Planetime Clock

Didik October 23, 1

Patent Grant 3766727

U.S. patent number 3,766,727 [Application Number 05/128,251] was granted by the patent office on 1973-10-23 for planetime clock. Invention is credited to Frank T. Didik.


United States Patent 3,766,727
Didik October 23, 1973

PLANETIME CLOCK

Abstract

The planetime clock represents the solar system in miniature and has a stellar background. Being synchronized to the true solar system and star zones, the relative position of each planet in relationship to each other and the constellations can be observed at all times. In particular it defines the earth and moon with their relative motions.


Inventors: Didik; Frank T. (New York, NY)
Family ID: 22434395
Appl. No.: 05/128,251
Filed: August 12, 1971

Current U.S. Class: 368/15; 368/276; 434/294; 968/210
Current CPC Class: G04B 19/268 (20130101)
Current International Class: G04B 19/26 (20060101); G04B 19/00 (20060101); G04b 019/26 ()
Field of Search: ;58/3,152R ;35/42.5,43,45,46,47

References Cited [Referenced By]

U.S. Patent Documents
72612 December 1867 Davis
3029528 April 1962 Verson
Foreign Patent Documents
1,157,417 Jun 1962 DT
Primary Examiner: Wilkinson; Richard B.
Assistant Examiner: Jackmon; Edith C. S.

Claims



Having described the Planetime Clock I claim :

1. A planetary clock comprising

a timer,

a shaft driven by said timer and containing a first spur gear, a second spur gear, and a first worm gear,

a second worm gear and a third worm gear each being driven by said first worm gear and having a first set of five spur gears and a second set of five spur gears, respectively,

A set of 12 shafts comprising a central column of 11 telescoping tube shafts and one solid center shaft containing an hour hand and a representative sun disk attached thereto wherein five shafts of said set of 12 shafts are driven by the second worm gear and four shafts of said set of 12 shafts are driven by the third worm gear,

Nine clock hands, wherein each hand is attached at one end to one of said five shafts and said four shafts and is attached at the other end to corresponding ones of the nine planet spheres of Jupiter, Saturn, Uranus, Neptune, Pluto, Mercury, Venus, Mars, and the earth-moon combination,

A representative sun disk,

A second set of three tube shafts, wherein the first of said second set of three tube shafts rotates the earth sphere by means of a first pulley, the second of said second set of three tube shafts by means of a second pulley holds the earth with its axis fixed at an incline, the third of said second set of three tube shafts drives the moon by means of a third pulley, and said first pulley and said solid center shaft are driven respectively by one of the two spur gears of the timer's shaft,

A star background in which each of the spheres revolves around the sun at a rate equal to the periods that the corresponding true planet revolves around the sun.
Description



This is a clock comprising "nine spheres symbolizing the planets with their corresponding number of moons," suspended on clock hands. Against a stellar background these spheres circle a central axis covered with a "disk symbolizing the sun" in the same period of time that it takes the true planets to circle the sun. For the sake of practicability and display, the spheres are more uniform in size while their orbits are circular and in a single flat plane in contrast to exact solar scale.

Special emphases are placed on the motions of the earth and moon spheres which follow :

Together they take one year to make a complete circle around the sun disk.

At all times the earth-spher's north-south polar axis, inclined at an angle of 23.degree. 27' to its orbit plane, remains fixed to the same points in infinity.

The earth-sphere rotates on its axis once every 24 hours.

The moon-sphere revolves around the earth-sphere's equator every 27.3217 days to complete a sideral circle.

In effect, together they have the same "basic" motions and time periods as the true earth and moon.

Revolving against a background of the star constellations, the relative star zone position of each planet can be observed.

Above the planet spheres an hour sweep hand rotates once every 24 hours.

FIG. 1 in the drawing shows the mechanism of the Planetime Clock in entirety. p FIG. 2 shows the earth and moon spheres mechanism in detail.

FIG. 3 shows the pulley details that rotates the earth-sphere, and revolves the moon-sphere.

FIG. 4 shows the method that the clock hands are attached to the tube shafts.

FIG. 5 shows the earth and moon sphere's power pulleys connected to their tube shafts and gears; plus the bearings.

FIG. 6 shows in detail the bearing grooves in the gears with bearings.

FIG. 7 shows the complete clock, one of the numerous face and casing shapes possible.

The mechanism of this clock is composed primarily of worm gears, spur gears and pulleys. Starting in FIG. 1, no. 2 is a 24 hour electrical or hand wound mechanical timer of long duration. The timer's shaft no. 1 rotates once every 24 hours (1 day) and powers worm gear no. 3 which has a ratio of one to 72 one worm thread to 74 72 wheel eeth). Shaft no. 4 connected to worm gear no. 3, rotates once every 72 days and powers worm gears no. 6 and no. 5. Worm gear no. 5 has an equal ratio of ne21 to 1 (an equal number of worm threads to wheel teeth) and worm gear no. 6 has a ratio of one to 72 (one worm thread to 72 wheel teeth). Shaft no. 7 connected to worm gear no. 6 rotates once every 5184 days.

All other gears from no. 10 to no. 34 are spur gears excluding non-moveable "dead" gear no. 24.

Pinion gears no. 10, 12, 14, 16 and gear no. 18 are fitted on shaft no. 7.

Pinion gear no. 10 powers gear no. 11 and has a fractional diameter ratio of one to 17.5032 (10 teeth to 175 teth).48 Imbedded in gear no. 11 is tube shaft no. 46 which extends upright and is connected to clodk hand and Pluto-sphere no. 47. Gear no. 11 rotates and the Pluto-sphere revolves around the sun disk no. 60 in a counterclockwise direction to complete a sideral circle in 90,737 days (248.43 years).

Pinion gear no. 12 powers gear no. 13 and has a fractional diameter ratio of one to 11.6106 (18 teeth to 209 teeth. Imbedded in gear no. 13 is tube shaft no. 45 which extends upright and is onnected to clock hand and Neptune-spher no. 48 with two stationary moons no. 65. Gear no. 13 rotates and the Neptune-sphere revolves around the sun disk no. 60 in a counterclockwise direction to complete a sideral circle in 60,190 days (164.79 years).

Pinion gear no. 9192 powers gear no. 15 and has a fractional diameter ratio of o20 to 5.9192, (36 teeth to 213 teeth). Imbedded in gear no. 15 is tube shaft no. 44 which extends upright and is connected to clock hand and Uranus-sphere no. 49 with five stationary moons no. 65. Gear no. 15 rotates and the Uranus-sphere revolves around the sun disk no. 60 in a counterclockwise direction to complete a sideral circle in 30,685 days (84.01 years).

Pinion gear no. 16 powers gear no. 17 and has a fractional diameter ratio of one to 2.0754 (67 teeth to 139 teeth). Imbedded in gear no. 17 is tube shaft no. 43 which extends upright and is connected to clock hand and Saturn-sphere no. 50 with three encompassing rings and nine stationary moons no. 65. Gear no. 17 rotates and the Saturn-sphere revolves around the sun disk no. 60 in a counterclockwise direction to complete a sideral circle in 10,759 days (29.46 years).

Gear no. 18 powers pinion gear no. 19 and has a fractional diameter ratio of one to 0.8357 (pinion gear no. 1) (121 teeth to 101 eeth). Imbedded in gear no. 19 is tube shaft no. 42 which extends upright and is connected to clock hand and Jupiter-sphere no. 51 with 12 stationary moons no. 65. Gear no. 19 rotates and the Jupiter-sphere revolves around the sun disk no. 60 in a countercloskwise direction to complete a sideral circle in 4,333 days (11.86 years).

Gears no. 25 and 33 are fitted on shaft no. 1 which rotates once every 24 hours.

Gear no. 33 powers gear no. 34 and has an equal diameter rato of one to one and an equal number of teeth). Gear no. 34 is fitted on solid shaft no. 64 which extends upward from the bottom of the frame to the sun disk no. 60, and further upward to the hour sweep hand no. 61. The sun disk no. 60 and the hour sweep hand no. 61 are both fitted on shaft no. 64. Gear no. 34, the sun disk no. 60 and the hour sweep hand no. 61 rotate counterclockwise to complete a circle once every 24 hours.

Pinion gears no. 20, 22, 29, 31 and gear no. 27 are fitted on shaft no. 9 which rotates once every 72 days.

Pinion gear no. 20 powers gear no. 21 and has a fractional diameter ratio of one to 9.5416 (13 teeth to 124 teeth). Imbedded in gear no. 21 is tube shaft no. 41 which extends upright and is connected to clock hand and Mars-sphere no. 52 with two stationary moons no. 65. Gear no. 21 rotates and the Mars-sphere revolves around the sun disk no. 60 in a counter-clockwise direction to complete a sideral circle in 686.98 days (1.88 years).

Pinion gear no. 29 powers gear no. 30 and has a fractional diameter ratio of one to 3.1208 21 33 teeth to 103 teeth). Imbedded in gear no. 30 is tube shaft no. 36 which extends upright and is connected to clock hand and Venus-sphere no. 55. Gear no. 30 rotates and the Venus-sphere revolves around the sun disk no. 60 in a counterclockwise direction to complete a sideral circle in 224.7 days (0.615 of a year).

Pinion gear no. 31 powers gear no. 32 and has a fractional diameter ratio of one to 1.2078, 63 teeth to 76 teeth. Imbedded in gear no. 32 is tube shaft no. 35 which extends upright and is connected to clock hand Mercury-sphere no. 56. Gear no. 32 rotates and the Mercury-sphere revolves around the sun disk no. 60 in a counterclockwise direction to complete a sideral circle in 87.97 days (0.241 of a year).

Following are the gearing and timing periods for the earth and moon spheres.

Pinion gear no. 22 powers gear no. 23 and has a fractional diameter ratio of one to 5.0730 (28 teeth to 142 teeth).45 Imbedded in gear no. 23 is tube shaft no. 40 which extends upright and is connected toclock hand no. 73 that supports the whole earth sphere-moon sphere mechanism, being attached to it by shaft no. 71 of pulley no. 59. Gear no. 23 rotates and this whole mechanism revolves around the sun disk no. 60 in a counter-clockwise direction to complete a sideral circle in 365.256 days (1 year).

Gear no. 24 is a non-moveable "dead" gear and is anchored to the clock frame. Imbedded in gear no. 24 is tube shaft no. 39 which extends upright and has a non-moveable "dead" pulley on its upper edge. This pulley is connected to pulley no. 59 by a belt and they have an equal ratio of one to one. Screwed into pulley no. 59 is the earth-sphere's axis (tube bushing no. 70 which supports the earth-moon sphere mechanism) and also the "rotation and time indicator hand no. 66." As the whole mechanism revolves around th sun disk no. 60 by clock and no. 73, pulley no. 59 rotates on its shaft no. 71 by the connecting belt, keeping the earth-sphere's north-south polar axis (inclined at an angle of 23.degree. 27' to its orbit plane) fixed to the same points in infinity.

Gear no. 25 powers gear no. 26 and has an equal ratio of one to one. Imbedded in gear no. 26 is tube shaft no. 38 which extends upright and has a pulley on its upper edge. This pulley powers pulley no. 58, whose inner circumference is 1/365.256 less, by a connecting belt. Gear no. 26 and pulley no. 58 rotate counterclockwise. Therefore, the earth-sphere no. 53 being attached to pulley no. 58 takes 23 hours, 56 minutes and 4.1 seconds to complete a sideral circle or 24 hours to complete a synodic circle while rotating counter-clockwise.

Gear no. 27 powers pinion gear no. 28 and has a fractional diameter ratio of one to 0.3794 (pinion gear no. 28), (103 teeth to 39 eth). Imbedded in gear no. 28 is tube shaft no. 37 which extends upright and has a pulley on its upper edge. This pulley powers pulley no. 57 by a connecting belt and they have an equal ratio of one to one. Gear no. 28 and pulley no. 57 rotate counterclockwise. Therefore the moon-sphere no. 54 being attached to pulley no. 57 by its axis (tube bushings no. 67 and 68), takes 27.32 days to complete a sideral circle or 29.53 days to complete a synodic circle, while revolving around the earth-sphere's equator.

The gears in the center column of FIG. 1 are separated by and rotate on bearings in circular grooves that are in the gears, whith the exception of gear no. 24 which does not rotate.

The whole gearing mechanism is housed in frame no. 63.

FIG. 2 shows the earth-moon sphere's mechanism in detail. "Pulley no. 59 and its shaft no. 71" are spaced by cylinder no. 74 and fastened to clock hand no. 73 that completes a circle in one year. Imbedded in pulley no. 59 is the "rotation and time indicator hand no. 66." Then in this order, tube bushing no. 70 fits over hand no. 66 and is screwed into pulley no. 59, pulley no. 58 fits over no. 66 and the stem of no. 70, tube bushing no. 69 fits over no. 66 and is screwed over the stem of no. 70, tube bushing no. 68 fits over no. 69 and is stopped by washer no. 75 hat is locked in no. 69, pulley no. 57 fits over no. 69 and the stem of no. 68, tube bushing no. 67 fits over no. 69 and is screw over no. 68, washer no. 76 fits over, and the earth-sphere screws over no. 69 and finally hand no. 66 is bent over into position.

Pulley no. 59 rotates by a belt around the dead pulley on top of shaft no. 39 keeping the earth-sphere's axis fixed to the same points in infinity at all times. Pulley no. 58 fits over the stem of no. 70 and is shown in detail in FIG. 3. The bottom of the pulley's hole is hexagonal in shape and tapers up conically. The stem is also hexagonal. As pulley no. 58 rotates on the stem of no. 70 by a belt connected to the pulley on top of shaft no. 38, the pulley's plane will remain in the belt's plane at all times. Nos. 70, 58 and 69 are connected to the earth-sphere, therefor the earth-sphere will make a complete circle in 23 hours, 56 minutes and 4.1 seconds. Hand no. 66 will indicate the rotation speed.

The hole of "pulley no. 57 and the stem of no. 68" is the same shape as "no. 58 and stem no. 70" but larger and will keep the pulley's plane in its belt plane, which is connected to the pulley on top of shaft no. 37. Bushings no. 68 and 67 fits over no. 66 and the moon- sphere no. 54 is attached to no. 67 therefor the moon-sphere will revolve around the earth-sphere's equator completing a circle in 27.32 days.

FIG. 4 shows clock hand no. 72 and attachment that fits over the flange on top of the tube shaft no. 36. After being exerted in place the attachment ends are squeezed in order to hold the clock hand with sphere no. 55 firmly. All hands of this clock are similar and secured in the same manner.

FIG. 5 shows an enlarged section containing the hour sweep hand no. 61 and the sun disk no. 60 fitted on shaft no. 64, tube shaft no. 35 and 36 with flanges on their tops, tube shafts nos. 37, 38 and 39 with pulleys on their tops, dead gear no. 24 showing tube shaft no. 39 embedded into it and bearing groove no. 62 with bearings no. 8. Primarily this view shows the relationship between parts and how the tube shafts fit into each other and are embedded in the gears.

FIG. 6 shows a portion of the center column in detail containing gears no. 23 and 24 with bearing grooves no. 62, bearings no. 8 and parts of tube shafts no. 39 and 38. This figure shows the interaction between 2 gears that are separated by and rotate on bearings, being common to all the gears in this column.

FIG. 7 shows the finished clock with the face and casing shape. The face displays the miniature solar system against a stellar background of which only some of the consellations are shown.

Due to the nature of this clock the folowing points are to be understood :

The gear ratios can be altered through out the mechanism by changing the timer shaft's rotation period or worm gear ratios.

This clock can be produced in various dimensions therefore the distance between gear shafts can vary.

The mechanism of this clock can be powered by either 2411 -hour electrical or a hand wound mechanical timer.

The face and casing can have variations and modifications in design.

The spur gears can be replaced with "pulleys and blts" of various types (non-slip and others) including those used in the earth-moon sphere mechanism.

Worm gear no. 5 can be replaced with bevel or helical gears.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed