Flying machine

Horsdal March 25, 1

Patent Grant 3873049

U.S. patent number 3,873,049 [Application Number 05/393,285] was granted by the patent office on 1975-03-25 for flying machine. Invention is credited to Paul V. Horsdal.


United States Patent 3,873,049
Horsdal March 25, 1975

Flying machine

Abstract

A VTOL flying machine has four rotors rotating about respective vertical shafts and each shaped to draw air downwardly. The rotors are in pairs spaced longitudinally and transversely relative to a hull beneath the rotors, and the machine is propelled forwardly by air discharged rearwardly from between the rotors. Each rotor has an inverted dish-shape with radial slots having upwardly projecting trailing edges for directing air to the underside of the rotor. Baffles control the direction of discharge of the rearwardly discharged air to facilitate turning at low speeds.


Inventors: Horsdal; Paul V. (Ottawa, Ontario, CA)
Family ID: 4097271
Appl. No.: 05/393,285
Filed: August 31, 1973

Foreign Application Priority Data

Jul 13, 1973 [CA] 176372
Current U.S. Class: 244/17.23; 244/6; 416/181; 416/245A; 416/183
Current CPC Class: B64C 27/08 (20130101)
Current International Class: B64C 27/00 (20060101); B64C 27/08 (20060101); B64c 027/08 ()
Field of Search: ;244/17.11,17.19,17.21,17.23,6,52 ;46/75 ;416/9A,91,183,185,223,237,245A

References Cited [Referenced By]

U.S. Patent Documents
1749572 March 1930 Dorgan
2414766 January 1947 Platt
2420823 May 1947 Hays
2540404 February 1951 Neale
3292864 December 1966 Edkins
3336010 August 1967 Conn
3563496 February 1971 Zuck
Foreign Patent Documents
385,030 Feb 1965 CH
241,243 Oct 1925 GB
725,820 Mar 1955 GB
1,085,378 Feb 1955 FR
Primary Examiner: Blix; Trygve M.
Assistant Examiner: Kelmachter; Barry L.
Attorney, Agent or Firm: Browdy and Neimark

Claims



I claim:

1. A flying machine comprising, in combination;

a hull;

four vertical drive shafts extending upwardly from said hull;

four rotors respectively mounted on said shafts above said hull;

said drive shafts and said rotors being disposed in two pairs, with the two rotors of each pair spaced apart transversely of said machine and with said pairs spaced apart longitudinally of said machine;

means for rotating said vertical drive shafts in directions such that the inboard sides of said rotors travel towards the rear of said machine;

each of said rotors being dish-shaped and having its concave side facing downwardly; and

each of said rotors having means defining a plurality of radial slots therein;

said slot defining means comprising, for each of said slots, a first edge extending upwardly from, and forwardly in the direction of rotation of, the respective one of said rotors and a second edge extending downwardly from, and rearwardly in the direction of rotation of, said respective rotor;

an air baffle structure disposed rearwardly of said rotors for deflecting air discharged rearwardly by said rotors;

a pair of stabilizer flaps projecting horizontally from opposite sides of said hull; and

a tailplane provided rearwardly of said baffle structure.
Description



The present invention relates to flying machines, and more particularly to flying machines intended for vertical takeoff and landing.

Conventional helicopters employ one or more powerdriven rotors, in the form of horizontal propellers, instead of the wings of a fixed type of winged aircraft. In addition, helicopters are provided at their tails with small propellers providing lateral thrust for counteracting rotation of the fuselage which would otherwise be caused by reaction to the rotation of the horizontal propeller or propellers.

The use of such small propellers for providing lateral thrust can be avoided by employing two counter-rotating horizontal propellers, spaced laterally or longitudinally of the helicopter or rotating about a common axis.

In both cases, forward propulsion of the helicopter is effected by tilting the rotor.

It is an object of the present invention to provide a novel and improved flying machine employing rotors for lifting the machine, in which forward propulsion of the machine can be achieved without tilting the rotors.

According, to the present invention, there is provided a flying machine comprising a hull and four lifting rotors mounted for rotation about respective vertical shafts above the hull, each rotor being shaped to draw air downwardly to beneath the rotor on rotation thereof, the rotors being disposed so that each rotor is spaced longitudinally of the hull from another of the rotors and transversely of the hull from a further one of the rotors, and means for rotating the rotors in directions such that the inboard sides of the rotors rotate towards the rear of the hull.

With this arrangement of rotors, at least a portion of the air drawn downwardly by the rotors and discharged centrifugally from the rotors will be discharged rearwardly of the hull from between the rotors. This portion of the air can be employed to effect forward propulsion of the aircraft.

Preferably, each of the rotors comprises an inverted dish-shaped structure having radial slots, each of the radial slots being defined by an edge projecting forwardly and outwardly from the dish-shaped structure and a further edge projecting inwardly and rearwardly from the dish-shaped structure. On rotation of the rotors, air flows through the slots to beneath the rotors, thus providing lift for raising the machine.

The machine may be provided an adjustable baffle structure rearwardly of the rotors for controlling the flow of air impelled rearwardly by the rotors on rotation of the latter. As mentioned above, this rearwardly discharged air provides forward propulsion of the machine, and by adjusting the baffles to allow a greater or lesser amount of this air to flow past the baffles and rearwardly off the machine, the rate of forward propulsion of the machine can be varied. By moving the baffles into a "closed" position, in which the baffles do not allow any of the air to flow rearwardly past the baffles, the forward propulsion of the machine can be interupted to allow the machine to hover.

The drive means may include a drive transmission linking the four rotor shafts, and in order to avoid disaster in the case of engine failure, the drive means preferably comprises at least two engines connected to impart drive to the drive transmission, so that if one engine should fail, the other engine or engines can ensure that the machine remains airborne.

To facilitate stabilization of the machine, the hull preferably has a pair of stabilizer fins projecting from opposite sides of the hull, and a tailplane, the tailplane including a rudder for directional control of the forward movement of the machine.

The invention will be more readily understood from the following description of a preferred embodiment thereof given by way of example with reference to the accompanying drawings, in which:

FIG. 1 shows a view in perspective of a flying machine;

FIG. 2 shows a plan view of the machine of FIG. 1;

FIG. 3 shows a side view of one of the rotors of the machine of FIGS. 1 and 2; and

FIG. 4 shows a plan view of the rotor of FIG. 3.

As shown in FIG. 1, the machine has a hull indicated generally by reference numeral 10, a tailplane indicated generally by reference numeral 11, and four rotors 12 to 15.

The hull 10, which has ovoidal upper and lower surfaces 17 and 18, is provided around its periphery with windows 19.

As shown in FIGS. 1 and 2, the rotors 12 to 15 are disposed so that each rotor is spaced longitudinally of the hull from another of the rotors, and transversely of the hull from a further one of the rotors. In other words, the rotors are arranged in two pairs 12, 14 and 13, 15, the rotors of each of these pairs being spaced transversely of the hull from one another and longitudinally of the hull from a respective one of the rotors of the other pair.

As indicated by arrows A, B, C and D in FIG. 2, the rotors 12 to 15 are rotated in directions such that the inboard side of each of the rotors rotates towards the rear of the hull. Thus, the starboard rotors 12 and 13 are rotated in an anticlockwise direction, as viewed from above, and the port rotors 14, 15 are rotated in a clockwise direction, as viewed from above.

The rotation of the rotors is effected by a drive transmission comprising drive shafts 21, 22 and 23 and vertical shafts 24, 25, 26 and 27, which carry the rotors 12 to 15. The shafts 21 to 23 are in driving connection, at the ends thereof, with the shafts 24 to 27 through suitable bevel gears (not shown) and are driven by three internal combustion engines 30, 31 and 32. The engines are sufficiently powerful to ensure that the machine can remain airborne even if one of the engines fails.

The rotor 12 is illustrated in greater detail in FIGS. 3 and 4, and it is to be understood that the construction of the rotors 13, 14 and 15 is similar to that of the rotor 12.

As can be seen in FIGS. 3 and 4, the rotor 12 has an inverted, dish-shape structure and is formed with three radially-extending slots 35.

Each of the radially-extending slots 35 is defined by an edge 36 which projects forwardly, in the direction of rotation of the rotor, and outwardly from the dish-shaped structure, and an edge 37 which projects inwardly of the dish-shaped structure and rearwardly, with reference to the direction of rotation of the rotor. The edge 36 is thus the trailing edge of the slot 35, and the inturned edge 37 is the leading edge of the slot 35.

On rotation of the rotor, air is deflected downwardly by the outwardly-extending edge 36, and flows through the slot 35 to beneath the rotor. The air is then discharged peripherally from beneath the rotor. As indicated by arrows E in FIG. 2, a portion of this peripherally-discharged air is discharged at the inboard side of the periphery of each of the rotors 12 to 15 and flows rearwardly of the hull 10 from between the rotors.

This rearwardly-flowing airstream effects forward propulsion of the machine.

For controlling the forward propulsion of the machine, an air baffle structure 38, shown in FIG. 1, is provided at the rear of the hull 10. The air baffle structure 38 is adjustable to control the amount of the rearwardly-flowing air stream which is allowed to flow through the air baffle structure 38 for effecting the forward propulsion of the machine. By adjusting the air baffle structure 38 to reduce or even interrupt the rearward flow of the air stream, the forward propulsion of the machine can be correspondingly reduced or interrupted.

The tailplane 11, which is provided on twin booms 39, has a rudder 40 for controlling the direction of forward movement of the machine.

The trim of the machine can be stabilized by means of a pair of air flaps 41 projecting from opposite sides of the hull 10.

Various modifications may be made in the above-described apparatus. For example, the air baffle structures 38 may be retractible with the hull 10, or collapsible by pivotation relative to the hull 10, to reduce or even entirely eliminate drag caused by the air baffle structures 10 during forward motion of the machine.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed