Ion Accelerator And Ion Species Selector

King January 15, 1

Patent Grant 3786359

U.S. patent number 3,786,359 [Application Number 05/811,361] was granted by the patent office on 1974-01-15 for ion accelerator and ion species selector. This patent grant is currently assigned to Alpha Industries, Inc.. Invention is credited to William J. King.


United States Patent 3,786,359
King January 15, 1974

ION ACCELERATOR AND ION SPECIES SELECTOR

Abstract

The apparatus disclosed herein provides high energy positive ions, suitable for semiconductor doping, by projecting positive ions through an electron stripping gas at relatively low energy thereby to obtain positive ions which are multiply ionized or charged. Those ions which are raised to a preselected ionization level or state are segregated, and then accelerated by a relatively high accelerating voltage to achieve an energy suitable for ion implantation in a semiconductor matrix. Since the ions subjected to the relatively high accelerating voltage are multiply ionized, the energy imparted thereto, measured in electron volts, is substantially equal to an integer multiple of the accelerating voltage.


Inventors: King; William J. (Reading, MA)
Assignee: Alpha Industries, Inc. (Woburn, MA)
Family ID: 25206343
Appl. No.: 05/811,361
Filed: March 28, 1969

Current U.S. Class: 315/500; 250/492.1; 976/DIG.437; 438/514; 250/423R; 250/492.2
Current CPC Class: H01J 37/3171 (20130101); G21K 1/14 (20130101); H01J 49/284 (20130101)
Current International Class: G21K 1/00 (20060101); H01J 49/28 (20060101); G21K 1/14 (20060101); H01J 49/26 (20060101); H01J 37/317 (20060101); H01j 023/10 (); H01j 037/26 ()
Field of Search: ;328/233 ;250/49.5T

References Cited [Referenced By]

U.S. Patent Documents
3087055 April 1963 Liebl
3136908 June 1964 Weinman
3197633 July 1965 Von Zahn
3209269 September 1965 Julian et al.
3458743 July 1969 Cleland et al.
3475605 October 1969 Llewellyn

Other References

Maguire, "Ion Implants Forge Tailor-Made Junctions," Electronics; April 19, 1963; pages 26-29.

Primary Examiner: Segal; Robert
Attorney, Agent or Firm: Kenway, Jenney and Hildreth

Claims



What is claimed is:

1. Apparatus for providing high energy positive ions to a given ion utilization means, said apparatus comprising:

an ion source for providing positive ions;

means for defining an electron stripping canal;

means for providing to said canal a gas adapted to strip additional electrons from positive ions projected through said canal;

means for applying a relatively low accelerating voltage to ions emitted from said source thereby to project ions from said source through said canal and to thereby increase the extent of ionization of at least a portion of said ions;

means associated with said canal defining means for selecting a particular multiply ionized species in the ions emerging from said canal, species at other ionization levels being blocked; and

means for applying a relatively high accelerating voltage to said ions of the selected species thereby to further accelerate said ions of the selected species toward said utilization means, the energy thusly imparted to said ions of the selected species being substantially related to the product of said relatively high accelerating voltage and the multiple charge on each such selected ion.

2. Apparatus as set forth in claim 1 wherein said utilization means is substantially at ground potential and said source is at a relatively high positive potential.

3. Apparatus as set forth in claim 2 including means for scanning a beam of ions provided by said apparatus.

4. Apparatus as set forth in claim 1 wherein said ion source is a duoplasmatron.

5. Apparatus as set forth in claim 1 wherein said relatively low accelerating voltage is generally in the range of from 10 to 150 kilovolts.

6. Apparatus as set forth in claim 1 wherein said relatively high accelerating voltage is generally in the range of from 100 to 600 kilovolts.

7. Apparatus as set forth in claim 1 wherein said selecting means comprise means for applying crossed magnetic and electric fields to ions emerging from said stripping canal.

8. Apparatus as set forth in claim 1 including means for selectively passing ions of said selected species after acceleration by said relatively high voltage.

9. Apparatus as set forth in claim 8 wherein said means for selectively passing ions comprises means for applying an analyzing magnetic field.

10. Apparatus for providing high energy positive ions to a given ion utilization means, said apparatus comprising:

an ion source for providing positive ions;

means for defining an electron stripping canal;

means for providing to said canal a gas adapted to strip additional electrons from positive ions projected through said canal;

means for focusing a beam of said ions on said canal;

means for selecting a particular multiply ionized species of said ions emerging from said canal, species at other ionization levels being blocked;

means for focusing a beam of the ions emerging from said canal on said selecting means; and

means for applying a relatively high accelerating voltage between said selecting means and said utilization means whereby ions of said selected species are accelerated to energies which are substantially proportional to the product of said relatively high accelerating voltage and the multiply charge on each such selected ion.
Description



BACKGROUND OF THE INVENTION

It has heretofore been proposed to manufacture various semiconductor devices by implanting ions in selected portions of a semiconductor material using an energetic ion beam, thereby to achieve a desired localized doping of the semiconductor material. However, to achieve the desired depths of implantation, quite high energies, e.g., up to a million electron volts, are required in certain application. Heretofore, it has been contemplated that such high energies would be provided by employing gas insulated potential sources such as accelerators of the type typically employed for scientific investigations. However, for the purpose of commerically producing semiconductor devices, such machines are much too inflexible, too difficult to service, and too limited in ion energy range for given machine size. Further, such machines are typically quite limited in the maximum available ion current.

Among the several objects of the present invention may be noted the provision of apparatus for providing energetic ions using a primary accelerating voltage which is only a fraction of the achieved ion energy; the provision of such apparatus which may be air insulated; the provision of such apparatus which will provide a substantial ion current; the provision of such apparatus which is relatively flexible and easy to service; the provision of such apparatus which is readily adaptable to semiconductor manufacture by ion implantation; the provision of such apparatus which is relatively simple and inexpensive. Other objects and features will be in part apparent and in part pointed out hereinafter.

SUMMARY OF THE INVENTION

Briefly, apparatus according to the present invention is adapted to provide high energy positive ions to a given ion utilization means, e.g., a means for presenting semiconductor materials to the ion beam for doping. Positive ions are projected by a relatively low accelerating voltage into a stripping canal. The stripping canal is supplied with a gas adapted to strip additional electrons from the positive ions projected through the canal thereby to increase the extent of ionization of at least a portion of those ions. Those ions which are raised to a particular multiple level of ionization are selected, e.g., by means of a suitable filter, and are then subjected to a relatively high accelerating voltage. The preacceleration selection is important if unnecessary beam tube current loading is to be avoided. Overloading of the beam tube by undesired ion species might preclude achieving useful currents of ions of the desired ionization state and species, since the latter may represent only a small fraction of the total ion current leaving the stripping canal. The energy thusly imparted to the selected ions is substantially proportional to the product of the relatively high accelerating voltage and the charge on the selected ions. Thus relatively high energies are imparted to the ions reaching the utilization means.

BRIEF DESCRIPTION OF THE DRAWING

The single FIGURE is a diagrammatic illustration of an ion accelerator according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawing, a source of positive ions is indicated at 11. For facilitating the use of this apparatus in semiconductor device manufacture, source 11 is preferably of a high current type such as a duoplasmatron. A stripping canal assembly is indicated at 13. As illustrated, the stripping canal assembly comprises a T-shaped tubular structure arranged to permit a beam of ions to pass through the cross bar of the T and to permit a stripping gas to be introduced into the beam path through the transverse tubular section. The ions emitted by source 11 are focused, e.g., by a so-called Einzel lens as indicated at 15, so that the ion stream or beam passes precisely through the canal in the cross bar of the assembly 13. A gas stripping medium is discussed for illustrative purposes only. Other stripping media (e.g., solid materials in form of thin diaphragms or fine liquid jet sprays) could also be used.

Ions emerging from the stripping canal pass through a second Einzel lens 17 for re-focusing and then through a so-called Wien filter as indicated at 19. As is understood by those skilled in the art, the Wien filter applies crossed magnetic and electric fields to the beam passing therethrough. By proper selection of the field strengths, the filter operates to deflect all ions passing therethrough except those which are of a particular selected species or degree of ionization. Those ions which are deflected are intercepted by a catcher 21, while ions of the selected species pass through the catcher 21 into a main accelerating tube 23. Catcher 21 may, for example, merely comprise an apertured plate.

A relatively low accelerating voltage, e.g., 10-40 kV, is normally applied to the ion stream prior to its entry into the main accelerating tube 23. To achieve higher stripping cross-sections, however, it may be desirable to raise this voltage to 100-150 kV, especially on machines where the total available voltage is higher, e.g., 300-600 kV. As is understood by those skilled in the art, the distribution of this potential between the ion source 11 and the catcher 21 will depend upon the configurations of the lens assemblies 15 and 17. Typically, a substantial portion of the field gradient will be applied immediately adjacent the source to provide adequate ion extraction and to impart appreciable energy to the ions before they reach the stripping canal, while the gradient in the vicinity of the stripping canal assembly 13 will be minimized to avoid the deflection of ions there. Since positive ions are to be accelerated, the source 11 will be positive with respect to the catcher 21 or the input end of the main accelerating tube 23.

A relatively large accelerating voltage, e.g., 100-600 kV, is applied across the length of the accelerating tube 23. While such a voltage is relatively high as compared with the voltage applied between the source and the input end of the tube 23, it is still within the range which can be achieved by air insulated voltage sources.

Assuming that a suitable gas, which normally will have an atomic weight similar to that of the desired ion species to maximize the stripping cross-section, is supplied to the stripping canal, additional electrons will be stripped from at least a portion of the positive ions projected through the canal so that these ions will then be multiply ionized, e.g., some of the ions passing through the stripping canal will become doubly or triply, etc., ionized. This is to be contrasted with a reversal in the polarity of ionization to achieve twice the energy as in the so-called tandem machine configuration.

The parameters of the filter 19 are adjusted so that only ions of a particular species pass through the catcher 21 for further acceleration, e.g., only those ions which are triply ionized. Accordingly, current drawn from the high voltage source is not wasted in accelerating unwanted ions. Further, since the ions passed by catcher 21 are multiply ionized, the energy imparted to each such ion in transversing the main accelerating tube 23 will be substantially equal to an integer multiple of the accelerating voltage, e.g., 600, 900, 1,200, etc, keV in the case of a 300 kV accelerating voltage. Accordingly, relatively high energies are obtained even though the source voltage employed is below the range requiring gas insulation. In order to completely eliminate all particles other than the desired ion species emerging from the accelerating tube 23, the ion beam is preferably passed through the field of an analyzing magnet as indicated at 25. As is understood by those skilled in the art, such a magnetic field acts as a mass-energy filter so that stray ions, e.g., such as may be generated by random collisions within the accelerating tube, are eliminated. The ion beam emitted from the magnet structure 25 is thus substantially spectrally pure and may be utilized in the production of semiconductor devices. A crossed-field filter could also be used for this purpose.

Means for utilizing the ion beam in this fashion are indicated generally at 27. Such means may, for example, comprise apparatus for presenting a substrate 29 of semiconductor material to the beam for irradiation, thereby to selectively dope the semiconductor lattice with the material the ions of which are provided by the source 11. The beam is made to uniformly cover the desired portion of the semiconductor surface by electrostatically scanning with vertical and horizontal plates, 30 and 31 respectively. Preferably the beam utilization means is maintained at ground potential to facilitate manipulation of semiconductor materials to be treated while the stripping canal and the ion source are maintained at relatively high positive potentials with respect to ground. A vacuum interlock mechanism may be provided to allow insertion and removal of substrate 29 without the necessity of shutting off the accelerator.

In view of the foregoing it will be seen that the several objects of the invention are achieved and other advantageous results attained.

As various changes could be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed