Voice channel control of wireless packet data communications

Moinzadeh , et al. March 24, 2

Patent Grant 7508810

U.S. patent number 7,508,810 [Application Number 11/048,623] was granted by the patent office on 2009-03-24 for voice channel control of wireless packet data communications. This patent grant is currently assigned to Airbiquity Inc.. Invention is credited to Darrin L. Garret, Kamyar Moinzadeh, David C. Quimby.


United States Patent 7,508,810
Moinzadeh ,   et al. March 24, 2009

Voice channel control of wireless packet data communications

Abstract

A data session with a wireless device ordinarily cannot be initiated from the network side because the wireless device has no predetermined IP or other network address. Methods are disclosed for instead causing the wireless unit to initiate a data session with a target destination, thereby obviating the IP addressing problem. A voice call is first initiated by a requester application to a remote wireless unit. The requester transmits a request message to the remote wireless unit via the wireless voice channel using in-band techniques; preferably including a payload in the polling message that identifies the target destination. In response, the remote wireless unit initiates a packet data session with the target destination.


Inventors: Moinzadeh; Kamyar (Bellevue, WA), Garret; Darrin L. (Kingston, WA), Quimby; David C. (Seattle, WA)
Assignee: Airbiquity Inc. (Seattle, WA)
Family ID: 36756461
Appl. No.: 11/048,623
Filed: January 31, 2005

Prior Publication Data

Document Identifier Publication Date
US 20060171368 A1 Aug 3, 2006

Current U.S. Class: 370/346; 370/493; 370/496; 370/449
Current CPC Class: H04W 68/00 (20130101); H04L 67/14 (20130101); H04W 76/00 (20130101); H04L 69/14 (20130101)
Current International Class: H04L 12/403 (20060101)
Field of Search: ;370/346,449,352-355,465,493,496,522

References Cited [Referenced By]

U.S. Patent Documents
3971888 July 1976 Ching et al.
4355310 October 1982 Belaigues et al.
4641323 February 1987 Tsang
4651157 March 1987 Gray et al.
4754255 June 1988 Sanders et al.
4941155 July 1990 Chuang et al.
5025455 June 1991 Nguyen et al.
5043736 August 1991 Darnell et al.
5081667 January 1992 Drori et al.
5119504 June 1992 Durboraw, III
5155689 October 1992 Wortham
5212831 May 1993 Chuang et al.
5223844 June 1993 Mansell
5235633 August 1993 Dennison et al.
5333175 July 1994 Ariyavistakul et al.
5334974 August 1994 Simms et al.
5363375 November 1994 Chuang et al.
5363376 November 1994 Chuang et al.
5388147 February 1995 Grimes
5389934 February 1995 Kass
5410541 April 1995 Hotto
5418537 May 1995 Bird
5479482 December 1995 Grimes
5504491 April 1996 Chapman
5515043 May 1996 Berard et al.
5543789 August 1996 Behr et al.
5555286 September 1996 Tendler
5557254 September 1996 Johnson et al.
5559520 September 1996 Barzegar et al.
5572204 November 1996 Timm et al.
5576716 November 1996 Sadler
5587715 December 1996 Lewis
5712899 January 1998 Pace
5726893 March 1998 Schuchman et al.
5752195 May 1998 Tsuji et al.
5761292 June 1998 Wagner et al.
5771001 June 1998 Cobb
5786789 July 1998 Janky
5812522 September 1998 Lee et al.
5870675 February 1999 Tuutijarvi et al.
5930340 July 1999 Bell
5953694 September 1999 Pillekamp
6014090 January 2000 Rosen et al.
6049971 April 2000 Petit
6055434 April 2000 Seraj
6070089 May 2000 Brophy
6091969 July 2000 Brophy
6140956 October 2000 Hillman
6144336 November 2000 Preston et al.
6169497 January 2001 Robert
6226529 May 2001 Bruno
6236652 May 2001 Preston et al.
6282430 August 2001 Young
6345251 February 2002 Jansson et al.
6470046 October 2002 Scott
6493338 December 2002 Preston et al.
6611804 August 2003 Dorbecker et al.
6690681 February 2004 Preston et al.
6778645 August 2004 Rao
2002/0095293 July 2002 Gallagher et al.
2002/0101975 August 2002 Tiburtius et al.
2002/0111167 August 2002 Nguyen et al.
2002/0122401 September 2002 Xiang et al.
2003/0016639 January 2003 Kransmo et al.
2003/0083080 May 2003 Fournier et al.
2003/0088619 May 2003 Boundy
2004/0171370 September 2004 Natarajan
2004/0209614 October 2004 Bright
2005/0090225 April 2005 Muehleisen et al.
2005/0197137 September 2005 Radic et al.
2005/0215228 September 2005 Fostick et al.
2005/0226202 October 2005 Zhang et al.
2006/0276196 December 2006 Jiang et al.
Foreign Patent Documents
2242495 Jan 2000 CA
0 501 058 Sep 1992 EP
0 580 397 Jan 1994 EP
WO 89/12835 Dec 1989 WO
WO 99/56144 Nov 1999 WO
WO 01/78249 Oct 2001 WO
03034235 Apr 2003 WO

Other References

3GPP2 Access Network Interfaces Technical Specification Group, "3GPP2 Access Network Interfaces TSG (TSG-A) #60, Meeting Summary," Coeur d'Alene, Idaho, Apr. 19, 2004. pp. 1-5. cited by other .
Protean Research Group, "Anycast Routing for Mobile Services (ARMS) Project Overview." Published on the Internet at <http://tang.itd.nrl.navy.mil/5522/anycast/anycast.sub.--index.html&gt- ;. cited by other .
International Search Report for PCT/US06/03416, dated Feb. 5, 2007, 3 pages. cited by other .
Written Opinion of the International Searching Authority for PCT/US06/03416, dated Feb. 5, 2007, 3 pages. cited by other .
Vaha-Sipila, A., URLs for Telephone Calls, Request for Comments: 2806, Network Working Group, Apr. 2000, 16 pages. cited by other .
U.S. Appl. No. 60/047,034 to Preston, filed May 19, 1997. cited by other .
U.S. Appl. No. 60/047,140 to Preston, filed May 20, 1997. cited by other .
U.S. Appl. No. 60/048,369 to Preston, filed Jun. 3, 1997. cited by other .
U.S. Appl. No. 60/048,385 to Preston, filed Jun. 3, 1997. cited by other .
U.S. Appl. No. 60/055,497 to Preston, filed Aug. 12, 1997. cited by other .
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Push architecture (Release 6); 3GPP TR 23.976"; ETSI Standards, LIS; vol. 3-SA2, No. V6.1.0, Jun 1, 2004, pp. 1-34. cited by other.

Primary Examiner: Jung; Min
Attorney, Agent or Firm: Stolowitz Ford Cowger LLP

Claims



The invention claimed is:

1. A method of polling a remote wireless unit, the method comprising: establishing a voice call between a requester and the remote wireless unit, the voice call established on a wireless voice channel of a telecommunications network; after the voice call is established between the requester and the remote wireless unit, transmitting a digital polling message from the requester to the remote wireless unit via the wireless voice channel; including a payload in the digital polling message that identifies a target resource, wherein the digital polling message is transmitted in-band over the wireless voice channel separately from an out-of-band control channel, and wherein the payload is represented by audio frequency signals selected to pass through the wireless voice channel unobstructed by vocoders operating in the telecommunications network; and in the remote wireless unit, responsive to the digital polling message, initiating a packet data session with the target resource.

2. The method according to claim 1, wherein the target resource is a predetermined IP network location, and wherein the audio frequency signals are used to identify the target resource to the remote wireless unit.

3. The method according to claim 1, wherein the target resource is specified by a predetermined identifier carried in the payload, the predetermined identifier represented by the audio frequency signals.

4. The method according to claim 1, wherein the target resource is specified by a URL carried in the payload, the URL represented by the audio frequency signals.

5. The method according to claim 1, wherein the target resource is specified by an IP address carried in the payload, the IP address represented by the audio frequency signals.

6. The method according to claim 1, further comprising pulling data from the remote wireless unit via a wireless network packet data session, wherein the wireless network packet data session is automatically initiated by the remote wireless unit in response to receiving the digital polling message and without manual user intervention at the remote wireless unit, and wherein the data is pulled from the wireless unit over the wireless network packet data session without manual user intervention at the remote wireless unit.

7. The method according to claim 6, wherein the polling message payload further comprises at least one delivery parameter, the delivery parameter represented by the audio frequency signals.

8. The method according to claim 7, wherein the delivery parameter is one of a selected wireless network packet data service, a data rate and a priority parameter, the selected delivery parameter represented by the audio frequency signals.

9. The method according to claim 6, wherein the polling message payload identifies a type of data to be transmitted in the wireless packet data session.

10. The method according to claim 9, wherein the type of data to be transmitted is data indicating a location of the remote wireless unit.

11. A wireless communications system, comprising: a computer coupled to a telecommunications network; a polling requester application executable on the computer for sending a polling message through a wireless voice channel of the telecommunications network to a wireless remote unit, wherein the polling message is represented by audio frequency signals selected to pass though the wireless voice channel unobstructed by vocoders operating in the telecommunications network; a wireless remote unit having wireless telecommunications capability for receiving a voice call; the remote unit configured to recover the polling message from the voice channel; and the remote unit configured to initiate a data session responsive to the recovered polling message.

12. The wireless communications system of claim 11, wherein the polling requester application transmits a payload in the polling message.

13. The wireless communications system of claim 12, wherein the polling requester application identifies a target network resource in the payload.

14. The wireless communications system of claim 12, wherein the payload includes indicia of at least one data session parameter.

15. A method of uploading data from a wireless unit, the method comprising: receiving a voice call in the wireless unit via a wireless telecommunications network; recovering a request message from the voice call, wherein the request message is encoded as audio frequency signals transmitted in-band in a wireless voice channel of the received voice call, wherein the audio frequency signals are received over the wireless voice channel and separately from an out-of-band control channel; and responsive to the recovered request message, initiating a data session between the wireless unit and a target resource for uploading data using a digital wireless data service.

16. The method of uploading data from a wireless unit according to claim 15, further comprising downloading data to the wireless unit in the data session.

17. The method of uploading data from a wireless unit according to claim 15, wherein the data session is initiated with a predetermined network resource in response to receiving the request message.

18. The method of uploading data from a wireless unit according to claim 17, wherein the network resource is identified by a URL or an IP address in the request message.

19. The method of uploading data from a wireless unit according to claim 15, wherein the recovered request message includes a network address of the target resource.

20. The method of uploading data from a wireless unit according to claim 15, wherein the wireless unit comprises a cell phone.

21. A wireless unit, comprising: a transceiver configured to receive a voice call via a wireless telecommunications network; communication circuitry coupled to the transceiver, the communication circuitry configured to recover a request message from the voice call, wherein the request message is encoded as audio frequency signals transmitted in-band in a wireless voice channel of the received voice call, wherein the audio frequency signals are received over the wireless voice channel and separately from an out-of-band control channel; and the communication circuitry further configured to initiate a data session between the wireless unit and a target resource for uploading data using a digital wireless data service, wherein the data session is initiated according to the request message.

22. The wireless unit of claim 21, wherein the communication circuitry is further configured to automatically initiate the data session in response to recovering the request message from the received voice call, wherein the data session is initiated independently of any local user inputs to the wireless unit.

23. The wireless unit of claim 22, wherein the communication circuitry is further configured to automatically upload data identified by the audio frequency signals over the data session independently of any local user inputs to the wireless unit.
Description



COPYRIGHT NOTICE

.COPYRGT. 2005 Airbiquity Inc. A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. 37 CFR .sctn. 1.71(d).

TECHNICAL FIELD

This invention pertains to data communications via wireless communications networks, and more specifically it relates to use of the voice channel to trigger a network initiated data session such as an IP session.

BACKGROUND OF THE INVENTION

Data transfer services in the wireless domain are known and certainly still evolving. Examples include SMS (short messaging service) and other SS7 control channel services. They can be used, for example, for text messaging. They do not affect the voice channels, but offer very limited bandwidth, so the amounts of data transferred are quite limited.

The WAP (Wireless Application Protocol) specifications and software offer some improved services. For example, they can be implemented to provide limited Internet access to a mobile unit. (We use the term "mobile unit" herein to refer broadly to any device with wireless connectivity, including without limitation a cell phone, PDA, laptop computer, palmtop, motor vehicle, etc.). The WAP services, however, require that the mobile unit itself be WAP enabled, and that the wireless carrier network also be WAP enabled. Thus, wireless carriers have to deploy and maintain WAP gateways at the edges of the network to provide WAP services. Some mobile units, and some networks or geographic areas may not be WAP enabled, so these services would not be available for data communication.

One approach to wireless data transfer that does not require changes in the wireless network infrastructure, although it requires specific implementation at both endpoints of a session, is the use of "in-band" data transfer. As the name implies, this technique transfers data in the voice channel, using carefully selected and timed audio frequency tones. (Commonly, wireless data transfer services do not use the voice channel at all.) In-band or voice channel data transfer can be done with little or no interruption of a voice conversation. Details of in-band signaling are explained in U.S. Pat. Nos. 6,144,336; 6,690,681 and 6,493,338 all incorporated wherein by this reference. These types of in-voice-channel data communications have two primary advantages: the wireless voice channel is reliable, and the technique works transparently across networks and carriers throughout the country and beyond. The data simply passes transparently through the voice service, as it "looks" like voice. However, in-band signaling provides only a very low bandwidth up to around 400 bps. That makes it almost useless for transferring significant amounts of data.

Higher bandwidth wireless data services are rapidly becoming available throughout the world. These services operate over dedicated data channels, not the voice channels. The newer specifications, so-called "3G" or third generation wireless technologies, while not yet widely implemented, promise packet data rates as follows, according to IMT-2000 standards: 2 Mbps for fixed environment 384 Mbps for pedestrian (i.e. slow-moving mobile unit) 144 kbps for vehicular traffic

One problem, however, with virtually all wireless data services, is the difficulty in accessing those services in a network "polling" type of application. Polling (or "pulling data") here refers to contacting a mobile unit to pull or retrieve digital data needed by a requester. (The "requester" typically would be an application program.) Preferably, an authorized requester should be able to poll remote mobile units, and fetch data, without manual user intervention at the remote location. In other words, a polling process should be able to be completely automated, although for some applications it can be advantageously initiated by a user at the requester end.

To illustrate, a wireless automated inventory control system may seek to poll units, say trucks or tanks, to learn their present location, fuel supply, operator ID, etc. A packet data connection, for example an IP connection, cannot be established with a mobile unit from the network side (we call this "network initiated") using prior technology, because the mobile device has no predetermined IP address. Rather, an IP address is dynamically assigned to a mobile unit only if and when it initiates a session to an IP network. Accordingly, a user application cannot poll a remote mobile unit to establish a packet data transfer session using known technologies.

A system has been suggested for IP addressing of GPRS mobile terminals that purportedly would enable TCP/IP connection without a phone call. That proposal recognized that there are not enough IP addresses available (under the current Ipv4 regime) to assign one to every wireless terminal. The proposal calls for a combination of Public Addresses (registered with public routing tables) and Private addresses, not to be routed on the public Internet. Rather, the private (IP-like) addresses would only to be used within a GPRS operator's own network. This would require network address translation (NAT) facilities and is generally impractical. Even if implemented, such a scheme does not solve the problem that the mobile (or wireless) terminal address is unknown, and is not publicly discoverable in a convenient way.

The need remains for a convenient and effective way to poll a remote mobile unit, that is, to request a packet data session, for uploading or downloading data via the wireless network, without changing the wireless carrier infrastructure and in a manner compatible with existing packet data networks and protocols such as IP.

SUMMARY

In accordance with one embodiment of the present invention, a combination of in-band or voice channel signaling together with packet data services is employed to overcome the lack of a predetermined IP address of a mobile unit. A voice call is established between a requester and the remote mobile unit. A short polling message is transmitted in the voice channel from the requester using in-band digital data transmission ("IBS"). The request message includes in its payload data that identifies (directly or indirectly) a target resource such as a URL or IP address. The mobile unit responds by initiating a wireless packet data session with the indicated target resource which may be, for example, a server system.

This new approach of using the voice channel signaling to enable a network initiated data session will solve the existing problem associated with assigning an IP address (Simple IP and Mobile IP assignment for both IPv4 and IPv6) to a mobile device and do so in a timely and more efficient manor.

Presently the existing cellular infrastructure does not allow mobile devices to pre-register their IP address with the cellular data network, instead it must be assigned to the mobile device by the cellular data network when a mobile device first initiates a request for a data session using a Simple IP protocol, or the mobile device must initiate an IP address discovery process using the Mobile IP protocol. In ether case the cellular data network does not know of the routing location of the IP address for a mobile device until the mobile device first initiates a data session.

The core data network of any data enabled cellular network can use this unique invention to initiate a data transfer session, which we will call a Network Initiated Data Session (NIDS) and is described as follows:

According to one aspect of the invention, in-band signaling methods and apparatus and employed to "push" a request to a mobile unit or "node". We call this a Mobile Terminated (MT) request. (The mobile device is of course in-band signaling enabled, meaning essentially that it can send and receive digital data through the voice channel of a wireless network.)

The receiving mobile unit (mobile node) detects--and triggers the mobile device (or other system coupled to the mobile device) to initiate a data session with the cellular network using an available data channel, not the voice channel, to transmit data to a specified (or default) destination.

When a request is made of the mobile device, by using voice channel signaling, the network can initiate a data session between the mobile device and any network or internet entity at any time using the voice channel of the cellular network, or any other radio frequency derived audio channel where voice channel signaling functions. Due to the real time speed and quality of service of in-band (voice channel) services, a distinct time savings and reliability advantage can be made over any other approach for network initiated data sessions. These advantages are of paramount importance for public safety and security applications.

The present invention is also independent of any digital cellular technology and is not tied to any individual cellular carrier's voice, data, or messaging service, which is also unique and advantageous offering greater cellular coverage capabilities when compared to existing approaches.

Additional aspects and advantages will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified high-level diagram illustrating operation of representative embodiments of the invention.

FIG. 2 is a messaging diagram showing principle interactions among nodes involved in an embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference is now made to the figures in which like reference numerals refer to like elements. For clarity, the first digit of a reference numeral indicates the figure number in which the corresponding element is first used.

In the following description, certain specific details of programming, software modules, user selections, network transactions, database queries, database structures, etc., are provided for a thorough understanding of the embodiments of the invention. However, those skilled in the art will recognize that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc.

In some cases, well-known structures, materials, or operations are not shown or described in detail in order to avoid obscuring aspects of the invention. Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

FIG. 1 is a simplified high-level diagram illustrating certain embodiments of the methodology of the present invention. Referring to FIG. 1, a requestor application program can be provided on a suitable computer 100. The request or polling application can be activated by a user as needed or preprogrammed for automatic operation at scheduled times. The computer system 100 is coupled to a telephone line which may include a conventional telephone 102 and in any event is connected via 104 to the public switched telephone network PSTN 106. This connection can be, for example, an ordinary telephone land line as is commonly used for voice calls. It could also be part of a larger enterprise system that may involve a PBX (not shown), or it may be a wireless telecom connection.

A wireless carrier network 108 is connected to the PSTN 106 for handling wireless call traffic, the details of which are well known. The wireless network 108 includes a series of base stations which include antennas and wireless transceivers, generally referred to as a cell tower 110. Transceivers are mounted atop the cell tower 110 for two-way wireless communications with various wireless mobile devices such as a cell phone 112 or PDA 114. The base station antennas need not literally be mounted on a tower. In urban areas, in particular, they are more commonly affixed to buildings.

In accordance with the invention, a requestor or a requestor application executing on computer 100 initiates a voice telephone call, via the PSTN or wireless, directed to a remote mobile unit such as the cell phone 112. The connection from the requestor application need not be hard wired to the PSTN but could itself be a wireless telephone link. The requester system 100 also may have access to the Internet 122, typically through an ISP (internet service provide) 124. The connection to the ISP could take any of various forms, for example utilizing cable or the PSTN network, as are known.

According to a preferred embodiment of the invention, a method is provided for polling the remote wireless unit as follows: First, the requester system 100 initiates a voice call to the remote wireless station. This of course requires that the telephone number of the device is known. Other kinds of mobile devices, such as the PDA 114 or even a motor vehicle 116 can include apparatus that is configured to interact with the wireless network as if it were a cell phone, although it may not actually include a microphone or a speaker. For example, devices can be configured to automatically answer a wireless call, and provide the control channel signaling to emulate answering a cell phone. Once a voice call is established between the requestor 100 and the remote wireless unit 112, the requestor system 100 transmits a digital request message to the remote wireless terminal via the wireless voice channel on which the voice call is established. In other words, the digital request message is sent "in band" through the use of audio frequency tones that are arranged so that they will pass through the voice channel unobstructed.

The request message preferably includes a payload that identifies a target resource. In the remote wireless unit, for example 112, 114, apparatus or software is implemented that will respond to the digital request message by initiating a packet data session with the target resource identified in the request message. By "packet data session" we mean a data transfer session that utilizes one or more of the data services provided by the wireless carrier, as distinguished from voice services.

The target resource may be, but is not limited to, the requester system 100 itself. In other words, the wireless terminal 112 may be instructed to initiate a packet data session back to the requestor system. That session would traverse link 120 from the wireless network infrastructure to the Internet 122 and thence to the requestor 100 via the ISP 124. As noted, this process can be automated by implementing suitable software at the requestor 100 and at the wireless unit 112 so that it can occur without user action at either end of the packet data session.

The target resource can be identified in the request message by a predetermined identifier, such as a simple alphanumeric name or code. The wireless terminal software can perform a look-up in memory to determine a corresponding URL or IP address. Alternatively, the target URL or IP address can be included in the request message itself.

The target resource need not be the requesting system 100. In one alternative embodiment, it could be a server 130 which is coupled to the Internet through an ISP and configured to perform data collection, utilizing standard packet data session protocols such as the Internet protocol. The target may be a web server suitably configured to interact with the mobile unit.

In other embodiments, the request message payload can include various delivery parameters, in addition to identification of a target resource. The delivery parameters might include, by way of example and not limitation, a preferred packet data service, a packet data rate, and/or a priority parameter. These parameters can be recovered from the message payload by the wireless terminal software and it can initiate a responsive packet data session in accordance with those parameters. For example, in the case of a relatively low priority parameter, the application software might select a data service or time of day to initiate the packet data session that is lower performance but incurs lower cost.

Referring again to FIG. 1, the tanker truck 116 is merely illustrative of a wide variety of mobile assets, including but not limited to motor vehicle assets, that could participate in the present system, assuming they are outfitted with a wireless unit as explained above. FIG. 1 also shows a second wireless base station tower 136 illustrating that the packet data session need not involve the same base station, or even the same wireless carrier, as that which carried the request message via the voice channel. The requested packet data session could occur through a second wireless network 138 which is also coupled to the Internet via 140. And again, the packet data session could be established with any target resource, including but not limited to the requestor application 100 or a separate server 130.

In other embodiments of the invention, a live user or operator at a computer 150, having access to the Internet, could poll one or more remote wireless units to request a data transfer. For example, a user at say a public safety location such as a 911 emergency call taker, could access a web server (not shown) which has voice call telephone access such as 104. Through the means of a suitably programmed web page interface (using, for example, cgi scripting or the like), a user at 150 could initiate a request message which would take the form of a voice call from the web server, through the PSTN and the wireless network as described above, to a remote or mobile unit. The request message could include identification of the call taker center at 150 as the target resource to deliver requested information via a packet data session.

The present invention is not limited to downloading data from the wireless terminal to the requestor. The requested packet data session could also be used to download information to the wireless terminal.

FIG. 2 is a messaging diagram that further illustrates principal features and characteristics of certain embodiments of the invention.

Referring to FIG. 2, a signaling or message flow diagram further illustrates methodologies in accordance with the present invention. Beginning with "time interval A" and initiating application 208 essentially places a voice call out to the mobile telephony device 204. As noted above, the initiating application could be a software application deployed on a computer or on a server and it may or may not necessarily require a conventional telephone. It does require access to the wireless network, directly or through the PSTN. The telephony device, in turn, makes a voice call through the cellular network 202 which in turn makes a wireless call to the mobile unit 200. The mobile unit answers the call, thereby establishing a voice channel "connection" back to the telephony device 204. Once that voice call is established, the initiating application, at "time interval B" transmits a request message in the voice channel to the mobile device 200. Optionally, the mobile device may respond with an acknowledgement message in the voice channel.

Referring now to "time point C," responsive to the request message, the mobile terminal 200 initiates a data network connection, which traverses the cellular network 202 and establishes a packet data session via the IP network 206. Here, the target or destination resource is coupled to the IP network 206. The IP network in turn responds to the mobile node 200 at "time point D" and then, as indicated at "time point E" a packet data session is established between the mobile node 200 and the IP network or target 206. "Time point F" indicates that the IP resource may not be the ultimate recipient of the data, but rather, it could be configured to forward that data to an ultimate destination address which may be, but is not limited to, the initiating application 208.

The process used by the core data network, internet application, or stand alone device to initiate a data session using aqLink begins with the establishment of a circuit switch voice channel connection to the mobile device. This can be accomplished by any means made available to the initiating application or device.

It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, be determined only by the following claims.

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed