Interferon Alpha 2b Variants

Behrens; Collette ;   et al.

Patent Application Summary

U.S. patent application number 17/709510 was filed with the patent office on 2022-07-14 for interferon alpha 2b variants. The applicant listed for this patent is Teva Pharmaceuticals Australia PTY LTD.. Invention is credited to Collette Behrens, Adam Clarke, Teresa Domagala, Anthony Doyle, Matthew Pollard.

Application Number20220220184 17/709510
Document ID /
Family ID1000006242177
Filed Date2022-07-14

United States Patent Application 20220220184
Kind Code A1
Behrens; Collette ;   et al. July 14, 2022

INTERFERON ALPHA 2B VARIANTS

Abstract

The present invention provides a fusion polypeptide comprising a first domain and a second domain, wherein the first domain comprises a polypeptide ligand which binds to a cell surface-associated antigen and the second domain comprises aglycosylated interferon .alpha. 2b (IFN.alpha.2b) having a sequence of SEQ ID NO: 1 or SEQ ID NO: 2. The aglycosylated IFN.alpha.2b further comprises one or more amino acid substitutions or deletions which attenuate the activity of the aglycosylated IFN.alpha.2b.


Inventors: Behrens; Collette; (Macquarie Park, AU) ; Doyle; Anthony; (Macquarie Park, AU) ; Clarke; Adam; (Macquarie Park, AU) ; Pollard; Matthew; (Macquarie Park, AU) ; Domagala; Teresa; (Macquarie Park, AU)
Applicant:
Name City State Country Type

Teva Pharmaceuticals Australia PTY LTD.

Macquarie Park

AU
Family ID: 1000006242177
Appl. No.: 17/709510
Filed: March 31, 2022

Related U.S. Patent Documents

Application Number Filing Date Patent Number
16710574 Dec 11, 2019 11319356
17709510
14921420 Oct 23, 2015 10544199
16710574

Current U.S. Class: 1/1
Current CPC Class: C07K 16/2896 20130101; C07K 2319/70 20130101; C07K 16/2833 20130101; C07K 14/56 20130101; C07K 2319/33 20130101
International Class: C07K 14/56 20060101 C07K014/56; C07K 16/28 20060101 C07K016/28

Foreign Application Data

Date Code Application Number
Oct 29, 2014 AU 2014904326

Claims



1. A method of treating a tumour in a subject, the method comprising: administering to the subject a fusion polypeptide comprising a first domain and a second domain, wherein the first domain comprises a polypeptide ligand which binds to a cell surface-associated antigen on cells of the tumour and the second domain comprises aglycosylated interferon .alpha. 2b (IFN.alpha.2b) having a sequence of SEQ ID NO: 1 or SEQ ID NO: 2 and wherein the aglycosylated IFN.alpha.2b further comprises one or more amino acid substitutions or deletions which attenuate the activity of the aglycosylated IFN.alpha.2b.

2. The method of claim 1, wherein the tumour is selected from multiple myeloma or non-Hodgkin's lymphoma.

3. A method of generating a polypeptide ligand-attenuated IFN.alpha.2b fusion polypeptide in mammalian cells, wherein the polypeptide ligand-attenuated IFN.alpha.2b fusion polypeptide has improved heterogeneity and/or enhanced FcRn binding, the method comprising: culturing a recombinant mammalian cell comprising a polynucleotide encoding the polypeptide ligand-attenuated IFN.alpha.2b fusion polypeptide wherein T106 of the IFN.alpha.2b sequence is replaced with another amino acid or is deleted such that on expression the IFN.alpha.2b component of the fusion protein is aglycosylated.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation application of U.S. application Ser. No. 16/710,574, filed Dec. 11, 2019, which is a divisional application of U.S. application Ser. No. 14/921,420, filed Oct. 23, 2015 (U.S. Pat. No. 10,544,199), which claims priority to Australian Patent Application No. 2014904326 filed on Oct. 29, 2014, the contents of each of which are incorporated by reference herein, in their entirety and for all purposes.

REFERENCE TO A SEQUENCE LISTING

[0002] This application includes a Sequence Listing submitted electronically as a text file named 101017.000014.txt, created on Mar. 28, 2022, with a size of 298 KB. The Sequence Listing is incorporated by reference herein.

FIELD OF INVENTION

[0003] The present invention relates to polypeptides comprising ligands targeted against cell surface antigens and aglycosylated interferon .alpha. 2b (IFN.alpha.2b) and the use of these polypeptides in the treatment of cancer.

BACKGROUND OF INVENTION

[0004] Numerous peptide and polypeptide molecules have been described to function by interacting with a receptor on a cell surface, and thereby stimulating, inhibiting, or otherwise modulating a biological response, usually involving signal transduction pathways inside the cell that bears the said receptor. Examples of such molecules include peptide and polypeptide hormones, cytokines, chemokines, growth factors, apoptosis-inducing factors and the like. These molecules can be either soluble or can be attached to the surface of another cell.

[0005] Due to the biological activity of such molecules, some have potential use as therapeutics. Several peptide or polypeptide molecules have been approved by regulatory agencies as therapeutic products, including, for example, human growth hormone, insulin, interferon IFN.alpha.2b, IFN.alpha.2a, IFN.beta., erythropoietin, G-CSF and GM-CSF. Many of these and other peptides have demonstrated potential in therapeutic applications, but have also exhibited toxicity when administered to human patients. One reason for toxicity is that most of these molecules trigger receptors on a variety of cells, including cells other than those that mediate the therapeutic effect. For example, when IFN.alpha.2b is used to treat multiple myeloma its utility resides, at least in part, in its binding to type I interferon receptors on the myeloma cells, which in turn triggers reduced proliferation and hence limits disease progression. Unfortunately, however, this IFN also binds to numerous other, normal cells within the body, triggering a variety of other cellular responses, some of which are harmful (e.g. flu-like symptoms, neutropenia, depression). A consequence of such "off target" activity of peptides is that many peptides are not suitable as drug candidates. In this context, "off target activity" refers to activity on the peptide's natural receptor, but on the surface of cells other than those that mediate therapeutically beneficial effects.

[0006] Even though some peptides, such as IFN.alpha.2b, are approved for the treatment of medical conditions, they are poorly tolerated due to their "off target" biological activity. The off-target activity and associated poor tolerability also mean that some of these peptide based drugs cannot be administered at sufficiently high dosages to produce optimal therapeutic effects on the target cells which mediate the therapeutic effect.

[0007] Similarly, it has been known since the mid-1980's that interferons, in particular IFN.alpha., are able to increase apoptosis and decrease proliferation of certain cancer cells. These biological activities are mediated by type I interferon receptors on the surface of the cancer cells which, when stimulated, initiate various signal transduction pathways leading to reduced proliferation and/or the induction of terminal differentiation or apoptosis. IFN.alpha. has been approved by the FDA for the treatment of several cancers including melanoma, renal cell carcinoma, B cell lymphoma, multiple myeloma, chronic myelogenous leukemia (CML) and hairy cell leukemia. A "direct" effect of IFN.alpha. on the tumour cells is mediated by the IFN.alpha. binding directly to the type I IFN receptor on those cells and stimulating apoptosis, terminal differentiation or reduced proliferation. One "indirect" effect of IFN.alpha. on non-cancer cells is to stimulate the immune system, which may produce an additional anti-cancer effect by causing the immune system to reject the tumour.

[0008] Unfortunately, the type I interferon receptor is also present on most non-cancerous cells. Activation of this receptor on such cells by IFN.alpha. causes the expression of numerous pro-inflammatory cytokines and chemokines, leading to toxicity. Such toxicity prevents the dosing of IFN.alpha. to a subject at levels that exert the maximum anti-proliferative and pro-apoptotic activity on the cancer cells.

[0009] Ozzello et al. (Breast Cancer Research and Treatment 25:265-76, 1993) described covalently attaching human IFN.alpha. to a tumour-targeting antibody, thereby localizing the direct inhibitory activity of IFN.alpha. to the tumour as a way of reducing tumour growth rates, and demonstrated that such conjugates have anti-tumour activity in a xenograft model of a human cancer. The mechanism of the observed anti-cancer activity was attributed to a direct effect of IFN.alpha. on the cancer cells, since the human IFN.alpha. used in the experiments did not interact appreciably with the murine type I IFN receptor, which could have lead to an indirect anti-cancer effect. Because of this lack of binding of the human IFN.alpha. to the murine cells, however, the authors could not evaluate the toxicity of the antibody-IFN.alpha. conjugate relative to free INF.alpha.. These authors used a chemical method to attach the IFN.alpha. to the antibody.

[0010] Alkan et al., (Journal of Interferon Research, volume 4, number 3, p. 355-63, 1984) demonstrated that attaching human IFN.alpha. to an antibody that binds to the Epstein-Barr virus (EBV) membrane antigen (MA) increased its antiproliferative activities towards cells that express the EBV-MA antigen. This increased potency was dependent on both antigen expression by the target cells and the binding specificity of the antibody. The cell line tested was the cancer cell line QIMR-WIL, a myeloblastic leukemia. The authors suggested that the attachment of IFN.alpha. to an antibody could be used as a treatment for cancer since it would reduce tumour growth. Alkan et al did not address the potential toxicity of these antibody-IFN.alpha. conjugates arising from their interactions with normal, antigen-negative cells.

[0011] It is also known that the linkage between an antibody and IFN.alpha. may be accomplished by making a fusion protein construct. For example, IDEC (WO01/97844) disclose a direct fusion of human IFN.alpha. to the C terminus of the heavy chain of an IgG targeting the tumour antigen CD20. Other groups have disclosed the use of various linkers between the C-terminus of an IgG heavy chain and the IFN.alpha.. For example, U.S. Pat. No. 7,456,257 discloses that the C-terminus of an antibody heavy chain constant region may be connected to IFN.alpha. via an intervening serine-glycine rich (S/G) linker of the sequence (GGGGS).sub.n(SEQ ID NO: 113), where n may be 1, 2 or 3, and that there are no significant differences in the IFN.alpha. activity of the fusion protein construct regardless of linker length.

[0012] Morrison et al. (US2011/0104112 A1; and Xuan C, Steward K K, Timmerman J M, Morrison S L. Targeted delivery of interferon-.alpha. via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood 2010; 115:2864-71) also disclose IFN.alpha. linked to the C-terminus of the heavy chain of a cancer-targeting IgG antibody, with an intervening S/G linker, and observed that the fusion of the IgG and linker to the IFN.alpha. reduced the activity of IFN.alpha. on cells that did not express the corresponding antigen on the cell surface. The decreased IFN activity of these fusion protein constructs was modest when compared to human non-fusion protein IFN.alpha. (free IFN.alpha.) acting on human cells, but appeared to be more significant for murine IFN.alpha. on murine cells. The decrease in the activity of human IFN.alpha. that results from fusing it to the C-terminus of an antibody, as observed by Morrison et al, and in U.S. Pat. No. 7,456,257 is modest and is generally considered to be a disadvantage since it reduces potency of the IFN. This disadvantage was pointed out, for example, by Rossi et al (Blood vol. 114, No. 18, pp 3864-71), who used an alternative strategy of attaching the IFN.alpha. to a tumor targeting antibody in such a way that no loss in IFN.alpha. activity was observed.

[0013] In general the prior art teaches to use a potent IFN and to target this IFN to cancer cells. While this approach results in an increase in activity of the IFN against cancer cells, it does not address the issue of activity of the IFN on normal "off-target" cells. In prior art examples referred to above, the human IFN.alpha. portion of the antibody-IFN.alpha. fusion protein maintained a high proportion of native IFN.alpha. activity when exposed to human cells that do not express the corresponding antigen on their cell surfaces. This activity may lead to toxicity arising from the activation of non-cancerous, normal ("off target") cells by the IFN.alpha. portion of the fusion protein. Accordingly, there exists a need to decrease the "off-target" activity of IFN-based drugs, while retaining the "on-target", therapeutic effect of such drugs. The maintenance of target-specific activity and at the same time a reduction in non-target toxicity of these types of therapeutic agents would create a greater therapeutic concentration window for therapeutically useful peptides. It would for example be desirable to use human IFN.alpha. in a form such that its activity can be directed to the cancer cells while minimizing its effects on normal human cells. Ideally the type I interferon receptor on the cancer cells would be maximally stimulated, while the same receptor on non-cancerous cells would experience minimal stimulation. There is a need to target human IFN.alpha. to the cancer cells in such a way that it has dramatically more activity on the cancer cells, which display the antigen, than on the normal cells, which do not display the antigen. The same logic applies to other potentially therapeutic molecules, e.g. other cytokines, peptide and polypeptide hormones, chemokines, growth factors, apoptosis-inducing factors and the like.

[0014] The logic of this approach has been demonstrated in WO 2013/059885, and WO 2014/178820, the disclosure of each of which is incorporated herein by cross reference.

SUMMARY OF INVENTION

[0015] In a first aspect the present invention provides a fusion polypeptide comprising a first domain and a second domain, wherein the first domain comprises a polypeptide ligand which binds to a cell surface-associated antigen and the second domain comprises human aglycosylated interferon .alpha. 2b (IFN.alpha.2b) having a sequence of SEQ ID NO: 1 or SEQ ID NO: 2 and wherein the aglycosylated IFN.alpha.2b further comprises one or more amino acid substitutions or deletions which attenuate the activity of the aglycosylated IFN.alpha.2b.

[0016] In another aspect the present invention provides a fusion polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 31, 61 to 77, 83 and 87, and a sequence selected from the group consisting of SEQ ID NOs: 81, 82 and 84.

[0017] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 87 and SEQ ID NO: 81.

[0018] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 79 and SEQ ID NO: 85.

[0019] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 80 and SEQ ID NO: 86.

[0020] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 78.

[0021] In another aspect the present invention provides a composition comprising the fusion polypeptide of the present invention and a pharmaceutically acceptable carrier or diluent.

[0022] In another aspect the present invention provides a method of treating a tumour in a subject comprising administering to the subject the fusion polypeptide of the present invention or the composition of the present invention wherein the first domain of the fusion polypeptide binds to cells of the tumour.

[0023] In another aspect the present invention provides the use of the fusion polypeptide of the present invention in the treatment of a tumour wherein first domain of the fusion polypeptide binds to the tumour.

[0024] In another aspect the present invention provides an isolated polynucleotide(s) encoding the fusion polypeptide(s) of the present invention.

[0025] In another aspect the present invention provides a vector comprising the one or more polynucleotides of the present invention.

[0026] In another aspect the present invention provides a transformed cell comprising the vector of the present invention.

[0027] In another aspect the present invention provides a method of generating a polypeptide ligand-attenuated IFN.alpha.2b fusion polypeptide in mammalian cells, wherein the polypeptide ligand-attenuated IFN.alpha.2b fusion polypeptide has reduced heterogeneity and/or enhanced FcRn binding and/or improved target selectivity, the method comprising culturing a recombinant mammalian cell comprising a polynucleotide encoding the polypeptide ligand-attenuated IFN.alpha.2b fusion polypeptide wherein T106 of the IFN.alpha.2b sequence is replaced with another amino acid or is deleted such that on expression in mammalian cells the IFN.alpha.2b component of the fusion protein is aglycosylated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] FIG. 1, parts A and B: Anti-proliferative activity upon treatment of (A) ARP1 and (B) NCI-H929 cells with anti-CD38-attenuated IFN.alpha.2b fusion proteins in IgG1 or IgG4 format with and without O-linked glycosylation of the IFN.alpha.2b.

[0029] FIG. 2A, FIG. 2B, FIG. 2C, FIG. 2D and FIG. 2E. Anti-proliferative activity of anti-CD38-attenuated IFN.alpha.2b fusion proteins with different amino acid substitutions removing the O-linked glycosylation site from the attenuated IFN.alpha.2b.

[0030] FIG. 3, parts A and B: On-target activities of (A) A10.21 and (B) A10.43 anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) and without (T106A) O-linked glycosylation of the IFN.alpha.2b.

[0031] FIG. 4, parts A and B: Off-target activities of (A) A10.21 and (B) A10.43 anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) and without (T106A) O-linked glycosylation of the IFN.alpha.2b.

[0032] FIG. 5: Off-target activity by anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) and without (T106A or .DELTA.T106)O-linked glycosylation of the IFN.alpha.2b.

[0033] FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D, FIG. 6E and FIG. 6F: Off-target activity of anti-CD38-attenuated IFN.alpha.2b fusion proteins with different amino acid substitutions removing the O-linked glycosylation site from the attenuated IFN.alpha.2b.

[0034] FIG. 7: Off-target activity of A10.43 anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b.

[0035] FIG. 8: Potency of sub-optimal dosages of anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) or without (T106A) O-linked glycosylation in treating tumours in a murine model of multiple myeloma.

[0036] FIG. 9: Number of charged species of A10.21 anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) or without (T106A, .DELTA.T106, T106S, T106V, T106G, T106E) 0-linked glycosylation of the IFN.alpha.2b, as assessed by the number of bands on IEF gel.

[0037] FIG. 10: Number of charged species of A10.21 anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b and with varying Fc isotypes, as assessed by the number of bands on IEF gel.

[0038] FIG. 11: Number of charged species of A10.21 (IgG4 with S228P) anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b in the presence of YTE substitutions in the antibody constant region, as assessed by the number of bands on IEF gel.

[0039] FIG. 12: Number of charged species of A10.21 (IgG4 with S228P) anti-CD38-attenuated IFN.alpha.2b fusion proteins with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b in the presence of a variety of IFN attenuating substitutions, as assessed by the number of bands on IEF gel.

[0040] FIG. 13: Number of charged species of antibodies with differing target specificities; anti-CD138 antibody, anti-HLA antibody and anti-CD38 antibody (A02.12) (all IgG4 with S228P) fused to attenuated IFN.alpha.2b with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b, as assessed by the number of bands on IEF gel.

[0041] FIG. 14: "On-target" activities of anti-CD38-attenuated IFN.alpha.2b fusion proteins (A10.21 IgG4 (S228P) IFN (A145D)) with (T106T) and without (T106A, .DELTA.T106, T106S, T106V, T106G, T106E)O-linked glycosylation of the IFN.alpha.2b.

[0042] FIG. 15: "On-target" activities of two different anti-CD38 antibody-attenuated IFN.alpha.2b fusion proteins (A02.12 and A10.21, both IgG4 with S228P) which bind different epitopes on CD38 with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b.

[0043] FIG. 16: "On-target" activities of A10.21 anti-CD38-attenuated IFN.alpha.2b fusion proteins (A10.21 IgG4 (S228P) IFN) with (T106T) and without (T106A) O-linked glycosylation of the IFN.alpha.2b, with a variety of IFN attenuating substitutions (R33A, R144I, R145Q, A145K or A145G).

[0044] FIG. 17: "On-target" activities of antibodies with differing target specificities; anti-CD138 antibody and anti-HLA antibody (both IgG4 with S228P) fused to attenuated IFN.alpha.2b with (T106T) or without (T106A) O-linked glycosylation of the IFN.alpha.2b.

[0045] FIG. 18: "On-target" activities of A10.21 anti-CD38-attenuated IFN.alpha.2b fusion proteins (A10.21 IgG4 (S228P) IFN (A145D)) with (T106T) and without (T106A) O-linked glycosylation of the IFN.alpha.2b, in the presence of YTE substitution in the antibody heavy chain.

[0046] FIG. 19: "On-target" activities of A10.21 anti-CD38-attenuated IFN.alpha.2b (A145D) fusion proteins with (T106T) and without (T106A) O-linked glycosylation of the IFN.alpha.2b, with with a variety of immunoglobulin Fc isotypes.

[0047] FIG. 20: Selectivity index of A10.21 anti-CD38-attenuated IFN.alpha.2b fusion proteins with and without O-linked glycosylation of the IFN.alpha.2b in the presence of a variety of amino acid substitutions to remove glycosylation of the IFN, YTE substitutions in the imunoglobulin constant region for extended half-life, IFN attenuation and Fc isotypes.

DETAILED DESCRIPTION OF THE INVENTION

[0048] Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

[0049] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

[0050] All publications mentioned in this specification are herein incorporated by reference in their entirety.

[0051] It must be noted that, as used in the subject specification, the singular forms "a", "an" and "the" include plural aspects unless the context clearly dictates otherwise. Thus, for example, reference to "an agent" includes a single agent, as well as two or more agents; reference to "a molecule" includes a single molecule, as well as two or more molecules; and so forth.

[0052] The constructs of the present invention are polypeptide ligand-attenuated aglycosylated IFN.alpha.2b fusion constructs, which show an elevated antigen-selectivity index with respect to activating signaling pathways due to the action of both the ligand targeting to a cell surface receptor on a cell of interest and the attenuated IFN.alpha.2b having reduced affinity to a cell surface IFN receptor. These constructs are based on the discovery outlined in WO 2013/059885 that, in the context of an antibody-IFN fusion construct, the IFN portion can be mutated in such a way that the IFN activity on antigen-negative cells is dramatically attenuated, while the IFN activity on antigen-positive cells is only modestly, if at all, attenuated. Such constructs display one, two, three, four or five orders of magnitude greater potency on antigen-positive cells compared to antigen negative cells than does the free IFN. In one embodiment, the antibody-attenuated IFN construct retains at least 1%, at least 10%, at least 20%, at least 30%, at least 40% or at least 50% of the potency on antigen-positive cells as the non-attenuated free (i.e. not attached to an antibody) IFN. In addition, in one embodiment the antibody-attenuated IFN construct retains at least 30%, at least 50%, at least 75% or at least 90% of the maximal activity of the non-attenuated free (i.e. not attached to an antibody) IFN; in this context, "maximal activity" should be understood as meaning the amount of signaling activity (or downstream effect thereof) at the high, plateau portion of a dose-response curve, where further increases in the agent does not further increase the amount of response).

[0053] The present inventors have now found that an unexpected advantage is obtained by using constructs comprising aglycosylated IFN.alpha.2b as compared to the constructs comprising O-glycosylated IFN.alpha.2b. In some embodiments these advantages include one or more of an increase in ON-target activity, increased target selectivity and enhanced affinity to FcRn, whilst providing a less heterogeneous product than the O-glycosylated IFN.alpha.2b when produced in a mammalian cell expression system. Enhanced FcRn binding is desirable to improve the pK of a biological therapeutic agent which comprises an Fc region. Increased target selectivity is desirable as it potentially reduces OFF-target toxicity whilst substantially maintaining ON-target activity. A reduction in heterogeneity allows increases in yields of purified product from a mammalian cell culture system.

[0054] Accordingly, in a first aspect, the present invention provides a fusion polypeptide comprising a first and a second domain, wherein the first domain comprises a polypeptide ligand which binds to a cell surface-associated antigen and the second domain comprises aglycosylated interferon .alpha. 2b (IFN.alpha.2b) having a sequence of SEQ ID NO: 1 or SEQ ID NO: 2, and wherein the aglycosylated IFN.alpha.2b further comprises one or more amino acid substitutions or deletions which attenuate the activity of the aglycosylated IFN.alpha.2b.

[0055] In an embodiment of the present invention the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, V, W or Y. This represents a substitution of the T106 normally present in human IFN.alpha.2b with a naturally occurring amino acid which does not permit O-linked glycosylation at this position when produced in mammalian cell culture. In another embodiment of the present invention the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 2. This represents a deletion of residue T106 found in normal human IFN.alpha.2b, which also removes the O-linked glycosylation site found in this molecule. As demonstrated herein, each of the substitutions or deletion removes the O-glycosylation site from human attenuated IFN.alpha.2b and reduces the heterogeneity of the molecule as measured in IEF gels, when expressed by CHO cells, and whilst at least substantially maintaining the activity of the attenuated IFN.alpha.2b to bind cell surface IFN receptors and to initiate downstream signaling.

[0056] In additional embodiments the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by an attenuating mutation selected from the group consisting of LISA, R22A, R23A, S25A, L26A, F27A, L30A, L30V, K31A, D32A, R33A, R33K, R33Q, H34A, Q40A, D114R, L117A, R120A, R120E, R125A, R125E, K131A, E132A, K133A, K134A, M148A, R149A, S152A, L153A, N156A, (L30A, H57Y, E58N and Q61S), (M148A, H57Y, E58N and Q61S), (L153A, H57Y, E58N and Q61S), (R144A, H57Y, E58N and Q61S), (N65A, L80A, Y85A and Y89A,) (N65A, L80A, Y85A, Y89A and D114A), (N65A, L80A, Y85A, Y89A and L117A), (N65A, L80A, Y85A, Y89A and R120A), (Y85A, Y89A and D114A), (D114A and R120A), (L117A and R120A), (L117A, R120A and K121A), (R120A and K121A), (R120E and K121E), replacement of R at position 144 with A, D, E, G, H, I, K, L, N, Q, S, T, V or Y, replacement of A at position 145 with D, E, G, H, I, K, L, M, N, Q, S, T, V or Y, and deletion of residues L161 to E165.

[0057] In additional embodiments the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 2 modified by an attenuating mutation selected from the group consisting of LISA, R22A, R23A, S25A, L26A, F27A, L30A, L30V, K31A, D32A, R33A, R33K, R33Q, H34A, Q40A, D113R, L116A, R119A, R119E, R124A, R124E, K130A, E131A, K132A, K133A, M147A, R148A, S149A, L152A, N155A, (L30A, H57Y, E58N and Q61S), (M147A, H57Y, E58N and Q61S), (L152A, H57Y, E58N and Q61S), (R143A, H57Y, E58N and Q61S), (N65A, L80A, Y85A and Y89A,) (N65A, L80A, Y85A, Y89A and D113A), (N65A, L80A, Y85A, Y89A and L116A), (N65A, L80A, Y85A, Y89A and R1190A), (Y85A, Y89A and D113A), (D113A and R119A), (L116A and R119A), (L116A, R119A and K120A), (R119A and K120A), (R119E and K120E), replacement of R at position 143 with A, D, E, G, H, I, K, L, N, Q, S, T, V or Y, replacement of A at position 144 with D, E, G, H, I, K, L, M, N, Q, S, T, V or Y, and deletion of residues L160 to E164.

[0058] In another embodiment the sequence of the aglycosylated IFN.alpha.2b modified by an attenuating mutation is selected from the group consisting of SEQ ID NOs: 3 to 30 and SEQ ID NOs: 32 to 47.

[0059] In another embodiment the cell surface-associated antigen is selected from the group consisting of CD38, CD138, RANK-Ligand, HM1.24, CD56, CS1, CD20, CD74, IL-6R, Blys (BAFF), BCMA, HLA-SR, HLA-DR, Kininogen, beta2 microglobulin, FGFR3, ICAM-1, matriptase, CD52, EGFR, GM2, alpha4-integrin, IFG-1R, KIR, CD3, CD4, CD8, CD24, CD44, CD69, CD71, CD79, CD83, CD86, CD96, HLA, PD-1, ICOS, CD33, CD115, CD11c, CD19, CD52, CD14, FSP1, FAP, PDGFR alpha, PDGFR beta, ASGR1, ASGR2, FSP1, RTI140/Ti-alpha, HTI56, VEGF receptor, CD241 the product of the RCHE gene, CD117 (c-kit), CD71 (transferrin receptor), CD36 (thrombospondin receptor), CD34, CD45RO, CD45RA, CD115, CD168, CD235, CD236, CD237, CD238, CD239 and CD240.

[0060] In certain embodiments the polypeptide ligand is an antibody or antigen binding portion thereof.

[0061] In another embodiment the polypeptide ligand is an antibody which binds CD38. It is preferred that the V.sub.H sequence of the antibody is selected from the group consisting of SEQ ID Nos: 48 to 56 and 58 and that the V.sub.L sequence of the antibody is selected from the group consisting of SEQ ID Nos: 81, 82 and 84.

[0062] In another embodiment the polypeptide ligand is an antibody which binds CD138. It is preferred that the V.sub.H sequence of the antibody is SEQ ID NO: 59 and that the V.sub.L sequence of the antibody is SEQ ID NO: 85.

[0063] In another embodiment the polypeptide ligand binds RANK-Ligand. It is preferred that the sequence of the polypeptide ligand is SEQ ID NO: 57.

[0064] In another embodiment the first domain is linked to the second domain via a peptide bond. The first domain may be linked to the second domain directly by a peptide bond (a "zero-length linker") or via a peptide linker of from 1 to 20 amino acids in length. The linker may be (SGGGGS).sub.n (SEQ ID NO: 114) where n is 1 to 3. Examples of linkers include SGGGGS (SEQ ID NO: 114) and SGGGGSGGGGSGGGGS (SEQ ID NO: 115).

[0065] In another embodiment the C-terminus of the first domain is linked to N-terminus of the second domain.

[0066] In another embodiment the amino acid sequence of the first domain is glycosylated.

[0067] In another aspect the present invention provides a fusion polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 31, 61 to 77, 83 and 87, and a sequence selected from the group consisting of SEQ ID NOs: 81, 82 and 84.

[0068] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 87 and SEQ ID NO: 81.

[0069] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 79 and SEQ ID NO: 85.

[0070] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 80 and SEQ ID NO: 86.

[0071] In another aspect the present invention provides a fusion polypeptide comprising SEQ ID NO: 78.

[0072] As will be understood from the discussion above particular forms of the fusion polypeptide of the current invention are as follows: [0073] a. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is A. [0074] b. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is C. [0075] c. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is D. [0076] d. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is E. [0077] e. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is F. [0078] f. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is G. [0079] g. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is H. [0080] h. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is I. [0081] i. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is K. [0082] j. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is L. [0083] k. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is M. [0084] l. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is N. [0085] m. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is P. [0086] n. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is Q. [0087] o. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is R. [0088] p. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is V. [0089] q. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is W. [0090] r. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 in which the residue at position 106 is Y. [0091] s. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation L15A. [0092] t. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation A19W. [0093] u. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation R22A. [0094] v. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation R23A. [0095] w. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation S25A. [0096] x. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation L26A. [0097] y. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation F27A. [0098] z. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation L30A or L30V. [0099] aa. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation K31A. [0100] bb. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation D32A. [0101] cc. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation R33A, R33K or R33Q. [0102] dd. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation H34A. [0103] ee. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutation Q40A. [0104] ff. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation D114R or SEQ ID NO: 2 modified by the attenuating mutation D113R. [0105] gg. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation L117A or SEQ ID NO: 2 modified by the attenuating mutation L116A. [0106] hh. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation R120A or R120E or SEQ ID NO: 2 modified by the attenuating mutation R119A or R119E. [0107] ii. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation R125A or R125E or SEQ ID NO: 2 modified by the attenuating mutation R124A or R124E. [0108] jj. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation K131A or SEQ ID NO: 2 modified by the attenuating mutation K130A. [0109] kk. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation E132A or SEQ ID NO: 2 modified by the attenuating mutation E131A. [0110] ll. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation K133A or SEQ ID NO: 2 modified by the attenuating mutation K132A. [0111] mm. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation K134A or SEQ ID NO: 2 modified by the attenuating mutation K133A. [0112] nn. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation M148A or SEQ ID NO: 2 modified by the attenuating mutation M147A. [0113] oo. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation R149A or SEQ ID NO: 2 modified by the attenuating mutation R148A. [0114] pp. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation S152A or SEQ ID NO: 2 modified by the attenuating mutation S151A. [0115] qq. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation L153A or SEQ ID NO: 2 modified by the attenuating mutation L152A. [0116] rr. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutation N156A or SEQ ID NO: 2 modified by the attenuating mutation N155A. [0117] ss. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutations L30A, H57Y, E58N and Q61S. [0118] tt. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations M148A, H57Y, E58N and Q61S or SEQ ID NO: 2 modified by the attenuating mutations M147A, H57Y, E58N and Q61S. [0119] uu. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations L153A, H57Y, E58N and Q61S or SEQ ID NO: 2 modified by the attenuating mutations L152A, H57Y, E58N and Q61S. [0120] vv. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations R144A, H57Y, E58N and Q61S or SEQ ID NO: 2 modified by the attenuating mutations R143A, H57Y, E58N and Q61S. [0121] ww. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 or SEQ ID NO: 2 modified by the attenuating mutations N65A, L80A, Y85A and Y89A. [0122] xx. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations N65A, L80A, Y85A, Y89A and D114A or SEQ ID NO: 2 modified by the attenuating mutations N65A, L80A, Y85A, Y89A and D113A. [0123] yy. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations N65A, L80A, Y85A, Y89A and L117A or SEQ ID NO: 2 modified by the attenuating mutations N65A, L80A, Y85A, Y89A and L116A. [0124] zz. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations N65A, L80A, Y85A, Y89A and R120A or SEQ ID NO: 2 modified by the attenuating mutations N65A, L80A, Y85A, Y89A and R119A. [0125] aaa. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations Y85A, Y89A and D114A or SEQ ID NO: 2 modified by the attenuating mutations Y85A, Y89A and D113A. [0126] bbb. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations D114A and R120A or SEQ ID NO: 2 modified by the attenuating mutations D113A and R119A. [0127] ccc. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the attenuating mutations L117A and R120A or SEQ ID NO: 2 modified by the attenuating mutations L116A and R119A. [0128] ddd. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the mutations L117A, R120A and K121A or SEQ ID NO: 2 modified by the mutations L116A, R119A and K120A. [0129] eee. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the mutations R120A and K121A or SEQ ID NO: 2 modified by the mutations R119A and K120A. [0130] fff. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by the mutations R120E and K121E or SEQ ID NO: 2 modified by the mutations R119E and K120E. [0131] ggg. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b SEQ ID NO: 1 is modified by replacement of R at position 144 with A, D, E, G, H, I, K, L, N, Q, S, T, V or Y or SEQ ID NO: 2 is modified by replacement of R at position 143 with A, D, E, G, H, I, K, L, N, Q, S, T, V or Y. [0132] hhh. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by replacement of A at position 145 with D, E, G, H, I, K, L, M, N, Q, S, T, V or Y or SEQ ID NO: 2 modified by replacement of A at position 144 with D, E, G, H, I, K, L, M, N, Q, S, T, V or Y. [0133] iii. The fusion polypeptide in which the sequence of the aglycosylated IFN.alpha.2b is SEQ ID NO: 1 modified by deletion of residues L161 to E165 or SEQ ID NO: 2 modified by deletion of residues L161 to E165. [0134] jjj. The fusion polypeptide as claimed in claim 1 in which the sequence of the aglycosylated IFN.alpha.2b is selected from the group consisting of SEQ ID NOs: 3 to 30 and SEQ ID NOs: 32 to 47.

[0135] The term "antibody", as used herein, broadly refers to any immunoglobulin (Ig) molecule comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment, mutant, variant, or derivation thereof, which retains the essential epitope binding features of an Ig molecule. Such mutant, variant, or derivative antibody formats are known in the art, non-limiting embodiments of which are discussed below.

[0136] In a full-length antibody, each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or V.sub.H) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or V.sub.L) and a light chain constant region. The light chain constant region is comprised of one domain, CL, which in humans may be of either the .kappa. or .lamda. class. The V.sub.H and V.sub.L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each V.sub.H and V.sub.L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.

[0137] The term "antigen binding domain" or "antigen binding portion" of an antibody, as used herein, refers to one or more fragments of an antibody or protein that retain the ability to specifically bind to an antigen (e.g., CD38). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Such antibody embodiments may also be bispecific, dual specific, or multi-specific formats, specifically binding to two or more different antigens. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the V.sub.L, V.sub.H, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments in addition to a portion of the hinge region, linked by a disulfide bridge at the hinge region; (iii) an Fd fragment consisting of the V.sub.H and CH1 domains; (iv) an Fv fragment consisting of the V.sub.L and V.sub.H domains of a single arm of an antibody, (v) a domain antibody (dAb) (Ward et al. 1989 Nature 341 544-6, Winter et al., PCT publication WO 90/05144 Al herein incorporated by reference), which comprises a single variable domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, V.sub.L and V.sub.H, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the V.sub.L and V.sub.H regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. 1988 Science 242 423-6; Huston et al. 1988 Proc Natl Acad Sci USA 85 5879-83). Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. Other forms of single chain antibodies, such as diabodies, are also encompassed. Diabodies are bivalent, bispecific antibodies in which V.sub.H and V.sub.L domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al., 1993, Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al., 1994, Structure 2:1121-1123). Such antibody binding portions are known in the art (Kontermann and Dubel eds., Antibody Engineering 2001 Springer-Verlag. New York. 790 pp., ISBN 3-540-41354-5). In an embodiment the antibody binding portion is a Fab fragment.

[0138] The antibody described herein may be a humanized antibody. The term "humanized antibody" shall be understood to refer to a protein comprising a human-like variable region, which includes CDRs from an antibody from a non-human species (e.g., mouse or rat or non-human primate) grafted onto or inserted into FRs from a human antibody (this type of antibody is also referred to a "CDR-grafted antibody"). Humanized antibodies also include proteins in which one or more residues of the human protein are modified by one or more amino acid substitutions and/or one or more FR residues of the human protein are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found in neither the human antibody or in the non-human antibody. Any additional regions of the protein (e.g., Fc region) are generally human. Humanization can be performed using a method known in the art, e.g., U.S. Pat. Nos. 5,225,539, 6,054,297, 7,566,771 or U.S. Pat. No. 5,585,089. The term "humanized antibody" also encompasses a super-humanized antibody, e.g., as described in U.S. Pat. No. 7,732,578.

[0139] The antibody described herein may be human. The term "human antibody" as used herein refers to proteins having variable and, optionally, constant antibody regions found in humans, e.g. in the human germline or somatic cells or from libraries produced using such regions. The "human" antibodies can include amino acid residues not encoded by human sequences, e.g. mutations introduced by random or site directed mutations in vitro (in particular mutations which involve conservative substitutions or mutations in a small number of residues of the protein, e.g. in 1, 2, 3, 4 or 5 of the residues of the protein). These "human antibodies" do not necessarily need to be generated as a result of an immune response of a human, rather, they can be generated using recombinant means (e.g., screening a phage display library) and/or by a transgenic animal (e.g., a mouse) comprising nucleic acid encoding human antibody constant and/or variable regions and/or using guided selection (e.g., as described in or U.S. Pat. No. 5,565,332). This term also encompasses affinity matured forms of such antibodies. For the purposes of the present disclosure, a human protein will also be considered to include a protein comprising FRs from a human antibody or FRs comprising sequences from a consensus sequence of human FRs and in which one or more of the CDRs are random or semi-random, e.g., as described in U.S. Pat. No. 6,300,064 and/or U.S. Pat. No. 6,248,516.

[0140] The antibody portions of polypeptides of the present invention may be full length antibodies of any class, preferably IgG1, IgG2 or IgG4. The constant domains of such antibodies are preferably human. The variable regions of such antibodies may be of non-human origin or, preferably, be of human origin or be humanized. Antibody fragments may also be used in place of the full length antibodies.

[0141] The term "antibody" also includes engineered antibodies. As will be appreciated there are many variations of engineered antibodies (e.g. mouse monoclonal, chimeric, humanized and human monoclonal antibodies, single chain variable antibody fragments (scFv's), minibodies, aptamers, as well as bispecific antibodies and diabodies as described above).

[0142] Single variable region domains (termed dAbs) are, for example, disclosed in (Ward et al., 1989, Nature 341: 544-546; Hamers-Casterman et al., 1993, Nature 363: 446-448; Davies & Riechmann, 1994, FEBS Lett. 339: 285-290).

[0143] Minibodies are small versions of whole antibodies, which encode in a single chain the essential elements of a whole antibody. Suitably, the minibody is comprised of the V.sub.H and V.sub.L domains of a native antibody fused to the hinge region and CH3 domain of the immunoglobulin molecule as, for example, disclosed in U.S. Pat. No. 5,837,821.

[0144] In an alternate embodiment, the engineered antibody may comprise non-immunoglobulin derived, protein frameworks. For example, reference may be made to (Ku & Schutz, 1995, Proc. Natl. Acad. Sci. USA 92: 6552-6556) which discloses a four-helix bundle protein cytochrome b562 having two loops randomized to create CDRs, which have been selected for antigen binding.

[0145] There is a plethora of non-antibody recognition protein or protein domain scaffolds that may be utilised as the antigen binding domains in the constructs of this invention. These include scaffolds based on cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (Evibody; U.S. Pat. No. 7,166,697); human transferrin (Trans-body); a three-helix bundle from the Z-domain of Protein A (Affibody); a monomeric or trimeric human C-type lectin domain (Tetranectin); the tenth human fibronectin type III domain (AdNectin); the Kunitz-type domain of human or bovine trypsin inhibitor; insect Defensin A (IICA29), APPI (Kuntiz domains); lipocalins, FABP, Bilin-binding protein, Apoloproptein D (Anticalins); human .alpha.-crystallin or ubiquitin molecule (Affilin); trypsin inhibitor II (Microbody); .alpha.2p8 or Ankyrin repeat (repeat-motif proteins), Charybdotoxin (Scorpion toxins), Min-23, Cellulose binding domain (Knottins); Neocarzinostatin, CBM4-2 and Tendamistat.

[0146] Further, in addition to scaffolds provided for by antibody-derived domains or non-antibody folds as described above, there are naturally occurring ligand binding proteins or protein domains that may be utilised as the ligand binding domains in this invention. For example, protein domains that possess ligand binding properties include extracellular domains of receptors, PDZ modules of signaling proteins, such as Ras-binding protein AF-6, adhesion molecules, and enzymes.

[0147] Using methods well known in the art to increase binding, by for example, affinity maturation, or to decrease immunogenicity by removing predicted MHC class II-binding motifs. The therapeutic utility of the antibodies described herein can be further enhanced by modulating their functional characteristics, such as antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), serum half-life, biodistribution and binding to Fc receptors or the combination of any of these. This modulation can be achieved by protein-engineering, glyco-engineering or chemical methods. Depending on the therapeutic application required, it could be advantageous to either increase or decrease any of these activities.

[0148] An example of glyco-engineering used the Potelligent.RTM. method as described in Shinkawa T. et al., 2003 (J Biol Chem 278: 3466-73).

[0149] Numerous methods for affinity maturation of antibodies are known in the art. Many of these are based on the general strategy of generating panels or libraries of variant proteins by mutagenesis followed by selection and/or screening for improved affinity. Mutagenesis is often performed at the DNA level, for example by error prone PCR (Thie, Voedisch et al. 2009, Methods Mol Biol 525: 309-322), by gene shuffling (Kolkman and Stemmer 2001, Nat Biotechnol. May; 19(5):423-8), by use of mutagenic chemicals or irradiation, by use of `mutator` strains with error prone replication machinery (Greener 1996, In Vitro Mutagenesis Protocols. Humana press, NJ) or by somatic hypermutation approaches that harness natural affinity maturation machinery (Peled, Kuang et al. 2008, Annu Rev Immunol. 26:481-511). Mutagenesis can also be performed at the RNA level, for example by use of Q.beta. replicase (Kopsidas, Roberts et al. 2006, Immunol Lett. 2006 Nov. 15; 107(2):163-8). Library-based methods allowing screening for improved variant proteins can be based on various display technologies such as phage, yeast, ribosome, bacterial or mammalian cells, and are well known in the art (Benhar 2007, Expert Opin Biol Ther. May; 7(5): 763-79). Affinity maturation can be achieved by more directed/predictive methods for example by site-directed mutagenesis or gene synthesis guided by findings from 3D protein modeling (see for example Queen, Schneider et al. 1989, PNAS, 86(24): 10029-33 or U.S. Pat. Nos. 6,180,370 or 5,225,539).

[0150] Methods of increasing ADCC have been described by Ferrara, Brunker et al. 2006, Biotechnol Bioeng; 93:851-61; Li, Sethuraman et al. 2006, Nat Biotechnol; 24:210-5; Stavenhagen, Gorlatov et al. 2007, Cancer Res; 67:8882-90; Shields, Namenuk et al. 2001, J Biol Chem; 276:6591-604; Shinkawa, Nakamura et al. 2003, J Biol Chem; 278:3466-73; and WO 2008/006554.

[0151] Methods of increasing CDC have been described by Idusogie, Wong et al. 2001, J Immunol; 176:346-56; Dall'Acqua, Cook et al. 2006, J Biol Chem; 281:23514-24; Michaelsen, Aase et al. 1990, Scand J Immunol; 32:517-28; Brekke, Bremnes et al. 1993, Mol Immunol; 30:1419-25; Tan, Shopes et al. 1990, PNAS; 87:162-6; and Norderhaug, Brekke et al. 1991, Eur J Immunol; 21:2379-84.

[0152] References describing methods of increasing ADCC and CDC include Natsume, In et al. 2008, Cancer Res; 68:3863-72. The disclosure of each of these references is included herein by cross reference. In certain embodiments it may be advantageous to reduce or eliminate ADCC and CDC activities of the antibody component of the polypeptide of the invention, so that the IFN.alpha.2b activity is the principal activity of the polypeptide which modulates target cell survival.

[0153] A number of methods for modulating antibody serum half-life and biodistribution are based on modifying the interaction between antibody and the neonatal Fc receptor (FcRn), a receptor with a key role in protecting IgG from catabolism, and maintaining high serum antibody concentration. Dall'Acqua et al describe substitutions in the Fc region of IgG1 that enhance binding affinity to FcRn, thereby increasing serum half-life (Dall'Acqua, Woods et al. 2002, J Immunol; 169:5171-80) and further demonstrate enhanced bioavailability and modulation of ADCC activity with triple substitution of M252Y/S254T/T256E (with residue numbering according to the EU Index) or M265Y/S267T/T269 (with residue numbering according to the Kabat numbering system) (Dall'Acqua, Kiener et al. 2006, J Biol Chem; 279:6213-6). See also U.S. Pat. Nos. 6,277,375; 6,821,505; and U.S. Pat. No. 7,083,784. Hinton et al have described constant domain amino acid substitutions at positions 250 and 428 that confer increased in vivo half-life (Hinton, Johlfs et al. 2004, J Biol Chem; 279:6213-6; Hinton, Xiong et al. 2006, J Immunol; 176:346-56). See also U.S. Pat. No. 7,217,797. Petkova et al have described constant domain amino acid substitutions at positions 307, 380 and 434 that confer increased in vivo half-life (Petkova, Akilesh et al. 2006, Int Immunol; 18:1759-69). See also Shields et al 2001, J Biol Chem; 276:6591-604 and WO 2000/42072. Other examples of constant domain amino acid substitutions which modulate binding to Fc receptors and subsequent function mediated by these receptors, including FcRn binding and serum half-life, are described in U.S Pat. Application Nos 20090142340; 20090068175 and 20090092599. The substitution referred to herein as "S228P" which is numbered according to the EU index as in Kabat has also been referred to as "S241P" according to Kabat et al. (1987 Sequences of proteins of immunological interest. United States Department of Health and Human Services, Washington D.C.). This substitution stabilizes the hinge region of IgG4 molecules, having the effect of making the sequence of the core of the hinge region the same as that of an IgG1 or IgG2 isotype antibody. This results in a reduction in the spontaneous dissociation and reassociation of the heavy chains which often leads to the production of heterodimeric IgG4 antibodies.

[0154] The glycans linked to antibody molecules are known to influence interactions of antibody with Fc receptors and glycan receptors and thereby influence antibody activity, including serum half-life (Kaneko, Nimmerjahn et al. 2006, Science; 313:670-3; Jones, Papac et al. 2007, Glcobiology; 17:529-40; and Kanda, Yamada et al. 2007, Glycobiology; 17:104-18). Hence, certain glycoforms that modulate desired antibody activities can confer therapeutic advantage. Methods for generating engineered glycoforms are known in the art and include but are not limited to those described in U.S. Pat. Nos U.S. Pat. Nos. 6,602,684; 7,326,681; 7,388,081 and in WO 2008/006554.

[0155] Extension of half-life by addition of polyethylene glycol (PEG) has been widely used to extend the serum half-life of proteins, as reviewed, for example, by Fishburn 2008, J Pharm Sci; 97:4167-83.

[0156] As will be recognised it is possible to make conservative amino acid substitutions within the sequences of the current invention. By "conservative substitution" is meant amino acids having similar properties. As used in this specification the following groups of amino acids are to be seen as conservative substitutions: H, R and K; D, E, N and Q; V, I and L; C and M; S, T, P, A and G; and F, Y and W. It is not intended, however, that substitutions other than those specifically recited are made at the sites of attenuation and/or glycosylation.

[0157] The term "cell surface-associated antigen", as used herein, broadly refers to any antigen expressed on surfaces of cells, including without limitation malignant cells or infectious or foreign cells.

[0158] In certain aspects of the present invention, the fusion polypeptide constructs or compositions of the present invention may be used to treat patients with cancer. Cancers contemplated herein include: a group of diseases and disorders that are characterized by uncontrolled cellular growth (e.g. formation of tumor) without any differentiation of those cells into specialized and different cells. Such diseases and disorders include ABL1 protooncogene, AIDS related cancers, acoustic neuroma, acute lymphocytic leukaemia, acute myeloid leukaemia, adenocystic carcinoma, adrenocortical cancer, agnogenic myeloid metaplasia, alopecia, alveolar soft-part sarcoma, anal cancer, angiosarcoma, aplastic anaemia, astrocytoma, ataxia-telangiectasia, basal cell carcinoma (skin), bladder cancer, bone cancers, bowel cancer, brain stem glioma, brain and CNS tumors, breast cancer, carcinoid tumors, cervical cancer, childhood brain tumors, childhood cancer, childhood leukaemia, childhood soft tissue sarcoma, chondrosarcoma, choriocarcinoma, chronic lymphocytic leukaemia, chronic myeloid leukaemia, colorectal cancers, cutaneous T-Cell lymphoma, dermatofibrosarcoma-protuberans, desmoplastic-small-round-cell-tumor, ductal carcinoma, endocrine cancers, endometrial cancer, ependymoma, esophageal cancer, Ewing's sarcoma, extra-hepatic bile duct cancer, eye cancer, eye: melanoma, retinoblastoma, fallopian tube cancer, fanconi anemia, fibrosarcoma, gall bladder cancer, gastric cancer, gastrointestinal cancers, gastrointestinal-carcinoid-tumor, genitourinary cancers, germ cell tumors, gestational-trophoblastic-disease, glioma, gynaecological cancers, hematological malignancies, hairy cell leukaemia, head and neck cancer, hepatocellular cancer, hereditary breast cancer, histiocytosis, Hodgkin's disease, human papillomavirus, hydatidiform mole, hypercalcemia, hypopharynx cancer, intraocular melanoma, islet cell cancer, Kaposi's sarcoma, kidney cancer, Langerhan's-cell-histiocytosis, laryngeal cancer, leiomyosarcoma, leukemia, Li-Fraumeni syndrome, lip cancer, liposarcoma, liver cancer, lung cancer, lymphedema, lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, male breast cancer, malignant-rhabdoid-tumor-of-kidney, medulloblastoma, melanoma, merkel cell cancer, mesothelioma, metastatic cancer, mouth cancer, multiple endocrine neoplasia, mycosis fungoides, myelodysplastic syndromes, multiple myeloma, myeloproliferative disorders, nasal cancer, nasopharyngeal cancer, nephroblastoma, neuroblastoma, neurofibromatosis, nijmegen breakage syndrome, non-melanoma skin cancer, non-small-cell-lung-cancer-(NSCLC), ocular cancers, oesophageal cancer, oral cavity cancer, oropharynx cancer, osteosarcoma, ostomy ovarian cancer, pancreas cancer, paranasal cancer, parathyroid cancer, parotid gland cancer, penile cancer, peripheral-neuroectodermal-tumors, pituitary cancer, polycythemia vera, prostate cancer, rare-cancers-and-associated-disorders, renal cell carcinoma, retinoblastoma, rhabdomyosarcoma, Rothmund-Thomson syndrome, salivary gland cancer, sarcoma, schwannoma, Sezary syndrome, skin cancer, small cell lung cancer (SCLC), small intestine cancer, soft tissue sarcoma, spinal cord tumors, squamous-cell-carcinoma-(skin), stomach cancer, synovial sarcoma, testicular cancer, thymus cancer, thyroid cancer, transitional-cell-cancer-(bladder), transitional-cell-cancer-(renal-pelvis-/-ureter), trophoblastic cancer, urethral cancer, urinary system cancer, uroplakins, uterine sarcoma, uterus cancer, vaginal cancer, vulva cancer, Waldenstrom's-macroglobulinemia and Wilms' tumor. In an embodiment the tumor is selected from a group of multiple myeloma or non-hodgkin's lymphoma.

[0159] As contemplated for the treatment of cancer, the antibody portions of the fusion constructs of the present invention may bind to tumour-associated antigens, i.e., cell surface antigens that are selectively expressed by cancer cells or over-expressed in cancer cells relative to most normal cells. There are many tumour-associated antigens (TAAs) known in the art. Non-limiting examples of TAAs include enzyme tyrosinase; melanoma antigen GM2; alphafetoprotein (AFP); carcinoembryonic antigen (CEA); Mucin 1 (MUC1); Human epidermal growth factor receptor (Her2/Neu); T-cell leukemia/lymphoma 1 (TCL1) oncoprotein. Exemplary TAAs associated with a number of different cancers are telomerase (hTERT); prostate-specific membrane antigen (PSMA); urokinase plasminogen activator and its receptor (uPA/uPAR); vascular endothelial growth factor and its receptor (VEGF/VEGFR); extracellular matrix metalloproteinase inducer (EMMPRIN/CD147); epidermal growth factor (EGFR); platelet-derived growth factor and its receptor (PDGF/PDGFR) and c-kit (CD117).

[0160] A list of other TAAs is provided in US 2010/0297076, the disclosure of which is included herein by reference. Of particular interest are cell surface antigens associated with multiple myeloma leukemia or lymphoma cells, including but not limited to CD38, CD138, CD79, CS1, and HM1.24. In one embodiment an antigen for ligand-attenuated IFN constructs, for example, an antibody-attenuated interferon construct, is CD38.

[0161] CD38 is a 46 kDa type II transmembrane glycoprotein. It has a short N-terminal cytoplasmic tail of 20 amino acids, a single transmembrane helix and a long extracellular domain of 256 amino acids (Bergsagel, P., Blood; 85:436, 1995 and Liu, Q., Structure, 13:1331, 2005). It is expressed on the surface of many immune cells including CD4 and CD8 positive T cells, B cells, NK cells, monocytes, plasma cells and on a significant proportion of normal bone marrow precursor cells (Malavasi, F., Hum. Immunol. 9:9, 1984). In lymphocytes, however, the expression appears to be dependent on the differentiation and activation state of the cell. Resting T and B cells are negative while immature and activated lymphocytes are predominantly positive for CD38 expression (Funaro, A., J. Immunol. 145:2390, 1990). Additional studies indicate mRNA expression in non-hemopoeitic organs such as pancreas, brain, spleen and liver (Koguma, T., Biochim. Biophys. Acta 1223:160, 1994.)

[0162] CD38 is a multifunctional ectoenzyme that is involved in transmembrane signaling and cell adhesion. It is also known as cyclic ADP ribose hydrolase because it can transform NAD.sup.+ and NADP.sup.+ into cADPR, ADPR and NAADP, depending on extracellular pH. These products induce Ca.sup.2+-mobilization inside the cell which can lead to tyrosine phosphorylation and activation of the cell. CD38 is also a receptor that can interact with a ligand, CD31. Activation of receptor via CD31 leads to intracellular events including Ca.sup.2+ mobilization, cell activation, proliferation, differentiation and migration (reviewed in Deaglio, S., Trends in Mol. Med. 14:210, 2008.)

[0163] CD38 is expressed at high levels on multiple myeloma cells, in most cases of T- and B-lineage acute lymphoblastic leukemias, some acute myelocytic leukemias, follicular center cell lymphomas and T lymphoblastic lymphomas. (Malavasi, F., J. Clin Lab Res. 22:73, 1992). More recently, CD38 expression has become a reliable prognostic marker in B-lineage chronic lymphoblastic leukemia (B-CLL) (Ibrahim, S., Blood. 98:181, 2001 and Dung, J., Leuk. Res. 25:927, 2002). Independent groups have demonstrated that B-CLL patients presenting with a CD38.sup.+ clone are characterized by an unfavorable clinical course with a more advance stage of disease, poor responsiveness to chemotherapy and shorter survival time (Morabito, F., Haematologica. 87:217, 2002). The consistent and enhanced expression of CD38 on lymphoid tumors makes this an attractive target for therapeutic antibody technologies.

[0164] Preferred antigens for the development of antibody-attenuated aglycosylated IFN.alpha.2b fusion protein constructs which target cancer are antigens which show selective or greater expression on the cancer cells than on most other, non-transformed cells within the body. Non-protein examples of such antigens include, sphingolipids, ganglioside GD2 (Saleh et al., 1993, J. Immunol., 151, 3390-3398), ganglioside GD3 (shitara et al., 1993, Cancer Immunol. Immunother. 36:373-380), ganglioside GM2 (Livingston et al., 1994, J. Clin. Oncol. 12:1036-1044), ganglioside GM3 (Hoon et al., 1993, Cancer Res. 53:5244-5250) and Lewis.sup.x, lewis.sup.y and lewis.sup.xy carbohydrate antigens that can be displayed on proteins or glycolipids. Examples of protein antigens are HER-2/neu, human papillomavirus-E6 or -E7, MUC-1; KS 1/4 pan-carcinoma antigen (Perez and Walker, 1990, J. Immunol. 142:3662-3667; Bumal, 1988, Hybridoma 7(4):407-415); ovarian carcinoma antigen CA125 (Yu et al., 1991, Cancer Res. 51(2):468-475); prostatic acid phosphate (Tailor et al., 1990, Nucl. Acids Res. 18(16):4928); prostate specific antigen (Henttu and Vihko, 1989, Biochem. Biophys. Res. Comm. 160(2):903-910; Israeli et al., 1993, Cancer Res. 53:227-230); melanoma-associated antigen p97 (Estin et al., 1989, J. Natl. Cancer Instit. 81(6):445-446); melanoma antigen gp75 (Vijayasardahl et al., 1990, J. Exp. Med. 171(4):1375-1380); prostate specific membrane antigen; carcinoembryonic antigen (CEA) (Foon et al., 1994, Proc. Am. Soc. Clin. Oncol. 13:294), MUC16 (antibodies include MJ-170, MJ-171, MJ-172 and MJ-173 [U.S. Pat. No. 7,202,346], 3A5 [U.S. Pat. No. 7,723,4851]).NMB (U.S. Pat. No. 8,039,593), malignant human lymphocyte antigen-APO-1 (Bernhard et al., 1989, Science 245:301-304); high molecular weight melanoma antigen (HMW-MAA) (Natali et al., 1987, Cancer 59:55-63; Mittelman et al., 1990, J. Clin. Invest. 86:2136-2144); Burkitt's lymphoma antigen-38.13; CD19 (Ghetie et al., 1994, Blood 83:1329-1336); human B-lymphoma antigen-CD20 (Reff et al., 1994, Blood 83:435-445); GICA 19-9 (Herlyn et al., 1982, J. Clin. Immunol. 2:135), CTA-1 and LEA; CD33 (Sgouros et al., 1993, J. Nucl. Med. 34:422-430); oncofetal antigens such as alpha-fetoprotein for liver cancer or bladder tumor oncofetal antigen (Hellstrom et al., 1985, Cancer. Res. 45:2210-2188); differentiation antigens such as human lung carcinoma antigen L6 or L20 (Hellstrom et al., 1986, Cancer Res. 46:3917-3923); antigens of fibrosarcoma; human leukemia T cell antigen-Gp37 (Bhattacharya-Chatterjee et al., 1988, J. Immunol. 141:1398-1403); tumor-specific transplantation type of cell-surface antigen (TSTA) such as virally-induced tumor antigens including T-antigen, DNA tumor virus and envelope antigens of RNA tumor viruses; neoglycoproteins, breast cancer antigens such as EGFR (Epidermal growth factor receptor), polymorphic epithelial mucin (PEM) (Hilkens et al., 1992, Trends in Bio. Chem. Sci. 17:359); polymorphic epithelial mucin antigen; human milk fat globule antigen; colorectal tumor-associated antigens such as TAG-72 (Yokata et al., 1992, Cancer Res. 52:3402-3408), CO 17-1A (Ragnhammar et al., 1993, Int. J. Cancer 53:751-758); differentiation antigens (Feizi, 1985, Nature 314:53-57) such as I(Ma) found in gastric adenocarcinomas, SSEA-1 found in myeloid cells, VEP8, VEP9, Myl, VIM-D5, M18 and M39 found in breast epithelial cancers, D156-22 found in colorectal cancer, TRA-1-85 (blood group H), C14 found in colonic adenocarcinoma, F3 found in lung adenocarcinoma, AH6 found in gastric cancer, Y hapten found in embryonal carcinoma cells, TL5 (blood group A), E1 series (blood group B) antigens found in pancreatic cancer, FC10.2 found in embryonal carcinoma cells, gastric adenocarcinoma antigen, CO-514 (blood group Le.sup.a) found in adenocarcinoma, NS-10 found in adenocarcinomas, CO-43 (blood group Le.sup.b), G49 found in A431 cells, 19.9 found in colon cancer; gastric cancer mucins; R24 found in melanoma, MH2 (blood group ALe.sup.b/Le.sup.y) found in colonic adenocarcinoma, 4.2, D1.1, OFA-1, G.sub.M2, OFA-2 and M1:22:25:8 found in embryonal carcinoma cells and SSEA-3 and SSEA-4. HMW-MAA (SEQ ID NO:433), also known as melanoma chondroitin sulfate proteoglycan, is a membrane-bound protein of 2322 residues which is overexpressed on over 90% of the surgically removed benign nevi and melanoma lesions (Camploi, et. al, Crit Rev Immunol.; 24:267, 2004). Accordingly it may be a potential target cell surface associated antigen.

[0165] Other example cancer antigens for targeting with fusion protein constructs of the present invention include (exemplary cancers are shown in parentheses): CD5 (T-cell leukemia/lymphoma), CA15-3 (carcinomas), CA19-9 (carcinomas), L6 (carcinomas), CA 242 (colorectal), placental alkaline phosphatase (carcinomas), prostatic acid phosphatase (prostate), MAGE-1 (carcinomas), MAGE-2 (carcinomas), MAGE-3 (carcinomas), MAGE-4 (carcinomas), transferrin receptor (carcinomas), p97 (melanoma), MUC1 (breast cancer), MART1 (melanoma), CD20 (non Hodgkin's lymphoma), CD52 (leukemia), CD33 (leukemia), human chorionic gonadotropin (carcinoma), CD38 (multiple myeloma), CD21 (B-cell lymphoma), CD22 (lymphoma), CD25 (B-cell Lymphoma), CD37 (B-cell lymphoma), CD45 (acute myeloblastic leukemia), HLA-DR (B-cell lymphoma), IL-2 receptor (T-cell leukemia and lymphomas), CD40 (lymphoma), CD79 (B cell leukemia or lymphoma, Hodgkin lymphoma), various mucins (carcinomas), P21 (carcinomas), MPG (melanoma), Ep-CAM (Epithelial Tumors), Folate-receptor alpha (Ovarian), A33 (Colorectal), G250 (renal), Ferritin (Hodgkin lymphoma), de2-7 EGFR (glioblastoma, breast, and lung), Fibroblast activation protein (epithelial) and tenascin metalloproteinases (glioblastoma). Some specific, useful antibodies include, but are not limited to, BR64 (Trail et al., 1997, Cancer Research 57:100 105), BR96 mAb (Trail et al., 1993, Science 261:212-215), mAbs against the CD40 antigen, such as S2C6 mAb (Francisco et al., 2000, Cancer Res. 60:3225-3231) or other anti-CD40 antibodies, such as those disclosed in U.S Patent Publication Nos. 2003-0211100 and 2002-0142358; mAbs against the CD30 antigen, such as AC10 (Bowen et al., 1993, J. Immunol. 151:5896-5906; Wahl et al., 2002 Cancer Res. 62(13):3736-42) or MDX-0060 (U.S. Patent Publication No. 2004-0006215) and mAbs against the CD70 antigen, such as 1F6 mAb and 2F2 mAb (see, e.g., U.S. Patent Publication No. 2006-0083736) or antibodies 2H5, 10B4, 8B5, 18E7, 69A7 (U.S. Pat. No. 8,124,738). Other antibodies have been reviewed elsewhere (Franke et al., 2000, Cancer Biother. Radiopharm. 15:459 76; Murray, 2000, Semin. Oncol. 27:64 70; Breitling, F., and Dubel, S., Recombinant Antibodies, John Wiley, and Sons, New York, 1998).

[0166] In certain embodiments, useful antibodies can bind to a receptor or a complex of receptors expressed on a target cell. The receptor or receptor complex can comprise an immunoglobulin gene superfamily member, a major histocompatibility protein, a cytokine receptor, a TNF receptor superfamily member, a chemokine receptor, an integrin, a lectin, a complement control protein, a growth factor receptor, a hormone receptor or a neuro-transmitter receptor. Non-limiting examples of appropriate immunoglobulin superfamily members are CD2, CD3, CD4, CD8, CD19, CD22, CD79, CD90, CD152/CTLA-4, PD-1, B7-H4, B7-H3, and ICOS. Non-limiting examples of suitable TNF receptor superfamily members are TACI, BCMA, CD27, CD40, CD95/Fas, CD134/0X40, CD137/4-1BB, TNFR1, TNFR2, RANK, osteoprotegerin, APO 3, Apo2/TRAIL R1, TRAIL R2, TRAIL R3, and TRAIL R4. Non-limiting examples of suitable integrins are CD11a, CD11 b, CD11c, CD18, CD29, CD41, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD103 and CD104. Non-limiting examples of suitable lectins are S type, C type, and I type lectin. Examples of antibodies to CEA are shown in Table 1.

TABLE-US-00001 TABLE 1 CEA Antibodies Ab Clones patent Assignee Comments COL-1 U.S. Pat. No. The Dow Chemical Humanized 6,417,337 Company 806.077 U.S. Pat. No. AstraZeneca UK Ltd. Humanized 6,903,203 T84.66 U.S. Pat. No. City of Hope Humanized 7,776,330

[0167] Antibodies that bind the CD22 antigen expressed on human B cells include, for example, HD6, RFB4, UV22-2, To15, 4KB128 and a humanized anti-CD22 antibody (hLL2) (see, e.g., Li et al. (1989) Cell. Immunol. 111: 85-99; Mason et al. (1987) Blood 69: 836-40; Behr et al. (1999) Clin. Cancer Res. 5: 3304s-3314s; Bonardi et al. (1993) Cancer Res. 53: 3015-3021).

[0168] Antibodies to CD33 include, for example, HuM195 (see, e.g., Kossman et al. (1999) Clin. Cancer Res. 5: 2748-2755; U.S. Pat. No. 5,693,761) and CMA-676 (see, e.g., Sievers et al., (1999) Blood 93: 3678-3684).

[0169] Illustrative anti-MUC-1 antibodies include, but are not limited to Mc5 (see, e.g., Peterson et al. (1997) Cancer Res. 57: 1103-1108; Ozzello et al. (1993) Breast Cancer Res. Treat. 25: 265-276), and hCTMO1 (see, e.g., Van Hof et al. (1996) Cancer Res. 56: 5179-5185).

[0170] Illustrative anti-TAG-72 antibodies include, but are not limited to CC49 (see, e.g., Pavlinkova et al. (1999) Clin. Cancer Res. 5: 2613-2619), B72.3 (see, e.g., Divgi et al. (1994) Nucl. Med. Biol. 21: 9-15), and those disclosed in U.S. Pat. No. 5,976,531.

[0171] Illustrative anti-HM1.24 antibodies include, but are not limited to a mouse monoclonal anti-HM1.24 and a humanized anti-HM1.24 IgGlkappa antibody (see, e.g., Ono et al. (1999) Mol. Immuno. 36: 387-395).

[0172] In certain embodiments the targeting moiety comprises an anti-Her2 antibody. The erBB 2 gene, more commonly known as (Her-2/neu), is an oncogene encoding a transmembrane receptor. Several antibodies have been developed against Her-2/neu, and some of these are in clinical use. These include trastuzumab (e.g., HERCEPTIN.TM.; Fornir et al. (1999) Oncology (Huntingt) 13: 647-58), TAB-250 (Rosenblum et al. (1999) Clin. Cancer Res. 5: 865-874), BACH-250 (Id.), TA1 (Maier et al. (1991) Cancer Res. 51: 5361-5369), and the mAbs described in U.S. Pat. Nos. 5,772,997; 5,770,195 (mAb 4D5; ATCC CRL 10463); and U.S. Pat. No. 5,677,171.

[0173] Other fully human anti-Her2/neu antibodies are well known to those of skill in the art. Such antibodies include, but are not limited to the C6 antibodies such as C6.5, DPLS, G98A, C6MH3-B1, B1D2, C6VLB, C6VLD, C6VLE, C6VLF, C6MH3-D7, C6MH3-D6, C6MH3-D5, C6MH3-D3, C6MH3-D2, C6MH3-D1, C6MH3-C4, C6MH3-C3, C6MH3-B9, C6MH3-B5, C6MH3-B48, C6MH3-B47, C6MH3-B46, C6MH3-B43, C6MH3-B41, C6MH3-B39, C6MH3-B34, C6MH3-B33, C6MH3-B31, C6MH3-B27, C6MH3-B25, C6MH3-B21, C6MH3-B20, C6MH3-B2, C6MH3-B16, C6MH3-B15, C6MH3-B11, C6MH3-B1, C6MH3-A3, C6MH3-A2, and C6ML3-9. These and other anti-HER2/neu antibodies are described in U.S. Pat. Nos. 6,512,097 and 5,977,322, in PCT Publication WO 97/00271, in Schier et al. (1996) J Mol Biol 255: 28-43, Schier et al. (1996) J Mol Biol 263: 551-567, and the like.

[0174] More generally, antibodies directed to various members of the epidermal growth factor receptor family are well suited for use as targeting antibodies or antigen binding portions thereof in the constructs of the present invention. Such antibodies include, but are not limited to anti-EGFR antibodies as described in U.S. Pat. Nos. 5,844,093 and 5,558,864, and in European Patent No. 706,799A. Other illustrative anti-EGFR family antibodies include, but are not limited to antibodies such as C6.5, C6ML3-9, C6MH3-B1, C6-B1D2, F5, HER3.A5, HER3.F4, HER3.H1, HER3.H3, HER3.E12, HER3.B12, EGFR.E12, EGFR.C10, EGFR.B11, EGFR.E8, HER4.B4, HER4.G4, HER4.F4, HER4.A8, HER4.B6, HER4.D4, HER4.D7, HER4.D11, HER4.D12, HER4.E3, HER4.E7, HER4.F8 and HER4.C7 and the like (see, e.g., U.S. Patent publications US 2006/0099205 A1 and US 2004/0071696 A1 which are incorporated herein by reference).

[0175] CD38 is of particular interest as an antibody target for fusion protein constructs of the present invention. Antibodies to CD38 include for example, .DELTA.T13/5 (see, e.g., Ellis et al. (1995) J. Immunol. 155: 925-937), HB7, and the like.

[0176] The present invention also provides compositions comprising the fusion polypeptides of the present invention. These compositions can further comprise at least one of any suitable auxiliary, such as, but not limited to, diluent, binder, stabiliser, buffers, salts, lipophilic solvents, preservative, adjuvant or the like. Pharmaceutically acceptable auxiliaries are preferred. Non-limiting examples of, and methods of preparing such sterile solutions are well known in the art, such as, but not limited to, Gennaro, Ed., Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Co. (Easton, Pa.) 1990. Pharmaceutically acceptable carriers can be routinely selected that are suitable for the mode of administration, solubility and/or stability of the antibody composition as well known in the art or as described herein.

[0177] Pharmaceutical excipients and additives useful in the present composition include but are not limited to proteins, peptides, amino acids, lipids, and carbohydrates (e.g., sugars, including monosaccharides, di-, tri-, tetra-, and oligosaccharides; derivatised sugars such as alditols, aldonic acids, esterified sugars and the like; and polysaccharides or sugar polymers), which can be present singly or in combination, comprising alone or in combination 1-99.99% by weight or volume. Exemplary protein excipients include serum albumin, such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like. Representative amino acids which can also function in a buffering capacity include alanine, glycine, arginine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like. One preferred amino acid is histidine. A second preferred amino acid is arginine.

[0178] Carbohydrate excipients suitable for use in the invention include, for example, monosaccharides, such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like; disaccharides, such as lactose, sucrose, trehalose, cellobiose, and the like; polysaccharides, such as raffinose, melezitose, maltodextrins, dextrans, starches, and the like; and alditols, such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol), myoinositol and the like. Preferred carbohydrate excipients for use in the present invention are mannitol, trehalose, and raffinose.

[0179] Antibody compositions can also include a buffer or a pH adjusting agent; typically, the buffer is a salt prepared from an organic acid or base. Representative buffers include organic acid salts, such as salts of citric acid, ascorbic acid, gluconic acid, carbonic acid, tartaric acid, succinic acid, acetic acid, or phthalic acid; Tris, tromethamine hydrochloride, phosphate buffers or amino acid buffers. Preferred buffers for use in the present compositions are organic acid salts, such as citrate or amino acids.

[0180] Additionally, the compositions of the invention can include polymeric excipients/additives, such as polyvinylpyrrolidones, ficolls (a polymeric sugar), dextrates (e.g., cyclodextrins, such as 2-hydroxypropyl-.beta.-cyclodextrin), polyethylene glycols, flavoring agents, antimicrobial agents, sweeteners, antioxidants, antistatic agents, surfactants (e.g., polysorbates such as "TWEEN.RTM. 20" and "TWEEN.RTM. 80"), lipids (e.g., phospholipids, fatty acids), steroids (e.g., cholesterol), and chelating agents (e.g., EDTA).

[0181] These and additional known pharmaceutical excipients and/or additives suitable for use in the antibody compositions according to the invention are known in the art, e.g., as listed in "Remington: The Science & Practice of Pharmacy", 19 th ed., Williams & Williams, (1995), and in the "Physician's Desk Reference", 52 nd ed., Medical Economics, Montvale, N.J. (1998), the disclosures of which are entirely incorporated herein by reference. Preferred carrier or excipient materials are carbohydrates (e.g., saccharides and alditols) and buffers (e.g., citrate) or polymeric agents.

[0182] Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within the spirit and scope. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

[0183] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any materials and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred materials and methods are now described.

EXAMPLES

General Methods

Production of Antibody Fusion Constructs in HEK-293E Cells.

[0184] The DNA sequences of a number of the domains in the fusion polypeptides of the present are provided in the attached Sequence listing incorporated herein. DNA plasmids encoding protein constructs (antibody-attenuated IFN.alpha.2b fusion constructs) were prepared using HiSpeed Plasmid Maxi Kit (Qiagen, Valencia, Calif.) and then transfected into HEK293E cells (CNRC, Montreal, Canada), grown in F17 synthetic medium supplemented with 0.45% (w/v) D-(+)-Glucose (Sigma, Castle Hill, NSW), 25 .mu.g/mL Geneticin (Invitrogen, Carlsbad, Calif.), and 1.times.GlutaMAX (Invitrogen, Carlsbad, Calif.) using a commercially available transfection reagent and OptiMEM medium (Invitrogen, Carlsbad, Calif.). After allowing for expression for 6 days in an incubator supplied with 5% CO.sub.2 and 120 rpm shaking, the culture media was isolated and subjected to affinity purification using Protein A MABSELECT SURE.RTM. agarose beads (GE Healthcare, Piscataway, N.J.). Purified protein constructs were buffer-exchanged into 0.2M arginine HCl, 25 mM citric acid, 71.5 mM sodium hydroxide at pH 6.0 using a PD Midi-Trap G-25 column (GE Healthcare, Piscataway, N.J.) or a HiPrep 26/10 Desalting column (HiTrap Desalting HiPrep 26/10 Desalting). Purified protein constructs were then concentrated using 50 kDa Amicon Ultra centrifugal filter devices (Millipore, Billerica, Mass.), followed by protein concentration determination by reading absorbance at 280 nm.

Production of Antibody-Fusion Constructs in EXPI293 Cells.

[0185] DNA plasmids encoding protein constructs (antibody-IFN.alpha.2b related constructs) were prepared using HiSpeed Plasmid Maxi Kit (Qiagen, Valencia, Calif.) and then transfected into EXPI293 cells (Life Technologies, Carlsbad, Calif.), grown in EXPI Expression medium (Life Technologies, Carlsbad, Calif.) using transfection reagent provided in the EXPI293 transfection kit and OptiMEM medium (Invitrogen, Carlsbad, Calif.). After allowing for expression for 3 days in an incubator supplied with 5% CO.sub.2 and 125 rpm shaking, the culture media was isolated and subjected to affinity purification using Protein A MABSELECT SURE.RTM. agarose beads (GE Healthcare, Piscataway, N.J.). Purified protein constructs were buffer-exchanged into 0.2M arginine HCl, at pH 6.0 using a PD Midi-Trap G-25 column (GE Healthcare, Piscataway, N.J.) or a HiPrep 26/10 Desalting column (HiTrap Desalting HiPrep 26/10 Desalting). Purified protein constructs were then concentrated using 50 kDa Amicon Ultra centrifugal filter devices (Millipore, Billerica, Mass.), followed by protein concentration determination by reading absorbance at 280 nm.

Production of Antibody-Fusion Constructs in CHO Cells.

[0186] DNA plasmids encoding protein constructs (antibody-IFN.alpha.2b related constructs) were prepared using HiSpeed Plasmid Maxi Kit (Qiagen, Valencia, Calif.) and then transfected into CHO cells (Lonza) grown in FREESTYLE.TM. CHO Expression Medium (Invitrogen, Carlsbad, Calif.) using a commercially available transfection reagent and OptiPro SFM.TM. medium (Invitrogen, Carlsbad, Calif.). After allowing for expression for 6 days in an incubator supplied with 10% CO.sub.2 and 120 rpm shaking, the culture media was isolated and subjected to affinity purification using Protein A MABSELECT SURE.RTM. agarose beads (GE Healthcare, Piscataway, N.J.). Purified protein constructs were buffer-exchanged into 0.2M arginine.HCl, 25 mM citric acid, 71.5 mM sodium hydroxide at pH 6.0 using a PD Midi-Trap G-25 column (GE Healthcare, Piscataway, N.J.) or a HiPrep 26/10 Desalting column (HiTrap Desalting HiPrep 26/10 Desalting). Purified protein constructs were then concentrated using 50 kDa Amicon Ultra centrifugal filter devices (Millipore, Billerica, Mass.), followed by protein concentration determination by reading absorbance at 280 nm.

Method for Measuring Antigen-Targeted Activity of Antibody-IFN.alpha.2b Fusion Protein Constructs

[0187] "On target (Daudi) assay": This assay was used to quantify the anti-proliferative activity of IFN.alpha.2b and antibody-IFN.alpha.2b fusion protein constructs on cells that display both IFN receptor and the antigen targeted by the antibody to which the IFN.alpha.2b is fused. Daudi cells express both CD20 and CD38 as cell surface associated antigens, as well as cell surface IFN receptors. The viability of the Daudi cells was measured using the reagent CELLTITER-GLO.RTM., Cat #G7570, from Promega (Madison, Wis.). This is a luminescence-based assay that determines the viability of cells in culture based on quantitation of ATP. The signal strength is proportional to the number of viable cells in a microtiter plate well. The details of the assay are as follows:

[0188] Daudi cells (obtained from ATCC, Manassas, Va.) were cultured in a T75 flask (TPP, Trasadingen, Switzerland, cat #90076) to a preferred density of between 0.5.times.10.sup.5 and 0.8.times.10.sup.5 viable cells/ml in RPMI 1640 (Mediatech, Inc., Manassas, Va., cat #10-040-CV) with 10% Fetal Bovine Serum (FBS; Hyclone, Logan, Utah cat # SH30070.03). Cells were harvested by centrifuging at 400 g for five minutes, decanting the supernatant, and resuspending the cell pellet in RPMI 1640+10% FBS. Cells were then counted and the density was adjusted to 3.0.times.10.sup.5 cells/ml in RPMI 1640+10% FBS. Then, 50 .mu.l of the cell suspension was aliquoted into each well of a 96 well round bottom tissue culture plate (hereafter, "experimental plate") (TPP, cat #92067). On a separate, sterile 96 well plate (hereafter, "dilution plate"; Costar, Corning, N.Y. cat #3879), test articles were serially diluted in duplicate in RPMI 1640+10% FBS. Then, 50 .mu.l/well was transferred from the dilution plate to the experimental plate. The experimental plate was then incubated for four days at 37.degree. C. with 5% CO.sub.2.

[0189] A mixture of the manufacturer-supplied assay buffer and assay substrate (hereafter, "CELLTITER-GLO.RTM. reagent", mixed according to the manufacturer's instructions) was added to the experimental plate at 100 .mu.l/well. The plate was shaken for two minutes. Then, 100 .mu.l/well was transferred from the experimental plate to a 96 well flat bottom white opaque plate (hereafter, "assay plate"; BD Biosciences, Franklin Lakes, N.J. cat #35 3296). The content of the assay plate was then allowed to stabilize in the dark for 15 minutes at room temperature. The plate was read on a Victor 3V Multilabel Counter (Perkin Elmer, Waltham, Mass., model # 1420-041) on the luminometry channel and the luminescence was measured. Results are presented as "relative luminescence units (RLU)".

[0190] Data was analyzed using Prism 5 (Graphpad, San Diego, Calif.) using non-linear regression and three parameter curve fit to determine the midpoint of the curve (EC50). For each test article, potency relative to free IFN.alpha.2b (or some other form of IFN with a known potency relative to IFN.alpha.2b) was calculated as a ratio of EC50s.

[0191] One of ordinary skill in the art will appreciate that there are many other commonly used assays for measuring cell viability that could also be used.

[0192] "On target (ARP) assay" (also sometimes referred to herein as a "targeted assay"): The multiple myeloma cell line ARP-1 was a gift from Bart Barlogie Md., PhD, Director of the Myeloma Institute at the University of Arkansas Medical Center (Little Rock, Ak.). It is described in Hardin J. et al. (Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood; 84:3063, 1994). ARP-1 cells (CD38.sup.+) were used to test CD38 targeting antibody-IFN fusion protein constructs. Culture and assay conditions were the same as for Daudi-based assay outlined above, with the following exceptions: ARP-1 was cultured to a density of 4.0.times.10.sup.5 to 6.0.times.10.sup.5 cells/ml. ARP-1 concentration was adjusted to 1.0.times.10.sup.4 cells/ml prior to assay.

Example 1

Isoelectric Points of Anti-CD38 Antibody Attenuated IFN.alpha.2b Fusion Proteins

[0193] Various transiently transfected cells expressing an anti-CD38 antibody-attenuated IFN.alpha.2b fusion constructs (Table 2) were harvested and purified using a MABSELECT SURE.RTM. Protein A column. Samples were desalted into 200 mM Arginine, 25 mM Histidine pH 6.5 using a HiLoad Superdex 200 column.

TABLE-US-00002 TABLE 2 Table of Constructs SEQ ID No. Heavy Light VH + Antibody Constructs Chain Chain IFN IFN A10.21 IgG4 (S228P) IFN (A145D, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145D, T106A) 48 81 25 87, 31 A10.21 IgG4 (S228P) IFN (A145D, .DELTA.T106) 48 81 110 61 A10.21 IgG1 IFN (A145D, T106T) 50 81 107 A10.21 IgG1 IFN (A145D, T106A) 50 81 25 68 A10.21 IgG1 IFN (A145D, .DELTA.T106) 50 81 83 A10.43 IgG4 (S228P) IFN (A145D, T106T) 55 81 107 A10.43 IgG4 (S228P) IFN (A145D, T106A) 55 81 25 74 A10.21 IgG4 (S228P) IFN (A145D, T106S) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106V) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106G) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106E) 48 81 25 31 A10.21 IgG4 (S228P, M252Y, S254T, 49 81 107 T256E) IFN (A145D, T106T) A10.21 IgG4 (S228P, M252Y, S254T, 49 81 25 62 T256E) IFN (A145D, T106A) A10.21 IgG4 (S228P) IFN (R144I T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144I, T106A) 48 81 24 63 A10.21 IgG4 (S228P) IFN (A145K, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145K, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (A145G, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145G, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (R33A, T106T) 48 81 109 A10.21 IgG4 (S228P) IFN (R33A, T106A) 48 81 13 65 A10.21 IgG4 (S228P) IFN (A145Q, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145Q, T106A) 48 81 25 66 A10.21 IgG1 (L235A, G237A) IFN (A145D, T106T) 51 81 107 A10.21 IgG1 (L235A, G237A) IFN (A145D, T106A) 51 81 25 69 A10.21 IgG2 IFN (A145D, T106T) 53 81 107 A10.21 IgG2 IFN (A145D, T106A) 53 81 25 72 A10.21 IgG2 (A330S, P331S) IFN (A145D, T106T) 81 107 A10.21 IgG2 (A330S, P331S) IFN (A145D, T106A) 81 25 A02.12 IgG4 (S228P) IFN (A145D, T106T) 58 84 107 A02.12 IgG4 (S228P) IFN (A145D, T106A) 58 84 25 77 Anti-CD138 IgG4 (S228P) IFN (A145D, T106T) 59 85 107 Anti-CD138 IgG4 (S228P) IFN (A145D, T106A) 59 85 25 Anti-HLA IgG4 (S228P) IFN (A145D, T106T) 60 86 107 Anti-HLA IgG4 (S228P) IFN (A145D, T106A) 60 86 25

[0194] Isoelectric focusing gels were used to determine the isoelectric point (pI) of the fusion polypeptide and to detect minor changes in the protein due to post-translational modifications such as phosphorylation and glycosylation.

[0195] Pre-cast IEF gel was setup in gel tanks ensuring a tight seal between gel and buffer. Then 200 mL of 1.times. Cathode buffer was poured into inner chamber ensuring no buffer enters the outer chamber. 500 mL of 1.times. Anode buffer was then poured into the outer chamber and filled 3/4 of the tank. After the samples and ladder were loaded onto the gel, it was then run for 1 hour at 100 volt, 1 hour at 200 volt and 1/2 hour at 500 volt. As soon as gel run was finished, the gel was taken out and fixed in TCA solution in a glass container for 30 min. The gel was then immediately washed with deionised water 3 times. The gel was stained in SimplyBlue SafeStain (Invitrogen Life Technologies) for a full hour, and left overnight in water to destain. The final image scanned using a scanner.

[0196] The O-linked glycosylation site of the IFN.alpha.2b portion of the antibody-attenuated interferon fusion constructs was removed by either substituting the interferon's threonine 106 (T106) to alanine (shown as T106A), serine (T106S), valine (T106V), glycine (T106G) or glutamic acid (T106E) or by deleting T106 (shown as .DELTA.T106). The effect of these changes on pI and the heterogeneity of the fusion constructs was investigated by comparing constructs with and without O-linked glycosylation by separation on IEF gels.

[0197] In each case, deleting T106 or substituting T106 with alanine, serine, valine, glycine or glutamic acid decreased the number of observed charged species on an IEF gel, as evidenced by a reduced number of bands when directly compared to unmodified T106, and hence the heterogeneity of the fusion construct was reduced (FIG. 9). The reduced number of charged species on the IEF gel and therefore the reduced heterogeneity of the molecule incorporating T106S is consistent with removal of the O-linked glycosylation at residue 106 of IFN.alpha.2b.

[0198] Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs resulted in an increased pI relative to 0-link glycosylated proteins. Using the same antibody front-end of A10.21, this trend was consistent regardless of whether the isotype of the antibody was IgG4, IgG1, IgG1 AA (IgG1 L235A, G237A, an effector function reduced form of IgG1), IgG2 or IgG2 SS (IgG2 (A330S, P331S)) in the constructs (FIG. 10).

[0199] YTE substitutions (M252Y, S254T, T256E) have been shown to confer increased affinity to FcRn, presumably increasing the half-life of antibodies. Further experiments examined whether substitutions in other parts of the antibody IFN fused constructs will affect the reduced heterogeneity which resulted from a T106 deletion or substitution. The heterogeneity of glycosylated A10.21 anti-CD38-attenuated IFN.alpha.2b fusion construct (YTE, T106T) and the non-glycosylated IFN fusion construct with the YTE substitutions (YTE, T106A) was assessed on IEF gels. Removal of glycosylation of the IFN.alpha.2b component of fusion constructs bearing the YTE mutations decreased heterogeneity (FIG. 11).

[0200] Attenuation of IFN.alpha.2b is attained by substitutions of key amino acid residues which are responsible for binding to IFN receptors. The number of charged species of A10.21 IgG4 (S228P) IFN constructs with various attenuating amino acid substitutions in the IFN.alpha.2b, together with (T106T) or without O-linked glycosylation (T106A) of the IFN.alpha.2b component was evaluated. Individual amino acid residues Arginine-33, Arginine-144 and Alanine-145 of IFN.alpha.2b were substituted one at a time with Alanine for residue 33 (R33A), Isoleucine for residue 144 (R144I) or Lysine, Glycine or Glutamine for residue 145 (A145K, A145G, A145Q). When directly compared the aglycosylated IFN fusion constructs were consistently less heterogeneous than their glycosylated counterparts (FIG. 12).

[0201] The reduction in heterogeneity exhibited was independent of the antibody portion of the construct. Removal of the O-linked glycosylation site in the attenuated IFN.alpha.2b portion of the antibody (IgG4 (S228P))-attenuated IFN fusion constructs with specificity against HLA, CD138 and CD38 (a different epitope on CD38 to antibody A10.21-antibody A02.12) also resulted in a decrease in heterogeneity (FIG. 13) as detected by IEF.

Example 2

Anti-Proliferative Activity of Antibody Attenuated Interferon.alpha.2b Fusion Proteins

[0202] The anti-proliferative effects of IFN.alpha.2b consist of direct and indirect activities. Direct activity occurs through cancer cell growth inhibition by cell cycle arrest (Matsui et al. 2003), apoptosis by death receptor-dependent (Crowder et al. 2005) and -independent (Otsuki et al. 1998) pathways, or differentiation (Matsui et al. 2003). Target-specific direct cytotoxicity of antibody attenuated interferon fusion proteins were measured against target positive cell lines using a luminescent cell viability assay.

Anti CD38-IFN Lead Sequence Samples

[0203] The constructs (Table 3) were either stably cloned or transiently transfected and were harvested and purified using a MABSELECT SURE.RTM. Protein A column. Samples were desalted into 200 mM Arginine, 25 mM Histidine pH 6.5 using a HiLoad Superdex 200 column.

TABLE-US-00003 TABLE 3 Table of Constructs Seq Id No. Heavy Light VH + Antibody Constructs Chain Chain IFN IFN A10.21 IgG4 (S228P) IFN (A145D, 48 81 107 T106T) A10.21 IgG4 (S228P) IFN (A145D, 48 81 25 87, 31 T106A) A10.21 IgG4 (S228P) IFN (A145D, 48 81 110 61 .DELTA.T106) A10.21 IgG4 (S228P) IFN (A145D, 48 81 25 31 T106S) A10.21 IgG4 (S228P) IFN (A145D, 48 81 25 31 T106V) A10.21 IgG4 (S228P) IFN (A145D, 48 81 25 31 T106G) A10.21 IgG4 (S228P) IFN (A145D, 48 81 25 31 T106E) A10.21 IgG4 (S228P, M252Y, S254T, 49 81 107 T256E) IFN (A145D, T106T) A10.21 IgG4 (S228P, M252Y, S254T, 49 81 25 62 T256E) IFN (A145D, T106A) A10.21 IgG4 (S228P) IFN (R144I T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144I, 48 81 24 63 T106A) A10.21 IgG4 (S228P) IFN (A145K, 48 81 107 T106T) A10.21 IgG4 (S228P) IFN (A145K, 48 81 25 64 T106A) A10.21 IgG4 (S228P) IFN (A145G, 48 81 107 T106T) A10.21 IgG4 (S228P) IFN (A145G, 48 81 25 64 T106A) A10.21 IgG4 (S228P) IFN (R33A, T106T) 48 81 109 A10.21 IgG4 (S228P) IFN (R33A, T106A) 48 81 13 65 A10.21 IgG4 (S228P) IFN (A145Q, 48 81 107 T106T) A10.21 IgG4 (S228P) IFN (A145Q, 48 81 25 66 T106A) A10.21 IgG4 (S228P) IFN (A145N, 48 81 107 T106T) A10.21 IgG4 (S228P) IFN (A145N, 48 81 25 66 T106A) A10.21 IgG4 (S228P) IFN (R144N, 48 81 108 T106T) A10.21 IgG4 (S228P) IFN (R144N, 48 81 24 67 T106A) A10.21 IgG4 (S228P) IFN (R144H, 48 81 108 T106T) A10.21 IgG4 (S228P) IFN (R144H, 48 81 24 67 T106A) A10.21 IgG1 IFN (A145D, T106T) 50 81 107 A10.21 IgG1 IFN (A145D, T106A) 50 81 25 68 A10.21 IgG1 IFN (A145D, .DELTA.T106) 50 81 110 83 A10.21 IgG1 (L235A, G237A) IFN 51 81 107 (A145D, T106T) A10.21 IgG1 (L235A, G237A) IFN 51 81 25 69 (A145D, T106A) A10.21 IgG1 (L235A, G237A, M252Y, 52 81 107 S254T, T256E) IFN (A145D, T106T) A10.21 IgG1 (L235A, G237A, M252Y, 52 81 25 S254T, T256E) IFN (A145D, T106A) A10.21 IgG1 (M252Y, S254T, T256E) 52 81 107 IFN (A145D, T106T) A10.21 IgG1 (M252Y, S254T, T256E) 81 25 70 IFN (A145D, T106A) A10.21 IgG2 IFN (A145D, T106T) 53 81 107 A10.21 IgG2 IFN (A145D, T106A) 53 81 25 72 A10.21 IgG2 (A330S, P331S) IFN (A145D, 81 107 T106T) A10.21 IgG2 (A330S, P331S) IFN (A145D, 81 25 T106A) A10.21 IgG2 (M252Y, S254T, T256E) 54 81 107 IFN (A145D, T106T) A10.21 IgG2 (M252Y, S254T, T256E) 54 81 25 73 IFN (A145D, T106A) A10.43 IgG4 (S228P) IFN (A145D, 55 81 107 T106T) A10.43 IgG4 (S228P) IFN (A145D, 55 81 25 74 T106A) R10A2 IgG4 (S228P) IFN (A145D, 75 82 107 T106T) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106A) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106R) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106N) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106D) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106C) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106E) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106Q) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106G) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106H) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106I) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106L) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106K) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106M) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106F) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106P) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106S) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106W) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106Y) R10A2 IgG4 (S228P) IFN (A145D, 75 82 25 T106V) A02.12 IgG4 (S228P) IFN (A145D, 58 84 107 T106T) A02.12 IgG4 (S228P) IFN (A145D, 58 84 25 77 T106A) OPG-Fc (IgG2) IFN (A145D, T106T) 57 107 OPG-Fc (IgG2) IFN (A145D, T106A) 57 25 78 Anti-CD138 IgG4 (S228P) IFN (A145D, 59 85 107 T106T) Anti-CD138 IgG4 (S228P) IFN (A145D, 59 85 25 T106A) Anti-HLA IgG4 (S228P) IFN (A145D, 60 86 107 T106T) Anti-HLA IgG4 (S228P) IFN (A145D, 60 86 25 T106A)

Commercial IFN.alpha.2b

[0204] INTRON.RTM. A, a commercial bacterially produced IFN.alpha.2b from Schering-Plough, was used as a positive control.

Anti-Proliferative Activity Measurement

[0205] Anti-proliferative activity was measured using the methods described above "Daudi cell proliferation assay" and "ARP-1 Cell proliferation assay". The ARP-1 cell proliferation assay method was used with an additional cell line NCI-H929 for the measurement of the anti-proliferative activity of antibody-attenuated IFN.alpha.2b fusion protein. In some experiments the plates were read on a dedicated GLOMAX.RTM. 96 Microplate Luminometer and CELLTITER-GLO.RTM. 2.0 reagents were used instead of the original CELLTITER-GLO.RTM., neither of which impacted the results. The ARP-1/NCI-H929 or Daudi cell proliferation assay was used to quantify the anti-proliferative activity of IFNs and antibody-attentuated IFN.alpha.2b fusion protein constructs on cells that display CD38. Daudi, ARP1 and NCI-H929 cells express CD38 as a cell surface associated antigen. The details of the assays are as follows.

[0206] In the ARP-1/NCI-H929 cell proliferation assay viability of cells was measured using the reagent CELLTITER-GLO.RTM. 2.0, Cat # G9242, from Promega (Madison, Wis.). This is a luminescence-based assay that determines the viability of cells in culture based on quantitation of ATP. The signal strength is proportional to the number of viable cells in a microtiter plate well. Cells (NCI-H929 from ATCC, Manassas, Va. and ARP-1, a gift from Bart Barlogie Md., PhD, Director of the Myeloma Institute at the University of Arkansas Medical Center; Little Rock, Ak.) were cultured in a T75 flask (TPP, Trasadingen, Switzerland, cat #90076) to a preferred density of between 0.5.times.10.sup.5 and 0.8.times.10.sup.5 viable cells/mL in RPMI 1640 (Mediatech, Inc., Manassas, Va., cat #10-040-CV) with 10% Fetal Bovine Serum (FBS; Hyclone, Logan, Utah cat # SH30070.03). Cells were harvested by centrifuging at 400.times.g for five minutes, decanting the supernatant, and resuspending the cell pellet in RPMI 1640+10% FBS. Cells were then counted and the density was adjusted to 3.0.times.10.sup.5 cells/mL in RPMI 1640+10% FBS. 50 .mu.L of cell suspension was seeded into each well of a 96 well round bottom tissue culture plate (hereafter, "experimental plate") (TPP, cat #92067). Cells were incubated at 4.degree. C. for 1 hour prior to the addition of test compounds. On a separate, sterile 96 well plate (hereafter, "dilution plate"; Costar, Corning, N.Y. cat #3879), test articles were serially diluted in duplicate in RPMI 1640+10% FBS. 50 .mu.L/well was transferred from the dilution plate to the experimental plate. The experimental plate was then incubated for four days at 37.degree. C. with 5% CO.sub.2. A "CELLTITER-GLO.RTM. reagent 2.0", was added to the experimental plate at 100 .mu.L/well. The plate was shaken for two minutes. 100 .mu.L/well was transferred from the experimental plate to a 96 well flat bottom white opaque plate (hereafter, "assay plate"; BD Biosciences, Franklin 5 Lakes, N.J. cat #35 3296). The content of the assay plate was then allowed to stabilize in the dark for 15 minutes at room temperature. The plate was read on GLOMAX.RTM. 96 Microplate Luminometer. Results are presented as "relative luminescence units" (RLU).

[0207] Data was analyzed using Prism 5 (Graphpad, San Diego, Calif.) using non-linear regression and four parameter curve fit to determine the IC50.

[0208] The O-linked glycosylation site of anti-CD38 antibody attenuated interferon fusion constructs were removed by either substituting threonine 106 (T106) to alanine (T106A), serine (T106S), valine (T106V), glycine (T106G) or glutamic acid (T106E) or deleting T106 (shown as .DELTA.T106). The effect on cell proliferation was investigated by comparing A10.21 anti-CD38 antibody fused to attenuated IFN.alpha.2b with and without O-linked glycosylation. Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs resulted in increased anti-proliferative activity as shown by lower IC50 (nM) relative to the corresponding O-linked glycosylated fusion proteins i.e. A10.21 IgG4 (S228P) IFN (A145D, T106T) and A10.21 IgG1 IFN (A145D, T106T) in both ARP1 (FIG. 1A) and NCI-H929 cells (FIG. 1B). This trend was consistent regardless of whether the antibody isotype was IgG4 and IgG1.

[0209] Substitution of threonine 106 (T106) to alanine (T106A), serine (T106S), valine (T106V), glycine (T106G) or glutamic acid (T106E) resulted in increased anti-proliferative activity as shown by lower IC50 (nM) relative to O-linked glycosylated fusion proteins. All non-glycosylated constructs showed higher "on-target" potency relative to their glycosylated counterpart in NCI-H929 cells (FIG. 14).

[0210] The impact on anti-proliferative activity of the removal of the O-linked glycosylation site from the attenuated IFN.alpha.2b component was examined in a range of anti-CD38 antibody-attenuated IFN.alpha.2b fusion proteins. Variants of the anti-CD38 antibody-attenuated IFN.alpha.2b fusion protein R10A2 IgG4 (S228P) IFN (A145D) possessing different amino acid substitutions at T106 to remove the O-linked glycosylation site on the IFN component (T106A, T106G, T106N, T106F, T106R, T106D, T106E, T106Q, T106H, T1061, T106L, T106K, T106M, T106F, T106P, T106S, T106V, T106Y and T106W, (Table 4) were examined and the results shown in FIG. 2.

[0211] While the level of potency varied between different substitutions at the T106 site, all substitutions that are predicted to result in the removal of O-linked glycosylation increased potency relative to the corresponding O-linked glycosylated protein (FIG. 2).

TABLE-US-00004 TABLE 4 R10A2 Anti-CD38 antibody- attenuated IFN fusion construct variants with various amino acid substitutions at T106 for removal of O-linked glycosylation. Seq Id No. Heavy Light Construct Name Chain Chain IFN R10A2 IgG4 (S228P) IFN (A145D, T106T) 75 82 107 R10A2 IgG4 (S228P) IFN (A145D, T106A) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106R) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106N) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106D) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106C) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106E) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Q) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106G) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106H) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106I) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106L) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106K) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106M) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106F) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106P) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106S) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106W) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Y) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106V) 75 82 25

[0212] The relative changes in the potency between two different anti-CD38 antibody interferon fusion proteins (A02.12 and A10.21) which bind different epitopes on CD38, with or without the O-linked glycosylation (A02.12 IgG4 (S228P) IFN (A145D, T106T), A02.12 IgG4 (S228P) IFN (A145D, T106A), A10.21 IgG4 (S228P) IFN (A145D, T106T) and A10.21 IgG4 (S228P) IFN (A145D, T106A) was assessed in a similar manner. Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody (IgG4 (S228P)) fusion constructs with differing specificity against CD38 resulted in an increase in anti-proliferative activity regardless of the target of the antibody portion of the construct (FIG. 15).

[0213] Attenuation of IFN.alpha.2b is achieved by various attenuating substitutions. The anti-proliferative activity of A10.21 IgG4 (S228P) IFN constructs with various attenuating substitutions in the IFN.alpha.2b with (T106T) and without O-linked glycosylation (T106A) (Table 5) was also evaluated. The removal of the O-linked glycosylation site in the IFN.alpha.2b component of constructs with various attenuating substitutions all had higher potency than their glycosylated counterpart (FIG. 16).

TABLE-US-00005 TABLE 5 A10.21 IgG4 (S228P) IFN constructs with various attenuating substitutions in the IFN.alpha.2b with (T106T) and without O-linked glycosylation (T106A). Seq Id No. Heavy Light VH + Construct Name Chain Chain IFN IFN A10.21 IgG4 (S228P) IFN (R144I T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144I, T106A) 48 81 24 63 A10.21 IgG4 (S228P) IFN (A145K, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145K, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (A145G, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145G, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (R33A, T106T) 48 81 109 A10.21 IgG4 (S228P) IFN (R33A, T106A) 48 81 13 65 A10.21 IgG4 (S228P) IFN (A145Q, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145Q, T106A) 48 81 25 66 A10.21 IgG4 (S228P) IFN (A145N, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145N, T106A) 48 81 25 66 A10.21 IgG4 (S228P) IFN (R144N, T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144N, T106A) 48 81 24 67 A10.21 IgG4 (S228P) IFN (R144H, T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144H, T106A) 48 81 24 67

[0214] To investigate whether other attenuated IFN.alpha.2b fused antibodies/proteins which have different binding targets have modulated anti-proliferative activity as a result of removal of O-linked glycosylation, 2 constructs were created (an anti-CD138 antibody and an anti-HLA antibody and fused to IFN (A145D) with or without O-linked glycosylation (Table 6) and were tested for anti-proliferative activity.

[0215] Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody (IgG4 (S228P)) fusion constructs with specificity against HLA and CD138 resulted in an increase in anti-proliferative activity regardless of the target of the antibody portion of the construct. This was demonstrated in antibody fusion constructs against HLA and CD138 (FIG. 17).

TABLE-US-00006 TABLE 6 Constructs of various IFN fusion proteins -anti- CD138 antibody and anti-HLA antibody fused to IFN (A145D) with or without O-linked glycosylation Seq Id No. Heavy Light VH + Antibody Constructs Chain Chain IFN IFN Anti-CD138 IgG4 (S228P) IFN (A145D, 59 85 107 59 T106T) Anti-CD138 IgG4 (S228P) IFN (A145D, 59 85 25 59 T106A) Anti-HLA IgG4 (S228P) IFN (A145D, 60 86 107 T106T) Anti-HLA IgG4 (S228P) IFN (A145D, 60 86 25 T106A)

Effect on Anti Proliferative Activity of the Removal of O-Linked Glycosylation from Fusion Proteins Comprising Substitutions in the Fc Regions for Half-Life Extension or Reduced Effector Function

[0216] YTE substitutions have been shown to confer increased affinity to FcRn, presumably increasing the half-life of antibodies. IFN fused antibodies containing the YTE substitutions were tested for anti-proliferative activity in the presence and absence of O-linked glycosylation. The following variants were made of the A10.21 anti-CD38 antibody attenuated IFN fusion protein (Table 7).

[0217] The introduction of the YTE substitution to A10.21 IgG4 (S228P) (A145D, T106A) did not impact the increase in potency caused by removal of the O-linked glycosylation from the attenuated IFN (FIG. 18).

[0218] L235A and G237A substitutions in the Fc portion of IgG1 variants and A330S and P331S substitutions in the Fc portion of IgG2 variants results in reduced effector function. Attenuated IFN fused IgG1 antibodies containing L235A and G237A substitutions and attenuated IFN fused IgG2 antibodies containing A330S and P331S substitutions were tested for anti-proliferative activity in the presence and absence of O-linked glycosylation. These variants were made of the A10.21 anti-CD38 antibody attenuated IFN fusion protein (Table 7). Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs resulted in an increase in potency regardless of whether the isotype of the antibody in the antibody constructs was IgG1 or IgG1 AA (IgG1 (L235A, G237A)), IgG2 or IgG2 SS (IgG2 (A330S, P331S)) (FIG. 19).

TABLE-US-00007 TABLE 7 A10.21 fusion proteins composed of substitutions in the Fc regions for half-life extension or reduced effector function Seq Id No. Heavy Light VH + Antibody Constructs Chain Chain IFN IFN A10.21 IgG4 (S228P, M252Y, S254T, T256E) 49 81 107 IFN (A145D, T106T) A10.21 IgG4 (S228P, M252Y, S254T, T256E) 49 81 25 62 IFN (A145D, T106A) A10.21 IgG1 (L235A, G237A) IFN (A145D, 51 81 107 T106T) A10.21 IgG1 (L235A, G237A) IFN (A145D, 51 81 25 69 T106A) A10.21 IgG1 (L235A, G237A, M252Y, S254T, 52 81 107 T256E) IFN (A145D, T106T) A10.21 IgG1 (L235A, G237A, M252Y, S254T, 52 81 25 T256E) IFN (A145D, T106A) A10.21 IgG1 (M252Y, S254T, T256E) IFN 52 81 107 (A145D, T106T) A10.21 IgG1 (M252Y, S254T, T256E) IFN 111 81 25 70 (A145D, T106A) A10.21 IgG2 IFN (A145D, T106T) 53 81 107 A10.21 IgG2 IFN (A145D, T106A) 53 81 25 72 A10.21 IgG2 (A330S, P331S) IFN (A145D, T106T) 112 81 107 A10.21 IgG2 (A330S, P331S) IFN (A145D, T106A) 112 81 25 A10.21 IgG2 (M252Y, S254T, T256E) IFN 54 81 107 (A145D, T106T) A10.21 IgG2 (M252Y, S254T, T256E) IFN 54 81 25 73 (A145D, T106A)

[0219] Removal of the O-linked glycosylation site from the attenuated interferon portion of the anti-CD38 antibody interferon fusion proteins by amino acid substitution or deletion of T106 resulted in an increase in anti-proliferative activity on target CD38, CD138 or HLA positive cells (1.3-12 fold).

Example 3

On/Off Target Activity of Antibody-Attenuated IFN.alpha.2b Fusion Proteins

[0220] The iLite.TM. reporter gene assay was performed for the quantitative determination of Human Interferon Alpha (IFN.alpha.2b) bioactivity (IU/ml) using luciferase generated-bioluminescence. The cells used in this assay express CD38 and were used to measure the `ON-target` activity of anti-CD38-attenuated IFN.alpha.2b fusion proteins. These cells can also be used to measure `OFF-target` activity when CD38 is blocked with an anti-CD38 antibody recognizing the same epitope. These assays can be used to determine the Selectivity Index (SI) which is a measure of how selectively active anti-CD38 IFN fusion proteins are against CD38+ target cells and non-active on cells where CD38 is blocked (mimicking CD38.sup.- cells). The larger the SI the more selective the agents are against the target, while a number close to 1 indicates that there is no selectivity against the target or non-target. Intron A was used as a positive control as it is active against cells that express interferon alpha receptors, IFNAR1/2 but not selective against other cell surface expressed antigens (i.e. CD38) having an SI of approximately 1.

Antibody-Attenuated IFN Constructs

[0221] The sequences for the constructs used are set out in Sequence Listing and are listed in the following Table 8.

TABLE-US-00008 TABLE 8 Seq Id No. Heavy Light VH + Antibody Constructs Chain Chain IFN IFN A10.21 IgG4 (S228P) IFN (A145D, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145D, T106A) 48 81 25 87, 31 A10.21 IgG4 (S228P) IFN (A145D, .DELTA.T106) 48 81 110 61 A10.21 IgG4 (S228P) IFN (A145D, T106S) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106V) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106G) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106E) 48 81 25 31 A10.21 IgG4 (S228P, M252Y, S254T, T256E) 49 81 107 IFN (A145D, T106T) A10.21 IgG4 (S228P, M252Y, S254T, T256E) 49 81 25 62 IFN (A145D, T106A) A10.21 IgG4 (S228P) IFN (R144I T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144I, T106A) 48 81 24 63 A10.21 IgG4 (S228P) IFN (A145K, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145K, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (A145G, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145G, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (R33A, T106T) 48 81 109 A10.21 IgG4 (S228P) IFN (R33A, T106A) 48 81 13 65 A10.21 IgG4 (S228P) IFN (A145Q, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145Q, T106A) 48 81 25 66 A10.21 IgG4 (S228P) IFN (A145N, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145N, T106A) 48 81 25 66 A10.21 IgG4 (S228P) IFN (R144N, T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144N, T106A) 48 81 24 67 A10.21 IgG4 (S228P) IFN (R144H, T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144H, T106A) 48 81 24 67 A10.21 IgG1 IFN (A145D, T106T) 50 81 107 A10.21 IgG1 IFN (A145D, T106A) 50 81 25 68 A10.21 IgG1 IFN (A145D, .DELTA.T106) 50 81 110 83 A10.21 IgG1 (L235A, G237A) IFN (A145D, 51 81 107 T106T) A10.21 IgG1 (L235A, G237A) IFN (A145D, 51 81 25 69 T106A) A10.21 IgG1 (L235A, G237A, M252Y, 52 81 107 S254T, T256E) IFN (A145D, T106T) A10.21 IgG1 (L235A, G237A, M252Y, 52 81 25 S254T, T256E) IFN (A145D, T106A) A10.21 IgG1 (M252Y, S254T, T256E) IFN 52 81 107 (A145D, T106T) A10.21 IgG1 (M252Y, S254T, T256E) IFN 111 81 25 70 (A145D, T106A) A10.21 IgG2 IFN (A145D, T106T) 53 81 107 A10.21 IgG2 IFN (A145D, T106A) 53 81 25 72 A10.21 IgG2 (M252Y, S254T, T256E) IFN 54 81 107 (A145D, T106T) A10.21 IgG2 (M252Y, S254T, T256E) IFN 54 81 25 73 (A145D, T106A) A10.43 IgG4 (S228P) IFN (A145D, T106T) 55 81 107 A10.43 IgG4 (S228P) IFN (A145D, T106A) 55 81 25 74 R10A2 IgG4 (S228P) IFN (A145D, T106T) 75 82 107 R10A2 IgG4 (S228P) IFN (A145D, T106A) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106R) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106N) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106D) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106C) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106E) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Q) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106G) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106H) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106I) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106L) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106K) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106M) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106F) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106P) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106S) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106W) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Y) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106V) 75 82 25 A02.12 IgG4 (S228P) IFN (A145D, T106T) 58 84 107 A02.12 IgG4 (S228P) IFN (A145D, T106A) 58 84 25 77 OPG-Fc (IgG2) IFN (A145D, T106T) 57 107 OPG-Fc (IgG2) IFN (A145D, T106A) 57 25 78 Anti-CD138 IgG4 (S228P) IFN (A145D, 59 85 107 T106T) Anti-CD138 IgG4 (S228P) IFN (A145D, 59 85 25 T106A) Anti-HLA IgG4 (S228P) IFN (A145D, T106T) 60 86 107 Anti-HLA IgG4 (S228P) IFN (A145D, 60 86 25 T106A)

[0222] INTRON.RTM. A was used as a positive control.

ON/OFF-Target Activity Measurement

[0223] The ON/OFF-target activity was measured using the same method described above as "iLite gene reporter assay"

[0224] iLite reporter gene assay (PBL Interferon Source, Piscataway, N.J., Cat #51100) was performed largely as described by the manufacturer, with the addition of a human IgG blocking step. The iLite cell line is described by the manufacturer as "a stable transfected cell line derived from a commercially available pro-monocytic human cell line characterized by the expression of MHC Class II antigens, in particular the human lymphocyte antigen (HLADR), on the cell surface." The cell line expresses CD38 and contains a stably transfected luciferase gene, the expression of which is driven by an interferon-response element (IRE), which allows for interferon activity to be quantified based on luminescence output.

[0225] The manufacturer supplied iLite plate (hereafter, assay plate) and diluent were removed from the -80.degree. C. freezer and allowed to equilibrate to room temperature. 50 .mu.L of the diluent was added per well to the assay plate. The vial of manufacturer-supplied reporter cells was removed from the -80.degree. C. freezer and thawed in a 37.degree. C. water bath. 25 .mu.L aliquots of cells were dispensed into each well of the assay plate. Next, 12.5 .mu.L of 8 mg/mL human IgG diluted in RPMI 1640+10% FBS (Sigma Chemicals, St. Louis, Mo.; cat #14506) was added per well. The contents were mixed and incubated at 37.degree. C. for 15 minutes. On a separate "dilution plate," test articles were serially diluted in duplicate in RPMI 1640+10% FBS. Then, 12.5 .mu.L of the test articles were transferred from the dilution plate to the assay plate. The assay plate was then incubated at 37.degree. C. with 5% CO.sub.2 for 17 hours. The manufacturer-supplied assay buffer and substrate were removed from the -80.degree. C. freezer and allowed to equilibrate to room temperature for two hours. The manufacturer-supplied assay buffer was added to the manufacturer-supplied substrate vial and mixed well according to the manufacturer's instructions to create the "luminescence solution." Then, 100 .mu.L of the luminescence solution was added to each well of the assay plate. The plate was shaken for 2 minutes. The plate was then incubated at room temperature for 5 minutes in the dark and read on a Victor 3V Multilabel Counter on a luminometry channel and the luminescence measured and presented as RLU.

[0226] To test the off-target activity of anti-CD38 antibody-IFN fusion protein constructs in the iLite assay, manufacturer-supplied diluent was supplemented with 0.25 mg/mL anti-CD38 antibody (an antibody recognizing the same epitope on CD38 as the antibody-IFN fusion protein construct being tested, to block any binding of the anti-CD38 antibody-IFN fusion protein constructs to the CD38 expressed on the iLite cells). This blocking stage was followed by treatment with anti-CD38 antibody-IFN fusion protein or IFN.alpha.2b.

[0227] Data was analyzed using Prism 5 (Graphpad, San Diego, Calif.) using non-linear regression and three parameter curve fit to determine the midpoint of the curve (EC50). Selectivity Index (SI) was calculated by EC50 (OFF-target activity)/EC50 (ON-target activity). Selectivity Index (SI) is a measure of how selectively active anti-CD38 IFN constructs are against CD38-expressing cells and non-active in cells with no CD38. The larger the number the more selective it is against the target, while a number close to 1 indicates that there is no selectivity against the target. Intron A was used as a positive control, has an SI of approximately 1.

[0228] The O-linked glycosylation site of anti-CD38 antibody attenuated interferon fusion constructs were removed by substituting threonine 106 (T106) to alanine (shown as T106A). The activity was investigated by comparing A10.21 and A10.43 anti-CD38 antibodies fused to IFN.alpha.2b with and without O-linked glycosylation.

[0229] Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs (shown as T106A) resulted in slight increase in ON-target activity (FIG. 3 and Table 9) as well as slight to no increase in the OFF-target activity relative to 0-linked glycosylated proteins. Both O-linked glycosylated and non-glycosylated proteins showed high selectivity towards CD38+ cells, while Intron A did not show selectivity.

TABLE-US-00009 TABLE 9 EC50 and SI of anti-CD38 antibody attenuated IFN.alpha.2b fusion proteins A10.21 and A10.43 with and without O-linked glycosylation EC50 (nM) ON OFF Test Article Target Target SI Intron A 0.00017 0.00016 0.90 A10.21 IgG4 (S228P) IFN(A145D, T106T) 0.00240 2.33 972 A10.21 IgG4 (S228P) IFN (A145D, T106A) 0.00182 2.23 1223 A10.43 IgG4 (S228P) IFN (A145D, T106T) 0.00560 2.31 412 A10.43 IgG4 (S228P) IFN (A145D, T106A) 0.00124 2.25 1822

[0230] The impact on ON/OFF target activity of the removal of the O-linked glycosylation site from the attenuated IFN of fusion proteins may also be examined in a similar manner.

[0231] The iLite.TM. reporter gene ON-OFF target activity assays were conducted to demonstrate the selective activity of anti-CD38 attenuated IFN fusion proteins on target CD38+ cells and the limited activity on cells when CD38 is blocked with an anti-CD38 antibody (recognizing the same epitope) mimicking the activity anticipated on target negative cells.

[0232] Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs (by T106A substitution) resulted in a slight increase in ON-target activity as well as slight to no increase in the OFF-target activity relative to O-linked glycosylated proteins. Both O-linked glycosylated and non-glycosylated anti-CD38 antibody attenuated interferon fusion proteins showed high selectivity towards CD38+ cells, while Intron A did not show selectivity.

[0233] To further examine the modulation in selectivity index as a result of the removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs, ON-OFF target activity was examined in a range of constructs. The changes examined were based on the A10.21 IgG4 (S228P) IFN (A145D, T106T) construct. These included deletion of threonine 106 (.DELTA.T106), substitution of T106 to serine (T106S), YTE substitution (YTE T106T and YTE T106A), IFN attenuation by substitution from alanine 145 to glutamine (A145Q) and varying antibody isotype to IgG1 (IgG1 T106T and IgG1 T106A).

[0234] The majority of constructs demonstrated a selectivity index>1, the magnitude of selectivity towards targeted CD38+ cells varied depending on the anti-CD38 IFN fused construct (FIG. 20). The highest selectivity was observed in A10.21 IgG4 (S228P) IFN (A145D, T106A).

Example 4

Off-Target Activity of Anti-CD38 Antibody-Attenuated IFN.alpha.2b Fusion Proteins

[0235] HEK-Blue.TM. IFN-.alpha./.beta. cells allow the detection of bioactive human type I IFNs by monitoring the activation of the ISGF3 pathway. Stimulation of HEK-Blue.TM. IFN-.alpha./.beta. cells with human IFN-.alpha. activates the JAK/STAT/ISGF3 pathway and subsequently induces the production of SEAP (a reporter gene under the control of the IFN-.alpha./.beta. inducible ISG54 promoter). Levels of SEAP in the supernatant can be easily determined with QUANTI-Blue.TM.. The effects of removal of O-linked glycosylation from the attenuated interferon portion of the antibody interferon fusion proteins were evaluated using this reporter gene assay.

Antibody/Fc Fusion Protein Construct Production

[0236] Various transiently transfected cells expressing interferon fusion proteins were harvested and purified using a MABSELECT SURE.RTM. Protein A column. Samples were desalted into 200 mM Arginine, 25 mM Histidine pH 6.5 using a HiLoad Superdex 200 column.

TABLE-US-00010 TABLE 10 Seq Id No. Heavy Light VH + Antibody Constructs Chain Chain IFN IFN A10.21 IgG4 (S228P) IFN (A145D, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145D, T106A) 48 81 25 87, 31 A10.21 IgG4 (S228P) IFN (A145D, .DELTA.T106) 48 81 110 61 A10.21 IgG4 (S228P) IFN (A145D, T106S) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106V) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106G) 48 81 25 31 A10.21 IgG4 (S228P) IFN (A145D, T106E) 48 81 25 31 A10.21 IgG4 (S228P, M252Y, S254T, T256E) 49 81 107 IFN (A145D, T106T) A10.21 IgG4 (S228P, M252Y, S254T, T256E) 49 81 25 62 IFN (A145D, T106A) A10.21 IgG4 (S228P) IFN (R144I T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144I, T106A) 48 81 24 63 A10.21 IgG4 (S228P) IFN (A145K, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145K, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (A145G, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145G, T106A) 48 81 25 64 A10.21 IgG4 (S228P) IFN (R33A, T106T) 48 81 109 A10.21 IgG4 (S228P) IFN (R33A, T106A) 48 81 13 65 A10.21 IgG4 (S228P) IFN (A145Q, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145Q, T106A) 48 81 25 66 A10.21 IgG4 (S228P) IFN (A145N, T106T) 48 81 107 A10.21 IgG4 (S228P) IFN (A145N, T106A) 48 81 25 66 A10.21 IgG4 (S228P) IFN (R144N, T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144N, T106A) 48 81 24 67 A10.21 IgG4 (S228P) IFN (R144H, T106T) 48 81 108 A10.21 IgG4 (S228P) IFN (R144H, T106A) 48 81 24 67 A10.21 IgG1 IFN (A145D, T106T) 50 81 107 A10.21 IgG1 IFN (A145D, T106A) 50 81 25 68 A10.21 IgG1 IFN (A145D, .DELTA.T106) 50 81 110 83 A10.21 IgG1 (L235A, G237A) IFN (A145D, 51 81 107 T106T) A10.21 IgG1 (L235A, G237A) IFN (A145D, 51 81 25 69 T106A) A10.21 IgG1 (L235A, G237A, M252Y, S254T, 52 81 107 T256E) IFN (A145D, T106T) A10.21 IgG1 (L235A, G237A, M252Y, S254T, 52 81 25 T256E) IFN (A145D, T106A) A10.21 IgG1 (M252Y, S254T, T256E) IFN 52 81 107 (A145D, T106T) A10.21 IgG1 (M252Y, S254T, T256E) IFN 81 25 70 (A145D, T106A) A10.21 IgG2 IFN (A145D, T106T) 53 81 107 A10.21 IgG2 IFN (A145D, T106A) 53 81 25 72 A10.21 IgG2 (M252Y, S254T, T256E) IFN 54 81 107 (A145D, T106T) A10.21 IgG2 (M252Y, S254T, T256E) IFN 54 81 25 73 (A145D, T106A) A10.43 IgG4 (S228P) IFN (A145D, T106T) 55 81 107 A10.43 IgG4 (S228P) IFN (A145D, T106A) 55 81 25 74 R10A2 IgG4 (S228P) IFN (A145D, T106T) 75 82 107 R10A2 IgG4 (S228P) IFN (A145D, T106A) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106R) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106N) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106D) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106C) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106E) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Q) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106G) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106H) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106I) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106L) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106K) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106M) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106F) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106P) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106S) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106W) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Y) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106V) 75 82 25 A02.12 IgG4 (S228P) IFN (A145D, T106T) 58 84 107 A02.12 IgG4 (S228P) IFN (A145D, T106A) 58 84 25 77 OPG-Fc (IgG2) IFN (A145D, T106T) 57 107 OPG-Fc (IgG2) IFN (A145D, T106A) 57 25 78 Anti-CD138 IgG4 (S228P) IFN (A145D, T106T) 59 85 107 Anti-CD138 IgG4 (S228P) IFN (A145D, T106A) 59 85 25 Anti-HLA IgG4 (S228P) IFN (A145D, T106T) 60 86 107 Anti-HLA IgG4 (S228P) IFN (A145D, T106A) 60 86 25

[0237] INTRON.RTM. A was used as a positive control.

Off-Target Activity Measurement by HEK-Blue Assay

[0238] Off-target activity of antibody-IFN fusion was measured using the same method as described in "HEK-Blue Off-target assay" except for the volumes of cells seeded, diluted antibodies and supernatant used. The details of the assay are as follows.

[0239] HEK-Blue Off-target assay was used to quantify the ability of antibody-IFN fusion constructs to bind interferon-alpha/0 receptor (IFNAR) using the HEK-Blue.TM. IFN-alpha/0 cell line (InvivoGen, San Diego, Calif.). The "off-target (HB-IFN) assay" was performed largely as described by the manufacturer of the HEK-Blue IFN-alpha/.beta. cell line. HEK-Blue.TM. IFN-alpha/.beta. Cells are specifically designed to monitor the activation of the JAK-STAT pathway, which is induced by type I IFNs. The cells were generated by introducing the human STAT2 and IRF9 genes into HEK293 cells to obtain a fully active type I IFN signaling pathway. The HEK-Blue.TM. IFN-alpha/.beta. cells stably express a reporter gene, secreted embryonic alkaline phosphatase (SEAP), under the control of the ISG54 promoter. ISG54 is a well-known ISG activated through an ISRE-dependent mechanism by type I IFNs. Upon IFN-alpha or IFN.beta. stimulation, HEK-Blue.TM. IFN-alpha/.beta. cells activate the JAK-STAT pathway and then the expression of the SEAP reporter gene. SEAP is secreted into the media and can be quantitated using the colorimetric reagent QUANTI-Blue.TM..

[0240] Briefly, HEK-Blue IFN-alpha/.beta. cells (Invivogen, San Diego Calif. cat # hkb-ifnab) were thawed and cultured in DMEM media (Mediatech, Manassas Va., cat #10-013-CV)+10% FBS (Hyclone, Logan Utah, cat # SH30070.03) that had been heat inactivated (HI FBS). When the cells reached 60-80% confluence, they were lifted with Cell Stripper (Mediatech, cat #25-056-Cl). Cells were washed twice in DMEM+HI FBS and counted. Cells were adjusted to 2.77.times.10.sup.5 viable cells/mL in DMEM+HI FBS and was seeded at 180 .mu.L per well into a flat bottom 96 well tissue culture plate (hereafter, the "experimental plate"). Then, 20 .mu.L of IFN-alpha2b or fusion protein construct, diluted into DMEM+HI FBS, was added per well. The plate was incubated at 37.degree. C. 5% CO.sub.2 for 16-24 hours. QUANTI-Blue (Invivogen, cat # rep-qb1) was prepared according to the manufacturer's directions. QUANTI-Blue (180 .mu.L) was seeded into each well of a flat bottom plate (hereafter, the "assay plate"). Then, 20 .mu.L supernatant per well from the experimental plate was transferred to assay plate. Assay plate was then incubated at 37.degree. C. for 1-3 hours. Assay plate absorbance at 620 nm was read on a model SpectraMaxPlus 384 Microplate Reader from Molecular Devices. The data was analyzed using Graph Pad Prism.

[0241] The impact the presence or the absence of O-linked glycosylation in IFN.alpha.2b has on the off-target activity of the attenuated IFN fused anti-CD38 antibodies was evaluated.

[0242] The O-linked glycosylation site of an anti-CD38 antibody with attenuated interferon fusion constructs was removed by either substituting threonine 106 (T106) to alanine (shown as T106A) or deleting T106 (shown as .DELTA.T106). The effect on off-target activity was investigated by comparing X10.21 anti-CD38 antibody fused to attenuated IFN.alpha.2b with and without O-linked glycosylation.

[0243] Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody fusion constructs resulted in a slight increase in off-target activity relative to O-linked glycosylated proteins i.e. A10.21 IgG4 IFN (145D, T106T) and A10.21 IgG1 IFN (145D, T106T) (FIG. 5). This trend was consistent regardless of isotype (FIG. 5). However IFN.alpha.2b (A145D) is so attenuated that the level of induction of SEAP in this assay is limited even at the highest doses used. Therefore the EC50 is an approximation only.

[0244] The off-target activity of antibodies fused with attenuated IFN (R10A2 IgG4 (S228P) IFN (A145D)) possessing different amino acid substitutions for the removal of O-linked glycosylation was examined. All possible amino acid substitutions were tested and the construct are listed in Table 11.

TABLE-US-00011 TABLE 11 Seq Id No. Heavy Light Construct Name Chain Chain IFN R10A2 IgG4 (S228P) IFN (A145D, T106T) 75 82 107 R10A2 IgG4 (S228P) IFN (A145D, T106A) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106R) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106N) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106D) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106C) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106E) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Q) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106G) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106H) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106I) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106L) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106K) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106M) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106F) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106P) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106S) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106W) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106Y) 75 82 25 R10A2 IgG4 (S228P) IFN (A145D, T106V) 75 82 25

[0245] It was shown that each of these substitutions demonstrated similar or slightly less off-target activity (increased EC.sub.50) relative to the O-glycosylated IFN fused antibody R10A2 IgG4 (S228P) IFN (A145D, T106T). However, IFN.alpha.2b (A145D) is so attenuated that the level of induction of SEAP in this assay is limited even at the highest doses used. Therefore the EC.sub.50 is an approximation only.

[0246] The off-target activity of another anti-CD38 antibody attenuated IFN.alpha.2b construct and the impact of removal of O-linked glycosylation by the T106A substitution was investigated. A10.43 has 7 amino acid changes in the heavy chain compared to A10.21 while the two constructs share the same light chain sequence (see Sequence Listing). The results demonstrated that removal of the O-linked glycosylation site by T106A substitution slightly increased the off-target activity of A10.43. However IFN.alpha.2b (A145D) is so attenuated that the level of induction of SEAP in this assay is limited even at the highest doses used. Therefore the EC.sub.50 is an approximation only.

[0247] Removal of the O-linked glycosylation site in the attenuated IFN portion of the antibody interferon fusion constructs resulted in slight to no increase in the OFF-target activity as well as a slight increase in ON-target activity relative to O-linked glycosylated proteins. Both O-linked glycosylated and non-glycosylated anti-CD38 antibody attenuated interferon fusion proteins showed high selectivity towards CD38+ cells, while Intron A did not show selectivity.

Example 5

Evaluation of Human Neonatal FC Receptor (FCRN) Binding to Anti-CD38-Attenuated IFN

[0248] Poly-his-tagged FcRn was immobilized onto the designated active flow cells of a CMS sensor chip in a Biacore T200 enhanced instrument using an amine coupling protocol, while a blank immobilization was performed on the reference flow cells. Pulses of poly-his-tagged FcRn were injected over the active surfaces to ensure that the solution would pre-concentrate onto the flow cell. The surfaces were then washed with 50 mM NaOH. Both the reference and active surfaces were activated for seven minutes with a mix of 50:50 EDC/NHS. This was followed by a series of pulses of poly-his-tagged FcRn at 2 .mu.g/mL in 10 mM Sodium Acetate pH 5.0 over the active surfaces only. Once the target of 150 RU was reached, both surfaces were deactivated with 1 M ethanolamine pH 8.5 for seven minutes. This protocol resulted in the immobilization of approximately 150 RU of poly-his-tagged FcRn onto the active surfaces. Each active surface was used for one run.

[0249] The test antibodies were desalted in PBS-P running buffer (DPBS, pH 7.4 and 0.005% Tween-20 adjusted to pH 6.0 with HCl at 25.degree. C.) using Zeba Spin Desalting Column, 7K MWCO, 0.5 mL (Pierce Product #89882). Following desalting, the concentration of each sample was adjusted to 1 mg/mL.

[0250] On the day of the assay the 1 mg/mL solutions were further diluted in running buffer to prepare the highest concentration, and then diluted 1:2 to create the concentration series. The test samples were passed over the surface using a flow rate of 50 .mu.L/minute. The association phase was 100 seconds while the dissociation phase was 300 seconds for all concentrations tested. The active and reference surfaces were regenerated using a 60 second injection of 100 mM Tris, 50 mM NaCl at pH 8.0 to remove the test antibody. Binding constants were determined at 25.degree. C.

[0251] The antibody poly-his-FcRn binding interaction was evaluated using the two state reaction model where the R.sub.max was set to local and RI (refractive index) parameter was set to local. All data was double reference subtracted: first, the signal in the reference cell (blank immobilization) resulting from antibody binding to the dextran matrix was subtracted, and second, the signal of 0 nM antibody on the active surface was subtracted.

[0252] Binding constants were determined on at least two separate runs for each antibody. Prolia Lot 1035726 was tested alongside the anti-CD38/IFN samples as a positive control for each run. Average values for k.sub.a1, k.sub.d1, k.sub.a2, k.sub.d2 and K.sub.D were determined.

[0253] The average kinetic and affinity values for FcRn binding for the 4 anti-CD38/IFN (A10.21 IgG4 (S228P) IFN (A145D, T106A), A10.21 IgG4 (S228P) IFN (A145D, T106T) A10.43 IgG4 (S228P) IFN (A145D, T106A) A10.43 IgG4 (S228P) IFN (A145D, T106T)) were measured. In this sample set the clone A10.21 IgG4 (S228P) IFN (A145D, T106A) displayed the highest affinity for FcRn.

Example 6

[0254] Efficacy of Anti-CD38 Antibodies Fused to Attenuated Interferon Alpha 2B with and without O-Linked Glycosylation in the Mouse NCI-H929 Multiple Myeloma Model

Drugs and Treatment:

TABLE-US-00012 [0255] TABLE 12 Regimen 1 Gr. N Agent .mu.g/animal Route Schedule .sup. 1.sup.# 8 vehicle 20 ip biwk x 5 2 8 A10.21 IgG4 (S228P) 20 ip biwk x 5 IFN (A145D, T106T) 3 8 A10.21 IgG4 (S228P) 20 ip biwk x 5 IFN (A145D, T106A) 4 8 A10.43 IgG4 (S228P) 20 ip biwk x 5 IFN (A145D, T106T) 5 8 A10.43 IgG4 (S228P) 20 ip biwk x 5 IFN (A145D, T106A) .sup.#Control Group

Procedures:

[0256] Set up CR female CB.17 SCID mice with 1.times.10.sup.7 H929 tumor cells in 50% Matrigel sc in flank. [0257] Cell Injection Volume is 0.2 mL/mouse. [0258] Age at Start Date: 8 to 12 weeks. [0259] Perform a pair match when tumors reach an average size of 170-350 mm.sup.3, and begin treatment. [0260] Dosing volume=0.2 mL/mouse. Do not adjust for body weight. [0261] Body Weight: qd.times.5 then biwk to end [0262] Caliper Measurement: biwk to end [0263] Endpoint TGD. Animals are to be monitored individually. The endpoint of the experiment is a tumor volume of 2000 mm.sup.3 or 60 days, whichever comes first. Responders can be followed longer. When the endpoint is reached, the animals are to be euthanized per SOP #687.

[0264] The results are shown in FIG. 8. Roughly equivalent efficacy was seen with and without O-linked glycosylation, with the aglycosylated form slightly more potent in impeding tumour growth.

Example 7

[0265] In the evaluation of human neonatal Fc receptor (FcRn) binding to anti-CD38 antibodies fused to attenuated IFN with and without O-linked glycosylation the proteins without O-linked glycosylation displayed the highest affinity for FcRn. The effect of this may be evaluated in cynomolgus monkeys and humanised FcRn mice.

Cynomolgus Monkey Study

[0266] Monkey study design- to compare +/-O-glyc [0267] Single 3 mg/kg intravenous infusion (1 hour) through an indwelling catheter [0268] A10.21 IgG4 (S228P) IFN (145D, T106A) (n=4) [0269] A10.21 IgG4 (S228P) IFN (145D, T106T) (n=4) [0270] A10.21 IgG4 (S228P) IFN (145D, T106A) (n=4) [0271] A10.21 IgG4 (S228P) IFN (145D, T106T) (n=4) [0272] Compare PK and PD (biological effect i.e. serum neopterin levels) [0273] PK: all monkeys, .ltoreq.1 ml, 11 timepoints (Pre dose, 0 minutes (immediately post end of infusion). 2, 6, 12, 24, 48, 96, 120, 168 and at 240 hours post infusion. Samples (80) are analysed by ELISA. [0274] TK modelling: WinNonlin Table Assembly {non-compartmental analysis) [0275] Clinical pathology: Hematology and blood chemistry--all monkeys, 3 occasions (pre-treatment, 24 hours post dose and Day 8) [0276] Serum neopterin all monkeys, .about.0.5 ml 3 occasions at 5 timepoints (Predose, 12, 24, 96, 168 hours post dose)

Pharmacokinetic Study in Humanised FcRN Mice

[0277] 1. Thirty two (32) B6.Cg-Fcgr.sup.tm1Dcr Tg(CAG-FCGRT)276Dcr/DcrJ (JAX stock #004919) female mice are dosed on day 1 by IP injection of 1 mg/kg of; [0278] A10.21 IgG4 (S228P) IFN (145D, T106A) (n=8) [0279] A10.21 IgG4 (S228P) IFN (145D, T106T) (n=8) [0280] A10.43 IgG4 (S228P) IFN (145D, T106A) (n=8) [0281] A10.43 IgG4 (S228P) IFN (145D, T106T) (n=8) 2. Body weight is measured 3 days prior to dosing, the day of dosing and then weekly. 3. Cage side observations are made daily and clinical observations made weekly. 4. Pharmacokinetic blood collection: Mice are bled (25 .mu.I) at pre-dose 3 days and postdose 1, 12, 24, 48 and 72 hours and 5, 7, 10, and 14 days. Mice are bled in 2 cohorts (4 mice/group/cohort). 5. All mice are sacrificed on day 14. Terminal cardiocentesis is performed to collect blood. 6. Blood is collected in lithium heparin tubes and centrifuged at 10,000 rpm for 2 min at 4.degree. C. 7. Plasma samples are diluted 1:10 in PBS and are frozen prior to analysis by binding ELISA for A10.21 IgG4 IFN(145D) A106, A10.21 IgG4 IFN(145D) T106, A10.43 IgG4 IFN(145D) A106 or A10.43 IgG4 IFN(145D) T106.

Sequence CWU 1

1

1151165PRTArtificialHuman interferon alpha-2-b with mutation at amino acid position 106VARIANT(106)..(106)Xaa can be any amino acid selected from A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, V, W, Y 1Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Xaa Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1652164PRTArtificialHuman Interferon alpha-2-b with deletion of amino acid at position 106 2Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Glu Thr Pro Leu Met Lys Glu 100 105 110Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 115 120 125Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala 130 135 140Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu145 150 155 160Arg Ser Lys Glu3165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation L15A 3Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Ala Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1654165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation A19W 4Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Trp Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1655165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R22A 5Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Ala Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1656165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R23A 6Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Ala Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1657165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation S25A 7Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ala Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1658165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation L26A 8Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Ala Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 1659165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation F27A 9Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Ala Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16510165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation L30X, where X can be any amino acid selected from A, VVARIANT(30)..(30)Xaa can be any amino acid selected from A, V 10Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Xaa Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16511165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation K31A 11Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Ala Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16512165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation D32A 12Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Ala 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16513165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R33X, where X can be any amino acid selected from K, A, QVARIANT(33)..(33)Xaa can be any amino acid selected from K, A, Q 13Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Xaa His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16514165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation H34A 14Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg Ala Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65

70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16515165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation Q40A 15Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Ala Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16516165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation D114R 16Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Arg Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16517165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation L117A 17Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Ala Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16518165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R120X where X can be any amino acid selected from A, EVARIANT(120)..(120)Xaa can be any amino acid selected from A, E 18Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Xaa Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16519165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R125X where X can be any amino acid selected from A, EVARIANT(125)..(125)Xaa can be any amino acid selected from A, E 19Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Xaa Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16520165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation K131A 20Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Ala Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16521165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation E132A 21Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Ala Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16522165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation K133A 22Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Ala Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16523165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation K134A 23Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Ala Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16524165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R144X where X can be any amino acid selected from A, D, E, G, H, I, K, L, N, Q, S, T, V, YVARIANT(144)..(144)Xaa can be any amino acid selected from A, D, E, G, H, I, K, L, N, Q, S, T, V, Y 24Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Xaa 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16525165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation A145X where X can be any amino acid selected from D, E, G, H, I, K, L, M, N, Q, R, S, T, V, YVARIANT(145)..(145)Xaa can be any amino acid selected from D, E, G, H, I, K, L, M, N, Q, R, S, T, V, Y 25Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Xaa Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16526165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation M148A 26Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Ala Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16527165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation R149A 27Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly

Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Ala Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16528165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation S152A 28Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ala Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16529165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation L153A 29Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Ala Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16530165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutation N156A 30Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Ala Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16531612PRTArtificialA10.21 IgG4 (S228P) IFN (A592D, T553X) where X can be any amino acid selected from A, G, E, S, VVARIANT(553)..(553)Xaa can be any amino acid selected from A, G, E, S, V 31Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Xaa Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61032165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations L30A, H57Y, E58N and Q61S 32Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Ala Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu Tyr Asn Met Ile Ser Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16533165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations R33A, H57Y, E58N and Q61S 33Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Ala His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu Tyr Asn Met Ile Ser Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16534165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations M148A, H57Y, E58N and Q61S 34Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu Tyr Asn Met Ile Ser Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Ala Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16535165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations L153A, H57Y, E58N and Q61S 35Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu Tyr Asn Met Ile Ser Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Ala Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16536165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations R144A, H57Y, E58N and Q61S 36Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu Tyr Asn Met Ile Ser Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Ala 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16537165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations N65A,L80A, Y85A, Y89A 37Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Ala Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Ala65 70 75 80Leu Asp Lys Phe Ala Thr Glu Leu Ala Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16538165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations N65A,L80A, Y85A, Y89A and D114A 38Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Ala Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Ala65 70 75

80Leu Asp Lys Phe Ala Thr Glu Leu Ala Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Ala Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16539165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations N65A,L80A, Y85A, Y89A and L117A 39Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Ala Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Ala65 70 75 80Leu Asp Lys Phe Ala Thr Glu Leu Ala Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Ala Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16540165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations N65A,L80A, Y85A, Y89A and R120A 40Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Ala Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Ala65 70 75 80Leu Asp Lys Phe Ala Thr Glu Leu Ala Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Ala Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16541165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations Y85A, Y89A and R120A 41Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Ala Thr Glu Leu Ala Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Ala Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16542165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations D114A,R120A 42Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Ala Ser Ile Leu Ala Val Ala Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16543165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations L117A,R120A 43Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Ala Ala Val Ala Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16544165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations L117A,R120A,K121A 44Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Ala Ala Val Ala Ala Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16545165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations R120A,K121A 45Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Ala Ala Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16546165PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating mutations R120E,K121E 46Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Glu Glu Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 16547160PRTArtificialAglycosylated (T106A) human interferon alpha-2-b comprising attenuating deletion of residues L161-E165 47Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 16048447PRTArtificialVH sequence of 10.21 formatted as IgG4 incorporating hinge stabilisation substitution S228P 48Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 44549447PRTArtificialVH sequence of 10.21 formatted as an IgG4 incorporating hinge stabilisation substitution S228P and YTE residues substituted in positions 252, 254, 256 respectively 49Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro

Lys Asp Thr Leu Tyr Ile Thr Arg Glu 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 44550450PRTArtificialVH sequence of 10.21 formatted as an IgG1 50Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 45051450PRTArtificialVH sequence of 10.21 formatted as an IgG1 incorporating substitutions L238A and G240A to reduce effector function 51Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Ala Gly Ala225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 45052450PRTArtificialVH sequence of 10.21 formatted as an IgG1 incorporating substitutions L235A and G237A (reduce effector function) and M255Y, S257T, T259E 52Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Ala Gly Ala225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile 245 250 255Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 45053446PRTArtificialVH sequence of 10.21 formatted onto an IgG2 backbone 53Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val 210 215 220Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe225 230 235 240Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 245 250 255Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 260 265 270Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 275 280 285Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 290 295 300Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys305 310 315 320Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 350Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp385 390 395 400Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 44554446PRTArtificialVH sequence of 10.21 formatted onto an IgG2 backbone incorporating substitutions M251Y, S253T and T255E 54Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val 210 215 220Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe225 230 235 240Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile Thr Arg Glu Pro 245 250 255Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 260 265 270Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 275 280 285Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 290 295 300Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys305 310 315 320Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 350Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser

Asp385 390 395 400Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 44555447PRTArtificialVH sequence of 10.43 formatted onto an IgG4 backbone incorporating the hinge stabilisation substitution S228P 55Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Asp Ser 20 25 30Val Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Gln Lys Phe 50 55 60Gln Gly Arg Val Thr Met Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 44556447PRTArtificialVH sequence of 10.152 formatted as an IgG4 incorporating the hinge stabilisation substitution S228P 56Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln His Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 44557401PRTArtificialOPG-Fc construct 57Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His1 5 10 15Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 20 25 30Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 55 60Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His65 70 75 80Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Gly Glu Phe 85 90 95Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 135 140Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His145 150 155 160Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Glu Arg Lys 165 170 175Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro 180 185 190Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 195 200 205Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 210 215 220Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn225 230 235 240Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val 245 250 255Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu 260 265 270Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys 275 280 285Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 290 295 300Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr305 310 315 320Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 325 330 335Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu 340 345 350Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 355 360 365Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 370 375 380Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly385 390 395 400Lys58448PRTArtificialX2.12 VH sequence formatted as an IgG4 (S228P) 58Gln Leu Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu1 5 10 15Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Ser 20 25 30Ser Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser 50 55 60Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe65 70 75 80Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Arg Val Gly Gly Ala Gly Gly Trp Pro Leu Asp Val Trp Gly 100 105 110Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val145 150 155 160Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His 195 200 205Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly 210 215 220Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser225 230 235 240Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro 260 265 270Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val 290 295 300Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr305 310 315 320Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr 325 330 335Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp385 390 395 400Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser 405 410 415Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 44559449PRTArtificialAnti-CD138 VH sequence formatted onto an IgG4 (S228P) backbone 59Gln Val Gln Leu Gln Gln Ser Gly Ser Glu Leu Met Met Pro Gly Ala1 5 10 15Ser Val Lys Ile Ser Cys Lys Ala Thr Gly Tyr Thr Phe Ser Asn Tyr 20 25 30Trp Ile Glu Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 45Gly Glu Ile Leu Pro Gly Thr Gly Arg Thr Ile Tyr Asn Glu Lys Phe 50 55 60Lys Gly Lys Ala Thr Phe Thr Ala Asp Ile Ser Ser Asn Thr Val Gln65 70 75 80Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95Ala Arg Arg Asp Tyr Tyr Gly Asn Phe Tyr Tyr Ala Met Asp Tyr Trp 100 105 110Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 115 120 125Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr 130 135 140Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr145 150 155 160Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165 170 175Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 180 185 190Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp 195 200 205His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr 210 215 220Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro225 230 235 240Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp 260 265 270Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val 290 295 300Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu305 310 315 320Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys 325 330 335Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr 355 360 365Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu385 390 395 400Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys 405 410 415Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly 435 440 445Lys60447PRTArtificialAnti-HLA VH sequence formatted onto IgG4 incorporating the hinge stabilising substitution S228P 60Gln Val Gln Leu Lys Gln Ser Gly Pro Gly Leu Val Gln Pro Ser Gln1 5 10 15Ser Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Tyr 20 25 30Gly Val His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45Gly Val Ile Trp Ser Gly Gly Ser Thr Asp Tyr Asn Ala Ala Phe Ile 50 55 60Ser Arg Leu Ser Ile Arg Lys Asp Asn Ser Lys Ser Gln Val Phe Phe65 70 75 80Lys Met Asn Ser Leu Gln Ala Asp Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95Arg Thr Phe Thr Thr Ser Thr Ser Ala Trp Phe Ala Tyr Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ala Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val

Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 44561611PRTArtificialA10.21VH sequence formatted onto IgG4 backbone incorporating hinge stabilisation subsitution S228P and the deletion of Threonine residue at position 553 (ieT106 in interferon sequence) 61Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Glu Thr Pro Leu Met Lys Glu Asp545 550 555 560Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu 565 570 575Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp Glu 580 585 590Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg 595 600 605Ser Lys Glu 61062612PRTArtificialA10.21 IgG4 IFN 62Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile Thr Arg Glu 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61063612PRTArtificialA10.21 IgG4 IFN 63Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Ile Ala 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61064612PRTArtificialA10.21 IgG4 IFNVARIANT(592)..(592)Where Xaa can be any amino acid selected from G, K 64Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr

Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Xaa 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61065612PRTArtificialA10.21 IgG4 IFN 65Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Ala465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61066612PRTArtificialA10.21 IgG4 IFNVARIANT(592)..(592)Where Xaa can be any amino acid selected from the group Q, N 66Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Xaa 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61067612PRTArtificialA10.21 IgG4 IFNVARIANT(591)..(591)Where Xaa can be any amino acid selected from H, N 67Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Xaa Ala 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61068615PRTArtificialA10.21 IgG1 IFN 68Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275

280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr 450 455 460Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu465 470 475 480Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln 485 490 495Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln 500 505 510Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu 515 520 525Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp 530 535 540Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu545 550 555 560Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile 565 570 575Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val 580 585 590Val Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln 595 600 605Glu Ser Leu Arg Ser Lys Glu 610 61569615PRTArtificialA10.21 IgG1 IFN 69Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Ala Gly Ala225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr 450 455 460Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu465 470 475 480Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln 485 490 495Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln 500 505 510Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu 515 520 525Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp 530 535 540Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu545 550 555 560Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile 565 570 575Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val 580 585 590Val Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln 595 600 605Glu Ser Leu Arg Ser Lys Glu 610 61570615PRTArtificialA10.21 IgG1 IFN 70Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile 245 250 255Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr 450 455 460Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu465 470 475 480Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln 485 490 495Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln 500 505 510Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu 515 520 525Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp 530 535 540Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu545 550 555 560Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile 565 570 575Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val 580 585 590Val Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln 595 600 605Glu Ser Leu Arg Ser Lys Glu 610 61571615PRTArtificialA10.21 IgG1 IFN 71Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Ala Gly Ala225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile 245 250 255Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr 450 455 460Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu465 470 475 480Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln 485 490 495Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln 500 505 510Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu 515 520 525Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp 530 535 540Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu545 550 555 560Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile 565 570 575Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val 580 585 590Val Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln 595 600 605Glu Ser Leu Arg Ser Lys Glu 610 61572611PRTArtificialA10.21 IgG2 IFN 72Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val 210 215 220Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe225 230 235 240Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 245 250 255Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 260 265 270Gln Phe Asn Trp Tyr

Val Asp Gly Val Glu Val His Asn Ala Lys Thr 275 280 285Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 290 295 300Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys305 310 315 320Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 350Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp385 390 395 400Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Cys Asp 435 440 445Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu Leu 450 455 460Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His465 470 475 480Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys Ala 485 490 495Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu 500 505 510Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp 515 520 525Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys 530 535 540Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu Asp545 550 555 560Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu 565 570 575Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp Glu 580 585 590Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg 595 600 605Ser Lys Glu 61073611PRTArtificialA10.21 IgG2 IFN 73Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val 210 215 220Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe225 230 235 240Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile Thr Arg Glu Pro 245 250 255Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 260 265 270Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 275 280 285Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 290 295 300Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys305 310 315 320Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 350Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp385 390 395 400Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Cys Asp 435 440 445Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu Leu 450 455 460Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His465 470 475 480Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys Ala 485 490 495Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu 500 505 510Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp 515 520 525Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys 530 535 540Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu Asp545 550 555 560Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu 565 570 575Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp Glu 580 585 590Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg 595 600 605Ser Lys Glu 61074612PRTArtificialA10.43 IgG4 IFN 74Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Asp Ser 20 25 30Val Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Gln Lys Phe 50 55 60Gln Gly Arg Val Thr Met Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61075612PRTArtificialR10A2 IgG4 IFNVARIANT(553)..(553)Where Xaa can be any amino acid selected from A, C, D, E, F, G, H, I, L, K, M, N, P, Q, R, S, V, W, Y 75Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Val Gly Arg Pro Gly Ser1 5 10 15Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Lys Gln Ser Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Lys Lys Lys Ala Thr Leu Thr Ala Asp Ser Ser Ser Ser Thr Ala Tyr65 70 75 80Ile Tyr Leu Ser Gly Leu Thr Ser Glu Asp Thr Ala Thr Tyr Phe Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Ser Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Xaa Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61076612PRTArtificialA10.152 IgG4 IFN 76Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln His Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260

265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61077613PRTArtificialA02.12 IgG4 IFN 77Gln Leu Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu1 5 10 15Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Ser 20 25 30Ser Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser 50 55 60Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe65 70 75 80Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Arg Val Gly Gly Ala Gly Gly Trp Pro Leu Asp Val Trp Gly 100 105 110Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 130 135 140Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val145 150 155 160Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His 195 200 205Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly 210 215 220Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser225 230 235 240Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro 260 265 270Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val 290 295 300Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr305 310 315 320Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr 325 330 335Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp385 390 395 400Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser 405 410 415Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 435 440 445Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met 450 455 460Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp465 470 475 480Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 485 490 495Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 500 505 510Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu 515 520 525Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 530 535 540Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys545 550 555 560Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 565 570 575Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 580 585 590Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser 595 600 605Leu Arg Ser Lys Glu 61078566PRTArtificialOPG-Fc (IgG2) IFN 78Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His1 5 10 15Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 20 25 30Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 55 60Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His65 70 75 80Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Gly Glu Phe 85 90 95Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 135 140Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His145 150 155 160Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Glu Arg Lys 165 170 175Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro 180 185 190Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 195 200 205Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 210 215 220Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn225 230 235 240Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val 245 250 255Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu 260 265 270Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys 275 280 285Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 290 295 300Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr305 310 315 320Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 325 330 335Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu 340 345 350Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 355 360 365Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 370 375 380Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly385 390 395 400Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu 405 410 415Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys 420 425 430Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe 435 440 445Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile 450 455 460Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr465 470 475 480Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu 485 490 495Glu Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met 500 505 510Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr 515 520 525Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val 530 535 540Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu545 550 555 560Ser Leu Arg Ser Lys Glu 56579614PRTArtificialAnti-CD138 IgG4 IFN 79Gln Val Gln Leu Gln Gln Ser Gly Ser Glu Leu Met Met Pro Gly Ala1 5 10 15Ser Val Lys Ile Ser Cys Lys Ala Thr Gly Tyr Thr Phe Ser Asn Tyr 20 25 30Trp Ile Glu Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 45Gly Glu Ile Leu Pro Gly Thr Gly Arg Thr Ile Tyr Asn Glu Lys Phe 50 55 60Lys Gly Lys Ala Thr Phe Thr Ala Asp Ile Ser Ser Asn Thr Val Gln65 70 75 80Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95Ala Arg Arg Asp Tyr Tyr Gly Asn Phe Tyr Tyr Ala Met Asp Tyr Trp 100 105 110Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 115 120 125Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr 130 135 140Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr145 150 155 160Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165 170 175Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 180 185 190Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp 195 200 205His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr 210 215 220Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro225 230 235 240Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp 260 265 270Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val 290 295 300Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu305 310 315 320Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys 325 330 335Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr 355 360 365Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu385 390 395 400Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys 405 410 415Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly 435 440 445Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu 450 455 460Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys465 470 475 480Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe 485 490 495Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile 500 505 510Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr 515 520 525Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu 530 535 540Glu Ala Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met545 550 555 560Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr 565 570 575Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val 580 585 590Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu 595 600 605Ser Leu Arg Ser Lys Glu 61080612PRTArtificialAnti-HLA IgG4 IFN 80Gln Val Gln Leu Lys Gln Ser Gly Pro Gly Leu Val Gln Pro Ser Gln1 5 10 15Ser Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Tyr 20 25 30Gly Val His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45Gly Val Ile Trp Ser Gly Gly Ser Thr Asp Tyr Asn Ala Ala Phe Ile 50 55 60Ser Arg Leu Ser Ile Arg Lys Asp Asn Ser Lys Ser Gln Val Phe Phe65 70 75 80Lys Met Asn Ser Leu Gln Ala Asp Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95Arg Thr Phe Thr Thr Ser Thr Ser Ala Trp Phe Ala Tyr Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ala Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly

Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450 455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61081214PRTArtificialA10.21 and A10.43 light chain 81Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Val Asp Ser Asp 20 25 30Val Asp Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Lys Ala Ser Asn Asp Tyr Thr Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Ile Ala Thr Tyr Tyr Cys Met Gln Ser Asn Thr His Pro Arg 85 90 95Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150 155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205Phe Asn Arg Gly Glu Cys 21082214PRTArtificialR10A2 light chain 82Asp Ile Val Met Thr Gln Ser Pro Thr Ser Ile Ser Ile Ser Val Gly1 5 10 15Glu Arg Val Thr Met Asn Cys Lys Ala Ser Gln Asn Val Asp Ser Asp 20 25 30Val Asp Trp Tyr Gln Gln Lys Thr Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45Tyr Lys Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Asn Met Gln Ala65 70 75 80Glu Asp Leu Ala Val Tyr Tyr Cys Met Gln Ser Asn Thr His Pro Arg 85 90 95Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys Arg Thr Val Ala Ala 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150 155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205Phe Asn Arg Gly Glu Cys 21083614PRTArtificialA10.21 IgG1 IFN 83Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr 450 455 460Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu465 470 475 480Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln 485 490 495Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln 500 505 510Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu 515 520 525Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp 530 535 540Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Glu Thr Pro Leu Met545 550 555 560Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr 565 570 575Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val 580 585 590Arg Asp Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu 595 600 605Ser Leu Arg Ser Lys Glu 61084222PRTArtificialA02.12 lambda light chain 84Gln Ala Val Leu Thr Gln Pro Ala Ser Leu Ser Ala Ser Pro Gly Glu1 5 10 15Ser Ala Arg Leu Thr Cys Thr Leu Pro Ser Asp Ile Asn Val Arg Tyr 20 25 30Tyr Asn Ile Tyr Trp Tyr Gln Gln Lys Pro Gly Ser Pro Pro Arg Tyr 35 40 45Leu Leu Tyr Tyr Tyr Ser Asp Ser His Lys Gly Gln Gly Ser Gly Val 50 55 60Pro Ser Arg Phe Ser Gly Ser Lys Asp Val Ser Thr Asn Ser Gly Ile65 70 75 80Leu Leu Ile Ser Gly Leu Gln Ser Glu Asp Ile Ala Thr Tyr Tyr Cys 85 90 95Met Thr Trp Ser Ser Asn Gly Ser Gly Val Phe Gly Gly Gly Thr Gln 100 105 110Leu Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe 115 120 125Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys 130 135 140Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala145 150 155 160Asp Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys 165 170 175Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro 180 185 190Glu Gln Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu 195 200 205Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 210 215 22085214PRTArtificialAnti-CD138 light chain 85Asp Ile Gln Met Thr Gln Ser Thr Ser Ser Leu Ser Ala Ser Leu Gly1 5 10 15Asp Arg Val Thr Ile Ser Cys Ser Ala Ser Gln Gly Ile Asn Asn Tyr 20 25 30Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Glu Leu Leu Ile 35 40 45Tyr Tyr Thr Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Pro65 70 75 80Glu Asp Ile Gly Thr Tyr Tyr Cys Gln Gln Tyr Ser Lys Leu Pro Arg 85 90 95Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150 155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205Phe Asn Arg Gly Glu Cys 21086215PRTArtificialAnti-HLA light chain 86Ser Ile Val Met Thr Gln Thr Pro Lys Phe Leu Leu Val Ser Ala Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Ser Val Ser Asn Asp 20 25 30Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45Tyr Tyr Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50 55 60Ser Gly Tyr Gly Thr Asp Phe Thr Phe Thr Ile Ser Thr Val Gln Ala65 70 75 80Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln Asp Tyr Ser Ser Pro Pro 85 90 95Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Arg Arg Thr Val Ala 100 105 110Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 130 135 140Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser145 150 155 160Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 180 185 190Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys 195 200 205Ser Phe Asn Arg Gly Glu Cys 210 21587612PRTArtificialA10.21 IgG4 (S228P) IFN (A145D, T106A) 87Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro 210 215 220Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val225 230 235 240Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 245 250 255Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 260 265 270Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 275 280 285Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys305 310 315 320Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 355 360 365Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser385 390 395 400Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Cys 435 440 445Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu 450

455 460Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg465 470 475 480His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys 485 490 495Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn 500 505 510Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu 515 520 525Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala 530 535 540Cys Val Ile Gln Gly Val Gly Val Ala Glu Thr Pro Leu Met Lys Glu545 550 555 560Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 565 570 575Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Asp 580 585 590Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu 595 600 605Arg Ser Lys Glu 61088495DNAArtificialIFN alpha-2-beta 88tgtgatctgc ctcaaaccca cagcctgggt agcaggagga ccttgatgct cctggcacag 60atgaggagaa tctctctttt ctcctgcttg aaggacagac atgactttgg atttccccag 120gaggagtttg gcaaccagtt ccaaaaggct gaaaccatcc ctgtcctcca tgagatgatc 180cagcagatct tcaatctctt cagcacaaag gactcatctg ctgcttggga tgagaccctc 240ctagacaaat tctacactga actctaccag cagctgaatg acctggaagc ctgtgtgata 300cagggggtgg gggtgacaga gactcccctg atgaaggagg actccattct ggctgtgagg 360aaatacttcc aaagaatcac tctctatctg aaagagaaga aatacagccc ttgtgcctgg 420gaggttgtca gagcagaaat catgagatct ttttctttgt caacaaactt gcaagaaagt 480ttaagaagta aggaa 495891341DNAArtificialPolynucleotide of 10.21 as an IgG2 incorporating S228P 89gaagtgcagc tggtgcagtc tggcgccgaa gtgaagaaac ccggcgctac cgtgaagatc 60tcctgcaagg tgtccggcta caccttcacc gactccgtga tgaactgggt gcagcaggcc 120cctggcaagg gcctggaatg gatgggctgg atcgaccccg agtacggcag aaccgacgtg 180gccgagaagt tccagggcag agtgaccatc accgccgaca cctccaccga caccgcctac 240atggaactgt cctccctgcg gagcgaggac accgccgtgt actactgcgc ccggaccaag 300tacaactccg gctacggctt cccctactgg ggccagggca ccaccgtgac cgtgtcctcc 360gcctccacca agggcccctc cgtgttccct ctggcccctt gctcccggtc cacctccgag 420tctaccgccg ctctgggctg cctggtcaag gactacttcc ccgagcctgt gacagtgtcc 480tggaactctg gcgccctgac ctccggcgtg cacaccttcc ctgccgtgct gcagtcctcc 540ggcctgtact ccctgtcctc cgtcgtgacc gtgccttcca gctccctggg caccaagacc 600tacacctgta acgtggacca caagccctcc aacaccaagg tggacaagcg ggtggaatct 660aagtacggcc ctccctgccc cccctgccct gcccctgaat ttctgggcgg accttccgtg 720ttcctgttcc ccccaaagcc caaggacacc ctgatgatct cccggacccc cgaagtgacc 780tgcgtggtgg tggacgtgtc ccaagaggac cccgaggtgc agttcaattg gtacgtggac 840ggcgtggaag tgcacaacgc caagaccaag cccagagagg aacagttcaa ctccacctac 900cgggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa agaatacaag 960tgcaaagtct ccaacaaggg cctgccctcc agcatcgaaa agaccatctc caaggccaag 1020ggacagcccc gcgagcccca ggtgtacacc ctgcccccta gccaagagga aatgaccaag 1080aaccaggtgt ccctgacctg cctcgtgaag ggcttctacc cctccgatat cgccgtggaa 1140tgggagtcca acggccagcc cgagaacaac tacaagacca ccccccctgt gctggactcc 1200gacggctcct tcttcctgta ctctcggctg accgtggaca agtcccggtg gcaagagggc 1260aacgtgttct cctgctccgt gatgcacgag gccctgcaca accactacac ccagaagtcc 1320ctgtccctga gcctgggcaa g 1341901341DNAArtificialPolynucleotide sequence of 10.43 as an IgG4 incorporating S228P 90caggtgcagc tggtgcagtc tggcgccgaa gtgaagaaac ctggcgcctc cgtgaaggtg 60tcctgcaagg tgtccggcta caccctgacc gactccgtga tgaactgggt ccgacaggcc 120cctggcaagg gcctggaatg gatgggctgg atcgaccccg agtacggcag aaccgacgtg 180gcccagaaat tccagggcag agtgaccatg accgccgaca cctccaccga caccgcctac 240atggaactgt cctccctgcg gagcgaggac accgccgtgt actactgcgc ccggaccaag 300tacaactccg gctacggctt cccctactgg ggccagggca ccaccgtgac cgtgtcctct 360gcttccacca agggcccctc cgtgttccct ctggcccctt gctcccggtc cacctccgag 420tctaccgccg ctctgggctg cctggtcaag gactacttcc ccgagcctgt gacagtgtcc 480tggaactctg gcgccctgac ctccggcgtg cacaccttcc ctgccgtgct gcagtcctcc 540ggcctgtact ccctgtcctc cgtcgtgacc gtgccttcca gctccctggg caccaagacc 600tacacctgta acgtggacca caagccctcc aacaccaagg tggacaagcg ggtggaatct 660aagtacggcc ctccctgccc cccctgccct gcccctgaat ttctgggcgg accttccgtg 720ttcctgttcc ccccaaagcc caaggacacc ctgatgatct cccggacccc cgaagtgacc 780tgcgtggtgg tggacgtgtc ccaagaggac cccgaggtgc agttcaattg gtacgtggac 840ggcgtggaag tgcacaacgc caagaccaag cccagagagg aacagttcaa ctccacctac 900cgggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa agaatacaag 960tgcaaagtct ccaacaaggg cctgccctcc agcatcgaaa agaccatctc caaggccaag 1020ggacagcccc gcgagcccca ggtgtacacc ctgcccccta gccaagagga aatgaccaag 1080aaccaggtgt ccctgacctg cctcgtgaag ggcttctacc cctccgatat cgccgtggaa 1140tgggagtcca acggccagcc cgagaacaac tacaagacca ccccccctgt gctggactcc 1200gacggctcct tcttcctgta ctctcggctg accgtggaca agtcccggtg gcaagagggc 1260aacgtgttct cctgctccgt gatgcacgag gccctgcaca accactacac ccagaagtcc 1320ctgtccctga gcctgggcaa g 1341911344DNAArtificialPolynucleotide of 2.12 formatted an an IgG4 incorporating S228P 91cagctgcagc tgcaggaatc tggccctggc ctcgtgaagc ccagcgagac actgagcctg 60acctgtaccg tgtccggcgg cagcatcagc agcagctcct actactggtc ctggatcaga 120cagcaccccg gcaagggcct ggaatggatc ggctacatct actacagcgg cagcaccaac 180tacaacccca gcctgaagtc cagagtgacc atcagcgtgg acaccagcaa gaaccagttc 240tccctgaagc tgagcagcgt gacagccgcc gataccgccg tgtactactg tgccagagtg 300ggcggagctg gcggctggcc tctggatgtg tggggacagg gcaccaccgt gacagtgtcc 360tcagctagca ccaagggccc cagcgtgttc cctctggccc cttgtagcag aagcaccagc 420gagtctacag ccgccctggg ctgcctcgtg aaggactact ttcccgagcc cgtcaccgtg 480tcctggaact ctggcgctct gacaagcggc gtgcacacct ttccagccgt gctgcagagc 540agcggcctgt actctctgag cagcgtcgtg accgtgccca gctctagcct gggcaccaag 600acctacacct gtaacgtgga ccacaagccc agcaacacca aggtggacaa gcgggtggaa 660tctaagtacg gccctccctg ccctccttgc ccagcccctg aatttctggg cggaccctcc 720gtgttcctgt tccccccaaa gcccaaggac accctgatga tcagccggac ccccgaagtg 780acctgcgtgg tggtggatgt gtcccaggaa gatcccgagg tgcagttcaa ttggtacgtg 840gacggcgtgg aagtgcacaa cgccaagacc aagcccagag aggaacagtt caacagcacc 900taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg caaagagtac 960aagtgcaagg tgtccaacaa gggcctgcct agcagcatcg agaaaaccat cagcaaggcc 1020aagggccagc cccgcgaacc tcaggtgtac acactgcccc ctagccagga agagatgacc 1080aagaaccagg tgtccctgac ctgtctcgtg aaaggcttct acccctccga tatcgccgtg 1140gaatgggaga gcaacggcca gcccgagaac aactacaaga ccaccccccc tgtgctggac 1200agcgacggct cattcttcct gtacagcaga ctgaccgtgg acaagagccg gtggcaggaa 1260ggcaacgtgt tcagctgcag cgtgatgcac gaggccctgc acaaccacta cacccagaag 1320tccctgtccc tgtctctggg caag 1344921341DNAArtificialPolynucleotide of R10A2 formatted as an IgG4 incorporating S228P 92gaagtccagc tgcagcagtc tggccccgaa gtgggcagac ctggctcctc cgtgaagatc 60tcctgcaagg cctccggcta caccttcacc gactccgtga tgaactgggt caagcagtct 120cccggccagg gcctggaatg gatcggatgg atcgaccccg agtacggcag aaccgacgtg 180gccgagaagt tcaagaagaa ggccaccctg accgccgact cctccagctc caccgcctac 240atctacctgt ccggcctgac ctccgaggac accgccacct acttttgcgc ccggaccaag 300tacaacagcg gctacggctt cccctactgg ggacagggct ctctcgtgac agtgtcctca 360gcctccacca agggcccctc cgtgttccct ctggcccctt gctcccggtc cacctccgag 420tctaccgccg ctctgggctg cctggtgaaa gactacttcc ccgagcctgt gaccgtgagc 480tggaactctg gcgccctgac ctccggcgtg cacaccttcc ctgccgtgct gcagtcctcc 540ggcctgtact ccctgtcctc cgtggtgaca gtgccctcct ccagcctggg caccaagacc 600tacacctgta acgtggacca caagccctcc aacaccaagg tggacaagcg ggtggaatct 660aagtacggcc ctccctgccc cccctgccct gcccctgaat ttctgggcgg accttccgtg 720tttctgttcc ccccaaagcc caaggacacc ctgatgatct cccggacccc cgaagtgacc 780tgcgtggtgg tggacgtgtc ccaggaagat ccagaggtgc agttcaattg gtacgtggac 840ggcgtggaag tgcacaacgc caagaccaag cccagagagg aacagttcaa ctccacctac 900cgggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa agagtacaag 960tgcaaggtgt ccaacaaggg cctgccctcc agcatcgaaa agaccatctc caaggccaag 1020ggccagcccc gcgagcccca ggtgtacacc ctgcccccta gccaggaaga gatgaccaag 1080aaccaggtgt ccctgacctg tctggtgaaa ggcttctacc cctccgacat tgccgtggaa 1140tgggagtcca acggccagcc cgagaacaac tacaagacca ccccccctgt gctggactcc 1200gacggctcct tcttcctgta ctctcggctg acagtggata agtcccggtg gcaggaaggc 1260aacgtgttct cctgcagcgt gatgcacgag gccctgcaca accactatac ccagaagtcc 1320ctgtccctga gcctgggcaa g 134193642DNAArtificialPolynucleotide sequence of R10A2 VK 93gacatcgtga tgacccagag ccccacctcc atctccatca gcgtgggcga gcgcgtgacc 60atgaactgca aggcctccca gaacgtggac agcgacgtgg actggtatca gcagaaaacc 120ggccagtccc ccaagctgct gatctacaag gccagcaaca gatacaccgg cgtgcccgac 180aggttcaccg gctctggctc tggaaccgac ttcaccttca ccatcagcaa catgcaggcc 240gaggatctgg ccgtgtacta ctgtatgcag tccaacaccc acccccggac cttcggcgga 300ggcaccaaac tggaactgaa gcggaccgtg gccgctccca gcgtgttcat cttccccccc 360agcgacgagc agctgaagag cggcaccgcc agcgtggtct gcctgctgaa caacttctac 420ccccgggagg ccaaggtgca gtggaaggtg gacaacgccc tgcagtctgg caacagccag 480gaaagcgtca ccgagcagga cagcaaggat agcacctaca gcctgagcag caccctgacc 540ctgagcaagg ccgactacga gaagcacaag gtgtacgcct gcgaggtcac ccaccagggc 600ctgtctagcc ccgtcaccaa gagcttcaac cggggcgagt gc 64294642DNAArtificialPolynucleotide sequence of VK used to generate antibody 10.21 and antibody 10.43 94gacatccaga tgacccagtc cccctccagc ctgtccgctt ccgtgggcga cagagtgacc 60atcacatgca aggcctccca gaacgtggac tccgacgtgg actggtatca gcagaagccc 120ggcaaggccc ccaagctgct gatctacaag gcctccaacg actacaccgg cgtgccctcc 180agattctccg gctccggctc tggcaccgac ttcaccttca ccatctccag cctgcagccc 240gaggatatcg ccacctacta ctgcatgcag agcaacaccc acccccggac cttcggcgga 300ggcaccaagg tggaaatcaa gcggaccgtg gccgctccct ccgtgttcat cttcccaccc 360tccgacgagc agctgaagtc cggcaccgcc tccgtcgtgt gcctgctgaa caacttctac 420ccccgcgagg ccaaggtgca gtggaaggtg gacaacgccc tgcagtccgg caactcccaa 480gagtccgtga ccgagcagga ctccaaggac agcacctact ccctgtcctc caccctgacc 540ctgtccaagg ccgactacga gaagcacaag gtgtacgcct gcgaagtgac ccaccagggc 600ctgtccagcc ccgtgaccaa gtccttcaac cggggcgagt gc 642951341DNAArtificialPolynucleotide sequence of 10.152 formatted as an IgG4 incorporating S228P 95gaagtgcagc tggtgcagtc tggcgccgaa gtgaagaaac ccggcgctac cgtgaagatc 60tcctgcaagg tgtccggcta caccttcacc gactccgtga tgaactgggt gcagcagcat 120cccggcaagg gcctggaatg gatgggctgg atcgaccccg agtacggcag aaccgacgtg 180gccgagaagt tccagggcag agtgaccatc accgccgaca cctccaccga caccgcctac 240atggaactgt cctccctgcg gagcgaggac accgccgtgt actactgcgc ccggaccaag 300tacaactccg gctacggctt cccctactgg ggccagggca ccaccgtgac cgtgtcctct 360gcctccacca agggcccctc cgtgttccct ctggcccctt gctcccggtc cacctccgag 420tctaccgccg ctctgggctg cctggtcaag gactacttcc ccgagcctgt gacagtgtcc 480tggaactctg gcgccctgac ctccggcgtg cacaccttcc ctgccgtgct gcagtcctcc 540ggcctgtact ccctgtcctc cgtcgtgacc gtgccttcca gctccctggg caccaagacc 600tacacctgta acgtggacca caagccctcc aacaccaagg tggacaagcg ggtggaatct 660aagtacggcc ctccctgccc cccctgccct gcccctgaat ttctgggcgg accttccgtg 720ttcctgttcc ccccaaagcc caaggacacc ctgatgatct cccggacccc cgaagtgacc 780tgcgtggtgg tggacgtgtc ccaagaggac cccgaggtgc agttcaattg gtacgtggac 840ggcgtggaag tgcacaacgc caagaccaag cccagagagg aacagttcaa ctccacctac 900cgggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa agaatacaag 960tgcaaagtct ccaacaaggg cctgccctcc agcatcgaaa agaccatctc caaggccaag 1020ggacagcccc gcgagcccca ggtgtacacc ctgcccccta gccaagagga aatgaccaag 1080aaccaggtgt ccctgacctg cctcgtgaag ggcttctacc cctccgatat cgccgtggaa 1140tgggagtcca acggccagcc cgagaacaac tacaagacca ccccccctgt gctggactcc 1200gacggctcct tcttcctgta ctctcggctg accgtggaca agtcccggtg gcaagagggc 1260aacgtgttct cctgctccgt gatgcacgag gccctgcaca accactacac ccagaagtcc 1320ctgtccctga gcctgggcaa g 134196214PRTArtificialAmino acid sequence of 10.152 light chain 96Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asn Val Asp Ser Asp 20 25 30Val Asp Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Lys Ala Ser Asn Asp Tyr Thr Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Ile Ala Thr Tyr Tyr Cys Ala Gln Ser Asn Thr His Pro Arg 85 90 95Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150 155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205Phe Asn Arg Gly Glu Cys 21097642DNAArtificialPolynucleotide sequence of 10.152 light chain 97gacatccaga tgactcagag cccgtcctcg ctttcggctt ccgtcggcga ccgcgtgacc 60atcacttgtc aggcgtcgca gaacgtcgat tccgacgtgg actggtacca acagaagccg 120gggaaagcgc ccaagctgct gatctacaag gcctccaatg attacactgg agtgcctagc 180cggttcagcg gatcagggtc gggaacggac ttcactttta ccatctcaag cctccaacca 240gaagatattg ccacctatta ctgcgcacaa tcaaacaccc acccgagaac cttcggcgga 300ggaaccaagg tggagatcaa acgtacggtg gcggcgccca gcgtgttcat cttcccaccc 360agcgacgagc agctgaagtc cggcacagcc agcgtggtgt gcctgctgaa caacttctac 420ccccgcgagg ccaaggtgca gtggaaggtg gacaacgccc tgcagagcgg caacagccag 480gaaagcgtga ccgagcagga cagcaaggac tccacctaca gcctgagcag caccctgacc 540ctgagcaagg ccgactacga gaagcacaag gtgtacgcct gcgaagtgac ccaccagggc 600ctgtccagcc ccgtgaccaa gagcttcaac cggggcgagt gc 64298666DNAArtificialPolynucleotide sequence of 2.12 light chain 98caggccgtgc tgacccagcc tgcctccctg tctgcctctc ctggcgagtc cgccagactg 60acctgcaccc tgccctccga catcaacgtg cggtactaca acatctactg gtatcagcag 120aagcccggca gcccccccag atacctgctg tactactact ccgactccca caagggccag 180ggctccggcg tgccctccag attctccggc tccaaggacg tgtccaccaa ctccggcatc 240ctgctgatct ccggcctgca gtccgaggac attgccacct actactgcat gacttggagc 300agcaacggca gcggcgtgtt cggcggaggc acccagctga ccgtcctagg tcagcccaag 360gccgctccca gcgtgaccct gttcccccca agcagcgagg aactgcaggc caacaaggcc 420accctggtgt gcctgatcag cgacttctac cctggggccg tgaccgtggc ctggaaggcc 480gatagcagcc ctgtgaaggc cggcgtggaa accaccaccc cctccaagca gagcaacaac 540aaatacgccg ccagcagcta cctgtccctg acccccgagc agtggaagtc ccaccggtcc 600tacagctgcc aggtgacaca cgagggcagc accgtggaaa agaccgtggc ccccaccgag 660tgcagc 66699642DNAArtificialPolynucleotide sequence of Anti-CD138 kappa light chain 99gacatccaga tgacccagag cacatcctct ctgagcgcct ccctgggcga tcgcgtgact 60atcagttgca gcgcttccca agggattaac aattacctca actggtacca gcagaagccc 120gacggaaccg tcgagctgct catctattac acatctacgc tgcaaagcgg cgtgccttcc 180aggttctcag ggagcggttc cggaactgat tactctctga ccattagcaa tctcgaacca 240gaagacatcg gcacatatta ctgtcagcag tactccaagc tgccccggac ttttggggga 300ggcaccaaac tggagatcaa gcgtacggtg gcggcgccca gcgtgttcat cttcccaccc 360agcgacgagc agctgaagtc cggcacagcc agcgtggtgt gcctgctgaa caacttctac 420ccccgcgagg ccaaggtgca gtggaaggtg gacaacgccc tgcagagcgg caacagccag 480gaaagcgtga ccgagcagga cagcaaggac tccacctaca gcctgagcag caccctgacc 540ctgagcaagg ccgactacga gaagcacaag gtgtacgcct gcgaagtgac ccaccagggc 600ctgtccagcc ccgtgaccaa gagcttcaac cggggcgagt gc 6421001347DNAArtificialPolynucleotide sequence of Anti-CD138 IgG4 (S228P) 100caggtgcagc tccaacagag cggctccgaa ctgatgatgc ctggggcctc tgtcaagatt 60tcctgcaaag ctaccggcta cacattcagc aactattgga ttgagtgggt gaagcagcgc 120ccagggcacg gtctggagtg gatcggagag atcctgccag gcaccgggag gactatttac 180aatgaaaagt ttaaaggaaa ggccacattc accgcagaca tctctagcaa cactgttcaa 240atgcagctct cctctctgac ctccgaggat agcgccgtgt attactgtgc tcggagagac 300tactatggca atttttacta tgctatggat tactggggac agggcacatc tgtgaccgtc 360agctccgcta gcaccaaggg ccccagcgtg ttccccctgg ccccttgtag cagaagcacc 420agcgagagca cagccgccct gggctgcctg gtgaaagact acttccccga gcccgtcacc 480gtgtcctgga acagcggagc cctgaccagc ggcgtgcaca cctttccagc cgtgctgcag 540agcagcggcc tgtacagcct gagcagcgtg gtgacagtgc cctccagcag cctgggcacc 600aagacctaca cctgtaacgt ggaccacaag cccagcaaca ccaaggtgga caagcgggtg 660gaatctaagt acggcccacc ctgccccccc tgccctgccc ctgaatttct gggcggaccc 720tccgtgttcc tgttcccccc aaagcccaag gacaccctga tgatcagccg gacccccgaa 780gtgacctgcg tggtggtgga cgtgtcccag gaagatcccg aggtccagtt caattggtac 840gtggacggcg tggaagtgca caacgccaag accaagccca gagaggaaca gttcaacagc 900acctaccggg tggtgtccgt gctgaccgtg ctgcaccagg actggctgaa cggcaaagag 960tacaagtgca aagtctccaa caagggcctg cccagctcca tcgagaaaac catcagcaag 1020gccaagggcc agccccgcga gcctcaggtg tacacactgc cccccagcca ggaagagatg 1080accaagaacc aggtgtccct gacctgtctg gtgaaaggct

tctaccccag cgatatcgcc 1140gtggaatggg agagcaacgg ccagcccgag aacaactaca agaccacccc ccctgtgctg 1200gacagcgacg gcagcttctt cctgtactcc cggctgaccg tggacaagag ccggtggcag 1260gaaggcaacg tcttcagctg cagcgtgatg cacgaggccc tgcacaacca ctacacccag 1320aagtccctga gcctgagcct gggcaag 13471011341DNAArtificialPolynucleotide sequence of Anti-HLA IgG4 (S228P) 101caggtccaac tcaagcagtc cggtccgggg ctggtccagc catctcaatc actgtctctt 60acttgcaccg tgtccggatt cagcctgacc tcatacggag tgcattgggt gcggcagcct 120cccgggaaag gactggagtg gctcggagtc atttggtccg gtggatcaac tgactacaat 180gccgctttca tcagcaggct gagcattcgg aaggacaact ctaagagcca agtgttcttc 240aagatgaact cactccaggc cgatgacacc gccatctact attgtgccag aaccttcacc 300accagcacct ctgcatggtt tgcatactgg ggccagggca ctcttgtgac cgtgtcagct 360gctagcacca agggccccag cgtgttcccc ctggcccctt gtagcagaag caccagcgag 420agcacagccg ccctgggctg cctggtgaaa gactacttcc ccgagcccgt caccgtgtcc 480tggaacagcg gagccctgac cagcggcgtg cacacctttc cagccgtgct gcagagcagc 540ggcctgtaca gcctgagcag cgtggtgaca gtgccctcca gcagcctggg caccaagacc 600tacacctgta acgtggacca caagcccagc aacaccaagg tggacaagcg ggtggaatct 660aagtacggcc caccctgccc cccctgccct gcccctgaat ttctgggcgg accctccgtg 720ttcctgttcc ccccaaagcc caaggacacc ctgatgatca gccggacccc cgaagtgacc 780tgcgtggtgg tggacgtgtc ccaggaagat cccgaggtcc agttcaattg gtacgtggac 840ggcgtggaag tgcacaacgc caagaccaag cccagagagg aacagttcaa cagcacctac 900cgggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa agagtacaag 960tgcaaagtct ccaacaaggg cctgcccagc tccatcgaga aaaccatcag caaggccaag 1020ggccagcccc gcgagcctca ggtgtacaca ctgcccccca gccaggaaga gatgaccaag 1080aaccaggtgt ccctgacctg tctggtgaaa ggcttctacc ccagcgatat cgccgtggaa 1140tgggagagca acggccagcc cgagaacaac tacaagacca ccccccctgt gctggacagc 1200gacggcagct tcttcctgta ctcccggctg accgtggaca agagccggtg gcaggaaggc 1260aacgtcttca gctgcagcgt gatgcacgag gccctgcaca accactacac ccagaagtcc 1320ctgagcctga gcctgggcaa g 1341102645DNAArtificialPolynucleotide sequence of Anti-HLA VK 102tctatcgtca tgacccagac cccgaagttc ctcctggtgt cagctggtga tcgggtgacc 60atcacttgta aggcctctca gtctgtctca aacgacgtcg catggtacca acaaaagcct 120gggcagtcac ctaagcttct gatctactat gcttccaatc gctacaccgg cgtgcccgac 180aggttcaccg gatcagggta cggaaccgac ttcaccttta ctatttccac cgtgcaggcc 240gaggacctcg ccgtgtattt ctgccagcaa gattacagca gcccaccctg gactttcggt 300ggaggaacta aactggaaat tagacgtacg gtggcggcgc ccagcgtgtt catcttccca 360cccagcgacg agcagctgaa gtccggcaca gccagcgtgg tgtgcctgct gaacaacttc 420tacccccgcg aggccaaggt gcagtggaag gtggacaacg ccctgcagag cggcaacagc 480caggaaagcg tgaccgagca ggacagcaag gactccacct acagcctgag cagcaccctg 540accctgagca aggccgacta cgagaagcac aaggtgtacg cctgcgaagt gacccaccag 600ggcctgtcca gccccgtgac caagagcttc aaccggggcg agtgc 6451031203DNAArtificialPolynucleotide sequence of OPG-Fc 103gaaacctttc cgccgaaata tctgcattat gatgaagaaa ccagccatca gctgctgtgc 60gataaatgcc cgccgggcac ctatctgaaa cagcattgca ccgcgaaatg gaaaaccgtg 120tgcgcgccgt gcccggatca ttattatacc gatagctggc ataccagcga tgaatgcctg 180tattgcagcc cggtgtgcaa agaactgcag tatgtgaaac aggaatgcaa ccgcacccat 240aaccgcgtgt gcgaatgcaa agaaggccgc tatctggaag gcgaattttg cctgaaacat 300cgcagctgcc cgccgggctt tggcgtggtg caggcgggca ccccggaacg caacaccgtg 360tgcaaacgct gcccggatgg cttttttagc aacgaaacca gcagcaaagc gccgtgccgc 420aaacatacca actgcagcgt gtttggcctg ctgctgaccc agaaaggcaa cgcgacccat 480gataacattt gcagcggcaa cagcgaaagc acccagaaag aacgcaaatg ctgcgtggaa 540tgcccgccgt gcccggcgcc gccggtggcg ggcccgagcg tgtttctgtt tccgccgaaa 600ccgaaagata ccctgatgat tagccgcacc ccggaagtga cctgcgtggt ggtggatgtg 660agccatgaag atccggaagt gcagtttaac tggtatgtgg atggcgtgga agtgcataac 720gcgaaaacca aaccgcgcga agaacagttt aacagcacct ttcgcgtggt gagcgtgctg 780accgtggtgc atcaggattg gctgaacggc aaagaatata aatgcaaagt gagcaacaaa 840ggcctgccgg cgccgattga aaaaaccatt agcaaaacca aaggccagcc gcgcgaaccg 900caggtgtata ccctgccgcc gagccgcgaa gaaatgacca aaaaccaggt gagcctgacc 960tgcctggtga aaggctttta tccgagcgat attgcggtgg aatgggaaag caacggccag 1020ccggaaaaca actataaaac caccccgccg atgctggata gcgatggcag cttttttctg 1080tatagcaaac tgaccgtgga taaaagccgc tggcagcagg gcaacgtgtt tagctgcagc 1140gtgatgcatg aagcgctgca taaccattat acccagaaaa gcctgagcct gagcccgggc 1200aaa 12031041350DNAArtificialPolynucleotide sequence of 10.21 formatted as an IgG1 104gaagtgcagc tggtgcagtc tggcgccgaa gtgaagaaac ctggcgccac cgtgaagatc 60agctgcaagg tgtccggcta caccttcacc gacagcgtga tgaactgggt gcagcaggcc 120cctggcaagg gcctggaatg gatgggatgg atcgaccccg agtacggcag aaccgacgtg 180gccgagaagt tccagggcag agtgaccatc accgccgaca ccagcaccga caccgcctac 240atggaactga gcagcctgcg gagcgaggac accgccgtgt actactgtgc ccggaccaag 300tacaacagcg gctacggctt cccctactgg ggccagggca caaccgtgac agtgtcctca 360gctagcacca agggacccag cgtgttccct ctggccccta gcagcaagag cacatctggc 420ggaacagccg ccctgggctg cctcgtgaag gactactttc ccgagcctgt caccgtgtct 480tggaactctg gcgccctgac aagcggcgtg cacacctttc cagccgtgct gcagagcagc 540ggcctgtact ctctgagcag cgtcgtgaca gtgcccagct ctagcctggg cacccagacc 600tacatctgca acgtgaacca caagcccagc aacaccaagg tggacaagaa ggtggaaccc 660aagagctgcg acaagaccca cacctgtccc ccttgtcctg cccccgaact gctgggaggc 720ccttccgtgt tcctgttccc cccaaagccc aaggacaccc tgatgatcag ccggaccccc 780gaagtgacct gcgtggtggt ggatgtgtcc cacgaggacc ctgaagtgaa gttcaattgg 840tacgtggacg gcgtggaagt gcacaacgcc aagaccaagc ccagagagga acagtacaac 900agcacctacc gggtggtgtc cgtgctgaca gtgctgcacc aggactggct gaacggcaaa 960gagtacaagt gcaaggtgtc caacaaggcc ctgcctgccc ccatcgagaa aaccatcagc 1020aaggccaagg gccagccccg cgaaccccag gtgtacacac tgcccccaag cagggacgag 1080ctgaccaaga accaggtgtc cctgacctgt ctcgtgaaag gcttctaccc ctccgatatc 1140gccgtggaat gggagagcaa cggccagccc gagaacaact acaagaccac cccccctgtg 1200ctggacagcg acggctcatt cttcctgtac agcaagctga ccgtggacaa gtcccggtgg 1260cagcagggca acgtgttcag ctgcagcgtg atgcacgagg ccctgcacaa ccactacacc 1320cagaagtccc tgagcctgag ccccggcaag 13501051338DNAArtificialPolynucleotide sequence of 10.21 IgG2 105gaagtgcagc tggtgcagtc tggcgccgaa gtgaagaaac ctggcgccac cgtgaagatc 60agctgcaagg tgtccggcta caccttcacc gacagcgtga tgaactgggt gcagcaggcc 120cctggcaagg gcctggaatg gatgggatgg atcgaccccg agtacggcag aaccgacgtg 180gccgagaagt tccagggcag agtgaccatc accgccgaca ccagcaccga caccgcctac 240atggaactga gcagcctgcg gagcgaggac accgccgtgt actactgtgc ccggaccaag 300tacaacagcg gctacggctt cccctactgg ggccagggca caaccgtgac agtgtcctca 360gccagcacca agggccccag cgtgttcccc ctggccccct gcagcagaag caccagcgag 420agcacagccg ccctgggctg cctggtgaag gactacttcc ccgagcccgt gacagtgagc 480tggaacagcg gagccctgac ctccggtgta cacaccttcc ccgccgtgct gcagagcagc 540ggcctgtact ccctgagcag cgtggtgacc gtgcccagca gcaacttcgg cacccagacc 600tacacctgca acgtggacca caagcccagc aacaccaagg tggacaagac cgtggagagg 660aagtgctgcg tggagtgccc cccctgccca gcccccccag tggccggacc ctccgtgttt 720ctgttccccc ccaagcccaa ggacaccctg atgatcagca ggacccccga ggtgacctgc 780gtggtggtgg acgtgagcca cgaggatccg gaggtgcagt tcaactggta cgtggacggc 840gtggaggtgc acaacgccaa gaccaagccc agagaggagc agtttaacag caccttcagg 900gtggtgtccg tgctgaccgt ggtgcaccag gactggctga acggcaagga atacaagtgc 960aaggtctcca acaagggcct gccagccccc atcgagaaaa ccatcagcaa gaccaagggc 1020cagccacggg agccccaagt gtataccctg ccccccagcc gggaggagat gaccaagaac 1080caggtgtccc tgacctgtct ggtgaagggc ttctacccca gcgacatcgc cgtggagtgg 1140gagagcaacg gccagcccga gaacaactac aagaccaccc cccccatgct ggacagcgac 1200ggcagcttct tcctgtactc caagctgaca gtggacaagt ccaggtggca gcagggcaac 1260gtgttcagct gcagcgtgat gcacgaggcc ctgcacaacc actacaccca gaagagcctg 1320agcctgtccc ccggcaag 13381061491DNAArtificialPolynucleotide sequence of 10.21 IgG3 106gaagtgcagc tggtgcagtc tggcgccgaa gtgaagaaac ctggcgccac cgtgaagatc 60agctgcaagg tgtccggcta caccttcacc gacagcgtga tgaactgggt gcagcaggcc 120cctggcaagg gcctggaatg gatgggatgg atcgaccccg agtacggcag aaccgacgtg 180gccgagaagt tccagggcag agtgaccatc accgccgaca ccagcaccga caccgcctac 240atggaactga gcagcctgcg gagcgaggac accgccgtgt actactgtgc ccggaccaag 300tacaacagcg gctacggctt cccctactgg ggccagggca caaccgtgac agtgtcctca 360gcgagcacca aaggcccgag cgtgtttccg ctggcgccgt gcagccgcag caccagcggc 420ggcaccgcgg cgctgggctg cctggtgaaa gattattttc cggaaccggt gaccgtgagc 480tggaacagcg gcgcgctgac cagcggcgtg catacctttc cggcggtgct gcagagcagc 540ggcctgtata gcctgagcag cgtggtgacc gtgccgagca gcagcctggg cacccagacc 600tatacctgca acgtgaacca taaaccgagc aacaccaaag tggataaacg cgtggaactg 660aaaaccccgc tgggcgatac cacccatacc tgcccgcgct gcccggaacc gaaaagctgc 720gataccccgc cgccgtgccc gcgctgcccg gaaccgaaaa gctgcgatac cccgccgccg 780tgcccgcgct gcccggaacc gaaaagctgc gataccccgc cgccgtgccc gcgctgcccg 840gcgccggaac tgctgggcgg cccgagcgtg tttctgtttc cgccgaaacc gaaagatacc 900ctgatgatta gccgcacccc ggaagtgacc tgcgtggtgg tggatgtgag ccatgaagat 960ccggaagtgc agtttaaatg gtatgtggat ggcgtggaag tgcataacgc gaaaaccaaa 1020ccgcgcgaag aacagtttaa cagcaccttt cgcgtggtga gcgtgctgac cgtgctgcat 1080caggattggc tgaacggcaa agaatataaa tgcaaagtga gcaacaaagc gctgccggcg 1140ccgattgaaa aaaccattag caaaaccaaa ggccagccgc gcgaaccgca ggtgtatacc 1200ctgccgccga gccgcgaaga aatgaccaaa aaccaggtga gcctgacctg cctggtgaaa 1260ggcttttatc cgagcgatat tgcggtggaa tgggaaagca gcggccagcc ggaaaacaac 1320tataacacca ccccgccgat gctggatagc gatggcagct tttttctgta tagcaaactg 1380accgtggata aaagccgctg gcagcagggc aacattttta gctgcagcgt gatgcatgaa 1440gcgctgcata accgctttac ccagaaaagc ctgagcctga gcccgggcaa a 1491107165PRTArtificialGlycosylated (T106T) human interferon alpha-2-b comprising attenuating mutation A145X where X can be any amino acid selected from D, E, G, H, I, K, L, M, N, Q, R, S, T, V, YVARIANT(145)..(145)Xaa can be any amino acid selected from D, E, G, H, I, K, L, M, N, Q, R, S, T, V, Y 107Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Xaa Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 165108165PRTArtificialGlycosylated (T106T) human interferon alpha-2-b comprising attenuating mutation R144X where X can be any amino acid selected from A, D, E, G, H, I, K, L, N, Q, S, T, V, YVARIANT(144)..(144)Xaa can be any amino acid selected from A, D, E, G, H, I, K, L, N, Q, S, T, V, Y 108Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Xaa 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 165109165PRTArtificialGlycosylated (T106T) human interferon alpha-2-b comprising attenuating mutation R33X, where X can be any amino acid selected from K, A, QVARIANT(33)..(33)Xaa can be any amino acid selected from K, A, Q 109Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Xaa His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys 100 105 110Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115 120 125Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130 135 140Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser145 150 155 160Leu Arg Ser Lys Glu 165110164PRTArtificialHuman interferon alpha-2-b comprising with deletion of amino acid at position 106 and comprising attenuating mutation A144X where X, can be any amino acid selected from D, E, G, H, I, K, L, M, N, Q, R, S, T, V, YVARIANT(144)..(144)Xaa can be any amino acid selected from D, E, G, H, I, K, L, M, N, Q, R, S, T, V, Y 110Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5 10 15Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25 30Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35 40 45Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55 60Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70 75 80Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu 85 90 95Ala Cys Val Ile Gln Gly Val Gly Val Glu Thr Pro Leu Met Lys Glu 100 105 110Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr 115 120 125Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Xaa 130 135 140Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu145 150 155 160Arg Ser Lys Glu111450PRTArtificialVH sequence of 10.21 formatted as an IgG1 incorporating substitutions M255Y, S257T, T259E 111Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile 245 250 255Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290

295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450112446PRTArtificialVH sequence of 10.21 formatted onto an IgG2 backbone incorporating substitutions A330S and P331S 112Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Asp Ser 20 25 30Val Met Asn Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Trp Ile Asp Pro Glu Tyr Gly Arg Thr Asp Val Ala Glu Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Thr Lys Tyr Asn Ser Gly Tyr Gly Phe Pro Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val 210 215 220Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe225 230 235 240Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 245 250 255Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 260 265 270Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 275 280 285Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 290 295 300Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys305 310 315 320Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser 325 330 335Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 350Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp385 390 395 400Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 4451135PRTArtificialIntervening serine-glycine rich (S/G) linker 113Gly Gly Gly Gly Ser1 51146PRTArtificialPeptide linker 114Ser Gly Gly Gly Gly Ser1 511516PRTArtificialPeptide linker 115Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser1 5 10 15

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed