP
2001100889 Apr 2001 JP
2002260478 Sep 2002 JP
2002298689 Oct 2002 JP
2003522998 Jul 2003 JP
2005108041 Apr 2005 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006521664 Sep 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2007156983 Jun 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008191850 Aug 2008 JP
2008533559 Aug 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2011524066 Aug 2011 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012098873 May 2012 JP
2012134064 Jul 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
1020080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
201246251 Nov 2012 TW
201403646 Jan 2014 TW
WO9744946 Nov 1997 WO
WO2005/057320 Jun 2005 WO
WO2006/022313 Mar 2006 WO
WO2007/049253 May 2007 WO
WO2008/045833 Apr 2008 WO
WO2009/005026 Jan 2009 WO
WO2012/011282 Jan 2012 WO
WO2012/027978 Mar 2012 WO
WO2013/096478 Jun 2013 WO
WO2014175446 Oct 2014 WO

Other References

Elekson, "Reliable and Tested Wearable Electronics Embedment Solutions," http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016. cited by applicant.

Primary Examiner: Leon; Edwin A.
Attorney, Agent or Firm: Brownstein Hyatt Farber Schreck, LLP

Parent Case Text



CROSS-REFERENCE TO RELATED APPLICATION

This application is a nonprovisional patent application of and claims the benefit of U.S. Provisional Patent Application No. 62/161,038, filed May 13, 2015 and titled "Uniform Illumination of Keys," the disclosure of which is hereby incorporated herein by reference in its entirety.
Claims



What is claimed is:

1. A key for a keyboard comprising: a keycap disposed within an aperture defined by the keyboard; a structural body positioned beneath the keycap and defining an opening, the structural body formed from an optically translucent material; a compressible dome positioned below the keycap and at least partially within the opening of the structural body; a key mechanism coupled to the keycap and pivotally engaged with a sidewall of the structural body; and a light emitting element optically coupled to the structural body.

2. The key of claim 1, wherein the structural body has a prismatic sidewall within the opening.

3. The key of claim 2, wherein the structural body comprises an internally reflective surface.

4. The key of claim 3, wherein the internally reflective surface comprises a rectilinear through-hole.

5. The key of claim 2, wherein the structural body comprises a light guide.

6. A key comprising: a keycap defining an input surface of the key; a compressible dome below the keycap; a light emitting element; a light guide optically coupled to the light emitting element and defining: an opening at least partially surrounding the compressible dome; and an interlock feature positioned on a sidewall of the light guide; and a key mechanism engaged with the interlock feature and with the keycap and configured to guide the keycap between a depressed position and an undepressed position.

7. The key of claim 6, wherein the keycap comprises an illuminable portion.

8. The key of claim 7, wherein the illuminable portion comprises a glyph formed from an optically translucent material.

9. The key of claim 7, wherein the key mechanism at least partially surrounds the light emitting element.

10. The key of claim 9, wherein the key mechanism comprises a butterfly mechanism.

11. The key of claim 6, wherein the light guide forms a ring.

12. The key of claim 6, wherein: the sidewall is an outer sidewall; and the light guide comprises: a top endcap surface; a bottom endcap surface; and an inner sidewall extending from the top endcap surface to the bottom endcap surfaces and having a greater internal reflection than the top endcap surface.

13. The key of claim 12, wherein the outer sidewall has a greater internal reflection than the top endcap surface.

14. The key of claim 12, wherein each of the inner sidewall and the outer sidewall form one or more prisms.

15. An input structure for an electronic device, comprising: an input surface comprising an illuminable portion; a collapsible dome positioned below the input surface; a depressible mechanism positioned around the collapsible dome and coupled to the input surface, the depressible mechanism configured to move the input surface downward to collapse the collapsible dome in response to an external force on the input surface; a body coupled to the depressible mechanism and the collapsible dome; a light guide positioned around the collapsible dome and within the body, the light guide optically coupled to the illuminable portion; and a light emitting element optically coupled to the light guide and configured to illuminate the illuminable portion through the light guide.

16. The input structure of claim 15, wherein the light guide defines an inner sidewall and an outer sidewall.

17. The input structure of claim 16, wherein the light guide is optically coupled to the light emitting element.

18. The input structure of claim 16, wherein the inner sidewall and the outer sidewall of the light guide each form a series of prisms.

19. The input structure of claim 15, wherein the light guide is insert-molded into the body.

20. The input structure of claim 15, wherein the body comprises a reflective surface that is oblique to the light emitting element.

21. The key of claim 1, wherein the key mechanism at least partially surrounds the structural body when the key is in a depressed configuration.

22. The key of claim 6, wherein the key mechanism at least partially surrounds the light guide when the key is in a depressed configuration.
Description



FIELD

Embodiments described herein are directed to input devices for computing systems and, more particularly, to systems and methods for facilitating substantially uniform illumination of select features of such input devices.

BACKGROUND

Electronic devices can receive user input from a keyboard, some keys of which may be illuminable and thus visible to a user in dimly-lit environments. A key can be illuminated in a number of ways. For example, a light-emitting diode ("LED") can be disposed behind a keycap of an illuminable key to direct light toward and through a translucent portion of the keycap. In many cases, the location, orientation, and size of such an LED is limited by the structure of the key itself, which, in turn, affects the quality, uniformity, and quantity of light visible to a user.

SUMMARY

Embodiments described herein disclose a keyboard including a group of keys. At least one key of the group of keys includes a compressible dome, a light emitting element, and a light guide that is positioned at least partially around the compressible dome and optically coupled to the light emitting element. Some embodiments may include an illuminable keycap positioned over the compressible dome

In certain keys, the light guide includes a body that defines an inner sidewall, an outer sidewall, a top endcap surface, and a bottom endcap surface. The inner sidewall may exhibit greater internal reflection than the top endcap surface. The inner sidewall and the outer sidewall form one or more prisms.

Some embodiments take the form of a key for a keyboard, comprising: a keycap disposed within an aperture defined by the keyboard; a compressible dome positioned below the keycap; a key mechanism positioned around the compressible dome and coupled to the keycap; a structural body positioned beneath the key mechanism and formed from an optically translucent material, the structural body coupled to the key mechanism; and a light emitting element optically coupled to the structural body.

Other embodiments take the form of an input structure for an electronic device, comprising: an input surface comprising an illuminable portion; a collapsible dome positioned below the input surface; a depressible mechanism positioned around the collapsible dome and coupled to the input surface, the depressible mechanism configured to move the input surface downward to collapse the collapsible dome in response to an external force on the input surface; a body coupled to the depressible mechanism and the collapsible dome; a light guide positioned around the collapsible dome and within the body, the light guide optically coupled to the illuminable portion; and a light emitting element optically coupled to the light guide and configured to illuminate the illuminable portion through the light guide.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.

FIG. 1A depicts an electronic device incorporating a keyboard with illuminable keys.

FIG. 1B depicts the enclosed circle A-A of FIG. 1A.

FIG. 2A depicts an example key mechanism that may be used with an illuminable key of the keyboard shown in FIGS. 1A-1B.

FIG. 2B depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, particularly showing an example light guide.

FIG. 3 depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, particularly showing another example light guide.

FIG. 4 depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, particularly showing another example light guide.

FIG. 5 depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, particularly showing another example light guide.

FIG. 6A depicts an example light guide having a prismatic sidewall.

FIG. 6B depicts another example light guide having a prismatic sidewall.

FIG. 6C depicts still another example light guide having a prismatic sidewall.

FIG. 6D depicts yet another example light guide having an internally scalloped sidewall.

FIG. 6E depicts a further example light guide having an externally scalloped sidewall.

FIG. 6F depicts an example ring-shaped light guide having an internally-scalloped sidewall.

FIG. 7A depicts an example light guide defining a prismatic through-hole.

FIG. 7B depicts another example light guide defining a prismatic through-hole.

FIG. 7C depicts another example light guide defining a prismatic through-hole and three internal reflective surfaces.

FIG. 8 is a flow chart depicting operations of a method of manufacturing a light guide.

FIG. 9 is a flow chart depicting operations of a method of manufacturing a light guide based on a selected glyph.

The use of the same or similar reference numerals in different figures indicates similar, related, or identical items.

The use of cross-hatching or shading in the accompanying figures is generally provided to clarify the boundaries between adjacent elements and also to facilitate legibility of the figures. Accordingly, neither the presence nor the absence of cross-hatching or shading conveys or indicates any preference or requirement for particular materials, material properties, element proportions, element dimensions, commonalities of similarly illustrated elements, or any other characteristic, attribute, or property for any element illustrated in the accompanying figures

DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.

Embodiments described herein reference systems and methods that illuminate one or more keys of a keyboard. An illuminable key includes a light emitting element, such as a light-emitting diode, that is optically coupled to a light guide positioned beneath the key. The light guide conveys light from the light emitting element to an illuminable portion of the key.

As used herein, the phrase "illuminable portion of a key" refers generally to any or all areas of (or adjacent to) a keycap or other input surface that are intended to be illuminated such that the location, size, and/or functionality of that portion of the key is visually emphasized.

A glyph can be formed in an outer surface of a key from a translucent or transparent material to define an alphanumeric character, symbol, word, phrase, abbreviation, or any other linguistic, scientific, numeric, or pictographic symbol or set of symbols. In one example, the glyph itself illuminates upon activation of the light emitting element. In other examples, other portions of the key associated with the glyph illuminate upon activation of the light emitting element such as a glyph border, a glyph underline, a glyph outline, and so on. All are examples of illuminable portions of a key.

Another example of an illuminable portion of a key is the geometry of the key itself. In one example, the light emitting element illuminates a key perimeter. In other examples, other portions of the key geometry are illuminated, such as an external surface, a sidewall, a corner, and so on. In further examples, the light emitting element can illuminate spaces between one or more keys and the adjacent structure of a keyboard. For example, an aperture in which a key is disposed illuminates upon activation of the light emitting element, thereby generating a halo around a base of the key.

As noted above, the light emitting element optically couples to illuminable portions of a key via a light guide. In some embodiments, the light guide takes the shape of a ring, although such a shape is not required. The ring-shaped light guide can be fully closed or can be segmented. Such a light guide is formed from an optically translucent (or transparent) material. A body of the light guide can define an inner sidewall, an outer sidewall, a top endcap surface, and a bottom endcap surface. The light emitting element is optically coupled, either directly or indirectly, to the body of the light guide. The endcap surfaces are optically coupled, either directly or indirectly, to the illuminable portions of the key or keycap.

The sidewalls of the light guide exhibit greater internal reflection than the endcap surfaces. In one example, one or more prisms or scallops are formed in the sidewalls and are oriented to reflect light internally (e.g., into the interior of the light guide) whereas an endcap surface is smooth and facilitates transmission of light therethrough. In this manner, light emitted by the light emitting element exits the light guide in a greater quantity and in a more uniform manner through the endcap surfaces, and thus through the illuminable portions of the key, than from the sidewalls of the light guide.

In other embodiments, a light guide can form a structural portion of the key in addition to directing light. In these examples, the light guide also includes one or more internal reflectors (e.g., reflective surface), such as rectilinear through-holes, laser etched or routed channels, insert-molded reflectors, or the like. The internal reflectors are positioned and oriented to direct light (via internal reflection) within the body to selected locations of the top surface and/or the outer sidewall. In some cases, the internal reflectors are oriented oblique to a light emitting element. The internal reflectors direct light around structural features of the body that can cause light to undesirably scatter, leak, or exit the body away from the illuminable portion of the key ("light leakage"). In this manner, light emitted by the light emitting element exits the light guide in a greater quantity and in a more uniform manner through the top surface and/or the outer sidewall (which may, in some embodiments, be smooth and facilitate light transmission therethrough), and thus to the illuminable portion of the key, because less light is lost to leakage.

These and other embodiments are discussed below with reference to FIGS. 1A-9. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.

FIG. 1A depicts an electronic device 100 incorporating a keyboard with illuminable keys, such as the illuminable key 102 depicted in a removed view of greater scale identified by the enclosed circle A-A, shown in FIGS. 1A-1B.

The electronic device 100 is a portable laptop computer including an integrated keyboard with illuminable keys, such as an illuminable key 102 or other suitable input structure. The illuminable key 102 at least partially extends through an aperture 104 defined in a housing 106 of the electronic device 100. The illuminable key 102 depresses at least partially into the aperture 104 when a user presses the illuminable key 102. In one example, a top surface of the illuminable key 102 is flush with a top surface of the housing of the electronic device 100 when the illuminable key 102 is fully pressed. Other sample input structures may take the form of buttons, mice, trackpads, touch-sensitive surfaces, and so on.

A structure associated with the illuminable key 102 is disposed at least partially within the aperture 104. This structure, referred to as a "key stack," can include a keycap or similar input surface, a key mechanism, an elastomeric dome, a switch housing, and electronic switch circuitry. The keycap typically defines at least one illuminable portion, depicted in FIG. 1A as a glyph 108.

FIG. 2A depicts an example key mechanism that may be used with an illuminable key of the keyboard shown in FIGS. 1A-1B (or another suitable input structure). The key mechanism 200 is shown as a depressible mechanism and includes a first wing 202 and a second wing 204 that are coupled together with a hinge 206. The first wing 202 and the second wing 204 are substantially symmetric across the hinge 206. For example, as illustrated the first wing 202 and a second wing 204 are each formed in a U-shape, the free ends of which are coupled by the hinge 206 to form a closed ring. The key mechanism 200 is depicted in a depressed configuration (e.g., the key is pressed by a user). When the depressible mechanism depresses, the wings may flatten or otherwise move toward a base of the mechanism.

In many cases, the hinge 206 is a living hinge formed from a flexible material such as a polymer or elastomer. In other cases, the hinge 206 is a flexible member overmolded onto the first wing 202 and the second wing 204. The flexible member can be formed from metal, fabric, polymer, or the like. In other embodiments, the first wing 202 and the second wing 204 can be formed from an optically translucent material and can be optically coupled to a light emitting element. In this manner, the first wing 202 and the second wing 204 can serve as a portion of a light guide.

Many embodiments include more than one hinge. For example, as depicted, the first wing 202 and the second wing 204 are joined by two hinges.

The first wing 202 and the second wing 204 are typically formed from the same material, although this is not required. For example, in one embodiment, the first wing 202 is formed from a plastic material doped with glass fibers and the second wing is formed from metal. In other embodiments, both the first wing 202 and the second wing 204 are formed from a doped plastic material. In one embodiment, the dopant material can be selected to increase the strength and/or rigidity of the first wing 202 and the second wing 204.

Both the first wing 202 and the second wing 204 include geometry configured to interlock with one or more other structural portions of the key mechanism 200. For example, the first wing 202 includes a keycap pivot 208a that interlocks with and/or slides within a portion of a keycap (or other such input surface) positioned above the depressible mechanism 200. The first wing 202 also includes a structural pivot 208b that interlocks with and/or slides within a portion of a structural body 210. Similarly, the second wing 204 includes a keycap pivot 212a that interlocks with and/or slides within a portion of the keycap. The second wing 204 also includes a structural pivot 212b that interlocks with and/or slides within a portion of the structural body 210.

The structural body 210 is formed from a rigid material such as plastic or metal. As with the first wing 202 and the second wing 204, the structural body 210 can be formed from a doped material. The structural body 210 can be formed from an optically transparent or translucent material although this is not required of all embodiments. In one example, the structural body 210 can be formed from an optically opaque material. In other embodiments, the structural body 210 can be formed from a translucent material that takes a particular color.

A light guide 214 is positioned within the structural body 210. The light guide 214, and as illustrated, is shaped as a closed ring, although such a configuration is not required. For example, the light guide 214 can take a square shape, a rectangular shape, a grid shape, or any other shape or combination of shapes. In still further examples, the light guide 214 is formed as a segmented shape, such as a segmented ring.

The light guide 214 is formed from an optically translucent or transparent material such as acrylic, glass, or plastic. In many examples, the light guide 214 is insert-molded into the structural body 210. In other embodiments, the light guide 214 is co-molded with the structural body 210. In still further examples, the light guide 214 is molded into a light guide cavity that is defined within the structural body 210.

As noted above, the light guide 214 includes a body that defines an inner sidewall 214a, an outer sidewall 214b, a top endcap surface 214c, and a bottom endcap surface (not visible in FIG. 2A). The inner sidewall 214a and the outer sidewall 214b of the light guide 214 exhibit greater internal reflection than the endcap surfaces, such as the top endcap surface 214c. In this manner, light emitted into the light guide 214 by a light emitting element (see, e.g., FIG. 2B) will exit the light guide 214 in a greater quantity and in a more uniform manner through the top endcap surface 214c than through any other portion of the light guide 214. In some examples, the top endcap surface 214c is optically diffusive.

The light guide 214 is optically coupled, either directly or indirectly, to one or more illuminable portions of the key. In one example, the light guide 214 is optically coupled to the glyph 108 of the illuminable key 102 depicted in FIGS. 1A-1B. With respect to the orientation shown in FIG. 1B, the light guide 214 emits light toward the bottom left hand portion of the illuminable key 102. For example, in place of a ring configuration such as depicted in FIG. 2A, the top endcap surface 214c of the light guide 214 can take a circular shape, positioned in the leftmost corner of the structural body 210 so that the top endcap surface 214c is positioned substantially below the glyph 108 of the illuminable key 102 depicted in FIGS. 1A-1B. For other glyphs taking other shapes, the light guide 214 can take a different shape. In this manner, the shape and size of the light guide 214 is selected based on the geometry of the illuminable portion to which the light guide 214 is optically coupled.

The light guide 214 can be disposed around an aperture defined in the structural body 210. For example, in one embodiment the structural body 210 defines a through-hole 210a. As illustrated, the through-hole 210a is circular, although this is not required and the through-hole can take other shapes. A compressible dome 216 is disposed within the through-hole 210a. In some embodiments, the compressible dome 216 is formed from an elastomeric material (e.g., is an elastomeric dome), although this is not required. Likewise, the compressible or collapsible dome 216 may be formed from a transparent or translucent material. For example, the compressible dome 216 is formed from an optically opaque material. In other examples, the compressible dome is formed from an optically translucent material of a particular color (e.g., white). In some embodiments, the compressible/collapsible dome may be replaced by a different structure, including various mechanical, electrical, and/or electromechanical switches. Likewise, the dome may be replaced by a structure designed to provide a particular feedback or feel to the user as the key (or other input surface) is pressed. For example, the dome may be replaced by a spring, a bi-stable element, and so on.

In some embodiments, the compressible dome 216 extends a certain distance above a top surface of the structural body 210. In other embodiments, the compressible dome 216 is flush with a top surface of the structural body 210.

In many embodiments, a top surface 216a of the compressible or otherwise collapsible dome 216 interfaces with the underside of the keycap (or other such input surface) of the illuminable key. In one example, the underside of the keycap includes a projection that contacts the top surface 216a of the compressible dome 216. In other cases, the underside of the keycap can include an indentation that receives the top surface 216a of the compressible dome 216. The compressible dome 216 collapses into the through-hole 210a to activate the electronic switch circuitry associated with the illuminable key in response to a user press of the keycap.

For simplicity of illustration, the depressible mechanism 200 is depicted in a depressed configuration (e.g., when the key is pressed by a user), depicting the first wing 202 and the second wing 204 fully extended. In an upward configuration, the outermost portions of the first wing 202 and the second wing 204 extend above the structural body 210, pivoting relative to one another and relative to the structural body 210 at the hinge 206.

FIG. 2B depicts a cross-section view of the key mechanism (e.g., sample input structure) of FIG. 2A taken along line B-B of FIG. 2A. As depicted in FIG. 2A, the first wing 202 and the second wing 204, when coupled by the hinge(s), define an internal area in which the structural body 210 is positioned. The light guide 214 is disposed within a portion of the structural body 210. As illustrated, the top endcap surface 214c is substantially flush with a top surface of the structural body 210, although such a configuration is not required. For example, in some embodiments the top endcap surface 214c extends proud of the top surface of the structural body 210. In other examples, the top endcap surface 214c is inset into the structural body 210.

In some embodiments, the light guide 214 extends partially, but not entirely, through the structural body 210. More particularly, a bottom endcap surface 214d of the light guide 214 mates with an internal portion of the structural body 210. In other embodiments, the bottom endcap surface 214d can extend through the entire depth of the structural body 210.

Although the bottom endcap surface 214d is illustrated as substantially parallel to the top endcap surface 214c, such a configuration is not required. For example, the bottom endcap surface 214d can be oblique to the top endcap surface 214c.

As noted above, the light guide 214 can include a body 214e. The body 214e is optically coupled, either directly or indirectly, to a light emitting element 218. As illustrated, the body 214e is optically coupled to the light emitting element 218 through the bottom endcap surface 214d. In other embodiments, the light emitting element 218 can be optically coupled to the light guide 214 at a different location. In other examples, the light emitting element 218 can be optically coupled to the light guide 214 indirectly, such as via a light pipe.

The light emitting element 218 includes one or more light-emitting diodes. The light-emitting diodes emit light of a particular color and at a particular brightness. In some embodiments, the light emitting element 218 provides light of a variable color or a variable brightness. In one example, the light emitting element 218 emits white light having a cool color temperature, although this is not required.

An electrical switch layer 220 is also depicted in FIG. 2B. The electrical switch layer 220 is disposed below the compressible or otherwise collapsible dome 216 such that an electrical property of the electrical switch layer 220 changes when the compressible dome 216 compresses. In one example, the compressible dome 216 can complete an electrical contact between electrical traces or contacts disposed on the electrical switch layer 220 when the compressible dome 216 is compressed. The electrical traces are organized in an interleaved comb pattern or a concentric circular pattern. In other embodiments, the compressible dome 216 can cause a change in a capacitance measured between one or more portions of the electrical switch layer 220 when the compressible dome 216 compresses (or, put another way, a collapsible dome collapses).

The key mechanism 200 (or another example of a depressible mechanism) is disposed onto a substrate 222. The substrate 222 can be positioned within a housing of an electronic device, such as the electronic device 100 depicted in FIGS. 1A-1B. In other embodiments, the substrate 222 can be positioned within an aperture defined by the housing of an electronic device. In one example, the substrate 222 is formed from a rigid material such as metal or plastic.

As noted with respect to other embodiments described herein, the inner sidewall 214a and the outer sidewall 214b of the light guide 214 exhibit greater internal reflection than the top endcap surface 214c and the bottom endcap surface 214d. More particularly, the internal reflection of light vectored toward a sidewall of the light guide 214 may be greater than the internal reflection of light vectored toward an endcap of the light guide. In an alternate and non-limiting phrasing, the sidewalls of the light guide 214 may be more optically reflective than the endcaps of the light guide 214.

As may be appreciated, the reflectivity of a surface may depend upon the angle of incidence with which light strikes the surface and the difference between the refractive indices of the materials interfacing at the surface. More specifically, at the boundary between the light guide 214 and another material (e.g., air, the structural body 210, the keycap, and so on) having a lower refractive index than that of the light guide 214, light within the light guide 214 may be reflected internally. If the angle of incidence of the light is sufficiently high, total internal reflection may occur (e.g., almost zero light passes through the boundary; effectively all light reflects back into the body 214e). Thus, in some cases, the inner sidewall 214a and the outer sidewall 214b can exhibit total internal reflection. In some embodiments, the bottom endcap surface 214d may also exhibit greater internal reflection than the top endcap surface 214c.

For these embodiments, most of the light emitted into the light guide 214 by the light emitting element 218 will either reflect off the inner sidewall 214a and/or the outer sidewall 214b (and/or the bottom endcap surface 214d), or will exit the light guide 214 through the top endcap surface 214c. Similarly, for ring-shaped light guides, internal reflection of light can cause light to be emitted in a substantially uniform manner across the entire surface of the top endcap surface 214c. More specifically, the portion of the top endcap surface 214c that is diametrically opposite the light emitting element 218 (e.g., the farthest point away from the light emitting element 218, as illustrated in FIG. 2A) can emit a quantity of light substantially similar to the other portions of the top endcap surface 214c. In this manner, the light guide 214 facilitates substantially uniform emission of light from its body.

As a result, the illuminable portions of the key to which the light guide 214 is optically coupled (either directly or indirectly) are illuminated in a substantially uniform manner. Likewise, other suitable input structures may be illuminated in this fashion.

FIG. 3 depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, showing another example light guide. As with the embodiment depicted in FIG. 2A, a light guide 314 can be disposed at least partially within a structural body 312 of a key mechanism 300, or other depressible mechanism. The light guide 314 is optically coupled, either directly or indirectly, to a light emitting element 318. The light emitting element 318 is positioned to emit light into a sidewall (e.g., outer sidewall) of the light guide 314. A reflective feature 312a of the structural body 312 is positioned adjacent to and/or within the light emission path of the light emitting element 318.

In many embodiments, the reflective feature 312a is a substantially flat surface that is oblique to the light emitting element 318. In one embodiment, the reflective feature 312a is oriented toward a top endcap surface 314c of the light guide 314 at a 45-degree angle to the light emitting element 318. The reflective feature 312a can be coated with a reflective coating such as a metalized ink.

The angle of the reflective feature 312a can be selected, at least in part, to increase or maximize the total internal reflection of light emitting from the light emitting element 318. In such an embodiment, the structural body 312 and the light guide 314 can be formed from materials having different refractive indices. More particularly, the structural body 312 may have a lower refractive index n.sub.2 than the refractive index n.sub.1 of the light guide 314. Once the refractive indices of the structural body 312 and the light guide 314 are known, an incident angle .theta..sub.i at which total internal reflection occurs (the "critical angle") can be determined by the following equation: .theta..sub.i=arcsin(n.sub.2/n.sub.1) Equation 1

Once the incident angle .theta..sub.i is determined, the minimum angle of the reflective feature 312a can be determined. In this manner, the amount of light lost to absorption within the structural body 312 is substantially reduced. In other words, the volume of light that exits the top endcap surface 315c is increased.

In some embodiments, the reflective feature 312a can be implemented as a chamfer formed in the inner sidewall of the light guide. In other embodiments, the reflective feature 312a is a non-flat surface such as a convex surface, a concave surface, or a domed surface.

In other embodiments, the light emitting element 318 is positioned elsewhere. For example, in one embodiment, the light emitting element 318 is optically coupled to an internal sidewall of the light guide. In other embodiments, such as depicted in FIG. 2B, the light emitting element 318 is coupled to a bottom surface (e.g., bottom endcap surface) of the light guide. In still other embodiments, the light emitting element 318 is optically coupled to the top endcap surface 314c of the light guide 314. In these and related embodiments, one or more reflective features, such as the reflective feature 312a, can be formed within the structural body 312 to direct light emitted from the light emitting element 318 in a particular direction.

FIG. 4 depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, showing another example light guide. As with the embodiment depicted in FIG. 2A, a light guide 414 can be disposed at least partially within a structural body 412 of a key mechanism 400. The light guide 414 is optically coupled, either directly or indirectly, to a light emitting element 418.

As with the embodiment depicted in FIG. 3, the light emitting element 418 is positioned to emit light into a sidewall (e.g., outer sidewall) of the light guide 414. A first reflective feature 412a and a second reflective feature 412b of the structural body 412 are positioned adjacent to the light emitting element 418. In many embodiments, the reflective features 412a, 412b are substantially flat surfaces that are oriented oblique to the light emitting element 418. In one embodiment, the reflective feature 412a is angled toward a top endcap surface 414c of the light guide 414 at a 45-degree angle to the light emitting element 418. The reflective feature 412a can be coated with a reflective coating such as a metalized ink. In other examples, the angle of the reflective feature 412a is selected, at least in part, to maximize the total internal reflection of light emitting from the light emitting element 418.

As with the embodiment depicted in FIG. 3, Equation 1 may be used to determine or approximate the angle(s) of the reflective features 412a, 412b.

FIG. 5 depicts a cross-section view of the key mechanism of FIG. 2A taken along line B-B of FIG. 2A, showing another example light guide. As with the embodiment depicted in FIG. 2A, a light guide 514 can be disposed at least partially within a structural body 512 of a key mechanism 500. The light guide 514 is optically coupled, either directly or indirectly, to a light emitting element 518. In the illustrated embodiment, the light guide 514 can include a partially domed surface, identified as the top endcap surface 514c.

It may be appreciated that the embodiments depicted in FIGS. 2B and 3-5 are not exhaustive. For example, in some embodiments, the various features depicted in FIG. 5 can be incorporated into an embodiment incorporating features depicted and described with respect to FIG. 3. Other embodiments can include additional reflective surfaces other than those shown. For example, as noted above, many embodiments described herein employ a light guide with its sidewalls formed to exhibit greater internal reflection than its endcap surfaces.

FIG. 6A depicts an example ring-shaped light guide 600 having an external prismatic sidewall 602 and an internal prismatic sidewall 604. The external prismatic sidewall 602 and the internal prismatic sidewall 604 exhibit a repeating pattern of triangular prisms. In some embodiments, the depth of the external prismatic sidewall 602 and the internal prismatic sidewall 604 can be varied, such as shown in FIG. 6B. In other embodiments, the number of triangular prisms can be varied, such as shown in FIG. 6C. In other embodiments, the shape of the prisms can be changed. For example, as shown in FIG. 6D, the external prismatic sidewall 602 can take a saw tooth (e.g., serrated) shape. In such an embodiment, the internal prismatic sidewall 604 can also take a saw tooth shape. In some cases, the internal prismatic sidewall 604 can be oriented oppositely from the external prismatic sidewall 602. In this manner, light within the ring-shaped light guide 600 can be directed in a substantially counterclockwise direction.

As with other embodiments described herein, the geometry of the prismatic sidewalls of a light guide can be determined or approximated, at least in part, based on the refractive index of the material selected for the light guide.

In other embodiments, the sidewalls of the light guides can take other shapes. For example, in some embodiments, such as depicted in FIGS. 6E-6F, a ring-shaped light guide 600 can include scalloped sidewalls. As with prismatic sidewalls depicted in FIGS. 6A-6D, the scalloped sidewalls 606, 608 can take any number of specific shapes. For example, the depth, size, width, radius, and orientation of the scallops can vary from embodiment to embodiment.

As noted above, in other embodiments, a light guide of an illuminable key can form a portion of the structure of the key itself. For example, FIG. 7A depicts an example light guide that serves a dual purpose of directing light to an illuminable portion of a key and providing structural support to one or more portions of the key. The light guide 700 can take the shape of a structural body, such as the structural body 210 depicted in FIGS. 2A-2B. The light guide 700 includes a through-hole 702. A compressible dome, such as the compressible dome 216 depicted in FIGS. 2A-2B can be inserted into the through-hole 702. A light emitting element 706 is disposed at one corner of the light guide 700 to emit light into the light guide 700.

As with other embodiments described herein, the light guide 700 is made from an optically translucent or transparent material such as plastic, glass, doped plastic or glass, sapphire, zirconia or the like. The light guide 700 is formed from a material with a known or determinable refractive index.

In other embodiments, the light emitting element 706 can be disposed in other locations along the light guide 700. In one embodiment, more than one light emitting element can be used. For example, FIG. 7B depicts an embodiment with two light emitting elements, each labeled as a light emitting element 706.

The through-hole 702 can have a greater internal reflectance than other surfaces of the light guide 700. For example, the through-hole 702 can include a prismatic sidewall, such as shown and described with respect to FIGS. 6A-6D and as illustrated in FIGS. 7A-7C. In other embodiments, the through-hole 702 can include a scalloped sidewall, such as shown and described with respect to FIGS. 6E-6F.

In still further examples, the light guide 700 can include an internally reflective feature 708. In one embodiment, the internally reflective feature 708 can be implemented as a rectilinear through-hole, a laser etched or routed channel, an insert-molded reflector, or the like. For example, as shown in FIG. 7C, three internally-reflective features are depicted, positioned and oriented to direct light (via internal reflection) within the body of the light guide 700. In this manner, the internally reflective features direct light around structural features of the body, such as the through-hole 702. Although the internally reflective features 708 are depicted as rotated at 45 degrees, one may appreciate that different embodiments can orient the internally reflective feature 708 at different angles.

FIG. 8 is a flow chart depicting operations of a method of manufacturing a light guide. The method can begin at operation 800 in which a light guide is insert-molded into a structural base of a key stack. Next, at operation 802, a light emitter, such as a light-emitting diode, is positioned in optical communication with the light guide.

FIG. 9 is a flow chart depicting operations of a method of manufacturing a light guide based on a selected glyph. The method begins at operation 900 at which a glyph is selected. Next at operation 902, the light guide and/or key structure are formed based on the shape and location of the selected glyph (or glyphs).

Although many embodiments described and depicted herein reference light guides for illuminable keys of a keyboard, it should be appreciated that other implementations can take other form factors. Thus, the various embodiments described herein, as well as functionality, operation, components, and capabilities thereof may be combined with other elements as necessary, and so any physical, functional, or operational discussion of any element or feature is not intended to be limited solely to a particular embodiment to the exclusion of others.

For example, although the electronic device 100 is shown in FIGS. 1A-1B as a laptop computer, it may be appreciated that other electronic devices are contemplated. For example, the electronic device 100 can be implemented as a peripheral input device, a desktop computing device, a handheld input device, a tablet computing device, a cellular phone, a wearable device, and so on.

Further, it may be appreciated that the electronic device 100 can include one or more components that interface or interoperate, either directly or indirectly, with the illuminable key 102 which, for simplicity of illustration are not depicted in FIGS. 1A-1B. For example, the electronic device 100 may include a processor coupled to or in communication with a memory, a power supply, one or more sensors, one or more communication interfaces, and one or more input/output devices such as a display, a speaker, a rotary input device, a microphone, an on/off button, a mute button, a biometric sensor, a camera, a force and/or touch sensitive trackpad, and so on.

In some embodiments, the communication interfaces provide electronic communications between the electronic device 100 and an external communication network, device or platform. The communication interfaces can be implemented as wireless interfaces, Bluetooth interfaces, universal serial bus interfaces, Wi-Fi interfaces, TCP/IP interfaces, network communications interfaces, or any conventional communication interfaces. The electronic device 100 may provide information related to externally connected or communicating devices and/or software executing on such devices, messages, video, operating commands, and so forth (and may receive any of the foregoing from an external device), in addition to communications. As noted above, for simplicity of illustration, the electronic device 100 is depicted in FIGS. 1A-1B without many of these elements, each of which may be included, partially, optionally, or entirely, within a housing 106.

In some embodiments, the housing 106 can be configured to, at least partially, surround a display. In many examples, the display may incorporate an input device configured to receive touch input, force input, and the like and/or may be configured to output information to a user. The display can be implemented with any suitable technology, including, but not limited to, a multi-touch or multi-force sensing touchscreen that uses liquid crystal display (LCD) technology, light-emitting diode (LED) technology, organic light-emitting display (OLED) technology, organic electroluminescence (OEL) technology, or another type of display technology.

The housing 106 can form an outer surface or partial outer surface and protective case for the internal components of the electronic device 100. In the illustrated embodiment, the housing 106 is formed in a substantially rectangular shape, although this configuration is not required. The housing 106 can be formed of one or more components operably connected together, such as a front piece and a back piece or a top clamshell and a bottom clamshell. Alternatively, the housing 106 can be formed of a single piece (e.g., uniform body or unibody).

Various embodiments described herein can be incorporated with other systems or apparatuses and may not, in all cases, be directly associated with an input device configured for use with an electronic device such as depicted in FIGS. 1A-1B. For example, a light guide as described herein can be incorporated into an independent electronic switch such as a button (e.g., light switch, automotive button, doorbell, and so on). In other examples, a light guide as described herein can be incorporated into a different portion of an electronic device, such as a display element of an electronic device. In such an example, a light guide incorporating prismatic or scalloped sidewalls can be used as a backlight diffuser within a display stack-up.

Additionally, it may be appreciated that for illuminable key embodiments the various structures and mechanisms described herein are not intended to limit the disclosure to a particular favored or required geometry or form factor. For example, an illuminable key can include a butterfly mechanism, a scissor mechanism, or any other suitable type of key mechanism. An illuminable key can include a keycap that is formed to have a substantially flat top surface or, in other embodiments, to have a partially curved top surface. An electronic switch associated with the illuminable key can be implemented as a single throw switch, a multi-throw switch, a capacitive switch, and so on. A tactile feedback structure associated with the illuminable key can be implemented as an elastomeric dome, a spring, an elastomer deposit, a metal dome, or any combination thereof.

Furthermore, one may appreciate that although many embodiments are disclosed above, that the operations and steps presented with respect to methods and techniques described herein are meant as exemplary and accordingly are not exhaustive. One may further appreciate that an alternate step order or fewer or additional steps may be implemented in particular embodiments.

Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the some embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed