Lean Velocipede

Douglas , et al. January 14, 1

Patent Grant 3860264

U.S. patent number 3,860,264 [Application Number 05/323,544] was granted by the patent office on 1975-01-14 for lean velocipede. This patent grant is currently assigned to Mattel, Inc.. Invention is credited to Raymond J. Douglas, Edward W. Libby, Leonard R. Moquin.


United States Patent 3,860,264
Douglas ,   et al. January 14, 1975

LEAN VELOCIPEDE

Abstract

A velocipede having a front wheel assembly carrying a front wheel and a rear wheel assembly carrying a pair of co-axial rear wheels. The wheel assemblies are pivotally connected approximately midway between the axis of rotation of the front wheel and the axis of rotation of the pair of rear wheels by a pivotal coupling member that is rotatable around an axis that lies in the longitudinal plane of the velocipede at an angle of 20.degree. from the vertical. A spring within the pivotal coupling member limits the relative displacement of the wheel assemblies to 25.degree. on either side of the vehicle's normal forward position in response to sideways tilting of the front wheel assembly by means of a weight shifting or a leaning motion of the rider of the velocipede.


Inventors: Douglas; Raymond J. (Lomita, CA), Libby; Edward W. (Hermosa Beach, CA), Moquin; Leonard R. (Los Angeles, CA)
Assignee: Mattel, Inc. (Hawthorne, CA)
Family ID: 23259664
Appl. No.: 05/323,544
Filed: January 15, 1973

Current U.S. Class: 280/266
Current CPC Class: B62K 5/02 (20130101); B62K 5/06 (20130101)
Current International Class: B62K 5/00 (20060101); B62K 5/06 (20060101); B62k 005/06 (); B62k 021/10 ()
Field of Search: ;280/266,263,268,282

References Cited [Referenced By]

U.S. Patent Documents
86235 January 1869 Laubach
633746 September 1899 Anderson
958618 May 1910 Franklin
1288809 December 1918 Benson
3392991 July 1968 Ryan et al.
3669468 June 1972 Rich
Primary Examiner: Song; Robert R.
Assistant Examiner: Silverstrim; John P.
Attorney, Agent or Firm: Shirk; Max E.

Claims



What is claimed is:

1. A velocipede comprising:

1. a front wheel assembly having a front wheel rotatably mounted thereto on a first axis of rotation;

2. a rear wheel assembly having a pair of rear wheels rotatably mounted thereto on a second axis of rotation; and

3. steering means coupling said front wheel assembly to said rear wheel assembly, said steering means located approximately half-way between the respective vertical planes of said first axis of rotation and said second axis of rotation and normally biasing said front and rear wheel assemblies to maintain said respective vertical planes in a parallel relationship, and said steering means being responsive to the weight shifting of a rider of said velocipede to provide horizontal displacement of said respective vertical planes, said steering means comprising:

A. a sleeve member affixed to said rear wheel assembly, said sleeve member having a pair of projections and a hollow portion;

B. a bracket member mounted to said front wheel assembly, said bracket member having a first opening thereon and further having a top and bottom extension, each of which has a respective opening;

C. retaining means for rotatably coupling said sleeve member to said bracket member, part of said retaining means passing through said hollow portion of said sleeve member and said respective openings of said top and bottom extensions of said bracket member; and

D. biasing means rotatably mounted to said sleeve member, said biasing means having a first end and second end, said first and second ends being retained between said pair of projections of said sleeve member and further retained within said first opening of said bracket member.

2. A velocipede as recited in claim 1 and further including:

a seat for supporting a rider mounted on said front wheel assembly; and

said steering means determining the direction in which said velocipede travels in accordance with said weight shifting of the rider, shifting of weight to the right of said seat initiates a circular path to the rider's right and shifting of weight to the left of said seat initiates a circular path to the rider's left.

3. A velocipede as recited in claim 1 wherein said biasing means includes a helical spring, and said first and second ends are radially disposed portions of said helical spring.

4. A velocipede as recited in claim 1 wherein the width of said first opening of said bracket member retaining said ends of said biasing means limits the maximum horizontal displacement of said respective vertical planes to 25.degree. in either direction from the longitudinal plane of said velocipede.

5. A velocipede as recited in claim 1 wherein said steering means has an axis of rotation normally located approximately 20.degree. from the vertical.
Description



FIELD OF THE INVENTION

This invention relates to velocipedes and more particularly to a novel three wheeled velocipede that simulates unicycle operation.

DESCRIPTION OF THE PRIOR ART

Numerous types of three wheeled toy velocipedes are well known. For the most part, such velocipedes, or tricycles, are propelled by means of a pair of pedals mounted on the front wheel and are steered by means of handle bars which control the front wheel. While small children quickly master the operation of such standard tricycles, they experience great difficulty in attempting to operate a unicycle. Thus, the majority of small children are limited to riding tricycles, yet remain fascinated by a unicycle because it may be propelled and steered without the use of one's hands.

Accordingly, it is an object of the present invention to provide simulated unicycle operation in a three wheeled velocipede.

It is a further object of the present invention to provide a simulated unicycle that may be successfully mastered by small children after a relatively short training period.

It is a still further object of the present invention to provide an improved three wheeled velocipede that may be steered by means of a child without the use of his hands.

It is another object of the present invention to provide a three wheeled velocipede that may be safely steered by a small child through the shifting of his weight.

It is still another object of the present invention to provide a three wheeled velocipede having a mid frame pivot connection which provides unusual vehicle stability.

SUMMARY OF THE INVENTION

In accordance with the objects set forth above, the present invention provides a velocipede having three wheels that simulates unicycle operation. The front and rear wheel assemblies of the velocipede are pivotally connected approximately midway between the axis of rotation of the front wheel and the axis of rotation of the pair of rear wheels. The pivotal coupling member is positioned in the longitudinal plane of velocipede at an angle 20.degree. from the vertical. A spring within such pivotal coupling member limits the relative displacement of the axes of rotation of the wheels to approximately 25.degree. on either side of the normal position of the pivotal coupling member in response to sideways tilting of the front wheel assembly.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects, advantages and characteristic features of the present invention will become readily apparent from the following detailed description of the preferred embodiment of the invention when taken in conjunction with the accompanying drawings in which:

FIG. 1 is a side elevational view of a velocipede in accordance with the present invention;

FIG. 2 is a top plan view of the velocipede in accordance with the present invention;

FIG. 3 is an exploded perspective view of the steering means of the velocipede in accordance with the present invention;

FIG. 4 is an enlarged cross-sectional view of the steering means of the velocipede taken along line 4--4 of FIG. 1, in accordance with the present invention; and

FIG. 5 is a diagrammatic top plan view of the velocipede of the present invention illustrating the displacement of the velocipede in response to a weight shift or leaning motion of the rider.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIGS. 1 and 2, there is respectively shown a side elevational view and a top plan view of a velocipede 10 in accordance with the present invention. The velocipede 10 comprises three major portions; namely, a front wheel assembly 11, a rear wheel assembly 12 and steering means 13. The front wheel assembly 11 is mainly comprised of a seat 14, a front L-shaped frame 15, a bracket member 16, a front wheel 17 and a pair of pedals 18. Conventional retaining means, such as nut and bolt arrangements, may be employed to connect the seat 14 to the top of the L-shaped frame 15 and to connect the bracket member 16 to the front wheel 17, pedals 18 and the L-shaped frame 15. The rear wheel assembly 12 is mainly comprised of a triangular-shaped rear frame 19 having a rear axle 20 upon which a pair of rear wheels 21 may be mounted. The steering means 13 is located approximately half way between the axis of rotation of the front wheel 17 and the axis of rotation of the pair of rear wheels 21. Furthermore, steering means 13 is positioned within the longitudinal plane of the velocipede 10 at an angle 20.degree. from the vertical as defined by the angle A in FIG. 1. The combination of the steering means 13 being inclined at an angle up toward the rear and away from the vertical and being located at such approximate half way point causes the point of load application (rider's weight on the seat) to move away, relatively, from the direction in which the rider leans and in which the velocipede 10 would tend to topple; therefore, greatly improving the stability of the velocipede 10. It has been found through extensive testing that the positioning of the steering means 13 at such an approximate midpoint and at such an angle improves the stability of the velocipede 10 and allows small children to quickly master the operation of the velocipede 10. Thus, small children are able to enjoy a safe simulated unicycle-type ride. The steering means 13 may be more readily understood by referring to FIGS. 3 and 4.

FIG. 3 is an exploded perspective view of the steering means 13. The steering means 13 is mainly comprised of a bracket member 22, a helical spring 23, and a sleeve 19A of the triangular-shaped rear frame 19. The bracket member 22 may be mounted to the front L-shaped frame 15 of the front wheel assembly 11 by a conventional bolt and nut arrangement as shown in FIG. 1. The bracket member 22 has a top and bottom extensions 22a and 22b, each of which have an opening as shown in FIG. 3. In addition, bracket member 22 has a slot 29 having a width defined by the side walls 29a and 29b. The spring 23 may be a coil of suitable metal having first and second extended ends 24 and 25, as shown. The sleeve 19a of the triangular-shaped rear frame 19 has two projections 26 and 27. The spring 23 may be mounted to the bottom portion of the sleeve 19a so that the first and second ends 24 and 25 of the spring 23 are located between the projections 26 and 27 of the sleeve 19a. Sleeve 19a and the mounted spring 13 may then be placed between the top and bottom extensions 22a and 22b of the bracket member 22 so that the bolt 28 may be placed through the opening of 22a, the hollow portion of the sleeve 19a, and the opening of 22b. The nut 30 may then be affixed to the bolt 28 to complete the construction of the steering means 13.

Referring now to FIG. 4, there is shown an enlarged cross-sectional view of the steering means 13 taken along lines 4--4 of FIG. 1. As illustrated, the ends 24 and 25 of the spring 13 are confined within the limits of both the side walls 29a and 29b of the slot 29 and the projections 26 and 27 of the sleeve 19a. The distance between the side walls 29a and 29b and the distance between the projections 26 and 27 both limit the relative displacement of the velocipede 10 to 25.degree. on either side of the longitudinal plane of the velocipede 10. Referring now to both FIGS. 2 and 4, if the rider were to lean to his left, or towards the bottom of the FIG. 2, the front wheel 17 may be tilted to an approximate maximum of 8.degree., as defined by the distance B between the front wheel 17 and the tilted front wheel 17'. As shown in FIG. 4, such tilting motion would move the projection 26 in the clockwise direction to its new position 26' and in turn, would force the end 24 of the spring 23 to its new position 24' against the side wall 29a. It should be understood that the front wheel 17 both tilts and turns at the same time as respectively illustrated in FIGS. 2 and 5.

As described in the discussion of FIG. 5, the velocipede 10 would travel to the left of the rider. Of course, any tilting of less than 8.degree. would rotate the end 24 of the spring 23 and the projection 26 proportional to the amount of tilting of the front wheel 17. If the rider were to lean to his right, or shift his weight towards the right, the wheel 17 may tilt within a maximum of 8.degree. to the right, in which case, the projection 27 would urge the end 25 of the spring 13 towards the end 24 of the spring 13.

Referring now to FIG. 5, there is shown a diagrammatic top plan view of the velocipede 10 of the present invention illustrating the displacement of the front wheel 17 and the pair of back wheels 21 in response to a weight shift or leaning motion of a rider. If a rider were to shift his weight to the left on the velocipede 10 as shown in FIG. 2, the projection 26 would urge the end 24 of the spring 23 to its new position as illustrated by the numeral 24' of FIG. 4. In turn, the steering means 13 would shift a short distance to a new position 13' and the front wheel 17 and rear wheels 21 would be displaced to new position 17' and the new positions 21, respectively, as shown in FIG. 5. An 8.degree. tilting of the front wheel 17 to the right or the left provides a maximum displacement of the end 24 or the end 25 of the spring 23 so that the relative displacement between the axis of rotation of front wheel 17 and the axis of rotation of the rear wheel 21 is 25.degree. . Such displacement allows velocipede 10 to execute a complete circle having a radius of 31/2 feet. FIG. 5 illustrates the turning of the front wheel 17 to its new position 17' and FIG. 2 illustrates the tilting of the front wheel 17 to its new position 17' in response to the rider shifting his weight to his right side.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed