Pushbutton Keyboard System

Boulanger April 30, 1

Patent Grant 3808384

U.S. patent number 3,808,384 [Application Number 05/334,345] was granted by the patent office on 1974-04-30 for pushbutton keyboard system. This patent grant is currently assigned to Texas Instruments Incorporated. Invention is credited to Henry J. Boulanger.


United States Patent 3,808,384
Boulanger April 30, 1974

PUSHBUTTON KEYBOARD SYSTEM

Abstract

A keyboard system in which a plurality of spaced sets of conductive members including U and rivet shaped are arranged at a surface of a support in electrical communication with conductive paths on an opposite surface of the support. A plurality of actuatable conductive elements, one for each set of conductive members, are provided to establish bridging electrical connection between conductive members of a set upon application of a preselected deflecting force to the conductive elements. Two pole embodiments are disclosed also employing rivet shaped and modified U shaped conductive members.


Inventors: Boulanger; Henry J. (Cumberland, RI)
Assignee: Texas Instruments Incorporated (Dallas, TX)
Family ID: 26845926
Appl. No.: 05/334,345
Filed: February 21, 1973

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
148503 Jun 1, 1971 3725907

Current U.S. Class: 200/5A; 200/275; 200/516; 341/34
Current CPC Class: H01H 13/702 (20130101); H01H 13/7006 (20130101); G06C 7/08 (20130101); H01H 13/64 (20130101); H01H 2203/006 (20130101)
Current International Class: H01H 13/64 (20060101); H01H 13/70 (20060101); H01H 13/702 (20060101); G06C 7/08 (20060101); G06C 7/00 (20060101); H01H 13/50 (20060101); H01h 013/52 (); H04q 003/00 ()
Field of Search: ;200/1R,5R,5A,11R,11G,11H,11J,11K,16D,159B,166BH ;178/17C ;179/9K ;340/365A

References Cited [Referenced By]

U.S. Patent Documents
3684842 August 1972 Boulanger
3584162 June 1971 Krakinowski
3603756 September 1971 Carpentier et al.
3600528 August 1971 Leposauic
2262777 November 1941 Roper
3311718 March 1967 Allison et al.
3350673 October 1967 Spaude
3699294 October 1972 Sudduth
3696411 October 1972 Kilby et al.
3643041 February 1972 Jackson
3749859 July 1973 Webb et al.
3751612 August 1973 Hansen
3725907 April 1973 Boulanger
Primary Examiner: Scott; James R.
Attorney, Agent or Firm: Haug; John A. Connors, Jr.; Edward J. McAndrews; James P.

Parent Case Text



This is a continuation-in-part of application Ser. No. 148,503, filed June 1, 1971 now U.S. Pat. No. 3,725,907. The present invention relates generally to keyboard systems and more particularly is directed to an improved two pole pushbutton keyboard system for establishing electrical connections in response to actuation.
Claims



1. A selectively energizable keyboard system comprising an electrically insulating support member having a generally planar first surface on which a plurality of conductive paths are disposed arranged in a preselected pattern adapted to transmit electrical information in response to selective energization of portions of said paths,

a plurality of selectively actuatable conductive elements adjacent a second opposite surface of said support member said conductive elements each being dish shaped having a single smooth surface contained within its outer peripheral margin, the surface being convex in a first configuration but movable to concave in a second configuration upon receiving a preselected deflecting force,

a set of conductive contact members associated with each said actuatable conductive element, at least one of said sets comprising a pair of conductive contact members, said contact members being arranged at said second surface of said support member in electrical communication with preselected portions of said paths,

conductive support means disposed at said second surface of said support member, said support means supporting each said selectively actuatable conductive member in overlying relation to its said associated set of conductive contact members with the said set of contact members generally centrally located beneath its said conductive element in continuous electrical engagement with said conductive support means and in selective disengagement with said set of conductive contact members, said conductive elements being adapted to be deflected into a position of engagement with said set of conductive contact members so as to establish an electrical connection between said conductive support means and said respective set of conductive contact members and said respective preselected portions of said paths in response to the application of a preselected deflecting

2. A system in accordance with claim 1 wherein means are provided for applying the preselected deflecting force to said conductive elements, including a plurality of pushbutton members adapted to be manually actuated to apply the deflecting force to said conductive elements to effect deflection thereof into a position of engagement with said conductive contact member, each of said pushbutton members having a force applying surface in registration with a said conductive element and another surface adapted to be symbolized in a manner indicative of the electrical information transmitted in response to the energization of said

3. A system in accordance with claim 1 wherein said conductive support means comprises a sheet of electrically conductive material, apertures are formed in the sheet to encompass each said set of conductive contact members, the said apertures being smaller than the said conductive elements so that each said conductive element is supported on the sheet in continuous electrical engagement therewith and in selective disengagement

4. A system in accordance with claim 1 wherein the said set of conductive contact members project outwardly a first preselected distance from said second surface of said insulating support and said conductive support means project outwardly a second preselected distance more than said first preselected distance from said second surface of said insulating support

5. A system in accordance with claim 4 wherein said conductive elements are each of a generally circular configuration having marginal edge portions supported on the conductive support means and a generally central portion maintained in selective disengagement with and adapted to be deflected

6. A system in accordance with claim 5 wherein a relatively thin, flexible, insulative, force-transmittive overlayer is disposed on said insulating support member in overlying relationship with respect to said conductive elements so as to maintain said conductive elements in a position

7. A system in accordance with claim 1 wherein the said of conductive contact members having a pair of conductive contact members comprise

8. A system in accordance with claim 7 wherein said conductive elements are each a generally circular configuration having a marginal boundary supported on said conductive support means and having a generally central portion spaced from and maintained in selective disengagement with said headed rivets and adapted to be deflected into engagement therewith in response to the application of the preselected deflecting force to said conductive element thereby establishing a bridging electrical contact between said conductive support means and said set of headed rivets so as

9. A system in accordance with claim 1 wherein said conductive support means comprises a plurality of spaced apart sets of conductive support members arranged in a preselected configuration at said second surface of said support member in electrical communication with preselected portions

10. A system in accordance with claim 9 wherein each of said sets of conductive support members includes a plurality of spaced first metallic members extending through said insulating support member and terminating in electrical contact with preselected portions of said conductive paths.

11. A system in accordance with claim 9 wherein each set of conductive support members comprises a pair of staples secured to said insulating

12. A system in accordance with claim 11 wherein the said sets of conductive contact members having a pair of conductive contact members comprise generally L-shaped metallic wire members of a smaller guage than

13. A system in accordance with claim 1 wherein the sets of conductive contact members having a pair of conductive contact members comprise a pair of generally L-shaped metallic wire members, each L-shaped member comprising first and second legs, the first legs of each extending through apertures in the support member and terminating in electrical contact with

14. A system in accordance with claim 13 wherein the second legs of the

15. A system in accordance with claim 13 wherein the second legs of the

16. A keyboard system comprising an electrically insulative support member having a generally planar surface and having apertures therein,

a plurality of selectively deflectable conductive elements,

a pair of spaced wire staples having a first guage provided for each said conductive element, each said staple having legs joined to a bight portion, the said legs extending through selected ones of said apertures in said support member with each said bight portion contiguous to said planar surface, said conductive elements supported on its respective said pair,

a pair of conductive contact members disposed between each said pair of wire staples, each said conductive contact member comprises a generally L-shaped metallic wire member of a second smaller guage, each said L-shaped wire member having a first and a second leg, the said first leg extending through a selected said aperture in the said support member and the said second leg lying along the said planar surface,

and electrical circuit means connected to said staples and said L-shaped wire members, deflection of any said conductive element bridging its respective said pair of wire staples and its respective pair of conductive contact members.
Description



In recent years numerous types of keyboard systems have been developed for use in transmitting coded electrical information for incorporation in various types of business machines such as electronic calculators. Typically such keyboard systems utilize pushbutton members appropriately symbolized in a manner indicative of a numeric or mathematical function generated in response to depression of the pushbutton member to establish electrical connections between various conductive paths and/or various circuit elements coupled to the system in order to achieve a desired function. However, particularly as the cost of associated equipment has decreased dramatically in recent years coupled with an increase in the use and availability of various devices incorporating such systems the need has arisen for extremely inexpensive readily manufacturable keyboard systems which may be economically and accurately produced on a mass production basis with a high degree of accurate repeatability. For example, the need for miniaturized electronic calculators, units for addressing computer systems, credit cards verifiers, etc. which necessarily require various types of keyboard arrangements has enormously increased in recent years requiring the provision of inexpensive and extremely durable keyboard systems which may be manufactured in a simple and economical manner on a relatively large volume basis. Particularly, in the computer field the need for durable, inexpensive keyboard systems which can accurately address electrical information either directly to a system or through a remote terminal or the like, while occupying a minimal amount of space, has become increasingly urgent.

Accordingly, it is an object of the present invention to provide an improved keyboard system adapted for selectively establishing electrical interconnections in response to mechanical actuation.

It is another object of the present invention to provide an improved pushbutton keyboard system in which actuation of individual pushbutton members establishes positive electrical interconnections for transmitting electrical information.

It is a further object of the present invention to provide an improved miniaturized pushbutton keyboard system which is relatively rugged and durable and which is extremely economical to fabricate on a mass production basis, and which is adapted for incorporation in various devices, such as electronic calculators, computer systems, etc.

Various additional objects and advantages of the present invention will become readily apparent from the following detailed description and accompanying drawings wherein:

FIG. 1 is an exploded perspective view illustrating a preferred embodiment of a keyboard system in accordance with the present invention;

FIG. 2 is a vertical sectional view through the keyboard system illustrated in FIG. 1;

FIG. 3 is a partial plan view of the underside of the system illustrated in FIG. 2;

FIG. 4 is an exploded perspective view of an alternative embodiment of a keyboard system similar to that illustrated in FIG. 1;

FIG. 5 is a vertical sectional view through the keyboard system illustrated in FIG. 4;

FIG. 6 is a plan view of the underside of the system illustrated in FIG. 5;

FIG. 7 is a perspective view illustrating a typical variety of electronic calculator incorporating a keyboard system such as that illustrated in the preceding embodiments.

FIG. 8a is a broken away perspective view showing how a centrally placed U-shaped conductive member can be modified to effect a two pole arrangement useful in the keyboard system according to the present invention;

FIG. 8b is a view similar to FIG. 8a but showing a completed two pole arrangement;

FIG. 9 is a schematic circuit diagram of a two pole switch arrangement as shown in FIG. 8;

FIG. 10 is a broken away perspective view of another two pole switch similar to FIG. 8b;

FIG. 11 is a broken away perspective view of yet another two pole switch; and

FIG. 12 is a broken away perspective view of another two pole switch.

Referring generally to the drawings, wherein corresponding elements in the various views are indicated by common reference numerals, and in particular initially to FIGS. 1-3, a keyboard system 10 in accordance with the present invention is illustrated. The system generally includes a non-conductive or insulating support member 12 having a generally planar first surface 14 on which a plurality of conductive paths 16 are disposed and arranged in a preselected pattern for transmitting electrical information in response to selective interconnection of portions thereof. At a second opposite surface 18 of the insulating support member 12 a plurality of sets 20 of conductive support members are provided which are arranged in a preselected configuration in electrical communication with first preselected portions 16a of the conductive paths 16. Associated with each of the conductive support members are conductive contact members 22 similarly arranged at the second surface 18 of the insulating supporting layer in electrically isolated relationship with the conductive support members and in electrical communication with second preselected portions 16b of the conductive paths 16. A plurality of selectively actuatable conductive elements 24 are also arranged adjacent the second surface 18 of the insulating support layer and are respectively supported by and maintained in continuous electrical contact with each of the sets 20 of conductive support members and in selective disengagement with the associated conductive contact members 22. The conductive elements 24 are adapted to be deflected into a position of engagement with the conductive contact members 22 in response to the application of a preselected deflecting force thereto so as to establish a bridging electrical contact between one of the sets 20 of conductive support members and its associated conductive contact member 22, thereby electrically connecting the first and second preselected portions 16a, 16b of the conductive paths 16. Actuation of the conductive elements 24 so as to effect the establishment of the aforementioned bridging electrical connection may be effected in various ways, but in the illustrated embodiment it is accomplished by the provision of a plurality of manually actuatable pushbutton members 26 which are carried in a suitable casing 28 supported adjacent the second surface 18 of the insulating support member 12 whereby the application of a preselected deflecting force to the conductive elements 24 is effected by actuation of a selected pushbutton member 26 by the application of a mechanical force thereto such as through the fingertips of an operator. As a result of manual actuation of a selected pushbutton member 26 the preselected deflecting force is applied to the conductive element to effect deflection thereof into a position of engagement with the conductive contact member 22, thereby establishing the bridging electrical connection between the set of conductive support members 20 and the conductive contact member 22 and hence establishing an electrical connection between the first and second preselected portions 16a, 16b respectively of the conductive paths 16. In addition, if desired, a suitable device such as an integrated circuit shown in phantom and indicated generally by the reference numeral 30 may be carried by the insulating support member 12 and suitably connected to selected portions of the conductive paths 16 so as to process the signals established by the interconnection of various portions of the conductive paths in response to the establishment of the bridging electrical connections. Similarly, if desired, a power supply (not shown) may be also carried on the support member 12 to provide a self-contained composite unit, or an external source of power may be utilized as the sole source of power or as an additional or alternative energy source.

More particularly, the insulating support member 12 is fabricated of a relatively rigid, non-conductive material which is adapted to provide support for the keyboard system, as well as associated electronic circuitry, power supplied, display means, etc. when the unit is to be incorporated in an electronic calculator system, a computer input system, etc. In this regard the member 12 may be fabricated of a suitable, relatively rigid, insulation material such as epoxy bonded glass cloth generally sold under the trade description G-10 by the Formica Company. The material may have a thickness of approximately 1/16th inch which has been generally found sufficient to provide adequate mechanical strength for a miniaturized device of this nature. As previously mentioned, the conductive paths 16 including the first and second preselected portions thereof 16a, 16b respectively are arranged in a desired pattern at the first surface 14 (the underside of the support member 12, as illustrated in FIG. 2) in order to permit the transmission of electrical information in response to selective interconnection of various portions of the conductive paths upon the establishment of the bridging electrical connections. The pattern of conductive paths may be deposited on the surface 14 of the support layer utilizing conventional printed circuit art techniques, such as masking, etching, engraving etc. In addition, a plurality of apertures 32 are provided extending through the thickness of the support member 12 between the first surface 14 and the second surface 18 thereof so as to permit the selective establishment of electrical communication between the conductive paths at the surface 14 and the conductive support members 20 and contact members 22 arranged at the opposite surface 18. In this regard the apertures may be provided prior to or subsequent to the deposition of the conductive paths, thereby providing a prepunched support board prepared for further fabrication operations.

In the illustrated embodiment the sets of conductive support members 20 are arranged to define a plurality of spaced sets of pairs of generally U-shaped, conductive members preferably comprising staples arranged at the surface 18 of the support layer 12. Such an arrangement has been found to be extremely advantageous in achieving the enhanced ease of fabrication of the system since the staples may be readily inserted through the apertures 32 in the pre-punched support member 12 utilizing suitable high-speed automated stapling equipment. Similarly, electrical communication may be conveniently established between these staples and selected portions of the conductive paths 16. As shown, the staples 20 each include a main body portion 34 of a generally looped configuration terminating in a pair of legs 36 which are received within the apertures 32 in the support layer 12. The apertures 32 are of a size sufficient to accommodate the legs 36 in a close-fitting relationship, while the outer ends of the legs are crimped against the surface 14 and are in contact with the selected portions of the conductive paths 16, such as the first preselected portions 16a. Consequently, a rigid mechanical connection is established and the electrical contact may be improved by soldering the crimped portions of the legs into position. In addition, as shown, the main body portion 34 of each of the staples comprising the plurality of sets of support members projects a first preselected distance outwardly from the surface 18 of the support member 12 so as to define conductive support areas spaced from the surface 18 for carrying the conductive element 24. Similarly, the associated conductive contact members 22 are also illustrated as generally U-shaped conductive members, preferably comprising staples each having a main body portion 38 which terminates in a pair of legs 40 which project through apertures 42 extending through the thickness of the support member 12 similarly to the apertures 32, but providing communication with other portions of the conductive paths 16, such as the second preselected portions 16b. The legs 40 extend through the apertures 42 with the outer ends thereof being crimped against the surface 14 of the support layer 12 preferably in contact with other portions of the conductive paths 16, such as the second preselected portions 16b. The apertures 42 are of a size sufficient to accommodate the legs 40 of the staple 22 while the outer ends of the legs 40 are crimped against the surface 14 in contact with the second preselected portions 16b of the conductive paths to rigidly secure the staple to the member 12. In addition, the outer ends of the legs 40 crimped in position against the second preselected portions 16b of the conductive paths 16 may be soldered in this position to provide an improved electrical contact as shown. One of the contact staples 22 is arranged intermediate each of the pairs of support staples 20 and may be of a slightly smaller gauge such that its main body portion 38 projects outwardly from the surface 18 a second preselected distance different than the first preselected distance which the body portion 34 of the support staples 20 projects from the surface so as to facilitate maintenance of selective disengagement between the conductive elements 24 and the contact staples 22, as will be subsequently explained. The conductive support staples 20 and the conductive contact staples may be fabricated of various materials and material combinations depending upon the properties desired. For example, in one preferred embodiment the staples are fabricated of gold-plated nickel wire in order to provide a relatively non-reactive material having good surface contact properties. As other examples, the staples may be fabricated of gold-glated stainless with a flash of nickel intermediate the stainless steel core and the gold plating, or of beryllium copper.

The conductive elements 24 preferably comprise a plurality of generally circular, disc shaped elements formed of a segment of a hollow body or dished shape having a double curved outer surface such as a segment of an oblique spheroid and are each illustrated as including a generally convex surface of curvature when in an unactuated or rest state which is in facing relationship with the pushbutton members 26. The element 24 is selected such that is has an overcenter position when its central portion is subjected to a preselected deflecting force while automatically returning to its original position upon removal of the force, whereby the element is provided with a memory function. Of course, segments of other hollow bodies having double curved surfaces may be utilized in providing the conductive elements. The element 24 may be arranged such that it undergoes a snap-action deflection into its overcenter position in order to establish the aforementioned bridging electrical contact. In this regard referring particularly to FIG. 2, one of the elements indicated by the numeral 24a is shown in its overcenter position in response to actuation by a depressed pushbutton member indicated by reference numeral 26a. However, it should be noted that in certain instances the central portion of conductive element 24 may be sufficiently closely spaced to the contact staple 22 that the element 24 need not be completely deflected into its overcenter position in order to contact the staple 22 for establishing the requisite bridging contact. Thus, upon application of the preselected deflecting force to the central portion of the conductive element 24 in response to actuation or depression of the pushbutton member 26 the element 24 is caused to undergo a snap-action deflection into its overcenter position. In addition, as a result of this snap-action deflection a tactile feed-back is provided which may be sensed in the finger tips of the operator actuating a particular pushbutton. Furthermore, an audible acknowledgement of deflection may accompany the snap-action deflection which may be further sensed by the operator as an additional indication of actuation of a pushbutton member to transmit a desired electrical signal. The conductive elements 24 preferably comprise gold-plated stainless steel discs and in one preferred embodiment may be fabricated of AISI (American Iron and Steel Institute) Type 302 Stainless Steel, which comprises by weight approximately 0.15 percent carbon, 2.00 percent (max.) manganese, 1.00 (max.) silicon, 17 to 19 percent chromium, 8 to 10 percent nickel and the balance iron, with a thin gold plating over its exposed contact surfaces.

Each of the conductive elements 24 is maintained in axial registry with the conductive contact staple 22 associated with each of the sets of support staples 20 with the central portion thereof spaced from the contact staple 22. The marginal edges of the conductive elements 24 are supported on the main body portions 34 of the support staples 20 of each set such that the conductive element 24 is in continuous electrical contact therewith and hence with the first preselected portions 16a of the conductive paths 16. Similarly, the central portion of the conductive elements 24 which are in registry with the main body portions 38 of the contact staples 22 remain in selective disengagement with the contact staples until deflected by actuation of a pushbutton member 26, whereupon the bridging electrical connection is established between a set of conductive support staples 20 and its associated conductive contact staple 22 and hence between the first and second preselected portions 16a, 16b of the conductive path 16.

In order to further support each of the conductive elements 24 and provide lateral restraint therefor a carrier sheet of insulating material 44 is disposed adjacent the surface 18 of the support member 12 overlying the plurality of sets of conductive support staples 20 and associated conductive contact staples 22. The sheet 44 includes a plurality of apertures 46 which are of a size sufficient to accommodate the conductive elements 24 therein and arranged in registry with the plurality of sets of conductive support staples 20 and the associated conductive contact staples 22. More particularly, the conductive elements 24 are disposed within the apertures 46, which are of a size slightly larger than the spacing intermediate the staples comprising each of the sets of conductive support staples. Accordingly the sheet 44 may be maintained essentially in abuttment with the surface 18 of the support member 12 with the main body portions 34 of the conductive support staples 20 which support the elements 24 extending slightly into the apertures 46. The conductive elements 24 are arranged within the apertures 46 and have opposed marginal portions resting on the main body portions 34 of the conductive support staples 20. Thus, support, as well as lateral restraint for the conductive elements 24 is provided. In addition, as may be noted, particularly in FIG. 1, each of the apertures 46 is of a preselected shape including a pair of opposed parallel walls 46a which are of a generally straight-line configuration, these generally straight-line wall portions being arranged to bound the main body portions 34 of the conductive support staples 20 which extend into the apertures 46. The other pair of opposed wall portions 46b of each of the apertures 46 are arranged in a generally curvilinear configuration curving outwardly from the center of the apertures 46 so as to more efficiently accommodate the generally circular conductive elements or discs 24. In this regard by virtue of providing the apertures 46 having a shape as illustrated certain advantages are achieved in that the overall space occupied by the apertures is minimized, since only one of the two dimensions of the apertures are increased while the other dimension is minimized, thereby maximizing the amount of material which remains to define the layer 44 in order to enhance its structural strength and rigidity. This is advantageous in view of the small size of the layer 44 and the large number of apertures which are employed. The sheet 44 may be fabricated of a suitable non-conductive material such as a suitable glass cloth reinforced epoxy. In addition, the marginal portions of the sheet 44 which extend beyond the sets of support staples 20 at opposed sides of the support board 12 preferably are bonded or sealed to the marginal portions of support member 12 so as to facilitate the formation of an environmentally sealed unit.

In certain instances, it has been found desirable to further restrain the conductive elements 24 in their respective positions by providing a relatively thin, flexible sheet or film of an insulating force transmitting over-layer sheet or film 48, as shown, which is arranged intermediate the sheet 44 and the casing 28 which supports the pushbutton members 26. The over-layer 48 may comprise a material, such as polyethylene, terephthalate, commonly sold under the trade name Mylar, and may be suitable bonded or sealed to the exposed surface of the layer 44 and hence functions to prevent the conductive elements 24 from inadvertently being removed or falling from their desired positions within the apertures 46, as well as completing an environmental seal for the unit.

The pushbutton members 26 are each appropriately symbolized at their outer exposed surfaces in a manner indicative of the electronic function associated with actuation of a selected pushbutton member which establishes the requisite bridging electrical connection between the conductive support staples 20 and the conductive contact staple 22 and hence between the first and second preselected portions 16a, 16b of the conductive paths 16. In addition, each of the pushbutton members includes an opposed protruding surface portion 50 which depends from the main body thereof and is maintained in abuttment with the generally central region of the conductive element 24 and is adapted to apply the requisite deflecting force thereto in response to actuation of the pushbutton member. Each of the pushbutton members 26 is preferably fabricated of a relatively rigid non-conductive plastic material, and is supportingly carried within the support casing 28 which includes a plurality of slots 51 for accommodating the body of the members 26. The casing 28 may be similarly fabricated of a suitable rigid, non-conductive plastic material, or the like. In this regard each of the pushbutton members 26 include a flanged portion 52 which integrally extends from one pair of opposed lower edge surfaces thereof. These flange portions 52 are adapted to be received within accommodating channels or slots 54 in the casing 28 when the members 26 are positioned in the casing 28 to preclude lateral motion of the pushbutton elements 26 within the casing, while permitting movement of the pushbutton members normal to the planar surface of the casing 28 upon actuation thereof. In addition, the casing 28 includes a pair of depending flange members 56 the spacing therebetween being of a size sufficient to accommodate the marginal edge portions 12a, 12b of the support member 12 if it is desired to provide an environmental seal between these marginal edge portions 12a, 12b and the inner surfaces of the flange members 56, when the casing 28 is positioned in abuttment with the overlayer sheet 48 with the pushbutton members aligned with the respective conductive elements 24. Thus, in operation the pushbutton members are precluded from lateral movement within the casing but are permitted to be moved from a retracted to an actuating position in response to application of a mechanical force to the exposed surfaces thereof so as to effect deflection of an associated conductive element 24. Accordingly, upon actuation of a selected pushbutton member the conductive element 24 is caused to execute a snap-action deflection into its over-center position in which it is in engagement with one of the associated contact staples 22, as well as with the set of supporting staples 20, establishing a bridging electrical contact between the contact staple 22 and the set of support staples 20 associated therewith.

Referring now to FIGS. 4-6 an alternate embodiment of a keyboard system similar to that illustrated in FIGS. 1-3 is shown in which a modified arrangement for carrying the conductive elements is provided. More particularly, in this embodiment a support member of insulating material similar to the support member 12 is provided having a preselected pattern of conductive paths 62 arranged at a first surface 64 thereof while a plurality of sets of conductive support members 66 are arranged at a second opposed surface 68 of the board with an associated conductive contact member 70 being provided associated with each of the sets of conductive support members spaced from and electrically isolated from the set of support members. The conductive support members 66 are adapted to be disposed in cooperating apertures 72 which are provided extending through the thickness of the support board 60 between the first and second surfaces 64, 68 so as to permit electrical communication to be established between each set of conductive support members 66 and first preselected portions 62a of the conductive paths 62, when these conductive support members are inserted within the apertures 72 while a plurality of additional apertures 74 similarly extend through the thickness of the support member 60 for accommodating the associated conductive contact members 70, the apertures 74 permitting electrical communication to be established between the conductive contact members 70 and second preselected portions 62b of the conductive paths 62, when the conductive contact members 70 are inserted within the respective apertures. Each of the sets of conductive support members 66 is adapted to define a generally planar support area for supportingly receiving a conductive element 76 similar to the conductive element 24. The conductive element 76 is supported in continuous electrical contact with the set of support member 66 and hence in contact with the first preselected portions 62a of the conductive paths 62. In addition, the conductive element 76 remains in selective disengagement with the associated conductive contact member 70 and accordingly, each set of support members remains electrically isolated from its associated contact member 70 until deflection of the conductive element 76 is effected. Such deflection is accomplished in a manner similar to that described in connection with the preceding embodiment in response to the application of a preselected deflecting force to the conductive element 76 to establish engagement between the conductive element 76 and the conductive contact member 70, thereby establishing a bridging electrical contact between the set of conductive support members 66 and the conductive contact member 70 and hence between the first and preselected portions 62a, 62b of the conductive paths 62. The application of the preselected deflecting force to the conductive element 76 is again accomplished by the provision of a plurality of pushbutton members 78 maintained in registry with the respective conductive elements 76 such that actuation or depression of a pushbutton member 78 is effective to cause deflection of a conductive element in order to cause it to engage its associated conductive contact member thereby establishing the requisite bridging electrical contact. The pushbutton members 78 are similarly carried within a suitable support casing 80 which includes a plurality of slots 82 for receiving the body of the pushbutton members 78 therein, the pushbutton members being movable from a retracted to an actuating position in response to the application of a mechanical force to the exposed surfaces thereof, such as by manual actuation.

As previously mentioned, in accordance with an important advantage of the present invention a keyboard system is provided which is particularly suitable for fabrication by rapid, accurate, and inexpensive mass production techniques. The embodiment illustrated in FIGS. 4-6 similarly provides such advantages in that the support board 60 may be similarly provided in a prepunched configuration including the apertures 72, 74 for accommodating the conductive support members and the conductive contact members, while a desired pattern of conductive paths may be deposited on the surface 64 thereof utilizing conventional printed circuit art techniques to permit the selected electrical connections to be made between respective portions of the conductive paths. However, rather than employing staples, as in the preceding embodiment each of the sets of conductive support members 66 preferably comprises a plurality of collared rivets each of which includes a shank 82 and a flanged collar 84 with the shank adapted to be inserted in the aperture 72 while the collar 84 rests against the surface 68 of the support board, a portion of the shank projecting outwardly therefrom and the opposite end 86 of the shank is crimped against the surface 64 of the support member 60 in electrical contact with the first preselected portions 62a of the conductive path 62, thereby mechanically restraining the rivet in position with respect to the support member and the conductive path 62. In addition, the crimped end 86 may be soldered in position to assure a good electrical contact with the first preselected conductive path 62a. In the illustrated embodiment each set 66 includes four of the previously described rivets arranged to define a generally enclosed area with the flanged collar portions 84 of each of the rivets defining a generally planar support area for the conductive element 76. It should be noted that a lesser or greater number of rivets, of course, may be utilized. In addition, the associated conductive contact member 70 is arranged generally centrally within the area defined by the four rivets 66 and preferably comprises a headed rivet including a shank portion 88 which is disposed within the aperture 74 with one end 90 being crimped against the surface 64 of the support board 60 as shown while its opposite end terminates in a head 92 of a larger diameter than the aperture 74 such that the rivet 70 is mechanically restrained with respect to the support member 60, subsequent to the crimping of its end 90 against the surface 64. The crimped end 90 is in electrical contact with the second preselected conductive path 62b and similarly may be soldered in position to assure a good electrical contact therewith. In addition, as shown the head 92 of the rivet 70 may be displaced outwardly from the surface 68 of the support member 60 a lesser distance than the collar 84 of the support rivets 66 such that the central portion of the conductive element 76 may be maintained in selective disengagement therewith, as will now be explained in detail.

More particularly, the conductive elements 76 are generally similar to the elements 24, as described in connection with the embodiment illustrated in FIGS. 1-3. The element 76 is arranged such that it similarly undergoes deflection movement into its overcenter position in order to establish the aforementioned bridging electrical contact between the set of support rivets 66 and the contact rivet 70 and hence between the first and second preselected portions 62a, 62b of the conductive paths. In this regard the marginal portions of the element 76 are supported by and rest upon the flanged collar portion 84 of the support rivets 66 such that the element 76 is maintained in constant electrical contact with the set of support rivets 66 while its central portion remains in selective disengagement with the head 92 of the contact rivet 70. Upon application of a preselected deflecting force to the central portion of the conductive element 76 in response to actuation or depression of the selected pushbutton member 78 the element 76 is caused to undergo a snap-action deflection into its overcenter position and engages the head 92 of the contact rivet 70 thereby establishing an abrupt, instantaneous and positive bridging electrical contact between the support rivets 66 and the contact rivet 70 and hence between the first and second preselected portions 62a, 62b of the conductive paths 62. In addition, similarly to the preceding embodiment, as a result of this snap-action deflection a tactile feed-back is provided which may be sensed in the finger tips of the operator actuating a particular push-button, and an audible acknowledgement of deflection may accompany the snap-action deflection and may be further sensed by the operator as an additional indication of actuation of a pushbutton member to transmit a desired electrical signal.

In order to further aid in maintaining the elements 76 in position as well as to facilitate the formation of an environmental seal, it has been found advantageous in certain instances to provide an overlayer 94 of a flexible force transmitting material arranged intermediate the pushbutton members 78 and the conductive elements 76. In this regard lateral movement of the conductive elements 76 is precluded by virtue of the disposition of the elements 76 within the area defined by each of the sets of support rivets 66 resting on the flanged collar portions 84, with the marginal edges of the conductive elements 76 being laterally restrained by the portions of the shanks 82 which project outwardly beyond the collars 84. However, in order to prevent the elements 76 from being inadvertently removed from or falling from the unit the overlayer 94 may be provided, as shown, and may be suitably bonded to the marginal edge portions of the support board 60 to form an environmental seal. The overlayer 94 may be fabricated of a strong, flexible, thin insulation material, such as polyethylene terephthalate, commonly sold under the trade name Mylar.

As previously mentioned, the pushbutton elements 78 are suitably carried within the slots 82 in the casing 80 and as shown have outer exposed surfaces which are appropriately symbolized in accordance with the electrical information which is to be transmitted in response to actuation thereof. In addition, a generally centrally located protruding member 96 extends from the opposed surfaces of each of the pushbutton members and is arranged in axial registry with the central portions of each of the conductive elements 76 so as to apply the preselective deflecting force thereto in response to actuation or depression of the pushbutton members 78. A pushbutton member 78a is illustrated in FIG. 5 in its depressed or actuated condition to show the establishment of the bridging electrical contact between the set of conductive support rivets 66 and the conductive contact rivet 70, whereby the requisite bridging electrical contact is established between selected portions of the conductive paths 62. Each of the pushbutton members 78, similar to the preceding embodiment, also may include a pair of opposed flanges 97 which are adapted to be received in cooperating channels 98 in the wall of the slots 82 in the casing to provide improved lateral support for the pushbutton member 76. The casing 80 also preferably includes a pair of depending flange portions 99 extending along its longitudinal edges spaced apart a distance slightly greater than the lateral dimension of the support member 60 so that the inner portions of the flanges 99 may be sealed to the marginal edges of the support member 60 if it is desired to provide an environmentally sealed unit. The casing 80 as well as the pushbutton members 78 may be fabricated of a suitable insulating plastic material.

In operation it may be seen that similarly to the embodiment illustrated in FIGS. 1-3 the actuation or depression of a selected pushbutton member 78 effects deflection of its associated conductive element 76 so as to effect the establishment of the bridging electrical contact between the support rivets 66 and the contact rivet 70 and hence between the first and second preselected portion 62a, 62b of the conductive paths 62 so as to permit the transmission of an appropriate electrical signal. In addition, as illustrated in FIGS. 4 and 6, if desired, suitable semiconductor devices or the like illustrated in phantom as a dual-in-line package integrated circuit 100 may be provided with its lead members 102 extending through suitable apertures 104 in the support board 60 and maintained in contact with requisite portions of the conductive paths 62 to as to selective couple the various circuit elements thereof (not shown) to the paths 62 in order to process the electronic information being transmitted upon interconnection of selected portions of the conductive paths. Similarly, if desired, a suitable power supply means (not shown) may be also mounted on the support member 60.

Referring to the FIG. 7 embodiment a composite unit indicated generally by the reference numeral 104 is illustrated, including a plurality of pushbutton members 106 supported within a casing 108 which is mounted in overlying relationship with a support board 110 which may include conductive support areas, conductive contact areas, conductive elements, conductive paths etc., all as shown and described in the preceding embodiments. In addition, the unit 104 includes a visual display window 112 so as to provide a visual indication of operation of the unit when it is being utilized as an electronic calculator, for example, as an input to a computer system, etc. Similarly, if desired, the unit 104 may include a suitable print out mechanism to provide a permanent record, if desired.

In certain applications it is desirable to provide multipole switching for some or all of the keys. FIGS. 8a - 12 show several embodiments which provide this structure. Thus as seen in FIGS. 8a and 8b the FIG. 1-3 embodiment can be modified by cutting the looped or bight portion of conductive contact member 22 to form a pair of generally L-shaped members having first and second legs and bending the severed leg 23, 25 either in the same direction or in opposite directions as indicated in dashed lines in FIG. 8a and solid lines in FIG. 8b. The outer legs of contact members 23, 25 are electrically connected as by crimping and soldering to two separate conductive portions of conductive paths 16. Thus upon application of a preselected deflecting force to the central portion of a conductive element 24 in response to actuation or depression of the selected pushbutton member 26 the element 24 is caused to undergo a snap-action deflection into its overcenter position and engages both contact members 23, 25 thereby establishing an abrupt, instantaneous and positive bridging electrical contact between the set of support members 34 and the two pole contact members 23, 25 and hence between a first preselected portion of conductive paths 16 and the other two separate portions thereof. As seen schematically in FIG. 9, A represents the two support members 34 while B and B' represent contact members 23 and 25 respectively. Deflection of element 24 into bridging electrical contact between support members 34 or A and contact members 23 and 25 or B and B' effects two pole switching action.

Alternatively as seen in FIG. 10 the two pole contact members can be formed by removing a central portion of the loop of member 22, as by cutting, resulting in contact members 23', 25'. Again with reference to the schematic electrical circuit of FIG. 9, A represents the support members 34 while B and B' represent contact members 23', 25' respectively. In this embodiment it is not necessary to bend the two contact members from their original position.

Rather than employ the staple type contact members rivet like elements may be used as in FIGS. 4-6. Thus rivets 27 and 29 of FIG. 11, similar to headed rivet 70 seen in FIG. 4 are inserted through apertures in support member 12 and electrically connected, as by crimping their shanks and soldering to two separate conductive portions of conductive paths 16 as in the previous multipole embodiments. As in the previous embodiments the pole contact members 27 and 29 are represented by B and B' respectively in FIG. 9. It is of course within the purview of the invention to include three or more conductive rivets to provide three or more pole switching.

In FIG. 12 the support member corresponding to A of FIG. 9 comprises a sheet or layer 35 of electrically conductive material connectable to a voltage source in any convenient manner as by connecting to a portion of conductive paths 16. Sheet 35 is provided with an aperture 37 for each set of conductive pole contacts to form a switching cavity. Aperture 37 is generally circular when used with a conductive element 24 or 76 which also has a circular periphery. The diameter of aperture 37 is chosen so that it is slightly less than that of the conductive element 24 or 76 so that the peripheral margin of the element is supported by and in electrical connection with sheet 35. A carrier sheet 44' is disposed on top of the conductive sheet and is provided with an aperture 46' in alignment with each aperture 37. Aperture 46' is also circular to conform to the conductive element and sized just large enough to receive the element therein. Thus sheet 44' similarly to sheet 44 in FIG. 1 provides lateral restraint for the conductive elements maintaining them in their desired location. As in the previous embodiments the entire switching area can be sealed by affixing a sheet 48 of electrically insulative material thereover. Although not shown, sheet 35 can be employed with the conductive pole members shown in FIG. 8b and 11 as well as those shown in FIG. 10.

As in the FIGS. 1-3 and 4-6 embodiment it is preferred that the support members project outwardly from the surface of insulating support member 12 a preselected distance which is greater than the distance that the pole contact members project from the same surface.

Thus each conductive element is associated with a set of conductive pole contacts as well as conductive support means. A keyboard made in accordance with the invention can comprise only multipole switching key stations or alternatively it can comprise a mixture of single and multipole switching key stations. Stated in another way such a keyboard comprises at least one or more sets of conductive pole contacts having more than a single pole contact.

Thus, a unique keyboard system has been described in detail in which a particularly advantageous bridging electrical contact system is provided, the system being particularly adapted for incorporation in various systems such as electronic calculators, computer systems, etc.

Various changes and modifications in the above-described embodiments will be readily apparent to those skilled in the art and any of such changes or modifications are deemed to be within the spirit and scope of the present invention as set forth in the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed