Surgical Apparatus For Removal Of Tissue

Wallach June 25, 1

Patent Grant 3818913

U.S. patent number 3,818,913 [Application Number 05/285,002] was granted by the patent office on 1974-06-25 for surgical apparatus for removal of tissue. Invention is credited to Mark Wallach.


United States Patent 3,818,913
Wallach June 25, 1974

SURGICAL APPARATUS FOR REMOVAL OF TISSUE

Abstract

Defective or unwanted tissue is removed such as from the lens of an eye directing a pulsating high velocity liquid jet onto the defecting tissue to disintegrate the tissue and sucking the liquid entraining the disintegrated tissue from the area adjacent the tissue by a suction conduit. Upon clogging of the suction conduit and a corresponding change in pressure, the suction action is momentarily reversed to eject the clogging tissue, which avoids excessive suction build-up. The liquid is advantageously isotonic and slightly alkaline and one or more jets converging to a restricted area may be employed, the jets being ejected from a hand manipulated nozzle.


Inventors: Wallach; Mark (New York, NY)
Family ID: 23092330
Appl. No.: 05/285,002
Filed: August 30, 1972

Current U.S. Class: 606/169; 606/166; 604/28; 606/170
Current CPC Class: A61F 9/00736 (20130101)
Current International Class: A61F 9/007 (20060101); A61b 017/32 (); A61m 001/00 ()
Field of Search: ;128/276,278,297,303,305

References Cited [Referenced By]

U.S. Patent Documents
1987907 January 1935 Jenkins
3542017 November 1970 Adams
3547110 December 1970 Balamuth
3566869 March 1971 Crowson
3589363 June 1971 Banko et al.
3614953 October 1971 Moss
3693613 September 1972 Kelman
Primary Examiner: Pace; Channing L.
Attorney, Agent or Firm: Miskin; Howard C.

Claims



I claim:

1. An apparatus for disintegrating and removing animal tissue from a preselected enclosed area comprising a hand manipulatable first tube having a distally disposed outlet port, a liquid pulsating pump having an inlet and an outlet, a source of liquid connected to said pump inlet, means including a flexible conduit connecting said first tube to said pump outlet, a suction conduit including an outlet port disposed proximate said first tube outlet port, a source of suction, and means including a flexible conduit connecting said suction conduit to said source of suction, said pump providing a stream of pulsating liquid through said first tube outlet port at a frequency between 1 to 333 cycles per second, at a pressure above atmospheric pressure of about 15 to about 200 p s i and having a velocity of between 50 and 500 feet per second.

2. The apparatus of claim 1 including means for varying said pulse frequency of said pulsating pump.

3. The apparatus of claim 1 including means for varying the outlet pressure of said pulsating pump.

4. The apparatus of claim 1 wherein said first tube and said suction conduit are parallel and joined side by side, said suction conduit having an inlet port adjacent the distal end of said first tube, the axis of said outlet port lying in a plane generally perpendicular to the longitudinal axis of said first tube and between the distal end of said first tube and said inlet port of said suction conduit.

5. The apparatus of claim 1 wherein said first tube is longitudinally extending and of annular transverse cross section and having its leading annular end closed and provided with a plurality of outlet passages whose longitudinal axes converge to a common point, the axial portion of said tube defining said suction conduit.

6. The apparatus of claim 1 wherein said first tube and suction conduit are defined by coaxial inner and outer tubes respectively.

7. The apparatus claim 1 wherein said first tube and suction conduit are arranged side by side, said suction conduit is provided with a longitudinally extending side port, and said first tube includes an outlet port disposed proximally of said suction side port.

8. The apparatus of claim 1 including means responsive to a drop in pressure in said suction conduit below a predetermined level for reversing the direction of flow in said suction conduit.

9. Apparatus of claim 8 wherein said reversing means returns to normal suction in said suction conduit in response to the suction pressure returning to said predetermined level.

10. Apparatus of claim 1 wherein said nozzle has an outlet port of from about 0.001 inch to about 0.010 inch.

11. A nozzle for use with apparatus for disintegrating and removing animal tissue by liquid jets comprising a tubular member having inner and outer coaxial passageways, the outer passageway having a leading annular end closed and provided with a plurality of outlet ports whose longitudinal axes converge to a common point, first means on said nozzle adapted to be coupled to a source of pressurized fluid which interconnects to said outer passageway so that said fluid exits said nozzle through said ports, second means mounted on said nozzle interconnected to said inner passageway and adapted to be coupled to a suction source, whereby a plurality of fluid jets from said ports converge on said point located on the tissue to disintegrate it, and disintegrated portions of tissue and liquid are sucked into and withdrawn through the inner passageway.

12. The method of disintegrating and removing animal tissue from a preselected enclosed area with a nozzle having a working tip comprising the steps of:

a. generating a stream of liquid;

b. forming the stream into pulses within a frequency of about 1/4 to about 333 cycles per second;

c. adjusting the rate of velocity of said stream of liquid from about 50 to about 500 feet per second;

d. simultaneously directing the pulsating liquid jet onto a confined area of said tissue to disintegrate said tissue into small particles to form a suspension of particles in said liquid and sucking the suspension of particles of said tissue from said preselected area.

13. The method claim 12 further including providing the liquid stream leaving said nozzle tip to have a cross sectional area at the point of impingement on said tissue to not exceeding 0.0000785 square inch.

14. The method of claim 12 including the step of reversing said suction responsive to the clogging of the flow of said sucked liquid by relatively large tissue fragments.

15. The method of claim 12 including the step of providing said liquid to be isotonic.

16. The method of claim 12 including the step of providing said liquid to be alkaline.
Description



BACKGROUND OF THE INVENTION

The present invention relates generally to improvements in surgical procedures and apparatus and it relates more particularly to an improved method and apparatus for the disintegration and removal of selected sections of animal tissue.

There are numerous surgical procedures which require the removal of selected portions of tissue of an extremely delicate nature with a minimum or no interference with or damage to the surrounding or otherwise healthy tissue. Such procedures are frequently required in surgical operations connected with the eye, such as in the removal of cataracts and similar surgical procedures. The methods and equipment heretofore employed and proposed are awkward and highly time consuming in their use, require an extremely high degree of skill, are often accompanied by damage to adjoining healthy tissue and frequent failure and otherwise leave much to be desired.

Instruments having a vibrating element or emitting pulses have been used for cutting of material for some time for various uses. For example, a vibrating element using a slurry for cutting has been used for dental work and industrial applications with limited success in limited work areas. U.S. Pat. Nos. 3,075,288, 3,076,904 and 3,213,537 illustrate such use in the dental field, and U.S. Pat. No. 3,589,363 illustrates a vibrating knife or chisel to remove tissue in small areas. As is apparent, when used in inaccessible areas, a small inadvertent movement of the chisel can damage tissue adjoining the tissue desired to be removed.

SUMMARY OF THE INVENTION

It is a principal object of the present invention to provide an improved surgical method and apparatus.

Another object of the present invention is to provide an improved method and apparatus for disintegrating or fragmenting animal tissue in a preselected area and removing such disintegrated tissue from said area.

Still another object of the present invention is to provide an improved method and apparatus for disintegrating and removing animal tissue from a predetermined area without adversely effecting the surrounding tissue and which prevents excessive suction build-up.

A further object of the present invention is to provide an improved method and apparatus for disintegrating and removing tissue from inaccessible areas with a minimum of adverse effect of the surrounding and masking tissue.

Still a further object of the present invention is to provide a method and apparatus of the above nature characterized by their reliability, simplicity, fine areas of operation, great versatility and adaptability and ease of application even in delicate an highly hazardous environments.

The above and other objects of the present invention will become apparent from a reading of the following description taken in conjunction with the accompanying drawings which illustrate preferred forms of the improved apparatus.

In a sense the present invention is predicated on the discovery that hardened animal tissue in a closely confined and restricted area can be disintegrated or finely fragmented by directing a fine pulsating high velocity jet onto the desired area and sucking the liquid of the impinging jet which has entrained or emulsified therein the disintegrating tissue. The area of treatment can be very precisely delineated and obviates the need for any alteration, severance and significant penetration of any adjacent or overlying tissue. Also, the incision can be kept very small as contrasted to standard surgical techniques. The jet is produced by a very fine nozzle and the tissue entraining liquid is likewise withdrawn by a very fine conduit. Advantageously, any clogging of the suction conduit by the tissue is eliminated by reversing the liquid flow in the suction conduit in response to a sharp pressure drop therein. Excessive suction build-up can damage an organ of the body, such as an eyeball by collapsing the cornea. Also, the jet quickly dissipates its energy when it impinges onto a yielding surface. This is critical especially when the present suction is used in connection with eye surgery such as removing a hardened lens of the eye, with the tissue surrounding the lens being resilient.

The liquid jet contains no abrasive material and is advantageously an isotonic solution of slight alkalinity, for example, of a pH of about 7.4. The pulse frequency of the jet is advantageously widely variable, depending on the specific organ with which it is used, and can vary from 1 pulse every 15 seconds (4 pulses per minute, i.e., 4 ppm) up to 333 pulses per second (20,000 ppm.). Further, for some applications a continuous fine steam can be used. The pressure is variable between about 15 and about 200 pounds per square inch, preferably between 85 to 125 p.s.i., and its velocity at the point of impingement between about 50 and about 500 feet per second. The liquid jet diameter at the point of impingement is advantageously of a diameter between about 0.001 and about 0.010 of an inch and may be formed of a single jet stream or a plurality of converging jet streams.

The inlet port to the suction conduit may be annular and surround the liquid jet or it may be at the center of converging jets or adjacent to a jet either parallel or perpendicular to the jet.

The improved method and apparatus may be employed in very delicate and confined areas of little accessibility with a minimum of secondary surgery and is very versatile, adaptable and easy and convenient to operate with a minimum of side effects and hazards.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an apparatus embodying the present invention;

FIG. 2 is a fragmentary sectional view illustrating the application of the apparatus of FIG. 1 to the treatment of eye lens tissue;

FIG. 3 is an enlarged fragmentary view partially in section of one form of nozzle and suction tip of the apparatus of FIG. 1;

FIG. 4 is a view similar to FIG. 3 of another tip structure;

FIG. 5 is a sectional view taken along line 5 -- 5 in FIG. 4;

FIG. 6 is a view similar to FIG. 3 of still another form of tip; and

FIG. 7 is a view similar to FIG. 3 showing a further tip structure.

DESCRIPTION OF THE PRFERRED EMBODIMENTS

Referring now to the drawings, and particularly FIGS. 1 and 3 thereof which illustrate a preferred embodiment of the present invention, the reference numeral 10 generally designates the improved apparatus which is employed to great advantage in practicing the present improved process in the removal of unwanted tissue from the lens of a human eye, such as a cataract or the like. The apparatus comprises a fine hand implement 11 which is manipulated by the surgeon and includes three fine tubes joined along their lengths as an integral unit, a nozzle tube 12, a suction tube 13 and a drainage or bathing tube 14. The maximum transverse dimension of the assembled tubes advantageously does not exceed one hundred fifty thousandths of an inch (0.150"), each tube having an inside diameter of between about 10 and 65 thousandths of an inch (0.010" to 0.065") and an outside diameter of between about 20 and seventy-seven thousandths of an inch (0.020" to 0.077"), the length of the working tip of the assembly advantageously being about three-quarters of an inch (3/4") for optical applications. Tube length can vary for other surgical applications.

The distal end of tube 12 is curved and closed and it is arranged side by side with suction tube 13 whose distal end is open and shortly rearwardly of the distal end of tube 12. A nozzle defining circular port 16 is formed in the joined adjacent walls of tubes 12 and 13 and is directed parallel to the suction or inlet port 17 of suction tube 13. The drainage liquid tube 14 extends somewhat less than the full lengths of tubes 12 and 13 and is provided along its distal length with small outlet ports 18. It should be noted that the diameter of the nozzle port 16 is advantageously between 0.001 and 0.010 of an inch.

The proximate end of the nozzle tube 12 is connected by a high pressure highly flexible tube 19 to the outlet of an adjustable pulsing liquid feed device 20 whose inlet is connected to an elevated tank 21 containing an isotonic solution of the composition previously described. The pulsing device 20 may be of any conventional construction in which the pulse frequency, pulse duration, pressure and liquid volume velocity output are continuously adjustable by knobs or by corresponding foot operated controls. For example, the device 20 may include a positively displacement pressure pump, such as a piston pump whose stroke is adjustable and which is driven by a variable speed electric motor and is provided with an adjustable pressure relief or by-pass valve so that the above variable and adjustable parameters are easily and conveniently achievable. Of course other systems serving the same functions may be employed.

The proximate end of the suction tube 13 is connected by a flexible tube 23 to a vacuum or suction pump 26 to withdraw any liquid and entrained tissue from the area of the suction port 17. Advantageously, a vacuum of between 110 and 130 mm. of mercury has been found satisfactory for eye surgery applications for the suction. However, it can vary according to the surgical application. A pressure sensing element 24 communicates with the tube 23 and is so adjusted that when the suction in tube 23 rise above or conversely when the pressure falls below a predetermined level consequent to the clogging of tube 13 or 23 by tissue sucked up by the tube, it reverses the vacuum pump 26 to reverse the flow in tubes 13 and 23 to eject the clogging tissue. Following the ejection of the clogging material the vacuum pump 36 returns to its normal functioning. The reverse flow in pipes 13 and 23 may be for successive predetermined intervals until they are unclogged as evidenced by the proper pressure sensed by element 24.

The irrigating pipe 14 is connected by a flexible tube 27 to an elevated tank 28 by way of a valve 29 the tank 28 containing any suitable washing solution, for example of the composition position of the liquid contained in tank 21. This irrigating fluid helps maintain the pressure in the eye and prevents the cornea from collapsing. It should be noted that the flexible tubes 19, 23 and 27 are joined side by side as a highly flexible assembly thereby greatly facilitating the convenient handling and manipulation of the instrument 11.

In employing the apparatus 10 in operating on the eye, for example in the removal of a cataract, the usual precautions are observed and a small incision i.e., about one hundred seventy-five thousandths of an inch (0.175") is made in the masking tissue, for example in the cornea, to provide access for entry of the instrument 11 into optimum engagement with the unwanted tissue. The lens L to be treated may be in its normal position, but advantageously is prolapsed into the anterior chamber.

The instrument 11 is inserted through the preformed incision into confronting engagement with the unwanted tissue and the pulser 20, the vacuum unit 26 is actuated and the valve 29 is opened, the various parameters being adjusted to optimum conditions are dictated by experience and as specified above.

A pulsating high velocity fine liquid jet is directed through the nozzle port 16 onto the area of unwanted tissue of lens L to fragment, disintegrate and emulsify the jet-subjected tissue, and the jet liquid containing the entrained and emulsified tissue is sucked up by suction unit 26. The liquid from the tube 14 keeps the eye bathed in the desired manner. The instrument 11 is then manipulated until all the unwanted tissue is fragmented and removed and the instrument 11 is then retracted and the usual post operative procedures followed. It should be noted that in the event that a large tissue fragment is detached and lodges in tube 13 to clog the tube 13 the action of the vacuum unit 26 is reversed in response to the pressure sensing device 24 to eject the clogging tissue, which is further fragmented by the jet so that it may be properly withdrawn by the suction tube 13. Also, since the tissue surrounding the lens is soft and yielding, the jet energy is absorbed by the wall if the jet stream happens to miss the target tissue.

The apparatus illustrated in FIGS. 4 and 5 differs from the apparatus 10 primarily in the construction of the instrument 32 which corresponds to the instrument 11. Specifically the instrument 32 includes a pair of coaxial inner and outer tubes 33 and 34 respectively which delineate an annular outer conduit 36 and an inner axial conduit 37. The distal end of outer conduit is closed by an annular end wall 38 provided with circumferentially spaced nozzle defining ports 39 which are directed toward a common central point coaxial with the conduits 36 and 37 and forwardly thereof.

The outer conduit 36 is connected by a flexible tube to a liquid pulsing device corresponding to the pulsing device 20 and the central conduit 37 is connected to a suction pump corresponding to vacuum unit 26, likewise by of flexible hose.

The operation of the apparatus employing the instrument 32 is similar to that using the instrument 10. A plurality of pulsating high velocity jets 40 from nozzles 39 converge on a point located on the unwanted tissue in lens L to disintegrate the jet subjected tissue which is entrained in the jet liquid and sucked into and withdrawn through the central suction tube 37.

The instrument 41 illustrated in FIG. 6 differs from that last described primarily in that the pulsating jet emanates from the axial tube and the tissue entraining liquid withdrawn by the surrounding outer annular tube. The instrument 41 includes an outer suction tube 42 open at its distal end and connected by a flexible hose to a suction device corresponding to device 26 and a coaxial tube 43 closed at its distal end and provided with a nozzle defining port 44. The tube 43 is connected by a flexible hose to a liquid pulsing device corresponding to device 20 and the apparatus is employed in the manner earlier described.

In FIG. 7 of the drawings there is shown another form of tissue removing instrument differing from those first described primarily in that the pulsating liquid jet is directed at an angle to the tissue approaching tangency and the liquid suction port extends beyond the nozzle for an extended distance. Specifically the improved instruments 46 include three interconnected rigid side by side longitudinal tubes 47, 48 and 49 respectively. The tube 47 is closed at its distal end and has a nozzle defining centrally located port 50 formed in the front thereof and is connected by a flexible tube to a pulsating liquid source corresponding to the device 20. The second tube 48 is disposed alongside the tube 47 and projects beyond the front end of tube 47 and is closed at its front end. An elongated suction opening 51 is formed in the side wall of tube 48 on the side of tube 47 and extends from a point forward of the distal end of tube 47 to substantially the distal end of tube 48. The tube 49 is a bathing liquid tube and is secured to the outer face of tube 48 and is provided with a plurality of longitudinally spaced outlet ports. The tubes 48 and 49 are connected by corresponding flexible tubes to a vacuum unit corresponding to unit 26 and to a bathing liquid tank corresponding to tank 28 respectively.

The instrument is employed in the manner similar to those earlier described except that the pulsating jet emerging from the nozzle 50 is at an obtuse angle to the treated tissue and directs the tissue entraining liquid toward the large suction opening 51.

While separate liquid sources are shown, a single source may be used. Also, instead of a pump to produce the pressure for the jet, the source of liquid can be pressurized, such as by a pressurized tank, and a pulser only used. Also, while the jet stream from the tip is shown generally cylindrical, it may expand slightly to a conical shape; however, the area of contact should be kept as small as possible. Further, while the jet openings were illustrated as circular, other shapes can be used.

While there have been described and illustrated preferred embodiments of the present invention it is apparent that numerous alterations, omissions and additions may be made without departing from the spirit thereof.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed