Weighted Surgical Clamp Having Foldable Prop

Jacobs January 8, 1

Patent Grant 3783873

U.S. patent number 3,783,873 [Application Number 05/181,040] was granted by the patent office on 1974-01-08 for weighted surgical clamp having foldable prop. Invention is credited to Harvey Barry Jacobs.


United States Patent 3,783,873
Jacobs January 8, 1974

WEIGHTED SURGICAL CLAMP HAVING FOLDABLE PROP

Abstract

Weighted clamp for surgical retracting use in the operating room. In one form, a clamp is fitted with weights in one or both handles which may be detachable and will vary in accordance with the surgical procedure. For gall bladder or hernia operations in adults the weights may vary from about 1/2 pounds to about 5 pounds. In infants the weights are smaller, e.g., from 1/4 to 2 pounds. For venous or arterial surgery the weights may vary from 2 to 6 ounces for light veins up to 1-2 pounds for larger arteries. For use in stabilizing fractures the weights vary from 2 pounds up to 50 pounds. The weighted units may be screwed on, clipped on, pushed on or magnetically attached to or taken off of the handle. A pivoted folding prop is attached to each leg of the clamp. The arms of the prop are swung outwardly to stabilize the weighted clamp in, outside or on the body. A modified form of weighted clamp is fitted with a suction pad in the jaw portion for atraumatically holding hollow organs, such as bowel, heart or lung or solid organs such as spleen, liver, or kidney and the handles with pad may be separated by unbolting at the scissors pivot.


Inventors: Jacobs; Harvey Barry (Reston, VA)
Family ID: 22662653
Appl. No.: 05/181,040
Filed: September 16, 1971

Current U.S. Class: 606/151; 606/208; 606/205
Current CPC Class: A61B 17/2812 (20130101); A61B 17/04 (20130101); A61B 17/0206 (20130101); A61B 2017/2837 (20130101); A61B 2017/306 (20130101); A61B 2017/1125 (20130101)
Current International Class: A61B 17/28 (20060101); A61B 17/02 (20060101); A61B 17/04 (20060101); A61B 17/11 (20060101); A61B 17/30 (20060101); A61B 17/03 (20060101); A61b 017/02 (); A61b 017/08 (); A61b 017/28 ()
Field of Search: ;7/4 ;81/5.1,415,418 ;128/17,20,69,75,84B,84C,84R,297,299,321,325,346,33R

References Cited [Referenced By]

U.S. Patent Documents
1852542 April 1932 Sovatkin
1980803 November 1934 Johnson
2082782 June 1937 Allen
2829649 April 1958 Glenner
2835253 May 1958 Borgeson
2913943 November 1959 Carlson et al.
3361133 January 1968 Kimberley
2858826 November 1958 Kahn
Foreign Patent Documents
709,273 May 1954 GB

Other References

"Progress in Surgery," In Am. Jour. Surg. 28 : 52-55. 1914..

Primary Examiner: Pace; Channing L.
Attorney, Agent or Firm: Saffitz; Abraham A.

Claims



What is claimed is:

1. A weighted clamp adapted to thoracic surgery, cardio-vascular surgery, eye surgery and other surgical procedures wherein a low profile is presented in the operating field, and which eliminates the need for an assistant to hold the retracted clamp during surgery comprising:

a. a pair of shaft members with handles at one end and terminating in jaw portions at other ends thereof;

b. pivot means for opening and closing said shaft members;

c. latch and unlatch means to hold the jaws in latched position for retraction and to unlatch the jaws when the clamp is to be opened;

d. attachment means at the end of the handles of said shaft handle members; and

e. separably attachable weights adapted to be attached to either one or both of said attachment means of said shaft handles.

2. A weighted clamp which eliminates the need for an assistant to hold the retracted clamp during surgery, comprising:

a. a pair of shaft members with handles at one end and terminating in jaw portions at opposite ends thereof;

b. pivot means for opening and closing said shaft members;

c. latch and unlatch means to hold the jaws in latched position for retraction and to unlatch the jaws when the clamp is to be opened;

d. attachment means at the end of each of said shaft handles;

e. separably attachable weights adapted to be attached to either one or both of said attachment means of said shaft handles; and

f. monopod means foldably and pivotally attached to at least one of said shaft handles between the pivot means and handle, said monopod being foldable to lie flush against the shaft when not in use and being pivotably foldable at 90.degree. to an erected position for supporting said weighted clamp.
Description



This invention relates to a weighted locking clamp for surgical retracting use which facilitates delicate surgical operations under conditions wherein the jaws of the clamp are attached directly to the anatomical structure or to a drain structure placed around the anatomical structure subject to surgery and wherein one or both handles of clamp at the most remote point from the jaws are provided with weights, preferably detachable weights, to assist in stabilizing the clamp in latched position and thereby free the surgeon or his assistant for other tasks during the surgical procedure.

In a particularly preferred embodiment the weighted clamp of the invention is provided with folding arms pivotally attached to each leg of the clamp which are swingable outward to form a foldable prop support adapting the weighted clamp to be positioned in substantially any location on or in the body during surgical procedure to thereby eliminate the usual type of obstruction which conventional locking clamps have provided. This usual obstruction requires the service of a special surgical assistant to hold and manipulate the conventional clamp under the surgeon's direction.

In a modified form of the invention, a weighted clamp is fitted with a suction cup in the jaw portion for holding organs such as heart, lung, spleen, bowel, liver or kidney.

A preferred form of the invention comprises a weighted clamp whose weight is either evenly distributed between the two handles or located mainly in one handle depending upon the area of the operation.

Although in most surgical applications, there will be sufficient lateral width or space for movement about the handle portion of the weighted clamp there are instances where the space is very limited, as for example in neck or thyroid surgery, or in pediatric surgery wherein the surgical field is very limited and the placement of the weight in one handle permits a delicate balance for stabilizing the clamp at the handle end. This is simply done by using a single weight at the handle which rests on the part of the patient most remote from the surgical field. In this manner, there is a minimum amount of space occupied by the surgical apparatus.

Weights of varying sizes are described below in terms of surgical procedures and provision is made for additional weights to be screwed on, clipped on, pushed on or attached by magnet means to increase the clamp's weight without having to remove it and to use a second one in its place. The gripping jaws of the clamp may be smooth, or tooth-like, or slightly roughened and the ends of the jaw may have a ring or locking end, or pointed teeth ends, depending upon the type of tissues or materials which are worked upon as a primary retractor.

The weighted clamp of the invention is uniquely adapted to be used in all fields of surgery as illustrative examples below indicate and the weights are tailored to the uses in specific surgical procedures but the illustrative examples are not limited exclusively to these weights or these procedures.

For example, retracting around the spermatic cord when the spermatic cord is elevated in a surgical procedure generally employs a soft rubber drain placed around the cord and a clamp attached to the drain for the surgeon's assistant to hold and retract. This conventional clamp can be replaced by the weighted clamp of the present invention in which the unit of weight in an adult is between 1 to 3 pounds and in a child from 1/2 to 11/2 pounds with the result that the assistant is freed for other tasks. In addition, for retraction around delicate arteries and veins, the weights can run from 2 ounces to 11/2 pounds, depending upon the size of the vessels, and for such delicate work, has a great advantage for the surgeon to be free from having to work with an untrained assistant. Also, around intestines, weights run from 6 ounces to 3 pounds, around nerve structures from 2 ounces to 11/2 pounds and around tendons from 4 ounces to 4 pounds.

It is particularly advantageous to use the weighted retractor of the invention in combination with suction means and special elastomeric suction pads which are operative individually or together to gently grasp by suction forces relatively large areas of hollow or solid tissue without any danger of ripping, tearing, or crushing, the suction holding forces being controlled by a simple adjustment of line vacuum. In this embodiment of weighted clamp with suction pads, a single clamp handle may be separated pivot-bolt to permit each handle (scissor's leg) to be separately used as a weighted suction lever. Used in this manner, delicate emergency intestinal anastomosis may be performed by one surgeon under the most difficult circumstances without the need for any additional skilled surgical assistants. This model may be used with unique benefits in manipulating lung, heart, spleen, liver and kidney under secure atraumatic control.

In its use in rectal surgery, weights of 2 to 8 pounds are used. To hold sutures in anastomostic areas as counter traction, from 2 ounces to 4 pounds are employed as weight. In its use in orthopedic surgery to help maintain the stabilization portion of fractures, prior to its permanent fixation, a metal ring or a band is placed around the fractured portion and the orthopedic clamp is used with detachable weights from 6 ounces to 50 pounds, depending upon the kind of bone fracture and the location of the fracture.

In setting upon surgical fractures seriously limited surgical fields are encountered and heavy weights and forces must be applied in precise locations to facilitate accuracy in mating and joining broken bone surfaces. The orthopedic model of weighted clamp of the invention provides a unique means for the orthopedic surgeon to supply these forces and weights by himself, and without further injury to muscle tissue, nerve, ligament, etc., by applying the minimum weights to accomplish retraction and thereafter changing the weights (adding or subtracting) as required to aid alignment and healing. In this connection, the orthopedic model provides the unique advantage of permitting weight substitution in cooperation with band substitution (one or more bands being usable), the band width in the jaw portion (see FIG. 6) being adapted for the handle weight and bone area requirements. Heretofore, these have been very difficult adjustments to make by the surgeon working alone.

In eye surgery to hold suture material weights can run from 1/2 ounce to 8 ounces. In head and neck surgery for pulling flaps of tissue away or to mobilize portions of specimens, from 4 ounces to 4 pounds and unbalanced weights are preferred. Also, in cardio-vascular surgery for holding suture material or holding major blood vessels, 2 ounces to 2 pounds is employed. In urological procedures, to hold the ureter weights can be from 2 ounces to one pound. These are only but a few of the numerous uses of this clamp.

The following table illustrates preferred detachable weights for surgery:

Procedure Retracted Area Optimum Range Bones Bone-shaft 8 lbs 2-50 lbs Tendons Tendon 3 lbs 1-6 lbs Hysterectomy Uterus 3 lbs 2-8 lbs Celiotomy Fascia and peritoneum 3 lbs 2-4 lbs Cholycystectomy Fundus of gall bladder 2 lbs 2-8 lbs Hemorrhoidectomy Anal skin 2 lbs 1-6 lbs Adult hernorrhaphy Spermatic cord 2 lbs 1-3 lbs Esophagectomy (adult) Esophagus 2 lbs 1-4 lbs Ureteral surgery Ureter 1 lb 1/2-2 lbs Pediatric hernior- raphy Spermatic cord 1 lb 1/2-11/2 lbs Esophagectomy (pediatric) Esophagus 1 lb 1/2-2 lbs Arterial surgery (large) Artery 1 lb 1 -2 lbs Venous dissection Vein 1/2 small 1/2-1 1/2 lbs Intestinal anastom- Intestinal holding osis suture or clamp 12 oz 1/2-3 lbs Large nerve dissec- tion Large nerve 10 oz 1/2-1 lb Smaller arteries Artery 10 oz 6-14 oz and nerves Nerve 4 oz 2 -14 oz

When the clamp is applied, and if additional weighting is deemed necessary, these can be screwed, clipped, attached by magnets or hooks to the previous weighted unit without having to remove this unit or it can be interchanged with one of a heavier design.

The gripping end of the clamp can be also made in such a manner that it can be detached and a more preferred type of gripping unit for that procedure applied by either screwing or insertion via clipping type of connection to the shaft end. A foldable prop structure can be built into the gripping portion of the clamp as an optional feature to allow the tip to be elevated above the weighted portion to retract the tissue away from other portions of the surgical field.

In gall bladder surgery the weighted clamp may be used without the foldable prop structure and a recommended procedure is to start the dissection with an 8 lb weight locked onto the top of the gall bladder to tension the bladder, duct and associated artery. After surgical removal of the gall bladder from attachment to the liver, the weight is dropped to 1 -2 pounds to reduce the tension which is now placed on the delicate artery and the duct. Accidental ripping of the artery or duct is thereby minimized.

In hernia surgery the tripod structure raises the clamped area, stabilizes the retractor unit, and effectively expands the surgical space by utilizing the height dimension without any obstruction by a surgical assistant or the need for his services for this function. There is no benefit in changing weights in this hernia procedure.

In hysterectomy procedures, the surgical phase for ovarian dissection requires retraction of delicate processes, and the weighted clamp with foldable prop can provide significant advantages especially since the procedure starts with a relatively light weight of 1 -2 pounds and the weight must be increased to about 6 -9 pounds when the dissection of the uterus begins, following completion of the ovarian procedure. Particularly with obese patients, there is need to expose the ovarian structure and the foldable prop is invaluable for this purpose.

An object of the invention is to provide a weighted, clamp for use in surgical retracting operations in the emergency room or in the operating room which frees the surgeon's assistant to assist in other and usually more delicate parts of the operative procedures. A further object of the invention is to provide a combination of handled-weighted surgical clamp means with detachable and varying weights in the handle while the jaws are in the locked position, with folding prop support means adjacent to the pivot tongs of the clamp, these support means being adapted to stabilize fully retracted clamp in locked position on, outside, or in the body during surgery, and to elevate the jaws above the weighted handle level.

The invention will be better understood and additional objects will become apparent from the following detailed description of certain preferred embodiments illustrated in the accompanying drawings. Various changes may be made, however, in the details of construction and arrangement of parts and certain features may be used without others. All such modifications within the scope of the appended claims are included within the invention.

While the invention is described with particular reference to hernia, gall bladder, arterial and surgical fracture traction operations, it is to be understood that certain features of the invention are also applicable to the variably weighted clamping and/or retracting of arteries, veins, nerves, fascia, muscles, etc. and to the support of the weighted clamp.

The invention as described below will be better understood from the appended drawings, in which:

FIG. 1 is a perspective view of a weighted clamp in accordance with the invention which is adapted to receive screwed-on weights of various sizes in the handle portion.

FIG. 2 is a side elevational view of the clamp of FIG. 1.

FIG. 3 is a fragmentary view partly in section and partly in elevation showing a modification of magnetic detachable handle weight useful in vein and nerve surgery.

FIG. 4 is a fragmentary view partly in section and partly in perspective showing the screw-on handle weight especially useful for hernia, gall bladder and rectal surgery.

FIG. 5 is a fragmentary view partly in section and partly in perspective showing orthopedic hook and eye detachable handle weight.

FIG. 6 is a perspective view of an orthopedic weighted clamp in accordance with the invention.

FIG. 6A is a fragmentary view of a modification of hook and eye clamp like that in FIG. 6 but useful for holding fascia.

FIG. 7 is a side elevational view of the orthopedic weighted clamp of FIG. 6 with the flexible band holding onto bone.

FIG. 8 is a fragmentary perspective view of a preferred lateral pivot and 90.degree. hinge foldable prop joint.

FIG. 9 is a perspective view of a weighted clamp having removable jaw sections and a removable scissors pivot bolt, this embodiment being adapted for separation of each handle.

FIG. 10 is a perspective view of a separated handle with a suction pad in the jaw portion in place of the removed serrated jaw sections, and shows the handle after removal of the scissors pivot bolt, this embodiment being adapted for atraumatic manipulation of hollow or solid organs, e.g., bowel, lung, spleen, liver or kidney.

FIG. 11 is a cross-sectional view of the handle of FIG. 10 along line 11--11 of FIG. 10.

FIG. 12 shows a fragmentary portion of the pad end illustrating flexibility of the distal suction end of the pad conduit which is made of flexible plastic.

FIG. 13 shows diagrammatically the magnetic attachment of a weight to the handle bottom which is provided with a suction conduit for attachment to a vacuum line.

FIG. 14 shows a diagrammatic fashion a screw fitted attachment for the handle bottom of the type in FIG. 13.

FIG. 15 shows a sectional view of the suction pad with multiple perforations adapted to diffuse the suction over the entire pad area.

A preferred embodiment having various types of modified weighted handle members and jaw members is shown in FIGS. 1-8 wherein the clamp 1 comprises a pair of similar metal jaws, a pivot for the handle jaws, and foldable props. In FIGS. 1 and 2, the jaws 11 and 12 are hinged together at pivot 13 for movement toward and away from each other. A sliding movement rather than a pivotal movement may be provided by modifying the pivot arrangement if desired. The jaw 11 in FIGS. 1 and 2 is integral with a handle portion 15 to provide a scissors action for opening and closing the jaws. The jaws may be bent at 17 to a considerable angle relative to the pivotal and handle portions as shown in these FIGS. The handles 15 and 16 have locking lugs 18 equipped with interengaging ratchet teeth 19 to lock the jaws in closed or partially closed positions.

In FIGS. 1 and 2 the jaws 11 and 12 have ridges 9 incorporated on their adjacent touching surfaces and these ridges hold the clamped object without slipping. For heavy duty surgery the adjacent edges may be of the tooth 8 in socket 7 variety as shown in FIGS. 6 and 7, this tooth and socket being used to hold the band 6 in FIGS. 6 and 7 by locking the eyelets 5 together. This band is used in orthopedic surgery where the band is passed around a bone and heavy weighted units are used as shown in the Table herein.

The handles 15 and 16 in FIGS. 1 and 2 have weights 3 and 4 respectively incorporated in their structure and projecting proximally. The weights may be evenly distributed or may be mostly distributed in one member. The shapes can be cylindrical, oval, rectangular, dish-like or triangular but must be so shaped to allow complete locking of the ratchet teeth 19. They are preferably made of sterilizable stainless steel coverings 1 and 2 and the inside of these coverings can be filled with heavy material such as lead 20 and 21.

Shafts 22 and 23 have foldable prop members 24 and 25 attached by the pivot bending hinges 26 and 27. The hinge joint (see FIG. 8) 28 allows full extension to 90.degree. and pivot joint 29 allows lateral extension of foldable proper members 24 and 25. At the end of foldable prop members 24 and 25 is the stand members 30 and 31. These elevate the jaw end of the clamp in relation to the surgical field and the handle. This may be of the concave semi-circular form depicted or sharp needle or tooth-like end as well as pincer-like holding ends.

The end of the weights have provision for the attachments of additional weights as deemed necessary by the surgeon. These weights come in different sizes and shapes to suit the particular operation. There are screw-like threads 34 and 35 (not shown) incorporated in weights 3 and 4 into which screw in weight 38 via screw 36. There is provision for additional weights to be added via screw threaded holes 40 without the necessity for removing the clamp (see FIG. 4).

The weight attachment device (see FIG. 3) may be of the magnetic variety 42 and 43 with lateral stabilization members 44 and 45. With heavy orthopedic like weights (see FIG. 5) a hook and eye arrangement, 46 and 47, may be conveniently used.

Foldable prop units 24 and 25 are stored parallel and stabilized against shafts 22 and 23 by securing or holding units 32 and 33, when not in use.

In the embodiments shown in FIGS. 1-8 if only jaw 15 is weighted then the corresponding foldable prop 25 may be used in a narrow surgical space as in pediatric surgery or in neck surgery, for example, and this is of great advantage in providing all of the weight on one side of the clamp.

In other surgical uses, of the clamp in FIGS. 1-8, both foldable props are folded back, for example, in thoracic surgery where it is necessary that the jaws must be below the patient's outer chest to eliminate any hazards in snagging and to permit full movement. Thus, in this application, the weighted clamp is used without a foldable prop.

Although the weighted orthopedic clamp embodiment shown in FIG. 6 is shown in combination with a band, it is contemplated that the clamp may be used without a band and that the straight hook portion 8 may be elongated and provided with a sharpened point for form fascia hook 8a, shown in FIG. 6A, which fits into the straight elongated eye portion 72; and this modified jaw structure can be used with great advantage in holding delicate fascia without crushing. It is believed that this novel jaw has not heretofore been provided or used in any clamp, surgical or otherwise, and certainly has not been provided in a weighted clamp. In this latter embodiment, the weighting of the clamp permits atraumatic holding of the fascia without the need for a surgical assistant.

In the embodiments of FIGS. 9-15, a modification of weighted clamp is provided with a soft suction cup in the jaw which, when suction means is applied, serves to hold soft organs such as bowel, liver or spleen, heart or lung, without any danger of tearing or ripping. In this suction form of weighted clamp, it is possible to use the foldable prop with only one of the weights, as shown in FIG. 9.

It is also contemplated that both of the foldable props may be folded back for thoracic surgery, or that one foldable prop may be folded back for periatric or neck surgery with the embodiments of FIGS. 1-8.

However, the suction embodiments of FIGS. 9-15 all preferably employ a removable scissors pivot bolt 56 which effects separation of each handle to permit atraumatic manipulation of the soft or hollow organ by a single handle part or which, without disassembly, permits suction to be applied to both jaws.

As shown in FIG. 9, suction is transmitted via flexible plastic tubing 48 and flexible plastic conduits 49a and 49b to hollow connectors 59a and 59b and to lumens 50a and 50b in the handle shafts 23 and 22, respectively. Lumens 50a and 50b pass around the pivot bolt 56 and terminate at a hollow screw opening in the connectors 55a and 55b, respectively. The handles 22 and 23 can be easily separated at bolt 56 (see FIG. 10) and the flexible elastomeric suction pad 51 is screwed in at the hollow threaded opening 55a. Suction is then applied through lumen 50a, screw joint (see FIG. 11), and hollow suction pad shaft 54 so as to grip the organ through multiple openings 52 and the hollow suction diffusing pad 51. This suction pad structure is shown in cross section in FIG. 15. A flexible plastic tubular handle 57 (see FIG. 12) may be used instead of the solid metal handle 23 or instead of the threaded metal and plastic assembly of interfitting tubes 23 and 53 in FIG. 10. The additional weights 43 may be attached by magnetic means and are stabilized by lateral plug in members 45 and 44 as shown in FIG. 13. Alternatively, the additional weights 38 may be added by means of the screw-in connector 36 (see FIG. 14) whereby the screw 36 fits into socket joint 34.

In the light of the foregoing description of the weighted clamps with soft suction cup and separable shaft features in FIGS. 9-15 and in the light of the locking-type clamps in FIGS. 1-8 which may utilize one or both tripods, it is seen that the various embodiments illustrated herein provide a weighted clamp adapted for broad utility in surgery to eliminate the need for an assistant to hold and retract the clamp and to permit the necessary manipulation of the shaft handles by the surgeon who is acting alone. The surgeon may lock or unlock the jaws relying upon the lock and unlock means; he may disengage the pivot means (see FIG. 9) to use a single suction pad for holding soft tissue (see FIG. 10); and he may readily add or subtract weights in units varying from 1/2 ounce for eye surgery up to about 50 pounds for orthopedic surgery.

The versatility of the embodiment of the invention set forth in FIGS. 9-15 can be better appreciated in terms of the separability of the shaft handle fitted with elastomeric suction pad means if one considers the uses the surgeon makes of the separated shaft handles in emergency situations. For example, in pediatrics where the flexible plastic distal portion of the conduit 57 (see FIG. 12) is lengthened relative to the receiving handle portion as shown in FIG. 10, the resultant suction handle shaft embodiment has unique utility to pick up and remove foreign objects for the windpipe and trachea of a child who has swallowed a foreign object.

Obviously, the dimensions of the pad may be varied to accommodate specific holding tasks in pediatric emergency procedures and different pad sizes and shapes are contemplated for working with large or small organs or foreign objects.

Additional versatility in the utilization of the separated suction shaft handle and pad assembly of FIGS. 10 and 12 is had by reason of the selection of the material which makes up the hollow suction pad shaft portion, this material being a rigid metal or rigid plastic in FIG. 10 (see reference numeral 54) and being a flexible plastic in FIG. 12. Suitable rigid materials are aluminum, stainless steel, magnesium aluminum alloy, acrylonitrile -- butadiene-styrene copolymer plastic, phenol formaldehyde resin or impact-resistant polystyrene. Suitable flexible plastics are polyethylene, nylon, cellulose acetate, vinyl chloride polymers and copolymers, and soft acrylic polymers and copolymers such as are based upon copolymerization of ethyl or butyl acrylate, acrylonitrile and styrene.

The detachable pad 51 is formed of a soft elastomer which is readily sterilized, such as polyurethane elastomer, polyether-polyurethane elastomer, vulcanized gum rubber, butadiene-acrylonitrile rubber, polyvinyl chloride plastisol, ethylene-propylene rubber and the like, and which is not toxic or irritating to animal tissue.

If the surgical use is to be carried out in tissue areas where blood clotting occurs because of the introduction of the plastic, then Dacron, Teflon and silicone plastics, which are known to be non-pyrogenic, may be employed.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed