Arterial Blood Sampler

Fortin , et al. January 15, 1

Patent Grant 3785367

U.S. patent number 3,785,367 [Application Number 05/234,267] was granted by the patent office on 1974-01-15 for arterial blood sampler. This patent grant is currently assigned to Pharmasel Division of American Hospital Supply Corporation. Invention is credited to Robert F. Fortin, Larry A. Sims.


United States Patent 3,785,367
Fortin ,   et al. January 15, 1974

ARTERIAL BLOOD SAMPLER

Abstract

A blood sampler with an arterial needle and a collapsed flexible blood pouch that snaps into inflated condition with arterial blood pressure but not with venous blood pressure. This provides a visual indication that an artery and not a vein has been punctured.


Inventors: Fortin; Robert F. (Santa Paula, CA), Sims; Larry A. (Hermosa Beach, CA)
Assignee: Pharmasel Division of American Hospital Supply Corporation (Glendale, CA)
Family ID: 22880649
Appl. No.: 05/234,267
Filed: March 13, 1972

Current U.S. Class: 600/576; 600/580; 600/584
Current CPC Class: A61B 5/1535 (20130101); A61B 5/15003 (20130101); A61B 5/150244 (20130101); A61B 5/150259 (20130101); A61B 5/150732 (20130101); A61B 5/150213 (20130101); A61B 5/150236 (20130101); A61B 5/150519 (20130101); A61B 5/150389 (20130101); A61B 5/150221 (20130101)
Current International Class: A61B 5/15 (20060101); A61b 005/14 ()
Field of Search: ;128/2F,2R,DIG.5,2.5D,214F,216,215,218R,276 ;73/409

References Cited [Referenced By]

U.S. Patent Documents
921130 May 1909 Lockwood
2676591 April 1954 Fox
2690179 September 1954 Fox
2837093 June 1958 Tash
3166070 January 1965 Everett
3335914 August 1967 Strazdins et al.
3412906 November 1968 Dinger
3424148 January 1969 Cadeillan
3468308 September 1969 Bierman
3486539 December 1969 Jacuzzi
3506005 April 1970 Gilio et al.
3527215 September 1970 DeWitt
Foreign Patent Documents
32,825 Jan 1924 DK
279,270 Jan 1965 AU
Primary Examiner: Howell; Kyle L.
Attorney, Agent or Firm: Barger; Larry N. Merrick; Robert T.

Claims



We claim:

1. An artery-vein distinguishing blood collection device comprising: a flexible pouch with an interior surface for contact with blood and an exterior surface for contact with atmospheric air; a needle of sufficient length for puncturing a human artery, which needle has a blunt rear end connected in flow communication with the interior surface of the pouch, said needle extending outwardly therefrom to a sharpened artery-puncturing forward end of the needle; a rigid transparent sleeve surrounding the pouch; adapter means rigidly mounting the needle on the rigid sleeve; said device having atmospheric vent means communicating with the exterior surface of the pouch; said flexible pouch having a structure that defines a first visible position relative to the rigid sleeve at a pressure drop from the internal surface to the external surface of the pouch in the range of 3.7 to 8 mm. Hg, and the pouch has structure defining a substantially different second visible position relative to the sleeve when there is a pressure drop from the inner surface to the outer surface of the pouch in the range of 90 to 150 mm. Hg, whereby the two substantially different structural positions are readily visible through the transparent sleeve to distinguish whether the needle is in an artery or a vein.

2. The combination as set forth in claim 1, wherein the first structural position includes a space between the flexible pouch and the rigid sleeve at a pressure drop of 3.7 to 8 mm. Hg.

3. The combination as set forth in claim 2, wherein the second structural position includes annular physical contact between the flexible pouch and the rigid sleeve at a pressure drop of 90 to 150 mm. Hg.

4. The combination as set forth in claim 1, wherein the first structural position includes a toggle cone section of the pouch with a convex inner surface facing the needle's rear end, with structure resists inversion of its convex inner surface into a concave structure with a pressure drop of 3.7 to 8 mm. Hg applied from the inner surface to the outer surface of the pouch.

5. The combination as set forth in claim 4 wherein the second structural position includes the cone section with its inner surface inverted to a concave structure with a pressure drop of 90 to 150 mm. Hg applied from the inner surface to the outer surface.

6. An artery-vein pressure distinguishing blood collecting device comprising in combination:

deformable pouch means having an interior surface for contact with a pressurized blood sample and an exterior surface subject to atmospheric pressure;

tubular needle means of a length sufficient to puncture an artery and having a distal end sharpened to penetrate an artery and an opposite end portion connected in flow communication with the interior surface of the deformable pouch means for subjecting the same to arterial blood pressure, said pouch means being constructed and arranged to be deformable to one condition when subject to internal pressures in the range of 3.7 to 8 mm. Hg and being constructed and arranged to be snap-action deformable to another readily discernable condition when subject to internal pressures in the range of 90 to 150 mm. Hg, which ranges of pressures respectively comprise the venous and arterial pressures normally to be distinguished;

adapter means including means for mounting the needle means in an operative position;

a rigid sleeve circumposed about said pouch means and including means so that the pouch can be observed in any of its deformed conditions.

7. The structure as claimed in claim 6 in which said pouch comprises an elongated flexible, resilient sack extending longitudinally of said sleeve from said needle means and substantially the length of said sleeve, said sack having a normal substantially reduced cross section as compared with said sleeve cross section, said sack in the one condition when subjected to internal pressure ranging from 3.7 to 8 mm. Hg being greater in cross section than its normal relaxed condition and substantially spaced from the inner surface of said sleeve, said sack having another deformed condition when subject to internal pressures ranging from 90 to 150 mm. Hg in which the sack cross section substantially conforms to the cross section of said sleeve.

8. The structure as claimed in claim 7 in which said sleeve is open at the end opposite said needle, said sack protruding toward and disposed adjacent the open end thereof, the open end of said sleeve subjecting the outer surface of said sack to atmospheric pressures, said rigid sleeve and adapter including means rigidly and detachably connecting the sleeve to the adapter means.

9. The structure as claimed in claim 6 in which said flexible pouch comprises a conical barrier extending transversely of the sleeve and closing off the same and forming a compartment open to the needle means for receiving pressurized blood therein, said conical barrier having a normal position in which an apex portion thereof is directed towards and substantially closes the compartment in the direction toward which it is directed, said conical barrier being invertible upon itself axially of the sleeve to substantially double the capacity of said compartment when subject to pressures in the range of 90 to 150 mm. Hg.

10. The structure as claimed in claim 9 in which said sleeve includes an open rear end for receiving piston means whereby a blood sample in said compartment may be expressed therefrom.

11. The structure as claimed in claim 10 in which said sleeve includes vent means for communicating atmospheric pressure into said sleeve and at the outer surface of said pouch opposite the compartment.

12. The structure as claimed in claim 11 in which said vent means includes closure means for closing off the vent means whereby said piston means can express the blood sample from the compartment by re-reversing the conical barrier.

13. The structure as claimed in claim 9 in which said adapter means comprises a conical portion having an inner surface substantially complementary to the inner surface of said conical barrier, the axial length of said conical barrier being such that the barrier has a substantially toggle action when subjected to the range of pressures from 90 to 150 mm. Hg whereby axial inversion thereof occurs due to arterial blood pressures and observation is readily discernable.

14. The structure as claimed in claim 13 in which said conical barrier includes a peripheral portion sandwiched between a peripheral portion of said adapter and an end portion of said sleeve.
Description



BACKGROUND

In diagnosing a patient's illness, blood samples are often taken and analyzed in a laboratory. By far the most common blood sample taken is a "venous" blood sample. This sample is usually taken with an evacuated vial connected to a hypodermic needle or with a hypodermic syringe. The vacuum in these devices sucks the blood from the patient into the vial or syringe.

Recently, it has become more prevalent to also take an "arterial" blood sample for testing blood gases and pH, etc. When taking an arterial blood sample it is very important to know that the blood sample is from an artery and not a vein. The medical parameters of arterial blood, such as the partial pressures of oxygen and carbon dioxide are often sufficiently different from those of venous blood so as to cause erroneous test results if venous blood is sampled by mistake.

In the past, arterial blood has been taken with glass syringes with precision ground barrels and plungers. Because the arterial blood pressure was significantly greater than the venous blood pressure, only the arterial pressure would push the plunger rearwardly in a glass syringe. This gave a visual indication of whether an artery or vein had been punctured. The precision ground glass syringes were very costly and for this reason they were washed and resterilized after each arterial blood sampling.

Inexpensive disposable plastic syringes with rubber stoppers failed to give the visual indication that the needle was in the patient's artery. This was because arterial pressure could not overcome the frictional drag of the rubber stopper in the disposable plastic syringe.

SUMMARY OF THE INVENTION

Our invention overcomes the problem of taking arterial blood samples present in previous glass syringes and disposable plastic syringes. We have provided an inexpensive disposable arterial blood sampler that gives a quick and accurate indication that an artery and not a vein has been punctured. Our invention has a collapsed flexible blood reservoir that snaps into an inflated position with arterial blood pressure but not with venous blood pressures. In a first version of our invention an elongated collapsed blood pouch resists inflation by venous pressure but will snap into an inflated balloon-like position when arterial pressure is applied. A second version of our invention includes a resilient cup member that inverts with arterial pressure but not with venous pressure.

THE DRAWINGS

FIG. 1 is a side elevational view, partially in section, of a first embodiment of our arterial blood sampler, showing the elongated collapsed blood pouch being inserted into a rigid protector housing;

FIG. 2 is a side elevational view, in section, of the first embodiment showing the action of the pouch when the hypodermic needle is in a vein;

FIG. 3 is a side elevational view, in section, of the first embodiment, showing the action of the pouch when the hypodermic needle is in an artery;

FIG. 4 is a side elevational view, in section, of a second embodiment, showing a resilient cup as the collapsed blood pouch;

FIG. 5 is a side elevational view, in section, of the second embodiment showing how arterial blood pressure causes the resilient cup to invert; and

FIG. 6 is a side elevational view, in section, of the second embodiment showing how the blood sample is forced out of the blood sampler and into testing equipment.

DETAILED DESCRIPTION

In FIG. 1, the first embodiment of the invention is shown as including an arterial needle 1 that includes a cannula 2 and a hub 3. This needle is connected to a hollow adapter 4 which in turn is connected to a collapsed flexible pouch 5. A ring 6 attached to the pouch's rearward end is used to pull the pouch into a rigid protector sleeve 7 and seat the adapter to the sleeve. A passage extends through the cannula, hub, adapter and pouch for passage of blood when a patient's artery is punctured with the cannula.

Once assembled as described above, the arterial blood sample is ready for use. In FIG. 2, when a nurse or physician punctures a vein with hypodermic needle 3 the flexible pouch 5 will resist inflation by the venous blood pressure, equivalent to approximately 110 mm of H.sub.2 O (8 mm Hg). Even though collapsed flexible pouch 5 may expand very slightly to receive a small amount of venous blood it is readily apparent to an operator that the needle is not in an artery. When this occurs, the needle is withdrawn from the patient's vein and another puncture made.

When the needle does enter an artery as shown in FIG. 3, the arterial pressure equivalent to approximately 90 mm Hg will quickly snap the flexible pouch 5 into an inflated condition against sleeve 7. Once the arterial blood sample has been taken the protector sleeve 7 can be removed and the sack squeezed to expel the arterial blood into blood testing equipment.

In FIGS. 4, 5 and 6 a second embodiment of the invention is shown. Referring to FIG. 4 the resilient collapsible blood pouch has a rubber cup-shaped member 10 with a mouth facing away from the needle in FIG. 4, and facing toward the needle in FIG. 5. This cup-shaped member fits inside a rigid housing 11 which has a partially closed forward end attached to a hollow tapered adapter 12. Arterial needle 13 fits on hollow tapered adapter 12. Connected to a rigid adapter 11 is a rigid barrel 14 which is secured to housing 11 to form a structure similar to a hypodermic syringe barrel. Within the barrel is an axially slidable conventional hypodermic plunger 15 with a rubber stopper 16.

A very important aspect of this second embodiment is a side vent 17 opening in rigid barrel 14. The vent opening 17 has an upstanding collar 18 surrounding it and as shown in FIG. 5 permits air to escape from the rigid barrel 14 as the resilient cup-shaped member inverts in response to arterial blood pressure. An annular space 17a between the barrel and cup-shaped member allows air to escape. Because of the vent no internal pressure is built up inside barrel 14 to resist inversion of the rubber cup. The arterial blood sampler of the second embodiment gives a very vivid visual indication of whether the sampler is in a vein (FIG. 4) or in an artery (FIG. 5).

Once the sample has been taken, the side vent 17 is closed off by a removable cap 19 which is attached to collar 18 surrounding the vent. The cap has an internal undercut groove that snaps over an external rib on the collar. Forward motion of plunger 15 and stopper 16 then forces the arterial blood collected in resilient cup-shaped member 10 out through arterial needle 13 and into blood testing equipment (not shown).

In both embodiments of this invention it is seen that the collapsed flexible blood collecting pouch has an exterior surface that is exposed to atmospheric pressure. During the arterial blood sampling there is neither suction nor pressure applied to this pouch. In the first embodiment the flexible collapsed pouch is preferably of a stretchable rubber-like material with predetermined stretch characteristics so as to not substantially inflate under venous pressure, 8 mm Hg, but readily inflate when subjected to arterial blood pressure, 90 mm Hg.

In the second embodiment the resilient cup-shaped member 10 can be of a rubber or rubber-like material and have a shape and wall thickness so as to remain in the FIG. 4 position with a convex outer surface facing the needle when subjected to venous pressures through arterial needle 13. However, when subjected to arterial pressures as in FIG. 5 the cup will rapidly invert as shown. Because venous and arterial pressures vary with patients it is desired to have the snap action of the pouch occur at approximately midway, 50 mm of Hg, between ranges of normal venous and normal arterial blood pressures. Venous pressure ranges from 3.7 to 8 mm Hg and arterial blood pressure ranges from 90 to 150 mm Hg. The arterial pressure is normally reported as being in units of mm of Hg, and venous pressure is usually measured in cm. of H.sub.2 O. However, for ready comparison the pressures throughout the application and claims have been expressed in mm Hg for both venous and arterial pressures.

In either embodiment, the flexible pouch can contain an anti-coagulant or other solution for treating the blood as soon as it flows from the patient into the pouch. In the first embodiment the adapter 4 and rigid sleeve are preferably made of a conventional thermoplastic material. Likewise in the second embodiment the rigid adapter 11, barrel 14 and cap 19 are also made of conventional thermoplastic materials. The flexible pouch is preferably sufficiently thin and sufficiently transparent or translucent to visibly show blood entering the pouch.

Throughout the specification and claims we have used the word "snap" to describe the quick inflation of the flexible pouch when subjected to arterial blood pressure. We intend this word to describe an action of the pouch that is significantly great in speed and volume of inflation so as to clearly distinguish an arterial puncture from a venous puncture with its slow seeping blood which does not substantially inflate the flexible pouch.

In the foregoing description we have used specific examples to describe our invention. However, it is understood that those persons skilled in the art can readily make certain modifications to these embodiments without departing from the spirit and scope of the invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed