Anti-pd-l1 Antibody

Konnai; Satoru ;   et al.

Patent Application Summary

U.S. patent application number 17/579517 was filed with the patent office on 2022-07-21 for anti-pd-l1 antibody. The applicant listed for this patent is Fuso Pharmaceutical Industries, Ltd., National University Corporation Hokkaido University. Invention is credited to Satoru Konnai, Naoya Maekawa, Shiro Murata, Chie Nakajima, Asami Nishimori, Kazuhiko Ohashi, Tomohiro Okagawa, Yasuhiko Suzuki.

Application Number20220227871 17/579517
Document ID /
Family ID1000006238816
Filed Date2022-07-21

United States Patent Application 20220227871
Kind Code A1
Konnai; Satoru ;   et al. July 21, 2022

ANTI-PD-L1 ANTIBODY

Abstract

The present invention provides an anti-PD-L1 antibody capable of repeated administration even to animals other than rat. An anti-PD-L1 antibody comprising (a) a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of an antibody of an animal other than rat; and (b) a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of an antibody of an animal other than rat. A pharmaceutical composition comprising the above anti-PD-L1 antibody as an active ingredient. A method for preparing the above anti-PD-L1 antibody is also provided.


Inventors: Konnai; Satoru; (Sapporoshi, JP) ; Ohashi; Kazuhiko; (Sapporoshi, JP) ; Murata; Shiro; (Sapporoshi, JP) ; Okagawa; Tomohiro; (Sapporoshi, JP) ; Nishimori; Asami; (Sapporoshi, JP) ; Maekawa; Naoya; (Sapporoshi, JP) ; Suzuki; Yasuhiko; (Sapporoshi, JP) ; Nakajima; Chie; (Sapporoshi, JP)
Applicant:
Name City State Country Type

Fuso Pharmaceutical Industries, Ltd.
National University Corporation Hokkaido University

Osaka
Sapporoshi

JP
JP
Family ID: 1000006238816
Appl. No.: 17/579517
Filed: January 19, 2022

Related U.S. Patent Documents

Application Number Filing Date Patent Number
16325040 Feb 12, 2019 11312773
PCT/JP2017/029055 Aug 10, 2017
17579517

Current U.S. Class: 1/1
Current CPC Class: C07K 2317/92 20130101; C07K 2317/565 20130101; C07K 2317/76 20130101; C07K 16/2827 20130101; C07K 2317/24 20130101
International Class: C07K 16/28 20060101 C07K016/28

Foreign Application Data

Date Code Application Number
Aug 15, 2016 JP 2016-159088
Aug 15, 2016 JP 2016-159089
Mar 27, 2017 JP 2017-061454
Jun 5, 2017 JP 2017-110723

Claims



1. An anti-PD-L1 antibody comprising (a) a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of a canine antibody; and (b) a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of a canine antibody.

2. The antibody of claim 1, wherein the light chain variable region and the heavy chain variable region are derived from rat.

3. The antibody of claim 2, wherein the light chain variable region is the light chain variable region of a rat anti-bovine PD-L1 antibody and the heavy chain variable region is the heavy chain variable region of a rat anti-bovine PD-L1 antibody.

4. The antibody of claim 3, wherein the light chain variable region has the amino acid sequence as shown in SEQ ID NO. 1 and the heavy chain variable region has the amino acid sequence as shown in SEQ ID NO: 2.

5. The antibody of claim 1, wherein the light chain constant region of a canine antibody has the amino acid sequence of the constant region of lambda chain or kappa chain.

6. The antibody of claim 1, wherein the heavy chain constant region of a canine antibody has the amino acid sequence of the constant region of an immunoglobulin equivalent to human IgG4.

7. The antibody of claim 6, wherein the animal other than rat is canine; the light chain constant region of the canine antibody has the amino acid sequence of the constant region of lambda chain; and the heavy chain constant region of the canine antibody has the amino acid sequence of the constant region of an immunoglobulin equivalent to human IgG4.

8. The antibody of claim 7, wherein the light chain constant region of the canine antibody has the amino acid sequence as shown in SEQ ID NO: 3 and the heavy chain constant region of the canine antibody has the amino acid sequence as shown in SEQ ID NO: 4.

9. The antibody of claim 1 which has a four-chain structure comprising two light chains and two heavy chains.

10. A pharmaceutical composition comprising the antibody of claim 1 as an active ingredient.

11. The pharmaceutical composition of claim 10 for treatment of cancers and/or infections.

12. The pharmaceutical composition of claim 11, wherein the cancers and/or infections are selected from the group consisting of neoplastic diseases, leukemia, Johne's disease, anaplasmosis, bacterial mastitis, mycotic mastitis, mycoplasma infections, tuberculosis, Theileria orientalis infection, cryptosporidiosis, coccidiosis, trypanosomiasis and leishmaniasis.

13. An artificial genetic DNA comprising (a') a DNA encoding a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of a canine antibody and (b') a DNA encoding a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of a canine antibody.

14. A vector comprising the artificial genetic DNA of claim 13.

15. A host cell transformed with the vector of claim 14.

16. A method of preparing an antibody, comprising culturing the host cell of claim 15 and collecting an anti-PD-L1 antibody from the resultant culture.

17. A DNA encoding a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of a canine antibody.

18. A DNA encoding a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of a canine antibody.

19. A method of treating cancers and/or infections in a subject, comprising administering to a subject in need thereof a pharmaceutically effective amount the antibody of claim 1.
Description



PRIORITY APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 16/325,040, Filed Feb. 12, 2019, which is a U.S. National Stage Filing under 35 U.S.C. 371 from International Application No. PCT/JP2017/029055, filed on Aug. 10, 2017, and published as WO2018/034225 on Feb. 22, 2018, which claims the benefit of priority to Japanese Application No. 2017-110723, filed on Jun. 5, 2017 and to Japanese Application No. 2017-061454, filed on Mar. 27, 2017 and to Japanese Application No. 2016-159089, filed on Aug. 15, 2016 and to Japanese Application No. 2016-159088, filed on Aug. 15, 2016; the benefit of priority of each of which is hereby claimed herein, and which applications and publication are hereby incorporated herein by reference in their entireties.

TECHNICAL FIELD

[0002] The present invention relates to an anti-PD-L1 antibody. More specifically, the present invention relates to an anti-PD-L1 antibody comprising a variable region containing complementarity-determining regions (CDR) of a rat anti-bovine PD-L1 antibody and a constant region of an antibody of an animal other than rat.

BACKGROUND ART

[0003] Programmed cell death 1 (PD-1), an immunoinhibitory receptor, and its ligand programmed cell death ligand 1 (PD-L1) are molecules identified by Prof. Tasuku Honjo et al., Kyoto University, as factors which inhibit excessive immune response and are deeply involved in immunotolerance (Non-Patent Document No. 1: Ishida Y, Agata Y, Shibahara K, Honjo T The EMBO Journal. 1992 November; 11(11):3887-3895). Recently, it has been elucidated that these molecules are also involved in immunosuppression in tumors. In the field of human medical care, an antibody drug that inhibits the effect of PD-1 has been developed and put into practical use (Opdivo.TM., Ono Pharmaceutical Co., Ltd.)

[0004] To date, the present inventors have been developing an immunotherapy for animal refractory diseases targeting PD-1 or PD-L1, and have revealed that this novel immunotherapy is applicable to multiple-diseases and multiple-animals. (Non-Patent Document No. 2: Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, Murata S, Ohashi K. Immunology. 2014 August; 142(4):551-61: Non-Patent Document No. 3: Maekawa N. Konnai S, Ikebuchi R, Okagawa T. Adachi M, Takagi S. Kagawa Y, Nakajima C. Suzuki Y, Murata S, Ohashi K. PLoS One. 2014 Jun. 10; 9(6):e98415; Non-Patent Document No. 4: Mingala C N, Konnai S, Ikebuchi R. Ohashi K. Comp. Immunol. Microbiol. Infect. Dis. 2011 January; 34(1):55-63.)

[0005] However, the antibodies which the present inventors have prepared to date are rat antibodies, and therefore it is impossible to administer those antibodies repeatedly to animals other than rat.

PRIOR ART LITERATURE

Non-Patent Documents

[0006] Non-Patent Document No. 1: Ishida Y. Agata Y, Shibahara K, Honjo T The EMBO Journal. 1992 November; 11(11):3887-3895. [0007] Non-Patent Document No. 2: Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y. Murata S, Ohashi K. Immunology. 2014 August; 142(4):551-61. [0008] Non-Patent Document No. 3: Maekawa N, Konnai S, Ikebuchi R. Okagawa T, Adachi M, Takagi S. Kagawa Y. Nakajima C, Suzuki Y, Murata S. Ohashi K. PLoS One. 2014 Jun. 10; 9(6):e98415. [0009] Non-Patent Document No. 4: Mingala C N, Konnai S, Ikebuchi R, Ohashi K. Comp. Immunol. Microbiol. Infect. Dis. 2011 January; 34(1):55-63.

DISCLOSURE OF THE INVENTION

Problem for Solution by the Invention

[0010] It is an object of the present invention to provide an anti-PD-L1 antibody capable of repeated administration even to animals other than rat.

Means to Solve the Problem

[0011] The present inventors have determined the variable regions of a rat anti-bovine PD-L1 monoclonal antibody (4G12) capable of inhibiting the binding of canine PD-1 to PD-L1, and then combined genes encoding the resultant variable regions with genes encoding the constant regions of a canine immunoglobulin (IgG-D equivalent to human IgG4) to thereby obtain a chimeric antibody gene, which was introduced into Chinese hamster ovary cells (CHO cells). By culturing/proliferating the resultant CHO cells, the present inventors have succeeded in preparing a rat-canine chimeric anti-PD-L1 antibody. Further, the present inventors have determined the CDRs of the variable region of the rat anti-bovine PD-L1 monoclonal antibody 4G12.

[0012] Furthermore, the present inventors have determined the variable regions of the rat anti-bovine PD-L1 monoclonal antibody 4G12 capable of inhibiting the binding of bovine PD-1 to PD-L1, and then combined genes encoding the resultant variable regions with genes encoding the constant regions of a bovine immunoglobulin (bovine IgG1, with mutations having been introduced into the putative binding sites of Fc.gamma. receptors in CH2 domain in order to inhibit ADCC activity; see FIG. 19 for amino acid numbers and mutations: 250 E.fwdarw.P, 251 L.fwdarw.V, 252 P.fwdarw.A, 253 G.fwdarw.deletion, 347 A.fwdarw.S, 348 P.fwdarw.S; Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, Murata S, Ohashi K. Immunology 2014 August; 142(4):551-561) to thereby obtain a chimeric antibody gene. This gene was introduced into Chinese hamster ovary cells (CHO cells). By culturing/proliferating the resultant cells, the present inventors have succeeded in preparing a rat-bovine chimeric anti-PD-L1 antibody. The present invention has been achieved based on these findings.

[0013] A summary of the present invention is as described below. [0014] (1) An anti-PD-L1 antibody comprising (a) a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of an antibody of an animal other than rat; and (b) a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of an antibody of an animal other than rat. [0015] (2) The antibody of (1) above, wherein the light chain variable region and the heavy chain variable region are derived from rat. [0016] (3) The antibody of (2) above, wherein the light chain variable region is the light chain variable region of a rat anti-bovine PD-L1 antibody and the heavy chain variable region is the heavy chain variable region of a rat anti-bovine PD-L1 antibody. [0017] (4) The antibody of (3) above, wherein the light chain variable region has the amino acid sequence as shown in SEQ ID NO. 1 and the heavy chain variable region has the amino acid sequence as shown in SEQ ID NO: 2. [0018] (5) The antibody of any one of (1) to (4) above, wherein the light chain constant region of an antibody of an animal other than rat has the amino acid sequence of the constant region of lambda chain or kappa chain. [0019] (6) The antibody of any one of (1) to (5) above, wherein the heavy chain constant region of an antibody of an animal other than rat has the amino acid sequence of the constant region of an immunoglobulin equivalent to human IgG4. [0020] (7) The antibody of any one of (1) to (5) above, wherein the animal other than rat is bovine and the heavy chain constant region of the bovine antibody has mutations introduced thereinto that reduce ADCC activity and/or CDC activity. [0021] (8) The antibody of (6) above, wherein the animal other than rat is canine; the light chain constant region of the canine antibody has the amino acid sequence of the constant region of lambda chain; and the heavy chain constant region of the canine antibody has the amino acid sequence of the constant region of an immunoglobulin equivalent to human IgG4. [0022] (9) The antibody of (7) above, wherein the light chain constant region of the bovine antibody has the amino acid sequence of the constant region of lambda chain and the heavy chain constant region of the bovine antibody has mutations introduced thereinto that reduce ADCC activity and/or CDC activity. [0023] (10) The antibody of (8) above, wherein the light chain constant region of the canine antibody has the amino acid sequence as shown in SEQ ID NO: 3 and the heavy chain constant region of the canine antibody has the amino acid sequence as shown in SEQ ID NO: 4. [0024] (11) The antibody of (9) above, wherein the light chain constant region of the bovine antibody has the amino acid sequence as shown in SEQ ID NO: 100 and the heavy chain constant region of the bovine antibody has the amino acid sequence as shown in SEQ ID NO: 102. [0025] (12) The antibody of any one of (1) to (11) above which has a four-chain structure comprising two light chains and two heavy chains. [0026] (13) A pharmaceutical composition comprising the antibody of any one of (1) to (12) above as an active ingredient. [0027] (14) The composition of (13) above for prevention and/or treatment of cancers and/or inflammations. [0028] (15) The composition of (14) above, wherein the cancers and/or inflammations are selected from the group consisting of neoplastic diseases, leukemia, Johne's disease, anaplasmosis, bacterial mastitis, mycotic mastitis, mycoplasma infections (such as mycoplasma mastitis, mycoplasma pneumonia or the like), tuberculosis, Theileria orientalis infection, cryptosporidiosis, coccidiosis, trypanosomiasis and leishmaniasis. [0029] (16) An artificial genetic DNA comprising (a') a DNA encoding a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of an antibody of an animal other than rat and (b') a DNA encoding a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of an antibody of an animal other than rat. [0030] (17) A vector comprising the artificial genetic DNA of (16) above. [0031] (18) A host cell transformed with the vector of (17) above. [0032] (19) A method of preparing an antibody, comprising culturing the host cell of (18) above and collecting an anti-PD-L1 antibody from the resultant culture. [0033] (20) A DNA encoding a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of an antibody of an animal other than rat. [0034] (21) A DNA encoding a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of an antibody of an animal other than rat.

[0035] The present specification encompasses the contents disclosed in the specifications and/or drawings of Japanese Patent Applications No. 2016-159088, No. 2016-159089, No. 2017-110723 and No. 2017-61454 based on which the present patent application claims priority.

Effect of the Invention

[0036] According to the present invention, a novel anti-PD-L1 antibody has been obtained. This antibody is applicable even to those animals other than rat.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0038] FIG. 1 Inhibition of the binding of recombinant canine PD-L1 to recombinant canine PD-1. The binding of canine PD-L1-Ig to canine PD-1-Ig was detected on ELISA plates. The optical density (O.D.) without addition of antibody was taken as 100%. O.D. at each antibody concentration was shown as relative value. Among rat anti-bovine PD-L1 monoclonal antibodies 4G12 (Rat IgG2a (.kappa.)), 5A2 (Rat IgG1 (.kappa.)) and 6G7 (Rat IgM (.kappa.)) which showed cross-reaction with canine PD-L1, clones 4G12 and 6G7 exhibited a high binding inhibition capacity.

[0039] FIG. 2 Schematic drawings of pDC6 vector and a rat-canine chimeric anti-PD-L1 antibody.

[0040] FIG. 3 Expression and purification of rat-canine chimeric anti-PD-L1 antibodies c4G12 and c6G7. SDS-PAGE was performed under non-reducing conditions, followed by visualization of bands by CBB staining. a: purification with protein A alone. b: a +gel filtration chromatography.

[0041] FIG. 4 PD-1/PD-L1 binding inhibition activities of rat-canine chimeric anti-PD-L1 antibodies c4G12 and c6G7.

[0042] FIG. 5 Establishment of cell clones capable of high expression of rat-canine chimeric anti-PD-L1 antibody c4G12.

[0043] FIG. 6 SDS-PAGE images of rat-canine chimeric anti-PD-L1 antibody c4G12. Rat anti-bovine PD-L1 antibody 4G12 and rat-canine chimeric anti-PD-L1 antibody c4G12 were electrophoresed under reducing conditions and non-reducing conditions, followed by visualization of bands by CBB staining. Under reducing conditions, a band of antibody's heavy chain was detected at around 50 kDa and a band of antibody's light chain at around 25 kDa. No bands other than the bands of interest were detected.

[0044] FIG. 7 Inhibitory activities of rat anti-bovine PD-L1 antibody 4G12 and rat-canine chimeric anti-PD-L1 antibody c4G12 against canine PD-1/PD-L1 binding and CD80/PD-L1 binding. Rat anti-bovine PD-L1 monoclonal antibody 4G12 and rat-canine chimeric anti-PD-L1 antibody c4G12 reduced the amounts of binding of PD-L1-Ig to canine PD-1-Ig and CD80-Ig. No change due to chimerization of the antibody was observed in binding inhibition activity

[0045] FIG. 8 Canine immune cell activation effect by rat-canine chimeric anti-PD-L1 antibody c4G12. Canine PBMCs were cultured under stimulation for 3 days, followed by determination of IL-2 and IFN-.gamma. concentrations in the supernatant by ELISA. Further, nucleic acid analogue EdU was added to the culture medium at day 2 of the culture under stimulation, followed by determination of the EdU uptake by flow cytometry. Rat-canine chimeric anti-PD-L1 antibody c4G12 increased the production of IL-2 and IFN-.gamma. from canine PBMCs and enhanced proliferation of CD4+ and CD8.sup.+ lymphocytes.

[0046] FIG. 9 Expression of PD-L1 in oral melanoma (A) and undifferentiated sarcoma (B)

[0047] FIG. 10 CT images and appearances of tumor in a test of treatment by administering rat-canine chimeric anti-PD-L1 antibody c4G12 to a dog with oral melanoma. (a,d) Before the start of the treatment, (b,e) at week 10 of the treatment, and (cf) at week 34 of the treatment. A remarkable anti-tumor effect was recognized upon five administrations of the antibody (at week 10 from the start of the treatment). At week 34, a further reduction of tumor was confirmed.

[0048] FIG. 11 Time-dependent changes in the longest diameter of the tumor in the dog with oral melanoma shown in FIG. 10. Reduction by 30% or more compared to the baseline longest diameter was regarded as partial response (PR).

[0049] FIG. 12 CT images in a test of treatment by administering rat-canine chimeric anti-PD-L1 antibody c4G12 to a dog with undifferentiated sarcoma. (a,c) Before the start of the treatment, (b,d) at week 3 of the treatment. A remarkable reduction of tumor was recognized upon two administrations of the antibody.

[0050] FIG. 13 CT images in a test of treatment by administering rat-canine chimeric anti-PD-L1 antibody c4G12 to dogs with oral melanoma (pulmonary metastatic cases). (a,d,g) Before the start of the treatment, (b,e,h) at week 6 of the treatment, and (c,f,i) at week 18 of the treatment. A plurality of pulmonary metastatic lesions disappeared upon nine administrations of the antibody.

[0051] FIG. 14 Time-dependent changes in the proportion survival of dogs with oral melanoma after the occurrence of pulmonary metastasis. In the antibody administration group, the survival duration may have been prolonged compared to the control group.

[0052] FIG. 15 CDR1, CDR2 and CDR3 regions in the light chain variable region and the heavy chain variable region of rat anti-bovine PD-L1 antibody 4G12 are illustrated.

[0053] FIG. 16 Cross-reactivity of rat anti-bovine PD-L1 antibody 4012. It was confirmed that rat anti-bovine PD-L1 antibody 4G12 binds to ovine PD-L1 and porcine PD-L1.

[0054] FIG. 17 Reactivity of rat anti-bovine PD-L1 antibody 4G12 with water buffalo leukocytes. Rat anti-bovine PD-L1 antibody 4G12 strongly bound to blood macrophages (CD14.sup.+ CD11b.sup.+ cells) of water buffalo, whereas rat anti-bovine PD-L1 antibody 4G12 bound weakly to lymphocytes (CD14.sup.-CD11b.sup.- cells) of water buffalo. It is believed that this difference in binding reflects the expression levels of PD-L1 in macrophages and lymphocytes.

[0055] FIG. 18 Inhibition test on rat anti-bovine PD-L1 antibody 4G12 against ovine or porcine PD-1/PD-L1 binding. It was demonstrated that rat anti-bovine PD-L1 antibody 4G12 is capable of inhibiting ovine and porcine PD-1/PD-L1 binding in a concentration dependent manner.

[0056] FIG. 19 The amino acid sequence of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12. CDR1, CDR2 and CDR3 regions in the light chain variable region and the heavy chain variable region of rat anti-bovine PD-L1 antibody 4G12 are shown. Further, amino acids introduced as mutations to bovine IgG1 (CH2 domain) are also shown (amino acid numbers and mutations: 250 E.fwdarw.P, 251 L.fwdarw.V, 252 P.fwdarw.A, 253 G.fwdarw.deletion, 347 A.fwdarw.S, 348 P.fwdarw.S).

[0057] FIG. 20 Schematic drawings of pDC6 vector and rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12.

[0058] FIG. 21 Confirmation of the purity of purified rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12.

[0059] FIG. 22 Binding specificity of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12.

[0060] FIG. 23 Inhibitory activity of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 against bovine PD-1/PD-L1 binding (the test results of inhibition against binding of bovine PD-L1 expressing cells and soluble bovine PD-1).

[0061] FIG. 24 Inhibitory activity of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 against bovine PD-1/PD-L1 binding (the test results of inhibition against binding of bovine PD-1 expressing cells and soluble bovine PD-L1).

[0062] FIG. 25 Activation effect of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 on bovine lymphocyte response (in terms of cell proliferation).

[0063] FIG. 26 Activation effect of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 on bovine lymphocyte response to BLV antigen (in terms of IFN-.gamma. production).

[0064] FIG. 27 The proliferation response of T cells against BLV antigen in a calf experimentally infected with BLV through administration of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12.

[0065] FIG. 28 Changes in BLV provirus loads in the calf experimentally infected with BLV through administration of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12.

BEST MODES FOR CARRYING OUT THE INVENTION

[0066] Hereinbelow, the present invention will be described in detail.

[0067] The present invention provides an anti-PD-L1 antibody comprising (a) a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and a light chain constant region of an antibody of an animal other than rat; and (b) a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and a heavy chain constant region of an antibody of an animal other than rat.

[0068] CDR1, CDR2 and CDR3 in the light chain variable region (VL) of rat anti-bovine PD-L1 antibody 4G12 are a region consisting of the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), a region consisting of the amino acid sequence of WAT and a region consisting of the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38), respectively (see FIG. 15).

[0069] Further, CDR1, CDR2 and CDR3 in the heavy chain variable region (VH) of rat anti-bovine PD-L1 antibody 4G12 are a region consisting of the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), a region consisting of the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and a region consisting of the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41), respectively (see FIG. 15).

[0070] In the amino acid sequences of QSLLYSENQKDY (SEQ ID NO: 37), WAT and GQYLVYPFT (SEQ ID NO: 38), as well as the amino acid sequences of GYTFTSNF (SEQ ID NO: 39), IYPEYGNT (SEQ ID NO: 40) and ASEEAVISLVY (SEQ ID NO: 41), one, two, three, four or five amino acids may be deleted, substituted or added.

[0071] As used herein, the term "antibody" is a concept encompassing not only full-length antibodies but also antibodies of smaller molecular sizes such as Fab, F(ab)'.sub.2, ScFv, Diabody, V.sub.H, V.sub.L, Sc(Fv).sub.2, Bispecific sc(Fv).sub.2, Minibody, scFv-Fc monomer and scFv-Fc dimer.

[0072] In the anti-PD-L1 antibody of the present invention, VL and VH thereof may be derived from rat. For example, VL thereof may be the VL of a rat anti-bovine PD-L1 antibody, and VH thereof may be the VH of the rat anti-bovine PD-L1 antibody.

[0073] The amino acid sequence of the VL and the amino acid sequence of the VH of the rat anti-bovine PD-L1 antibody are shown in SEQ ID NOS: 1 and 2, respectively. The amino acid sequences as shown in SEQ ID NOS: 1 and 2 may have deletion(s), substitution(s) or addition(s) of one or several (e.g., up to five, about 10 at the most) amino acids. Even when such mutations have been introduced, the resulting amino acid sequences are capable of having the function as VL or VH of the PD-L1 antibody.

[0074] The VL and VH of an antibody of an animal other than rat may be derived from an animal which produces a PD-L1 that cross-reacts with rat anti-bovine PD-L1 antibody 4G12.

[0075] There are two types of immunoglobulin light chain, which are called Kappa chain (.kappa.) and Lambda chain (.lamda.). In the anti-PD-L1 antibody of the present invention, the light chain constant region (CL) of an antibody of an animal other than rat may have the amino acid sequence of the constant region of either Kappa chain or Lambda chain. However, the relative abundance of Lambda chain is higher in ovine, feline, canine, equine and bovine, and that of Kappa chain is higher in mouse, rat, human and porcine. Since a chain with a higher relative abundance is considered to be preferable, an ovine, feline, canine, equine or bovine antibody preferably has the amino acid sequence of the constant region of Lambda chain whereas a mouse, rat, human or porcine antibody preferably has the amino acid sequence of the constant region of Kappa chain.

[0076] The heavy chain constant region (CH) of an antibody of an animal other than rat may have the amino acid sequence of the constant region of an immunoglobulin equivalent to human IgG4. Immunoglobulin heavy chain is classified into .gamma. chain, .mu. chain, .alpha. chain, .delta. chain and .epsilon. chain depending on the difference in constant region. According to the type of heavy chain present, five classes (isotypes) of immunoglobulin are formed, they are IgG, IgM, IgA, IgD and IgE.

[0077] Immunoglobulin G (IgG) accounts for 70-75% of human immunoglobulins and is the most abundantly found monomeric antibody in plasma IgG has a four-chain structure consisting of two light chains and two heavy chains. Human IgG1, IgG2 and IgG4 have molecular weights of about 146,000, whereas human IgG3 has a long hinge region that connects Fab region and Fc region and has a larger molecular weight of 170,000. Human IgG1 accounts for about 65%, human IgG2 about 25%, human IgG3 about 7%, and human IgG4 about 3% of human IgG. They are uniformly distributed inside and outside of blood vessels. Having a strong affinity for Fc receptors and complement factors on effector cell surfaces, human IgG1 induces antibody-dependent cell cytotoxicity (ADCC) and also activates complements to induce complement-dependent cell cytotoxicity (CDC). Human IgG2 and IgG4 are low at ADCC and CDC activities because their affinity for Fc receptors and complement factors is low.

[0078] Immunoglobulin M (IgM), which accounts for about 10% of human immunoglobulins, is a pentameric antibody consisting of five basic four-chain structures joined together. It has a molecular weight of 970,000. Usually occurring only in blood, IgM is produced against infectious microorganisms and takes charge of early stage immunity.

[0079] Immunoglobulin A (IgA) accounts for 10-15% of human immunoglobulins. It has a molecular weight of 160,000. Secreted IgA is a dimeric antibody consisting of two IgA molecules joined together. IgA1 is found in serum, nasal discharge, saliva and breast milk. In intestinal juice, IgA2 is found abundantly.

[0080] Immunoglobulin D (IgD) is a monomeric antibody accounting for no more than 1% of human immunoglobulins. IgD is found on B cell surfaces and involved in induction of antibody production.

[0081] Immunoglobulin E (IgE) is a monomeric antibody that occurs in an extremely small amount, accounting for only 0.001% or less of human immunoglobulins. Immunoglobulin E is considered to be involved in immune response to parasites but in advanced countries where parasites are rare. IgE is largely involved in bronchial asthma and allergy among other things.

[0082] With respect to canine, sequences of IgG-A (equivalent to human IgG2), IgG-B (equivalent to human IgG1), IgG-C (equivalent to human IgG3) and IgG-D (equivalent to human IgG4) have been identified as the heavy chain of IgG. In the antibody of the present invention, an IgG's heavy chain constant region with neither ADCC activity nor CDC activity is preferable (IgG4 in human). In the case where the constant region of an immunoglobulin equivalent to human IgG4 has not been identified, one may use a constant region that has lost both ADCC activity and CDC activity as a result of introducing mutations into the relevant region of an immunoglobulin equivalent to human IgG4.

[0083] With respect to bovine, sequences of IgG1, IgG2 and IgG3 have been identified as the heavy chain of IgG. In the antibody of the present invention, an IgG's heavy chain constant region with neither ADCC activity nor CDC activity is preferable (IgG4 in human). Although the constant region of wild-type human IgG1 has ADCC activity and CDC activity, it is known that these activities can be reduced by introducing amino acid substitutions or deletions into specific sites. In bovine, the constant region of an immunoglobulin equivalent to human IgG4 has not been identified, so mutations may be added at the relevant region of an immunoglobulin equivalent to human IgG1 and the resultant constant region then used. As one example, the amino acid sequence of the CH of a bovine antibody (IgG1 chain, GenBank: X62916) having mutations introduced into CH2 domain and a nucleotide sequence for such amino acid sequence (after codon optimization) are shown in SEQ ID NOS: 102 and 102, respectively.

[0084] When an animal other than rat is canine, an anti-PD-L1 antibody is more preferable in which (i) the CL of a canine antibody has the amino acid sequence of the constant region of Lambda chain and (ii) the CH of the canine antibody has the amino acid sequence of the constant region of an immunoglobulin equivalent to human IgG4.

[0085] When an animal other than rat is bovine, an anti-PD-L1 antibody is more preferable in which (i) the CL of a bovine antibody has the amino acid sequence of the constant region of Lambda chain and (ii) the CH of the bovine antibody has mutations introduced thereinto that reduce ADCC activity and/or CDC activity.

[0086] The anti-PD-L1 antibody of the present invention encompasses rat-canine chimeric antibodies, caninized antibodies, complete canine-type antibodies, rat-bovine chimeric antibodies, bovinized antibodies and complete bovine-type antibodies. However, animals are not limited to canine and bovine and may be exemplified by human, porcine, simian, mouse, feline, equine, goat, sheep, water buffalo, rabbit, hamster, guinea pig and the like.

[0087] For example, the anti-PD-L1 antibody of the present invention may be an anti-PD-L1 antibody in which the CL of a canine antibody has the amino acid sequence as shown in SEQ ID NO: 3 and the CH of the canine antibody has the amino acid sequence as shown in SEQ ID NO: 4.

[0088] As a further example, the anti-PD-L1 antibody of the present invention may be an anti-PD-L1 antibody in which the CL of a bovine antibody has the amino acid sequence as shown in SEQ ID NO: 100 and the CH of the bovine antibody has the amino acid sequence as shown in SEQ ID NO: 102.

[0089] The amino acid sequences as shown in SEQ ID NOS: 3 and 4 as well as SEQ ID NOS: 100 and 102 may have deletion(s), substitution(s) or addition(s) of one or several (e.g., up to five, about 10 at the most) amino acids. Even when such mutations have been introduced, the resulting amino acid sequences are capable of having the function as CL or CH of the PD-L1 antibody.

[0090] The anti-PD-L1 antibody of the present invention may have a four-chain structure comprising two light chains and two heavy chains.

[0091] The anti-PD-L1 antibody of the present invention may be prepared as described below. Briefly, an artificial gene is synthesized which comprises (i) the identified variable region sequences of a rat anti-bovine PD-L1 antibody and (ii) the constant region sequences of an antibody of an animal other than rat (e.g., canine or bovine) (preferably, human IgG4 antibody; antibody equivalent to human IgG4 antibody; or an immunoglobulin equivalent to human IgG1, in which mutations have been introduced into the relevant region to reduce ADCC activity and/or CDC activity). The resultant gene is inserted into a vector (e.g., plasmid), which is then introduced into a host cell (e.g., mammal cell such as CHO cell). The host cell is cultured, and the antibody of interest is collected from the resultant culture.

[0092] The amino acid sequence and the nucleotide sequence of the VL of the rat anti-bovine PD-L1 antibody identified by the present inventors are shown in SEQ ID NOS: 1 and 5, respectively. Further, the nucleotide sequence after codon optimization is shown in SEQ ID NO: 15.

[0093] The amino acid sequence and the nucleotide sequence of the VH of the rat anti-bovine PD-L1 antibody identified by the present inventors are shown in SEQ ID NOS: 2 and 6, respectively. Further, the nucleotide sequence after codon optimization is shown in SEQ ID NO: 16.

[0094] The amino acid sequence and the nucleotide sequence of the CL (Lambda chain, GenBank: E02824.1) of a canine antibody are shown in SEQ ID NOS: 3 and 7, respectively. Further, the nucleotide sequence after codon optimization is shown in SEQ ID NO: 17.

[0095] The amino acid sequence and the nucleotide sequence of the CL (Lambda chain, GenBank: X62917) of a bovine antibody are shown in SEQ ID NOS: 100 and 101, respectively. Further, the nucleotide sequence after codon optimization is shown in SEQ ID NO: 104.

[0096] The amino acid sequence and the nucleotide sequence of the CH (IgG-D chain, GenBank: AF354267.1) of the canine antibody are shown in SEQ ID NOS: 4 and 8, respectively. Further, the nucleotide sequence after codon optimization is shown in SEQ ID NO: 18.

[0097] The amino acid sequence and the nucleotide sequence (after codon optimization) of the CH (IgG1 chain, modified from GenBank: X62916) of the bovine antibody are shown in SEQ ID NOS: 102 and 103, respectively.

[0098] Further, SEQ ID NO: 9 shows the amino acid sequence of a chimeric light chain consisting of the VL of the rat anti-bovine PD-L1 antibody and the CL (Lambda chain, GenBank: E02824.1) of the canine antibody. The nucleotide sequence (after codon optimization) of the chimeric light chain consisting of the VL of the rat anti-bovine PD-L1 antibody and the CL (Lambda chain, GenBank: E02824.1) of the canine antibody is shown in SEQ ID NO: 19.

[0099] Further, SEQ ID NO: 105 shows the amino acid sequence of a chimeric light chain consisting of the VL of the rat anti-bovine PD-L1 antibody and the CL (Lambda chain, GenBank: X62917) of the bovine antibody. The nucleotide sequence (after codon optimization) of the chimeric light chain consisting of the VL of the rat anti-bovine PD-L1 antibody and the CL (Lambda chain, GenBank: X62917) of the bovine antibody is shown in SEQ ID NO: 107.

[0100] SEQ ID NO; 10 shows the amino acid sequence of a chimeric heavy chain consisting of the VH of the rat anti-bovine PD-L1 antibody and the CH (IgG-D chain, GenBank: AF354267.1) of the canine antibody. The nucleotide sequence (after codon optimization) of the chimeric heavy chain consisting of the VH of the rat anti-bovine PD-L1 antibody and the CH (IgG-D chain, GenBank: AF354267.1) of the canine antibody is shown in SEQ ID NO: 20.

[0101] SEQ ID NO: 106 shows the amino acid sequence of a chimeric heavy chain consisting of the VH of the rat anti-bovine PD-L1 antibody and the CH (IgG1 chain, modified from GenBank: X62916) of the bovine antibody. The nucleotide sequence (after codon optimization) of the chimeric heavy chain consisting of the VH of the rat anti-bovine PD-L1 antibody and the CH (IgG1 chain, modified from GenBank: X62916) of the bovine antibody is shown in SEQ ID NO: 108.

[0102] Amino acid sequences and nucleotide sequences of CLs and CHs for various animals other than the above may be obtained from known databases for use in the present invention.

[0103] Amino acid sequences and nucleotide sequences of CLs and CHs for canine, ovine, porcine, water buffalo, human and bovine are summarized in the table below.

Table.

TABLE-US-00001 [0104] TABLE GenBank Accession IMGT Species Ig Domain Nucleotide Sequence Amino Acid Sequence No. Database Reference Canine Canine IgG-D GCCTCCACCACGGCCCCCTCG ASTTAPSVFPLAPSCGSTS AF354267 http://ww Tang L, et al., (Scienti- Ig GTTTTCCCACTGGCCCCCAGC GSTVALACLVSGYFPEPVT w.imgt.or Vet. Immunol. fic heavy TGCGGGTCCACTTCCGGCTCC VSWNSGSLTSGVHTFPSV g/IMGTre Immunopathol, Name: chain ACGGTGGCCCTGGCCTGCCTG LQSSGLYSLSSTVTVPSSR pertoire/i 80 (3-4), 259-270 Canis constant GTGTCAGGCTACTTCCCCGAG WPSETFTCNVVHPASNTK ndex.php (2001), PMID: lupus region CCTGTAACTGTGTCCTGGAAT VDKPVPKESTCKCISPCPV ?section = 11457479 familiaris) (CH1- TCCGGCTCCTTGACCAGCGGT PESLGGPSVFIFPPKPKDIL LocusGe CH3) GTGCACACCTTCCCGTCCGTC RITRTPEITCVVLDLGRED nes&repe CTGCAGTCCTCAGGGCTCTAC PEVQISWFVDGKEVHTAK rtoire = ge TCCCTCAGCAGCACGGTGAC TQPREQQFNSTYRVVSVL netable & s AGTGCCCTCCAGCAGGTGGC PIEHQDWLTGKEFKCRVN pecies = do CCAGCGAGACCTTCACCTGCA HIGLPSPIERTISKARGQAH g & group = ACGTGGTCCACCCGGCCAGC QPSVYVLPPSPKELSSSDT IGHC AACACTAAAGTAGACAAGCC VTLTCLIKDFFPPEIDVEW AGTGCCCAAAGAGTCCACCT QSNGQPEPESKYHTTAPQ GCAAGTGTATATCCCCATGCC LDEDGSYFLYSKLSVDKS CAGTCCCTGAATCACTGGGAG RWQQGDTFTCAVMHEAL GGCCTTCGGTCTTCATCTTTCC QNHYTDLSLSHSPGK* CCCGAAACCCAAGGACATCCT (SEQ ID NO: 4) CAGGATTACCCGAACACCCGA GATCACCTGTGTGGTGTTAGA TCTGGGCCGTGAGGACCCTG AGGTGCAGATCAGCTGGTTCG TGGATGGTAAGGAGGTGCAC ACAGCCAAGACGCAGCCTCG TGAGCAGCAGTTCAACAGCA CCTACCGTGTGGTCAGCGTCC TCCCCATTGAGCACCAGGACT GGCTCACCGGAAAGGAGTTC AAGTGCAGAGTCAACCACAT AGGCCTCCCGTCCCCCATCGA GAGGACTATCTCCAAAGCCAG AGGGCAAGCCCATCAGCCCA GTGTGTATGTCCTGCCACCAT CCCCAAAGGAGTTGTCATCCA GTGACACGGTCACCCTGACCT GCCTGATCAAAGACTTCTTCC CACCTGAGATTGATGTGGAGT GGCAGAGCAATGGACAGCCG GAGCCCGAGAGCAAGTACCA CACGACTGCGCCCCAGCTGG ACGAGGACGGGTCCTACTTCC TGTACAGCAAGCTCTCTGTGG ACAAGAGCCGCTGGCAGCAG GGAGACACCTTCACATGTGCG GTGATGCATGAAGCTCTACAG AACCACTACACAGATCTATCC CTCTCCCATTCTCCGGGTAAA TGA (SEQ ID NO: 8) Canine Ig CAGCCCAAGGCCTCCCCCT QPKASPSVTLFPPSSEE E02824 Not None Ig lambda CGGTCACACTCTTCCCGCC LGANKATLVCLISDFYP registered light (CL) CTCCTCTGAGGAGCTCGGC SGVTVAWKASGSPVTQ chain GCCAACAAGGCCACCCTGG GVETTKPSKQSNNKYA constant TGTGCCTCATCAGCGACTTC ASSYLSLTPDKWKSHSS region TACCCCAGCGGCGTGACGG FSCLVTHEGSTVEKKVA TGGCCTGGAAGGCAAGCGG PAECS* (SEQ ID NO: 3) CAGCCCCGTCACCCAGGGC GTGGAGACCACCAAGCCCT CCAAGCAGAGCAACAACAA GTACGCGGCCAGCAGCTAC CTGAGCCTGACGCCTGACA AGTGGAAATCTCACAGCAG CTTCAGCTGCCTGGTCACG CACGAGGGGAGCACCGTGG AGAAGAAGGTGGCCCCCGC AGAGTGCTCTTAG (SEQ ID NO: 7) Ovine Ovine `IgG1 GCCTCAACAACACCCCCGAA ASTTPPKVYPLTSCCGDTS X69797 http://ww Dufour V. et al., (Scienti- heavy AGTCTACCCTCTGACTTCTTG SSIVTLGCLVSSYMPEPVT w.imgt.or J. Immunol., 156. tic chain CTGCGGGGACACGTCCAGCT VTWNSGALTSGVHTFPAI g/IMGTre 2163-2170 Name: constant CCATCGTGACCCTGGGCTGCC LQSSGLYSLSSVVTVPAST pertoir/li (1996). PMID: Ovis region TGGTCTCCAGCTATATGCCCG SGAQTFICNVAHPASSTKV ndex.php 8690905 aries) (CH1.sup.~ AGCCGGTGACCGTGACCTGG DKRVEPGCPDPCKHCRCP ?section = CH3) AACTCTGGTGCCCTGACCAGC PPELPGGPSVFIFPPKPKDT LocusGe GGCGTGCACACCTTCCCGGCC LTISGTPEVTCVVVDVGQ nes & repe ATCCTGCAGTCCTCCGGGCTC DDPEVQFSWFVDNVEVRT rtoire = ge TACTCTCTCAGCAGCGTGGTG ARTKPREEQFNSTFRVVSA netable & s ACCGTGCCGGCCAGCACCTC LPIQHQDWTGGKEFKCKV pecies = sh AGGAGCCCAGACCTTCATCTG HNEALPAPIVRTISRTKGQ eep & grou CAACGTAGCCCACCCGGCCA AREPQVYVLAPPQEELSK p = IGHC GCAGCACCAAGGTGGACAAG STLSVTCLVTGFYPDYIAV CGTGTTGAGCCCGGATGCCCG EWQKNGQPESEDKYGTT GACCCATGCAAACATTGCCGA TSQLDADGSYFLYSRLRV TGCCCACCCCCTGAGCTCCCC DKNSWQEGDTYACVVMH GGAGGACCGTCTGTCTTCATC EALHNHYTQKSISKPPGK* TTCCCACCGAAACCCAAGGA (SEQ ID NO: 42) CACCCTTACAATCTCTGGAAC GCCCGAGGTCACGTGTGTGGT GGTGGACGTGGGCCAGGATG ACCCCGAGGTGCAGTTCTCCT GGTTCGTGGACAACGTGGAG GTGCGCACGGCCAGGACAAA GCCGAGAGAGGAGCAGTTCA ACAGCACCTTCCGCGTGGTCA GCGCCCTGCCCATCCAGCACC AAGACTGGACTGGAGGAAAG GAGTTCAAGTGCAAGGTCCA CAACGAAGCCCTCCCGGCCC CCATCGTGAGGACCATCTCCA GGACCAAAGGGCAGGCCCGG GAGCCGCAGGTGTACGTCCTG GCCCCACCCCAGGAAGAGCT CAGCAAAAGCACGCTCAGCG TCACCTGCCTGGTCACCGGCT TCTACCCAGACTACATCGCCG TGGAGTGGCAGAAAAATGGG CAGCCTGAGTCGGAGGACAA GTACGGCACGACCACATCCCA GCTGGACGCCGACGGCTCCTA CTTCCTGTACAGCAGGCTCAG GGTGGACAAGAACAGCTGGC AAGAAGGAGACACCTACGCG TGTGTGGTGATGCACGAGGCT CTGCACAACCACTACACACA GAAGTCGATCTCTAAGCCTCC GGGTAAATGA (SEQ ID NO: 43) IgG2 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLTSCCGDTS X70983 Clarkson C.A. et AGTCTACCCTCTGACTTCTTG SSSSIVTLGCLVSSYMPEP al., Mol. CTGCGGGGACCACGTCCAGCT VTVTWNSGALTSGVHTFP Immunol., 30, CCAGCTCCATCGTGACCCTGG AILQSSGLYSLSSVVTVPA 1195-1204 GCTGCCTGGTCTCCAGCTATAT STSGAQTFICNVAHPASSA (1993). PMID: GCCCGAGCCGGTGACCGTGA KVDKRVGISSDYSKCSKP 8413324 CCTGGAACTCTGGTGCCCTGA PCVSRPSVFIFPPKPKDSL CCAGCGGCGTGCACACCTTCC MITGTPEVTCVVVDVGQG CGGCCATCCTGCAGTCCTCCG DPEVQFSWFVDNVEVRTA GGCTCTACTCTCTCAGCAGCG RTKPREEQFNSTFRVVSAL TGGTGACCGTGCCGGCCAGC PIQHDHWTGGKEFKCKV ACCTCAGGAGCCCAGACCTTC HSKGLPAPIVRTISRAKGQ ATCTGCAACGTAGCCCACCCG AREPQVYVLAPPQEELSK GCCAGCAGCGCCAAGGTGGA STLSVTCLVTGFYPDYIAV CAAGCGTGTTGGGATCTCCAG EWQRARQPESEDKYGTTT TGACTACTCCAAGTGTTCTAA SQLDADGSYFLYSRLRVD ACCGCCTTGCGTGAGCCGACC KSSWQRGDTYACVVMHE GTCTGTCTTCATCTTCCCCCCG ALHNHYTQKSISKPPGK* AAACCCAAGGACAGCCTCAT (SEQ ID NO: 44) GATCACAGGAACGCCCGAGG TCACGTGTGTGGTGGTGGACG TGGGCCAGGGTGACCCCGAG GTGCAGTTCTCCTGGTTCGTG GACAACGTGGAGGTGCGCAC GGCCAGGACAAAGCCGAGAG AGGAGCAGTTCAACAGCACC TTCCGCGTGGTCAGCGCCCTG CCCATCCAGCACGACCACTGG ACTGGAGGAAAGGAGTTCAA GTGCAAGGTCCACAGCAAAG GCCTCCCGGCCCCCATCGTGA GGACCATCTCCAGGGCCAAA GGGCAGGCCCGGGAGCCGCA GGTGTACGTCCTGGCCCCACC CCAGGAAGAGCTCAGCAAAA GCACGCTCAGCGICACCTGCC TGGTCACCGGCTTCTACCCAG ACTACATCCICCGTGGAGTGGC AGAGAGCGCGGCAGCCTGAG TCGGAGGACAAGTACGGCAC GACCACATCCCAGCTGGACGC CGACGGCTCCTACTTCCTGTA CAGCAGGCTCAGGGTGGACA AGAGCAGCTGGCAAAGAGGA GACACCTACGCGTGTGTGGTG ATGCACGAGGCTCTGCACAAC CACTACACACAGAACITCGATC TCTAAGCCTCCGGGTAAATGA (SEQ ID NO: 45) Ovine Ig CCATCCGTCTTCCTCTTCAAA PSVFLFKPSEEQLRTGTVS X54110 Not Jenne C.N. et al., light kappa CCATCTGAGGAACAGCTGAG VVCLVNDFYPKDINVKVK registered Dev. Comp. chain (CK) GACCGGAACTGTCTCTGTCGT VDGVTQNSNFQNSFTDQD Immunol. 30 (1- constant GTGCTTGGTGAATGATTTCTA SKKSTYSLSSTLTLSSSEY 2), 165-174 region CCCCAAAGATATCAATGTCAA QSHNAYACEVSHKSLPTA (2006). PMID: GGTGAAAGTGGATGGGGTTA LVKSFNKNEC* (SEQ ID 16083958 CCCAGAACAGCAACTTCCAG NO: 46) AACAGCTTCACAGACCAGGA CAGCAAGAAAAGCACCTACA GCCTCAGCAGCACCCTGACA CTGTCCAGCTCAGAGTACCAG AGCCATAACGCCTATGCGTGT GAGGTCAGCCACAAGAGCCT GCCCACCGCCCTCGTCAAGA GCTTCAATAAGAATGAATGTT AG (SEQ ID NO: 47) Ig GGTCAGCCCAAGTCCGCACC GQPKSAPSVTLFPPSTEEL AY734681 lambda CTCGGTCACCCTGTTCCCGCC STNKATVVCLINDFYPGS (CL) TTCCACGGAGGAGCTCAGTAC VNVVWKADGSTINQNVK CAACAAGGCCACCGTGGTGT TTQASKQSNSKYAASSYL GTCTCATCAACGACTTCTACC TLTGSEWKSKSSYTCEVT CGGGTAGCGTGAACGTGGTCT HEGSTVTKTVKPSECS* GGAAGGCAGATGGCAGCACC (SEQ ID NO: 48) ATCAATCAGAACGTGAAGACC ACCCAGGCCTCCAAACAGAG CAACAGCAAGTACGCGGCCA GCAGCTACCTGACCCTGACGG GCAGCGAGTGGAAGTCTAAG AGCAGTTACACCTGCGAGGTC ACGCACGAGGGGAGCACCGT GACGAAGACAGTGAAGCCCT CAGAGTGTTCTTAG (SEQ ID NO: 49) Porcine Porcine IgG1.sup.a GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCGRDT U03781 http://ww Butler J.E. et al., (Scienti- Ig GTCTACCCTCTGGCCCCCTGC SGPNVALGCASSYFPEPV w.imgt.or Immunogenetics fic heavy GGCAGGGACACGTCTGGCCC TMTWNSGALTSGVHTFPS g/IMGTre 61(3): 209-230 Name: chain TAACGTGGCCTTGGGCTGCCT VLQPSGLYSLSSMVTVPAS pertoire/i (2009). PMID: Sus constant GGCCTCAAGCTACTFCCCCGA SLSSKSYTCNVNHPATTTK ndex.php 19048248 scrofa) region GCCAGTGACCATGACCTGGA VDKRVGTKTKPPCPICPGC ?section = Kacskovics I. et (CH1- ACTCGGGCGCCCTGACCAGT EVAGPSVFIFPPKPKDTLM LocusGe al., J. Immunol. CH3) GGCGTGCATACCTTCCCATCC ISQTPEVTCVVVDVSKEH nes & repe 153(8): 3565- GTCCTGCAGCCGTCAGGGCTC AEVQFSWYVDGVEVHTA rtoire = ge 3573 (1994). TACTCCCTCAGCAGCATGGTG ETRPKEEQFNSTYRVVSV netable & s PMID: 7930579 ACCGTGCCGGCCAGCAGCCT LPIQHQDWLKGKEFKCKV pecies = Pi GTCCAGCAAGAGCTACACCT NNVDLPAPITRTISKAIGQS g & group = GCAATGTCAACCACCCGGCCA REPQVYTLPPPAEELSRSK IGHC CCACCACCAAGGTGGACAAG VTVTCLVIGFYPPDIHVEW CGTGTTGGAACAAAGACCAA KSNGQPEPEGNYRTTPPQ ACCACCATGTCCCATATGCCC QDVDGTFFLYSKLAVDKA AGGCTGTGAAGTGGCCGGGC RWDHGETFECAVMHEAL CCTCGGTCTTCATCTTCCCTCC HNHYTQKSISKTQGK* AAAACCCAAGGACACCCTCA (SEQ ID NO: 50) TGATCTCCCAGACCCCCGAGG

TCACGTGCGTGGTGGTGGAC GTCAGCAAGGAGCACGCCGA GGTCCAGTTCTCCTGGTACGT GGACGGCGTAGAGGTGCACA CGGCCGAGACGAGACCAAAG GAGGAGCAGTTCAACAGCAC CTACCGTGTGGTCAGCGICCT GCCCATCCAGCACCAGGACTG GCTGAAGGGGAAGGAGTTCA AGTGCAAGGTCAACAACGTA GACCTCCCAGCCCCCATCACG AGGACCATCTCCAAGGCTATA GGGCAGAGCCGGGAGCCGCA GGTGTACACCCTGCCCCCACC CGCCGAGGAGCTGTCCAGGA GCAAAGTCACCGTAACCTGCC TGGTCATTGGCTTCTACCCAC CTGACATCCATGTTGAGTGGA AGAGCAACGGACAGCCGGAG CCAGAGGGCAAFTACCGCACC ACCCCGCCCCAGCAGGACGT GGACGGGACCTTCTTCCTGTA CAGCAAGCTCGCGGTGGACA AGGCAAGATGGGACCATGGA GAAACATTTGAGTGTGCGGTG ATGCACGAGGCTCTGCACAAC CACTACACCCAGAAGTCCATC TCCAAGACTCAGGGTAAATGA (SEQ ID NO: 51) IgG1.sup.b GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCGRDV U03778 GTCTACCCTCTGGCCCCCTGC SGPNVALGCLASSYFPEPV GGCAGGGACGTGTCTGGCCCT TVTWNSGALTSGVHTFPS AACGTGGCCTTGGGCTGCCTG VLQPSGLYSLSSMVTVPAS GCCTCAAGCTACTTCCCCGAG SLSSKSYTCNVNHPATTTK CCAGTGACCGTGACCTGGAA VDKRVGIHQPQTCPICPGC CTCGGGCGCCCTGACCAGTG EVAGPSVFIFPPKPKDTLM GCGTGCACACCTTCCCATCCG ISQTEVTCVVVDVSKEH TCCTGCAGCCGTCAGGGCTCT AEVQFSWYVDGVEVHTA ACTCCCTCAGCAGCATGGTGA ETRPKEEQFNSTYRVVSC CCGTGCCGGCCAGCAGCCTGT LPIQHQDWLKGKEFKCKV CCAGCAAGAGCTACACCTGC NNVDLPAPITRTISKAIGQS AATGTCAACCACCCGGCCACC REPQVYTLPPPAEELSRSK ACCACCAAGGTGGACAAGCG VTLTCLVIGFYPPDIHVEW TGTTGGAATACACCAGCCGCA KSNGQPEPENTYRTTPPQ AACATGTCCCATATGCCCAGG QDVDGTFFLYSKLAVDKA CTGTGAAGTGGCCGGGCCCTC RWDHGDKFECAVMHEAL GGTCTTCATCTTCCCTCCAAA HNHYTQKSISKTQGK* ACCCAAGGACACCCTCATGAT (SEQ ID NO: 52) CTCCCAGACCCCCGAGGTCAC GTGCGTGGTGGTGGACGTCA GCAAGGAGCACGCCGAGGTC CAGTTCTCCTGGTACGTGGAC GGCGTAGAGGTGCACACGGC CGAGACGAGACCAAAGGAGG AGCAGTTCAACAGCACCTACC GTGTGGTCAGCGTCCTGCCCA TCCAGCACCAGGACTGGCTG AAGGGGAAGGAGTTCAAGTG CAAGGTCAACAACGTAGACC TCCCAGCCCCCATCACGAGGA CCATCTCCAAGGCTATAGGGC AGAGCCGGGAGCCGCAGGTG TACACCCTGCCCCCACCCGCC GAGGAGCTGTCCAGGAGCAA AGTCACGCTAACCTGCCTGGT CATTGGCTTCTACCCACCTGA CATCCATGTTGAGTGGAAGAG CAACGGACAGCCGGAGCCAG AGAACACATACCGCACCACCC CGCCCCAGCAGGACGTGGAC GGGACCTTCTTCCTGTACAGC AAACTCGCGGTGGACAAGGC AAGATGGGACCATGGAGACA AATTTGAGTGTGCGGTGATGC ACGAGGCTCTGCACAACCACT ACACCCAGAAGTCCATCTCCA AGACTCAGGGTAAATGA (SEQ ID NO: 53) IgG2.sup.a GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCSRDTS U03779 GTCTACCCTCTGGCCCCCTGC GPNVALGCLASSYFPEPVT AGCAGGGACACGTCTGGCCC VTWNSGALSSGVHTFPSV TAACGTGGCCTTGGGCTGCCT LQPSGLYSLSSMVTVPASS GGCCTCAAGCTACTTCCCCGA LSSKSYTCNVNHPATTTK GCCAGTGACCGTGACCTGGA VDKRVGTKTKPPCPICPAC ACTCGGGCGCCCTGTCCAGTG ESPGPSVFIFPPKPKDTLMI GCGTGCATACCTTCCCATCCG SRTPQVTCVVVDVSQENP TCCTGCAGCCGTCAGGGCTCT EVQFSWYVDGVEVHTAQ ACTCCCTCAGCAGCATGGTGA TRPKEEQFNSTYRVVSVLP CCGTGCCGGCCAGCAGCCTGT IQHQDWLNGKEFKCKVN CCAGCAAGAGCTACACCTGC NKDLPAPITRIISKAKGQT AATGTCAACCACCCGGCCACC REPQVYTLPPHAEELSRSK ACCACCAAGGTGGACAAGCG VSITCLVIGFYPPDIDVEW TGTTGGAACAAAGACCAAAC QRNGQPEPEGNYRTTPPQ CACCATGTCCCATATGCCCAG QDVDGTYFLYSKFSVDKA CCTGTGAATCCCAGGGCCCT SWQGGGIFQCAVMHEAL CGGTCTTCATCTTCCCTCCAA HNHYTQKSISKTPGK* AACCCAAGGACACCCTCATGA (SEQ ID NO: 54) TCTCCCGGACACCCCAGGTCA CGTGCGTGGTGGTTGATGTGA GCCAGGAGAACCCGGAGGTC CAGTTCTCCTGGTACGTGGAC GGCGTAGAGGTGCACACGGC CCAGACGAGGCCAAAGGAGG AGCAGTTCAACAGCACCTACC GCGTGGTCAGCGTCCTACCCA TCCAGCACCAGGACTGGCTG AACGGGAAGGAGTTCAAGTG CAAGGTCAACAACAAAGACC TCCCAGCCCCCATCACAAGGA TCATCTCCAAGGCCAAAGGGC AGACCCGGGAGCCGCAGGTG TACACCCTGCCCCCACACGCC GAGGAGCTGTCCAGGAGCAA AGTCAGCATAACCTGCCTGGT CATTGGCTTCTACCCACCTGA CATCGATGTCGAGTGGCAAAG AAACGGACAGCCGGAGCCAG AGGGCAATTACCGCACCACCC CGCCCCAGCAGGACGTGGAC GGGACCTACTTCCTGTACAGC AAGTTCTCGGTGGACAAGGC CAGCTGGCAGGGTGGAGGCA TATTCCAGTGTGCGGTGATGC ACGAGGCTCTGCACAACCACT ACACCCAGAAGTCTATCTCCA AGACTCCGGGTAAATGA (SEQ ID NO: 55) IgG2.sup.b GCCCCCAAGACGGCCCCATTG APKTAPLVYPLAPCGRDT U03780 GTCTACCCTCTGGCCCCCTGC SGPNVALGCLASSYFPEPV GGCAGGGACACGTCTGGCCC TVTWNSGALTSGVHTFPS TAACGTGGCCTTGGGCTGCCT VLQPSGLYSLSSMVTVPAS GGCCTCAAGCTACTTCCCCGA SLSSKSYTCNVNHPATTTK GCCAGTGACCGTGACCTGGA VDKRVGTKTKPPCPICPAC ACTCGGGCGCCCTGACCAGT ESPGPSVFIFPPKPKDTLMI GGCGTGCATACCTTCCCATCC SRTPQVTCVVVDVSQENP GTCCTGCAGCCGTCAGGGCTC EVQFSWYVDGVEVHTAQ TACTCCCTCAGCAGCATGGTG TRPKEFQFNSTYRVVSVLP ACCGTGCCGGCCAGCAGCCT IQHQDWLNGKEFKCKVN GTCCAGCAAGAGCTACACCT NKDLPAPITRIISKAKGQT GCAATGTCAACCACCCGGCCA REPQVYTLPPHAEELSRSK CCACCACCAAGGTGGACAAG VSITCLVIGFYPPDIDVEW CGTGTTGGAACAAAGACCAA QRNGQPEPEGNYRTTPPQ ACCACCATGTCCCATATGCCC QDVDGTYFLYSKFSVDKA AGCCTGTGAATCGCCAGGGCC SWQGGGIFQCAVMHEAL CTCGGTCTTCATCTTCCCTCCA HNHYTQKSISKTPGK* AAACCCAAGGACACCCTCAT (SEQ ID NO: 56) GATCTCCCGGACACCCCAGGT CACGTGCGTGGTAGTTGATGT GAGCCAGGAGAACCCGGAGG TCCAGTTCTCCTGGTACGTGG ACGGCGTAGAGGTGCACACG GCCCAGACGAGGCCAAAGGA GGAGCAGTTCAACAGCACCT ACCGCGTGGTCAGCGTCCTGC CCATCCAGCACCAGGACTGGC TGAACGGGAAGGAGTTCAAG TGCAAGGTCAACAACAAAGA CCTCCCAGCCCCCATCACAAG GATCATCTCCAAGGCCAAAGG GCAGACCCGGGAGCCGCAGG TGTACACCCTGCCCCCACACG CCGAGGAGCTGTCCAGGAGC AAAGTCAGCATAACCTGCCTG GTCATTGGCTTCTACCCACCT GACATCGATGTCGAGTGGCAA AGAAACGGACAGCCGGAGCC AGAGGGCAATTACCGCACCA CCCCGCCCCAGCAGGACGTG GACGGGACCTACTTCCTGTAC AGCAAGTTCTCGGTGGACAA GGCCAGCTGGCAGGGTGGAG GCATATTCCAGTGTGCGGTGA TGCACGAGGCTCTGCACAAC CACTACACCCAGAAGTCTATC TCCAAGACTCCGGGTAAATGA (SEQ ID NO: 57) IgG3 GCCTACAACACAGCTCCATCG AYNTAPSVYPLAPCGRDV EU372658 GTCTACCCTCTGGCCCCCTGT SDHNVALGCLVSSYFPEPV GGCAGGGACGTGTCTGATCAT TVTWNSGALSRVVHTFPS AACGTGGCCTTGGGCTGCCTT VLQPSGLYSLSSMVIVAAS GTCTCAAGCTACTTCCCCGAG SLSTLSYTCNVYHPATNTK CCAGTGACCGTGACCTGGAA VDKRVDIEPPTPICPEICSC CTCGGGTGCCCTGTCCAGAGT PAAEVLGAPSVFLFPPKPK CGTGCATACCTTCCCATCCGT DILMISRTPKVTCVVVDVS CCTGCAGCCGTCAGGGCTCTA QEEAEVQFSWYVDGVQL CTCCCTCAGCAGCATGGTGAT YTAQTRPMEEQFNSTYRV CGTGGCGGCCAGCAGCCTGT VSVLPIQHQDWLKGKEFK CCACCCTGAGCTACACGTGCA CKVNNKDLLSPITRTISKA ACGTCTACCACCCGGCCACCA TGPSRVPQVYTLPPAWEEL ACACCAAGGTGGACAAGCGT SKSKVSITCLCTGFYPPDI GTTGACATCGAACCCCCCACA DVEWQSNGQQEPEGNYR CCCATCTGTCCCGAAATTTGC TTPPQQDVDGTYFLYSKL TCATGCCCAGCTGCAGAGGTC AVDKVRWQRGDLFQCAV CTGGGAGCACCGTCGGTCTTC MHEALHNHYTQKSISKTQ CTCTTCCCTCCAAAACCCAAG GK (SEQ ID NO: 58) GACATCCTCATGATCTCCCGG ACACCCAAGGTCACGTGCGT GGTGGTGGACGTGAGCCAGG AGGAGGCTGAAGTCCAGTTC TCCTGGTACGTGGACCCCGTA CAGTTGTACACGGCCCAGAC GAGGCCAATGGAGGAGCAGT TCAACAGCACCTACCGCGTGG TCAGCGTCCTGCCCATCCAGC ACCAGGACTGGCTGAAGGGG AAGGAGTTCAAGTGCAAGGT CAACAACAAAGACCTCCTTTC CCCCATCACGAGGACCATCTC CAAGGCTACAGGGCCGAGCC GGGTGCCGCAGGTGTACACC CTGCCCCCAGCCTGGGAAGA GCTGTCCAAGAGCAAAGTCA GCATAACCTGCCTGGTCACTG GCTTCTACCCACCTGACATCG ATGTCGAGTGGCAGAGCAAC GGACAACAAGAGCCAGAGGG CAATTACCGCACCACCCCGCC CCAGCAGGACGTGGATGGGA CCTACTTCCTGTACAGCAAGC TCGCGGTGGACAAGGTCAGG TGGCAGCGTGGAGACCTATTC CAGTGTGCGGTGATGCACGA GGCTCTGCACAACCACTACAC CCAGAAGTCCATCTCCAAGAC TCAGGGTAAATGA (SEQ ID NO: 59) IgG4.sup.a ACCTTCCCATCCGTCCTGCAG TFPSVLQPSGLYSLSSMVT U03782 CCGTCAGGGCTCTACTCCCTC VPASSLSSKSYTCNVNHPA AGCAGCATGGTGACCGTGCC TTTKVDKRVGTKTKPPCPI GGCCAGCAGCCTGTCCAGCA CPACEGPGPSAFIFPPKPK AGAGCTACACCTGCAATGTCA DTLMISRTPKVTCVVVDV ACCACCCGGCCACCACCACC SQENPEVQFSWYVDGVE AAGGTGGACAAGCGTGTTGG VHTAQTRPKEEQFNSTYR AACAAAGACCAAACCACCAT VVSVLPIQHQDWLNGKEF GTCCCATATGCCCAGCCTGTG KCKVNNKDLPAPITRIISK AAGGGCCCGGGCCCTCGGCC AKGQTREPQVYTLPPPTE TTCATCTTCCCTCCAAAACCC ELSRSKVTLTCLVTGFYPP AAGGACACCCTCATGATCTCC DIDVEWQRNGQPEPEGNY CGGACCCCCAAGGTCACGTG RTTPPQQDVDGTYFLYSK CGTGGTGGTAGATGTGAGCCA LAVDKASWQRGDTFQCA GGAGAACCCGGAGGTCCAGT VMHEALHNHYTQKSIFKT TCTCCTGGTACGTGGACGGCG PGK* (SEQ ID NO: 60) TAGAGGTGCACACGGCCCAG ACGAGGCCAAAGGAGGAGCA GTTCAACAGCACCTACCGCGT GGTCAGCGTCCTGCCCATCCA

GCACCAGGACTGGCTGAACG GGAAGGAGTTCAAGTGCAAG GTCAACAACAAAGACCTCCC AGCCCCCATCACAAGGATCAT CTCCAAGGCCAAAGGGCAGA CCCGGGAGCCGCAGGTGTAC ACCCTGCCCCCACCCACCGAG GAGCTGTCCAGGAGCAAAGT CACGCTAACCTGCCTGGTCAC TGGCTTCTACCCACCTGACAT CGATGTCGAGTGGCAAAGAA ACGGACAGCCGGAGCCAGAG GGCAATTACCGCACCACCCCG CCCCAGCAGGACGTGGACGG GACCTACTTCCTGTACAGCAA GCTCGCGGTGGACAAGGCCA GCTGGCAGCGTGGAGACACA TTCCAGTGTGCGGTGATGCAC GAGGCTCTGCACAACCACTAC ACCCAGAAGTCCATCTTCAAG ACTCCGGGTAAATGA (SEQ ID NO: 61) IgG4.sup.b GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCGRDV EU372654 GTCTACCCTCTGGCCCCCTGC SGPNVALGCLASSYFPEPV GGCAGGGACGTGTCTGGCCCT TVTWNSGALTSGVHTFPS AACGTGGCCTTGGGCTGCCTG VLQPSGLYSLSSMVTVPAS GCCTCAAGCTACTTCCCCGAG SLSSKSYTCNVNHPATTTK CCAGTGACCGTGACCTGGAA VDKRVGIHQPQTCPICPAC CTCGGGCGCCCTGACCAGTG EGPGPSAFIFPPKPKDTLM GCGTGCACACCTTCCCATCCG ISRTPKVTCVVVDVSQEN TCCTGCAGCCGTCAGGGCTCT PEVQFSWYVDGVEVHTA ACTCCCTCAGCAGCATGGTGA QTRPKEEQFNSTYRVVSV CCGTGCCGGCCAGCAGCCTGT LLIQHQDWLNGKEFKCK CCAGCAAGAGCTACACCTGC VNNKDLPAPITRIISKAKG AATGTCAACCACCCGGCCACC QTREPQVYTLPPPTEELSR ACCACCAAGGTGGACAAGCG SKVTLTCLVTGFYPPDIDV TGTTGGAATACACCAGCCGCA EWQRNGQPEPEGNYRTTP AACATGTCCCATAIGCCCAGC PQQDVDGTYFLYSKLAVD CTGTGAAGGGCCCGGGCCCT KASWQRGDTFQCAVMHE CGGCCTTCATCTTCCCTCCAA ALHNGYT (SEQ ID NO: AACCCAAGGACACCCTCATGA 62) TCTCCCGGACCCCCAAGGTCA CGTGCGTGGTGGTTGATGTGA GCCAGGAGAACCCGGAGGTC CAGTTCTCCTGGTACGTGGAC GGCGTAGAGGTGCACACGGC CCAGACGAGGCCAAAGGAGG AGCAGTTCAACAGCACCTACC GCGTGGTCAGCGTCCTGCTCA TCCAGCACCAGGACTGGCTG AACGGGAAGGAGTTCAAGTG CAAGGTCAACAACAAAGACC TCCCAGCCCCCATCACAAGGA TCATCTCCAAGGCCAAAGGGC AGACCCGGGAGCCGCAGGTG TACACCCTGCCCCCACCCACC GAGGAGCTGTCCAGGAGCAA AGTCACGCTAACCTGCCTGGT CACTGGCTTCTACCCACCTGA CATCGATGTCGAGTGGCAAAG AAACGGACAGCCGGAGCCAG AGGGCAATTACCGCACCACCC CGCCCCAGCAGGACGTGGAC GGGACCTACTTCCTGTACAGC AAGCTCGCGGTGGACAAGGC CAGCTGGCAGCGTGGAGACA CATTCCAGTGTGCGGTGATGC ACGAGGCTCTGCACAACCACT ACACCC (SEQ ID NO: 63) IgG5.sup.a GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCSRDTS EU372657 GTCTACCCTCTGGCCCCCTGC GPNVALGCLVSSYFPEPVT AGCAGGGACACGTCTGGCCC VTWNSGALTSGVHTFPSV TAACGTGGCCTTGGGCTGCCT LQPSGLYSLSSMVTVPAHS GGTCTCAAGCTACTTCCCCGA LSSKRYTCNVNHPATKTK GCCAGTGACCGTGACCTGGA VDLCVGRPCPICPGCEVA ACTCGGGCGCCCTGACCAGT GPSVFIFPPKPKDILMISRT GGCGTGCACACCTTCCCATCC PEVTCVVVDVSKEHAEV GTCCTGCAGCCGTCAGGGCTC QFSWYVDGEEVHTAEFRP TACTCCCTCAGCAGCATGGTG KEEQFNSTYRVVSVLPIQH ACCGTGCCGGCCCACAGCTTG EDWLKGKEFECKVNNED TCCAGCAAGCGCTATACGTGC LPGPITRTISKAKGVVRSP AATGTCAACCACCCAGCCACC EVYTLPPPAEELSKSIVTLT AAAACCAAGGTGGACCTGTG CLVKSIFP?FIHVEWKING TGTTGGACGACCATGTCCCAT KPEPENAYRTTPPQEDEDR ATGCCCAGGCTGTGAAGTGGC TYFLYSKLAVDKARWDH CGGGCCCTCGGTCTTCATCTT GETFECAVMHEALHNHY CCCTCCAAAACCCAAGGACAT TQKSISKTQGK* (SEQ ID CCTCATGATCTCCCGGACCCC NO: 64) CGAGGTCACGTGCGTGGTGG TGGACGTCAGCAAGGAGCAC GCCGAGGTCCAGTTCTCCTGG TACGTGGACGGCGAAGAGGT GCACACGGCCGAGACGAGGC CAAAGGAGGAGCAGTTCAAC AGCACCTACCGCGTGGTCAGC GTCCTGCCCATCCAGCACGAG GACTGGCTGAAGGGGAAGGA GTTCGAGTGCAAGGTCAACA ACGAAGACCTCCCAGGCCCC ATCACGAGGACCATCTCCAAG GCCAAAGGGGTGGTACGGAG CCCGGAGGTGTACACCCTGCC CCCACCCGCCGAGGAGCTGT CCAAGAGCATAGTCACGCTAA CCTGCCTGGTCAAAAGCATCT TCCCGNCTTTCATCCATGTTG AGTGGAAAATCAACGGAAAA CCAGAGCCAGAGAACGCATAT CGCACCACCCCGCCTCAGGA GGACGAGGACAGGACCTACT TCCTGTACAGCAAGCTCGCGG TGGACAAGGCAAGATGGGAC CATGGAGAAACATTTGAGTGT GCGGTGATGCACGAGGCTCTG CACAACCACTACACCCAGAA GTCCATCTCCAAGACTCAGGG TAAATGA (SEQ ID NO: 65) IgG5.sup.b GCCTACAACACAGCTCCATCG AYNTAPSVYPLAPCGRDV EU372656 GTCTACCCTCTGGCCCCCTGT SDHNVALGCLVSSYFPEPV GGCAGGGACGTGTCTGATCAT TVTWNWGAQTSGVHTFP AACGTGGCCTTGGGCTGCCTG SVLQPSGLYSLSSTVTVPA GTCTCAAGCTACTTCCCCGAG HSLSSKCFTCNVNHPATTT CCAGTGACCGTGACCTGGAA KVDLCVGKKTKPRCPICP CTGGGGCGCCCAGACCAGTG GCEVAGPSVFIFPPKPKDIL GCGTGCACACCTTCCCATCCG MISRTPEVTCVVVDVSKE TCCTGCAGCCGTCAGGGCTCT HAEVQFSWYVDGEEVHT ACTCCCTCAGCAGCACGGTG AETRPKEEQFNSTYRVVS ACCGTGCCGGCCCACAGCTTG VLPIQHEDWLKGKEFECK TCCAGCAAGTGCTTCACGTGC VNNEDLPGPITRTISKAKG AATGTCAACCACCCGGCCACC VVRSPEVYTLPPPAEELSK ACCACCAAGGTGGACCTGTG SIVTLTCLVKSFFPPFIHVE TGTTGGAAAAAAGACCAAGC WKINGKPEPENAYRTTPP CTCGATGTCCCATATGCCCAG QEDEDGTYFLYSKFSVEK GCTGTGAAGTGGCCGGGCCC FRWHSGGIHCAVMHEAL TCGGTCTTCATCTTCCCTCCA HNHYT (SEQ ID NO: 66) AAACCCAAGGACATCCTCATG ATCTCCCGGACCCCCGAGGTC ACGTGCGTGGTGGTGGACGT CAGCAAGGAGCACGCCGAGG TCCAGTTCTCCTGGTACGTGG ACGGCGAAGAGGTGCACACG GCCGAGACGAGACCAAAGGA GGAGCAGTTCAACAGCACTT ACCGCGTGGTCAGCGTCCTGC CCATCCAGCACGAGGACTGG CTGAAGGGGAAGGAGTTCGA GTGCAAGGTCAACAACGAAG ACCTCCCAGGCCCCATCACGA GGACCATCTCCAAGGCCAAA GGGGTGGTACGGAGCCCGGA GGTGTACACCCTGCCCCCACC CGCCGAGGAGCTGTCCAAGA GCATAGTCACGCTAACCTGCC TGGTCAAAAGCTTCTTCCCGC CTTTCATCCATGTTGAGTGGA AAATCAACGGAAAACCAGAG CCAGAGAACGCATACCGCAC CACCCCGCCCCAGGAGGACG AGGACGGGACCTACTTCCTGT ACAGCAAGTTCTCGGTGGAA AAGTTCAGGTGGCACAGTGG AGGCATCCACTGTGCGGTGAT GCACGAGGCTCTGCACAACC ACTACACCC (SEQ ID NO: 67) IgG6 GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCGRDT EU372655 GTCTACCCTCTGGCCCCCTGC SGPNVALGCLASSYFPEPV GGCAGGGACACGTCTGGCCC TLTWNSGALTSGVHTFPS TAACGTGGCCTTGGGCTGCCT VLQPSGLYSLSSMVTVPAS GGCCTCAAGCTACTTCCCCGA SLSSKSYTCNVNHPATTTK GCCAGTGACCCTGACCTGGA VDLCVGRPCPICPACEGPG ACTCGGGCGCCCTGACCAGT PSVFIFPPKPKDTLMISRTP GGCGTGCATACCTTCCCATCC QVTCVVVDVSQENPEVQF GTCCTGCAGCCGTCAGGGCTC SWYVDGVEVHTAQTRPK TACTCCCTCAGCAGCATGGTG EAQFNSTYRVVSVLPIQHE ACCGTGCCGGCCAGCAGCCT DWLKGKEFECKVNNKDL GTCCAGCAAGAGCTACACCT PAPITRIISKAKGPSREPQV GCAATGTCAACCACCCGGCCA YTLSPSAEELSRSKVSITCL CCACCACCAAGGTGGACCTG VTGFYPPDIDVEWKSNGQ TGTGTTGGACGACCATGTCCC PEPEGNYRTTPPQQDVDG ATATGCCCAGCCTGTGAAGGG TYFLYSKLAVDKASWQRG CCCGGGCCCTCGGTCTTCATC DPFQCAVMHEALHNHYT TTCCCTCCAAAACCCAAGGAC (SEQ ID NO: 68) ACCCTCATGATCTCCCGGACA CCCCAGGTCACGTGCGTGGTG GTAGATGTGAGCCAGGAAAA CCCGGAGGTCCAGTTCTCCTG GTATGTGGACGGTGTAGAGGT GCACACGGCCCAGACGAGGC CAAAGGAGGCGCAGTTCAAC AGCACCTACCGTGTGGTCAGC GTCCTGCCCATCCAGCACGAG GACTGGCTGAAGGGGAAGGA GTTCGAGTGCAAGGTCAACA ACAAAGACCTCCAGCCCCCA TCACAAGGATCATCTCCAAGG CCAAAGGGCCGAGCCGGGAG CCGCAGGTGTACACCCTGTCC CCATCCGCCGAGGAGCTGTCC AGGAGCAAAGTCAGCATAAC CTGCCTGGTCACTGGCTTCTA CCCACCTGACATCGATGTCGA GTGGAAGAGCAACGGACAGC CGGAGCCAGAGGGCAATTAC CGCACCACCCCGCCCCAGCA GGACGTGGACGGGACCTACT TCCTGTACAGCAAGCTCGCGG TGGACAAGGCCAGCTGGCAG CGTGGAGACCCATTCCAGTGT GCGGTGATGCACGAGGCTCTG CACAACCACTACACCC (SEQ ID NO: 69) IgG6.sup.b GCCCCCAAGACGGCCCCATCG APKTAPSVYPLAPCGRDT EU372653 GTCTACCCTCTGGCCCCCTGC SGPNVALGCLASSYFPEPV GGCAGGGACACGTCTGGCCC TVTWNSGALTSGVHTFPS TAACGTGGCCTTGGGCTGCCT VLQPSGLYSLSSTVTVPAR GGCCTCAAGCTACTTCCCCGA SSSRKCFTCNVNHPATTTK GCCAGTGACCGTGACCTGGA VDLCVGRPCPICPACEGN ACTCGGGCGCCCTGACCAGT GPSVFIFPPKPKDTLMISRT GGCGTGCACACCTTCCCATCC PEVTCVVVDVSQENPEVQ GTCCTGCAGCCGTCAGGGCTC FSWYVDGEEVHTAETRPK TACTCCCTCAGCAGCACGGTG EEQFNSTYRVVSVLPIQHQ ACCGTGCCGGCCAGGAGCTC DWLKGKEFECKVNNKDL GTCCAGAAAGTGCTTCACGTG PAPITRIISKAKGPSREPQV CAATGTCAACCACCCGGCCAC YTLSPSAEELSRSKVSITCL CACCACCAAGGTGGACCTGT VTGFYPPDIDVEWKSNGQ GTGTTGGACGACCATGTCCCA PEPEGNYRSTPPQEDEDG TATGCCCAGCCTGTGAAGGGA TYFLYSKLAVDKARLQSG ACGGGCCCTCGGTCTTCATCT GIHCAVMHEALHNHYTQ TCCCTCCAAAACCCAAGGAC KSISKT (SEQ ID NO: 70) ACCCTCATGATCTCCCGGACC CCCGAGGTCACGTGCGTGGT GGTAGATGTGAGCCAGGAAA ACCCGGAGGTCCAGTTCTCCT GGTACGTGGACGGCGAAGAG GTGCACACGGCCGAGACGAG GCCAAAGGAGGAGCAGTTCA ACAGCACCTACCGTGTGGTCA GCGTCCTGCCCATCCAGCACC AGGACTGGCTGAAGGGAAAG GAGTTCGAGTGCAAGGTCAA CAACAAAGACCTCCCAGCCC CCATCACAAGGATCATCTCCA AGGCCAAAGGGCCGAGCCGG GAGCCGCAGGTGTACACCCT GTCCCCATCCGCCGAGGAGCT GTCCAGGAGCAAAGTCAGCA

TAACCTGCCTGGTCACTGGCT TCTACCCACCTGACATCGATG TCGAGTGGAAGAGCAACGGA CAGCCGGAGCCAGAGGGCAA TTACCGCTCCACCCCGCCCCA GGAGGACGAGGACGGGGACCT ACTTCCTGTACAGCAAACTCG CGGTGGACAAGGCGAGGTTG CAGAGTGGAGGCATCCACTGT GCGGTGATGCACGAGGCTCTG CACAACCACTACACCCAGAA GTCCATCTCCAAGACT (SEQ ID NO: 71) Porcine Ig FP312898 http://ww Schwartz J.C. et Ig kappa w.imgt.or al., Immunogeneti light (CK) g/IMGTre cs, 64, 303-311 chain variant pertoire/i (2012). PMID: constant 1 ndex.php 22109540 region ?section = LocusGe nes & repe rtoire = ge netable & s pecies = Pi g & group = IGLC Ig CU694848 kappa (CK) variant 2 Ig CU467669 http://ww lambda w.imgt.or (CL) g/IMGTre variant pertoire/i 1 ndex.php ?section = LocusGe nes & repe rtoire = ge netable & s pecies = Pi g & group = IGKC Ig CU467599 lambda (CK) variant 2 Water Water IgG1? GAGCGGCGTGCACACCTTCCC SGVHTFPAVLQSSGLYSLS NW_005690903 Not None buffalo buffalo GGCCGTCCTTCAGTCCTCCGG STVTAPASATKSQTFTCNV registered (Scienti- Ig GCTCTACTCTCTCAGCAGCAC AHPASSTKVDKAVVPPCR fic heavy GGTGACCGCGCCCGCCAGCG PKPCDCCPPPELPGGPSVF Name: chain CCACAAAAAGCCAGACCTTC IFPPKPKDTLTISGTPEVTC Bubalus constant ACCTGCAACGTAGCCCACCCG VVVDVGHDDPEVKFSWF bubalis) region GCCAGCAGCACCAAGGTGGA VDDVEVNTARTKPREEQF (CH1- CAAGGCTGTTGTTCCCCCATG NSTYRVVSALPIQHNDWT CH3) CAGACCCGAAACCCTGTGATTG GGKEFKCKVYNEGLPAPI CTGCCCACCCCCTGAGCTCCC VRTISRTKGQAREPQVYV CGGAGGACCCTCTGTCTTCAT LAPPQDELSKSTVSITCMV CTTCCCACCAAAACCCAAGG TGFYPDYIAVEWQKDGQP ACACCCTCACAATCTCTGGAA ESEDKYGTTPPQLDSDGS CTCCTGAGGTCACGTGTGTGG YFLYSRLRVNKNSWQEGG TGGTGGACGTGGGCCACGAT AYTCVVMHE (SEQ ID NO: GACCCCGAGGTGAAGTTCTCC 72) TGGTTCGTGGACGATGTGGAG GTAAACACAGCCAGGACGAA GCCAAGAGAGGAGCAGTTCA ACAGCACCTACCGCGTGGTCA GCGCCCTGCCCATCCAGCACA ACGACTGGACTGGAGGAAAG GAGTTCAAGTGCAAGGTCTAC AATGAAGGCCTCCCAGCCCCC ATCGTGAGGACCATCTCCAGG ACCAAAGGGCAGGCCCGGGA GCCGCAGGTGTACGTCCTGGC CCCACCCCAGGACGAGCTCA GCAAAAGCACGGTCAGCATC ACTTGCATGGTCACTGGCTTC TACCCAGACTACATCGCCGTA GAGTGGCAGAAAGATGGGCA GCCTGAGTCAGAGGACAAATA TGGCACGACCCCGCCCCAGCT GGACAGCGATGGCTCCTACTT CCTGTACAGCAGGCTCAGGGT GAACAAGAACAGCTGGCAAG AAGGAGGCGCCTACACGTGT GTAGTGATGCATGAGGC (SEQ ID NO: 73) IgG2? GCCTCCATCACAGCCCCGAAA ASITAPKVYPLTSCRGETS NW_005766143 GTCTACCCTCTGACTTCTTGC SSTVTLGCLVSSYMPEPVT CGCGGGGAAACGTCCAGCTC VTWNSGALKSGVHTFPAV CACCGTGACCCTGGGCTGCCT LQSSGLYSLSSTVTAPASA GGTCTCCAGCTACATGCCCGA TKSQTFTCNVAHPASSTK GCCGGTGACCGTGACCTGGA VDTAVGFSSDCCKFPKPC ACTCGGGTGCCCTGAAGAGC VRGPSVFIFPPKPKDTLMI GGCGTGCACACCTTCCCGGCC TGNPEVTCVVVDVGRDN GTCCTTCAGTCCTCTGGGCTC PEVQFSWFVGDVEVHTG TACTCTCTCAGCAGCACGGTG RSKPREEQFNSTYRVVSTL ACCGCGCCCGCCAGCGCCAC PIQHNDWTGGKEFKCKV AAAAAGCCAGACCTTCACCT NNKGLPAPIVRTISRTKGQ GCAACGTAGCCCACCCGGCC AREPQVYVLAPPQEELSK AGCAGCACCAAGGTGGACAC STVSVTCMVTGFYPDYIA GGCTGTTGGGTTCTCCAGTGA VEWHRDRQAESEDKYRT CTGCTGCAAGTTTCCTAAGCC TPPQLDSDGSYFLYSRLKV TTGTGTGAGGGGACCATCTGT NKNSWQEGGAYTCVVMH CTTCATCTTCCCGCCGAAACC E (SEQ ID NO: 74) CAAAGACACCCTGATGATCAC AGGAAATCCCGAGGTCACATG TGTGGTGGTGGACGTGGGCC GGGATAACCCCGAGGTGCAG TTCTCCTGGTTCGTGGGTGAT GTGGAGGTGCACACGGGCAG GTCGAAGCCGAGAGAGGAGC AGTTCAACAGCACCFACCGCG TGGTCAGCACCCTGCCCATCC AGCACAATGACTGGACTGGA GGAAAGGAGITCAAGTGCAA GGTCAACAACAAAGGCCTCC CAGCCCCCATCGTGAGGACCA TCTCCAGGACCAAAGGGCAG GCCCGGGAGCCGCAGGTGTA CGTCCTGGCCCCACCCCAGGA AGAGCTCAGCAAAAGCACGG TCAGCGTCACTTGCATGGTCA CTGGCTTCTACCCAGACTACA TCGCCGTAGAGTGGCATAGAG ACCGGCAGGCTGAGTCGGAG GACAAGTACCGCACGACCCC GCCCCAGCTGGACAGCGATG GGTCCTACTTCCTGTACAGCA GGCTCAAGGTGAACAAGAAC AGCTGGCAAGAAGGAGGCGC CTACACGTGTGTAGTGATGCA TGAGGC (SEQ ID NO: 75) IgG3? GCCTCCACCACAGCCCCGAA ASTTAPKVYPLASSCGDTS NW_005784206 AGTCTACCCTCTGGCATCCAG SSTVTLGCLVSSYMPEPVT CTGCGGGGACACGTCCAGCT VTWNSGALKNGVHTFPA CCACCGTGACCCTGGGCTGCC VRQSSGLYSLSSMVTMPT TGGTCTCCAGCTACATGCCCG STAGTQTFTCNVAHPASST AGCCGGTGACCGTGACCTGG KVDTAVTARHPVPKTPET AACTCGGGTGCCCTGAAGAA PIHPVKPPTQEPRDEKTPC CGGCGTGCACACCTTCCCGGC QCPKCPEPLGGLSVFIFPP CGTCCGGCAGTCCTCCGGGCT KPKDTLTISGTPEVTCVVV CTACTCTCTCAGCAGCATGGT DVGQDDPEVQFSWFVDD GACCATGCCCACCAGCACCGC VEVHTARMKPREEQFNST AGGAACCCAGACCTTCACCT YRVVSALPIQHQDWLREK GCAACGTAGCCCACCCGGCC EFKCKVNNKGLPAPIVRTI AGCAGCACCAAGGTGGACAC SRTKGQAREPQVYVLAPP GGCTGTCACTGCAAGGCATCC REELSKSTLSLTCLITGFYP GGTCCCGAAGACACCAGAGA EEVDVEWQRNGQPESED CACCTATCCATCCTGTAAAAC KYHTTPPQLDADGSYFLY CCCCAACCCAGGAGCCCAGA SRLRVNRSSWQEGDHYTC GATGAAAAGACACCCTGCCA AVMHEALRNHYKEKPISR GTGTCCCAAATGCCCAGAACC SPGK* (SEQ ID NO: 76) TCTGGGAGGACTGTCTGTCTT CATCTTCCCACCGAAACCCAA GGACACCCTCACAATCTCTGG AACGCCCGAGGTCACGTGTG TGGTGGTGGACGTGGGCCAG GATGACCCCGAAGTGCAGTTC TCCTGGTTCGTGGATGACGTG GAGGTGCACACAGCCAGGAT GAAGCCAAGAGAGGAGCAGT TCAACAGCACCTACCGCGTGG TCAGCGCCCTGCCCATCCAGC ACCAGGACTGGCTGCGGGAA AAGGAGTTCAAGTGCAAGGT CAACAACAAAGGCCTCCCGG CCCCCATCGTGAGGACCATCT CCAGGACCAAAGGGCAGGCC CGGGAGCCACAGGTGTATGTC CTGGCCCCACCCCGGGAAGA GCTCAGCAAAAGCACGCTCA GCCTCACCTGCCTAATCACCG GCTTCTACCCAGAAGAGGTAG ACGTGGAGTGGCAGAGAAAT GGGCAGCCTGAGTCAGAGGA CAAGTACCACACGACCCCAC CCCAGCTGGACGCTGACGGC TCCTACTTCCTGTACAGCAGG CTCAGGGTGAACAGGAGCAG CTGGCAGGAAGGAGACCACT ACACGTGTGCAGTGATGCATG AAGCTTTACGGAATCACTACA AAGAGAAGCCCATCTCGAGG TCTCCGGGTAAATGA (SEQ ID NO: 77) Water Ig CAGCCCAAGTCCGCACCCTCA QPKSAPSVTLFPPSTEELS NW_005690786 Not None buffalo lambda? GTCACCCTGTTCCCACCCTCC ANKATLVCLISDFYPGSMT registered Ig ACGGAGGAGCTCAGCGCCAA VARKADGSTITRNVETTR light CAAGGCCACCCTGGTGTGTCT ASKQSNSKYAASSYLSLT chain CATCAGCGACTTCTACCCGGG GSEWKSKGSYSCEVTHEG constant TAGCATGACCGTGGCCAGGA STVTKTVKPSECS* (SEQ region AGGCAGACGGCAGCACCATC ID NO: 78) (CL) ACCCGGAACGTGGAGACCAC CCGGGCCTCCAAACAGAGCA ACAGCAAGTACGCGGCCAGC AGCTACCTGAGCCTGACGGG CAGCGAGTGGAAATCGAAAG GCAGTTACAGCTGCGAGGTC ACGCACGAGGGGAGCACCGT GACAAAGACAGTGAAGCCCT CAGAGTGTTCTTAG (SEQ ID NO: 79) Human Human IgG4 GAGTCCAAATATGGTCCCCCA ESKYGPPCPSCPAPEFLGG K01316 http://ww Ellison J. et al., (Scienti- Ig variant TGCCCATCATGCCCAGCACCT PSVFLFPPKPKDTLMISRT w.imgt.or DNA, 1, 11-18 fic heavy 1 GAGTTCCTGGGGGGACCATCA PEVTCVVVDVSQEDPEVQ g/IMGTre (1981). PMID: Name: chain GTCTTCCTGTTCCCCCCAAAA FNWYNDGVEVHNAKTKP pertoire/i 6299662 Homo constant CCCAAGGACACTCTCATGATC REEQFNSTYRVVSVLTVL ndex.php sapiens) region TCCCGGACCCCTGAGGTCACG HQDWLNGKEYKCKVSNK ?section = (CH1- TGCGTGGTGGTGGACGTGAG GLPSSIEKTISKAKGQPRE LocusGe CH3) CCAGGAAGACCCCGAGGTCC PQVYTLPPSQEEMTKNQV nes & repe AGTTCAACTGGTACGTGGATG SLTCLVKGFYPSDIAVEWE rtoire = ge GCGTGGAGGTGCATAATGCCA SNGQPENNYKTTPPVLDS netable & s AGACAAAGCCGCGGGAGGAG DGSFFLYSRLTVDKSRWQ pecies = hu CAGTTCAACAGCACGTACCGT EGNVFSCSVMHEALHNH man & gro GTGGTCAGCGTCCTCACCGTC YTQKSLSLSLGK* (SEQ ID up = IGHC CTGCACCAGGACTGGCTGAA NO: 12) CGGCAAGGAGTACAAGTGCA AGGTCTCCAACAAAGGCCTC CCGTCCTCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCA GCCCCGAGAGCCACAGGTGT ACACCCTGCCCCCATCCCAGG AGGAGATGACCAAGAACCAG GTCAGCCTGACCTGCCTGGTC AAAGGCTTCTACCCCAGCGAC ATCGCCGTGGAGTGGGAGAG CAATGGGCAGCCGGAGAACA ACTACAAGACCACGCCTCCCG TGCTGGACTCCGACGGCTCCT TCTTCCTCTACAGCAGGCTAA CCGTGGACAAGAGCAGGTGG CAGGAGGGGAATGTCTTCTCA TGCTCCGTGATGCATGAGGCT CTGCACAACCACTACACACA GAAGAGCCTCTCCCTGTCTCT

GGGTAAATGA (SEQ ID NO: 14) 1gG4 GAGTCCAAATATGGTCCCCCG ESKYGPPCPSCPAPEFLGG AJ001563 Brusco A. et al., variant TGCCCATCATGCCCAGCACCT PSVFLFPPKPKDTLMISRT Eur. J. 2 GAGTTCCTGGGGGGACCATCA PEVTCVVVDVSQEDPEVQ Immunogenet., GTCTTCCTGTTCCCCCCAAAA FNWYVDGVEVHNAKTKP 25, 349-355 CCCAAGGACACTCTCATGATC REEQFNSTYRVVSVLTVV (1998). PMID: TCCCGGACCCCTGAGGTCACG HQPWLNGKEYKCKVSNK 9805657 TGCGTGGTGGTGGACGTGAG GLPSSIEKTISKAKGQPRE CCAGGAAGACCCCGAGGTCC PQVYTLPPSQEEMTKNQV AGTTCAACTGGTACGTGGATG SLTCLVKGFYPSDIAVEWE GCGTGGAGGTGCATAATGCCA SNGQPENNYKTTPPVLDS AGACAAAGCCGCGGGAGGAG DGSFFLYSRLTVDKSRWQ CAGTTCAACAGCACGTACCGT EGNVFSCSVMHEALHNH GTGGTCAGCGTCCTCACCGTC YTQKSLSLSEGK (SEQ ID GTGCACCAGGACTGGCTGAA NO: 80) CGGCAAGGAGTACAAGTGCA AGGTCTCCAACAAAGGCCTC CCGTCCTCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCA GCCCCGAGAGCCACAGGTGT ACACCCTGCCCCCATCCCAGG AGGAGATGACCAAGAACCAG GTCAGCCTGACCTGCCTGGTC AAAGGCTTCTACCCCAGCGAC ATCGCCGTGGAGTGGGAGAG CAATGGGCAGCCGGAGAACA ACTACAAGACCACGCCTCCCG TGCTGGACTCCGACGGCTCCT TCTTCCTCTACAGCAGGCTAA CCGTGGACAAGAGCAGGTGG CAGGAGGGGAATGTCTTCTCA TGCTCCGTGATGCATGAGGCT CTGCACAACCACTACACCXA GAAGAGCCTCTCCCTGTCTCT GGGTAAATGA (SEQ ID NO: 81) IgG4 GCACCTGAGTTCCTGGGGGG APEFLGGSVFLFPPKPKD AJ001564 variant ACCATCAGTCTTCCTGTTCCC TLMISKTPEVTCVVVDVS 3 CCCAAAACCCAAGGACACTC QEDPEVQFNWYVDGVEV TCATGATCTCCCGGACCCCTG HNAKTKPREEQFNSTYRV AGGTCACGTGCGTGGTGGTG VSVLTVLHQDWLNGKEY GACGTGAGCCAGGAAGACCC KCKVSNKGLPSSIEKTISK CGAGGTCCAGTTCAACTGGTA AKGQPREPQVYTLPPSQE CGTGGATGGCGTGGAGGTGCA EMTKNQVSLTCLVKGFYP TAATGCCAAGACAAAGCCGC SDIAVEWESNGQPENNYK GGGAGGAGCAGTTCAACAGC TTPPVLDSDGSFFLYSKLT ACGTACCGTGTGGTCAGCGTC VDKSRWQEGNVFSCSVM CTCACCGTCCTGCACCAGGAC HEALHNHYTQKSLSLSLG TGGCTGAACGGCAAGGAGTA K* (SEQ ID NO: 82) CAAGTGCAAGGTCTCCAACA AAGGCCTCCCGTCCTCCATCG AGAAAACCATCTCCAAAGCC AAAGGGCAGCCCCGAGAGCC ACAGGTGTACACCCTGCCCCC ATCCCAGGAGGAGATGACCA AGAACCAGGTCAGCCTGACC TGCCTGGTCAAAGGCTTCTAC CCCAGCGACATCGCCGTGGA GTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACC ACGCCTCCCGTGCTGGACTCC GACGGCTCCTTCTTCCTCTAC AGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGGAGGGGA ACGTCTTCTCATGCTCCGTGA TGCATGAGGCTCTGCACAACC ACTACACGCAGAAGAGCCTC TCCCTGTCTCTGGGTAAATGA (SEQ ID NO: 83) Human Ig ACTGTGGCTGCACCATCTGTC TVAAPSVFIFPPSDEQLKS X96754 http://ww None Ig kappa TTCATCTTCCCGCCATCTGATG GTASVVCLLNNFYPREAK w.imgt.or light (CK) AGCAGTTGAAATCTGGAACTG VQWKVDNALQSGNSQES g/IMGTre chain CCTCTGTTGTGTGCCTGCTGA VTEQDSKDSTYSLSSTLTL perioire/i constant ATAACTTCTATCCCAGAGAGG SKADYEKHKVYACEVTH ndex.php region CCAAAGTACAGTGGAAGGTG QGLSSPVTKSFNRGEC* ?section = GATAACGCCCTCCAATCGGGT (SEQ ID NO: 11) LocusGe AACTCCCAGGAGAGTGYCAC nes & repe AGAGCAGGACAGCAAGGACA rtoire = ge GCACCTACAGCCTCAGCAGC netable & s ACCCTGACGCTGAGCAAAGC pecies = hu AGACTACGAGAAACACAAAG man & gro TCTACGCCTGCGAAGTCACCC up = IGKC ATCAGGGCCTGAGCTCGCCCG TCACAAAGAGCTTCAACAGG GGAGAGTGTTAG (SEQ ID NO: 13) Bovine Bovine IgG1 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLSSCCGDK X62916 hap://ww Symons D.B. et (Scienti- Ig variant AGTCTACCCTCTGAGTTCTTG SSSTVTLGCLVSSYMPEPV w.imgt.or al. J. fic heavy 1 CTGCGGGGACAAGTCCAGCT TVTWNSGALKSGVHTFPA g/IMGTre Immunogenet., Name: chain CCACCGTGACCCTGGGCTGCC VLQSSGLYSLSSMVTVPG pertoire/i 14, 273-283 Bos constant TGGTCTCCAGCTACATGCCCG STSGQTFTCNVAHPASSTK ndex.php (1987). PMID: taurus) region AGCCGGTGACCGTGACCTGG VDKAVDPTCKPSPCDCCP ?section = 3141517 (CH1- AACTCGGGTGCCCTGAAGAG PPELPGGPSVFIFPPKPKDT LocusGe Symons D.B. et CH3) CGGCGTGCACACCTTCCCGGC LTISGTPEVTCVVVDVGH nes & repe al., Mol. TGTCCTTCAGTCCTCCGGGCT DDPEVKFSWFVDDVEVNT rtoire = ge Immunol., 26, GTACTCTCTCAGCAGCATGGT ATTKPREEQFNSTYRVVS netable & s 841-850 (1989). GACCGTGCCCGGCAGCACCT ALRIQHQDWTGGKEFKC pecies = bo PMID: 2513487 CAGGACAGACCTTCACCTGC KVHNEGLPARIVRTISRTK vine & gro Kacskovics I. and AACGTAGCCCACCCGGCCAG GPAREPQVYVLAPPQEEL up = IGHC Butler J.E., Mot CAGCACCAAGGTGGACAAGG SKSTVSLTCMVTSFYPDYI immunol., 33, CTGTTGATCCCACATGCAAAC AVEWQRNGQPESEDKYG 189-195 (1996). CATCACCCTGTGACTGTTGCC TTPPQLDADSSYFLYSKLR PMID: 8649440 CACCCCCTGAGCTCCCCGGAG VDRNSWQEGDTYTCVVM Rabbani H. et al., GACCCTCTGTCTTCATCTTCCC HEALHNHYTQKSTSKSAG Immunogenetics, ACCGAAACCCAAGGACACCC K (SEQ ID NO: 84) 46, 326-331 TCACAATCTCGGGAACGCCCG (1997). PMID: AGGTCACGTGTGTGGTGGTG 9218535 GACGTGGGCCACGATGACCC Saini S.S. et al., CGAGGTGAAGTTCTCCTGGTT Scand. J. CGTGGACGACGTGGAGGTAA Immunol. 65, 32- ACACAGCCACGACGAAGCCG 8 (2007). PMID: AGAGAGGAGCAGTTCAACAG 17212764 CACCTACCGCGTGGTCAGCGC CCTGCGCATCCAGCACCAGGA CTGGACTGGAGGAAAGGAGT TCAAGTGCAAGGTCCACAAC GAAGGCCTCCCGGCCCCCATC GTGAGGACCATCTCCAGGACC AAAGGGCCGGCCCGGGAGCC GCAGGTGTATGTCCTGGCCCC ACCCCAGGAAGAGCTCAGCA AAAGCACGGTCAGCCTCACC TGCATGGTCACCAGCTTCTAC CCAGACTACATCGCCGTGGAG TGGCAGAGAAACGGGCAGCC TGAGTCGGAGGACAAGTACG GCACGACCCCGCCCCAGCTG GACGCCGACAGCTCCTACTTC CTGTACAGCAAGCTCAGGGT GGACAGGAACAGCTGGCAGG AAGGAGACACCTACACGTGT GTGGTGATGCACGAGGCCCTG CACAATCACTACACGCAGAA GTCCACCTCTAAGTCTGCGGG TAAATGA (SEQ ID NO: 92) IgG1 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLSSCCGDK X16701 variant AGTCTACCCTCTGAGTTCTTG SSSTVTLGCLVSSYMPEPV (M25278) 2 CTGCGGGGACAAGTCCAGCT TVTWNSGALKSGVHTFPA CCACCGTGACCCTGGGCTGCC VLQSSGLYSLSSMVTVPG TGGTCTCCAGCTACATGCCCG STSGQTFTCNVAHPASSTK AGCCGGTGACCGTGACCTGG VDKAVDPTCKPSPCDCCP AACTCGGGTGCCCTGAAGAG PPELPGGPSVFIFPPKPKDT CGGCGTGCACACCTTCCCGGC LTISGTPEVTCVVVDVGH CGTCCTTCAGTCCTCCGGGCT DDPEVKFSWFVDDVEVNT GTACTCTCTCAGCAGCATGGT ATTKPREEQFNSTYRVVS GACCGTGCCCGGCAGCACCT ALRIQHQDWTGGKEFKC CAGGACAGACCTTCACCTGC KVHNEGLPAPIVRTISRTK AACGTAGCCCACCCGGCCAG GPAREPQVYVLAPPQEEL CAGCACCAAGGTGGACAAGG SKSTVSLTCMVTSFYPDYI CTGTTGATCCCACATGCAAAC AVEWQRNGQPESEDKYG CATCACCCTGTGACTGTTGCC TTPPQLDADSSYFLYSKLR CACCCCCTGAGCTCCCCGGAG VDRNSWQEGDTYTCVVM GACCCTCTGTCTTCATCTTCCC HEALHNHYTQKSTSKSAG ACCGAAACCCAAGGACACCC K* (SEQ ID NO: 85) TCACAATCTCGGGAACGCCCG AGGTCACGTGTGTGGTGGTG GACGTGGGCCACGATGACCC CGAGGTGAAGTTCTCCTGGTT CGTGGACGACGTGGAGGTAA ACACAGCCACGACGAAGCCG AGAGAGGAGCAGTTCAACAG CACCTACCGCGTGGTCAGCGC CCTGCGCATCCAGCACCAGGA CTGGACTGGAGGAAAGGAGT TCAAGTGCAAGGTCCACAAC GAAGGCCTCCCGGCCCCCATC GTGAGGACCATCTCCAGGACC AAAGGGCCGGCCCGGGAGCC GCAGGTGTATGTCCTGGCCCC ACCCCAGGAAGAGCTCAGCA AAAGCACGGTCAGCCATCACC TGCATGGTCACCAGCTTCTAC CCAGACTACATCGCCGTGGAG TGGCAGAGAAACGGGCAGCC TGAGTCGGAGGACAAGTACG GCACGACCCCGCCCCAGCTG GACGCCGACAGCTCCTACTTC CTGTACAGCAAGCTCAGGGT GGACAGGAACAGCTGGCAGG AAGGAGACACCTACACGTGT GTGGTGATGCACGAGGCCCTG CACAATCACTACACGCAGAA GTCCACCTCTAAGTCTGCGGG TAAATGA (SEQ ID NO: 93) IgG1 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLSSCCGDK S82409 variant AGTCTACCCTCTGAGTTCTTG SSSTVTLGCLVSSYMPEPV 3 CTGCGGGGACAAGTCCAGCT TVTWNSGALKSGVHTFPA CCACCGTGACCCTGGGCTGCC VLQSSGLYSLSSMVTVPG TGGTCTCCAGCTACATGCCCG STSGTQTFTCNVAHPASST AGCCGGTGACCGTGACCTGG KVDKAVDPRCKTTCDCCP AACTCGGGTGCCCTGAAGAG PPELPGGPSVFIFPRKPKDT CGGCGTGCACACCTTCCCGGC LTISGTPEVTCVVVDVGH CGTCCTTCAGTCCTCCGGGCT DDPEVKFSWFVDDVEVNT CTACTCTCTCAGCAGCATGGT ATTKPREEQFNSTYRVVS GACCGTGCCCGGCAGCACCT ALRIQHQDWTGGKEFKC CAGGAACCCAGACCTTCACCT KVHNEGLPARIVRTISRTK GCAACGTAGCCCACCCGGCC GPAREPQVYVLAPPQEEL AGCAGCACCAAGGTGGACAA SKSTVSLTCMVTSFYPDYI GGCTGTTGATCCCAGATGCAA AVEWQRNGQPESEDKYG AACAACCTGTGACTGTTGCCC TIPPQLDADGSYFLYSRLR ACCGCCTGAGCTCCCTGGAG VDRNSWQEGDTYTCVVM GACCCTGTCTTCATCTTCCC HEALHNHYTQKSTSKSAG ACCGAAACCCAAGGACACCC K* (SEQ ID NO: 86) TCACAATCTCGGGAACGCCCG AGGTCACGTGTGTGGTGGTG GACGTGGGCCACGATGACCC CGAGGTGAAGTTCTCCTGGTT CGTGGACGACGTGGAGGTAA ACACAGCCACGACGAAGCCG AGAGAGGAGCAGTTCAACAG CACCTACCGCGTGGTCAGCGC CCTGCGCATCCAGCACCAGGA CTGGACTGGAGGAAAGGAGT TCAAGTGCAAGGTCCACAAC GAAGGCCTCCCAGCCCCCATC GTGAGGACCATCTCCAGGACC AAAGGGCCGGCCCGGGAGCC GCAGGTGTATGTCCTGGCCCC ACCCCAGGAAGAGCTCAGCA AAAGCACGGTCAGCCTCACC TGCATGGTCACCAGCTTCTAC CCAGACTACATCGCCGTGGAG TGGCAGAGAAATGGGCAGCC TGAGTCAGAGGACAAGTACG GCACGACCCCTCCCCAGCTGG ACGCCGACGGCTCCTACTTCC TGTACAGCAGGCTCAGGGTG GACAGGAACAGCTGGCAGGA AGGAGACACCTACACGTGTG TGGTGATGCACGAGGCCCTGC ACAATCACTACACGCAGAAGT CCACCTCTAAGTCTGCGGGTA AATGA (SEQ ID NO: 94) IgG2 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLASSCGDTS S82407 variant AGTCTACCCTCTGGCATCCAG SSTVTLGCLVSSYMPEPVT 1 CTGCGGAGACACATCCAGCTC VTWNSGALKSGVHTFPAV CACCGTGACCCTGGGCTGCCT LQSSGLYSLSSMVTVPASS GGTGTCCAGCTACATGCCCGA SGQTFTCNVAHPASSTKV

GCCGGTGACCGTGACCTGGA DKAVGVSIDCSKCHNQPC ACTCGGGTGCCCTGAAGAGC VREPSVFIFPPKPKDTLMI GGCGTGCACACCTTCCCGGCT TGTPEVTCVVVNVGHDN GTCCTTCAGTCCTCCGGGCTC PEVQFSWFVDDVEVHTAR TACTCTCTCAGCAGCATGGTG SKPREEQFNSTYRVVSALP ACCGTGCCCGCCAGCAGCTC IQHQDWTGGKEFKCKVN AGGACAGACCTTCACCTGCA NKGLSAPIVRIISRSKGPAR ACGTAGCCCACCCGGCCAGC EPQVYVLDPPKEELSKSTL AGCACCAAGGTGGACAAGGC SVTCMVTGFYPEDVAVEW TGTTGGGGTCTCCATTGACTG QRNRQTESEDKYRTTPPQ CTCCAAGTGTCATAACCAGCC LDTDRSYFLYSKLRVDRN TTGCGTGAGGGAACCATCTGT SWQEGDAYTCVVMHEAL CTTCATCTTCCCACCGAAACC HNHYMQKSTSKSAGK* CAAAGACACCCTGATGATCAC (SEQ ID NO: 87) AGGAACGCCCGAGGTCACGT GTGTGGTGGTGAACGTGGGC CACGATAACCCCGAGGTGCA GTTCTCCTGGTTCGTGGATGA CGTGGAGGTGCACACGGCCA GGTCGAAGCCAAGAGAGGAG CAGTTCAACAGCACGTACCGC GTGGTCAGCGCCCTGCCCATC CAGCACCAGGACTGGACTGG AGGAAAGGAGTTCAAGTGCA AGGTCAACAACAAAGGCCTC TCGGCCCCCATCGTGAGGATC ATCTCCAGGAGCAAAGGGCC GGCCCGGGAGCCGCAGGTGT ATGTCCTGGACCCACCCAAGG AAGAGCTCAGCAAAAGCACG CTCAGCGTCACCTGCATGGTC ACCGGCTTCTACCCAGAAGAT GTAGCCGTGGAGTGGCAGAG AAACCGGCAGACTGAGTCGG AGGACAAGTACCGCACGACC CCGCCCCAGCTGGACACCGA CCGCTCCTACTTCCTGTACAG CAAGCTCAGGGTGGACAGGA ACAGCTGGCAGGAAGGAGAC GCCTACACGTGTGTGGTGATG CACGAGGCCCTGCACAATCAC TACATGCAGAAGTCCACCTCT AAGTCTGCGGGTAAATGA (SEQ ID NO: 95) IgG2 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLSSCCGDK M36946 variant AGTCTACCCTCTGAGTTCTTG SSSTVTLGCLVSSYMPEPV (X06703) 2 CTGCGGGGACAAGTCCAGCT TVTWNSGALKSGVHTFPA CCACCGTGACCCTGGGCTGCC VLQSSGLYSLSSMVTVPG TGGTGTCCAGCTACATGCCCG STSGQTFTCNVAHPASSTK AGCCGGTGACCGTGACCTGG VDKAVGVSSDCSKPNNQ AACTCGGGTGCCCTGAAGAG HCVREPSVFIFPPKPKDTL CGGCGTGCACACCTTCCCGGC MITGTPEVTCVVVNVGHD CGTCCTTCAGTCCTCCGGGCT NPEVQFSWFVDDVEVHTA CTACTCTCTCAGCAGCATGGT RTKPREEQFNSTYRVVSA GACCGTGCCCGGCAGCACCT LPIQHQDWTGGKEFKCKV CAGGACAGACCTTCACCTGC NIKGLSASINRIIRSKGPA AACGTAGCCCACCCGGCCAG REPQVYVLDPPKEELSKS CAGCACCAAGGTGGACAAGG TVSVTCMVIGFYPEDVDV CTGTTGGGGTCTCCAGTGACT EWQRDRQTESEDKYRTTP GCTCCAAGCCTAATAACCAGC PQLDADRSYFLYSKLRVD ATTGCGTGAGGGAACCATCTG RNSWQRGDTYTCVVMHE TCTTCATCTTCCCACCGAAAC ALHNHYMQKSTSKSAGK CCAAAGACACCCTGATGATCA * (SEQ ID NO: 88) CAGGAACGCCCGAGGTCACG TGTGTGGTGGTGAACGTGGG CCACGATAACCCCGAGGTGCA GTTCTCCTGGTTCGTGGACGA CGTGGAGGTGCACACGGCCA GGACGAAGCCGAGAGAGGAG CAGTTCAACAGCACGTACCGC GTGGTCAGCGCCCTGCCCATC CAGCACCAGGACTGGACTGG AGGAAAGGAGTTCAAGTGCA AGGTCAACATCAAAGGCCTCT CGGCCTCCATCGTGAGGATCA TCTCCAGGAGCAAAGGGCCG GCCCGGGAGCCGCAGGTGTAT GTCCTGGACCCACCCAAGGA AGAGCTCAGCAAAAGCACGG TCAGCGTCACCTGCATGGTCA TCGGCTTCTACCCAGAAGATG TAGACGTGGAGTGGCAGAGA GACCGGCAGACTGAGTCGGA GGACAAGTACCGCACGACCC CGCCCCAGCTGGACGCCGAC CGCTCCTACTTCCTGTACAGC AAGCTCAGGGTGGACAGGAA CAGCTGGCAGAGAGGAGACA CCTACACGTGTGTGGTGATGC ACGAGGCCCTGCACAATCACT ACATGCAGAAGTCCACCTCTA AGTCTGCGGGTAAATGA (SEQ ID NO: 96) IgG2 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLSSCCGDK X16702 variant AGTCTACCCTCTGAGTTCTTG SSSGVTLGCLVSSYMPEPV (M25279) 3 CTGCGGGGACAAGTCCAGCT TVTWNSGALKSGVHTFPA CGGGGGTGACCCTGGGCTGC VLQSSGLYSLSSMVTVPAS CTGGTCTCCAGCTACATGCCC SSGTQTFTCNVAHPASSTK GAGCCGGTGACCGTGACCTG VDKAVGVSSDCSKPNNQ GAACTCGGGTGCCCTGAAGA HCVREPSVFIFPPKPKDTL GCGGCGTGCACACCTTCCCGG MITGTPEVTCVVVNVGHD CCGTCCTTCAGTCCTCCGGGC NPEVQFSWFVDDVEVHTA TCTACTCTCTCAGCAGCATGG RTKPREEQFNSTYRVVSA TGACCGTGCCCGCCAGCAGCT LPIQHQDWTGGKEEKCKV CAGGAACCCAGACCTTCACCT NIKGLSASIVRIISRSKGPA GCAACGTAGCCCACCCGGCC REPQVYVLDPPKEELSKS AGCAGCACCAAGGTGGACAA TVSLTCMVIGFYPEDVDV GGCTGTTGGGGTCTCCAGTGA EWQRDRQTESEDKYRTTP CTGCTCCAAGCCTAATAACCA PQLDADRSYFLYSKLRVD GCATTGCGTGAGGGAACCATC RNSWQRGDTYTCVVMHE TGTCTTCATCTTCCCACCGAA ALHNHYMQKSTSKSAGK ACCCAAAGACACCCTGATGAT * (SEQ ID NO: 89) CACAGGAACGCCCGAGGTCA CGTGTGTGGTGGTGAACGTG GGCCACGATAACCCCGAGGT GCAGTTCTCCTGGTTCGTGGA CGACGTGGAGGTGCACACGG CCAGGACGAAGCCGAGAGAG GAGCAGTTCAACAGCACGTA CCGCGTGGTCAGCGCCCTGCC CATCCAGCACCAGGACTGGA CTGGAGGAAAGGAGTTCAAG TGCAAGGTCAACATCAAAGG CCTCTCGGCCTCCATCGTGAG GATCATCTCCAGGAGCAAAGG GCCGGCCCGGGAGCCGCAGG TGTATGTCCTGGACCCACCCA AGGAAGAGCTCAGCAAAAGC ACGGTCAGCCTCACCTGCATG GTCATCGGCTTCTACCCAGAA GATGTAGACGTGGAGTGGCA GAGAGACCGGCAGACTGAGT CGGAGGACAAGTACCGCACG ACCCCGCCCCAGCTGGACGC CGACCGCTCCTACTTCCTGTA CAGCAAGCTCAGGGTGGACA GGAACAGCTGGCAGAGAGGA GACACCTACACGTGTGTGGTG ATGCACGAGGCCCTGCACAAT CACTACATGCAGAAGTCCACC TCTAAGTCTGCGGGTAAATGA (SEQ ID NO: 97) IgG3 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLASSCGDTS U63638 variant AGTCTACCCTCTGGCATCCAG SSTVTLGCLVSSYMPEPVT 1 CTGCGGAGACACATCCAGCTC VTWNSGALKSGVHTFPAV CACCGTGACCCTGGGCTGCCT RQSSGLYSLSSMVTVPASS GGTCTCCAGCTACATGCCCGA SETQTFTCNVAHPASSTKV GCCGGTGACCCGTGACCTGGA DKAVTARRPVPTTPKTTIP ACTCGGGTGCCCTGAAGAGC PGKPTTPKSEVEKTPCQCS GGCGTGCACACCTTCCCGGCC KCPEPLGGLSVFIFPPKPK GTCCGGCAGTCCTCTGGGCTG DILTISGTPEVTCVVVDV TACTCTCTCAGCAGCATGGTG GQDDPEVQFSWFVDDVE ACTGTGCCCGCCAGCAGCTCA VHTARTKPREEQFNSTYR GAAACCCAGACCTTCACCTGC VVSALRIQHQDWLQGKEF AACGTAGCCCACCCGGCCAG KCKVNNKGLPAPIVRTISR CAGCACCAAGGTGGACAAGG TKGQAREPQVYVLAPPRE CTGTCACTGCAAGGCGTCCAG ELSKSTLSLTCLITGFYPEE TCCCGACGACGCCAAAGACA IDVEWQRNGQPESEDKYH ACTATCCCTCCTGGAAAACCC TTAPQLDADGSYFLYSKL ACAACCCCAAAGTCTGAAGT RVNKSSWQEGDHYTCAV TGAAAAGACACCCTGCCAGT MHEALRNHYKEKSISRSP GTTCCAAATGCCCAGAACCTC GK* (SEQ ID NO: 90) TGGGAGGACTGTCTGTCTTCA TCTTCCCACCGAAACCCAAGG ACACCCTCACAATCTCGGGAA CGCCCGAGGTCACGTGTGTG GTGGTGGACGTGGGCCAGGA TGACCCCGAGGTGCAGTTCTC CTGGTTCGTGGACGACGTGG AGGTGCACACGGCCAGGACG AAGCCGAGAGAGGAGCAGTT CAACAGCACCTACCGCGTGGT CAGCGCCCTGCGCATCCAGCA CCAGGACTGGCTGCAGGGAA AGGAGTTCAAGTGCAAGGTC AACAACAAAGGCCTCCCGGC CCCCATTGTGAGGACCATCTC CAGGACCAAAGGGCAGGCCC GGGAGCCGCAGGTGTATGTCC TGGCCCCACCCCGGGAAGAG CTCAGCAAAAGCACGCTCAG CCTCACCTGCCTGATCACCGG TTTCTACCCAGAAGAGATAGA CGTGGAGTGGCAGAGAAATG GGCAGCCTGAGTCGGAGGAC AAGTACCACACGACCGCACC CCAGCTGGAIGCTGACGGCTC CTACTTCCTGTACAGCAAGCT CAGGGTGAACAAGAGCAGCT GGCAGGAAGGAGACCACTAC ACGTGTGCAGTGATGCACGA AGCTTTACGGAATCACTACAA AGAGAAGTCCATCTCGAGGTC TCCGGGTAAATGA (SEQ ID NO: 98) IgG3 GCCTCCACCACAGCCCCGAA ASTTAPKVYPLASRCGDT 1163639 variant AGTCTACCCTCTGGCATCCCG SSSTVTLGCLVSSYMPEPV 2 CTGCGGAGACACATCCAGCTC TVTWNSGALKSGVHTFPA CACCGTGACCCTGGGCTGCCT VLQSSGLYSLSSMVTVPAS GGTCTCCAGCTACATGCCCGA TSETQTFTCNVAHPASSTK GCCGGTGACCGTGACCTGGA VDKAVTARRPVPTTPKTTI ACTCGGGTGCCCTGAAGAGT PPGKPTTQESEVEKTPCQC GGCGTGCACACCTTCCCGGCC SKCPEPLGGLSVFIFPPKP GTCCTTCAGTCCTCCGGGCTG KDTLTISGTPEVTCVVVD TACTCTCTCAGCAGCATGGTG VGQDDPEVQFSWFVDDV ACCGTGCCCGCCAGCACCTCA EVHTARTKPREEQFNSTY GAAACCCAGACCTTCACCTGC RVVSALRIQHQDWLQGKE AACGTAGCCCACCCGGCCAG FKCKVNNKGLPAPIVRTIS CAGCACCAAGGTGGACAAGG RTKGQAREPQVYVLAPPR CTGTCCTGCAAGGCGTCCAG EELSKSTLSLTCLITGFYPE TCCCGACGACGCCAAAGACA EIDVEWQRNGQPESEDKY ACCATCCCTCCTGGAAAACCC HTFAPQLDADGSYFLYSR ACAACCCAGGAGTCTGAAGT LRVNKSSWQEGDHYTCA TGAAAAGACACCCTGCCAGT VMHEALRNHYKEKSISRS GTTCCAAATGCCCAGAACCTC PGK* (SEQ ID NO: 91) TGGGAGGACTGTCTGTCTTCA TCTTCCCACCGAAACCCAAGG ACACCCTCACAATCTCGGGAA CGCCCGAGGTCACGTGTGTG GTGGTGGACGTGGGCCAGGA TGACCCCGAGGTGCAGTTCTC CTGGTTCGTGGACGACGTGG AGGTGCACACGGCCAGGACG AAGCCGAGAGAGGAGCAGTT CAACAGCACCTACCGCGTGGT CAGCGCCCTGCGCATCCAGCA CCAGGACTGGCTGCAGGGAA AGGAGTTCAAGTGCAAGGTC AACAACAAAGGCCTCCCGGC CCCCATTGTGAGGACCATCTC CAGGACCAAAGGGCAGGCCC GGGAGCCCGCAGGTGTATGTCC TGGCCCCACCCCGGGAAGAG CTCAGCAAAAGCACGCTCAG CCTCACCTGCCTGATCACCGG TTTCTACCCAGAAGAGATAGA CGTGGAGTGGCAGAGAAATG GGCAGCCTGAGTCGGAGGAC AAGTACCACACGACCGCACC CCAGCTGGATGCTGACGGCTC CTACTTCCTGTACAGCAGGCT CAGGGTGAACAAGAGCAGCT GGCAGGAAGGAGACCACTAC ACGTGTGCAGTGATGCATGAA GCTTTACGGAATCACTACAAA GAGAAGTCCATCTCGAGGTCT

CCGGGTAAATGA (SEQ ID NO: 99) Bovine, Ig CAGCCCAAGTCCCCACCCTCG QPKSPPSVTLFPPSTEELN X62917 Not Chen L. et al., Ig light lambda GTCACCCTGTTCCCGCCCTCC GNKATLVCLISDFYPGSVT registered Vet. Immunol. chain ACGGAGGAGCTCAACGGCAA VVWKADGSTITRNVETTR Immunopathol, constant CAAGGCCACCCTGGTGTGTCT ASKQSNSKYAASSYLSLTS 124, 284-294 region CATCAGCGACTTCTACCCGGG SDWKSKGSYSCEVTHEGS (2008). PMID: (CL) TAGCGTGACCGTGGTCTGGAA TVTKTVKPSECS* (SEQ ID 18538861 GGCAGACGGCAGCACCATCA NO: 100) CCCGCAACGTGGAGACCACC CGGGCCTCCAAACAGAGCAA CAGCAAGTACGCGGCCAGCA GCTACCTGAGCCTGACGAGC AGCGACTGGAAATCGAAAGG CAGTTACAGCTGCGAGGTCAC GCACGAGGGGAGCACCGTGA CGAAGACAGTGAAGCCCTCA GAGTGTTCTTAG (SEQ ID NO: 101)

[0105] The amino acid sequences as shown in SEQ ID NOS: 4, 3, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 12, 80, 82, 84-91, 100, 102 and 11 may have deletion(s), substitution(s) or addition(s) of one or several (e.g., up to five, about 10 at the most) amino acids. Even when such mutations have been introduced, the resulting amino acid sequences are capable of having the function as the constant region of Ig heavy chain or light chain.

[0106] Although the constant region of wild-type human IgG1 has ADCC activity and CDC activity, it is known that these activities can be reduced by introducing amino acid substitutions and deletions into specific sites. In the case of animals other than human where the constant region of an immunoglobulin equivalent to human IgG4 has not been identified, mutations may be introduced into the relevant region of an immunoglobulin equivalent to human IgG1 so that the resultant constant region with reduced ADCC activity and CDC activity can be used.

[0107] The present invention provides an artificial genetic DNA comprising (a') a DNA encoding a light chain comprising a light chain variable region (VL) containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region (CL) of an antibody of an animal other than rat and (b') a DNA encoding a heavy chain comprising a heavy chain variable region (VH) containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region (CH) of an antibody of an animal other than rat. The present invention also provides a DNA encoding a light chain comprising a VL containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the CL of an antibody of an animal other than rat (i.e., the DNA of (a') above). Further, the present invention also provides a DNA encoding a heavy chain comprising a VH containing CDR1 having GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the CH of an antibody of an animal other than rat (i.e., the DNA of (b') above).

[0108] For (a) a light chain comprising a light chain variable region containing CDR1 having the amino acid sequence of QSLLYSENQKDY (SEQ ID NO: 37), CDR2 having the amino acid sequence of WAT and CDR3 having the amino acid sequence of GQYLVYPFT (SEQ ID NO: 38) and the light chain constant region of an antibody of an animal other than rat; and (b) a heavy chain comprising a heavy chain variable region containing CDR1 having the amino acid sequence of GYTFTSNF (SEQ ID NO: 39), CDR2 having the amino acid sequence of IYPEYGNT (SEQ ID NO: 40) and CDR3 having the amino acid sequence of ASEEAVISLVY (SEQ ID NO: 41) and the heavy chain constant region of an antibody of an animal other than rat, reference should be had to the foregoing description. The DNA of (a') is a DNA (gene) encoding the light chain of (a); and the DNA of (b') is a DNA (gene) encoding the heavy chain of (b). An artificial genetic DNA comprising the DNA of (a') and the DNA of ('b) may be synthesized on commercial synthesizer. Restriction enzyme recognition sites, KOZAK sequences, poly-A addition signal sequences, promoter sequences, intron sequences or the like may be added to the artificial genetic DNA.

[0109] The present invention also provides a vector comprising the above-mentioned artificial genetic DNA.

[0110] As the vector, Escherichia coli-derived plasmids (e.g., pBR322, pBR325, pUC12 or pUC13): Bacillus subtilis-derived plasmids (e.g., pUB110, pTP5 or pC194), yeast-derived plasmids (e.g., pSH19 or pSH15); bacteriophages such as .lamda. phage; animal viruses such as retrovirus or vaccinia virus, or insect pathogen viruses such as baculovirus may be used. In the Examples described later, pDC6 (Japanese Patent No. 5704753, U.S. Pat. No. 9,096,878, EU Patent 2385115, Hong Kong (China) patent HK1163739 and Australia Patent 2009331326) was used.

[0111] The vector may also comprise promoters, enhancers, splicing signals, poly-A addition signals, intron sequences, selection markers, SV40 replication origins, and so forth.

[0112] The present invention also provides a host cell transformed by the above vector. It is possible to prepare the anti-PD-L1 antibody of the invention by culturing the host cell and collecting the antibody of interest from the resultant culture. Therefore, the present invention also provides a method of preparing an antibody, comprising culturing the above-described host cell and collecting the anti-PD-L1 antibody of the invention from the culture. In the method of the present invention for preparing an antibody, a vector incorporating an artificial genetic DNA comprising a DNA encoding the light chain and a DNA encoding the heavy chain may be transfected into a host cell. Alternatively, a vector incorporating a DNA encoding the light chain and a vector incorporating a DNA encoding the heavy chain may be co-transfected into a host cell.

[0113] Examples of the host cell include, but are not limited to, bacterial cells (such as Escherichia bacteria, Bacillus bacteria or Bacillus subtilis), fungal cells (such as yeast or Aspergillus), insect cells (such as S2 cells or Sf cells), animal cells (such as CHO cells, COS cells, HeLa cells, C127 cells, 3T3 cells, BHK cells or HEK 293 cells) and plant cells. Among these, CHO-DG44 cell (CHO-DG44(dfhr.sup.-/.sup.-)) which is a dihydrofolate reductase deficient cell is preferable.

[0114] Introduction of a recombinant vector into a host cell may be performed by the methods disclosed in Molecular Cloning 2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989 (e.g., the calcium phosphate method, the DEAE-dextran method, transfection, microinjection, lipofection, electroporation, transduction, scrape loading, the shotgun method, etc.) or by infection.

[0115] The resultant transformant may be cultured in a medium, followed by collection of the anti-PD-L1 antibody of the present invention from the culture. When the antibody is secreted into the medium, the medium may be recovered, followed by isolation and purification of the antibody from the medium. When the antibody is produced within the transformed cells, the cells may be lysed, followed by isolation and purification of the antibody from the cell lysate.

[0116] Examples of the medium include, but are not limited to, OptiCHO medium, Dynamis medium, CD CHO medium, ActiCHO medium, FortiCHO medium, Ex-Cell CD CHO medium, BalanCD CHO medium. ProCHO 5 medium and Cellvento CHO-100 medium.

[0117] The pH of the medium varies depending on the cell to be cultured. Generally, a pH range from 6.8 to 7.6 is used; mostly, a pH range from 7.0 to 7.4 is appropriate.

[0118] When the cell to be cultured is CHO cells, culture may be performed by methods known to those skilled in the art. For example, it is usually possible to perform culturing in a gas-phase atmosphere having a CO.sub.2 concentration of 0-40%, preferably 2-10%, at 30-39.degree. C., preferably around 37.degree. C.

[0119] The appropriate period of culture is usually from one day to three months, preferably from one day to three weeks.

[0120] Isolation and purification of the antibody may be performed by known methods. Known isolation/purification methods which may be used in the present invention include, but are not limited to, methods using difference in solubility (such as salting-out or solvent precipitation); methods using difference in molecular weight (such as dialysis, ultrafiltration, gel filtration or SDS-polyacrylamide gel electrophoresis); methods using difference in electric charge (such as ion exchange chromatography); methods using specific affinity (such as affinity chromatography); methods using difference in hydrophobicity (such as reversed phase high performance liquid chromatography); and methods using difference in isoelectric point (such as isoelectric focusing).

[0121] The anti-PD-L1 antibody of the present invention may be used as an antibody drug for animals or human. Therefore, the present invention provides a pharmaceutical composition comprising the above-described anti-PD-L1 antibody as an active ingredient.

[0122] The pharmaceutical composition of the present invention may be used for prevention and/or treatment of cancers and/or infections. Examples of cancers and/or infections include, but are not limited to, neoplastic diseases (e.g., malignant melanoma, lung cancer, gastric cancer, renal cancer, breast cancer, bladder cancer, esophageal cancer, ovarian cancer and the like), leukemia, Johne's disease, anaplasmosis, bacterial mastitis, mycotic mastitis, mycoplasma infections (such as mycoplasma mastitis, mycoplasma pneumonia or the like), tuberculosis, Theileria orientalis infection, cryptosporidiosis, coccidiosis, trypanosomiasis and leishmaniasis.

[0123] The anti-PD-L1 antibody of the present invention may be dissolved in buffers such as PBS, physiological saline or sterile water, optionally filter-sterilized with a filter or the like, and then administered to animal subjects (including human) by injection. To the solution of this antibody, additives (such as coloring agents, emulsifiers, suspending agents, surfactants, solubilizers, stabilizers, preservatives, antioxidants, buffers, isotonizing agents, pH adjusters and the like) may be added. As routes of administration, intravenous, intramuscular, intraperitoneal, subcutaneous or intradermal administration and the like may be selected. Transnasal or oral administration may also be used.

[0124] The dose and the number of times and frequency of administration of the anti-PD-L1 antibody of the present invention may vary depending on the symptoms, age and body weight of the animal subject, the method of administration, the dosage form and so on. For example, 0.1-100 mg/kg body weight, preferably 1-10 mg/kg body weight, per adult animal may usually be administered at least once, at such a frequency that enables confirmation of the desired effect.

[0125] While the pharmaceutical composition of the present invention may be used alone, it may be used in combination with surgical operations, radiation therapies, other immunotherapies such as cancer vaccine, or molecular target drugs. Synergistic effect can be expected from such combinations.

EXAMPLES

[0126] Hereinbelow, the present invention will be described in more detail with reference to the following Examples. However, the present invention is not limited to these Examples.

[Example 1] Rat-Canine Chimeric Anti-PD-L1 Antibody

1. Introduction

[0127] Programmed cell death 1 (PD-1), an immunoinhibitory receptor, and its ligand programmed cell death ligand 1 (PD-L1) are molecules identified by Prof. Tasuku Honjo et al., Kyoto University, as factors which inhibit excessive immune response and are deeply involved in immunotolerance. Recently, it has been elucidated that these molecules are also involved in immunosuppression in tumors. In the subject Example, for the purpose of establishing a novel therapy for canine neoplastic diseases, a chimeric antibody gene was prepared in which a variable region gene of a rat anti-bovine PD-L1 monoclonal antibody (4G12) capable of inhibiting the binding of canine PD-1 to PD-L1 was linked to a constant region gene of a canine immunoglobulin (IgG4). The resultant chimeric antibody gene was introduced into Chinese hamster ovary cells (CHO cells), which were cultured to produce a rat-canine chimeric anti-PD-L1 antibody c4G12. The effect of this chimeric antibody was confirmed in vitro and in vivo.

2. Materials and Methods

2.1 Bovine PD-L1 Monoclonal Antibody Producing Cells

[0128] The nucleotide sequence of bovine PD-L1 was identified (Ikebuchi R, Konnai S. Shirai T, Sunden Y, Murata S, Onuma M, Ohashi K. Vet Res. 2011 Sep. 26; 42:103). Based on the sequence information, a recombinant bovine PD-L1 was prepared. Rat was immunized with this recombinant protein to prepare a rat anti-bovine PD-L1 antibody (Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, Murata S, Ohashi K. Immunology. 2014 August; 142(4):551-61; Clone 4G12 which would later serve as the variable region of the canine chimeric antibody of interest is described in this article.)

2.2 Identification of Full-Length Canine PD-1 and PD-L1 Genes

[0129] To determine the full lengths of canine PD-1 and PD-L1 cDNAs, PCR primers were first designed based on the putative nucleotide sequences of canine PD-1 and PD-L1 already registered at The National Center for Biotechnology Information (NCBI) (GenBank accession number: XM_543338 and XM_541302). Briefly, primers to amplify the inner sequence of the open reading frame (ORF) of each gene were designed (cPD-1 inner F and R, cPD-L1 inner F and R), and PCR was performed. For the amplified products, nucleotide sequences were determined with a capillary sequencer according to conventional methods. Further, to determine the nucleotide sequences of full-length PD-1 and PD-L1 cDNA, primers (cPD-1 5' GSP and 3' GSP; cPD-L1 5' GSP and 3'GSP) were designed based on the canine PD-1 and PD-L1 cDNA sequences determined above. 5'-RACE and 3'-RACE were then performed using the 5'-RACE system for rapid amplification of cDNA ends and 3'-RACE system for rapid amplification of cDNA ends (Invitrogen), respectively. The resultant gene fragments of interest were sequenced as described (Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, Kagawa Y, Nakajima C, Suzuki Y, Murata S, Ohashi K. PLoS One. 2014 Jun. 10; 9(6):e98415).

TABLE-US-00002 Primer (cPD-1 inner F): (SEQ ID NO: 21) AGGATGGCTCCTAGACTCCC Primer (cPD-1 inner R): (SEQ ID NO: 22) AGACGATGGTGGCATACTCG Primer (cPD-L1 inner F): (SEQ ID NO: 23) ATGAGAATGTTTAGTGTCTT Primer (cPD-L1 inner R): (SEQ ID NO: 24) TTATGTCTCTTCAAATTGTATATC Primer (cPD-1 5'GSP): (SEQ ID NO: 25) GTFGATCTGTGTGTTG Primer (cPD-1 3'GSP): (SEQ ID NO: 26) CGGGACTTCCACATGAGCAT Primer (cPD-L3 5'GSP): (SEQ ID NO: 27) TTTTAGACAGAAAGTGA Primer (cPD-L1 3'GSP): (SEQ ID NO: 28) GACCAGCTCTTCTTGGGGAA

2.3 Construction of Canine PD-1 and PD-L1 Expressing COS-7 Cells

[0130] For preparing canine PD-1-EGFP and PD-L1-EGFP expression plasmids, PCR was performed using a synthesized beagle PBMC-derived cDNA as a template and primers designed by adding XhoI and BamHI recognition sites (PD-1) and BglII and EcoRI recognition sites (PD-L1) on the 5' side (cPD-1-EGFP F and R; cPD-L1-EGFP F and R). The resultant PCR products were digested with XhoI (Takara) and BamHI (Takara) (PD-1) and with BglII (New England Biolabs) and EcoRI (Takara) (PD-L1), and then purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics), followed by cloning into pEGFP-N2 vector (Clontech) treated with restriction enzymes in the same manner. The resultant expression plasmids of interest were extracted with QIAGEN Plasmid Midi kit (Qiagen) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmids are designated as pEGFP-N2-cPD-1 and pEGFP-N2-cPD-L1.

TABLE-US-00003 Primer (cPD-1-EGFP F): (SEQ ID NO: 29) CCGCTCGAGATGGGGAGCCGGCGGGGGCC Primer (cPD-1-EGFP R): (SEQ ID NO: 30) CGCGGATCCTGAGGGGCCACAGGCCGGGTC Primer (cPD-L1-EGFP F): (SEQ ID NO: 31) GAAGATCTATGAGAATGTTTAGTGTC Primer (cPD-L1-EGFP R): (SEQ ID NO: 32) GGAATTCTGTCTCTTCAAATTGTATATC

[0131] COS-7 cells were subcultured at a density of 5.times.10.sup.4 cells/cm.sup.2 in 6-well plates, and then cultured overnight in RPMI 1640 medium containing 10% inactivated fetal bovine serum and 0.01% L-glutamine at 37.degree. C. in the presence of 5% CO.sub.2. The pEGFP-N2-cPD-1, pEGFP-N2-cPD-L1 or pEGFP-N2 (negative control) was introduced into COS-7 cells at 0.4 .mu.g/cm.sup.2 using Lipofectamine 2000 (Invitrogen). The cells were cultured for 48 hours (cPD-1-EGFP expressing cell and cPD-L1-EGFP expressing cell). In order to confirm the expression of canine PD-1 and PD-L1 in the thus prepared expressing cells, intracellular localization of enhanced green fluorescent protein (EGFP) was visualized with an inverted confocal laser microscope LSM700 (ZEISS) (Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, Kagawa Y, Nakajima C, Suzuki Y, Murata S. Ohashi K. PLoS One. 2014 Jun. 10; 9(6):e98415).

2.4 Construction of Recombinant Canine PD-1, PD-L1 and CD80

[0132] In order to amplify the extracellular regions of canine PD-1, PD-L1 and CD80 estimated from their putative amino acid sequences, primers were designed. Briefly, primers having an NheI or EcoRV recognition sequence (PD-1 and PD-L1) added on the 5' side (cPD-1-Ig F and R; cPD-L1-Ig F and R) or having an EcoRV or KpnI (CD80) recognition sequence added on the 5' side (cCD80-Ig F and R) were designed. PCR was performed using a synthesized beagle PBMC-derived cDNA as a template. The PCR products were digested with NheI (Takara) and EcoRV (Takara) or with EcoRV (Takara) and KpnI (New England Biolabs) and purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics). The thus purified DNAs were individually cloned into pCXN2.1-Rabbit IgG Fc vector (Niwa et al., 1991; Zettimeissl et al., 1990; kindly provided by Dr. T. Yokomizo, Juntendo University Graduate School of Medicine, and modified in the inventors' laboratory) treated with restriction enzymes in the same manner. The expression plasmids were purified with QIAGEN Plasmid Midi kit (Qiagen) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmids are designated as pCXN2.1-cPD-1-Ig, pCXN2.1-cPD-L1-Ig and pCXN2.1-cCD80-Ig, respectively.

TABLE-US-00004 Primer (cPD-1-Ig F): (SEQ ID NO: 33) CCGCTCGAGATGGGGAGCCGGCGGGGGCC Primer (cPD-1-Ig R): (SEQ ID NO: 34) CGCGGATATCCAGCCCCTGCAACTGGCCGC Primer (cPD-L1-Ig F): (SEQ ID NO: 35) CGCGGCTAGCATGAGAATGTTTAGTGTCTT Primer (c-PD-L1-Ig R): (SEQ ID NO: 36) CGCGGATATCAGTCCTCTCACTTGCTGGAA Primer (cCD80-Ig F): (SEQ ID NO: 129) CGCGGATATCATGGATTACACAGCGAAGTG Primer (cCD80-Ig R): (SEQ ID NO: 130) CGGGGTACCCCAGAGCTGTTGCTGGTTAT

[0133] These expression vectors were individually transfected into Expi293F cells (Life Technologies) to obtain a culture supernatant containing a recombinant Ig fusion protein. The recombinant protein produced was purified from the supernatant with Ab Capcher Extra (Protein A mutant; ProteNova). After buffer exchange with phosphate-buffered physiological saline (PBS; pH 7.4) using PD-MidiTrap G-25 (GE Healthcare), each recombinant protein was stored at -30.degree. C. until use in experiments (cPD-1-Ig, cPD-L1-Ig and cCD80-Ig). The concentration of each protein was measured with Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) before use in subsequent experiments.

2.5 Identification of Rat Anti-Bovine PD-L1 Monoclonal Antibody Showing Cross-Reactivity with Canine PD-L1

[0134] In order to identify rat anti-bovine PD-L1 monoclonal antibody showing cross-reactivity with canine PD-L1, flow cytometry was performed using the anti-bovine PD-L1 antibody prepared in 2.1 above. The anti-bovine PD-L1 antibody (10 .mu.g/ml) was reacted with 2.times.10.sup.5-1.times.10.sup.6 cells at room temperature for 30 min. After washing, the anti-bovine PD-L1 antibody was detected with allophycocyanine-labeled anti-rat Ig goat antibody (Beckman Coulter). FACS Verse (Becton, Dickinson and Company) was used for analysis. As negative controls, rat IgG2a (.kappa.) isotype control (BD Biosciences), rat IgG1 (.kappa.) isotype control (BD Biosciences) and rat IgM (.kappa.) isotype control (BD Biosciences) were used. For every washing operation and dilution of antibodies, 10% inactivated goat serum-supplemented PBS was used (Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, Kagawa Y, Nakajima C, Suzuki Y, Murata S, Ohashi K. PLoS One. 2014 Jun. 10; 9(6):e98415 which is an article describing the use of three bovine PD-L1 monoclonal antibodies: 4G12 (Rat IgG2a (.kappa.)), 5A2 (Rat IgG1 (.kappa.)) and 6G7 (Rat IgM (.kappa.)).

2.6 Selection Test of Variable Region for Establishment of Rat-Canine Chimeric Anti-PD-L1 Antibody

[0135] Out of 10 clones of rat anti-bovine PD-L1 monoclonal antibody which showed cross-reactivity with canine PD-L1, 4G12 (Rat IgG2a (.kappa.)), 5A2 (Rat IgG1 (.kappa.)) and 6G7 (Rat IgM (.kappa.)) were selected and check was made to see whether these antibodies would inhibit canine PD-1/PD-L1 binding. Briefly, canine PD-1-Ig (prepared in 2.4 above) was immobilized on flat bottomed 96-well plates and blocked with 1% BSA and 0.05% Tween 20-containing PBS. Canine PD-L1-Ig (prepared in 2.4 above) was biotinylated using Lightning-Link Biotin Conjugation Kit (Innova Bioscience) and reacted with various concentrations (0, 2.5, 5 and 10 .mu.g/ml) of rat anti-bovine PD-L1 antibodies 4G12, 5A2 and 6G7 at 37.degree. C. for 30 min, followed by addition to the 96-well plates. The binding of cPD-L1-Ig to cPD-1-Ig was measured by color reaction using Neutravidin-HRP (Thermo Fisher Scientific) and TMB one component substrate (Bethyl Laboratories). As a result, rat anti-bovine PD-L1 monoclonal antibodies 4G12 and 607 showed a good inhibitory activity against canine PD-1/PD-L1 binding, whereas 5A2 showed no binding inhibitory activity (FIG. 1).

2.7 Preparation of Rat-Canine Chimeric Anti-PD-L1 Antibody Expressing Vector (FIG. 2)

[0136] Using rat anti-bovine PD-L1 monoclonal antibodies 4G12 and 6G7 which showed a good inhibitory activity against canine PD-1/PD-L1 binding (FIG. 1) as the variable region, two types of rat-canine chimeric anti-PD-L1 antibodies were established.

[0137] Briefly, heavy chain and light chain variable region genes were identified from hybridomas producing rat anti-bovine PD-L1 monoclonal antibodies 4G12 and 6G7. Further, the heavy chain and light chain variable region genes of the above rat antibodies were linked to the constant region of heavy chain IgG4 and the constant region of light chain Lambda of a known canine antibody, respectively, to prepare nucleotide sequences, followed by codon optimization (SEQ ID NOS: 9 and 10 (amino acid sequences), SEQ ID NOS: 19 and 20 (nucleotide sequences after codon optimization). Then, synthesis of genes was performed so that NotI restriction enzyme recognition site, KOZAK sequence, chimeric antibody's light chain sequence, poly-A addition signal sequence (PABGH), promoter sequence (PCMV). SacI restriction enzyme recognition site, intron sequence (INRBG), KOZAK sequence, chimeric antibody's heavy chain sequence and XbaI restriction enzyme recognition site would be located in this order. The synthesized gene strands were individually incorporated into the cloning site (NotI and XbaI restriction enzyme recognition sequences downstream of PCMV and between INRBG and PABGH) of expression vector pDC6 (kindly provided by Prof. S. Suzuki. Hokkaido University Research Center for Zoonosis Control) using restriction enzyme recognition sequences so that the above-listed sequences would be located in the above-mentioned order (FIG. 2). Thus, rat-canine chimeric anti-PD-L1 antibody expressing vectors were constructed. Each of the expression vectors was transfected into Expi293F cells (Life Technologies) to obtain a culture supernatant containing a chimeric antibody. The chimeric antibody was purified from the supernatant with Ab Capcher Extra (Protein A mutant; ProteNova) and further purified by gel filtration chromatography. SDS-PAGE was performed under non-reducing conditions using 10% acrylamide gel. Bands were stained with Quick-CBB kit (Wako Pure Chemical) and decolorized in distilled water. Although contaminant proteins were observed after protein A purification alone, a highly purified antibody could be obtained by performing gel filtration chromatography (FIG. 3). It was confirmed by flow cytometry that the resultant purified antibodies specifically bound to canine PD-L1 expressing cells (data not shown). When the inhibitory activity of the two chimeric antibodies against canine PD-1/PD-L1 binding was examined by the method described in 2.6 above, rat-canine chimeric anti-PD-L1 antibody c4G12 showed a binding inhibitory activity similar to that of its original rat anti-bovine PD-L1 monoclonal antibody 4G12, whereas binding inhibition capacity was clearly attenuated in rat-canine chimeric anti-PD-L1 antibody c6G7 (FIG. 4) Therefore, rat-canine chimeric anti-PD-L1 antibody c4G12 was selected as a therapeutic antibody, which incorporated the variable region sequences of rat anti-bovine PD-L1 monoclonal antibody 4G12 (SEQ ID NOS: 2 and 1 (amino acid sequences) and SEQ ID NOS: 16 and 15 (nucleotide sequences after codon optimization)). The amino acid sequence and the nucleotide sequence (after codon optimization) of the light chain of c4G12 are shown in SEQ ID NOS: 9 and 19, and the amino acid sequence and the nucleotide sequence (after codon optimization) of the heavy chain of c4G12 are shown in SEQ ID NOS: 10 and 20.

2.8 Expression of Rat-Canine Chimeric Anti-PD-L1 Antibody c4G12

[0138] Rat-canine chimeric anti-PD-L1 antibody c4G12 expressing vector pDC6 as used in 2.7 above was transfected into CHO-DG44 cells (CHO-DG44(dfhr.sup.-/.sup.-)) which were dihydrofolate reductase deficient cells and high expression clones were selected by dot blotting. Further, gene amplification treatment was performed by adding load on cells in a medium containing 60 nM methotrexate (Mtx). Cells stably expressing rat-canine chimeric anti-PD-L1 antibody c4G12 (clone name: 4.3F1) after gene amplification were transferred to Mtx-free Opti-CHO medium and cultured under shaking for 14 days (125 rpm, 37.degree. C., 5% CO.sub.2). Cell survival rate was calculated by trypan blue staining (FIG. 5). Chimeric antibody production in the culture supernatant was measured by ELISA (FIG. 5). The culture supernatant at day 14 was centrifuged at 10,000 g for 10 min to remove cells, then passed through a 0.22 .mu.m filter before the process proceeded to purification steps for the antibody.

[0139] It should be noted that by exchanging the medium with Dynamis medium and doing appropriate feeding, antibody production was improved about two-fold compared to the conventional production (data not shown).

2.9 Purification of Rat-Canine Chimeric Anti-PD-L1 Antibody c4G12

[0140] The culture supernatant provided as described above was purified with Ab Capcher Extra (ProteNova). An open column method was used for binding to resin; PBS pH 7.4 was used as equilibration buffer and wash buffer. As elution buffer, IgG Elution Buffer (Thermo Scientific) was used. As neutralization buffer, 1 M Tris was used. The purified antibody was concentrated and buffer-exchanged with PBS by ultrafiltration using Amicon Ultra-15 (50 kDa, Millipore). The resultant antibody was passed through a 0.22 .mu.m filter for use in respective experiments.

2.10 Confirmation of Purification of Rat-Canine Chimeric Anti-PD-L1 Antibody c4G12 (FIG. 6)

[0141] In order to confirm the purity of the purified antibody, antibody proteins were detected by SDS-PAGE and CBB staining. Using SuperSep Ace 5-20% (Wako) gradient gel, rat anti-bovine PD-L1 monoclonal antibody 4G12 and rat-canine chimeric anti-PD-L1 antibody c4G12 were electrophoresed under reducing conditions and non-reducing conditions. Bands were stained with Quick-CBB kit (Wako) and decolored in distilled water. Bands were observed at positions of molecular weights corresponding to antibodies. No bands of contaminant proteins were recognized visually.

2.11 Measurement of Binding Avidities to cPD-L1-His of Rat Anti-Bovine PD-L1

[0142] Monoclonal Antibody 4G12 and Rat-Canine Chimeric Anti-PD-L1 Antibody c4G12 In order to amplify the extracellular region of canine PD-L1 estimated from its putative amino acid sequence, primers were designed. Briefly, a primer having an NheI recognition sequence added on the 5' side (cPD-L1-His F) and a primer having an EcoRV recognition sequence and 6.times.His tag sequence added on the 5' side (cPD-L1-His R) were designed. PCR was performed using a synthesized beagle PBMC-derived cDNA as a template. The PCR products were digested with NheI (Takara) and EcoRV (Takara) and purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics). The thus purified DNA was cloned into pCXN2.1 vector (Niwa et al., 1991; kindly provided by Dr. T. Yokomizo, Juntendo University Graduate School of Medicine) treated with restriction enzymes in the same manner. The expression plasmids were purified with QIAGEN Plasmid Midi kit (Qiagen) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmid is designated as pCXN2.1-cPD-L1-His.

TABLE-US-00005 Primer (cPD-L1-His F): (SEQ ID NO: 131) CGCGGCTAGCATGAGAATGTTTAGTGTCTT Primer (cPD-L1-His R): (SEQ ID NO: 132) CGCGGATATCTTAATGGTGATGGTGATGGT GAGTCCTCTCACTTGCTGG

[0143] The expression vector was transfected into Expi293F cells (Life Technologies) to obtain a culture supernatant containing a recombinant protein. The recombinant protein produced was purified from the supernatant using TALON Metal Affinity Resin (Clontech), and the buffer was exchanged with PBS using Amicon Ultra-4 Ultracel-3 (Merck Millipore). The thus obtained recombinant protein was stored at 4.degree. C. until use in experiments (cPD-L1-His). The protein concentration was measured with Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) for use in subsequent experiments.

[0144] Using a biomolecular interaction analyzer (Biacore X100), the binding avidities to cPD-L1-His of rat anti-bovine PD-L1 monoclonal antibody 4G12 and rat-canine chimeric anti-PD-L1 antibody c4G12 were assessed. Briefly, anti-histidine antibody was fixed on CM5 censor chip, followed by capturing of cPD-L1-His. Subsequently, monoclonal antibodies were added as analyte to observe specific binding. Both antibodies exhibited specific binding and their avidities were almost comparable (Table 1). Further, the binding avidities of canine PD-1-Ig and CD80-Ig to cPD-L1-His were measured in the same manner and found to be clearly lower than that of rat-canine chimeric anti-PD-L1 antibody c4G12 (Table 1).

TABLE-US-00006 TABLE 1 Binding Avidity of Each Antibody and Recombinant Protein to Canine PD-L1-His ka (.times.10.sup.6/Ms) kd (.times.10.sup.-3/s) KD (nM) 4G12 2.42 .+-. 0.10 4.54 .+-. 0.19 1.88 .+-. 0.06 c4G12 3.14 .+-. 0.19 7.19 .+-. 0.26 2.30 .+-. 0.07 cPD-1 25.4 .+-. 4.89 cCD80 24.3 .+-. 0.89

2.12 Inhibitory Activity of Rat-Canine Chimeric Anti-PD-L1 Antibody c4G12 Against Canine PD-1/PD-L1 Binding and CD80/PD-L1 Binding (FIG. 7)

[0145] Using the canine PD-1-Ig, PD-L1-Ig and CD80-Ig (described above), anti-PD-L1 antibody was tested for its ability to inhibit canine PD-1/PD-L1 binding and CD80/PD-L1 binding. Briefly, canine PD-1-Ig or CD80-Ig was immobilized on flat-bottom 96-well plates. Canine PD-L1-Ig was reacted with various concentrations (0, 2.5, 5 and 10 .mu.g/ml) of rat anti-bovine PD-L1 antibody 4G12 or rat-canine chimeric anti-PD-L1 antibody c4G12 according to the same procedures as described in 2.6 above, and the binding of canine PD-L1-Ig was assessed. No change in binding inhibition activity was observed due to the chimerization of antibody.

2.13. Canine Immune Cell Activating Effect of Rat-Canine Chimeric Anti-PD-L1 Antibody c4G12 (FIG. 8)

[0146] Canine PBMCs were cultured under stimulation with a super-antigen Staphylococcal Enterotoxin B (SEB) for three days, and changes in cytokine production by addition of rat-canine chimeric anti-PD-L1 antibody c4G12 were measured by ELISA using Duoset ELISA canine IL-2 or IFN-.gamma. (R&D systems). Rat-canine chimeric anti-PD-L1 antibody c4G12 increased the production of IL-2 and IFN-.gamma. from canine PBMCs. Further, nucleic acid analogue EdU was added to the culture medium at day 2 of the culture under SEB stimulation. Two hours later, uptake of EdU was measured by flow cytometry using Click-iT Plus EdU flow cytometry assay kit (Life Technologies). As a result, EdU uptake in canine CD4.sup.+ and CD8.sup.+ lymphocytes was enhanced by addition of rat-canine chimeric anti-PD-L1 antibody c4G12, indicating an elevated cell proliferation capacity.

2.14 Selection of Tumor-Affected Dogs to be Used in Canine Inoculation Test

[0147] Since the subject treatment is expected to manifest a higher efficacy when PD-L1 is being expressed in tumors, PD-L1 expression analysis at the tumor site of dogs was performed by immunohistochemical staining. Briefly, tumor tissue samples fixed with formaldehyde and embedded in paraffin were sliced into 4 .mu.m thick sections with a microtome, attached to and dried on silane-coated slide glass (Matsunami Glass) and deparaffinized with xylene/alcohol. While the resultant sections were soaked in citrate buffer [citric acid (Wako Pure Chemical) 0.37 g, trisodium citrate dihydrate (Kishida Chemical) 2.4 g, distilled water 1000 ml], antigen retrieval treatment was performed for 10 min with microwave, followed by staining using a Nichirei automatic immuno-staining device. As pretreatment, sample sections were soaked in 0.3% hydrogen peroxide-containing methanol solution at room temperature for 15 min and washed with PBS. Then, anti-bovine PD-L1 monoclonal antibody was added and reaction was conducted at room temperature for 30 min. After washing with PBS, histofine simple stain MAX-PO (Rat) (Nichirei Bioscience) was added and reaction was carried at room temperature for 30 min, followed by coloring with 3,3'-diaminobenzidine tetrahydrochloride and observation with a light microscope. Dogs with oral melanoma or undifferentiated sarcoma in which tumor cells were PD-L1 positive were used in the following inoculation test (clinical trial). Anti-bovine PD-L1 monoclonal antibody was established from a rat anti-bovine PD-L1 monoclonal antibody producing hybridoma (Ikebuchi R. Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y. Murata S, Ohashi K. Immunology. 2014 August; 142(4):551-61).

2.15 Inoculation Test on Dogs

[0148] With respect to the rat-canine chimeric anti-PD-L1 antibody c4G12 to be inoculated into dogs in the clinical trial, the culture supernatant obtained by the procedures described in 2.8 above was purified by affinity chromatography using MabSelect SuRe LX (GE Healthcare) and then by hydroxyapatite chromatography using BioScale CHT20-1 prepacked column (Bio-Rad) in order to remove contaminants and polymeric proteins. Aggregate-containing fractions were further purified by anion exchange chromatography using HiScreen Q-Sepharose HP prepacked column (GE Healthcare).

(1) Safety Test: The established rat-canine chimeric anti-PD-L1 antibody c4G12 was administered intravenously into a dog (beagle, spayed female, 13-year-old, about 10 kg in body weight) at 2 mg/kg, every 2 weeks, 3 times in total. There was observed no anaphylaxis or other adverse effects that would cause any trouble in clinical trials. (2) Clinical Trial 1: The established rat-canine chimeric anti-PD-L1 antibody c4G12 was administered intravenously into a PD-L1 positive dog with relapsed oral melanoma (FIG. 9A) (miniature dachshund, male, 11-year-old, about 7.5 kg in body weight) at 2 mg/kg or 5 mg/kg, every 2 weeks. 22 times in total. At week 10 after the start of treatment, a remarkable reduction in tumor size was recognized. At week 34 after the start of treatment, a still further reduction was confirmed (FIG. 10). During the observation period of 44 weeks, no metastases to lymph nodes or the lung were observed. When 30% or more reduction in the longest diameter of tumor compared to that at the baseline is defined as PR (partial response), the criterion of PR was satisfied at weeks 16-20 and at week 34 and thereafter (FIG. 11). (3) Clinical Trial 2: Rat-canine chimeric anti-PD-L1 antibody c4G12 was administered intravenously into a dog with undifferentiated sarcoma whose primary lesion was PD-L1 positive (FIG. 9B) and who had a plurality of metastatic lesions in muscles throughout the body (west highland white terrier, castrated male, 12-year-old, about 8 kg in body weight) at 5 mg/kg, every 2 weeks, 2 times in total. At week 3 from the start of treatment, a clear regression of tumor was recognized (FIG. 12). (4) Clinical Trial 3: Rat-canine chimeric anti-PD-L1 antibody c4G12 was administered intravenously into a dog with oral melanoma whose primary lesion had been removed by surgery (beagle, spayed female, I1-year-old, about 10 kg in body weight) at 2 mg/kg or 5 mg/kg, every 2 weeks, 9 times in total. At week 18 after the start of treatment, a plurality of pulmonary metastatic lesions disappeared (FIG. 13), (5) Clinical Trial 4: Rat-canine chimeric anti-PD-L1 antibody c4G12 was administered intravenously into 4 dogs with oral melanoma with pulmonary metastasis at 2 mg/kg or 5 mg/kg, every 2 weeks. Although no clear reduction in tumor size was observed during the observation period, the duration of the treated dogs' survival after confirmation of pulmonary metastasis tended to be longer than that of a control group (antibody not administered, historical control group: n=15) (FIG. 14). Therefore, the survival duration may have been extended by antibody administration.

2.16 CDR Analysis of Anti-PD-L1 Antibody

[0149] The complementarity-determining regions (CDRs) of rat anti-bovine PD-L1 antibody 4G12 were determined using NCBI IGBLAST (http://www.ncbi.nlm.nih.gov/igblast/). The results are shown in FIG. 15.

[Example 2] Application of Anti-PD-L1 Antibody to Other Animal Species

1.1 Identification of Ovine, Porcine and Water Buffalo PD-L1 Genes

[0150] In order to determine the full-lengths of the coding sequences (CDSs) of ovine, porcine and water buffalo PD-L1 cDNAs, primers for amplifying the full lengths of CDSs from the nucleotide sequences of ovine, porcine and water buffalo PD-L1 genes (GenBank accession number; XM_004004362, NM_001025221 and XM_613366) were first designed (ovPD-L1 CDS F and R; poPD-L1 CDS F and R; buPD-L1 CDS F1, R1, F2 and R2), and then PCR was performed. For the resultant amplified products, nucleotide sequences were determined with a capillary sequencer according to conventional methods (Mingala C N, Konnai S, Ikebuchi R, Ohashi K. Comp. Immunol. Microbiol. Infect. Dis. 2011 January; 34(1):55-63; Water buffalo PD-L1 gene was identified in this article).

TABLE-US-00007 Primer (ovPD-L1 CDS F): (SEQ ID NO: 109) ATGAGGATATATAGTGTCTTAACAT Primer (ovPD-L1 CDS R): (SEQ ID NO: 110) TTACGICTCCTCAAAATGTG Primer (poPD-L1 CDS F): (SEQ ID NO: 111) ATGAGGAFAIGTAGTATCTTTACAT Primer (poPD-L1 CDS R): (SEQ ID NO: 112) TTACGTCTCCTCAAATTGTGT Primer (buPD-L1 CDS F1): (SEQ ID NO: 113) ATGAGGATATATAGTGTCTT Primer (buPD-L1 CDS R1): (SEQ ID NO: 114) GCCACTCAGGACTTGGTGAT Primer (buPD-L1 CDS F2): (SEQ ID NO: 115) GGGGGITTACTGTTGCTTGA Primer (buPD-L1 CDS R2): (SEQ ID NO: 116) TTACGTCTCCTCAAATTGT

1.2 Construction of Ovine PD-1, Ovine PD-L1, Porcine PD-1 and Porcine PD-L1 Expressing COS-7 Cells

[0151] In order to prepare ovine PD-1, ovine PD-L1, porcine PD-1 and porcine PD-L1 expressing plasmids, PCR was performed using a synthesized ovine or porcine PBMC-derived cDNA as a template and primers designed by adding BglII and SmaI (ovine PD-1), HindIII and SmaI (porcine PD-1), or XhoI and SmaI (ovine and porcine PD-L1) recognition sites on the 5' side (ovPD-1-EGFP F and R; ovPD-L1-EGFP F and R; poPD-1-EGFP F and R; or poPD-L1-EGFP F and R). The resultant PCR products were digested with BglII (Takara) and SmaI (Takara) (ovine PD-1), HindIII (Takara) and SmaI (Takara) (porcine PD-1), and XhoI (Takara) and SmaI (Takara) (ovine and porcine PD-L1), then purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics) and cloned into pEGFP-N2 vector (Clontech) treated with restriction enzymes in the same manner. Expression plasmids were extracted using FastGene Xpress Plasmid PLUS Kit (NIPPON Genetics) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared plasmid is designated as pEGFP-N2-ovPD-1, pEGFP-N2-ovPD-L1, pEGFP-N2-poPD-1 or pEGFP-N2-poPD-L1.

TABLE-US-00008 Primer (ovPD-1-EGFP F): (SEQ ID NO: 117) GAAGATCTATGGGGACCCCGCGGGCGCCG Primer (ovPD-1-EGFP R): (SEQ ID NO: 118) GACCCGGGGAGGGGCCAGGAGCAGTGTCC Primer (ovPD-L1-EGFP F): (SEQ ID NO: 119) CCGCTCGAGATGAGGATATATAGTGTCT Primer (ovPD-L1-EGFP R): (SEQ ID NO: 120) ATCCCGGGCGTCTCCTCAAAATGTGTAG Primer (poPD-1-EGFP F): (SEQ ID NO: 121) ACTAAGCTrATGGGGACCCCGCGGG Primer (poPD-1-EGFPR): (SEQ ID NO: 122) ACTCCCGGGGAGGGGCCAAGAGCAGT Primer (poPD-L1-EGFP F): (SEQ ID NO: 123) CCGCTCGAGATGAGGATATGTAGTATCTT Primer (poPD-L1-EGFP R): (SEQ ID NO: 124) ATCCCGGGCGTCTCCTCAAATTGTGTATC

[0152] COS-7 cells were subcultured at a density of 5.times.10.sup.4 cells/cm.sup.2 in 6-well plates, and then cultured overnight in RPMI 1640 medium containing 10% inactivated fetal bovine serum and 0.01% L-glutamine at 37.degree. C. in the presence of 5% CO.sub.2. The pEGFP-N2-ovPD-1, pEGFP-N2-ovPD-L1, pEGFP-N2-poPD-1, pEGFP-N2-poPD-L1 or pEGFP-N2 (negative control) was introduced into COS-7 cells at 0.4 .mu.g/cm.sup.2 using Lipofectamine 2000 (Invitrogen). The cells were cultured for 48 hours (ovPD-1-EGFP expressing cell, ovPD-L1-EGFP expressing cell, poPD-1-EGFP expressing cell, and poPD-L1-EGFP expressing cell). In order to confirm the expression of ovine PD-1, ovine PD-L1, porcine PD-1 and porcine PD-L1 in the thus prepared expressing cells, intracellular localization of EGFP was visualized with an inverted confocal laser microscope LSM700 (ZEISS) or an all-in-one fluorescence microscope BZ-9000 (KEYENCE).

1.3 Construction of Recombinant Ovine PD-L1 and Porcine PD-L1

[0153] In order to amplify the extracellular regions of ovine PD-L1 or porcine PD-L1 estimated from their putative amino acid sequences, primers were designed. Briefly, primers having an NheI or EcoRV recognition sequence added on the 5' side (ovPD-L1-Ig F and R, or poPD-L1-Ig F and R) were designed. PCR was performed using a synthesized ovine or porcine PBMC-derived cDNA as a template. The PCR products were digested with NheI (Takara) and EcoRV (Takara) and purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics). The thus purified DNAs were individually cloned into pCXN2.1-Rabbit IgG Fc vector (Niwa et al., 1991. Zettimeissl et al., 1990, kindly provided by Dr. T. Yokomizo, Juntendo University Graduate School of Medicine, and modified in the inventors' laboratory) treated with restriction enzymes in the same manner. The expression plasmids were purified with FastGene Xpress Plasmid PLUS Kit (NIPPON Genetics) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmids are designated as pCXN2.1-ovPD-L1-Ig and pCXN2.1-poPD-L1-Ig, respectively.

TABLE-US-00009 Primer (ovPD-L1-Ig F): (SEQ ID NO: 125) GACGCTAGCATGAGGATATATAGTGTCT Primer (ovPD-L1-Ig R): (SEQ 1D NO: 126) GCTCTGATATCCCTCGTTTTTGCTGGAT Primer (poPD-L1-Ig F): (SEQ ID NO: 127) GACGCTAGCATGAGGATATGTAGTATCTT Primer (poPD-L1-Ig R): (SEQ ID NO: 128) AGCTTGATATCCCTCTTTCTTGCTGGATC

[0154] Thirty micrograms of pCXN2.1-ovPD-L1-Ig or pCXN2.1-poPD-L1-Ig was introduced into 7.5.times.10.sup.7 Expi293F cells (Life Technologies) using Expifectamin (Life Technologies). After 6-day shaking culture, a culture supernatant was collected. The culture supernatant contained an Fc fusion recombinant protein. The produced Fc recombinant protein was purified from the supernatant using Ab-Capcher Extra (ProteNova). After purification, the buffer was exchanged with PBS (pH 7.4) using PD-10 Desalting Column (GE Healthcare). The resultant recombinant protein was stored at -30.degree. C. until use in Experiment (ovine PD-L1-Ig). Concentrations of purified ovine PD-L1-Ig and porcine PD-L1-Ig were measured with Rabbit IgG ELISA Quantitation Set (BETHYL). For each washing operation in ELISA, Auto Palte Washer BIO WASHER 50 (DS Pharma Biomedical) was used. Absorbance was measured with Microplate Reader MTP-650FA (Corona Electric).

1.4 Reactivity of Rat Anti-Bovine PD-L1 Antibody 4G12 with Ovine and Porcine PD-L1

[0155] It was confirmed by flow cytometry that rat anti-bovine PD-L1 monoclonal antibody cross-reacts with ovine and porcine PD-L1. Ovine or Porcine PD-L1-EGFP expressing COS-7 cells were blocked with 10% inactivated goat serum supplemented PBS at room temperature for 15 min and reacted with 10 .mu.g/ml of rat anti-bovine PD-L1 antibody 4G12 at room temperature for 30 min. After washing, the cells were reacted with allophycocyanine-labeled anti-rat Ig goat antibody (Beckman Coulter) at room temperature for 30 min. For analysis, FACS Verse (BD Bioscience) was used. As a negative control antibody, rat IgG2a (.kappa.) isotype control (BD Bioscience) was used. For every washing operation and dilution of antibodies, 1% bovine serum albumin supplemented PBS was used.

[0156] Experimental results are shown in FIG. 16. It was confirmed that rat anti-bovine PD-L1 antibody 4G12 binds to ovine and porcine PD-L1.

1.5 Reactivity of Rat Anti-Bovine PD-L1 Antibody 4G12 with Water Buffalo Leukocytes

[0157] Peripheral blood of water buffalo (Bubalus bubalis; Asian water buffalo) was hemolyzed with ACK buffer to isolate leukocytes. After blocking with 10% inactivated goat serum supplemented PBS at room temperature for 15 min, reaction with rat anti-bovine PD-L1 antibody 4G12, peridinin-chlorophyll-protein complex/cyanin 5.5-labeled anti-bovine CD14 antibody (mouse IgG1, CAM36A, VMRD) and anti-bovine CD11b antibody (mouse IgG2b, CC126, AbD Serotec) was conducted at room temperature for 30 min. After washing, reaction with allophycocyanine-labelled anti-rat Ig goat antibody (Beckman Coulter) and fluorescein isothiocyanate-labeled anti-mouse IgG2 goat antibody (Beckman Coulter) was conducted at room temperature for 30 min. For analysis, FACS Calibur (BD Biosciences) was used. As a negative control antibody, rat IgG2a (.kappa.) isotype control (BD Biosciences) was used. For every washing operation and dilution of antibodies, 10% inactivated goat serum supplemented PBS was used.

[0158] Experimental results are shown in FIG. 17. Rat anti-bovine PD-L1 antibody 4G12 strongly bound to blood macrophages (CD14.sup.+ CD11b.sup.+ cells) of water buffalo. On the other hand, rat anti-bovine PD-L1 antibody 4G12 weakly bound to lymphocytes (CD14.sup.- CD11b.sup.- cells) of water buffalo. This difference in binding property is believed to reflect the expression levels of PD-L1 in macrophages and lymphocytes.

1.6 Inhibition Test on Ovine or Porcine PD-1/PD-L1 Binding with Rat Anti-Bovine PD-L1 Antibody 4G12

[0159] Using ovine PD-1-EGFP expressing COS-7 cells and ovine PD-L1-Ig recombinant protein, or porcine PD-1-EGFP expressing COS-7 cells and porcine PD-L1-Ig recombinant protein, inhibition of ovine or porcine PD-1/PD-L1 binding by rat anti-bovine PD-L1 antibody (4G12) was tested. Briefly, rat anti-bovine PD-L1 antibody 4G12 of various concentrations (0, 1, 5, 10, 20, 50 .mu.g/ml) was reacted in advance with ovine PD-L1-Ig (final concentration 1 .mu.g/ml) or porcine PD-L1-Ig (final concentration 5 .mu.g/ml) at 37.degree. C. for 30 min. Subsequently, the antibody 4G12 was reacted with 2.times.10.sup.5 ovine PD-1-EGFP expressing COS-7 cells or porcine PD-1-EGFP expressing COS-7 cells at 37.degree. C. for 30 min. After washing, ovine PD-L1-Ig or porcine PD-L1-Ig bound to cell surfaces was detected with Alexa Fluor 647-labeled anti-rabbit IgG (H+L) goat F(ab')2 (Life Technologies). For analysis, FACS Verse (BD Biosciences) was used. As a negative control antibody, rat IgG2a (.kappa.) isotype control (BD Biosciences) was used. Taking the proportion of PD-L1-Ig bound cells without antibody addition as 100%, the proportion of PD-L1-Ig bound cells at each antibody concentration was shown as relative value.

[0160] The results revealed that rat anti-bovine PD-L1 antibody 4G12 is capable of inhibiting ovine PD-1/PD-L1 and porcine PD-1/PD-L1 binding in a concentration dependent manner (FIG. 18).

Example 31

1. Introduction

[0161] Programmed cell death 1 (PD-1), an immunoinhibitory receptor, and its ligand programmed cell death ligand 1 (PD-L1) are molecules identified by Prof. Tasuku Honjo et al., Kyoto University, as factors which inhibit excessive immune response and are deeply involved in immunotolerance. Recently, it has been elucidated that these molecules are also involved in immunosuppression in tumors. In the subject Example, for the purpose of establishing a novel therapy for bovine infections, the present inventors have prepared a chimeric antibody gene by linking the variable region gene of rat anti-bovine PD-L1 monoclonal antibody (4G12) capable of inhibiting the binding of bovine PD-1 and PD-L1 to the constant region gene of a bovine immunoglobulin (IgG1 with mutations having been introduced into the putative binding sites for Fc.gamma. receptors in CH2 domain to inhibit ADCC activity; see FIG. 19 for amino acid numbers and mutations: 250 E.fwdarw.P, 251 L.fwdarw.V, 252 P.fwdarw.A, 253 G.fwdarw.deletion. 347 A.fwdarw.S, 348 P.fwdarw.S; Ikebuchi R. Konnai S, Okagawa T. Yokoyama K, Nakajima C. Suzuki Y, Murata S. Ohashi K. Immunology 2014 August; 142(4):551-561). This chimeric antibody gene was introduced into Chinese hamster ovary cells (CHO cells). By culturing/proliferating the resultant cells, the present inventors have obtained a rat-bovine chimeric anti-bovine PD-L1 antibody (ch4G12) and confirmed its effect in vitro and in vivo.

2. Materials and Methods

Construction of Bovine PD-1 and PD-L1 Expressing Cells

[0162] The nucleotide sequences of the full length cDNAs of bovine PD-1 gene (GenBank accession number AB510901; Ikebuchi R, Konnai S. Sunden Y, Onuma M, Ohashi K. Microbiol. Immunol. 2010 May; 54(5):291-298) and bovine PD-L1 gene (GenBank accession number AB510902: Ikebuchi R, Konnai S. Shirai T. Sunden Y. Murata S, Onuma M, Ohashi K. Vet. Res. 2011 Sep. 26; 42:103) were determined. Based on the resultant genetic information, bovine PD-1 and bovine PD-L1 membrane expressing cells were prepared. First, for preparing bovine PD-1 or PD-L1 expressing plasmid, PCR was performed using a synthesized bovine PBMC-derived cDNA as a template and designed primers having NotI and HindIII (bovine PD-1) recognition sites and NheI and XhoI (bovine PD-L1) recognition sites on the 5' side (boPD-1-myc F and R; boPD-L1-EGFP F and R). The PCR products were digested with NotI (Takara) and HindIII (Takara; bovine PD-1), NheI (Takara) and XhoI (Takara; bovine PD-L1), purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics) and cloned into pCMV-Tag1 vector (Agilent Technologies; bovine PD-1) or pEGFP-N2 vector (Clontech; bovine PD-L1) treated with restriction enzymes in the same manner. The resultant expression plasmid of interest was extracted with QIAGEN Plasmid Midi kit (Qiagen) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmid is designated as pCMV-Tag1-boPD-1.

TABLE-US-00010 Primer (boPD-1-mvc F): (SEQ ID NO: 133) ATATGCGGCCGCATGGGGACCCCGCGGGCGCT Primer (boPD-1-mvc R): (SEQ ID NO: 134) GCGCAAGCTTTCAGAGGGGCCAGGAGCAGT Primer (boPD-L1-EGFP F): (SEQ ID NO: 135) CTAGCTAGCACCATGAGGATATATAGTGTCTTAAC Primer (boPD-L1-EGFP R): (SEQ ID NO: 136) CAATCTCGAGTTACAGACAGAAGATGACTGC

[0163] Bovine PD-1 membrane expressing cells were prepared by the procedures described below. First, 2.5 .mu.g of pCMV-Tag1-boPD-1 was introduced into 4.times.10.sup.6 CHO-DG44 cells using Lipofectamine LTX (Invitrogen). Forty-eight hours later, the medium was exchanged with CD DG44 medium (Life Technologies) containing 800 .mu.g/ml G418 (Enzo Life Science). 20 ml/L GlutaMAX supplement (Life Technologies), and 18 ml/L 10% Pluronic F-68 (Life Technologies), followed by selection. The resultant expression cells were reacted with rat anti-bovine PD-1 antibody 5D2 at room temperature. After washing, the cells were further reacted with anti-rat IgG microbeads-labeled antibody (Miltenyi Biotec) at room temperature. Cells expressing bovine PD-1 at high levels were isolated with Auto MACS (Miltenyi Biotec). Subsequently, re-isolation was performed in the same manner to obtain still higher purity. The resultant expression cells were subjected to cloning by limiting dilution to thereby obtain a CHO DG44 cell clone expressing bovine PD-1 at high level (bovine PD-1 expressing cells).

[0164] Bovine PD-L1 membrane expressing cells were prepared by the procedures described below. First, 2.5 .mu.g of pEGFP-N2-boPD-L1 or pEGFP-N2 (negative control) was introduced into 4.times.10.sup.6 CHO-DG44 cells using Lipofectamine LTX (Invitrogen). Forty-eight hours later, the medium was exchanged with CD DG44 medium (Life Technologies) containing G418 (Enzo Life Science) 800 .mu.g/ml. GlutaMAX supplement (Life Technologies) 20 ml/L, and 10% Pluronic F-68 (Life Technologies) 18 ml/L, followed by selection and cloning by limiting dilution (bovine PD-L1 expressing cell clone). In order to confirm the expression of bovine PD-L1 in the thus prepared expressing cell clone, intracellular localization of EGFP was visualized with an inverted confocal laser microscope LSM700 (ZEISS).

[0165] Construction of Soluble Bovine PD-1 and PD-L1 Bovine PD-1-Ig expressing plasmid was constructed by the procedures described below. Briefly, the signal peptide and the extracellular region of bovine PD-1 (GenBank accession number AB510901) were linked to the Fe domain of the constant region of a known bovine IgG1 (GenBank accession number X62916) to prepare a gene sequence. After codons were optimized for CHO cells, gene synthesis was performed in such a manner that NotI recognition sequence, KOZAK sequence, bovine PD-1 signal peptide sequence, bovine PD-1 gene extracellular region sequence, bovine IgG1 Fc region sequence, and XbaI recognition sequence would be located in the gene in this order. It should be noted here that bovine IgG1 was mutated to inhibit ADCC activity; more specifically, mutations were introduced into the putative binding sites for Fc.gamma. receptors of CH2 domain (sites of mutation: 185 E.fwdarw.P, 186 L.fwdarw.V, 187 P.fwdarw.A, 189 G.fwdarw.deletion, 281 A.fwdarw.S, 282 P.fwdarw.S; Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C. Suzuki Y, Murata S, Ohashi K. Immunology 2014 August; 142(4):551-561; the amino acid sequence of PD-1-Ig and the sites of mutation are disclosed in FIG. 2 of this article). The synthesized gene strand was digested with NotI (Takara) and XbaI (Takara), purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics), and incorporated into the cloning site (NotI and XbaI restriction enzyme recognition sequences downstream of PCMV and between INRBG and PABGH) of expression vector pDN11 (kindly provided by Prof. S. Suzuki, Hokkaido University Research Center for Zoonosis Control) treated with restriction enzymes in the same manner, whereby bovine PD-1-Ig expressing vector was constructed. The expression plasmid was purified with QIAGEN Plasmid Midi kit (Qiagen) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmid is designated as pDN11-boPD-1-Ig.

[0166] Bovine PD-L1-Ig expressing plasmid was constructed by the procedures described below. In order to amplify the signal peptide and the extracellular region of bovine PD-L1 (GenBank accession number AB510902), primers were designed that had NheI and EcoRV recognition sites added on the 5' side (boPD-L1-Ig F and R). PCR was performed using a synthesized bovine PBMC-derived cDNA as a template. The PCR products were digested with NheI (Takara) and EcoRV (Takara), purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics) and cloned into pCXN2.1-Rabbit IgG1 Fc vector (Niwa et al.. 1991: Zettlmeissl et al., 1990; kindly provided by Dr. T. Yokomizo, Juntendo University Graduate School of Medicine, and modified in the inventors' laboratory) treated with restriction enzymes in the same manner. The expression plasmid was purified with QIAGEN Plasmid Midi kit (Qiagen) or FastGene Xpress Plasmid PLUS Kit (NIPPON Genetics) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmid is designated as pCXN2.1-boPD-L1-Ig.

TABLE-US-00011 Primer (boPD-L1-Ig F): (SEQ ID NO: 137) GCTAGCATGAGGATATATAGTGTCTTAAC Primer (boPD-L1-Ig R): (SEQ ID NO: 138) GATATCATTCCTCTTTTTTGCTGGAT

[0167] Soluble bovine PD-1-Ig expressing cells were prepared by the procedures described below. Briefly, 2.5 .mu.g of pDN11-boPD-1-Ig was introduced into 4.times.10.sup.6 CHO-DG44 cells using Lipofectamine LTX (Invitrogen). Forty-eight hours later, the medium was exchanged with OptiCHO AGT medium (Life Technologies) containing 800 .mu.g/ml G418 (Enzo Life Science) and 20 ml/L GlutaMAX supplement (Life Technologies). After cultured for 3 weeks, the cells were subjected to selection. Briefly, the concentrations of the Fc fusion recombinant protein in the culture supernatants of the resultant cell clones were measured by ELISA using anti-bovine IgG F(c) rabbit polyclonal antibody (Rockland) to thereby select those cell clones that express the Fc fusion recombinant protein at high levels. The resultant highly expressing cell clone was transferred to a G418-free medium and cultured under shaking for 14 days, followed by collection of a culture supernatant. The culture supernatant containing the Fc fusion recombinants protein was ultrafiltered with Centricon Plus-70 (Millipore). Then, the Fc fusion recombinant protein was purified with Ab-Capcher Extra (ProteNova). After purification, the buffer was exchanged with phosphate-buffered physiological saline (PBS; pH 7.4) using PD-10 Desalting Column (GE Healthcare). The resultant protein was stored at -30.degree. C. until use in experiments (bovine PD-1-Ig). The concentration of the purified bovine PD-1-Ig was measured by ELISA using IgG F(c) rabbit polyclonal antibody (Rockland). For each washing operation in ELISA, Auto Plate Washer BIO WASHER 50 (DS Pharma Biomedical) was used. Absorbance was measured with Microplate Reader MTP-650FA (Corona Electric).

[0168] Soluble bovine PD-L1-Ig expressing cells were prepared by the procedures described below. Briefly, 30 .mu.g of pCXN2.1-boPD-L1-Ig was introduced into 7.5.times.10.sup.7 Expi293F cells (Life Technologies) using Expifectamine (Life Technologies). After 7-day culture under shaking, the culture supernatant was collected. The recombinant protein was purified from the supernatant using Ab-Capcher Extra (ProteNova; bovine PD-L1-Ig). After purification, the buffer was exchanged with PBS (pH 7.4) using PD MiniTrap G-25 (GE Healthcare). The resultant protein was stored at -30.degree. C. until use in experiments (bovine PD-L1-Ig). The concentration of the purified bovine PD-L1-Ig was measured using Rabbit IgG ELISA Quantitation Set (Bethyl). For each washing operation in ELISA, Auto Plate Washer BIO WASHER 50 (DS Pharma Biomedical) was used. Absorbance was measured with Microplate Reader MTP-650FA (Corona Electric).

Preparation of Rat Anti-Bovine PD-L1 Monoclonal Antibody Producing Cells

[0169] Rat was immunized in the footpad with bovine PD-L1-Ig (Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C. Suzuki Y, Murata S, Ohashi K. Immunology 2014 August; 142(4):551-561: bovine PD-L1-Ig was prepared by the method disclosed in this article and used for immunization). Hybridomas were established by the iliac lymph node method to thereby obtain rat anti-bovine PD-L1 monoclonal antibody producing hybridoma 4G12. With respect to the method of establishment of rat anti-bovine PD-L1 monoclonal antibody, details are disclosed in the following non-patent document (Ikebuchi R. Konnai S, Okagawa T. Yokoyama K, Nakajima C, Suzuki Y, Murata S. Ohashi K. Vet. Res. 2013 Jul. 22; 44:59; Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, Murata S. Ohashi K. Immunology 2014 August; 142(4):551-561).

Preparation of Rat-Bovine Chimeric Anti-Bovine PD-L1 Antibody Expressing Vector

[0170] Rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 was established by fusing the antibody constant regions of bovine IgG1 and Ig.lamda. with rat anti-bovine PD-L1 antibody 4G12 being used as an antibody variable region.

[0171] First, the genes of heavy chain and light chain variable regions were identified from a hybridoma that would produce rat anti-bovine PD-L1 antibody 4G12. Subsequently, a gene sequence was prepared in which the heavy chain and the light chain variable regions of the antibody 4G12 were linked to known constant regions of bovine IgG1 (heavy chain; modified from GenBank Accession number X62916) and bovine Ig.lamda. (light chain; GenBank Accession number X62917), respectively, and codon optimization was carried out [rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12: SEQ ID NOS: 105 and 106 (amino acid sequences), SEQ ID NOS: 107 and 108 (nucleotide sequences after codon optimization)]. It should be noted that in order to suppress the ADCC activity of bovine IgG1, mutations were added to the putative binding sites of Fc.gamma. receptors in CH2 domain (See FIG. 19 for amino acid numbers and mutations: 250 E.fwdarw.P. 251 L.fwdarw.V, 252 P.fwdarw.A, 253 G.fwdarw.deletion, 347 A.fwdarw.S, 348 P.fwdarw.S; Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y. Murata S. Ohashi K. Immunology 2014 August; 142(4):551-561). Then, the gene was artificially synthesized in such a manner that NotI recognition sequence, KOZAK sequence, chimeric antibody light chain sequence, poly-A addition signal sequence (PABGH), promoter sequence (PCMV), SacI recognition sequence, intron sequence (INRBG), KOZAK sequence, chimeric antibody heavy chain sequence and XbaI recognition sequence would be located in this order. The synthesized gene strand was digested with NotI (Takara) and XbaI (Takara), purified with FastGene Gel/PCR Extraction Kit (NIPPON Genetics) and cloned into the cloning site (NotI and XbaI restriction enzyme recognition sequences downstream of PCMV and between INRBG and PABGH) of expression plasmid pDC6 (kindly provided by Prof. S. Suzuki, Hokkaido University Research Center for Zoonosis Control) treated with restriction enzymes in the same manner (FIG. 20). The resultant plasmid was extracted with QIAGEN Plasmid Midi kit (Qiagen) and stored at -30.degree. C. until use in experiments. Hereinafter, the thus prepared expression plasmid is designated as pDC6-boPD-L1ch4G12.

Expression of Rat-Bovine Chimeric Anti-Bovine PD-L1 Antibody

[0172] The pDC6-boPD-L1ch4G12 was transfected into CHO-DG44 cells (CHO-DG44 (dfhr.sup.-/.sup.-)) which were a dihydrofolate reductase deficient cell. Forty-eight hours later, the medium was exchanged with OptiCHO AGT medium (Life Technologies) containing 20 ml/L GlutaMAX supplement (Life Technologies). After cultured for 3 weeks, the cells were subjected to selection and cloning by limiting dilution. Subsequently, the concentrations of the chimeric antibody in the culture supernatants were measured by dot blotting and ELISA using anti-bovine IgG F(c) rabbit polyclonal antibody (Rockland) to thereby select high expression clones. Further, the selected clones expressing rat-bovine chimeric anti-bovine PD-L1 antibody at high levels were subjected to gene amplification treatment by adding a load with 60 nM methotrexate (Mtx)-containing medium. The thus established cell clone stably expressing rat-bovine chimeric anti-bovine PD-L1 antibody was transferred into Mtx-free Opti-CHO AGT medium and cultured under shaking for 14 days (125 rpm, 37.degree. C., 5% CO.sub.2). Chimeric antibody production in the culture supernatant was measured by ELISA using anti-bovine IgG F(c) rabbit polyclonal antibody (Rockland). For each washing operation in ELISA, Auto Plate Washer BIO WASHER 50 (DS Pharma Biomedical) was used. Absorbance was measured with Microplate Reader MTP-650FA (Corona Electric). The culture supernatant at day 14 was centrifuged at 10,000 g for 10 min to remove cells, and the centrifugal supernatant was passed through a Steritop-GP 0.22 .mu.m filter (Millipore) for sterilization and then stored at 4.degree. C. until it was subjected to purification.

Purification of Rat-Bovine Chimeric Anti-Bovine PD-L1 Antibody

[0173] From the culture supernatant prepared as described above, each chimeric antibody was purified using Ab Capcher Extra (ProteNova). An open column method was used for binding to resin; PBS pH 7.4 was used as an equilibration buffer and a wash buffer. As an elution buffer, IgG Elution Buffer (Thermo Fisher Scientific) was used. As a neutralization buffer, 1M Tris (pH 9.0) was used. The purified antibody was subjected to buffer exchange with PBS (pH 7.4) using PD-10 Desalting Column (GE Healthcare) and concentrated using Amicon Ultra-15 (50 kDa, Millipore). The thus purified chimeric antibody was passed through a 0.22 .mu.m syringe filter (Millipore) for sterilization and stored at 4.degree. C. until use in experiments.

Confirmation of the Purity of Purified Rat-Bovine Chimeric Anti-Bovine PD-L1 Antibody (FIG. 21)

[0174] In order to confirm the purity of purified rat-bovine chimeric anti-bovine PD-L1 antibody, antibody proteins were detected by SDS-PAGE and CBB staining. Using 10% acrylamide gel, the purified rat-bovine chimeric antibody was electrophoresed under reducing conditions (reduction with 2-mercaptoethanol from Sigma-Aldrich) and non-reducing conditions. Bands were stained with Quick-CBB kit (Wako) and decolored in distilled water. The results are shown in FIG. 21. Bands were observed at predicted positions, that is, at 25 kDa and 50 kDa under reducing conditions and at 150 kDa under non-reducing conditions.

Binding Specificity of Rat-Bovine Chimeric Anti-Bovine PD-L1 Antibody (FIG. 22)

[0175] It was confirmed by flow cytometry that the rat-bovine chimeric anti-bovine PD-L1 antibody specifically binds to the bovine PD-L1 expressing cells (described above). First, rat anti-bovine PD-L1 antibody 4G12 or rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 was reacted with bovine PD-L1 expressing cells at room temperature for 30 min. After washing, APC-labeled anti-rat Ig goat antibody (Southern Biotech) or Alexa Fluor 647-labeled anti-bovine IgG (H+L) goat F(ab')2 (Jackson ImmunoResearch) was reacted at room temperature for 30 min. As negative control antibody, rat IgG2a (.kappa.) isotype control (BD Biosciences) or bovine IgG1 antibody (Bethyl) was used. After washing, each rat antibody or rat-bovine chimeric antibody bound to cell surfaces was detected by FACS Verse (BD Biosciences). For every washing operation and dilution of antibody, PBS supplemented with 1% bovine serum albumin (Sigma-Aldrich) was used.

[0176] The experimental results are shown in FIG. 22. It was revealed that rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 binds to bovine PD-L1 expressing cells in the same manner as rat anti-bovine PD-L1 antibody 4G12.

Inhibitory Activity of Rat-Bovine Chimeric Anti-PD-L1 Antibody Against Bovine PD-1/PD-L1 Binding

(1) Binding Inhibition Test on Bovine PD-L1 Expressing Cells and Soluble Bovine PD-1 (FIG. 23)

[0177] Using bovine PD-L1 expressing cells (described above) and bovine PD-1-Ig (described above), bovine PD-1/PD-L1 binding inhibition by anti-bovine PD-L1 antibody was tested. First, 2.times.10.sup.5 bovine PD-L1 expressing cells were reacted with various concentrations (0, 0.32, 0.63, 1.25, 2.5, 5 or 10 .mu.g/ml) of rat anti-bovine PD-L1 antibody 4G12 or rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 at room temperature for 30 min. As negative control antibody, rat IgG2a (.kappa.) isotype control (BD Biosciences) or bovine IgG1 antibody (Bethyl) was used. After washing, bovine PD-1-Ig labeled with biotin using Lightning-Link Type A Biotin Labeling Kit (Innova Bioscience) was added to a final concentration of 2 .mu.g/ml, followed by reaction for another 30 min at room temperature. Subsequently, after washing, bovine PD-1-Ig bound to cell surfaces was detected with APC-labeled streptavidin (BioLegend). For analysis, FACS Verse (BD Biosciences) was used. For every washing operation and dilution of antibody, PBS supplemented with 1% bovine serum albumin (Sigma-Aldrich) was used. Taking the proportion of PD-1-Ig bound cells without antibody addition as 100%, the proportion of PD-1-Ig bound cells at each antibody concentration was shown as relative value.

[0178] The experimental results are shown in FIG. 23. It was revealed that like rat anti-bovine PD-L1 antibody 4G12, rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 is capable of inhibiting bovine PD-1/PD-L1 binding in a concentration dependent manner.

(2) Binding Inhibition Test on Bovine PD-1 Expressing Cells and Soluble Bovine PD-L1 (FIG. 24)

[0179] Using bovine PD-1 expressing cells (described above) and bovine PD-L1-Ig (described above), bovine pD-1/PD-L1 binding inhibition by anti-bovine PD-L1 antibody was tested. First, rat anti-bovine PD-L1 antibody 4G12 or rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 at a final concentration of 0, 0.32, 0.63, 1.25, 2.5, 5 or 10 .mu.g/ml and bovine PD-L1-Ig at a final concentration of 1 .mu.g/ml were placed in 96-well plates, where they were reacted at room temperature for 30 min. The resultant mixture was reacted with 2.times.10.sup.5 bovine PD-1 expressing cells at room temperature for 30 min. As negative control antibody, rat IgG2a (.kappa.) isotype control (BD Biosciences) or bovine IgG1 antibody (Bethyl) was used. After washing, Alexa Fluor 647-labeled anti-rabbit IgG (H+L) goat F(ab')2 (Life Technologies) was reacted at room temperature for 30 min to thereby detect bovine PD-L1-Ig bound to cell surfaces. For analysis, FACS Verse (BD Biosciences) was used. For every washing operation and dilution of antibody, PBS supplemented with 1% bovine serum albumin (Sigma-Aldrich) was used. Taking the proportion of PD-L1-Ig bound cells without antibody addition as 100%, the proportion of PD-L1-Ig bound cells at each antibody concentration was shown as relative value.

[0180] The experimental results are shown in FIG. 24. It was revealed that like rat anti-bovine PD-L1 antibody 4G12, rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 is capable of inhibiting bovine PD-1/PD-L1 binding in a concentration dependent manner.

Biological Activity Test Using Rat-Bovine Chimeric Anti-Bovine PD-L1 Antibody

(1) Effect on Cell Proliferation (FIG. 25)

[0181] In order to confirm that bovine PD-1/PD-L1 binding inhibition by rat-bovine chimeric anti-PD-L1 antibody activates lymphocytes, a biological activity test was performed using cell proliferation as an indicator. Briefly, bovine PBMCs isolated from peripheral blood of healthy cattle were suspended in PBS to give a concentration of 10.times.10.sup.6 cells/ml, and reacted with carboxyfluorescein succinimidyl ester (CFSE) at room temperature for 20 min. After washing twice with RPMI 1640 medium (Sigma-Aldrich) containing 10.degree./o inactivated fetal bovine serum (Cell Culture Technologies), antibiotics (streptomycin 200 .mu.g/ml, penicillin 200 U/ml) (Life Technologies) and 0.01% L-glutamine (Life Technologies), the PBMCs were reacted with anti-bovine CD3 mouse antibody (WSU Monoclonal Antibody Center) at 4.degree. C. for 30 min. After washing, the PBMCs were reacted with anti-mouse IgG1 microbeads (Miltenyi Biotec) at 4.degree. C. for 15 min, followed by isolation of CD3-positive T cells using autoMACS.TM. Pro(Miltenyi Biotec). To the isolated CD3-positive T cells, anti-bovine CD3 mouse antibody (WSU Monoclonal Antibody Center) and anti-bovine CD28 mouse antibody (Bio-Rad) were added. Then, the cells were co-cultured with bovine PD-L1 expressing cells (CD3-positive T cells: bovine PD-L1 expressing cells=10:1) in the presence or absence of 10 .mu.g/ml of rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12. As a control for antibodies, serum-derived bovine IgG (Sigma-Aldrich) was used; as a control for PD-L1 expressing cells, EGFP expressing cells transfected with pEGFP-N2 were used. After a 6-day coculture, cells were harvested and reacted with anti-bovine CD4 mouse antibody and anti-bovine CD8 mouse antibody (Bio-Rad) at room temperature for 30 min. For the labeling of antibodies, Zenon Mouse IgG1 Labeling Kits (Life Technologies) or Lightning-Link Kit (Innova Biosciences) was used. For analysis, FACS Verse (BD Biosciences) was used. For washing operation after culturing and dilution of antibody, PBS supplemented with 1% bovine serum albumin (Sigma-Aldrich) was used.

[0182] The experimental results are shown in FIG. 25. Proliferation of CD4-positive and CD8-positive T cells was significantly suppressed by co-culture with bovine PD-L1 expressing cells. It was revealed that rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 inhibits this suppression in CD4-positive T cells.

(2) Effect on IFN-.gamma. Production (FIG. 26)

[0183] In order to confirm that bovine PD-1/PD-L1 binding inhibition by rat-bovine chimeric anti-PD-L1 antibody activates lymphocytes, a biological activity test was performed using IFN-.gamma. production as an indicator. Briefly, PBMCs isolated from peripheral blood of BLV-infected cattle were suspended in RPMI medium (Sigma-Aldrich) containing 10% inactivated fetal bovine serum (Cell Culture Technologies), antibiotics (streptomycin 200 .mu.g/ml, penicillin 200 U/ml) (Life Technologies) and 0.01% L-glutamine (Life Technologies) to give a concentration of 4.times.10.sup.6 cells/ml. To the PBMCs, 10 .mu.g/ml of rat anti-bovine PD-L1 antibody 4G12 or rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12, and 2% BLV-infected fetal lamp kidney cell (FLK-BLV) culture supernatant were added; culturing was then performed at 37.degree. C. under 5% CO.sub.2 for 6 days. As control antibodies, serum-derived rat IgG (Sigma-Aldrich) and serum-derived bovine IgG (Sigma-Aldrich) were used. After a 6-day culture, a culture supernatant was collected, and IFN-.gamma. production was measured with Bovine IFN-.gamma. ELISA Kit (BETYL). For each washing operation in ELISA, Auto Plate Washer BIO WASHER 50 (DS Pharma Biomedical) was used. Absorbance was measured with Microplate Reader MTP-650FA (Corona Electric).

[0184] The experimental results are shown in FIG. 26. It was revealed that rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 increases bovine PBMCs' IFN-.gamma. response to BLV antigen in the same manner as rat anti-bovine PD-L1 antibody 4G12 (n=10).

CDR Analysis of Rat Anti-Bovine PD-L1 Antibody

[0185] The complementarity-determining regions (CDRs) of rat anti-bovine PD-L1 antibody 4G12 were determined using NCBI IGBLAST (http://www.ncbi.nlm.nih.gov/igblast/). The results are shown in FIG. 19.

Inoculation Test on Cattle

[0186] Established rat-bovine chimeric anti-bovine PD-L1 antibody ch4G12 (about 26W mg; 1 mg/kg) was intravenously administered into experimentally BLV-infected calf (Holstein, male, 7 months old, 267 kg). Blood samples were collected chronologically from the infected calf, followed by isolation of PBMCs by density gradient centrifugation.

(1) Cell Proliferation Response of T Cells to BLV Antigen (FIG. 27)

[0187] Bovine PBMCs were suspended in PBS and reacted with CFSE at room temperature for 20 min. After washing twice with RPMI 1640 medium (Sigma-Aldrich) containing 10% inactivated fetal bovine serum (Cell Culture Technologies), antibiotics (streptomycin 200 .mu.g/ml, penicillin 200 U/ml) (Life Technologies) and 0.01% L-glutamine (Life Technologies), the cell concentration was adjusted to 4.times.10.sup.6 cells/ml using the same medium. Culture supernatant of 2% BLV-infected fetal lamp kidney cells (FLK-BLV) was added to the PBMCs, which were then cultured at 37.degree. C. under 5% CO.sub.2 for 6 days. As a control, culture supernatant of 2% BLV-not-infected fetal lamp kidney cells (FLK) was used. After a 6-day culture, PBMCs were collected and reacted with anti-bovine CD4 mouse antibody, anti-bovine CD8 mouse antibody and anti-bovine IgM mouse antibody (Bio-Rad) at 4.degree. C. for 20 min. For the labeling of antibodies, Zenon Mouse IgG1 Labeling Kits (Life Technologies) or Lightning-Link Kit (Innova Biosciences) was used. For analysis, FACS Verse (BD Biosciences) was used. For every washing operation and dilution of antibody. PBS supplemented with 1% bovine serum albumin (Sigma-Aldrich) was used.

[0188] The experimental results are shown in FIG. 27. As a result of antibody administration, BLV-specific cell proliferation response of CD4-positive T cells increased compared to the response before administration.

(2) Changes in the BLV Provirus Load (FIG. 28)

[0189] DNA was extracted from isolated bovine PBMCs using Wizard DNA Purification kit (Promega). The concentration of the extracted DNA was quantitatively determined, taking the absorbance (260 nm) measured with Nanodrop 8000 Spectrophotometer (Thermo Fisher Scientific) as a reference. In order to measure the BLV provirus load in PBMCs, real time PCR was performed using Cycleave PCR Reaction Mix SP (TaKaRa) and Probe/Primer/Positive control for bovine leukemia virus detection (TaKaRa). Light Cycler 480 System II (Roche Diagnosis) was used for measurement.

[0190] The experimental results are shown in FIG. 28. The BLV provirus load significantly decreased until the end of test period compared to the load before administration.

[0191] All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

INDUSTRIAL APPLICABILITY

[0192] The anti-PD-L1 antibody of the present invention is applicable to prevention and/or treatment of cancers and infections in animals.

TABLE-US-00012 SEQUENCE LISTING FREE TEXT <SEQ ID NO: 1> SEQ ID NO: 1 shows the amino acid sequence of the light chain variable region (VL) of rat anti-bovine PD-L1antibody. MESQTHVLISLLLSVSGTYGDIAITQSPSSVAVSVGETVTLSCKSSQSLLYSENQKDYL GWYQQKPGQTPKPLIYWATNRHTGVPDRFTGSGSGTDFTLIISSVQAEDLADYYCGQ YLVYPFTFGPGTKLELK <SEQ ID NO: 2> SEQ ID NO: 2 shows the amino acid sequence of the heavy chain variable region (VH) of rat anti-bovine PD-L1antibody. MGWSQIILFLVAAATCVHSQVQLQQSGAELVKPGSSVKISCKASGYTFTSNFMHWVK QQPGNGLEWIGWIYPEYGNTKYNQKFDGKATLTADKSSSTAYMQLSSLTSEDSAVYF CASEEAVISLVYWGQGTLVTVSS <SEQ ID NO: 3> SEQ ID NO: 3 shows the amino acid sequence of the light chain constant region (CL) of a canine antibody. QPKASPSVTLFPPSSEELGANKATLVCLISDFYPSGVTVAWKASGSPVTQGVETTKPSK QSNNKYAASSYLSLTPDKWKSHSSFSCLVTHEGSTVEKKVAPAECS <SEQ ID NO: 4> SEQ ID NO: 4 shows the amino acid sequence of the heavy chain constant region (CH) of a canine antibody. ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTVSWNSGSLTSGVHTFPSVLQS SGLYSLSSTVTVPSSRWPSETFTCNVVHPASNTKVDKPVPKESTCKCISPCPVPESLGG PSVFIFPPKPKDILRITRTPEITCVVLDLGREDPEVQISWFVDGKEVHTAKTQPREQQFN STYRVVSVLPIEHQDWLTGKEFKCRVNHIGLPSPIERTISKARGQAHQPSVYVLPPSPK ELSSSDTVTLTCLIKDFFPPEIDVEWQSNGQPEPESKYHTTAPQLDEDGSYFLYSKLSV DKSRWQQGDTFTCAVMIHEALQNHYTDLSLSHSPGK <SEQ ID NO: 5> SEQ ID NO: 5 shows the nucleotide sequence of the VL of rat anti-bovine PD-L1 antibody. ATGGAATCACAGACGCATGTCCTCATTTCCCTTCTGCTCTCGGTATCTGGTACCTAT GGGGACATTGCGATAACCCAGTCTCCATCCTCTGTGGCTGTGTCAGTAGGAGAGA CGGTCACTCTGAGCTGCAAGTCCAGTCAGAGTCTTTTATACAGTGAAAACCAAAA GGACTATTTGGGCTCGGTACCAGCAGAAACCAGGGCAGACTCCTAAACCCCTTATCT ACTGGGCAACCAACCGGCACACTGGGGTCCCTGATCGCTTCACAGGTAGTGGATC CGGGACAGACTTCACTCTGATCATCAGCAGTGTGCAGGCTGAAGACCTGGCTGAT TATTACTGTGGGCAGTACCTTGTCTATCCGTTCACGTTTGGACCTGGGACCAAGCT GGAACTGAAA The nucleotide sequence of SEQ ID NO: 5 after codon optimization is shown in <SEQ ID NO: 15>. ATGGAATCTCAAACTCATGTTTTGATTTCATTACTTCTGAGTGTTTCCGGAACCTAC GGTGATATCGCTATCACTCAATCTCCCTCCTCTGITGCTGTGTCTGTGGGCGAAAC CGTTACCCTGTCCTGCAAGTCCAGTCAGTCTCTTCTCTACTCCGAGAATCAAAAGG ACTACCTGGGCTGGTACCAACAGAAGCCCGGCCAGACCCCAAAGCCACTGATATA CTGGGCAACCAACAGGCACACCGGAGTGCCCGACAGGTTCACAGGCAGTGGATC TGGCACCGACTTTACCTTGATCATTTCAAGCGTGCAGGCTGAAGATCTGGCCGACT ACTACTGTGGTCAGTATCTGGTGTATCCTTTCACTTTCGGGCCAGGGACAAAATTG GAATTGAAG <SEQ ID NO: 6> SEQ ID NO: 6 shows the nucleotide sequence of the VH of rat anti-bovine PD-L1 antibody. ATGGGATGGAGCCAGATCATCCTCTTTCTGGTGGCAGCAGCTACATGTGTTCACTC CCAGGTACAGCTGCAGCAATCTGGGGCTGAATTAGTGAAGCCTGGGTCCTCAGTG AAAATTTCCTGCAAGGCTTCTGGCTACACCTTCACCAGTAACTTTATGCACTGGGT AAAGCAGCAGCCTGGAAATGGCCTTGAGTGGATTGGGTGGATTTATCCTGAATATG GTAATACTAAGTACAATCAAAAGTTCGATGGGAAGGCAACACTCACTGCAGACAA ATCCTCCAGCACAGCCTATATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCAG TCTATTTCTGTGCAAGTGAGGAGGCAGTTATATCCCTTGTTTACTGGGGCCAAGGC ACTCTGGTCACTGTCTCTTCA The nucleotide sequence of SEQ ID NO: 6 after codon optimization is shown in <SEQ ID NO: 16>. ATGGGTTGGTCTCAAATTATCTTGTTTTTGGTTGCTGCAGCCACTTGTGTTCATTCT CAGGTGCAGCTGCAACAAAGCGGCGCAGAACTGGTGAAACCTGGCAGCAGCGTG AAAATATCTTGTAAGGCCAGCGGATATACTTTCACCTCCAATTTCATGCATTGGGTC AAACAGCAGCCCGGCAACGGACTCGAGTGGATCGGCTGGATCTACCCCGAGTATG GCAACACAAAATATAACCAAAAATTTGATGAAAGGCTACCCTGACTGCCGATAA GTCCTCCAGCACCGCATACATGCAACTCTCCTCCCTGACCTCCGAGGATAGCGCTG TCTACTTCTGTGCTTCCGAAGAGGCTGTCATATCCTTGGTCTATTGGGGCCAAGGA ACTCTGGTGACCGTCTCATCT <SEQ ID NO: 7> SEQ ID NO: 7 shows the nucleotide sequence of the CL of a canine antibody. CAGCCCAAGGCCTCCCCCTCGGTCACACTCTTCCCGCCCTCCTCTGAGGAGCTCG GCGCCAACAAGGCCACCCTGGTGTGCCTCATCAGCGACTTCTACCCCAGCGGCGT GACGGTGGCCTGGAAGGCAAGCGGCAGCCCCGTCACCCAGGGCGTGGAGACCAC CAAGCCCTCCAAGCAGAGCAACAACAAGTACGCGGCCAGCAGCTACCTGAGCCT GACGCCTGACAAGTGGAAATCTCACAGCAGCTTCAGCTGCCTGGTCACGCACGA GGGGAGCACCGTGGAGAAGAAGGTGGCCCCCGCAGAGTGCTCTTAG The nucleotide sequence of SEQ ID NO: 7 after codon optimization is shown in <SEQ ID NO: 17>. CAGCCCAAAGCCTCTCCCAGCGTCACCCTCTTCCCACCTTCCAGTGAGGAGCTGG GGGCAAACAAAGCCACTTTGGTGTGTCTCATCTCCGATTTTTACCCCTCCGGGGTC ACAGTCGCATGGAAGGCCTCCGGATCCCCTGTGACACAGGGAGTGGAGACAACA AAACCTAGCAAGCAGAGTAACAAATAAGTATGCCGCCTCAAGCTATCAGCCTTAC TCCTGATAAGTGGAAGTCACATAGCAGTTTTAGTTGCCTCGTAACACATGAGGGTT CAACTGTGGAGAAAAAAGTAGCTCCAGCTGAGTGCTCATGA <SEQ ID NO: 8> SEQ ID NO: 8 is the nucleotide sequence of the CH of a canine antibody. GCCTCCACCACGGCCCCCTCGGTTTTCCeCACTGGCCCCCAGCTGCGGGTCCACTT CCGGCTCCACGGTGGCCCTGGCCTGCCTGGTGTCAGGCTACTTCCCCGAGCCTGT AACTGTGTCCTGGAATTCCGGCTCCTTGACCAGCGGTGTGCACACCTTCCCGTCC GTCCTGCAGTCCTCAGGGCTCTACTCCCTCAGCAGCACGGTGACAGTGCCCTCCA GCAGGTGGCCCAGCGAGACCTTCACCTGCAACGTGGTCCACCCGGCCAGCAACA CTAAAGTAGACAAGCCAGTGCCCAAAGAGTCCACCTGCAAGTGTATATCCCCATG CCCAGTCCCTGAATCACTGGGAGGGCCTTCGGTCTTCATCTTTCCCCCGAAACCCA AGGACATCCTCAGGATTACCCGAACACCCGAGATCACCTGTGTGGTGTTAGATCTG GGCCGTGAGGACCCTGAGGTGCAGATCAGCTGGTTCGTGGATGGTAAGGAGGTG CACACAGCCAAGACGCAGCCTCGTGAGCAGCAGTTCAACAGCACCTACCGTGTG GTCAGCGTCCTCCCCATTGAGCACCAGGACTGGCTCACCGGAAAGGAGTTCAAGT GCAGAGTCAACCACATAGGCCTCCCGTCCCCCATCGAGAGGACTATCTCCAAAGC CAGAGGGCAAGCCCATCAGCCCAGTGTGTATGTCCTGCCACCATCCCCAAAGGAG TTGTCATCCAGTGACACGGTCACCCTGACCTGCCTGATCAAAGACTTCTTCCCACC TGAGATTGATGTGGAGTGGCAGAGCAATGGACAGCCGGAGCCCGAGAGCAAGTA CCACACGACTGCGCCCCAGCTGGACGAGGACGGGTCCTACTTCCTGTACAGCAAG CTCTCTGTGGACAAGAGCCGCTGGCAGCAGGGAGACACCTTCACATGTGCGGTGA TGCATGAAGCTCTACAGAACCACTACACAGATCTATCCTCTCCCATTCTCCGGGT AAATGA The nucleotide sequence of SEQ ID NO: 8 after codon optimization is shown in <SEQ ID NO: 18>. GCTAGCACAACCGCTCCCTCCGTTTTTCCCCTCGCCCCATCCTGCGGGTCAACCAG CGGATCCACCGTCGCTCTGGCTTGTCTGGTGTCAGGATACTTCCCCGAGCCTGTCA CCGTTTCTTGGAATAGCGGCAGCCTTACTTCCGGCGTGCATACCTTCCCTAGCGTG CTTCAGTCCTCCGGTCTGTATTCCCTCAGCTCCACCGTAACTGTCCCAAGCTCAAG GTGGCCCTCTGAGACATTTACCTGCAATGTGGTCCATCCTGCTTCAAATACCAAAG TGGACAAGCCCGTCCCAAAAGAGTCTACCTGCAAATGTATCAGTCCTTGTCCCGT GCCCGAGTCTCTGGGCGGACCCTCAGTCTTTATCTTCCCACCCAAGCCAAAGGAC ATATTGCGCATTACACGGACACCCGAAATCACCTGTGTTGTGTTGGATCTCGGCCG GGAAGATCCTGAGGTGCAGATTAGTTGGTTTGTTGATGGCAAGGAGGTGCACACA GCAAAAACACAGCCCAGAGAACAGCAGTTCAACAGTACTTATAGAGTAGTGAGT GTGTTGCCTATAGAGCATCAGGACTGGCTGACAGGCAAAGAATTCAAATGTAGGG TTAACCACATTGGCCTCCCTAGTCCAATCGAGAGGACAATCTCTAAAGCCCGAGG CCAGGCTCATCAGCCTTCTGTGTACGTTCTGCCTCCTAGTCCTAAGGAACTGTCTT CTTCAGACACAGTAACACTCACTTGCCTGATTAAGGACTTTTTTCCTCCAGAGATT GATGTGGAATGGCAGTCTAACGGGCAGCCAGAGCCAGAATCTAAGTACCACACTA CTGCACCACAGCTGGATGAGGATGGGTCTTACTTCCTGTACAGTAAGCTGAGTGT GGACAAGTCTCGATGGCAGCAGGGGGATACTTTTACTTGCGCAGTAATGCACGAA GCATTGCAGAACCACTACACTGACCTGTCACTTAGTCACTCACCAGGGAAGTAA <SEQ ID NO: 9> SEQ ID NO: 9 shows the amino acid sequence of a chimeric light chain consisting of the VL of rat anti-bovine Pd-L1 antibody and the CL of a canine antibody. MESQTHVLISLLLSVSGTYGDIAITQSPSSVAVSVGETVTLSCKSSQSLLYSENQKDYL GWYQQKPGQTPKPLIYWATNRHTGVPDRFTGSGSGTDFTLIISSVQAEDLADYYCGQ YLVYPFTFGPGTKLELKQPKASPSVTLFPPSSEELGANKATLVCLISDFYPSGVTVAWK ASGSPVTQGVETTKPSKQSNNKYAASSYLSLTPDKWKSHSSFSCLVTHEGSTVEKKV APAECS <SEQ ID NO: 10> SEQ ID NO: 10 shows the amino acid sequence of a chimeric heavy chain consisting of the VH of rat anti-bovine PD-L1 antibody and the CH of a canine antibody. MGWSQIILFLVAAAFCVHSQVQLQQSGAELVKPGSSVKISCKASGYTFTSNFMHWVK

QQPGNGLEWIGWIYPEYGNTKYNQKFDGKATLTADKSSSTAYMQLSSLTSEDSAVYF CASEEAVISLVYWGQGTLVTVSSASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEP VTVSWNSGSLTSGVHTFPSVLQSSGLYSLSSTVTVPSSRWPSETFTCNVVHPASNTKV DKPVPKESTCKCISPCPVPESLGGPSVFIFPPKPKDILRITRTPEITCVVLDLGREDPEVQ ISWFVDGKEVHTAKTQPREQQFNSTYRVVSVLPIEHQDWLTGKEFKCRVNHIGLPSPI ERTISKARGQAHQPSVYVLPPSPKELSSSDTVTLTCLIKDFFPPEIDVEWQSNGQPEPES KYHTTAPQLDEDGSYFLYSKLSVDKSRWQQGDTFTCAVMHEALQNHYTDLSLSHSP GK <SEQ ID NO: 19> This sequence shows the nucleotide sequence (after codon optimization) of a chimeric light chain consisting of the VL of rat anti-bovine PD-L1 antibody and the CL of a canine antibody. ATGGAATCTCAAACTCATGTTTTGATTTCATTACTTCTGAGTGTTTCCGGAACCTAC GGTGATATCGCTATCACTCAATCTCCCTCCTCTGTTGCTGTGTCTGTGGGCGAAAC CGTTACCCTGTCCTGCAAGTCCAGTCAGTCTCTTCTCTACTCCGAGAATCAAAAGG ACTACCTGGGCTGGTACCAACAGAAGCCCGGCCAGACCCCAAAGCCACTGATATA CTGGGCAACCAACAGGCACACCGGAGTGCCCGACAGGTTCACAGGCAGTGGATC TGGCACCGACTTTACCTTGATCATTTCAAGCGTGCAGGCTGAAGATCTGGCCGACT ACTACTGTGGTCAGTATCTGGTGTATCCTTTCACTTTCGGGCCAGGGACAAAATTG GAATTGAAGCAGCCCAAAGCCTCTCCCAGCGTCACCCTCTTCCCACCTTCGAGTG AGGAGCTGGGGGCAAACAAAGCCACTTTGGTGTGTCTCATCTCCGATTTTTACCC CTCCGGGGTCACAGTCGCATGGAAGGCCTCCGGATCCCCTGTGACACAGGGAGTG GAGACAACAAAACCTAGCAAGCAGAGTAACAATAAGTATGCCGCCTCAAGCTATC TCAGCCTTACTCCTGATAAGTGGAAGTCACATAGCAGTTTTAGTTGCCTCGTAACA CATGAGGGTTCAACTGTGGAGAAAAAAGTAGCTCCAGCTGAGTGCTCATGA <SEQ ID NO: 20> SEQ ID NO: 20 shows the nucleotide sequence (after codon optimization) of a chimeric heavy chain consisting of the VH of rat anti-bovine PD-L1 antibody and the CH of a canine antibody. ATGGGTTGGTCTCAAATTATCTTGTTTTTGGTTGCTGCAGCCACTTGTGTTCATTCT CAGGTGCAGCTGCAACAAAGCGGCGCAGAACTGGTGAAACCTGGCAGCAGCGTG AAAATATCTTGTAAGGCCAGCGGATATACTTTCACCTCCAATTTCATGCATTGGGTC AAACAGCAGCCCGGCAACGGACTCGAGTGGATCGGCTGGATCTACCCCGAGTATG GCAACACAAAATATAACCAAAAATTTGATGGAAAGGCTACCCTGACTGCCGATAA GTCCTCCAGCACCGCATACATGCAACTCTCCTCCCTGACCTCCGAGGATAGCGCTG TCTACTTCTGTGCTTCCGAAGAGGCTGTCATATCCTTGGTCTATTGGGGCCAAGGA ACTCTGGTGACCGTCTCATCTGCTAGCACAACCGCTCCCTCCGTTTTTCCCCTCGC CCCATCCTGCGGGTCAACCAGCGGATCCACCGTCGCTCTGGCTTGTCTGGTGTCA GGATACTTCCCCGAGCCTGTCACCGTTTCTTGGAATAGCGGCAGCCTTACTTCCGG CGTGCATACCTTCCCTAGCGTGCTTCAGTCCTCCGGTCTGTATTCCCTCAGCTCCAC CGTAACTGTCCCAAGCTCAAGGTGGCCCTCTGAGACATTTACCTGCAATGTGGTCC ATCCTGCTTCAAATACCAAAGTGGACAAGCCCGTCCCAAAAGAGTCTACCTGCAA ATGTATCAGTCCTTGTCCCGTGCCCGAGTCTCTGGGCGGACCCTCAGTCTTTATCTT CCCACCCAAGCCAAAGGACATATTGCGCATTACACGGACACCCGAAATCACCTGT GTTGTGTTGGATCTCGGCCGGGAAGATCCTGAGGTGCAGATTAGTTGGTTTGTTGA TGGCAAGGAGGTGCACACAGCAAAAACACAGCCCAGAGAACAGCAGTTCAACA GTACTTATAGAGTAGTGAGTGTGTTGCCTATAGAGCATCAGGACTGGCTGACAGGC AAAGAATTCAAATGTAGGGTTAACCACATTGGCCTCCCTAGTCCAATCGAGAGGA CAATCTCTAAAGCCCGAGGCCAGGCTCATCAGCCTTCTGTGTACGTTCTGCCTCCT AGTCCTAAGGAACTGTCTTCTTCAGACACAGTAACACTCACTTGCCTGATTAAGG ACTTTTTTCCTCCAGAGATTGATGTGGAATGGCAGTCTAACGGGCAGCCAGAGCC AGAATCTAAGTACCACACTACTGCACCACAGCTGGATGAGGATGGGTCTTACTTCC TGTACAGTAAGCTGAGTGTGGACAAGTCTCGATGGCAGCAGGGGGATACTTTTAC TTGCGCAGTAATGCACGAAGCATTGCAGAACCACTACACTGACCTGTCACTTAGT CACTCACCAGGGAAGTAA <SEQ ID NO: 11> SEQ ID NO: 11 shows the amino acid sequence of the CL of a human antibody. TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTE QDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC <SEQ ID NO: 12> SEQ ID NO: 12 shows the amino acid sequence of the CH (CH1--CH3) of a human antibody (IgG4 variant 1). STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEELGGP SVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTL PPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSR LTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK <SEQ ID NO: 13> SEQ ID NO: 13 shows the nucleotide sequence of the CL of a human antibody. ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATC TGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAA GTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCA CAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGA GCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGG GCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAG <SEQ ID NO: 14> SEQ ID NO: 14 shows the nucleotide sequence of the CH (CH1--CH3) of a human antibody (IgG4 variant 1). TCCACCAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCG AGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGA CGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC AGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACC AAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGCCCATCATGCCCAG CACCTGAGTTCCTGGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGGA CACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGC CAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATA ATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCA GCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCA AGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAA AGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGAT GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGA CATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC GCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTG GACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGG CTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAATGA <SEQ ID NOS: 21-36> SEQ ID NOS: 21-36 show the nucleotide sequences of primers cPD-1 inner F, cPD-1 inner R, cPD-L1 inner F, cPD-L1 inner R, cPD-1 5' GSP, cPD-1 3' GSP, cPD-L1 5' GSP, cPD-L1 3' GSP, cPD-1-EGFP F, cPD-1-EGFP R, cPD-L1-EGFP F, cPD-L1-EGFP R, cPD-1-Ig, cPD- 1-Ig R, cPD-L1-Ig F and cPD-L1-Ig R in this order. <SEQ ID NO: 37> SEQ ID NO: 37 shows the amino acid sequence (QSLLYSENQKDY) of CDR1 of the VL of rat anti-bovine PD-L1 antibody 4G12. <SEQ ID NO: 38> SEQ ID NO: 38 shows the amino acid sequence (QSLLYSENQKDY) of CDR3 of the VL of rat anti-bovine PD-L1 antibody 4G12, <SEQ ID NO: 39> SEQ ID NO: 39 shows the amino acid sequence (GYTFTSNF) of CDR1 of the VH of rat anti-bovine PD-L1 antibody 4G12. <SEQ ID NO: 40> SEQ ID NO: 40 shows the amino acid sequence (IYPEYGNT) of CDR2 of the VH of rat anti-bovine PD-L1 antibody 4G12. <SEQ ID NO: 41> SEQ ID NO: 41 shows the amino acid sequence (ASEEAVISLVY) of CDR3 of the VH of rat anti-bovine PD-L1 antibody 4G12. <SEQ ID NO: 42> SEQ ID NO: 42 shows the amino acid sequence of the CH (CH1--CH3) of ovine antibody (IgG1). <SEQ ID NO: 43> SEQ ID NO: 43 shows the nucleotide sequence of the CH (CH1--CH3) of ovine antibody (IgG1). <SEQ ID NO: 44> SEQ ID NO: 44 he amino acid sequence of the CH (CH1--CH3) of ovine antibody (IgG2). <SEQ ID NO: 45> SEQ ID NO: 45 shows the nucleotide sequence of the CH (CH1---CH3) of ovine antibody (IgG2). <SEQ ID NO: 46> SEQ ID NO: 46 shows the amino acid sequence of the light chain (Ig kappa(CK)) constant region of an ovine antibody. <SEQ ID NO: 47> SEQ ID NO: 47 shows the nucleotide sequence of the light chain (Ig kappa(CK)) constant region of an ovine antibody. <SEQ ID NO: 48> SEQ ID NO: 48 shows the amino acid sequence of the light chain (Ig lambda(CL)) constant region of an ovine antibody.

<SEQ ID NO: 49> SEQ ID NO: 49 shows the nucleotide sequence of the light chain (Ig lambda(CL)) constant region of an ovine antibody. <SEQ ID NO: 50> SEQ ID NO: 50 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG1.sup.a). <SEQ ID NO: 51> SEQ ID NO: 51 shows the nucleotide acid sequence of the CH (CH1--CH3) of porcine antibody (IgG1.sup.a). <SEQ ID NO: 52> SEQ ID NO: 52 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG1.sup.b). <SEQ ID NO: 53> SEQ ID NO: 53 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG1.sup.b). <SEQ ID NO: 54> SEQ ID NO: 54 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG2.sup.a). <SEQ ID NO: 55> SEQ ID NO: 55 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG2.sup.a). <SEQ ID NO: 56> SEQ ID NO: 56 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG2.sup.b). <SEQ ID NO: 57> SEQ ID NO: 57 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG2.sup.b). <SEQ ID NO: 58> SEQ ID NO: 58 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG3). <SEQ ID NO: 59> SEQ ID NO: 59 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG3). <SEQ ID NO: 60> SEQ ID NO: 60 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG4.sup.a). <SEQ ID NO: 61> SEQ ID NO: 61 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG4.sup.a). <SEQ ID NO: 62> SEQ ID NO: 62 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG4.sup.b). <SEQ ID NO: 63> SEQ ID NO: 63 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG4.sup.b). <SEQ ID NO: 64> SEQ ID NO: 64 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG5.sup.a). <SEQ ID NO: 65> SEQ ID NO: 65 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG5.sup.a). <SEQ ID NO: 66> SEQ ID NO: 66 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG5.sup.b). <SEQ ID NO: 67> SEQ ID NO: 67 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG5.sup.b). <SEQ ID NO: 68> SEQ ID NO: 68 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG6.sup.a). <SEQ ID NO: 69> SEQ ID NO: 69 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG6.sup.a). <SEQ ID NO: 70> SEQ ID NO: 70 shows the amino acid sequence of the CH (CH1--CH3) of porcine antibody (IgG6.sup.b). <SEQ ID NO: 71> SEQ ID NO: 71 shows the nucleotide sequence of the CH (CH1--CH3) of porcine antibody (IgG6.sup.b). <SEQ ID NO: 72> SEQ ID NO: 72 shows the amino acid sequence of the CH (CH1--CH3) of a water buffalo antibody (estimated to be IgG1). <SEQ ID NO: 73> SEQ ID NO: 73 shows the nucleotide sequence of the CH (CH1--CH3) of a water buffalo antibody (estimated to be IgG1). <SEQ ID NO: 74> SEQ ID NO: 74 shows the amino acid sequence of the CH (CH1--CH3) of a water buffalo antibody (estimated to be IgG2). <SEQ ID NO: 75> SEQ ID NO: 75 shows the nucleotide sequence of the CH (CH1--CH3) of a water buffalo antibody (estimated to be IgG2). <SEQ ID NO: 76> SEQ ID NO: 76 shows the amino acid sequence of the CH (CH1--CH3) of a water buffalo antibody (estimated to be IgG3). <SEQ ID NO: 77> SEQ ID NO: 77 shows the nucleotide sequence of the CH (CH1--CH3) of a water buffalo antibody (estimated to be IgG3). <SEQ ID NO: 78> SEQ ID NO: 78 shows the amino acid sequence of the light chain (estimated to be Ig lambda) constant region (CL) of a water buffalo antibody. <SEQ ID NO: 79> SEQ ID NO: 79 shows the nucleotide sequence of the light chain (estimated to be Ig lambda) constant region (CL) of a water buffalo antibody. <SEQ ID NO: 80> SEQ ID NO: 80 shows the amino acid sequence of the CH (CH1--CH3) of human antibody (IgG4 variant 2). <SEQ ID NO: 81> SEQ ID NO: 81 shows the nucleotide sequence of the CH (CH1--CH3) of human antibody (IgG4 variant 2). <SEQ ID NO: 82> SEQ ID NO: 82 shows the amino acid sequence of the CH (CH1--CH3) of human antibody (IgG4 variant 3). <SEQ ID NO: 83> SEQ ID NO: 83 shows the nucleotide sequence of the CH (CH1-CH3) of human antibody (IgG4 variant 3). <SEQ ID NO: 84> SEQ ID NO: 84 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG1 variant 1). <SEQ ID NO: 85> SEQ ID NO: 85 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG1 variant 2). <SEQ ID NO: 86> SEQ ID NO: 86 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG1 variant 3). <SEQ ID NO: 87> SEQ ID NO: 87 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG2 variant 1). <SEQ ID NO: 88> SEQ ID NO: 88 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG2 variant 2). <SEQ ID NO: 89> SEQ ID NO: 89 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG2 variant 3). <SEQ ID NO: 90> SEQ ID NO: 90 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG3 variant 1). <SEQ ID NO: 91> SEQ ID NO: 91 shows the amino acid sequence of the CH (CH1--CH3) of bovine antibody (IgG3 variant 2). <SEQ ID NO: 92> SEQ ID NO: 92 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG1 variant 1). <SEQ ID NO: 93> SEQ ID NO: 93 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG1 variant 2). <SEQ ID NO: 94> SEQ ID NO: 94 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG1 variant 3). <SEQ ID NO: 95> SEQ ID NO: 95 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG2 variant 1). <SEQ ID NO: 96> SEQ ID NO: 96 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG2 variant 2). <SEQ ID NO: 97> SEQ ID NO: 97 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG2 variant 3). <SEQ ID NO: 98> SEQ ID NO: 98 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG3 variant 1).

<SEQ ID NO: 99> SEQ ID NO: 99 shows the nucleotide sequence of the CH (CH1--CH3) of bovine antibody (IgG3 variant 2). <SEQ ID NO: 100> SEQ ID NO: 100 shows the amino acid sequence of the CL of a bovine antibody (bovine Ig lambda, GenBank: X62917). QPKSPPSVTLFPPSTEELNGNKATLVCLISDFYPGSVTVVWKADGSTITRNVETTRASK QSNSKYAASSYLSLTSSDWKSKGSYSCEVTHEGSTVTKTVKPSECS <SEQ ID NO: 101> SEQ ID NO: 101 shows the nucleotide sequence of the CL of a bovine antibody (bovine Ig lambda, GenBank: X62917). CAGCCCAAGTCCCCACCCTCGGTCACCCTGTTCCCGCCCTCCACGGAGGAGCTCA ACGGCAACAAGGCCACCCTGGTGTGTCTCATCAGCGACTTCTACCCGGGTAGCGT GACCGTGGTCTGGAAGGCAGACGGCAGCACCATCACCCGCAACGTGGAGACCAC CCGGGCCTCCAAACAGAGCAACAGCAAGTACGCGGCCAGCAGCTACCTGAGCCT GACGAGCAGCGACTGGAAATCGAAAGGCAGTTACAGCTGCGAGGTCACGCACGA GGGGAGCACCGTGACGAAGACAGTGAAGCCCTCAGAGTGTTCTTAG The nucleotide sequence of SEQ ID NO: 101 after codon optimization is shown in <SEQ ID NO: 104>. CAGCCTAAGAGTCCTCCTTCTGTAACACTCTTTCCCCCCTCTACCGAGGAACTCAA CGGCAATAAAGCTACCTTGGTTTGCCTTATTTCTGATTTCTACCCCGGGTCTGTGAC CGTGGTGTGGAAAGCTGATGGGTCCACCATTACTCGGAATGTGGAAACCACCCGG GCTTCTAAGCAGTCCAACTCTAAATACGCAGCATCCTCCTATTTGAGTCTTACTAGT AGTGACTGGAAGTCAAAGGGTAGTTACAGTTGCGAAGTCACACATGAAGGTTCA ACAGTGACAAAGACAGTCAAGCCCTCAGAGTGCTCATAG <SEQ ID NO: 102> SEQ ID NO: 102 shows the amino acid sequence of the CH of a bovine antibody (bovine IgG1, modified from GenBank: X62916). The sites of mutation are underlined. Amino acid numbers and mutations: 113E.fwdarw.P, 114L.fwdarw.V, 115P.fwdarw.A, 116G.fwdarw.deletion, 209A.fwdarw.S, 210P.fwdarw.S ASTTAPKVYPLSSCCGDKSSSTVTLGCLVSSYMPEPVTVTWNSGALKSGVHTFPAVL QSSGLYSLSSMVTVPGSTSGQTFTCNVAHPASSTKVDKAVDPTCKPSPCDCCPPPPVA GPSVFIFPPKPKDTLTISGTPEVTCVVVDVGHDDPEVKFSWFVDDVEVNTATTKPREE QFNSTYRVVSALRIQHQDWTGGKEFKCKVHNEGLPSSIVRTISRTKGPAREPQVYVLA PPQEELSKSTVSLTCMVTSFYPDYIAVEWQRNGQPESEDKYGTTPPQLDADSSYFLYS KLRVDRNSWQEGDTYTCVVMHEALHNHYTQKSTSKSAGK <SEQ ID NO: 103> SEQ ID NO: 103 shows the nucleotide sequence (after codon optimization) of the CH of a bovine antibody (bovine IgG1, modified from GenBank: X62916). GCTAGCACAACTGCTCCTAAGGTGTACCCCCTGAGCTCTTGCTGCGGCGACAAGT CTAGCAGCACCGTGACCCTCGGATGCCTCGTCAGCAGCTATATGCCTGAGCCAGTT ACAGTGACATGGAATTCTGGTGCCCTTAAGTCCGGCGTCCATACCTTCCCTGCTGT GCTGCAGTCCTCTGGCCTGTACAGTTTGTCCTCTATGGTGACAGTACCCGGTTCCA CCTCCGGACAGACCTTTACCTGTAATGTGGCTCATCCCGCCTCCTCCACAAAGGTG GATAAGGCTGTTGACCCTACCTGTAAACCCAGTCCATGCGACTGCTGTCCCCCCCC TCCAGTTGCCGGACCCTCAGTCTTTATTTTCCCACCCAAACCCAAAGACACCCTGA CAATCTCTGGAACACCAGAAGTCACCTGCGTCGTCGTGGATGTGGGCCACGACGA TCCTGAGGTAAAATTCTCATGGTTCGTCGACGATGTGGAAGTGAATACAGCTACTA CAAAACCTCGCGAAGAGCAGTTTAACTCTACCTATCGAGTGGTTTCTGCTTTGCGG ATTCAGCATCAGGATTGGACAGGCGGCAAAGAGTTTAAATGTAAAGTCCATAACG AGGGACTTCCTTCTAGTATCGTGCGCACTATCAGTAGAACTAAAGGGCCTGCTCGG GAACCTCAGGTGTACGTCCTGGCACCTCCACAGGAAGAGCTGAGTAAGTCTACAG TTTCTCTGACTTGTATGGTAACATCTTTTTATCCAGATTACATCGCAGTTGAATGGC AGAGGAACGGGCAGCCAGAGAGTGAGGATAAGTACGGGACTACTCCACCACAGC TGGACGCAGACTCAAGTTACTTCCTGTACTCAAAGCTGAGGGTTGACAGAAACTC ATGGCAGGAGGGGGACACTTACACTTGCGTAGTTATGCACGAGGCACTTCACAAC CACTACACTCAGAAGAGTACTTCAAAGAGTGCAGGGAAGTAA <SEQ ID NO: 105> SEQ ID NO: 105 shows the amino acid sequence of a chimeric light chain consisting of the VL of rat anti-bovine PD-L1 antibody and the CL of a bovine antibody. MESQTHVLISLLLSVSGTYGDIAITQSPSSVAVSVGETVTLSCKSSQSLLYSENQKDYL GWYQQKPGQTPKPLIYWATNRHTGVPDRFTGSGSGTDFTLIISSVQAEDLADYYCGQ YLVYPFTFGPGTKLELKQPKSPPSVTLFPPSTEELNGNKATLVCLISDFYPGSVTVVWK ADGSTITRNVETTRASKQSNSKYAASSYLSLTSSDWKSKGSYSCEVTHEGSTVTKTV KPSECS <SEQ ID NO: 106> SEQ ID NO: 106 shows the amino acid sequence of a chimeric heavy chain consisting of the VH of rat anti-bovine PD-L1 antibody and the CH of a bovine antibody (bovine IgG1, modified from GenBank: X62916). MGWSQIILFLVAAATCVHSQVQLQQSGAELVKPGSSVKISCKASGYTFTSNFMHWVK QQPGNGLEWIGWIYPEYGNTKYNQKFDGKATLTADKSSSTAYMQLSSLTSEDSAVYF CASEEAVISLYWGQGTLVTVSSASTTAPKVYPLSSCCGDKSSSTVTLGCLVSSYMPE PVTVTWNSGALKSGVHTFPAVLQSSGLYSLSSMVTVPGSTSGQTFTCNVAHPASSTKV DKAVDPTCKPSPCDCCPPPPVAGPSVFIFFPKPKDTLTISGTPEVTCVVVDVGHDDPEV KFSWFVDDVEVNTATTKPREEQFNSTYRVVSALRIQHQDWTGGKEFKCKVHNEGLP SSIVRTISRTKGPAREPQVYVLAPPQEELSKSTVSLTCMVTSFYPDYIAVEWQRNGQPE SEDKYGTTPPQLDADSSYFLYSKLRVDRNSWQEGDTYTCVVMHEALHNHYTQKSTS KSAGK <SEQ ID NO: 107> This sequence shows the nucleotide sequence (after codon optimization) of a chimeric light chain consisting of the VL of rat anti-bovine PD-L1 antibody and the CL of a bovine antibody. ATGGAATCTCAAACTCATGTTTTGATTTCATTACTTCTGAGTGTTTCCGGAACCTAC GGTGATATCGCTATCACTCAATCTCCCTCCTCTGTTGCTGTGTCTGTGGGCGAAAC CGTTACCCTGTCCTGCAAGTCCAGTCAGTCTCTTCTCTACTCCGAGAATCAAAAGG ACTACCTGGGCTGGTACCAACAGAAGCCCGGCCAGACCCCAAAGCCACTGATATA CTGGGCAACCAACCAACGGCACACCGGAGTGCCCGACAGGTTCACAGGCAGTGGATC TGGCACCGACTTTACCTTGATCATTTCAAGCGTGCAGGCTGAAGATCTGGCCGACT ACTACTGTGGTCAGTATCTGGTGTATCCTTTCACTTTCGGGCCAGGGACAAAACTC GAGCTCAAACAGCCTAAGAGTCCTCCTTCTGTAACACTCTTTCCCCCCTCTACCGA GGAACTCAACGGCAATAAAGCTACCTTGGTTTGCCTTATTTCTGATTTCTACCCCG GGTCTGTGACCGTGGTGTGGAAAGCTGATGGGTCCACCATTACTCGGAATGTGGA AACCACCCGGGCTTCTAAGCAGTCCAACTCTAAATACGCAGCATCCTCCTATTTGA GTCTTACTAGTAGTGACTGGAAGTCAAAGGGTAGTTACAGTTGCGAAGTCACACA TGAAGGTTCAACAGTGACAAAGACAGTCAAGCCCTCAGAGTGCTCATAG <SEQ ID NO: 108> This sequence shows the nucleotide sequence (after codon optimization) of a chimeric heavy chain consisting of the VH of rat anti-bovine PD-L1 antibody and the CH of a bovine antibody (bovine IgG1, modified from GenBank: X62916). ATGGGGTGGTCCCAGATTATATTGTTCCTCGTCGCCGCCGCCACTTGCGTACACAG CCAAGTGCAACTTCAACAAAGCGGTGCAGAACTGGTAAAGCCCGGTAGCTCTGT GAAAATATCCTGTAAAGCCAGTGGCTACACATTTACCAGCAACTTTAGCACTGGG TGAAGCAACAGCCCGGAAATGGCTTGGAGTGGATTGGCTGGATCTATCCCGAATAT GGTAACACCAAGTATAATCAGAAGTTCGACGGTAAGGCCACCCTCACCGCCGATA AGTCATCCTCCACCGCCTATATGCAGCTCAGCAGCCTGACCAGCGAGGATTCCGCT GTGTACTTCTGTGCCAGCGAAGAGGCTGTGTGATCTCATTGGTGTATTGGGGACAGG GCACCCTCGTCACCGTGTCCAGCGCTAGCACAACTGCTCCTAAGGTGTACCCCCT GAGCTCTTGCTGCGGCGACAAGTCTAGCAGCACCGTGACCCTCGGATGCCTCGTC AGCAGCTATAGCCTGAGCCAGTTACAGTGACATGGAATTCTGGTGCCCTTAAGTC CGGCGTCCATACCTTCCCTGCTGTGCTGCAGTCCTCTGGCCTGTACAGTTTGTCCT CTATGGTGACAGTACCCGGTTCCACCTCCGGACAGACCTTTACCTGTAATGTGGCT CATCCCGCCTCCTCCACAAAGGTGGATAAGGCTGTTGACCCTACCTGTAAACCCA GTCCATGCGACTGCTGTCCCCCCCCTCCAGTTGCCGGACCCTCAGTCTTTATTTTC CCACCCAAACCCAAAGACACCCTGACAATCTCTGGAACACCAGAAGTCACCTGC GTCGTCGTGGATGTGGGCCACGACGATCCTGAGGTAAAATTCTCATGGTTCGTCGA CGATGTGGAAGTGAATACAGCTACTACAAAACCTCGCGAAGAGCAGTTTAACTCT ACCTATCGAGTGGTTTCTGCTTTGCGGATTCAGCATCAGGATTGGACAGGCGGCAA AGAGTTTAAATGTAAAGTCCATAACGAGGGACTTCCTTCTAGTATCGTGCGCACTA TCAGTAGAACTAAAGGGCCTGCTCGGGAACCTCAGGTGTACGTCCTGGCACCTCC ACAGGAAGAGCTGAGTAAGTCTACAGTTTCTCTGACTTGTATGGTAACATCTTTTT ATCCAGATTACATCGCAGTTGAATGGCAGAGGAACGGGCAGCCAGAGAGTGAGG ATAAGTACGGGACTACTCCACCACAGCTGGACGCAGACTCAAGTTACTTCCTGTA CTCAAAGCTGAGGGTTGACAGAAACTCATGGCAGGAGGGGGACACTTACACTTG CGTAGTTATGCACGAGGCACTTCACAACCACTACACTCAGAAGAGTACTTCAAAG AGTGCAGGGAAGTAA <SEQ ID NOS: 109-132> SEQ ID NOS: 109-132 show the nucleotide sequences of primers ovPD-L1 CDS F, ovPD-L1 CDS R, poPD-L1 CDS F, poPD-L1 CDS R, buPD-L1 CDS F1, buPD-L1 CDS R1, buPD-L1 CDS F2, buPD-L1 CDS R2, ovPD-1-EGFP F, ovPD-1-EGFP R, ovPD-L1-EGFP F, ovPD- L1-EGFP R, poPD-1-EGFP F, poPD-1-EGFP R, poPD-L1-EGFP F, poPD-L1-EGFP R, ovPD-L1-Ig F, ovPD-L1-Ig R, poPD-L1-Ig F, poPD-L1-Ig R, cCD80-Ig F, cCD80-Ig R, cPD- L1-His F and cPD-L1-His R in this order. <SEQ ID NOS: 133-138> SEQ ID NOS: 133-138 show nucleotide sequences of primers boPD-1-myc F, boPD-1-myc R, boPD-L1-EGFP F, boPD-L1-EGFP R, boPD-L1-Ig F and boPD-L1-Ig R in this order.

Sequence CWU 1

1

1381133PRTRattus norvegicus 1Met Glu Ser Gln Thr His Val Leu Ile Ser Leu Leu Leu Ser Val Ser1 5 10 15Gly Thr Tyr Gly Asp Ile Ala Ile Thr Gln Ser Pro Ser Ser Val Ala 20 25 30Val Ser Val Gly Glu Thr Val Thr Leu Ser Cys Lys Ser Ser Gln Ser 35 40 45Leu Leu Tyr Ser Glu Asn Gln Lys Asp Tyr Leu Gly Trp Tyr Gln Gln 50 55 60Lys Pro Gly Gln Thr Pro Lys Pro Leu Ile Tyr Trp Ala Thr Asn Arg65 70 75 80His Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp 85 90 95Phe Thr Leu Ile Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr 100 105 110Tyr Cys Gly Gln Tyr Leu Val Tyr Pro Phe Thr Phe Gly Pro Gly Thr 115 120 125Lys Leu Glu Leu Lys 1302137PRTRattus norvegicus 2Met Gly Trp Ser Gln Ile Ile Leu Phe Leu Val Ala Ala Ala Thr Cys1 5 10 15Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys 20 25 30Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45Thr Ser Asn Phe Met His Trp Val Lys Gln Gln Pro Gly Asn Gly Leu 50 55 60Glu Trp Ile Gly Trp Ile Tyr Pro Glu Tyr Gly Asn Thr Lys Tyr Asn65 70 75 80Gln Lys Phe Asp Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110Tyr Phe Cys Ala Ser Glu Glu Ala Val Ile Ser Leu Val Tyr Trp Gly 115 120 125Gln Gly Thr Leu Val Thr Val Ser Ser 130 1353105PRTCanis lupus 3Gln Pro Lys Ala Ser Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu1 5 10 15Glu Leu Gly Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe 20 25 30Tyr Pro Ser Gly Val Thr Val Ala Trp Lys Ala Ser Gly Ser Pro Val 35 40 45Thr Gln Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys 50 55 60Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Asp Lys Trp Lys Ser65 70 75 80His Ser Ser Phe Ser Cys Leu Val Thr His Glu Gly Ser Thr Val Glu 85 90 95Lys Lys Val Ala Pro Ala Glu Cys Ser 100 1054331PRTCanis lupus 4Ala Ser Thr Thr Ala Pro Ser Val Phe Pro Leu Ala Pro Ser Cys Gly1 5 10 15Ser Thr Ser Gly Ser Thr Val Ala Leu Ala Cys Leu Val Ser Gly Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ser Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Thr Val Thr Val Pro Ser Ser Arg Trp Pro Ser Glu Thr65 70 75 80Phe Thr Cys Asn Val Val His Pro Ala Ser Asn Thr Lys Val Asp Lys 85 90 95Pro Val Pro Lys Glu Ser Thr Cys Lys Cys Ile Ser Pro Cys Pro Val 100 105 110Pro Glu Ser Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro 115 120 125Lys Asp Ile Leu Arg Ile Thr Arg Thr Pro Glu Ile Thr Cys Val Val 130 135 140Leu Asp Leu Gly Arg Glu Asp Pro Glu Val Gln Ile Ser Trp Phe Val145 150 155 160Asp Gly Lys Glu Val His Thr Ala Lys Thr Gln Pro Arg Glu Gln Gln 165 170 175Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Glu His Gln 180 185 190Asp Trp Leu Thr Gly Lys Glu Phe Lys Cys Arg Val Asn His Ile Gly 195 200 205Leu Pro Ser Pro Ile Glu Arg Thr Ile Ser Lys Ala Arg Gly Gln Ala 210 215 220His Gln Pro Ser Val Tyr Val Leu Pro Pro Ser Pro Lys Glu Leu Ser225 230 235 240Ser Ser Asp Thr Val Thr Leu Thr Cys Leu Ile Lys Asp Phe Phe Pro 245 250 255Pro Glu Ile Asp Val Glu Trp Gln Ser Asn Gly Gln Pro Glu Pro Glu 260 265 270Ser Lys Tyr His Thr Thr Ala Pro Gln Leu Asp Glu Asp Gly Ser Tyr 275 280 285Phe Leu Tyr Ser Lys Leu Ser Val Asp Lys Ser Arg Trp Gln Gln Gly 290 295 300Asp Thr Phe Thr Cys Ala Val Met His Glu Ala Leu Gln Asn His Tyr305 310 315 320Thr Asp Leu Ser Leu Ser His Ser Pro Gly Lys 325 3305399DNARattus norvegicus 5atggaatcac agacgcatgt cctcatttcc cttctgctct cggtatctgg tacctatggg 60gacattgcga taacccagtc tccatcctct gtggctgtgt cagtaggaga gacggtcact 120ctgagctgca agtccagtca gagtctttta tacagtgaaa accaaaagga ctatttgggc 180tggtaccagc agaaaccagg gcagactcct aaacccctta tctactgggc aaccaaccgg 240cacactgggg tccctgatcg cttcacaggt agtggatccg ggacagactt cactctgatc 300atcagcagtg tgcaggctga agacctggct gattattact gtgggcagta ccttgtctat 360ccgttcacgt ttggacctgg gaccaagctg gaactgaaa 3996411DNARattus norvegicus 6atgggatgga gccagatcat cctctttctg gtggcagcag ctacatgtgt tcactcccag 60gtacagctgc agcaatctgg ggctgaatta gtgaagcctg ggtcctcagt gaaaatttcc 120tgcaaggctt ctggctacac cttcaccagt aactttatgc actgggtaaa gcagcagcct 180ggaaatggcc ttgagtggat tgggtggatt tatcctgaat atggtaatac taagtacaat 240caaaagttcg atgggaaggc aacactcact gcagacaaat cctccagcac agcctatatg 300cagctcagca gcctgacatc tgaggactct gcagtctatt tctgtgcaag tgaggaggca 360gttatatccc ttgtttactg gggccaaggc actctggtca ctgtctcttc a 4117318DNACanis lupus 7cagcccaagg cctccccctc ggtcacactc ttcccgccct cctctgagga gctcggcgcc 60aacaaggcca ccctggtgtg cctcatcagc gacttctacc ccagcggcgt gacggtggcc 120tggaaggcaa gcggcagccc cgtcacccag ggcgtggaga ccaccaagcc ctccaagcag 180agcaacaaca agtacgcggc cagcagctac ctgagcctga cgcctgacaa gtggaaatct 240cacagcagct tcagctgcct ggtcacgcac gaggggagca ccgtggagaa gaaggtggcc 300cccgcagagt gctcttag 3188996DNACanis lupus 8gcctccacca cggccccctc ggttttccca ctggccccca gctgcgggtc cacttccggc 60tccacggtgg ccctggcctg cctggtgtca ggctacttcc ccgagcctgt aactgtgtcc 120tggaattccg gctccttgac cagcggtgtg cacaccttcc cgtccgtcct gcagtcctca 180gggctctact ccctcagcag cacggtgaca gtgccctcca gcaggtggcc cagcgagacc 240ttcacctgca acgtggtcca cccggccagc aacactaaag tagacaagcc agtgcccaaa 300gagtccacct gcaagtgtat atccccatgc ccagtccctg aatcactggg agggccttcg 360gtcttcatct ttcccccgaa acccaaggac atcctcagga ttacccgaac acccgagatc 420acctgtgtgg tgttagatct gggccgtgag gaccctgagg tgcagatcag ctggttcgtg 480gatggtaagg aggtgcacac agccaagacg cagcctcgtg agcagcagtt caacagcacc 540taccgtgtgg tcagcgtcct ccccattgag caccaggact ggctcaccgg aaaggagttc 600aagtgcagag tcaaccacat aggcctcccg tcccccatcg agaggactat ctccaaagcc 660agagggcaag cccatcagcc cagtgtgtat gtcctgccac catccccaaa ggagttgtca 720tccagtgaca cggtcaccct gacctgcctg atcaaagact tcttcccacc tgagattgat 780gtggagtggc agagcaatgg acagccggag cccgagagca agtaccacac gactgcgccc 840cagctggacg aggacgggtc ctacttcctg tacagcaagc tctctgtgga caagagccgc 900tggcagcagg gagacacctt cacatgtgcg gtgatgcatg aagctctaca gaaccactac 960acagatctat ccctctccca ttctccgggt aaatga 9969238PRTArtificial SequenceA synthetic chimeric L chain 9Met Glu Ser Gln Thr His Val Leu Ile Ser Leu Leu Leu Ser Val Ser1 5 10 15Gly Thr Tyr Gly Asp Ile Ala Ile Thr Gln Ser Pro Ser Ser Val Ala 20 25 30Val Ser Val Gly Glu Thr Val Thr Leu Ser Cys Lys Ser Ser Gln Ser 35 40 45Leu Leu Tyr Ser Glu Asn Gln Lys Asp Tyr Leu Gly Trp Tyr Gln Gln 50 55 60Lys Pro Gly Gln Thr Pro Lys Pro Leu Ile Tyr Trp Ala Thr Asn Arg65 70 75 80His Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp 85 90 95Phe Thr Leu Ile Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr 100 105 110Tyr Cys Gly Gln Tyr Leu Val Tyr Pro Phe Thr Phe Gly Pro Gly Thr 115 120 125Lys Leu Glu Leu Lys Gln Pro Lys Ala Ser Pro Ser Val Thr Leu Phe 130 135 140Pro Pro Ser Ser Glu Glu Leu Gly Ala Asn Lys Ala Thr Leu Val Cys145 150 155 160Leu Ile Ser Asp Phe Tyr Pro Ser Gly Val Thr Val Ala Trp Lys Ala 165 170 175Ser Gly Ser Pro Val Thr Gln Gly Val Glu Thr Thr Lys Pro Ser Lys 180 185 190Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro 195 200 205Asp Lys Trp Lys Ser His Ser Ser Phe Ser Cys Leu Val Thr His Glu 210 215 220Gly Ser Thr Val Glu Lys Lys Val Ala Pro Ala Glu Cys Ser225 230 23510468PRTArtificial SequenceA synthetic chimeric H chain 10Met Gly Trp Ser Gln Ile Ile Leu Phe Leu Val Ala Ala Ala Thr Cys1 5 10 15Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys 20 25 30Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45Thr Ser Asn Phe Met His Trp Val Lys Gln Gln Pro Gly Asn Gly Leu 50 55 60Glu Trp Ile Gly Trp Ile Tyr Pro Glu Tyr Gly Asn Thr Lys Tyr Asn65 70 75 80Gln Lys Phe Asp Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110Tyr Phe Cys Ala Ser Glu Glu Ala Val Ile Ser Leu Val Tyr Trp Gly 115 120 125Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Thr Ala Pro Ser 130 135 140Val Phe Pro Leu Ala Pro Ser Cys Gly Ser Thr Ser Gly Ser Thr Val145 150 155 160Ala Leu Ala Cys Leu Val Ser Gly Tyr Phe Pro Glu Pro Val Thr Val 165 170 175Ser Trp Asn Ser Gly Ser Leu Thr Ser Gly Val His Thr Phe Pro Ser 180 185 190Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Thr Val Thr Val 195 200 205Pro Ser Ser Arg Trp Pro Ser Glu Thr Phe Thr Cys Asn Val Val His 210 215 220Pro Ala Ser Asn Thr Lys Val Asp Lys Pro Val Pro Lys Glu Ser Thr225 230 235 240Cys Lys Cys Ile Ser Pro Cys Pro Val Pro Glu Ser Leu Gly Gly Pro 245 250 255Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Ile Leu Arg Ile Thr 260 265 270Arg Thr Pro Glu Ile Thr Cys Val Val Leu Asp Leu Gly Arg Glu Asp 275 280 285Pro Glu Val Gln Ile Ser Trp Phe Val Asp Gly Lys Glu Val His Thr 290 295 300Ala Lys Thr Gln Pro Arg Glu Gln Gln Phe Asn Ser Thr Tyr Arg Val305 310 315 320Val Ser Val Leu Pro Ile Glu His Gln Asp Trp Leu Thr Gly Lys Glu 325 330 335Phe Lys Cys Arg Val Asn His Ile Gly Leu Pro Ser Pro Ile Glu Arg 340 345 350Thr Ile Ser Lys Ala Arg Gly Gln Ala His Gln Pro Ser Val Tyr Val 355 360 365Leu Pro Pro Ser Pro Lys Glu Leu Ser Ser Ser Asp Thr Val Thr Leu 370 375 380Thr Cys Leu Ile Lys Asp Phe Phe Pro Pro Glu Ile Asp Val Glu Trp385 390 395 400Gln Ser Asn Gly Gln Pro Glu Pro Glu Ser Lys Tyr His Thr Thr Ala 405 410 415Pro Gln Leu Asp Glu Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Ser 420 425 430Val Asp Lys Ser Arg Trp Gln Gln Gly Asp Thr Phe Thr Cys Ala Val 435 440 445Met His Glu Ala Leu Gln Asn His Tyr Thr Asp Leu Ser Leu Ser His 450 455 460Ser Pro Gly Lys46511106PRTHomo sapiens 11Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln1 5 10 15Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 20 25 30Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 35 40 45Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 50 55 60Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys65 70 75 80His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 85 90 95Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 10512326PRTHomo sapiens 12Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser1 5 10 15Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 20 25 30Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 35 40 45Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 50 55 60Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr65 70 75 80Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg 85 90 95Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu 100 105 110Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly145 150 155 160Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 180 185 190Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro 195 200 205Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 210 215 220Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn225 230 235 240Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 260 265 270Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg 275 280 285Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys 290 295 300Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu305 310 315 320Ser Leu Ser Leu Gly Lys 32513321DNAHomo sapiens 13actgtggctg caccatctgt cttcatcttc ccgccatctg atgagcagtt gaaatctgga 60actgcctctg ttgtgtgcct gctgaataac ttctatccca gagaggccaa agtacagtgg 120aaggtggata acgccctcca atcgggtaac tcccaggaga gtgtcacaga gcaggacagc 180aaggacagca cctacagcct cagcagcacc ctgacgctga gcaaagcaga ctacgagaaa 240cacaaagtct acgcctgcga agtcacccat cagggcctga gctcgcccgt cacaaagagc 300ttcaacaggg gagagtgtta g 32114981DNAHomo sapiens 14tccaccaagg gcccatccgt cttccccctg gcgccctgct ccaggagcac ctccgagagc 60acagccgccc tgggctgcct ggtcaaggac tacttccccg aaccggtgac ggtgtcgtgg 120aactcaggcg ccctgaccag cggcgtgcac accttcccgg ctgtcctaca gtcctcagga 180ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac gaagacctac 240acctgcaacg tagatcacaa gcccagcaac accaaggtgg acaagagagt tgagtccaaa 300tatggtcccc catgcccatc atgcccagca cctgagttcc tggggggacc atcagtcttc 360ctgttccccc caaaacccaa ggacactctc atgatctccc ggacccctga ggtcacgtgc 420gtggtggtgg acgtgagcca ggaagacccc gaggtccagt tcaactggta cgtggatggc 480gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agttcaacag cacgtaccgt 540gtggtcagcg tcctcaccgt cctgcaccag gactggctga acggcaagga gtacaagtgc 600aaggtctcca acaaaggcct cccgtcctcc atcgagaaaa ccatctccaa agccaaaggg 660cagccccgag agccacaggt gtacaccctg cccccatccc aggaggagat gaccaagaac 720caggtcagcc tgacctgcct ggtcaaaggc ttctacccca gcgacatcgc cgtggagtgg 780gagagcaatg ggcagccgga gaacaactac aagaccacgc ctcccgtgct ggactccgac 840ggctccttct tcctctacag caggctaacc gtggacaaga gcaggtggca ggaggggaat 900gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacaca gaagagcctc 960tccctgtctc tgggtaaatg a

98115399DNAArtificial SequenceA synthetic codon-optimized sequence 15atggaatctc aaactcatgt tttgatttca ttacttctga gtgtttccgg aacctacggt 60gatatcgcta tcactcaatc tccctcctct gttgctgtgt ctgtgggcga aaccgttacc 120ctgtcctgca agtccagtca gtctcttctc tactccgaga atcaaaagga ctacctgggc 180tggtaccaac agaagcccgg ccagacccca aagccactga tatactgggc aaccaacagg 240cacaccggag tgcccgacag gttcacaggc agtggatctg gcaccgactt taccttgatc 300atttcaagcg tgcaggctga agatctggcc gactactact gtggtcagta tctggtgtat 360cctttcactt tcgggccagg gacaaaattg gaattgaag 39916411DNAArtificial SequenceA synthetic codon-optimized sequence 16atgggttggt ctcaaattat cttgtttttg gttgctgcag ccacttgtgt tcattctcag 60gtgcagctgc aacaaagcgg cgcagaactg gtgaaacctg gcagcagcgt gaaaatatct 120tgtaaggcca gcggatatac tttcacctcc aatttcatgc attgggtcaa acagcagccc 180ggcaacggac tcgagtggat cggctggatc taccccgagt atggcaacac aaaatataac 240caaaaatttg atggaaaggc taccctgact gccgataagt cctccagcac cgcatacatg 300caactctcct ccctgacctc cgaggatagc gctgtctact tctgtgcttc cgaagaggct 360gtcatatcct tggtctattg gggccaagga actctggtga ccgtctcatc t 41117318DNAArtificial SequenceA synthetic codon-optimized sequence 17cagcccaaag cctctcccag cgtcaccctc ttcccacctt ccagtgagga gctgggggca 60aacaaagcca ctttggtgtg tctcatctcc gatttttacc cctccggggt cacagtcgca 120tggaaggcct ccggatcccc tgtgacacag ggagtggaga caacaaaacc tagcaagcag 180agtaacaata agtatgccgc ctcaagctat ctcagcctta ctcctgataa gtggaagtca 240catagcagtt ttagttgcct cgtaacacat gagggttcaa ctgtggagaa aaaagtagct 300ccagctgagt gctcatga 31818996DNAArtificial SequenceA synthetic codon-optimized sequence 18gctagcacaa ccgctccctc cgtttttccc ctcgccccat cctgcgggtc aaccagcgga 60tccaccgtcg ctctggcttg tctggtgtca ggatacttcc ccgagcctgt caccgtttct 120tggaatagcg gcagccttac ttccggcgtg cataccttcc ctagcgtgct tcagtcctcc 180ggtctgtatt ccctcagctc caccgtaact gtcccaagct caaggtggcc ctctgagaca 240tttacctgca atgtggtcca tcctgcttca aataccaaag tggacaagcc cgtcccaaaa 300gagtctacct gcaaatgtat cagtccttgt cccgtgcccg agtctctggg cggaccctca 360gtctttatct tcccacccaa gccaaaggac atattgcgca ttacacggac acccgaaatc 420acctgtgttg tgttggatct cggccgggaa gatcctgagg tgcagattag ttggtttgtt 480gatggcaagg aggtgcacac agcaaaaaca cagcccagag aacagcagtt caacagtact 540tatagagtag tgagtgtgtt gcctatagag catcaggact ggctgacagg caaagaattc 600aaatgtaggg ttaaccacat tggcctccct agtccaatcg agaggacaat ctctaaagcc 660cgaggccagg ctcatcagcc ttctgtgtac gttctgcctc ctagtcctaa ggaactgtct 720tcttcagaca cagtaacact cacttgcctg attaaggact tttttcctcc agagattgat 780gtggaatggc agtctaacgg gcagccagag ccagaatcta agtaccacac tactgcacca 840cagctggatg aggatgggtc ttacttcctg tacagtaagc tgagtgtgga caagtctcga 900tggcagcagg gggatacttt tacttgcgca gtaatgcacg aagcattgca gaaccactac 960actgacctgt cacttagtca ctcaccaggg aagtaa 99619717DNAArtificial SequenceA synthetic codon-optimized sequence 19atggaatctc aaactcatgt tttgatttca ttacttctga gtgtttccgg aacctacggt 60gatatcgcta tcactcaatc tccctcctct gttgctgtgt ctgtgggcga aaccgttacc 120ctgtcctgca agtccagtca gtctcttctc tactccgaga atcaaaagga ctacctgggc 180tggtaccaac agaagcccgg ccagacccca aagccactga tatactgggc aaccaacagg 240cacaccggag tgcccgacag gttcacaggc agtggatctg gcaccgactt taccttgatc 300atttcaagcg tgcaggctga agatctggcc gactactact gtggtcagta tctggtgtat 360cctttcactt tcgggccagg gacaaaattg gaattgaagc agcccaaagc ctctcccagc 420gtcaccctct tcccaccttc cagtgaggag ctgggggcaa acaaagccac tttggtgtgt 480ctcatctccg atttttaccc ctccggggtc acagtcgcat ggaaggcctc cggatcccct 540gtgacacagg gagtggagac aacaaaacct agcaagcaga gtaacaataa gtatgccgcc 600tcaagctatc tcagccttac tcctgataag tggaagtcac atagcagttt tagttgcctc 660gtaacacatg agggttcaac tgtggagaaa aaagtagctc cagctgagtg ctcatga 717201407DNAArtificial SequenceA synthetic codon-optimized sequence 20atgggttggt ctcaaattat cttgtttttg gttgctgcag ccacttgtgt tcattctcag 60gtgcagctgc aacaaagcgg cgcagaactg gtgaaacctg gcagcagcgt gaaaatatct 120tgtaaggcca gcggatatac tttcacctcc aatttcatgc attgggtcaa acagcagccc 180ggcaacggac tcgagtggat cggctggatc taccccgagt atggcaacac aaaatataac 240caaaaatttg atggaaaggc taccctgact gccgataagt cctccagcac cgcatacatg 300caactctcct ccctgacctc cgaggatagc gctgtctact tctgtgcttc cgaagaggct 360gtcatatcct tggtctattg gggccaagga actctggtga ccgtctcatc tgctagcaca 420accgctccct ccgtttttcc cctcgcccca tcctgcgggt caaccagcgg atccaccgtc 480gctctggctt gtctggtgtc aggatacttc cccgagcctg tcaccgtttc ttggaatagc 540ggcagcctta cttccggcgt gcataccttc cctagcgtgc ttcagtcctc cggtctgtat 600tccctcagct ccaccgtaac tgtcccaagc tcaaggtggc cctctgagac atttacctgc 660aatgtggtcc atcctgcttc aaataccaaa gtggacaagc ccgtcccaaa agagtctacc 720tgcaaatgta tcagtccttg tcccgtgccc gagtctctgg gcggaccctc agtctttatc 780ttcccaccca agccaaagga catattgcgc attacacgga cacccgaaat cacctgtgtt 840gtgttggatc tcggccggga agatcctgag gtgcagatta gttggtttgt tgatggcaag 900gaggtgcaca cagcaaaaac acagcccaga gaacagcagt tcaacagtac ttatagagta 960gtgagtgtgt tgcctataga gcatcaggac tggctgacag gcaaagaatt caaatgtagg 1020gttaaccaca ttggcctccc tagtccaatc gagaggacaa tctctaaagc ccgaggccag 1080gctcatcagc cttctgtgta cgttctgcct cctagtccta aggaactgtc ttcttcagac 1140acagtaacac tcacttgcct gattaaggac ttttttcctc cagagattga tgtggaatgg 1200cagtctaacg ggcagccaga gccagaatct aagtaccaca ctactgcacc acagctggat 1260gaggatgggt cttacttcct gtacagtaag ctgagtgtgg acaagtctcg atggcagcag 1320ggggatactt ttacttgcgc agtaatgcac gaagcattgc agaaccacta cactgacctg 1380tcacttagtc actcaccagg gaagtaa 14072120DNAArtificial SequenceA synthetic primer 21aggatggctc ctagactccc 202220DNAArtificial SequenceA synthetic primer 22agacgatggt ggcatactcg 202320DNAArtificial SequenceA synthetic primer 23atgagaatgt ttagtgtctt 202424DNAArtificial SequenceA synthetic primer 24ttatgtctct tcaaattgta tatc 242516DNAArtificial SequenceA synthetic primer 25gttgatctgt gtgttg 162620DNAArtificial SequenceA synthetic primer 26cgggacttcc acatgagcat 202717DNAArtificial SequenceA synthetic primer 27ttttagacag aaagtga 172820DNAArtificial SequenceA synthetic primer 28gaccagctct tcttggggaa 202929DNAArtificial SequenceA synthetic primer 29ccgctcgaga tggggagccg gcgggggcc 293030DNAArtificial SequenceA synthetic primer 30cgcggatcct gaggggccac aggccgggtc 303126DNAArtificial SequenceA synthetic primer 31gaagatctat gagaatgttt agtgtc 263228DNAArtificial SequenceA synthetic primer 32ggaattctgt ctcttcaaat tgtatatc 283330DNAArtificial SequenceA synthetic primer 33cgcggctagc atggggagcc ggcgggggcc 303430DNAArtificial SequenceA synthetic primer 34cgcggatatc cagcccctgc aactggccgc 303530DNAArtificial SequenceA synthetic primer 35cgcggctagc atgagaatgt ttagtgtctt 303630DNAArtificial SequenceA synthetic primer 36cgcggatatc agtcctctca cttgctggaa 303712PRTRattus norvegicus 37Gln Ser Leu Leu Tyr Ser Glu Asn Gln Lys Asp Tyr1 5 10389PRTRattus norvegicus 38Gly Gln Tyr Leu Val Tyr Pro Phe Thr1 5398PRTRattus norvegicus 39Gly Tyr Thr Phe Thr Ser Asn Phe1 5408PRTRattus norvegicus 40Ile Tyr Pro Glu Tyr Gly Asn Thr1 54111PRTRattus norvegicus 41Ala Ser Glu Glu Ala Val Ile Ser Leu Val Tyr1 5 1042331PRTOvis aries 42Ala Ser Thr Thr Pro Pro Lys Val Tyr Pro Leu Thr Ser Cys Cys Gly1 5 10 15Asp Thr Ser Ser Ser Ile Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ala Ile Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Val Val Thr Val Pro Ala Ser Thr Ser Gly Ala Gln Thr65 70 75 80Phe Ile Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys 85 90 95Arg Val Glu Pro Gly Cys Pro Asp Pro Cys Lys His Cys Arg Cys Pro 100 105 110Pro Pro Glu Leu Pro Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys 115 120 125Pro Lys Asp Thr Leu Thr Ile Ser Gly Thr Pro Glu Val Thr Cys Val 130 135 140Val Val Asp Val Gly Gln Asp Asp Pro Glu Val Gln Phe Ser Trp Phe145 150 155 160Val Asp Asn Val Glu Val Arg Thr Ala Arg Thr Lys Pro Arg Glu Glu 165 170 175Gln Phe Asn Ser Thr Phe Arg Val Val Ser Ala Leu Pro Ile Gln His 180 185 190Gln Asp Trp Thr Gly Gly Lys Glu Phe Lys Cys Lys Val His Asn Glu 195 200 205Ala Leu Pro Ala Pro Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Gln 210 215 220Ala Arg Glu Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu225 230 235 240Ser Lys Ser Thr Leu Ser Val Thr Cys Leu Val Thr Gly Phe Tyr Pro 245 250 255Asp Tyr Ile Ala Val Glu Trp Gln Lys Asn Gly Gln Pro Glu Ser Glu 260 265 270Asp Lys Tyr Gly Thr Thr Thr Ser Gln Leu Asp Ala Asp Gly Ser Tyr 275 280 285Phe Leu Tyr Ser Arg Leu Arg Val Asp Lys Asn Ser Trp Gln Glu Gly 290 295 300Asp Thr Tyr Ala Cys Val Val Met His Glu Ala Leu His Asn His Tyr305 310 315 320Thr Gln Lys Ser Ile Ser Lys Pro Pro Gly Lys 325 33043996DNAOvis aries 43gcctcaacaa cacccccgaa agtctaccct ctgacttctt gctgcgggga cacgtccagc 60tccatcgtga ccctgggctg cctggtctcc agctatatgc ccgagccggt gaccgtgacc 120tggaactctg gtgccctgac cagcggcgtg cacaccttcc cggccatcct gcagtcctcc 180gggctctact ctctcagcag cgtggtgacc gtgccggcca gcacctcagg agcccagacc 240ttcatctgca acgtagccca cccggccagc agcaccaagg tggacaagcg tgttgagccc 300ggatgcccgg acccatgcaa acattgccga tgcccacccc ctgagctccc cggaggaccg 360tctgtcttca tcttcccacc gaaacccaag gacaccctta caatctctgg aacgcccgag 420gtcacgtgtg tggtggtgga cgtgggccag gatgaccccg aggtgcagtt ctcctggttc 480gtggacaacg tggaggtgcg cacggccagg acaaagccga gagaggagca gttcaacagc 540accttccgcg tggtcagcgc cctgcccatc cagcaccaag actggactgg aggaaaggag 600ttcaagtgca aggtccacaa cgaagccctc ccggccccca tcgtgaggac catctccagg 660accaaagggc aggcccggga gccgcaggtg tacgtcctgg ccccacccca ggaagagctc 720agcaaaagca cgctcagcgt cacctgcctg gtcaccggct tctacccaga ctacatcgcc 780gtggagtggc agaaaaatgg gcagcctgag tcggaggaca agtacggcac gaccacatcc 840cagctggacg ccgacggctc ctacttcctg tacagcaggc tcagggtgga caagaacagc 900tggcaagaag gagacaccta cgcgtgtgtg gtgatgcacg aggctctgca caaccactac 960acacagaagt cgatctctaa gcctccgggt aaatga 99644329PRTOvis aries 44Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Thr Ser Cys Cys Gly1 5 10 15Asp Thr Ser Ser Ser Ser Ser Ile Val Thr Leu Gly Cys Leu Val Ser 20 25 30Ser Tyr Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu 35 40 45Thr Ser Gly Val His Thr Phe Pro Ala Ile Leu Gln Ser Ser Gly Leu 50 55 60Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ala Ser Thr Ser Gly Ala65 70 75 80Gln Thr Phe Ile Cys Asn Val Ala His Pro Ala Ser Ser Ala Lys Val 85 90 95Asp Lys Arg Val Gly Ile Ser Ser Asp Tyr Ser Lys Cys Ser Lys Pro 100 105 110Pro Cys Val Ser Arg Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys 115 120 125Asp Ser Leu Met Ile Thr Gly Thr Pro Glu Val Thr Cys Val Val Val 130 135 140Asp Val Gly Gln Gly Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp145 150 155 160Asn Val Glu Val Arg Thr Ala Arg Thr Lys Pro Arg Glu Glu Gln Phe 165 170 175Asn Ser Thr Phe Arg Val Val Ser Ala Leu Pro Ile Gln His Asp His 180 185 190Trp Thr Gly Gly Lys Glu Phe Lys Cys Lys Val His Ser Lys Gly Leu 195 200 205Pro Ala Pro Ile Val Arg Thr Ile Ser Arg Ala Lys Gly Gln Ala Arg 210 215 220Glu Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu Ser Lys225 230 235 240Ser Thr Leu Ser Val Thr Cys Leu Val Thr Gly Phe Tyr Pro Asp Tyr 245 250 255Ile Ala Val Glu Trp Gln Arg Ala Arg Gln Pro Glu Ser Glu Asp Lys 260 265 270Tyr Gly Thr Thr Thr Ser Gln Leu Asp Ala Asp Gly Ser Tyr Phe Leu 275 280 285Tyr Ser Arg Leu Arg Val Asp Lys Ser Ser Trp Gln Arg Gly Asp Thr 290 295 300Tyr Ala Cys Val Val Met His Glu Ala Leu His Asn His Tyr Thr Gln305 310 315 320Lys Ser Ile Ser Lys Pro Pro Gly Lys 32545990DNAOvis aries 45gcctccacca cagccccgaa agtctaccct ctgacttctt gctgcgggga cacgtccagc 60tccagctcca tcgtgaccct gggctgcctg gtctccagct atatgcccga gccggtgacc 120gtgacctgga actctggtgc cctgaccagc ggcgtgcaca ccttcccggc catcctgcag 180tcctccgggc tctactctct cagcagcgtg gtgaccgtgc cggccagcac ctcaggagcc 240cagaccttca tctgcaacgt agcccacccg gccagcagcg ccaaggtgga caagcgtgtt 300gggatctcca gtgactactc caagtgttct aaaccgcctt gcgtgagccg accgtctgtc 360ttcatcttcc ccccgaaacc caaggacagc ctcatgatca caggaacgcc cgaggtcacg 420tgtgtggtgg tggacgtggg ccagggtgac cccgaggtgc agttctcctg gttcgtggac 480aacgtggagg tgcgcacggc caggacaaag ccgagagagg agcagttcaa cagcaccttc 540cgcgtggtca gcgccctgcc catccagcac gaccactgga ctggaggaaa ggagttcaag 600tgcaaggtcc acagcaaagg cctcccggcc cccatcgtga ggaccatctc cagggccaaa 660gggcaggccc gggagccgca ggtgtacgtc ctggccccac cccaggaaga gctcagcaaa 720agcacgctca gcgtcacctg cctggtcacc ggcttctacc cagactacat cgccgtggag 780tggcagagag cgcggcagcc tgagtcggag gacaagtacg gcacgaccac atcccagctg 840gacgccgacg gctcctactt cctgtacagc aggctcaggg tggacaagag cagctggcaa 900agaggagaca cctacgcgtg tgtggtgatg cacgaggctc tgcacaacca ctacacacag 960aagtcgatct ctaagcctcc gggtaaatga 99046102PRTOvis aries 46Pro Ser Val Phe Leu Phe Lys Pro Ser Glu Glu Gln Leu Arg Thr Gly1 5 10 15Thr Val Ser Val Val Cys Leu Val Asn Asp Phe Tyr Pro Lys Asp Ile 20 25 30Asn Val Lys Val Lys Val Asp Gly Val Thr Gln Asn Ser Asn Phe Gln 35 40 45Asn Ser Phe Thr Asp Gln Asp Ser Lys Lys Ser Thr Tyr Ser Leu Ser 50 55 60Ser Thr Leu Thr Leu Ser Ser Ser Glu Tyr Gln Ser His Asn Ala Tyr65 70 75 80Ala Cys Glu Val Ser His Lys Ser Leu Pro Thr Ala Leu Val Lys Ser 85 90 95Phe Asn Lys Asn Glu Cys 10047309DNAOvis aries 47ccatccgtct tcctcttcaa accatctgag gaacagctga ggaccggaac tgtctctgtc 60gtgtgcttgg tgaatgattt ctaccccaaa gatatcaatg tcaaggtgaa agtggatggg 120gttacccaga acagcaactt ccagaacagc ttcacagacc aggacagcaa gaaaagcacc 180tacagcctca gcagcaccct gacactgtcc agctcagagt accagagcca taacgcctat 240gcgtgtgagg tcagccacaa gagcctgccc accgccctcg tcaagagctt caataagaat 300gaatgttag 30948106PRTOvis aries 48Gly Gln Pro Lys Ser Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Thr1 5 10 15Glu Glu Leu Ser Thr Asn Lys Ala Thr Val Val Cys Leu Ile Asn Asp 20 25 30Phe Tyr Pro Gly Ser Val Asn Val Val Trp Lys Ala Asp Gly Ser Thr 35 40 45Ile Asn Gln Asn Val Lys Thr Thr Gln Ala Ser Lys Gln Ser Asn Ser 50 55 60Lys Tyr Ala Ala Ser Ser Tyr Leu Thr Leu Thr Gly Ser Glu Trp Lys65 70 75 80Ser Lys Ser Ser Tyr Thr Cys Glu Val Thr His Glu Gly Ser Thr Val 85 90 95Thr Lys Thr Val Lys Pro Ser Glu Cys Ser 100 10549321DNAOvis aries 49ggtcagccca agtccgcacc ctcggtcacc ctgttcccgc cttccacgga ggagctcagt 60accaacaagg ccaccgtggt gtgtctcatc aacgacttct acccgggtag cgtgaacgtg 120gtctggaagg cagatggcag caccatcaat cagaacgtga agaccaccca ggcctccaaa 180cagagcaaca gcaagtacgc ggccagcagc tacctgaccc tgacgggcag cgagtggaag 240tctaagagca gttacacctg cgaggtcacg cacgagggga gcaccgtgac gaagacagtg 300aagccctcag agtgttctta g 32150328PRTSus scrofa 50Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Thr Ser Gly Pro Asn Val

Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Met Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Lys 85 90 95Arg Val Gly Thr Lys Thr Lys Pro Pro Cys Pro Ile Cys Pro Gly Cys 100 105 110Glu Val Ala Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Met Ile Ser Gln Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140Val Ser Lys Glu His Ala Glu Val Gln Phe Ser Trp Tyr Val Asp Gly145 150 155 160Val Glu Val His Thr Ala Glu Thr Arg Pro Lys Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp 180 185 190Leu Lys Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Val Asp Leu Pro 195 200 205Ala Pro Ile Thr Arg Thr Ile Ser Lys Ala Ile Gly Gln Ser Arg Glu 210 215 220Pro Gln Val Tyr Thr Leu Pro Pro Pro Ala Glu Glu Leu Ser Arg Ser225 230 235 240Lys Val Thr Val Thr Cys Leu Val Ile Gly Phe Tyr Pro Pro Asp Ile 245 250 255His Val Glu Trp Lys Ser Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr 260 265 270Arg Thr Thr Pro Pro Gln Gln Asp Val Asp Gly Thr Phe Phe Leu Tyr 275 280 285Ser Lys Leu Ala Val Asp Lys Ala Arg Trp Asp His Gly Glu Thr Phe 290 295 300Glu Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys305 310 315 320Ser Ile Ser Lys Thr Gln Gly Lys 32551987DNASus scrofa 51gcccccaaga cggccccatc ggtctaccct ctggccccct gcggcaggga cacgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccatgacc 120tggaactcgg gcgccctgac cagtggcgtg cataccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggcca gcagcctgtc cagcaagagc 240tacacctgca atgtcaacca cccggccacc accaccaagg tggacaagcg tgttggaaca 300aagaccaaac caccatgtcc catatgccca ggctgtgaag tggccgggcc ctcggtcttc 360atcttccctc caaaacccaa ggacaccctc atgatctccc agacccccga ggtcacgtgc 420gtggtggtgg acgtcagcaa ggagcacgcc gaggtccagt tctcctggta cgtggacggc 480gtagaggtgc acacggccga gacgagacca aaggaggagc agttcaacag cacctaccgt 540gtggtcagcg tcctgcccat ccagcaccag gactggctga aggggaagga gttcaagtgc 600aaggtcaaca acgtagacct cccagccccc atcacgagga ccatctccaa ggctataggg 660cagagccggg agccgcaggt gtacaccctg cccccacccg ccgaggagct gtccaggagc 720aaagtcaccg taacctgcct ggtcattggc ttctacccac ctgacatcca tgttgagtgg 780aagagcaacg gacagccgga gccagagggc aattaccgca ccaccccgcc ccagcaggac 840gtggacggga ccttcttcct gtacagcaag ctcgcggtgg acaaggcaag atgggaccat 900ggagaaacat ttgagtgtgc ggtgatgcac gaggctctgc acaaccacta cacccagaag 960tccatctcca agactcaggg taaatga 98752328PRTSus scrofa 52Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Val Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Lys 85 90 95Arg Val Gly Ile His Gln Pro Gln Thr Cys Pro Ile Cys Pro Gly Cys 100 105 110Glu Val Ala Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Met Ile Ser Gln Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140Val Ser Lys Glu His Ala Glu Val Gln Phe Ser Trp Tyr Val Asp Gly145 150 155 160Val Glu Val His Thr Ala Glu Thr Arg Pro Lys Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp 180 185 190Leu Lys Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Val Asp Leu Pro 195 200 205Ala Pro Ile Thr Arg Thr Ile Ser Lys Ala Ile Gly Gln Ser Arg Glu 210 215 220Pro Gln Val Tyr Thr Leu Pro Pro Pro Ala Glu Glu Leu Ser Arg Ser225 230 235 240Lys Val Thr Leu Thr Cys Leu Val Ile Gly Phe Tyr Pro Pro Asp Ile 245 250 255His Val Glu Trp Lys Ser Asn Gly Gln Pro Glu Pro Glu Asn Thr Tyr 260 265 270Arg Thr Thr Pro Pro Gln Gln Asp Val Asp Gly Thr Phe Phe Leu Tyr 275 280 285Ser Lys Leu Ala Val Asp Lys Ala Arg Trp Asp His Gly Asp Lys Phe 290 295 300Glu Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys305 310 315 320Ser Ile Ser Lys Thr Gln Gly Lys 32553987DNASus scrofa 53gcccccaaga cggccccatc ggtctaccct ctggccccct gcggcaggga cgtgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gcgccctgac cagtggcgtg cacaccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggcca gcagcctgtc cagcaagagc 240tacacctgca atgtcaacca cccggccacc accaccaagg tggacaagcg tgttggaata 300caccagccgc aaacatgtcc catatgccca ggctgtgaag tggccgggcc ctcggtcttc 360atcttccctc caaaacccaa ggacaccctc atgatctccc agacccccga ggtcacgtgc 420gtggtggtgg acgtcagcaa ggagcacgcc gaggtccagt tctcctggta cgtggacggc 480gtagaggtgc acacggccga gacgagacca aaggaggagc agttcaacag cacctaccgt 540gtggtcagcg tcctgcccat ccagcaccag gactggctga aggggaagga gttcaagtgc 600aaggtcaaca acgtagacct cccagccccc atcacgagga ccatctccaa ggctataggg 660cagagccggg agccgcaggt gtacaccctg cccccacccg ccgaggagct gtccaggagc 720aaagtcacgc taacctgcct ggtcattggc ttctacccac ctgacatcca tgttgagtgg 780aagagcaacg gacagccgga gccagagaac acataccgca ccaccccgcc ccagcaggac 840gtggacggga ccttcttcct gtacagcaaa ctcgcggtgg acaaggcaag atgggaccat 900ggagacaaat ttgagtgtgc ggtgatgcac gaggctctgc acaaccacta cacccagaag 960tccatctcca agactcaggg taaatga 98754328PRTSus scrofa 54Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Ser Arg1 5 10 15Asp Thr Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Ser Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Lys 85 90 95Arg Val Gly Thr Lys Thr Lys Pro Pro Cys Pro Ile Cys Pro Ala Cys 100 105 110Glu Ser Pro Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Met Ile Ser Arg Thr Pro Gln Val Thr Cys Val Val Val Asp 130 135 140Val Ser Gln Glu Asn Pro Glu Val Gln Phe Ser Trp Tyr Val Asp Gly145 150 155 160Val Glu Val His Thr Ala Gln Thr Arg Pro Lys Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp 180 185 190Leu Asn Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro 195 200 205Ala Pro Ile Thr Arg Ile Ile Ser Lys Ala Lys Gly Gln Thr Arg Glu 210 215 220Pro Gln Val Tyr Thr Leu Pro Pro His Ala Glu Glu Leu Ser Arg Ser225 230 235 240Lys Val Ser Ile Thr Cys Leu Val Ile Gly Phe Tyr Pro Pro Asp Ile 245 250 255Asp Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr 260 265 270Arg Thr Thr Pro Pro Gln Gln Asp Val Asp Gly Thr Tyr Phe Leu Tyr 275 280 285Ser Lys Phe Ser Val Asp Lys Ala Ser Trp Gln Gly Gly Gly Ile Phe 290 295 300Gln Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys305 310 315 320Ser Ile Ser Lys Thr Pro Gly Lys 32555987DNASus scrofa 55gcccccaaga cggccccatc ggtctaccct ctggccccct gcagcaggga cacgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gcgccctgtc cagtggcgtg cataccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggcca gcagcctgtc cagcaagagc 240tacacctgca atgtcaacca cccggccacc accaccaagg tggacaagcg tgttggaaca 300aagaccaaac caccatgtcc catatgccca gcctgtgaat caccagggcc ctcggtcttc 360atcttccctc caaaacccaa ggacaccctc atgatctccc ggacacccca ggtcacgtgc 420gtggtggttg atgtgagcca ggagaacccg gaggtccagt tctcctggta cgtggacggc 480gtagaggtgc acacggccca gacgaggcca aaggaggagc agttcaacag cacctaccgc 540gtggtcagcg tcctacccat ccagcaccag gactggctga acgggaagga gttcaagtgc 600aaggtcaaca acaaagacct cccagccccc atcacaagga tcatctccaa ggccaaaggg 660cagacccggg agccgcaggt gtacaccctg cccccacacg ccgaggagct gtccaggagc 720aaagtcagca taacctgcct ggtcattggc ttctacccac ctgacatcga tgtcgagtgg 780caaagaaacg gacagccgga gccagagggc aattaccgca ccaccccgcc ccagcaggac 840gtggacggga cctacttcct gtacagcaag ttctcggtgg acaaggccag ctggcagggt 900ggaggcatat tccagtgtgc ggtgatgcac gaggctctgc acaaccacta cacccagaag 960tctatctcca agactccggg taaatga 98756328PRTSus scrofa 56Ala Pro Lys Thr Ala Pro Leu Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Thr Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Lys 85 90 95Arg Val Gly Thr Lys Thr Lys Pro Pro Cys Pro Ile Cys Pro Ala Cys 100 105 110Glu Ser Pro Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Met Ile Ser Arg Thr Pro Gln Val Thr Cys Val Val Val Asp 130 135 140Val Ser Gln Glu Asn Pro Glu Val Gln Phe Ser Trp Tyr Val Asp Gly145 150 155 160Val Glu Val His Thr Ala Gln Thr Arg Pro Lys Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp 180 185 190Leu Asn Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro 195 200 205Ala Pro Ile Thr Arg Ile Ile Ser Lys Ala Lys Gly Gln Thr Arg Glu 210 215 220Pro Gln Val Tyr Thr Leu Pro Pro His Ala Glu Glu Leu Ser Arg Ser225 230 235 240Lys Val Ser Ile Thr Cys Leu Val Ile Gly Phe Tyr Pro Pro Asp Ile 245 250 255Asp Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr 260 265 270Arg Thr Thr Pro Pro Gln Gln Asp Val Asp Gly Thr Tyr Phe Leu Tyr 275 280 285Ser Lys Phe Ser Val Asp Lys Ala Ser Trp Gln Gly Gly Gly Ile Phe 290 295 300Gln Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys305 310 315 320Ser Ile Ser Lys Thr Pro Gly Lys 32557987DNASus scrofa 57gcccccaaga cggccccatt ggtctaccct ctggccccct gcggcaggga cacgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gcgccctgac cagtggcgtg cataccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggcca gcagcctgtc cagcaagagc 240tacacctgca atgtcaacca cccggccacc accaccaagg tggacaagcg tgttggaaca 300aagaccaaac caccatgtcc catatgccca gcctgtgaat cgccagggcc ctcggtcttc 360atcttccctc caaaacccaa ggacaccctc atgatctccc ggacacccca ggtcacgtgc 420gtggtagttg atgtgagcca ggagaacccg gaggtccagt tctcctggta cgtggacggc 480gtagaggtgc acacggccca gacgaggcca aaggaggagc agttcaacag cacctaccgc 540gtggtcagcg tcctgcccat ccagcaccag gactggctga acgggaagga gttcaagtgc 600aaggtcaaca acaaagacct cccagccccc atcacaagga tcatctccaa ggccaaaggg 660cagacccggg agccgcaggt gtacaccctg cccccacacg ccgaggagct gtccaggagc 720aaagtcagca taacctgcct ggtcattggc ttctacccac ctgacatcga tgtcgagtgg 780caaagaaacg gacagccgga gccagagggc aattaccgca ccaccccgcc ccagcaggac 840gtggacggga cctacttcct gtacagcaag ttctcggtgg acaaggccag ctggcagggt 900ggaggcatat tccagtgtgc ggtgatgcac gaggctctgc acaaccacta cacccagaag 960tctatctcca agactccggg taaatga 98758333PRTSus scrofa 58Ala Tyr Asn Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Val Ser Asp His Asn Val Ala Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Ser Arg 35 40 45Val Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Ile Val Ala Ala Ser Ser Leu Ser Thr Leu Ser65 70 75 80Tyr Thr Cys Asn Val Tyr His Pro Ala Thr Asn Thr Lys Val Asp Lys 85 90 95Arg Val Asp Ile Glu Pro Pro Thr Pro Ile Cys Pro Glu Ile Cys Ser 100 105 110Cys Pro Ala Ala Glu Val Leu Gly Ala Pro Ser Val Phe Leu Phe Pro 115 120 125Pro Lys Pro Lys Asp Ile Leu Met Ile Ser Arg Thr Pro Lys Val Thr 130 135 140Cys Val Val Val Asp Val Ser Gln Glu Glu Ala Glu Val Gln Phe Ser145 150 155 160Trp Tyr Val Asp Gly Val Gln Leu Tyr Thr Ala Gln Thr Arg Pro Met 165 170 175Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile 180 185 190Gln His Gln Asp Trp Leu Lys Gly Lys Glu Phe Lys Cys Lys Val Asn 195 200 205Asn Lys Asp Leu Leu Ser Pro Ile Thr Arg Thr Ile Ser Lys Ala Thr 210 215 220Gly Pro Ser Arg Val Pro Gln Val Tyr Thr Leu Pro Pro Ala Trp Glu225 230 235 240Glu Leu Ser Lys Ser Lys Val Ser Ile Thr Cys Leu Val Thr Gly Phe 245 250 255Tyr Pro Pro Asp Ile Asp Val Glu Trp Gln Ser Asn Gly Gln Gln Glu 260 265 270Pro Glu Gly Asn Tyr Arg Thr Thr Pro Pro Gln Gln Asp Val Asp Gly 275 280 285Thr Tyr Phe Leu Tyr Ser Lys Leu Ala Val Asp Lys Val Arg Trp Gln 290 295 300Arg Gly Asp Leu Phe Gln Cys Ala Val Met His Glu Ala Leu His Asn305 310 315 320His Tyr Thr Gln Lys Ser Ile Ser Lys Thr Gln Gly Lys 325 330591002DNASus scrofa 59gcctacaaca cagctccatc ggtctaccct ctggccccct gtggcaggga cgtgtctgat 60cataacgtgg ccttgggctg ccttgtctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gtgccctgtc cagagtcgtg cataccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgatc gtggcggcca gcagcctgtc caccctgagc 240tacacgtgca acgtctacca cccggccacc aacaccaagg tggacaagcg tgttgacatc 300gaacccccca cacccatctg tcccgaaatt tgctcatgcc cagctgcaga ggtcctggga 360gcaccgtcgg tcttcctctt ccctccaaaa cccaaggaca tcctcatgat ctcccggaca 420cccaaggtca cgtgcgtggt ggtggacgtg agccaggagg aggctgaagt ccagttctcc 480tggtacgtgg acggcgtaca gttgtacacg gcccagacga ggccaatgga ggagcagttc 540aacagcacct accgcgtggt cagcgtcctg cccatccagc accaggactg gctgaagggg 600aaggagttca agtgcaaggt caacaacaaa gacctccttt cccccatcac gaggaccatc 660tccaaggcta cagggccgag ccgggtgccg caggtgtaca ccctgccccc agcctgggaa 720gagctgtcca agagcaaagt cagcataacc tgcctggtca ctggcttcta cccacctgac 780atcgatgtcg agtggcagag caacggacaa caagagccag agggcaatta ccgcaccacc 840ccgccccagc aggacgtgga tgggacctac ttcctgtaca gcaagctcgc ggtggacaag 900gtcaggtggc agcgtggaga cctattccag tgtgcggtga tgcacgaggc tctgcacaac

960cactacaccc agaagtccat ctccaagact cagggtaaat ga 100260277PRTSus scrofa 60Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser Leu Ser Ser1 5 10 15Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser Tyr Thr Cys 20 25 30Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Lys Arg Val Gly 35 40 45Thr Lys Thr Lys Pro Pro Cys Pro Ile Cys Pro Ala Cys Glu Gly Pro 50 55 60Gly Pro Ser Ala Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Met65 70 75 80Ile Ser Arg Thr Pro Lys Val Thr Cys Val Val Val Asp Val Ser Gln 85 90 95Glu Asn Pro Glu Val Gln Phe Ser Trp Tyr Val Asp Gly Val Glu Val 100 105 110His Thr Ala Gln Thr Arg Pro Lys Glu Glu Gln Phe Asn Ser Thr Tyr 115 120 125Arg Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp Leu Asn Gly 130 135 140Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile145 150 155 160Thr Arg Ile Ile Ser Lys Ala Lys Gly Gln Thr Arg Glu Pro Gln Val 165 170 175Tyr Thr Leu Pro Pro Pro Thr Glu Glu Leu Ser Arg Ser Lys Val Thr 180 185 190Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Pro Asp Ile Asp Val Glu 195 200 205Trp Gln Arg Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr Arg Thr Thr 210 215 220Pro Pro Gln Gln Asp Val Asp Gly Thr Tyr Phe Leu Tyr Ser Lys Leu225 230 235 240Ala Val Asp Lys Ala Ser Trp Gln Arg Gly Asp Thr Phe Gln Cys Ala 245 250 255Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Ile Phe 260 265 270Lys Thr Pro Gly Lys 27561834DNASus scrofa 61accttcccat ccgtcctgca gccgtcaggg ctctactccc tcagcagcat ggtgaccgtg 60ccggccagca gcctgtccag caagagctac acctgcaatg tcaaccaccc ggccaccacc 120accaaggtgg acaagcgtgt tggaacaaag accaaaccac catgtcccat atgcccagcc 180tgtgaagggc ccgggccctc ggccttcatc ttccctccaa aacccaagga caccctcatg 240atctcccgga cccccaaggt cacgtgcgtg gtggtagatg tgagccagga gaacccggag 300gtccagttct cctggtacgt ggacggcgta gaggtgcaca cggcccagac gaggccaaag 360gaggagcagt tcaacagcac ctaccgcgtg gtcagcgtcc tgcccatcca gcaccaggac 420tggctgaacg ggaaggagtt caagtgcaag gtcaacaaca aagacctccc agcccccatc 480acaaggatca tctccaaggc caaagggcag acccgggagc cgcaggtgta caccctgccc 540ccacccaccg aggagctgtc caggagcaaa gtcacgctaa cctgcctggt cactggcttc 600tacccacctg acatcgatgt cgagtggcaa agaaacggac agccggagcc agagggcaat 660taccgcacca ccccgcccca gcaggacgtg gacgggacct acttcctgta cagcaagctc 720gcggtggaca aggccagctg gcagcgtgga gacacattcc agtgtgcggt gatgcacgag 780gctctgcaca accactacac ccagaagtcc atcttcaaga ctccgggtaa atga 83462318PRTSus scrofa 62Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Val Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Lys 85 90 95Arg Val Gly Ile His Gln Pro Gln Thr Cys Pro Ile Cys Pro Ala Cys 100 105 110Glu Gly Pro Gly Pro Ser Ala Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Met Ile Ser Arg Thr Pro Lys Val Thr Cys Val Val Val Asp 130 135 140Val Ser Gln Glu Asn Pro Glu Val Gln Phe Ser Trp Tyr Val Asp Gly145 150 155 160Val Glu Val His Thr Ala Gln Thr Arg Pro Lys Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Leu Ile Gln His Gln Asp Trp 180 185 190Leu Asn Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro 195 200 205Ala Pro Ile Thr Arg Ile Ile Ser Lys Ala Lys Gly Gln Thr Arg Glu 210 215 220Pro Gln Val Tyr Thr Leu Pro Pro Pro Thr Glu Glu Leu Ser Arg Ser225 230 235 240Lys Val Thr Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Pro Asp Ile 245 250 255Asp Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr 260 265 270Arg Thr Thr Pro Pro Gln Gln Asp Val Asp Gly Thr Tyr Phe Leu Tyr 275 280 285Ser Lys Leu Ala Val Asp Lys Ala Ser Trp Gln Arg Gly Asp Thr Phe 290 295 300Gln Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr305 310 31563955DNASus scrofa 63gcccccaaga cggccccatc ggtctaccct ctggccccct gcggcaggga cgtgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gcgccctgac cagtggcgtg cacaccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggcca gcagcctgtc cagcaagagc 240tacacctgca atgtcaacca cccggccacc accaccaagg tggacaagcg tgttggaata 300caccagccgc aaacatgtcc catatgccca gcctgtgaag ggcccgggcc ctcggccttc 360atcttccctc caaaacccaa ggacaccctc atgatctccc ggacccccaa ggtcacgtgc 420gtggtggttg atgtgagcca ggagaacccg gaggtccagt tctcctggta cgtggacggc 480gtagaggtgc acacggccca gacgaggcca aaggaggagc agttcaacag cacctaccgc 540gtggtcagcg tcctgctcat ccagcaccag gactggctga acgggaagga gttcaagtgc 600aaggtcaaca acaaagacct cccagccccc atcacaagga tcatctccaa ggccaaaggg 660cagacccggg agccgcaggt gtacaccctg cccccaccca ccgaggagct gtccaggagc 720aaagtcacgc taacctgcct ggtcactggc ttctacccac ctgacatcga tgtcgagtgg 780caaagaaacg gacagccgga gccagagggc aattaccgca ccaccccgcc ccagcaggac 840gtggacggga cctacttcct gtacagcaag ctcgcggtgg acaaggccag ctggcagcgt 900ggagacacat tccagtgtgc ggtgatgcac gaggctctgc acaaccacta caccc 95564323PRTSus scrofa 64Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Ser Arg1 5 10 15Asp Thr Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala His Ser Leu Ser Ser Lys Arg65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Lys Thr Lys Val Asp Leu 85 90 95Cys Val Gly Arg Pro Cys Pro Ile Cys Pro Gly Cys Glu Val Ala Gly 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Ile Leu Met Ile 115 120 125Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Lys Glu 130 135 140His Ala Glu Val Gln Phe Ser Trp Tyr Val Asp Gly Glu Glu Val His145 150 155 160Thr Ala Glu Thr Arg Pro Lys Glu Glu Gln Phe Asn Ser Thr Tyr Arg 165 170 175Val Val Ser Val Leu Pro Ile Gln His Glu Asp Trp Leu Lys Gly Lys 180 185 190Glu Phe Glu Cys Lys Val Asn Asn Glu Asp Leu Pro Gly Pro Ile Thr 195 200 205Arg Thr Ile Ser Lys Ala Lys Gly Val Val Arg Ser Pro Glu Val Tyr 210 215 220Thr Leu Pro Pro Pro Ala Glu Glu Leu Ser Lys Ser Ile Val Thr Leu225 230 235 240Thr Cys Leu Val Lys Ser Ile Phe Pro Phe Ile His Val Glu Trp Lys 245 250 255Ile Asn Gly Lys Pro Glu Pro Glu Asn Ala Tyr Arg Thr Thr Pro Pro 260 265 270Gln Glu Asp Glu Asp Arg Thr Tyr Phe Leu Tyr Ser Lys Leu Ala Val 275 280 285Asp Lys Ala Arg Trp Asp His Gly Glu Thr Phe Glu Cys Ala Val Met 290 295 300His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Ile Ser Lys Thr305 310 315 320Gln Gly Lys65975DNASus scrofamisc_feature(748)..(748)n is a, c, g, or t 65gcccccaaga cggccccatc ggtctaccct ctggccccct gcagcaggga cacgtctggc 60cctaacgtgg ccttgggctg cctggtctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gcgccctgac cagtggcgtg cacaccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggccc acagcttgtc cagcaagcgc 240tatacgtgca atgtcaacca cccagccacc aaaaccaagg tggacctgtg tgttggacga 300ccatgtccca tatgcccagg ctgtgaagtg gccgggccct cggtcttcat cttccctcca 360aaacccaagg acatcctcat gatctcccgg acccccgagg tcacgtgcgt ggtggtggac 420gtcagcaagg agcacgccga ggtccagttc tcctggtacg tggacggcga agaggtgcac 480acggccgaga cgaggccaaa ggaggagcag ttcaacagca cctaccgcgt ggtcagcgtc 540ctgcccatcc agcacgagga ctggctgaag gggaaggagt tcgagtgcaa ggtcaacaac 600gaagacctcc caggccccat cacgaggacc atctccaagg ccaaaggggt ggtacggagc 660ccggaggtgt acaccctgcc cccacccgcc gaggagctgt ccaagagcat agtcacgcta 720acctgcctgg tcaaaagcat cttcccgnct ttcatccatg ttgagtggaa aatcaacgga 780aaaccagagc cagagaacgc atatcgcacc accccgcctc aggaggacga ggacaggacc 840tacttcctgt acagcaagct cgcggtggac aaggcaagat gggaccatgg agaaacattt 900gagtgtgcgg tgatgcacga ggctctgcac aaccactaca cccagaagtc catctccaag 960actcagggta aatga 97566317PRTSus scrofa 66Ala Tyr Asn Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Val Ser Asp His Asn Val Ala Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Trp Gly Ala Gln Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Thr Val Thr Val Pro Ala His Ser Leu Ser Ser Lys Cys65 70 75 80Phe Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Leu 85 90 95Cys Val Gly Lys Lys Thr Lys Pro Arg Cys Pro Ile Cys Pro Gly Cys 100 105 110Glu Val Ala Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Ile Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140Val Ser Lys Glu His Ala Glu Val Gln Phe Ser Trp Tyr Val Asp Gly145 150 155 160Glu Glu Val His Thr Ala Glu Thr Arg Pro Lys Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln His Glu Asp Trp 180 185 190Leu Lys Gly Lys Glu Phe Glu Cys Lys Val Asn Asn Glu Asp Leu Pro 195 200 205Gly Pro Ile Thr Arg Thr Ile Ser Lys Ala Lys Gly Val Val Arg Ser 210 215 220Pro Glu Val Tyr Thr Leu Pro Pro Pro Ala Glu Glu Leu Ser Lys Ser225 230 235 240Ile Val Thr Leu Thr Cys Leu Val Lys Ser Phe Phe Pro Pro Phe Ile 245 250 255His Val Glu Trp Lys Ile Asn Gly Lys Pro Glu Pro Glu Asn Ala Tyr 260 265 270Arg Thr Thr Pro Pro Gln Glu Asp Glu Asp Gly Thr Tyr Phe Leu Tyr 275 280 285Ser Lys Phe Ser Val Glu Lys Phe Arg Trp His Ser Gly Gly Ile His 290 295 300Cys Ala Val Met His Glu Ala Leu His Asn His Tyr Thr305 310 31567952DNASus scrofa 67gcctacaaca cagctccatc ggtctaccct ctggccccct gtggcaggga cgtgtctgat 60cataacgtgg ccttgggctg cctggtctca agctacttcc ccgagccagt gaccgtgacc 120tggaactggg gcgcccagac cagtggcgtg cacaccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag cacggtgacc gtgccggccc acagcttgtc cagcaagtgc 240ttcacgtgca atgtcaacca cccggccacc accaccaagg tggacctgtg tgttggaaaa 300aagaccaagc ctcgatgtcc catatgccca ggctgtgaag tggccgggcc ctcggtcttc 360atcttccctc caaaacccaa ggacatcctc atgatctccc ggacccccga ggtcacgtgc 420gtggtggtgg acgtcagcaa ggagcacgcc gaggtccagt tctcctggta cgtggacggc 480gaagaggtgc acacggccga gacgagacca aaggaggagc agttcaacag cacttaccgc 540gtggtcagcg tcctgcccat ccagcacgag gactggctga aggggaagga gttcgagtgc 600aaggtcaaca acgaagacct cccaggcccc atcacgagga ccatctccaa ggccaaaggg 660gtggtacgga gcccggaggt gtacaccctg cccccacccg ccgaggagct gtccaagagc 720atagtcacgc taacctgcct ggtcaaaagc ttcttcccgc ctttcatcca tgttgagtgg 780aaaatcaacg gaaaaccaga gccagagaac gcataccgca ccaccccgcc ccaggaggac 840gaggacggga cctacttcct gtacagcaag ttctcggtgg aaaagttcag gtggcacagt 900ggaggcatcc actgtgcggt gatgcacgag gctctgcaca accactacac cc 95268314PRTSus scrofa 68Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Thr Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Leu Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Leu Ser Ser Lys Ser65 70 75 80Tyr Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Leu 85 90 95Cys Val Gly Arg Pro Cys Pro Ile Cys Pro Ala Cys Glu Gly Pro Gly 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 115 120 125Ser Arg Thr Pro Gln Val Thr Cys Val Val Val Asp Val Ser Gln Glu 130 135 140Asn Pro Glu Val Gln Phe Ser Trp Tyr Val Asp Gly Val Glu Val His145 150 155 160Thr Ala Gln Thr Arg Pro Lys Glu Ala Gln Phe Asn Ser Thr Tyr Arg 165 170 175Val Val Ser Val Leu Pro Ile Gln His Glu Asp Trp Leu Lys Gly Lys 180 185 190Glu Phe Glu Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile Thr 195 200 205Arg Ile Ile Ser Lys Ala Lys Gly Pro Ser Arg Glu Pro Gln Val Tyr 210 215 220Thr Leu Ser Pro Ser Ala Glu Glu Leu Ser Arg Ser Lys Val Ser Ile225 230 235 240Thr Cys Leu Val Thr Gly Phe Tyr Pro Pro Asp Ile Asp Val Glu Trp 245 250 255Lys Ser Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr Arg Thr Thr Pro 260 265 270Pro Gln Gln Asp Val Asp Gly Thr Tyr Phe Leu Tyr Ser Lys Leu Ala 275 280 285Val Asp Lys Ala Ser Trp Gln Arg Gly Asp Pro Phe Gln Cys Ala Val 290 295 300Met His Glu Ala Leu His Asn His Tyr Thr305 31069943DNASus scrofa 69gcccccaaga cggccccatc ggtctaccct ctggccccct gcggcaggga cacgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccctgacc 120tggaactcgg gcgccctgac cagtggcgtg cataccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag catggtgacc gtgccggcca gcagcctgtc cagcaagagc 240tacacctgca atgtcaacca cccggccacc accaccaagg tggacctgtg tgttggacga 300ccatgtccca tatgcccagc ctgtgaaggg cccgggccct cggtcttcat cttccctcca 360aaacccaagg acaccctcat gatctcccgg acaccccagg tcacgtgcgt ggtggtagat 420gtgagccagg aaaacccgga ggtccagttc tcctggtatg tggacggtgt agaggtgcac 480acggcccaga cgaggccaaa ggaggcgcag ttcaacagca cctaccgtgt ggtcagcgtc 540ctgcccatcc agcacgagga ctggctgaag gggaaggagt tcgagtgcaa ggtcaacaac 600aaagacctcc cagcccccat cacaaggatc atctccaagg ccaaagggcc gagccgggag 660ccgcaggtgt acaccctgtc cccatccgcc gaggagctgt ccaggagcaa agtcagcata 720acctgcctgg tcactggctt ctacccacct gacatcgatg tcgagtggaa gagcaacgga 780cagccggagc cagagggcaa ttaccgcacc accccgcccc agcaggacgt ggacgggacc 840tacttcctgt acagcaagct cgcggtggac aaggccagct ggcagcgtgg agacccattc 900cagtgtgcgg tgatgcacga ggctctgcac aaccactaca ccc 94370320PRTSus scrofa 70Ala Pro Lys Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Cys Gly Arg1 5 10 15Asp Thr Ser Gly Pro Asn Val Ala Leu Gly Cys Leu Ala Ser Ser Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ser Val Leu Gln Pro Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Thr Val Thr Val Pro Ala Arg Ser Ser Ser Arg Lys Cys65 70 75 80Phe Thr Cys Asn Val Asn His Pro Ala Thr Thr Thr Lys Val Asp Leu 85 90 95Cys Val Gly Arg Pro Cys Pro Ile Cys Pro Ala Cys Glu Gly Asn Gly 100

105 110Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 115 120 125Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu 130 135 140Asn Pro Glu Val Gln Phe Ser Trp Tyr Val Asp Gly Glu Glu Val His145 150 155 160Thr Ala Glu Thr Arg Pro Lys Glu Glu Gln Phe Asn Ser Thr Tyr Arg 165 170 175Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp Leu Lys Gly Lys 180 185 190Glu Phe Glu Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile Thr 195 200 205Arg Ile Ile Ser Lys Ala Lys Gly Pro Ser Arg Glu Pro Gln Val Tyr 210 215 220Thr Leu Ser Pro Ser Ala Glu Glu Leu Ser Arg Ser Lys Val Ser Ile225 230 235 240Thr Cys Leu Val Thr Gly Phe Tyr Pro Pro Asp Ile Asp Val Glu Trp 245 250 255Lys Ser Asn Gly Gln Pro Glu Pro Glu Gly Asn Tyr Arg Ser Thr Pro 260 265 270Pro Gln Glu Asp Glu Asp Gly Thr Tyr Phe Leu Tyr Ser Lys Leu Ala 275 280 285Val Asp Lys Ala Arg Leu Gln Ser Gly Gly Ile His Cys Ala Val Met 290 295 300His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Ile Ser Lys Thr305 310 315 32071960DNASus scrofa 71gcccccaaga cggccccatc ggtctaccct ctggccccct gcggcaggga cacgtctggc 60cctaacgtgg ccttgggctg cctggcctca agctacttcc ccgagccagt gaccgtgacc 120tggaactcgg gcgccctgac cagtggcgtg cacaccttcc catccgtcct gcagccgtca 180gggctctact ccctcagcag cacggtgacc gtgccggcca ggagctcgtc cagaaagtgc 240ttcacgtgca atgtcaacca cccggccacc accaccaagg tggacctgtg tgttggacga 300ccatgtccca tatgcccagc ctgtgaaggg aacgggccct cggtcttcat cttccctcca 360aaacccaagg acaccctcat gatctcccgg acccccgagg tcacgtgcgt ggtggtagat 420gtgagccagg aaaacccgga ggtccagttc tcctggtacg tggacggcga agaggtgcac 480acggccgaga cgaggccaaa ggaggagcag ttcaacagca cctaccgtgt ggtcagcgtc 540ctgcccatcc agcaccagga ctggctgaag ggaaaggagt tcgagtgcaa ggtcaacaac 600aaagacctcc cagcccccat cacaaggatc atctccaagg ccaaagggcc gagccgggag 660ccgcaggtgt acaccctgtc cccatccgcc gaggagctgt ccaggagcaa agtcagcata 720acctgcctgg tcactggctt ctacccacct gacatcgatg tcgagtggaa gagcaacgga 780cagccggagc cagagggcaa ttaccgctcc accccgcccc aggaggacga ggacgggacc 840tacttcctgt acagcaaact cgcggtggac aaggcgaggt tgcagagtgg aggcatccac 900tgtgcggtga tgcacgaggc tctgcacaac cactacaccc agaagtccat ctccaagact 96072266PRTBubalus bubalis 72Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr1 5 10 15Ser Leu Ser Ser Thr Val Thr Ala Pro Ala Ser Ala Thr Lys Ser Gln 20 25 30Thr Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp 35 40 45Lys Ala Val Val Pro Pro Cys Arg Pro Lys Pro Cys Asp Cys Cys Pro 50 55 60Pro Pro Glu Leu Pro Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys65 70 75 80Pro Lys Asp Thr Leu Thr Ile Ser Gly Thr Pro Glu Val Thr Cys Val 85 90 95Val Val Asp Val Gly His Asp Asp Pro Glu Val Lys Phe Ser Trp Phe 100 105 110Val Asp Asp Val Glu Val Asn Thr Ala Arg Thr Lys Pro Arg Glu Glu 115 120 125Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Ala Leu Pro Ile Gln His 130 135 140Asn Asp Trp Thr Gly Gly Lys Glu Phe Lys Cys Lys Val Tyr Asn Glu145 150 155 160Gly Leu Pro Ala Pro Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Gln 165 170 175Ala Arg Glu Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Asp Glu Leu 180 185 190Ser Lys Ser Thr Val Ser Ile Thr Cys Met Val Thr Gly Phe Tyr Pro 195 200 205Asp Tyr Ile Ala Val Glu Trp Gln Lys Asp Gly Gln Pro Glu Ser Glu 210 215 220Asp Lys Tyr Gly Thr Thr Pro Pro Gln Leu Asp Ser Asp Gly Ser Tyr225 230 235 240Phe Leu Tyr Ser Arg Leu Arg Val Asn Lys Asn Ser Trp Gln Glu Gly 245 250 255Gly Ala Tyr Thr Cys Val Val Met His Glu 260 26573801DNABubalus bubalis 73gagcggcgtg cacaccttcc cggccgtcct tcagtcctcc gggctctact ctctcagcag 60cacggtgacc gcgcccgcca gcgccacaaa aagccagacc ttcacctgca acgtagccca 120cccggccagc agcaccaagg tggacaaggc tgttgttccc ccatgcagac cgaaaccctg 180tgattgctgc ccaccccctg agctccccgg aggaccctct gtcttcatct tcccaccaaa 240acccaaggac accctcacaa tctctggaac tcctgaggtc acgtgtgtgg tggtggacgt 300gggccacgat gaccccgagg tgaagttctc ctggttcgtg gacgatgtgg aggtaaacac 360agccaggacg aagccaagag aggagcagtt caacagcacc taccgcgtgg tcagcgccct 420gcccatccag cacaacgact ggactggagg aaaggagttc aagtgcaagg tctacaatga 480aggcctccca gcccccatcg tgaggaccat ctccaggacc aaagggcagg cccgggagcc 540gcaggtgtac gtcctggccc caccccagga cgagctcagc aaaagcacgg tcagcatcac 600ttgcatggtc actggcttct acccagacta catcgccgta gagtggcaga aagatgggca 660gcctgagtca gaggacaaat atggcacgac cccgccccag ctggacagcg atggctccta 720cttcctgtac agcaggctca gggtgaacaa gaacagctgg caagaaggag gcgcctacac 780gtgtgtagtg atgcatgagg c 80174309PRTBulalus bubalis 74Ala Ser Ile Thr Ala Pro Lys Val Tyr Pro Leu Thr Ser Cys Arg Gly1 5 10 15Glu Thr Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Thr Val Thr Ala Pro Ala Ser Ala Thr Lys Ser Gln Thr65 70 75 80Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Thr 85 90 95Ala Val Gly Phe Ser Ser Asp Cys Cys Lys Phe Pro Lys Pro Cys Val 100 105 110Arg Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu 115 120 125Met Ile Thr Gly Asn Pro Glu Val Thr Cys Val Val Val Asp Val Gly 130 135 140Arg Asp Asn Pro Glu Val Gln Phe Ser Trp Phe Val Gly Asp Val Glu145 150 155 160Val His Thr Gly Arg Ser Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 165 170 175Tyr Arg Val Val Ser Thr Leu Pro Ile Gln His Asn Asp Trp Thr Gly 180 185 190Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Gly Leu Pro Ala Pro 195 200 205Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Gln Ala Arg Glu Pro Gln 210 215 220Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu Ser Lys Ser Thr Val225 230 235 240Ser Val Thr Cys Met Val Thr Gly Phe Tyr Pro Asp Tyr Ile Ala Val 245 250 255Glu Trp His Arg Asp Arg Gln Ala Glu Ser Glu Asp Lys Tyr Arg Thr 260 265 270Thr Pro Pro Gln Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Arg 275 280 285Leu Lys Val Asn Lys Asn Ser Trp Gln Glu Gly Gly Ala Tyr Thr Cys 290 295 300Val Val Met His Glu30575929DNABubalus bubalis 75gcctccatca cagccccgaa agtctaccct ctgacttctt gccgcgggga aacgtccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggccgtcct tcagtcctct 180gggctctact ctctcagcag cacggtgacc gcgcccgcca gcgccacaaa aagccagacc 240ttcacctgca acgtagccca cccggccagc agcaccaagg tggacacggc tgttgggttc 300tccagtgact gctgcaagtt tcctaagcct tgtgtgaggg gaccatctgt cttcatcttc 360ccgccgaaac ccaaagacac cctgatgatc acaggaaatc ccgaggtcac atgtgtggtg 420gtggacgtgg gccgggataa ccccgaggtg cagttctcct ggttcgtggg tgatgtggag 480gtgcacacgg gcaggtcgaa gccgagagag gagcagttca acagcaccta ccgcgtggtc 540agcaccctgc ccatccagca caatgactgg actggaggaa aggagttcaa gtgcaaggtc 600aacaacaaag gcctcccagc ccccatcgtg aggaccatct ccaggaccaa agggcaggcc 660cgggagccgc aggtgtacgt cctggcccca ccccaggaag agctcagcaa aagcacggtc 720agcgtcactt gcatggtcac tggcttctac ccagactaca tcgccgtaga gtggcataga 780gaccggcagg ctgagtcgga ggacaagtac cgcacgaccc cgccccagct ggacagcgat 840ggctcctact tcctgtacag caggctcaag gtgaacaaga acagctggca agaaggaggc 900gcctacacgt gtgtagtgat gcatgaggc 92976352PRTBubalus bubalis 76Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ala Ser Ser Cys Gly1 5 10 15Asp Thr Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Asn 35 40 45Gly Val His Thr Phe Pro Ala Val Arg Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Met Pro Thr Ser Thr Ala Gly Thr Gln Thr65 70 75 80Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Thr 85 90 95Ala Val Thr Ala Arg His Pro Val Pro Lys Thr Pro Glu Thr Pro Ile 100 105 110His Pro Val Lys Pro Pro Thr Gln Glu Pro Arg Asp Glu Lys Thr Pro 115 120 125Cys Gln Cys Pro Lys Cys Pro Glu Pro Leu Gly Gly Leu Ser Val Phe 130 135 140Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Thr Ile Ser Gly Thr Pro145 150 155 160Glu Val Thr Cys Val Val Val Asp Val Gly Gln Asp Asp Pro Glu Val 165 170 175Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Arg Met 180 185 190Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Ala 195 200 205Leu Pro Ile Gln His Gln Asp Trp Leu Arg Glu Lys Glu Phe Lys Cys 210 215 220Lys Val Asn Asn Lys Gly Leu Pro Ala Pro Ile Val Arg Thr Ile Ser225 230 235 240Arg Thr Lys Gly Gln Ala Arg Glu Pro Gln Val Tyr Val Leu Ala Pro 245 250 255Pro Arg Glu Glu Leu Ser Lys Ser Thr Leu Ser Leu Thr Cys Leu Ile 260 265 270Thr Gly Phe Tyr Pro Glu Glu Val Asp Val Glu Trp Gln Arg Asn Gly 275 280 285Gln Pro Glu Ser Glu Asp Lys Tyr His Thr Thr Pro Pro Gln Leu Asp 290 295 300Ala Asp Gly Ser Tyr Phe Leu Tyr Ser Arg Leu Arg Val Asn Arg Ser305 310 315 320Ser Trp Gln Glu Gly Asp His Tyr Thr Cys Ala Val Met His Glu Ala 325 330 335Leu Arg Asn His Tyr Lys Glu Lys Pro Ile Ser Arg Ser Pro Gly Lys 340 345 350771059DNABubalus bubalis 77gcctccacca cagccccgaa agtctaccct ctggcatcca gctgcgggga cacgtccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gaacggcgtg cacaccttcc cggccgtccg gcagtcctcc 180gggctctact ctctcagcag catggtgacc atgcccacca gcaccgcagg aacccagacc 240ttcacctgca acgtagccca cccggccagc agcaccaagg tggacacggc tgtcactgca 300aggcatccgg tcccgaagac accagagaca cctatccatc ctgtaaaacc cccaacccag 360gagcccagag atgaaaagac accctgccag tgtcccaaat gcccagaacc tctgggagga 420ctgtctgtct tcatcttccc accgaaaccc aaggacaccc tcacaatctc tggaacgccc 480gaggtcacgt gtgtggtggt ggacgtgggc caggatgacc ccgaagtgca gttctcctgg 540ttcgtggatg acgtggaggt gcacacagcc aggatgaagc caagagagga gcagttcaac 600agcacctacc gcgtggtcag cgccctgccc atccagcacc aggactggct gcgggaaaag 660gagttcaagt gcaaggtcaa caacaaaggc ctcccggccc ccatcgtgag gaccatctcc 720aggaccaaag ggcaggcccg ggagccacag gtgtatgtcc tggccccacc ccgggaagag 780ctcagcaaaa gcacgctcag cctcacctgc ctaatcaccg gcttctaccc agaagaggta 840gacgtggagt ggcagagaaa tgggcagcct gagtcagagg acaagtacca cacgacccca 900ccccagctgg acgctgacgg ctcctacttc ctgtacagca ggctcagggt gaacaggagc 960agctggcagg aaggagacca ctacacgtgt gcagtgatgc atgaagcttt acggaatcac 1020tacaaagaga agcccatctc gaggtctccg ggtaaatga 105978105PRTBubalus bubalis 78Gln Pro Lys Ser Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Thr Glu1 5 10 15Glu Leu Ser Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe 20 25 30Tyr Pro Gly Ser Met Thr Val Ala Arg Lys Ala Asp Gly Ser Thr Ile 35 40 45Thr Arg Asn Val Glu Thr Thr Arg Ala Ser Lys Gln Ser Asn Ser Lys 50 55 60Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Gly Ser Glu Trp Lys Ser65 70 75 80Lys Gly Ser Tyr Ser Cys Glu Val Thr His Glu Gly Ser Thr Val Thr 85 90 95Lys Thr Val Lys Pro Ser Glu Cys Ser 100 10579318DNABubalus buballis 79cagcccaagt ccgcaccctc agtcaccctg ttcccaccct ccacggagga gctcagcgcc 60aacaaggcca ccctggtgtg tctcatcagc gacttctacc cgggtagcat gaccgtggcc 120aggaaggcag acggcagcac catcacccgg aacgtggaga ccacccgggc ctccaaacag 180agcaacagca agtacgcggc cagcagctac ctgagcctga cgggcagcga gtggaaatcg 240aaaggcagtt acagctgcga ggtcacgcac gaggggagca ccgtgacaaa gacagtgaag 300ccctcagagt gttcttag 31880229PRTHomo sapiens 80Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe1 5 10 15Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 55 60Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser65 70 75 80Thr Tyr Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu 85 90 95Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100 105 110Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 130 135 140Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala145 150 155 160Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 165 170 175Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 180 185 190Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 195 200 205Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 215 220Leu Ser Leu Gly Lys22581690DNAHomo sapiens 81gagtccaaat atggtccccc gtgcccatca tgcccagcac ctgagttcct ggggggacca 60tcagtcttcc tgttcccccc aaaacccaag gacactctca tgatctcccg gacccctgag 120gtcacgtgcg tggtggtgga cgtgagccag gaagaccccg aggtccagtt caactggtac 180gtggatggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gttcaacagc 240acgtaccgtg tggtcagcgt cctcaccgtc gtgcaccagg actggctgaa cggcaaggag 300tacaagtgca aggtctccaa caaaggcctc ccgtcctcca tcgagaaaac catctccaaa 360gccaaagggc agccccgaga gccacaggtg tacaccctgc ccccatccca ggaggagatg 420accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctaccccag cgacatcgcc 480gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg 540gactccgacg gctccttctt cctctacagc aggctaaccg tggacaagag caggtggcag 600gaggggaatg tcttctcatg ctccgtgatg catgaggctc tgcacaacca ctacacgcag 660aagagcctct ccctgtctct gggtaaatga 69082217PRTHomo sapiens 82Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5 10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr 35 40 45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 55 60Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65 70 75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85 90 95Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 100 105 110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met 115 120 125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135 140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145 150 155 160Tyr Lys

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 165 170 175Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val 180 185 190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195 200 205Lys Ser Leu Ser Leu Ser Leu Gly Lys 210 21583654DNAHomo sapiens 83gcacctgagt tcctgggggg accatcagtc ttcctgttcc ccccaaaacc caaggacact 60ctcatgatct cccggacccc tgaggtcacg tgcgtggtgg tggacgtgag ccaggaagac 120cccgaggtcc agttcaactg gtacgtggat ggcgtggagg tgcataatgc caagacaaag 180ccgcgggagg agcagttcaa cagcacgtac cgtgtggtca gcgtcctcac cgtcctgcac 240caggactggc tgaacggcaa ggagtacaag tgcaaggtct ccaacaaagg cctcccgtcc 300tccatcgaga aaaccatctc caaagccaaa gggcagcccc gagagccaca ggtgtacacc 360ctgcccccat cccaggagga gatgaccaag aaccaggtca gcctgacctg cctggtcaaa 420ggcttctacc ccagcgacat cgccgtggag tgggagagca atgggcagcc ggagaacaac 480tacaagacca cgcctcccgt gctggactcc gacggctcct tcttcctcta cagcaagctc 540accgtggaca agagcaggtg gcaggagggg aacgtcttct catgctccgt gatgcatgag 600gctctgcaca accactacac gcagaagagc ctctccctgt ctctgggtaa atga 65484329PRTBos taurus 84Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ser Ser Cys Cys Gly1 5 10 15Asp Lys Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Gly Ser Thr Ser Gly Gln Thr Phe65 70 75 80Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Ala 85 90 95Val Asp Pro Thr Cys Lys Pro Ser Pro Cys Asp Cys Cys Pro Pro Pro 100 105 110Glu Leu Pro Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys 115 120 125Asp Thr Leu Thr Ile Ser Gly Thr Pro Glu Val Thr Cys Val Val Val 130 135 140Asp Val Gly His Asp Asp Pro Glu Val Lys Phe Ser Trp Phe Val Asp145 150 155 160Asp Val Glu Val Asn Thr Ala Thr Thr Lys Pro Arg Glu Glu Gln Phe 165 170 175Asn Ser Thr Tyr Arg Val Val Ser Ala Leu Arg Ile Gln His Gln Asp 180 185 190Trp Thr Gly Gly Lys Glu Phe Lys Cys Lys Val His Asn Glu Gly Leu 195 200 205Pro Ala Pro Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Pro Ala Arg 210 215 220Glu Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu Ser Lys225 230 235 240Ser Thr Val Ser Leu Thr Cys Met Val Thr Ser Phe Tyr Pro Asp Tyr 245 250 255Ile Ala Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Ser Glu Asp Lys 260 265 270Tyr Gly Thr Thr Pro Pro Gln Leu Asp Ala Asp Ser Ser Tyr Phe Leu 275 280 285Tyr Ser Lys Leu Arg Val Asp Arg Asn Ser Trp Gln Glu Gly Asp Thr 290 295 300Tyr Thr Cys Val Val Met His Glu Ala Leu His Asn His Tyr Thr Gln305 310 315 320Lys Ser Thr Ser Lys Ser Ala Gly Lys 32585329PRTBos taurus 85Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ser Ser Cys Cys Gly1 5 10 15Asp Lys Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Gly Ser Thr Ser Gly Gln Thr Phe65 70 75 80Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Ala 85 90 95Val Asp Pro Thr Cys Lys Pro Ser Pro Cys Asp Cys Cys Pro Pro Pro 100 105 110Glu Leu Pro Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys 115 120 125Asp Thr Leu Thr Ile Ser Gly Thr Pro Glu Val Thr Cys Val Val Val 130 135 140Asp Val Gly His Asp Asp Pro Glu Val Lys Phe Ser Trp Phe Val Asp145 150 155 160Asp Val Glu Val Asn Thr Ala Thr Thr Lys Pro Arg Glu Glu Gln Phe 165 170 175Asn Ser Thr Tyr Arg Val Val Ser Ala Leu Arg Ile Gln His Gln Asp 180 185 190Trp Thr Gly Gly Lys Glu Phe Lys Cys Lys Val His Asn Glu Gly Leu 195 200 205Pro Ala Pro Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Pro Ala Arg 210 215 220Glu Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu Ser Lys225 230 235 240Ser Thr Val Ser Leu Thr Cys Met Val Thr Ser Phe Tyr Pro Asp Tyr 245 250 255Ile Ala Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Ser Glu Asp Lys 260 265 270Tyr Gly Thr Thr Pro Pro Gln Leu Asp Ala Asp Ser Ser Tyr Phe Leu 275 280 285Tyr Ser Lys Leu Arg Val Asp Arg Asn Ser Trp Gln Glu Gly Asp Thr 290 295 300Tyr Thr Cys Val Val Met His Glu Ala Leu His Asn His Tyr Thr Gln305 310 315 320Lys Ser Thr Ser Lys Ser Ala Gly Lys 32586329PRTBos taurus 86Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ser Ser Cys Cys Gly1 5 10 15Asp Lys Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Gly Ser Thr Ser Gly Thr Gln Thr65 70 75 80Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys 85 90 95Ala Val Asp Pro Arg Cys Lys Thr Thr Cys Asp Cys Cys Pro Pro Pro 100 105 110Glu Leu Pro Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys 115 120 125Asp Thr Leu Thr Ile Ser Gly Thr Pro Glu Val Thr Cys Val Val Val 130 135 140Asp Val Gly His Asp Asp Pro Glu Val Lys Phe Ser Trp Phe Val Asp145 150 155 160Asp Val Glu Val Asn Thr Ala Thr Thr Lys Pro Arg Glu Glu Gln Phe 165 170 175Asn Ser Thr Tyr Arg Val Val Ser Ala Leu Arg Ile Gln His Gln Asp 180 185 190Trp Thr Gly Gly Lys Glu Phe Lys Cys Lys Val His Asn Glu Gly Leu 195 200 205Pro Ala Pro Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Pro Ala Arg 210 215 220Glu Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu Ser Lys225 230 235 240Ser Thr Val Ser Leu Thr Cys Met Val Thr Ser Phe Tyr Pro Asp Tyr 245 250 255Ile Ala Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Ser Glu Asp Lys 260 265 270Tyr Gly Thr Thr Pro Pro Gln Leu Asp Ala Asp Gly Ser Tyr Phe Leu 275 280 285Tyr Ser Arg Leu Arg Val Asp Arg Asn Ser Trp Gln Glu Gly Asp Thr 290 295 300Tyr Thr Cys Val Val Met His Glu Ala Leu His Asn His Tyr Thr Gln305 310 315 320Lys Ser Thr Ser Lys Ser Ala Gly Lys 32587326PRTBos taurus 87Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ala Ser Ser Cys Gly1 5 10 15Asp Thr Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Ser Gly Gln Thr Phe65 70 75 80Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Ala 85 90 95Val Gly Val Ser Ile Asp Cys Ser Lys Cys His Asn Gln Pro Cys Val 100 105 110Arg Glu Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu 115 120 125Met Ile Thr Gly Thr Pro Glu Val Thr Cys Val Val Val Asn Val Gly 130 135 140His Asp Asn Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu145 150 155 160Val His Thr Ala Arg Ser Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 165 170 175Tyr Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Thr Gly 180 185 190Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Gly Leu Ser Ala Pro 195 200 205Ile Val Arg Ile Ile Ser Arg Ser Lys Gly Pro Ala Arg Glu Pro Gln 210 215 220Val Tyr Val Leu Asp Pro Pro Lys Glu Glu Leu Ser Lys Ser Thr Leu225 230 235 240Ser Val Thr Cys Met Val Thr Gly Phe Tyr Pro Glu Asp Val Ala Val 245 250 255Glu Trp Gln Arg Asn Arg Gln Thr Glu Ser Glu Asp Lys Tyr Arg Thr 260 265 270Thr Pro Pro Gln Leu Asp Thr Asp Arg Ser Tyr Phe Leu Tyr Ser Lys 275 280 285Leu Arg Val Asp Arg Asn Ser Trp Gln Glu Gly Asp Ala Tyr Thr Cys 290 295 300Val Val Met His Glu Ala Leu His Asn His Tyr Met Gln Lys Ser Thr305 310 315 320Ser Lys Ser Ala Gly Lys 32588326PRTBos taurus 88Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ser Ser Cys Cys Gly1 5 10 15Asp Lys Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Gly Ser Thr Ser Gly Gln Thr Phe65 70 75 80Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Ala 85 90 95Val Gly Val Ser Ser Asp Cys Ser Lys Pro Asn Asn Gln His Cys Val 100 105 110Arg Glu Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu 115 120 125Met Ile Thr Gly Thr Pro Glu Val Thr Cys Val Val Val Asn Val Gly 130 135 140His Asp Asn Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu145 150 155 160Val His Thr Ala Arg Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 165 170 175Tyr Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Thr Gly 180 185 190Gly Lys Glu Phe Lys Cys Lys Val Asn Ile Lys Gly Leu Ser Ala Ser 195 200 205Ile Val Arg Ile Ile Ser Arg Ser Lys Gly Pro Ala Arg Glu Pro Gln 210 215 220Val Tyr Val Leu Asp Pro Pro Lys Glu Glu Leu Ser Lys Ser Thr Val225 230 235 240Ser Val Thr Cys Met Val Ile Gly Phe Tyr Pro Glu Asp Val Asp Val 245 250 255Glu Trp Gln Arg Asp Arg Gln Thr Glu Ser Glu Asp Lys Tyr Arg Thr 260 265 270Thr Pro Pro Gln Leu Asp Ala Asp Arg Ser Tyr Phe Leu Tyr Ser Lys 275 280 285Leu Arg Val Asp Arg Asn Ser Trp Gln Arg Gly Asp Thr Tyr Thr Cys 290 295 300Val Val Met His Glu Ala Leu His Asn His Tyr Met Gln Lys Ser Thr305 310 315 320Ser Lys Ser Ala Gly Lys 32589327PRTBos taurus 89Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ser Ser Cys Cys Gly1 5 10 15Asp Lys Ser Ser Ser Gly Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Ser Gly Thr Gln Thr65 70 75 80Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys 85 90 95Ala Val Gly Val Ser Ser Asp Cys Ser Lys Pro Asn Asn Gln His Cys 100 105 110Val Arg Glu Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr 115 120 125Leu Met Ile Thr Gly Thr Pro Glu Val Thr Cys Val Val Val Asn Val 130 135 140Gly His Asp Asn Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val145 150 155 160Glu Val His Thr Ala Arg Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 165 170 175Thr Tyr Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Thr 180 185 190Gly Gly Lys Glu Phe Lys Cys Lys Val Asn Ile Lys Gly Leu Ser Ala 195 200 205Ser Ile Val Arg Ile Ile Ser Arg Ser Lys Gly Pro Ala Arg Glu Pro 210 215 220Gln Val Tyr Val Leu Asp Pro Pro Lys Glu Glu Leu Ser Lys Ser Thr225 230 235 240Val Ser Leu Thr Cys Met Val Ile Gly Phe Tyr Pro Glu Asp Val Asp 245 250 255Val Glu Trp Gln Arg Asp Arg Gln Thr Glu Ser Glu Asp Lys Tyr Arg 260 265 270Thr Thr Pro Pro Gln Leu Asp Ala Asp Arg Ser Tyr Phe Leu Tyr Ser 275 280 285Lys Leu Arg Val Asp Arg Asn Ser Trp Gln Arg Gly Asp Thr Tyr Thr 290 295 300Cys Val Val Met His Glu Ala Leu His Asn His Tyr Met Gln Lys Ser305 310 315 320Thr Ser Lys Ser Ala Gly Lys 32590352PRTBos taurus 90Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ala Ser Ser Cys Gly1 5 10 15Asp Thr Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Arg Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Ser Ser Glu Thr Gln Thr65 70 75 80Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys 85 90 95Ala Val Thr Ala Arg Arg Pro Val Pro Thr Thr Pro Lys Thr Thr Ile 100 105 110Pro Pro Gly Lys Pro Thr Thr Pro Lys Ser Glu Val Glu Lys Thr Pro 115 120 125Cys Gln Cys Ser Lys Cys Pro Glu Pro Leu Gly Gly Leu Ser Val Phe 130 135 140Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Thr Ile Ser Gly Thr Pro145 150 155 160Glu Val Thr Cys Val Val Val Asp Val Gly Gln Asp Asp Pro Glu Val 165 170 175Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Arg Thr 180 185 190Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Ala 195 200 205Leu Arg Ile Gln His Gln Asp Trp Leu Gln Gly Lys Glu Phe Lys Cys 210 215 220Lys Val Asn Asn Lys Gly Leu Pro Ala Pro Ile Val Arg Thr Ile Ser225 230 235 240Arg Thr Lys Gly Gln Ala Arg Glu Pro Gln Val Tyr Val Leu Ala Pro 245 250 255Pro Arg Glu Glu Leu Ser Lys Ser Thr Leu Ser Leu Thr Cys Leu Ile 260 265 270Thr Gly Phe Tyr Pro Glu Glu Ile Asp Val Glu Trp Gln Arg Asn Gly 275 280 285Gln Pro Glu Ser Glu Asp Lys Tyr His Thr Thr Ala Pro Gln Leu Asp 290 295 300Ala Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Arg Val Asn Lys Ser305 310 315 320Ser Trp Gln Glu Gly Asp His Tyr Thr Cys Ala Val Met His Glu Ala

325 330 335Leu Arg Asn His Tyr Lys Glu Lys Ser Ile Ser Arg Ser Pro Gly Lys 340 345 35091352PRTBos taurus 91Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ala Ser Arg Cys Gly1 5 10 15Asp Thr Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Ala Ser Thr Ser Glu Thr Gln Thr65 70 75 80Phe Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys 85 90 95Ala Val Thr Ala Arg Arg Pro Val Pro Thr Thr Pro Lys Thr Thr Ile 100 105 110Pro Pro Gly Lys Pro Thr Thr Gln Glu Ser Glu Val Glu Lys Thr Pro 115 120 125Cys Gln Cys Ser Lys Cys Pro Glu Pro Leu Gly Gly Leu Ser Val Phe 130 135 140Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Thr Ile Ser Gly Thr Pro145 150 155 160Glu Val Thr Cys Val Val Val Asp Val Gly Gln Asp Asp Pro Glu Val 165 170 175Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Arg Thr 180 185 190Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Ala 195 200 205Leu Arg Ile Gln His Gln Asp Trp Leu Gln Gly Lys Glu Phe Lys Cys 210 215 220Lys Val Asn Asn Lys Gly Leu Pro Ala Pro Ile Val Arg Thr Ile Ser225 230 235 240Arg Thr Lys Gly Gln Ala Arg Glu Pro Gln Val Tyr Val Leu Ala Pro 245 250 255Pro Arg Glu Glu Leu Ser Lys Ser Thr Leu Ser Leu Thr Cys Leu Ile 260 265 270Thr Gly Phe Tyr Pro Glu Glu Ile Asp Val Glu Trp Gln Arg Asn Gly 275 280 285Gln Pro Glu Ser Glu Asp Lys Tyr His Thr Thr Ala Pro Gln Leu Asp 290 295 300Ala Asp Gly Ser Tyr Phe Leu Tyr Ser Arg Leu Arg Val Asn Lys Ser305 310 315 320Ser Trp Gln Glu Gly Asp His Tyr Thr Cys Ala Val Met His Glu Ala 325 330 335Leu Arg Asn His Tyr Lys Glu Lys Ser Ile Ser Arg Ser Pro Gly Lys 340 345 35092990DNABos taurus 92gcctccacca cagccccgaa agtctaccct ctgagttctt gctgcgggga caagtccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggctgtcct tcagtcctcc 180gggctgtact ctctcagcag catggtgacc gtgcccggca gcacctcagg acagaccttc 240acctgcaacg tagcccaccc ggccagcagc accaaggtgg acaaggctgt tgatcccaca 300tgcaaaccat caccctgtga ctgttgccca ccccctgagc tccccggagg accctctgtc 360ttcatcttcc caccgaaacc caaggacacc ctcacaatct cgggaacgcc cgaggtcacg 420tgtgtggtgg tggacgtggg ccacgatgac cccgaggtga agttctcctg gttcgtggac 480gacgtggagg taaacacagc cacgacgaag ccgagagagg agcagttcaa cagcacctac 540cgcgtggtca gcgccctgcg catccagcac caggactgga ctggaggaaa ggagttcaag 600tgcaaggtcc acaacgaagg cctcccggcc cccatcgtga ggaccatctc caggaccaaa 660gggccggccc gggagccgca ggtgtatgtc ctggccccac cccaggaaga gctcagcaaa 720agcacggtca gcctcacctg catggtcacc agcttctacc cagactacat cgccgtggag 780tggcagagaa acgggcagcc tgagtcggag gacaagtacg gcacgacccc gccccagctg 840gacgccgaca gctcctactt cctgtacagc aagctcaggg tggacaggaa cagctggcag 900gaaggagaca cctacacgtg tgtggtgatg cacgaggccc tgcacaatca ctacacgcag 960aagtccacct ctaagtctgc gggtaaatga 99093990DNABos taurus 93gcctccacca cagccccgaa agtctaccct ctgagttctt gctgcgggga caagtccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggccgtcct tcagtcctcc 180gggctgtact ctctcagcag catggtgacc gtgcccggca gcacctcagg acagaccttc 240acctgcaacg tagcccaccc ggccagcagc accaaggtgg acaaggctgt tgatcccaca 300tgcaaaccat caccctgtga ctgttgccca ccccctgagc tccccggagg accctctgtc 360ttcatcttcc caccgaaacc caaggacacc ctcacaatct cgggaacgcc cgaggtcacg 420tgtgtggtgg tggacgtggg ccacgatgac cccgaggtga agttctcctg gttcgtggac 480gacgtggagg taaacacagc cacgacgaag ccgagagagg agcagttcaa cagcacctac 540cgcgtggtca gcgccctgcg catccagcac caggactgga ctggaggaaa ggagttcaag 600tgcaaggtcc acaacgaagg cctcccggcc cccatcgtga ggaccatctc caggaccaaa 660gggccggccc gggagccgca ggtgtatgtc ctggccccac cccaggaaga gctcagcaaa 720agcacggtca gcctcacctg catggtcacc agcttctacc cagactacat cgccgtggag 780tggcagagaa acgggcagcc tgagtcggag gacaagtacg gcacgacccc gccccagctg 840gacgccgaca gctcctactt cctgtacagc aagctcaggg tggacaggaa cagctggcag 900gaaggagaca cctacacgtg tgtggtgatg cacgaggccc tgcacaatca ctacacgcag 960aagtccacct ctaagtctgc gggtaaatga 99094990DNABos taurus 94gcctccacca cagccccgaa agtctaccct ctgagttctt gctgcgggga caagtccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggccgtcct tcagtcctcc 180gggctctact ctctcagcag catggtgacc gtgcccggca gcacctcagg aacccagacc 240ttcacctgca acgtagccca cccggccagc agcaccaagg tggacaaggc tgttgatccc 300agatgcaaaa caacctgtga ctgttgccca ccgcctgagc tccctggagg accctctgtc 360ttcatcttcc caccgaaacc caaggacacc ctcacaatct cgggaacgcc cgaggtcacg 420tgtgtggtgg tggacgtggg ccacgatgac cccgaggtga agttctcctg gttcgtggac 480gacgtggagg taaacacagc cacgacgaag ccgagagagg agcagttcaa cagcacctac 540cgcgtggtca gcgccctgcg catccagcac caggactgga ctggaggaaa ggagttcaag 600tgcaaggtcc acaacgaagg cctcccagcc cccatcgtga ggaccatctc caggaccaaa 660gggccggccc gggagccgca ggtgtatgtc ctggccccac cccaggaaga gctcagcaaa 720agcacggtca gcctcacctg catggtcacc agcttctacc cagactacat cgccgtggag 780tggcagagaa atgggcagcc tgagtcagag gacaagtacg gcacgacccc tccccagctg 840gacgccgacg gctcctactt cctgtacagc aggctcaggg tggacaggaa cagctggcag 900gaaggagaca cctacacgtg tgtggtgatg cacgaggccc tgcacaatca ctacacgcag 960aagtccacct ctaagtctgc gggtaaatga 99095981DNABos taurus 95gcctccacca cagccccgaa agtctaccct ctggcatcca gctgcggaga cacatccagc 60tccaccgtga ccctgggctg cctggtgtcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggctgtcct tcagtcctcc 180gggctctact ctctcagcag catggtgacc gtgcccgcca gcagctcagg acagaccttc 240acctgcaacg tagcccaccc ggccagcagc accaaggtgg acaaggctgt tggggtctcc 300attgactgct ccaagtgtca taaccagcct tgcgtgaggg aaccatctgt cttcatcttc 360ccaccgaaac ccaaagacac cctgatgatc acaggaacgc ccgaggtcac gtgtgtggtg 420gtgaacgtgg gccacgataa ccccgaggtg cagttctcct ggttcgtgga tgacgtggag 480gtgcacacgg ccaggtcgaa gccaagagag gagcagttca acagcacgta ccgcgtggtc 540agcgccctgc ccatccagca ccaggactgg actggaggaa aggagttcaa gtgcaaggtc 600aacaacaaag gcctctcggc ccccatcgtg aggatcatct ccaggagcaa agggccggcc 660cgggagccgc aggtgtatgt cctggaccca cccaaggaag agctcagcaa aagcacgctc 720agcgtcacct gcatggtcac cggcttctac ccagaagatg tagccgtgga gtggcagaga 780aaccggcaga ctgagtcgga ggacaagtac cgcacgaccc cgccccagct ggacaccgac 840cgctcctact tcctgtacag caagctcagg gtggacagga acagctggca ggaaggagac 900gcctacacgt gtgtggtgat gcacgaggcc ctgcacaatc actacatgca gaagtccacc 960tctaagtctg cgggtaaatg a 98196981DNABos taurus 96gcctccacca cagccccgaa agtctaccct ctgagttctt gctgcgggga caagtccagc 60tccaccgtga ccctgggctg cctggtgtcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggccgtcct tcagtcctcc 180gggctctact ctctcagcag catggtgacc gtgcccggca gcacctcagg acagaccttc 240acctgcaacg tagcccaccc ggccagcagc accaaggtgg acaaggctgt tggggtctcc 300agtgactgct ccaagcctaa taaccagcat tgcgtgaggg aaccatctgt cttcatcttc 360ccaccgaaac ccaaagacac cctgatgatc acaggaacgc ccgaggtcac gtgtgtggtg 420gtgaacgtgg gccacgataa ccccgaggtg cagttctcct ggttcgtgga cgacgtggag 480gtgcacacgg ccaggacgaa gccgagagag gagcagttca acagcacgta ccgcgtggtc 540agcgccctgc ccatccagca ccaggactgg actggaggaa aggagttcaa gtgcaaggtc 600aacatcaaag gcctctcggc ctccatcgtg aggatcatct ccaggagcaa agggccggcc 660cgggagccgc aggtgtatgt cctggaccca cccaaggaag agctcagcaa aagcacggtc 720agcgtcacct gcatggtcat cggcttctac ccagaagatg tagacgtgga gtggcagaga 780gaccggcaga ctgagtcgga ggacaagtac cgcacgaccc cgccccagct ggacgccgac 840cgctcctact tcctgtacag caagctcagg gtggacagga acagctggca gagaggagac 900acctacacgt gtgtggtgat gcacgaggcc ctgcacaatc actacatgca gaagtccacc 960tctaagtctg cgggtaaatg a 98197984DNABos taurus 97gcctccacca cagccccgaa agtctaccct ctgagttctt gctgcgggga caagtccagc 60tcgggggtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggccgtcct tcagtcctcc 180gggctctact ctctcagcag catggtgacc gtgcccgcca gcagctcagg aacccagacc 240ttcacctgca acgtagccca cccggccagc agcaccaagg tggacaaggc tgttggggtc 300tccagtgact gctccaagcc taataaccag cattgcgtga gggaaccatc tgtcttcatc 360ttcccaccga aacccaaaga caccctgatg atcacaggaa cgcccgaggt cacgtgtgtg 420gtggtgaacg tgggccacga taaccccgag gtgcagttct cctggttcgt ggacgacgtg 480gaggtgcaca cggccaggac gaagccgaga gaggagcagt tcaacagcac gtaccgcgtg 540gtcagcgccc tgcccatcca gcaccaggac tggactggag gaaaggagtt caagtgcaag 600gtcaacatca aaggcctctc ggcctccatc gtgaggatca tctccaggag caaagggccg 660gcccgggagc cgcaggtgta tgtcctggac ccacccaagg aagagctcag caaaagcacg 720gtcagcctca cctgcatggt catcggcttc tacccagaag atgtagacgt ggagtggcag 780agagaccggc agactgagtc ggaggacaag taccgcacga ccccgcccca gctggacgcc 840gaccgctcct acttcctgta cagcaagctc agggtggaca ggaacagctg gcagagagga 900gacacctaca cgtgtgtggt gatgcacgag gccctgcaca atcactacat gcagaagtcc 960acctctaagt ctgcgggtaa atga 984981059DNABos taurus 98gcctccacca cagccccgaa agtctaccct ctggcatcca gctgcggaga cacatccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagcggcgtg cacaccttcc cggccgtccg gcagtcctct 180gggctgtact ctctcagcag catggtgact gtgcccgcca gcagctcaga aacccagacc 240ttcacctgca acgtagccca cccggccagc agcaccaagg tggacaaggc tgtcactgca 300aggcgtccag tcccgacgac gccaaagaca actatccctc ctggaaaacc cacaacccca 360aagtctgaag ttgaaaagac accctgccag tgttccaaat gcccagaacc tctgggagga 420ctgtctgtct tcatcttccc accgaaaccc aaggacaccc tcacaatctc gggaacgccc 480gaggtcacgt gtgtggtggt ggacgtgggc caggatgacc ccgaggtgca gttctcctgg 540ttcgtggacg acgtggaggt gcacacggcc aggacgaagc cgagagagga gcagttcaac 600agcacctacc gcgtggtcag cgccctgcgc atccagcacc aggactggct gcagggaaag 660gagttcaagt gcaaggtcaa caacaaaggc ctcccggccc ccattgtgag gaccatctcc 720aggaccaaag ggcaggcccg ggagccgcag gtgtatgtcc tggccccacc ccgggaagag 780ctcagcaaaa gcacgctcag cctcacctgc ctgatcaccg gtttctaccc agaagagata 840gacgtggagt ggcagagaaa tgggcagcct gagtcggagg acaagtacca cacgaccgca 900ccccagctgg atgctgacgg ctcctacttc ctgtacagca agctcagggt gaacaagagc 960agctggcagg aaggagacca ctacacgtgt gcagtgatgc acgaagcttt acggaatcac 1020tacaaagaga agtccatctc gaggtctccg ggtaaatga 1059991059DNABos taurus 99gcctccacca cagccccgaa agtctaccct ctggcatccc gctgcggaga cacatccagc 60tccaccgtga ccctgggctg cctggtctcc agctacatgc ccgagccggt gaccgtgacc 120tggaactcgg gtgccctgaa gagtggcgtg cacaccttcc cggccgtcct tcagtcctcc 180gggctgtact ctctcagcag catggtgacc gtgcccgcca gcacctcaga aacccagacc 240ttcacctgca acgtagccca cccggccagc agcaccaagg tggacaaggc tgtcactgca 300aggcgtccag tcccgacgac gccaaagaca accatccctc ctggaaaacc cacaacccag 360gagtctgaag ttgaaaagac accctgccag tgttccaaat gcccagaacc tctgggagga 420ctgtctgtct tcatcttccc accgaaaccc aaggacaccc tcacaatctc gggaacgccc 480gaggtcacgt gtgtggtggt ggacgtgggc caggatgacc ccgaggtgca gttctcctgg 540ttcgtggacg acgtggaggt gcacacggcc aggacgaagc cgagagagga gcagttcaac 600agcacctacc gcgtggtcag cgccctgcgc atccagcacc aggactggct gcagggaaag 660gagttcaagt gcaaggtcaa caacaaaggc ctcccggccc ccattgtgag gaccatctcc 720aggaccaaag ggcaggcccg ggagccgcag gtgtatgtcc tggccccacc ccgggaagag 780ctcagcaaaa gcacgctcag cctcacctgc ctgatcaccg gtttctaccc agaagagata 840gacgtggagt ggcagagaaa tgggcagcct gagtcggagg acaagtacca cacgaccgca 900ccccagctgg atgctgacgg ctcctacttc ctgtacagca ggctcagggt gaacaagagc 960agctggcagg aaggagacca ctacacgtgt gcagtgatgc atgaagcttt acggaatcac 1020tacaaagaga agtccatctc gaggtctccg ggtaaatga 1059100105PRTBos taurus 100Gln Pro Lys Ser Pro Pro Ser Val Thr Leu Phe Pro Pro Ser Thr Glu1 5 10 15Glu Leu Asn Gly Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe 20 25 30Tyr Pro Gly Ser Val Thr Val Val Trp Lys Ala Asp Gly Ser Thr Ile 35 40 45Thr Arg Asn Val Glu Thr Thr Arg Ala Ser Lys Gln Ser Asn Ser Lys 50 55 60Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Ser Ser Asp Trp Lys Ser65 70 75 80Lys Gly Ser Tyr Ser Cys Glu Val Thr His Glu Gly Ser Thr Val Thr 85 90 95Lys Thr Val Lys Pro Ser Glu Cys Ser 100 105101318DNABos taurus 101cagcccaagt ccccaccctc ggtcaccctg ttcccgccct ccacggagga gctcaacggc 60aacaaggcca ccctggtgtg tctcatcagc gacttctacc cgggtagcgt gaccgtggtc 120tggaaggcag acggcagcac catcacccgc aacgtggaga ccacccgggc ctccaaacag 180agcaacagca agtacgcggc cagcagctac ctgagcctga cgagcagcga ctggaaatcg 240aaaggcagtt acagctgcga ggtcacgcac gaggggagca ccgtgacgaa gacagtgaag 300ccctcagagt gttcttag 318102328PRTBos taurus 102Ala Ser Thr Thr Ala Pro Lys Val Tyr Pro Leu Ser Ser Cys Cys Gly1 5 10 15Asp Lys Ser Ser Ser Thr Val Thr Leu Gly Cys Leu Val Ser Ser Tyr 20 25 30Met Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ala Leu Lys Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Met Val Thr Val Pro Gly Ser Thr Ser Gly Gln Thr Phe65 70 75 80Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Ala 85 90 95Val Asp Pro Thr Cys Lys Pro Ser Pro Cys Asp Cys Cys Pro Pro Pro 100 105 110Pro Val Ala Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 115 120 125Thr Leu Thr Ile Ser Gly Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140Val Gly His Asp Asp Pro Glu Val Lys Phe Ser Trp Phe Val Asp Asp145 150 155 160Val Glu Val Asn Thr Ala Thr Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175Ser Thr Tyr Arg Val Val Ser Ala Leu Arg Ile Gln His Gln Asp Trp 180 185 190Thr Gly Gly Lys Glu Phe Lys Cys Lys Val His Asn Glu Gly Leu Pro 195 200 205Ser Ser Ile Val Arg Thr Ile Ser Arg Thr Lys Gly Pro Ala Arg Glu 210 215 220Pro Gln Val Tyr Val Leu Ala Pro Pro Gln Glu Glu Leu Ser Lys Ser225 230 235 240Thr Val Ser Leu Thr Cys Met Val Thr Ser Phe Tyr Pro Asp Tyr Ile 245 250 255Ala Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Ser Glu Asp Lys Tyr 260 265 270Gly Thr Thr Pro Pro Gln Leu Asp Ala Asp Ser Ser Tyr Phe Leu Tyr 275 280 285Ser Lys Leu Arg Val Asp Arg Asn Ser Trp Gln Glu Gly Asp Thr Tyr 290 295 300Thr Cys Val Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys305 310 315 320Ser Thr Ser Lys Ser Ala Gly Lys 325103987DNABos taurus 103gctagcacaa ctgctcctaa ggtgtacccc ctgagctctt gctgcggcga caagtctagc 60agcaccgtga ccctcggatg cctcgtcagc agctatatgc ctgagccagt tacagtgaca 120tggaattctg gtgcccttaa gtccggcgtc cataccttcc ctgctgtgct gcagtcctct 180ggcctgtaca gtttgtcctc tatggtgaca gtacccggtt ccacctccgg acagaccttt 240acctgtaatg tggctcatcc cgcctcctcc acaaaggtgg ataaggctgt tgaccctacc 300tgtaaaccca gtccatgcga ctgctgtccc ccccctccag ttgccggacc ctcagtcttt 360attttcccac ccaaacccaa agacaccctg acaatctctg gaacaccaga agtcacctgc 420gtcgtcgtgg atgtgggcca cgacgatcct gaggtaaaat tctcatggtt cgtcgacgat 480gtggaagtga atacagctac tacaaaacct cgcgaagagc agtttaactc tacctatcga 540gtggtttctg ctttgcggat tcagcatcag gattggacag gcggcaaaga gtttaaatgt 600aaagtccata acgagggact tccttctagt atcgtgcgca ctatcagtag aactaaaggg 660cctgctcggg aacctcaggt gtacgtcctg gcacctccac aggaagagct gagtaagtct 720acagtttctc tgacttgtat ggtaacatct ttttatccag attacatcgc agttgaatgg 780cagaggaacg ggcagccaga gagtgaggat aagtacggga ctactccacc acagctggac 840gcagactcaa gttacttcct gtactcaaag ctgagggttg acagaaactc atggcaggag 900ggggacactt acacttgcgt agttatgcac gaggcacttc acaaccacta cactcagaag 960agtacttcaa agagtgcagg gaagtaa 987104318DNAArtificial SequenceA synthetic codon-optimized sequence 104cagcctaaga gtcctccttc tgtaacactc tttcccccct ctaccgagga actcaacggc 60aataaagcta ccttggtttg ccttatttct gatttctacc ccgggtctgt gaccgtggtg 120tggaaagctg atgggtccac cattactcgg aatgtggaaa ccacccgggc

ttctaagcag 180tccaactcta aatacgcagc atcctcctat ttgagtctta ctagtagtga ctggaagtca 240aagggtagtt acagttgcga agtcacacat gaaggttcaa cagtgacaaa gacagtcaag 300ccctcagagt gctcatag 318105238PRTArtificial SequenceA synthetic chimeric L chain 105Met Glu Ser Gln Thr His Val Leu Ile Ser Leu Leu Leu Ser Val Ser1 5 10 15Gly Thr Tyr Gly Asp Ile Ala Ile Thr Gln Ser Pro Ser Ser Val Ala 20 25 30Val Ser Val Gly Glu Thr Val Thr Leu Ser Cys Lys Ser Ser Gln Ser 35 40 45Leu Leu Tyr Ser Glu Asn Gln Lys Asp Tyr Leu Gly Trp Tyr Gln Gln 50 55 60Lys Pro Gly Gln Thr Pro Lys Pro Leu Ile Tyr Trp Ala Thr Asn Arg65 70 75 80His Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp 85 90 95Phe Thr Leu Ile Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr 100 105 110Tyr Cys Gly Gln Tyr Leu Val Tyr Pro Phe Thr Phe Gly Pro Gly Thr 115 120 125Lys Leu Glu Leu Lys Gln Pro Lys Ser Pro Pro Ser Val Thr Leu Phe 130 135 140Pro Pro Ser Thr Glu Glu Leu Asn Gly Asn Lys Ala Thr Leu Val Cys145 150 155 160Leu Ile Ser Asp Phe Tyr Pro Gly Ser Val Thr Val Val Trp Lys Ala 165 170 175Asp Gly Ser Thr Ile Thr Arg Asn Val Glu Thr Thr Arg Ala Ser Lys 180 185 190Gln Ser Asn Ser Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Ser 195 200 205Ser Asp Trp Lys Ser Lys Gly Ser Tyr Ser Cys Glu Val Thr His Glu 210 215 220Gly Ser Thr Val Thr Lys Thr Val Lys Pro Ser Glu Cys Ser225 230 235106465PRTArtificial SequenceA synthetic chimeric H chain 106Met Gly Trp Ser Gln Ile Ile Leu Phe Leu Val Ala Ala Ala Thr Cys1 5 10 15Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys 20 25 30Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45Thr Ser Asn Phe Met His Trp Val Lys Gln Gln Pro Gly Asn Gly Leu 50 55 60Glu Trp Ile Gly Trp Ile Tyr Pro Glu Tyr Gly Asn Thr Lys Tyr Asn65 70 75 80Gln Lys Phe Asp Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110Tyr Phe Cys Ala Ser Glu Glu Ala Val Ile Ser Leu Val Tyr Trp Gly 115 120 125Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Thr Ala Pro Lys 130 135 140Val Tyr Pro Leu Ser Ser Cys Cys Gly Asp Lys Ser Ser Ser Thr Val145 150 155 160Thr Leu Gly Cys Leu Val Ser Ser Tyr Met Pro Glu Pro Val Thr Val 165 170 175Thr Trp Asn Ser Gly Ala Leu Lys Ser Gly Val His Thr Phe Pro Ala 180 185 190Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Met Val Thr Val 195 200 205Pro Gly Ser Thr Ser Gly Gln Thr Phe Thr Cys Asn Val Ala His Pro 210 215 220Ala Ser Ser Thr Lys Val Asp Lys Ala Val Asp Pro Thr Cys Lys Pro225 230 235 240Ser Pro Cys Asp Cys Cys Pro Pro Pro Pro Val Ala Gly Pro Ser Val 245 250 255Phe Ile Phe Pro Pro Lys Pro Lys Asp Thr Leu Thr Ile Ser Gly Thr 260 265 270Pro Glu Val Thr Cys Val Val Val Asp Val Gly His Asp Asp Pro Glu 275 280 285Val Lys Phe Ser Trp Phe Val Asp Asp Val Glu Val Asn Thr Ala Thr 290 295 300Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser305 310 315 320Ala Leu Arg Ile Gln His Gln Asp Trp Thr Gly Gly Lys Glu Phe Lys 325 330 335Cys Lys Val His Asn Glu Gly Leu Pro Ser Ser Ile Val Arg Thr Ile 340 345 350Ser Arg Thr Lys Gly Pro Ala Arg Glu Pro Gln Val Tyr Val Leu Ala 355 360 365Pro Pro Gln Glu Glu Leu Ser Lys Ser Thr Val Ser Leu Thr Cys Met 370 375 380Val Thr Ser Phe Tyr Pro Asp Tyr Ile Ala Val Glu Trp Gln Arg Asn385 390 395 400Gly Gln Pro Glu Ser Glu Asp Lys Tyr Gly Thr Thr Pro Pro Gln Leu 405 410 415Asp Ala Asp Ser Ser Tyr Phe Leu Tyr Ser Lys Leu Arg Val Asp Arg 420 425 430Asn Ser Trp Gln Glu Gly Asp Thr Tyr Thr Cys Val Val Met His Glu 435 440 445Ala Leu His Asn His Tyr Thr Gln Lys Ser Thr Ser Lys Ser Ala Gly 450 455 460Lys465107717DNAArtificial SequenceA synthetic codon-optimized sequence 107atggaatctc aaactcatgt tttgatttca ttacttctga gtgtttccgg aacctacggt 60gatatcgcta tcactcaatc tccctcctct gttgctgtgt ctgtgggcga aaccgttacc 120ctgtcctgca agtccagtca gtctcttctc tactccgaga atcaaaagga ctacctgggc 180tggtaccaac agaagcccgg ccagacccca aagccactga tatactgggc aaccaacagg 240cacaccggag tgcccgacag gttcacaggc agtggatctg gcaccgactt taccttgatc 300atttcaagcg tgcaggctga agatctggcc gactactact gtggtcagta tctggtgtat 360cctttcactt tcgggccagg gacaaaactc gagctcaaac agcctaagag tcctccttct 420gtaacactct ttcccccctc taccgaggaa ctcaacggca ataaagctac cttggtttgc 480cttatttctg atttctaccc cgggtctgtg accgtggtgt ggaaagctga tgggtccacc 540attactcgga atgtggaaac cacccgggct tctaagcagt ccaactctaa atacgcagca 600tcctcctatt tgagtcttac tagtagtgac tggaagtcaa agggtagtta cagttgcgaa 660gtcacacatg aaggttcaac agtgacaaag acagtcaagc cctcagagtg ctcatag 7171081398DNAArtificial SequenceA synthetic codon-optimized sequence 108atggggtggt cccagattat attgttcctc gtcgccgccg ccacttgcgt acacagccaa 60gtgcaacttc aacaaagcgg tgcagaactg gtaaagcccg gtagctctgt gaaaatatcc 120tgtaaagcca gtggctacac atttaccagc aactttatgc actgggtgaa gcaacagccc 180ggaaatggct tggagtggat tggctggatc tatcccgaat atggtaacac caagtataat 240cagaagttcg acggtaaggc caccctcacc gccgataagt catcctccac cgcctatatg 300cagctcagca gcctgaccag cgaggattcc gctgtgtact tctgtgccag cgaagaggct 360gtgatctcat tggtgtattg gggacagggc accctcgtca ccgtgtccag cgctagcaca 420actgctccta aggtgtaccc cctgagctct tgctgcggcg acaagtctag cagcaccgtg 480accctcggat gcctcgtcag cagctatatg cctgagccag ttacagtgac atggaattct 540ggtgccctta agtccggcgt ccataccttc cctgctgtgc tgcagtcctc tggcctgtac 600agtttgtcct ctatggtgac agtacccggt tccacctccg gacagacctt tacctgtaat 660gtggctcatc ccgcctcctc cacaaaggtg gataaggctg ttgaccctac ctgtaaaccc 720agtccatgcg actgctgtcc cccccctcca gttgccggac cctcagtctt tattttccca 780cccaaaccca aagacaccct gacaatctct ggaacaccag aagtcacctg cgtcgtcgtg 840gatgtgggcc acgacgatcc tgaggtaaaa ttctcatggt tcgtcgacga tgtggaagtg 900aatacagcta ctacaaaacc tcgcgaagag cagtttaact ctacctatcg agtggtttct 960gctttgcgga ttcagcatca ggattggaca ggcggcaaag agtttaaatg taaagtccat 1020aacgagggac ttccttctag tatcgtgcgc actatcagta gaactaaagg gcctgctcgg 1080gaacctcagg tgtacgtcct ggcacctcca caggaagagc tgagtaagtc tacagtttct 1140ctgacttgta tggtaacatc tttttatcca gattacatcg cagttgaatg gcagaggaac 1200gggcagccag agagtgagga taagtacggg actactccac cacagctgga cgcagactca 1260agttacttcc tgtactcaaa gctgagggtt gacagaaact catggcagga gggggacact 1320tacacttgcg tagttatgca cgaggcactt cacaaccact acactcagaa gagtacttca 1380aagagtgcag ggaagtaa 139810925DNAArtificial SequenceA synthetic primer 109atgaggatat atagtgtctt aacat 2511020DNAArtificial SequenceA synthetic primer 110ttacgtctcc tcaaaatgtg 2011125DNAArtificial SequenceA synthetic primer 111atgaggatat gtagtatctt tacat 2511221DNAArtificial SequenceA synthetic primer 112ttacgtctcc tcaaattgtg t 2111320DNAArtificial SequenceA synthetic primer 113atgaggatat atagtgtctt 2011420DNAArtificial SequenceA synthetic primer 114gccactcagg acttggtgat 2011520DNAArtificial SequenceA synthetic primer 115gggggtttac tgttgcttga 2011619DNAArtificial SequenceA synthetic primer 116ttacgtctcc tcaaattgt 1911729DNAArtificial SequenceA synthetic primer 117gaagatctat ggggaccccg cgggcgccg 2911829DNAArtificial SequenceA synthetic primer 118gacccgggga ggggccagga gcagtgtcc 2911928DNAArtificial SequenceA synthetic primer 119ccgctcgaga tgaggatata tagtgtct 2812028DNAArtificial SequenceA synthetic primer 120atcccgggcg tctcctcaaa atgtgtag 2812125DNAArtificial SequenceA synthetic primer 121actaagctta tggggacccc gcggg 2512226DNAArtificial SequenceA synthetic primer 122actcccgggg aggggccaag agcagt 2612329DNAArtificial SequenceA synthetic primer 123ccgctcgaga tgaggatatg tagtatctt 2912429DNAArtificial SequenceA synthetic primer 124atcccgggcg tctcctcaaa ttgtgtatc 2912528DNAArtificial SequenceA synthetic primer 125gacgctagca tgaggatata tagtgtct 2812628DNAArtificial SequenceA synthetic primer 126gctctgatat ccctcgtttt tgctggat 2812729DNAArtificial SequenceA synthetic primer 127gacgctagca tgaggatatg tagtatctt 2912829DNAArtificial SequenceA synthetic primer 128agcttgatat ccctctttct tgctggatc 2912930DNAArtificial SequenceA synthetic primer 129cgcggatatc atggattaca cagcgaagtg 3013029DNAArtificial SequenceA synthetic primer 130cggggtaccc cagagctgtt gctggttat 2913130DNAArtificial SequenceA synthetic primer 131cgcggctagc atgagaatgt ttagtgtctt 3013249DNAArtificial SequenceA synthetic primer 132cgcggatatc ttaatggtga tggtgatggt gagtcctctc acttgctgg 4913332DNAArtificial SequenceA synthetic primer 133atatgcggcc gcatggggac cccgcgggcg ct 3213430DNAArtificial SequenceA synthetic primer 134gcgcaagctt tcagaggggc caggagcagt 3013535DNAArtificial SequenceA synthetic primer 135ctagctagca ccatgaggat atatagtgtc ttaac 3513631DNAArtificial SequenceA synthetic primer 136caatctcgag ttacagacag aagatgactg c 3113729DNAArtificial SequenceA synthetic primer 137gctagcatga ggatatatag tgtcttaac 2913826DNAArtificial SequenceA synthetic primer 138gatatcattc ctcttttttg ctggat 26

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed