Credit card and credit card identification system for automatic vending equipment

Cuttill , et al. March 18, 1

Patent Grant 3872438

U.S. patent number 3,872,438 [Application Number 05/357,509] was granted by the patent office on 1975-03-18 for credit card and credit card identification system for automatic vending equipment. Invention is credited to William E. Cuttill, Vilma M. Wagner.


United States Patent 3,872,438
Cuttill ,   et al. March 18, 1975
**Please see images for: ( Certificate of Correction ) **

Credit card and credit card identification system for automatic vending equipment

Abstract

The system is used to enable the operation of automatic vending equipment without requiring the attention of sales personnel. A special credit card construction is employed with the credit card precoded in binary code representing several digits and with a locator indicator to insure that the card is correctly positioned when inserted in the console or read-out station. The card coding includes an arrangement of high dielectric constant discs and low dielectric constant discs arranged in several bit groupings related to a plurality of identification digits. On the cards, which are preferably of the plastic material type, opaque conductive plastic inserts are included over and above the first mentioned discs so that the discs, their location and code arrangement, cannot be readily ascertained. The read-out device includes key operated switches for entering a second plurality of digits which are the same as those first encoded on the card and known only to the proper card holder. For example, the identifying digits may be the last four numbers of his social security number or the like. Responsive to the comparison and the coincidence of the code on the card and the code entered by the purchaser, the vending equipment is enabled so that the desired objects may be removed and a totalizer and appropriate print-out means are then actuated to total the amount of the purchases and then provide a printed bill for the purchaser.


Inventors: Cuttill; William E. (Fenton, MI), Wagner; Vilma M. (Flint, MI)
Family ID: 23405930
Appl. No.: 05/357,509
Filed: May 4, 1973

Current U.S. Class: 235/381; 235/488; 340/5.9; 235/451
Current CPC Class: G07F 7/1058 (20130101); G06K 5/00 (20130101); G07F 7/086 (20130101); G07F 7/10 (20130101); G07F 7/025 (20130101); G06Q 20/347 (20130101); G06K 7/081 (20130101); G06K 19/067 (20130101); G06Q 20/342 (20130101)
Current International Class: G07F 7/00 (20060101); G07F 7/10 (20060101); G06K 19/067 (20060101); G06K 7/08 (20060101); G06K 5/00 (20060101); G07F 7/02 (20060101); G07F 7/08 (20060101); G06f 007/00 (); G11b 023/00 ()
Field of Search: ;340/149A,149R ;235/61.7B,61.11H

References Cited [Referenced By]

U.S. Patent Documents
3245697 April 1966 Nugent
3370277 February 1968 Goethem
3387265 June 1968 Smeiman
3401830 September 1968 Mathews
3519802 July 1970 Cinque et al.
3530281 September 1970 Smeiman
3604900 September 1971 Kalt
3662343 May 1972 Goldstein et al.
3699311 October 1972 Dunbar
3787714 January 1974 Resnick et al.
Primary Examiner: Yusko; Donald J.

Claims



1. A vending machine system for dispensing products to a purchaser without the attendance continuous of sales personnel, comprising:

a credit identification card;

a first plurality of indicia of relatively high dielectric constant mounted in said card;

a second plurality of indicia of relatively low dielectric constant mounted in said card in a predetermined pattern with said first plurality;

means for sensing the electrical time constant characteristics of said indicia and providing a binary code output representative thereof;

means for manually selecting a digital code memorized and known by the purchaser to be identical to the code represented by the pattern on said card;

means for converting the digital code to a binary code;

means for comparing said two binary codes; and

enabling means responsive to coincidence between said two codes to enable

2. The combination as set forth in claim 1 wherein said means for presetting a binary code for comparison with said binary code of said card comprises a digit key and a coder, said digit key operable to initiate the operation of said coder to convert the digit key setting to a binary code.

3. The combination as set forth in claim 1, wherein there is included in the system a further compare error counter for summing the number of times in which the code entered by the operator did not coincide with the card code, said compare error counter operable after attaining a predetermined

4. The combination as set forth in claim 3 wherein a means is operably connected in said system for locking said card against withdrawal by the purchaser responsive to the counting of said compare error counter to said

5. The combination as set forth in claim 3 in which a further means is included in circuit with said system to prevent further counting of the binary digit and binary compare error counters and to inhibit the further

6. The combination as set forth in claim 3 wherein there is included in the system a release solenoid for preventing card removal by the operator, and in which a key operated switch is required to provide final actuation of said solenoid and release of the card.
Description



BACKGROUND OF THE INVENTION

A number of automatic vending equipment systems are known to the prior art which are enabled in their operation through coins and bills and a great number of systems, both mechanical, optical and electrical, have been developed for identifying the currency and then permitting operation of the vending equipment. Further, a few additional systems have taken the further step forward to provide systems in which the automatic vending equipment much more conveniently is controlled by credit identification cards used by the operator. One type of such system is shown in Goldenberg U.S. Pat. No. 2,792,148 issued on May 14, 1957, in which a relatively simple system is used with the credit cards having a magnetized insert for identification and/or notches formed in the margin of the card. This system, outside of requiring a signature by the purchaser, did not make any provision against the purchaser having fraudulently obtained and used the credit card issued to another. An additional automatic vending apparatus operated by a credid card means is shown and described in Harris Pat. No. Re. 25,254, issued on Oct. 9, 1962. In that patent, the card incorporated a precoded portion, including a distinguishing light pattern formed by a photographic strip. In addition, there was described a system for actuating microswitches by means of raised lettering or type on the card. Here again, the system is deficient in that there is no validating means or system for insuring that the card is being used by a purchaser to whom the card was originally issued.

SUMMARY OF THE PRESENT INVENTION

The present invention will thus be seen to have provided an advancement in automatic vending systems, both with respect to the structure and fabrication of the credit card used in the system and with respect to the validating electronic system which is actuated by the card in such manner as to virtually insure against its fraudulent use by another person.

With respect to the coded credit card, it is fabricated in such manner that the card code incorporated in it cannot be readily detected by one examining it. The card is constructed in such manner that it is low-cost and durable.

The electronic system itself is relatively simple with respect to its components and its manufacture and as it will be seen in the accompanying specification, is constructed largely from integrated circuits which are readily available, are easily assembled and operate with a relatively low power consumption. The system is practically "fool-proof" in its operation and includes a number of features which lead to this result. For example, there is included a start button system with insurance that the card has been properly located in the read station under the lid for reading. After proper location of the coded card, there is a lighted panel provided which instructs the purchaser to select the first digit of the code, with the first digit being known only to the purchaser but not entered in a legible or visible fashion on the card. After the purchaser has depressed and released the first digit button on the keyboard, a further light instructs him to select the second digit of the code known to him, and the process is continued according to the present embodiment until the purchaser has selected a total of four digits.

In the purchaser the ppurchaser has made an error in his selection of the digits, a light signal informs him that he has selected the wrong code and he is instructed to push the reset button and to make a second selection of the code.

Actuation of the reset button permits the purchaser to make another four digit selection on the keyboard. In the event the next code he selects is likewise incorrect, he is permitted to push the reset button and again attempt to enter the proper code from memory. After a predetermined number of incorrect attempts, which may range from one to seven according to the judgment of the vending machine user, there is provided a "select first digit of code" light which stays illuminated regardless of what the purchaser does and his credit card is retained in place in the read station. In addition, an alarm may be employed to call an attendant or perhaps even actuate a police call. The card then would be retained in the identification or read station in the console subject to release only from a key-operated switch concealed from the purchaser.

If, as more often occurs, the purchaser selects the proper code prior to the alarm and lock-out, when he releases the fourth digit button, he will be informed by a further light signal that his code was correct and the equipment is now conditioned so that he may make his purchases. This signal also activates the vending equipment and places it in a condition so that he may select and remove the objects desired.

It will be appreciated that the system may be used for a great number of types of vending equipment in which the individual articles are separately priced and arranged perhaps in conveyorized position for the purchaser. It likewise may be used for bulk dispensing equipment, such as gasoline pumps, in which it is possible to remove a predetermined amount of the fluid and provide read-out for example through the rotary dial on the pump. As another example, the customer may select a quart of oil for 65 cents, with this amount being entered in a down-counter. A clock, associated with the system, may be used to count this counter to zero while a second totalizing counter is counted-up by the 65 cents at the same time. After all of the items have been selected by the purchaser, the amount finally registered in the totalizing counter can be decoded and typed by printer means on the bill.

It will be appreciated that the billing process can be made much more detailed by adding counters to add the number of items, by storing programs in the print-out device to print the number and description of the items purchased, and the like. In the interest of simplification and brevity in this specification, complete and detailed descriptions of such totalizing counters, read-out and print-out systems will not be given since they are well known and familiar to those skilled in the electronic computer and business machine arts.

In the final operation of the system, when the purchaser has completed all his purchases, he activates a "finished" button. This will deactivate the vending equipment and initiate the billing process, with the print-out as already described above. Once the billing is complete, a further light will inform him and thank him for his purchase. With the billing completed, the lid located on the read station is released so that he can retrieve his credit card and the completed printed bill.

It will thus be seen that by the present invention there has been provided a greatly improved type of credit card, with a novel coding system for identifying the purchaser user. The inserts used are far superior to those known in the prior art, for example, magnetic inserts, raised blocks on the card which are sensed by mechanical sensing fingers, conductive ink which has a tendency to wear off and change its conduction characteristics with aging, and other like indicia which are easily detected. On the other hand, the credit card constructed and fabricated in accordance with the present invention is such that the capacitor disc inserts cannot be readily detected by the average person and, even if the bits and their arrangement are located, the code is not obvious from the physical layout.

BRIEF DESCRIPTION OF THE DRAWINGS

The attached drawings illustrate a system provided in accordance with the present invention in which like numerals and letters are used to identify like parts of the system where they may occur in several different portions of the drawings, and in which:

FIG. 1 is a top plan view of the purchase console and card read station with parts broken away to illustrate the positioning of a credit card constructed in accordance with the invention;

FIG. 2 is a fragmentary view of a credit card incorporating the present invention, particularly showing the binary coded portions of the credit card;

FIG. 3 is a combined schematic and block diagrammatic showing of the present invention, further showing the detail of the operative code indicia incorporated in the credit card;

FIG. 4 and FIG. 4A represent a combined showing of a resisitance-capacitance network timing diagram and monostable multivibrator circuit showing a representative delay stage used in connection with the present invention;

FIG. 5 is a schematic showing of a portion of the clock used in connection with the present invention;

FIG. 6 is a schematic drawing showing the power supply used to provide the various bias and operating voltages required in connection with the present invention;

FIG. 7 is a block diagrammatic showing of the switch buffer stages used in connection with the present invention;

FIG. 8 is a table used to show the terminal connection of the counters used in the present invention; and

FIGS. 9 and 10 represent combined schematic and logic diagrammatic showings of the logic system incorporated in the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

With particular reference to FIG. 1, there is shown the control switch and light indicator array which appear on the purchaser console 20 used to control the credit card purchase operation and, more particularly, the credit card identification and verification system provided by the present invention. In the operation of the system, the credit card indicated by the numeral 22 is placed in position beneath a pivotable lid 24 in such manner that the card 22 has the binary bit information encoded on its upper margin properly aligned in the reading station, while the positioning of the locator bit LO is used to verify that the card 22 is positioned properly in the read station before a vending cycle can be initiated. Also included in the system and connected to the console is an "alarm - too many errors" light 26, together with a card release switch 28 which is positioned at the right hand edge of the console 20. It will be understood that the card release switch 28 is key actuated, that is, places in a closed condition, only by the use of a key by an attendant connected with the vending establishment. This insures that should the purchaser fail to enter the proper code on the digit keyboard 30, the card which the purchaser probably procurred in a fraudulent manner cannot be removed and taken away. The "alarm-too many errors" light or signal 26, which is preferably remotely located from the console is thus used to summon an attendant or the police. Alternately, the vending machine may be utilized in connection with multiple read stations so that should one station be disabled by an attempted fraudulent use and the card retained in it until the following business day, additional reading stations will be available for others who desire to operate the automatic vending equipment.

FIG. 2 is a partial showing of a credit card 22, particularly indicating the arrangement of the preset code on the card, in the present instance being a code for four different digits, each represented by four different bits of the value indicated. Also shown is the relative position of the locator bit LO, which deterimines through an appropriate signal system later to be described that the card has been properly positioned right-side-up in the reading station. It is important to consider the type of indicia which are used in the credit card 22 to provide the binary code used in the system. It has been found that it is possible to implant or encapsulate a plurality of discs 23 of high dielectric constant between the upper and lower layers of the plastic normally included in the laminated plastic credit card 22. The arrangement and construction of the card will be further illustrated in greater detail in FIG. 3 herinafter. The high dielectric constant disc 23 may be, for example, a ceramic insert. Additional discs 23a may be provided in correspondence with the code which are elements of low dielectric constant. Codes are thus provided on the card 22 in 17 different locations corresponding to the 16 bit locations indicated in FIG. 2 and the locator disc LO which assures that the card 22 is inserted properly aligned in the read station, As one alternate embodiment of this invention, it is possible to have the card 22 itself of relatively low dielectric plastic material with the high dielectric constant inserts 23 mounted in the card.

As will further be clarified in the FIG. 3 drawing, it is desirable to include at the upper and lower sides of each of the discs 23 a conductive opaque plastic disc 33 which has the function of concealing the different disc inserts 23 or 23a in order that a person examining the card cannot tell what pattern is incorporated or what code is being used.

The basic principle on which the system operates is that the preset different capacitance read-outs from the several coded bits on the card 22 provide a reliable index for the read-out system. It will further become apparent that the method of encapsulating the bit material in the credit card 22 provides a long wearing and durable type of credit card, which will be useable for thousands of cycles of operation without showing appreciable wear or change in the preset read-out signal levels.

The basic parts of the read-out system are shown in the FIG. 3 drawing and include a clock pulse source 36 which provides clock pulses at a frequency of, for example, 50KHz, ranging in amplitude from zero volts to a B+ voltage in a square waveform as indicated on the drawing. The bits 23 of the credit card 22 are shown in contact with the test probes 25 as they are positioned in the read station at either side of the credit card 22. The bits in each case are comprised of a pair of concealing opaque electrically conductive plastic inserts 33 between which are positioned either a high dielectric constant ceramic disc 23 or alternately a low dielectric constant plastic insert 23a. A plus input signal is passed through diodes 46, through signal resistor 48 to the base of an NPN transistor 50 which comprises the input for a Schmitt trigger stage 52 as illustrated.

The Schmitt trigger stage 52 includes a second NPN transistor 54. The collectors of both the transistors 50 and 54 are connected to a B+ voltage source through collector load resistors 56 and 58, respectively. An RC network is connected between the collector of the transistor 50 and the base of the transistor 54, which network includes a parallel connected capacitor 60 and resistor 62. The two output terminals of the Schmitt trigger stage 52 are labeled ST and ST as illustrated.

In accordance with the logic system which will be further explained hereinafter, the input to the Schmitt trigger stage 52 for any paricular bit being sensed will go high to approximately the preset plus voltage level and the Schmitt trigger output ST will go to ground for the approximately ten microseconds that the clock output is at ground. This is a condition which exists if the high dielectric constant ceramic insert 23 is present in the bit being sensed. On the other hand, if a plastic insert 23a is in the card in the particular bit location, the ST output remains at a plus voltage level.

The differences in output between the two Schmitt trigger outputs ST and ST are generally quite distinct, but in order to make certain that a difference between the two will be picked up there is provided a time delay in the system called TC, one of which stages is illustrated in FIG. 4. A table, as shown in FIG. 4a, illustrates the four different time delays that have been incorporated in the system, as follows: one, the TC or time constant time delay which is of the order of five microseconds; the time delays TD1 and TD2, which are associated with the comparison circuitry later to be described; and the time delay PO, which represents a print-out time delay which allows for a billing time cycle to be accomplished by associated counters and print-outs used in the system for bill printing.

In a representative system, the TC time delay is 5 microseconds, the TD1 time delay is 100 microseconds, the TD2 time delay is 50 microseconds, and the print-out time delay, which, in the present system, is simulating a billing print-out of approximately 25 seconds. In a particular application, this timer could activate the billing device when the customer has completed his purchase. An alternate approach could have the billing device actuated at the time the vending equipment is energized - for example from D6 in FIG. 10. If desirable, the billing time could be extended beyond the vending cycle by this timer.

The operation of the TC timing circuit, as illustrated in FIG. 4, is as follows: the two outputs of the delay stage indicated by the numeral 64 are designated as "out" at the left hand side and "out" at the right hand side. The input from the clock 36 is provided at the input terminal 65 through a coupling capacitor 66 through diode 68 to the base of the transistor 70. A resistor 72 is connected between the base of the transistor 70 and an appropriate B+ bias voltage source. Load resistor 72 is connected between the collector of the transistor 70 and ground, while a second resistor 76 and ground. A resistor R is included in the circuit and a second resistor 78 is connected to limit the base current of the transistor 70 during the timing cycle. The delay is thus determined by the discharge time constant from the capacitor 80 and the resistor R.

FIG. 5 shows a representative clock used in the present invention and previously shown in block form as the clock 36. The clock 36 includes a pair of transistors 84 and 86 connected in the astable multivibrator mode with load resistors 85 and 87, respectively, and with cross-coupling RC networks 88-90 and 92-94, respectively. There are provided two outputs from the clock stage 36, namely: a CL output of a frequency of 50 KHz and a further output from the collector of the transistor 84 through a signal resistor 96 to the base of an amplifier transistor stage 98 and to the output CL terminal as shown. The output from the just mentioned CL terminal serves as a control input to several circuits as are illustrated in FIG. 5, 9 and 10 hereinafter. The primary function of the clock 36 is to provide a reliable square wave high frequency pulse train to operate the card drivers.

FIG. 6 is the basic power supply system used to provide bias voltages to the various clock, Schmitt trigger and card driver circuits involved, and further to provide operating voltages for certain of the solenoids and switches involved in the system. An AC input 100 is included at the left side of the FIG. 6 drawing with transformers 102 and 104. Derived from the secondary winding of the transformer 102 is an unfiltered half-wave voltage for the light stages. A filtered DC voltage is further provided from the secondary of the transformer 102 to feed said release card switch 28 and to provide voltages to the start switch and to other push button switches located on the operator's console 20. The secondary of the transformer 104 is used to provide a filtered plus voltage to the lid switch and additional plus voltages to the clock 36 and to the logic circuits. Also included in the circuit of FIG. 6 are a pair of transistors 105 and 107. A resistor 109 serves as the base current limiting resistor for the transistor 107. A second current limiting resistor 111 is connected in series with the lid release solenoid. The transistor 107 is shunted by a protective zener diode 112. A resistor 114 is connected between the lid switch upper contact and ground.

FIG. 7 shows the buffer stages associated with the "reset", "start", "finished" and digit switches. The 13 purchaser's switches, which are push button operated switches, are located on the purchaser console 20. In each case the buffer stage includes a pair of cross-connected NOR gates, and the output in each case is referred to as a KO, KO, etc., and these actually refer to the digit key selected by the purchaser from the keyboard before him on the console. The manner in which the various key outputs are used in the logic of the system will be further clarified in connection with FIG. 9 hereinafter. It will be understood that the RTL NOR gates and various other parts of the system referred to may be embodied in the form of DTL or TTL integrated circuits, such as those currently made and sold by a number of commercial manufacturers. Likewise, the logic circuitry could be fabricated from English, NAND or hybrid elements. The above types of logic elements are offered by way of example and not by way of limitation.

Reference is now made to FIG. 9 and 10. As previously indicated, the present invention includes a counter with three stages BC1 through BC3, which is a binary digit counter, and a second counter referred to as a binary error counter with stages BEC1 through BEC3. The master control for the system is an asychronous multivibrator L, shown in FIG. 9. Before the multivibrator L can be set, the lid 24 over the credit card 22 must be lowered in place so as to be detected by the lid switch 112 shown in FIG. 6. Once the card 2 has been properly inserted in the read station, the locator detector bit LO causes the output of the locator Schmitt trigger LOC ST to go to ground level during the low half of the clock 36 output. Accordingly, when the start button is depressed, the L flip-flop will be set if the card 22 was properly inserted. The TC time delay circuit, as was shown in FIG. 4, is to prevent incorrect operation if stray capacitance should operate the associated Schmitt trigger for a short period. If the card 22 is incorrectly positioned, the L flip-flop will remain reset, the CIP-RC light, as shown in FIG. 1, will inform the purchaser to reinsert his card, and the card release solenoid 110 of FIG. 6 will release the card. Also shown in FIG. 9 is the circuitry for converting the digital keyboard decimal inputs KO-K9 into a binary code for comparison with the bit coding already present in the card.

FIG. 10 shows at its upper portion the circuitry used to apply square wave pulses to the encoded incidia on the card. The four drives are identified by numeral 40. A set of four bit sensing flip-flops with outputs labeled BT1, BT2 through BT8, BT8 are illustrated at the right side of the FIG. 9 drawing. The eight different indicator lights previously shown on console 20 in FIG. 1 and the circuitry which actuates one or the other of these is shown in the lower half portion of the FIG. 10 drawing.

DESCRIPTION OF OPERATION

In order to clarify the mode of operation of the system, a typical operating procedure will now be described. At the beginning of the cycle, the purchaser places his credit card 22 in the read station and lowers the lid 24 over the credit card. The credit card, as already indicated, has a section carrying raised alpha numeric indicia which can be placed in alignment with a billhead to provide necessary bill information. At the margin of the credit card 22, the coded indicia 23 separated in bits representing four different digits provide the verification data. In addition, there is the additional locator bit LO at one side of the credit card to insure proper alignment in the read station.

Once the lid is lowered, the lid switch 112 is made to provide necessary operating voltages to the several clock, Schmitt trigger and following stages in the system. The purchaser next depresses the start button on the console. The start button sets the flip-flop L, which is the master control flip-flop of the system. The flip-flop L is shown in FIG. 9. If the locator bit LO is properly positioned, the feedback is provided from the Schmitt trigger associated with the locator so that there is an input LOC ST so that an output is provided to energize all of the circuitry. In the event that the card has been incorrectly inserted, that is, backward, up-side-down, or otherwise out of alignment, there would be provided a light signal and the CIP-RC light on the console will instruct the purchaser to reinsert his card and the card release solenoid will operate. Once the card has been correctly inserted and the start button actuated, the L flip-flop will be set. It should be noted that when the lid was raised and the L flip-flop was reset, there was a reset provided for the binary digit counter BC to reset it zero and also the binary error counter BEC was reset to zero. When L is set, the light"push first digit" PFD is lighted on the console. After a digit key has been depressed, the bit sensing flip-flops are set. The pulse output from the clock 36 has already been started by the closing of the lid and passed through the push-pull driver stages 40 illustrated at the upper right hand corner of the FIG. 10 drawing. The information is then being fed back into the Schmitt trigger associated with each of the four different bits and there is, of course, the fifth Schmitt trigger associated with the locator bit LO. The reading process then occurs according to whether a high or low dielectric constant insert 23 or 23a is being sensed with corresponding signal outputs provided as was shown and explained in connection with FIG. 3.

An important feature of the present invention is to provide for the situation where the purchaser makes an error in entering a digit which is supposed to match the previously encoded digit on the credit card. For this purpose, there is provided the reset button on the console to permit the purchaser having made an error to try again. For example, if the purchaser believes the first digit to be a 2, he will push the 2 key on the keyboard 30. This key will operate the buffer stage as shown in FIG. 7, that is, the key 2S. The buffer output of the switch 2 is then K2 and K2. The outputs from the Schmitt triggers are used to set the associated bit flip-flops for the code system used, which in this case is a 1-2-4-8. The flip-flops are thus set initially to agree with the code 1 on the card.

A comparison circuitry stage 41 is included at the lower right hand portion of the FIG. 9 drawing, which is used to compare the buffered coded outputs from the depressed key to the card outputs as read through the system just described. For example, the binary coded output from key 2, namely C2, may be compared with bit 2 (BT2) during the time of approximately 50 microseconds, while the digit key is depressed. If the comparison checks out and there is coincidence, there is no output provided to set the compare error flip-flop CE. However, if there is a discrepancy, the compare error flip-flop CE will be set. Once the purchaser releases the button, the circuit counts up the binary digit counter BC one count. Once the binary digit counter is counted up one, it turns on the next light telling him to push the next digit key.

It will be understood that as soon as the digit key was released all of the bit reading flip-flops were reset. When the next digit key is depressed, the cycle just described is repeated. The next four bits are used to set the correct set of the bit sensing flip-flops. This is accomplished at the end of a 50 microsecond period. After the next digit key is depressed and at the end of a 100 microsecond period, the bit flip-flops are compared in stage 41. If there is coincidence between the two settings, nothing happens. If an error occurred, the compare error flip-flop CE again would be set. Once the compare error flip-flop CE is set, it stays set until the reset button is pushed. When the fourth digit has been completed, the binary digit counter will check the state of the CE flip-flop. One of two conditions will now exist, either the purchaser has made a mistake and the compare error flip-flop is set, or no mistake has been made and the compare error flip-flop is not set. In the event the compare error flip-flop is set, the "wrong code-push reset button" WC-PRB on the console 20 will become lighted, In the event of an error, the reset button will be pushed again, the binary digit counter and the compare error flip-flop CE would be reset, and the cycle would be repeated. The binary error counter BEC keeps track of how many times the reset button has been pressed, and, if, for example, three tries have been made and the count of 3 has been reached in the binary error counter BEC, then the operation may be cut-off. The BEC3 alarm circuitry is illustrated at the lower portion of the FIG. 9 drawing. This alarm signal can be used, for example, to sound an alarm to summon a police cruiser. Also, the alarm condition makes it impossible for the binary digit counter to operateand the purchaser can do no more testing because he cannot progress further than the digit 1. In addition, the card cannot be released since the card release switch 28 is key operated and that key is available only to the attendant to remove the card.

If the choice of the four digits has been made correctly by the purchaser, the "code correct-make purchase" light CC-MP on the console will be lighted and the purchaser can remove the selected articles or amount of material from the vending machine.

At the end of the selection, the credit card holder actuates a finished switch, as shown in FIG. 7. This initiates a time delay which permits the operation of an associated printer and allows the print-out of the bill. A signal will normally be provided at the end of the billing print-out called "end of purchase signal" EOP, as shown at the lower right hand part of FIG. 10. Also, a light on the console "purchase complete-thank you" PC-TY will be illuminated. This will provide an output signal from terminal W6 of FIG. 6 to the base of the transistor 105 to energize the lid release solenoid 110. The purchaser will then lift the lid 24. The elevation of the lid provides a clamped signal which then is used to reset a number of the compoents of the system preparatory to the next cycle of operation. It likewise resets the master control flip-flop L and holds the error flip-flop CE reset. The purchaser has then finished and the billing equipment will eject a bill for his records. He will remove the credit card and the system operation is terminated.

It will thus be seen that the present invention provides a novel and greatly improved system for encoding indicia on credit cards and further provides an electronically controlled identification verfication arrangement whereby, before any vending operation is permitted, the identity of the purchaser is checked out. The system just described makes possible verification of purchaser identification on-the-spot without action by sales attendents and without costly and time consuming deck-out through central computer arrangement. It is a system which is particulary versatile in that by simple changes to the card encoding and console layout it is possible to eliminate the purchasers who have proved in the past to be poor credit risks. It is further possible by variations in the indicia layout to make the card useful for a number of different automatic vending establishments.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed