Single Needle Alternating Flow Blood Pump System

Willock November 19, 1

Patent Grant 3848592

U.S. patent number 3,848,592 [Application Number 05/348,509] was granted by the patent office on 1974-11-19 for single needle alternating flow blood pump system. Invention is credited to Charles B. Willock.


United States Patent 3,848,592
Willock November 19, 1974

SINGLE NEEDLE ALTERNATING FLOW BLOOD PUMP SYSTEM

Abstract

A blood pump system, typically employed in dialysis, includes a blood pump for withdrawing blood via a single hypodermic needle and valve means operated in synchronism therewith for returning treated blood via the same hypodermic needle. The operation of the blood pump is cyclically interrupted and the valve means opened for the alternate withdrawal and return of blood.


Inventors: Willock; Charles B. (Milwaukie, OR)
Family ID: 23368330
Appl. No.: 05/348,509
Filed: April 6, 1973

Current U.S. Class: 604/6.05; 128/DIG.12; 604/30; 604/153; 417/477.1; 604/6.1; 604/6.11
Current CPC Class: A61M 1/30 (20130101); F04B 43/1253 (20130101); A61M 1/307 (20140204); Y10S 128/12 (20130101)
Current International Class: A61M 1/30 (20060101); F04B 43/12 (20060101); A61m 001/03 ()
Field of Search: ;128/214R,214E,214F,214.2,DIG.12,DIG.13 ;417/477,479 ;210/321

References Cited [Referenced By]

U.S. Patent Documents
1988624 January 1935 Kipp
3726613 April 1973 Casimir
3756234 September 1973 Kopp

Other References

Twiss - Lancet, Nov. 1964, No. 7369, p. 1106..

Primary Examiner: Truluck; Dalton L.
Attorney, Agent or Firm: Klarquist, Sparkman, Campbell, Leigh, Hall & Whinston

Claims



I claim:

1. A single needle alternating flow blood pump system for alternate removal of blood from a blood vessel and return to said blood vessel via a single needle, said system comprising:

a blood flow path including a blood pump and tubing means communicating between said needle and said blood pump for withdrawing blood from said blood vessel,

blood receiving means also in said blood flow path through which blood is circulated by said blood pump for subsequent return to said needle,

valve means in said blood flow path by way of which the blood flow is returned to said needle, said valve means being normally closed for impeding the flow of blood to said needle as said pump operates to withdraw blood therefrom,

and means operatively connected to both said pump and said valve means and responsive to a given cyclical condition of said blood pump during pumping operation thereof for cyclically interrupting operation of said blood pump to interrupt withdrawal of blood for predetermined time periods after said blood pump has withdrawn substantially equal quantities of blood and for opening said valve means to return said blood to said blood vessel through said needle, whereby blood is alternately withdrawn and returned via the same needle.

2. The system according to claim 1 wherein said blood receiving means is located in said blood flow path between the outlet side of said blood pump and said needle such that blood flows through said receiving means in returning to said needle, and wherein said valve means is disposed in said blood flow path between said blood receiving means and said needle.

3. A flow system for alternate removal of liquid from and return of liquid to a single passage comprising:

a flow loop connected at either end thereof to said single passage for receiving liquid from said single passage and returning liquid to said single passage,

a roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop,

said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube,

a valve means located in said flow loop between the outflow side of said pump and said single passage for temporarily impeding the passage of liquid,

and means operatively connected to both said pump and said valve means and responsive to a cyclical condition of said pump during pumping operation thereof, for temporarily opening said valve means and arresting operation of said pump for predetermined time periods while at least one roller of said pump engages the said tube in said pump.

4. The system according to claim 3 wherein said means for temporarily opening said valve means comprises actuating means responsive to rotational movement of the rotor of said pump,

said valve means comprising a section of tubing normally closed by said actuating means until said pump reaches a predetermined pump rotor position,

and timing means for returning said pump to a condition of rotor rotation after a predetermined period of time.

5. A flow system for alternate removal of liquid from and return of liquid to a single passage comprising:

a flow loop connected at either end thereof to said single passage for receiving liquid from said single passage and returning liquid to said single passage,

a roller-and-flexible-tube pump having a tube thereof inserted in said loop for producing the transport of liquid along said loop,

said pump including a rotor carrying rollers for bearing against a tube inserted in said loop, a guide for receiving said tube, and means for rotating said rotor to force liquid along said tube,

a valve means located in said flow loop for temporarily impeding the passage of liquid,

means, responsive to a cyclical condition of said pump, for temporarily opening said valve means and arresting operation of said pump while at least one roller of said pump engages the said tube in said pump, said means for temporarily opening said valve means comprising actuating means responsive to rotational movement of the rotor of said pump,

said valve means comprising a section of tubing comprising a portion of said loop and normally closed by said actuating means until said pump reaches a predetermined pump rotor position, said actuating means comprising a spring-biased arm normally disposed in clamping relation to said section of tubing, said arm being positioned relative to the rotor of said pump so that rotation of said rotor to a predetermined position moves said arm against spring bias for unclamping said tubing,

and timing means for returning said pump to a condition of rotor rotation after a predetermined period of time, said timing means comprising timed switching means having contacts for providing power to said pump after a predetermined time period whereby said arm acts to re-clamp said tubing after said predetermined time period.

6. The system according to claim 5 wherein said means for temporarily opening said valve means and arresting operation of said pump further comprises a limit switch operated by movement of said arm, and means for connecting said limit switch in energizing relation to said pump so that operation of said limit switch disconnects said pump, said timed switching means being operated by said limit switch.

7. The system according to claim 5 wherein said arm is rotatable, having a forward portion on one side of the axis thereof engageable by the rotor of said pump,

a clamping pin forming part of said valve means,

said arm having a second portion on the opposite side of the axis thereof normally spring-biased against said clamping pin, said tubing being disposed between said clamping pin and said arm whereby said arm in its normally spring-biased position compresses said tubing against said clamping pin, and wherein said operation of said arm by rotation of said rotor to said predetermined position rotates said arm away from said clamping pin and allows liquid flow through said tubing.
Description



BACKGROUND OF THE INVENTION

In the use of an "artificial kidney," dialysis of the patient's blood requires some means of withdrawing the blood from the patient's body and returning the same after treatment. With cannulae, providing permanent tubular connection to the patient, connection of the patient to the dialyzer apparatus is facilitated. However, a patient may not tolerate this arrangement because of infection or the like. Alternatively, plural hypodermic needles may be inserted in a patient's vein after insertion of a fistula between a vein and artery, with one needle being utilized for withdrawal of blood while a second needle is employed to return blood to the vein. A more desirable system would avoid the requirement for repeated insertion of both needles.

A prior art single needle system withdraws and returns blood via the same hypodermic needle and includes a pair of clamp valves employed in two connections to the hypodermic needle so that blood can be alternately withdrawn and returned therethrough. In this system the valves are solenoid operated in response to pressure detected at a dialyzer output. However, pumping in such a system tends to produce a vacuum at the pump inlet, flattening the plastic tubing and causing cessation of system operation. Moreover, the addition of solenoid operated valves represents additional equipment and expense.

SUMMARY OF THE INVENTION

According to the present invention, a liquid flow loop is connected at either end to a single path such as a hypodermic needle. This loop includes pumping means for transporting liquid in the loop, and valve means for temporarily impeding the passage of liquid. The pumping means and the valve means operate synchronously for the alternate pumping and opening of the valve means, whereby liquid is alternately withdrawn and returned via the single path.

In accordance with a particular embodiment of the present invention, the pumping means comprises a blood pump for receiving blood from a single path, and means are responsive to the blood pump operation for cyclically interrupting operation thereof whereby withdrawal of blood is interrupted. At the same time, the valve means is opened for returning blood via the single path.

It is accordingly an object of the present invention to provide an improved alternating flow blood pump system and method for alternate removal of blood from a blood vessel and return to said blood vessel via a single needle.

It is a further object of the present invention to provide an improved single needle alternating flow blood pump system and method which is reliable in operation, and economical in construction.

It is a further object of the present invention to provide an improved single needle alternating flow blood pump system and method which is readily adapted to a conventional blood pump.

It is a further object of the present invention to provide an improved attachment for a conventional blood pump facilitating withdrawal and return of blood from a patient.

It is a further object of the present invention to provide an improved liquid flow system for withdrawing and returning liquid to a single flow path from and to a loop attached thereto.

The subject matter which I regard as my invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. The invention however, both as to organization and method of operation together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference characters refer to like elements.

DRAWINGS

FIG. 1 is a plan view of a blood pump as modified according to the present invention;

FIG. 2 is a partially broken away side view of the modified blood pump taken at 2--2 in FIG. 1;

FIG. 3 is a partially broken away side view of the FIG. 1 blood pump and attachment thereto according to the present invention, said view being taken at 3--3 in FIG. 1;

FIG. 4 is a diagram illustrating an electrical control circuit employed according to the present invention; and

FIG. 5 is a schematic illustration of an over-all system and method according to the present invention, depicting the connection thereof to a patient.

DETAILED DESCRIPTION

Referring to the drawings, and particularly to FIGS. 1, 2 and 3, the system according to the present invention utilizes a conventional blood pump of the roller-and-flexible-tube type indicated at 10, said blood pump including a rotatable rotor 12 provided with rollers 14 and 16 mounted on spindles 18 and 20, respectively, at corners of the rotor. When the rotor is rotated by means of drive shaft 22, the rollers 14 and 16 alternately engage pumping segment 24 of flexible plastic tubing disposed in a semicircle around the inside of U-shaped guide 26, the pumping segment being held in position by a crossbar 28 secured to the front of the pump. As the rotor 12 rotates in a counterclockwise direction, for example, the rollers rotate around the inside of U-shaped guide 26 forcing the pumping segment against the inside wall of the U-shaped guide and pumping blood in the direction indicated by the arrows. Movable guides 30 are also suitably mounted upon rotor 12 and act to keep the pumping segment aligned in front of the rollers 14 and 16. The speed of rotor rotation is suitably controlled by an adjusting knob 32 which is operative to control the speed of the pump motor (not shown) which turns drive shaft 22.

In accordance with an aspect of the present invention, an attachment having a frame 34 may be mounted on the front of the blood pump by means of bracket 36 secured to the blood pump with bolts 38 extending through and also securing crossbar 40 to the pump. A pivot pin 40 extends upwardly from the forward part of the frame upon which an actuating arm generally indicated at 42 is rotatable. This actuating arm includes a forward portion 44 comprising a hook-shaped rod secured to a rearward block portion 46 by means of a pair of bolts 50 extending through the block portion 46 on either side of pivot pin 40. The hook-shaped rod forward portion 44 extends upwardly from the end of block 46, and over the crossbar 28 for positioning forward end 52 in the path of upper rollers 54 and 56 mounted upon spindles 18 and 20, respectively, above the conventional rollers 14 and 16. As can be seen in FIG. 1, the arm portion 44 is hooked toward the rotor drive shaft 22 and as the rotor 12 turns, the upper rollers 54 and 56 will successively engage forward end 52 of arm portion 44.

Block 46 is provided with a leaf spring 58, also secured thereto by bolts 50, which normally urges block 46 toward clamping pin 60, the latter extending upwardly from frame 34. The spring 58 bears against upwardly extending spring retaining pin 62 which may be horizontally slotted to receive the leaf spring. A section of flexible plastic tubing 64 is normally received between the body of block 46 and clamping pin 60 where it is normally compressed between the two, as illustrated, to close off the flow of liquid, i.e., blood, through tubing section 64. This portion of tubing together with elements 46 and 60 comprise a valve or clamp according to the present invention. For convenience in maintaining the proper position of tubing section 64, the same is held between a pair of horizontal pins 66 and 68 extending outwardly from block 46, the latter pin having an enlarged head for retaining the tubing section 64 in position. It will be seen that as one of the rollers 54 or 56 contacts forward end 52 of arm portion 44 and causes the arm 42 to rotate in a counterclockwise direction against the bias of spring 58, the tubing section 64 will be unclamped to a valve-open position from a valve-closed position.

Frame 34 further houses a limit switch 70 having an actuator 72 engageable by a downward extension 74 attached to block 46. Rotation of arm 42 also operates the limit switch closing its normally open contacts and opening its normally closed contacts, as hereinafter more fully described. As also hereinafter more fully described, the operation of the limit switch disconnects the blood pump whereby the blood pump rotor 24 stops rotation in a position wherein either roller 54 or roller 56 is in contact with arm portion 44. The blood pump rotor at such time will be positioned so that both rollers 14 and 16 compress pumping segment 24 at opposite sides of U-shaped guide 26 whereby the blood pump 10 effectively acts as a closed valve against the flow of blood into pumping segment 24. After a predetermined period of time, as selected by means of timer 76, power is restored to the blood pump motor and rotation of rotor 12 resumes until the next one of the upper rollers 54 or 56 contacts forward end 52 of arm portion 44. When the blood pump rotor resumes rotation, arm 42 rotates clockwise to its normal clamping position relative to tubing section 64, and limit switch actuator 72 is also returned to its initial position awaiting the turning of blood pump rotor 12 through 180 degrees. The time during which the rotor is temporarily stopped, and tubing section 64 is unclamped, is determined by the setting of timer adjustment 78. Timer 78 is conveniently a conventional electric or electronic timer and is connected as hereinafter more fully described.

The blood pump 10 is of standard construction as hereinbefore indicated but is suitably modified by upward extension of spindles 18 and 20 to support the upper rollers 54 and 56. Also, a cover 80 is raised above the level of rollers 54 and 56 by means of upper supports 82 and 84.

FIG. 4 is an electrical circuit diagram illustrating the connection of limit switch 70, timer 76, and blood pump motor 86. Limit switch 70 has a normally closed contact 88 and a normally open contact 90, these contacts providing the indicated connection until actuator 72 is moved inwardly by extension 74 of block 46, whereupon the movable contact 92 opens a circuit from power line 94 to contact 88 and closes a circuit from power line 94 to contact 90. One side of blood pump motor 86 is connected to power line 96, and until actuation of the limit switch, a circuit from the blood pump motor is also completed to power line 94 through contacts 92 and 88 bringing about motor operation and rotation of rotor 12. However, when the blood pump rotor moves to a position whereby arm 42 is rotated in a counter-clockwise direction, the limit switch 70 disconnects motor 86 whereby blood pump rotor rotation is temporarily halted. At the same time, timer coil 76a of timer 76 is energized via limit switch contact 90, and at the conclusion of a preset time period operating coil 76a closes normally open contacts 76b of the timer for re-energizing blood pump motor 86, the circuit being completed from power line 94 through contacts 76b and the blood pump motor to power line 96. Thereupon, the blood pump rotor resumes rotation and the limit switch contacts resume their position illustrated in the drawing whereby blood pump motor 86 remains energized after the timer contacts reopen. The blood pump rotor will then continue rotation until the next upper roller rotates arm 42, i.e., 180.degree. later.

The over-all system and method according to the present invention is illustrated in FIG. 5 wherein the blood pump and attachment are employed in a blood flow loop including the pump, a blood receiving or treatment means typically comprising a dialyzer 98, a drip bulb 100, and a valve or clamp comprising block 46 and clamping pin 60 between which tubing section 64 is received. A blood flow loop comprising a blood set alternately withdraws blood from a single path comprising a hypodermic needle 102, drawing the blood through the blood pump and into the dialyzer, and then expelling blood into the hypodermic needle as the valve 46, 60 opens. Common connection with both ends of the blood flow loop and the hypodermic needle is made by Y connection means 104.

The blood receiving means 98 comprising a dialyzer or the like is capable of receiving pressure as the membrane thereof expands slightly such that blood is forced into the hypodermic needle when valve 46, 60 opens. Thus, blood is drawn from the hypodermic needle through tubing portion 106 and delivered to the dialyzer as the pump rotor rotates through 180.degree.. At this time, the pump rotor stops through the action of arm 42 and limit switch 70, while valve or clamp 46, 60 opens returning blood to the hypodermic needle via tubing portion 108. At such time, the blood pump rollers 14 and 16 themselves prevent the flow of blood through tubing portion 106 in the direction of the pump, i.e., the pump acts as the clamp or valve. After a predetermined time, governed according to the timer 76, the pump resumes rotation and valve 46, 60 is re-closed so that blood is once again withdrawn from the hypodermic needle. In a typical instance, the timing of timer 76 and the speed of rotation of the blood pump are adjusted so that the time of rotation of the pump rotor through 180.degree. is approximately one-half second, and the temporary interruption in blood pump operation is also approximately one-half second.

The hypodermic needle 102 may be inserted in an arm vein of a patient provided with a fistula by operative procedure, the latter causing expansion of the vein and allowing easier insertion of the hypodermic needle. The hypodermic needle, which may comprise a 14-gauge needle, is inserted in the direction of blood flow. Typically, the patient must undergo periodic dialysis and thus must reinsert the hypodermic needle at frequent intervals. The system and method according to the present invention permits the insertion of only one hypodermic needle, rather than two as in the case of the more conventional procedure, and is of appreciable advantage from the patient's point of view. The present system can also effect 200 cc per minute transfer of blood. The system according to the present invention, wherein blood is alternately withdrawn from the vein of the patient and returned through a single hypodermic needle, and wherein such withdrawal and return are synchronized primarily according to the operation of the blood pump, is preferable to a system wherein a pump is continuously operated since in the latter instance undesired vacuum then produced on the input side of the pump may cause tube flattening or the like. Moreover, the present system does not require additional solenoid operated clamps or pressure gauge control therefor but advantageously functions in response to the cyclical operation of the blood pump itself, or in synchronism therewith.

While I have shown and described the preferred embodiment of my invention, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from my invention in its broader aspects. I therefore intend the appended claims to cover all such changes and modifications as fall within the true spirit and scope of my invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed