Administration Of A Selective Il-6-trans-signalling Inhibitor

Cottingham; Ian ;   et al.

Patent Application Summary

U.S. patent application number 17/522320 was filed with the patent office on 2022-05-05 for administration of a selective il-6-trans-signalling inhibitor. The applicant listed for this patent is Ferring B.V.. Invention is credited to Ian Cottingham, Niclas Axel Petri.

Application Number20220135652 17/522320
Document ID /
Family ID
Filed Date2022-05-05

United States Patent Application 20220135652
Kind Code A1
Cottingham; Ian ;   et al. May 5, 2022

ADMINISTRATION OF A SELECTIVE IL-6-TRANS-SIGNALLING INHIBITOR

Abstract

A selective IL-6-trans-signalling inhibitor can be used to treat a variety of IL-6-mediated conditions, including inflammatory diseases and cancer. The inhibitor can safely be administered to humans at a variety of doses. Moreover, the inhibitor lessens deleterious effects associated with other IL-6 inhibitors such as lowering neutrophil counts, platelet counts and levels of C-reactive protein.


Inventors: Cottingham; Ian; (St-Prex, CH) ; Petri; Niclas Axel; (Copenhagen, DK)
Applicant:
Name City State Country Type

Ferring B.V.

Hoofddorp

NL
Appl. No.: 17/522320
Filed: November 9, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15532092 May 31, 2017 11198721
PCT/IB2015/002459 Dec 1, 2015
17522320
62086054 Dec 1, 2014

International Class: C07K 14/715 20060101 C07K014/715; C07K 14/54 20060101 C07K014/54

Claims



1.-23. (canceled)

24. A method for the treatment of an inflammatory disease or an IL-6-mediated condition in a human, said method comprising administering to a human in need thereof an effective amount of a polypeptide dimer that inhibits IL-6 trans-signaling, wherein the polypeptide dimer comprises two monomers, each monomer comprises an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 1, wherein the effective amount is 0.5 mg to 5 g of the polypeptide dimer.

25. The method of claim 24, wherein each monomer comprises an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 1.

26. The method of claim 24, wherein the monomers have SEQ ID NO: 1.

27. The method of claim 24, wherein the effective amount is 7.5 mg to 1 g of the polypeptide dimer.

28. The method of claim 24, wherein the effective amount is 60 mg to 1 g of the polypeptide dimer.

29. The method of claim 24, wherein the polypeptide dimer is administered daily or twice- or thrice-weekly.

30. The method of claim 24, wherein the polypeptide dimer is administered every 7-60 days.

31. The method of claim 24, wherein the polypeptide dimer is administered every 7-30 days.

32. The method of claim 24, wherein the polypeptide dimer is administered every 7-20 days.

33. The method of claim 24, wherein the polypeptide dimer is administered every 7 days.

34. The method of claim 31, wherein the polypeptide dimer is administered every 14 days.

35. The method of claim 24, wherein the polypeptide dimer is administered parenterally, intravenously or subcutaneously.

36. The method of claim 24, wherein the inflammatory disease or IL-6-mediated condition is inflammatory bowel disease.

37. The method of claim 36, wherein the inflammatory bowel disease is Crohn's disease or ulcerative colitis.

38. The method of claim 36, wherein the treatment induces or maintains the remission of inflammatory bowel disease.

39. The method of claim 24, wherein the inflammatory disease or IL-6-mediated condition is rheumatoid arthritis, psoriasis, uveitis or atherosclerosis.

40. The method of claim 24, wherein the inflammatory disease or IL-6-mediated condition is colitis not associated with inflammatory bowel disease.

41. The method of claim 40, wherein the colitis is radiation colitis, diverticular colitis, ischemic colitis, infectious colitis, celiac disease, autoimmune colitis, or colitis resulting from allergies affecting the colon.

42. The method of claim 24, wherein neutrophil counts, platelet counts and/or levels of C-reactive protein are maintained within a physiologically normal range after administration of the polypeptide dimer.

43. The method of claim 24, wherein each monomer comprises the gp130 D6 domain corresponding to the amino acids at positions 585-595 of SEQ ID NO: 1, and an Fc domain hinge region comprising the amino acids at positions 609-612 of SEQ ID NO: 1, and each monomer does not comprise a linker between the gp130 D6 domain and the Fc domain hinge region.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 15/532,092, filed May 31, 2017, which is the National Stage of International Application No. PCT/M2015/002459, filed Dec. 1, 2015, which claims the benefit of U.S. Provisional Application No. 62/086,054, filed Dec. 1, 2014, the contents of each of which are hereby incorporated herein by reference in their entirety.

SEQUENCE LISTING

[0002] In accordance with 37 CFR .sctn. 1.52(e)(5), a Sequence Listing in the form of a text file (entitled "P110641PC00_Sequence_listing.txt", created on May 31, 2017, and having a size of 39,640 bytes) is hereby incorporated by reference in its entirety.

BACKGROUND

[0003] IL-6 is a pleiotropic cytokine produced by hematopoietic and non-hematopoietic cells, e.g. in response to infection and tissue damage. IL-6 exerts its multiple biological activities through two main signalling pathways, a so-called classic ligand-receptor pathway via membrane-bound IL-6R present mainly on hepatocytes and certain leukocytes, and a trans-signalling pathway via circulating sIL-6R originating from proteolytic cleavage of the membrane-bound IL-6R or from alternative splicing.

[0004] In the classic pathway, IL-6 directly binds to membrane-bound IL-6R on the surface of a limited range of cell types. The IL-6/IL-6R complex associates with a pre-formed dimer of the signal-transducing gp130 receptor protein, causing steric changes in the gp130 homodimer and thereby initiating an intracellular signalling cascade. Classic signalling is responsible for acute inflammatory defense mechanisms and crucial physiological IL-6 functions, such as growth and regenerative signals for intestinal epithelial cells.

[0005] The extracellular domains of IL-6R and gp130 can be generated without the membrane-anchoring domains by translation of alternatively-spliced mRNAs resulting in sIL-6R and sgp130 variants. Additionally, the extracellular domain of IL-6R can be shed by membrane-bound proteases of the A disintegrin and metalloprotease (ADAM) family (in humans, ADAM17) to generate sIL-6R. In the trans-signalling process, sIL-6R binds to IL-6, forming an agonistic complex which binds to trans-membrane gp130 dimers present on a multitude of cell types that do not express membrane-bound IL-6R; IL-6 signalling by signal transducers and activators of transcription (STATs) is then induced in cells which do not normally respond to IL-6. The activity of the IL-6/sIL-6R complex is normally controlled by levels of sgp130 present in the circulation which effectively compete with membrane-bound gp130. Trans-signalling is mainly involved in chronic inflammation and has been shown to prevent disease-promoting mucosal T-cell populations from going into apoptosis.

[0006] It would be desirable to have a molecule that mimics the natural trans-signalling inhibitor sgp130, but with a higher binding affinity and, consequently, a stronger inhibitory activity. Moreover, it would be desirable to have a molecule that can be administered to humans with minimal toxicity and immunogenic potential.

SUMMARY OF THE INVENTION

[0007] It has now been found that a selective IL-6-trans-signalling inhibitor can be administered to humans without any significant deleterious effects over a large dosage range. Moreover, it has been surprisingly found that the terminal half-life of the inhibitor allows dosing on a weekly, biweekly (i.e., every other week), monthly or even lesser frequency.

[0008] In certain embodiments, the invention includes an inhibitor (e.g., a polypeptide dimer as disclosed herein) for the treatment of an inflammatory disease or IL-6-mediated condition, wherein the polypeptide is administered at a dose of 0.5 mg to 5 g. The invention also includes a method of treating inflammatory disease by administering the inhibitor (e.g., a polypeptide dimer as disclosed herein), where the inhibitor dose is from 0.5 mg to 5 g. The invention further includes use of such an inhibitor in the manufacture of a medicament for treating an inflammatory disease at the indicated dose. Preferably, a human is treated.

[0009] In other embodiments, the invention includes a polypeptide dimer as disclosed herein for treating an IL-6-mediated condition without significantly lowering neutrophil counts, platelet counts and/or levels of C-reactive protein or without lowering neutrophil counts, platelet counts and/or levels of C-reactive protein below a normal range in healthy subjects or patients suffering from an IL-6-mediated condition. The invention also includes a method of treating an IL-6-mediated condition by administering a polypeptide dimer as disclosed herein, wherein the method does not significantly lower neutrophil counts, platelet counts and/or levels of C-reactive protein. The invention further includes use of such a polypeptide dimer in the manufacture of a medicament for treating an IL-6-mediated condition without significantly lowering neutrophil counts, platelet counts and/or levels of C-reactive protein. Preferably, a human is treated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 shows the trans-signalling pathway of IL-6. sIL-6R generated from alternatively spliced mRNA or proteolytic cleavage is able to bind to IL-6 to form a IL-6/sIL-6 complex that binds to gp130 present on the vast majority of body cell types and induce a intracellular signalling cascade.

[0011] FIG. 2 shows that a polypeptide dimer comprising two monomers of SEQ ID NO: 1 does not interfere with IL-6 binding to membrane-bound IL-6R (classic signalling), but selectively binds to the IL-6/sIL-6R complex and prevents trans-signalling.

[0012] FIG. 3 shows profiles after i.v. infusion of Peptide 1 (left panel) at 0.75 mg, 7.5 mg, 75 mg, 150 mg, 300 mg, 600 mg and 750 mg and s.c. injection (right panel) at 60 mg (2.times.2 mL).

[0013] FIG. 4 shows profiles after intravenous administration at 75 mg, 300 mg and 750 mg in healthy subjects (left panel) and CD patients in clinical remission (right panel).

[0014] FIG. 5 shows profiles after intravenous administration at 75 mg, 300 mg and 750 mg once a week for 4 weeks in healthy subjects.

[0015] FIG. 6 shows model predictions using a 2-compartment structural PK model (solid line) and observed data (circles) in trial 000115.

[0016] FIGS. 7A-7C show the nucleotide (SEQ ID NO: 8) and amino acid (SEQ ID NO: 9) sequence of the single gp130-Fc subunit.

[0017] FIGS. 8A-8F show nucleotide sequence elements of the expression plasmid pFER02. FIG. 8A depicts CMV IE Promoter (SEQ ID NO: 10). FIG. 8B depicts Human IgH PolyA (SEQ ID NO: 11). FIG. 8C depicts Amp (bla) gene (SEQ ID NO: 12). FIG. 8D depicts SV40 Promoter (SEQ ID NO: 13). FIG. 8E depicts Dihydrofolate Reductase Coding Sequence (SEQ ID NO: 14). FIG. 8F depicts SV40 Poly (SEQ ID NO: 15).

DETAILED DESCRIPTION OF THE INVENTION

[0018] Preferred inhibitors of the invention include a dimer of two gp130-Fc fusion monomers (e.g., two monomers of SEQ ID NO:1). In its active form, the polypeptide of SEQ ID NO: 1 exists as a dimer linked by two disulfide linkages at Cys623 and Cys626 (FIG. 2). SEQ ID NO: 2 corresponds to the amino acid sequence of a gp130-Fc fusion monomer having the endogenous signal peptide. The signal peptide is removed during protein synthesis, resulting in the production of the polypeptide of SEQ ID NO: 1.

[0019] The polypeptide dimers described herein selectively inhibit excessive trans-signalling (FIG. 1) and induces apoptosis of the detrimental T-cells involved in multiple inflammatory diseases. The polypeptide dimer targets and neutralises IL-6/sIL-6R complexes and is therefore expected to only inhibit IL-6 trans-signalling in the desired therapeutic concentrations, leaving classic signalling and its many physiological functions, as well as its acute inflammatory defence mechanisms, intact (FIG. 2). The polypeptide dimer is believed to be unable to interfere with classic IL-6 signalling due to steric hindrance; the Fc portion is unable to insert into a cell membrane, making the gp130 portion unavailable for binding to membrane-bound IL-6/sIL-6R complex. Thus, the polypeptide dimer is expected to have efficacy similar to global IL-6 blockade (e.g., tocilizumab, sirukumab) but with fewer side effects.

[0020] Polypeptide dimers described herein preferably comprise gp130-Fc monomers having the sequence corresponding to SEQ ID NO:1. In certain embodiments, the monomers have the sequence corresponding to SEQ ID NO:2. In certain embodiments, polypeptide dimers described herein comprise polypeptides having at least 90%, 95%, 97%, 98%, 99% or 99.5% sequence identity to SEQ ID NO: 1 or SEQ ID NO:2. Preferably, the polypeptide comprises the gp130 D6 domain (in particular amino acids TFTTPKFAQGE: amino acid positions 585-595 of SEQ ID NO:1), AEGA in the Fc domain hinge region (amino acid positions 609-612 of SEQ ID NO:1) and does not comprise a linker between the gp130 portion and the Fc domain. In a preferred embodiment, the disclosure provides a polypeptide dimer comprising two monomers having an amino acid sequence at least 90% sequence identify to SEQ ID NO: 1, wherein the amino acid sequence comprises the gp130 D6 domain, AEGA in the Fc domain hinge region, and there is no linker present between the gp130 portion and the Fc domain. In a preferred embodiment, the disclosure provides a polypeptide dimer comprising two monomers having an amino acid sequence at least 90% sequence identify to SEQ ID NO: 2, wherein the amino acid sequence comprises the gp130 D6 domain, AEGA in the Fc domain hinge region, and there is no linker present between the gp130 portion and the Fc domain.

[0021] It is desirable for polypeptides to be substantially free of galactose-alpha-1,3-galactose moieties, as these are associated with an immunogenic response. It was surprisingly found that dimers of the invention have low levels of such moieties. In preferred embodiments, the polypeptide dimer contains no greater than 6% of galactose-alpha-1,3-galactose per mole polypeptide. Preferably, the polypeptide dimer contains no greater than 4 mole %, 3 mole %, 2 mole %, 1 mole %, 0.5 mole %, 0.2 mole %, 0.1 mole % or even an undetectable level of galactose-alpha-1,3-galactose (e.g., as measured by WAX-HPLC, NP-HPLC or WAX, preferably as determined by WAX-HPLC). In other embodiments, the polypeptide dimer contains less than 6%, 4%, 3%, 2%, 1%, 0.5%, 0.2%, or even 0.1% of galactose-alpha-1,3-galactose, relative to the total amount of glycans, either by mass or on a molar basis.

[0022] It is also desirable for a polypeptide of the invention to be sialylated. This has the advantage of increasing the half-life of polypeptides of the invention. Each chain of the polypeptide dimer contains 10 N-glycosylation sites; nine N-glycosylation sites are located in the gp130 portion and one N-glycosylation site is located in the Fc portion. The polypeptide therefore contains a total of 20 glycosylation sites. In certain embodiments, a mean of at least 52% or at least 54% of glycans on the polypeptide include a sialic acid residue, such as a mean from 52-65% (e.g., as measured by WAX-HPLC, NP-HPLC or WAX, preferably as determined by WAX-HPLC). Preferably, the polypeptide of the invention has an approximate molecular weight of 220 kDa; each 93 kDA having an additional .about.20 kDa molecular weight derived from 10 N-glycosylation chains.

[0023] It is further desirable to minimize the extent to which polypeptides aggregate, which is herein referred to as oligomerization which results in oligomeric aggregates. "Oligomeric aggregates" as used herein, does not refer to the active dimerized peptide. Instead, the term refers to at least a dimer of active dimers. In was surprisingly found that the peptide dimers of the invention display low levels of aggregation. In certain embodiments, less than 5%, less than 4%, less than 3%, less than 2%, less than 1.5%, or even less than 1.0% of the polypeptide is present as an oligomer. The oligomer content can be measured, for example, by size exclusion chromatography-multi angle light scatting (SEC-MALS) or SEC-UV.

[0024] Preferably, the polypeptide dimer is present in its full-length form (e.g., includes two full length monomers, e.g., of SEQ ID NO:1). However, cell culture can produce a truncated variant referred to herein as the single gp130 form (SGF). SGF is a covalently-bound two-chain molecule, one chain comprising a full-length gp130-Fc monomer (e.g., of SEQ ID NO:1) and a second chain comprising a truncated gp130-Fc monomer (e.g., a truncation of SEQ ID NO:1), which second chain includes the Fc domain and lacks most or all of the gp130 domain (e.g., terminated before the linker sequence to the Fc region). Studies to date demonstrate that SGF does not have a heterogeneous amino-terminus. SGF can be formed at consistent levels in a bioreactor and once formed, SGF levels are not readily changed during purification, processing or accelerated storage conditions. SGF levels can be difficult to remove during purification due to similar physical-chemical properties to the full-length form of the polypeptide dimer; thus efforts to remove SGF can result in a significant reduction in yield. It was surprisingly found that polypeptide dimers of the invention are nearly always full-length. In certain embodiments, the composition of the invention comprises polypeptide dimers comprising no greater than 4.0% by weight, 3.0% by weight, 2.0% by weight or even 1.5% by weight of polypeptides that are a truncated variation of the polypeptide of SEQ ID NO: 1 with respect to polypeptides of SEQ ID NO: 1. In certain embodiments, the composition of the invention comprises no greater than 4.0% by weight, 3.0% by weight, 2.0% by weight or even 1.5% by weight of polypeptides that are a truncated variation of the polypeptide of SEQ ID NO: 2 with respect to polypeptides of SEQ ID NO: 2.

Dosing

[0025] The doses described herein represent a dose range that are believed to be safe and tolerable, based upon Phase I data. Other compounds targeting IL-6R or IL-6 have often displayed, in early clinical trials, decreased neutrophil and platelet counts and lower levels of C-reactive protein (CRP) both in healthy subjects and patients with RA. However, the observed levels in neutrophil and platelet counts in healthy subjects dosed with the polypeptide of the invention were still within the normal range. It appears, from the results from the Phase I program, that the polypeptide of the invention does not display the same effects on biomarkers as compounds targeting IL-6R or IL-6.

[0026] In the two trials with the polypeptide dimers comprising monomers of SEQ ID NO: 1, an ex vivo assay measuring the level of activation of STAT 3 by stimulating whole blood samples from the subjects with hyper IL-6 was employed as an assessment of the activity of the drug. Concentration levels of the polypeptide comprising monomers of SEQ ID NO: 1 above 1 .mu.g/mL are believed to be related to suppressed signal to baseline in the secondary messenger (STAT3) assay. The concentration level of the polypeptide dimers comprising monomers of SEQ ID NO: 1 would correspond to the peak levels of the 7.5 mg dose. A dose of 75 mg administered as an i.v. infusion has been shown to have a concentration above 1 .mu.g/mL at steady state for a dosing interval of one week. The corresponding dose administered every two weeks is 300 mg. It is believed that 60 mg administered as a subcutaneous injection is believed to result in the same steady state for dosing every week.

[0027] In certain embodiments, the dose is from 0.5 mg to 5 g polypeptide dimer. For example, the dose can be from 5 mg to 3 g, 10 mg to 2 g, 60 mg to 1 g or preferably from 60 mg to 750 mg.

[0028] The polypeptide dimers can be administered at a frequency appropriate for the intended condition. In certain embodiments, the polypeptide dimer is dosed once every 7-60 days. For example, the polypeptide dimers can be dosed once every 7-30 days or 7-20 days. In preferred embodiments, the dose occurs weekly (once every 7 days) or biweekly (once every 14 days). Doses can also occur on a daily basis or twice- or thrice-weekly. A dose refers to a single dosing episode, whether the dose is a unit dosage form or multiple unit dosage forms taken together (e.g., ingestion of two or more pills, receiving two or more injections). As discussed below, this dose frequency could not be predicted from animal studies. Human clinical trials found a mean half-life of 4.6 days to 5.5 days. In contrast, cynomolgus monkeys had a half-life of only 0.7 days when administered the polypeptide dimers intravenously and 1.4-1.5 days subcutaneously.

[0029] The polypeptide dimer of the invention is typically administered parenterally, such as intravenously or subcutaneously. Administration can occur according to one of the dosing frequencies disclosed herein.

[0030] In certain embodiments, the polypeptide dimer is administered intravenously, dosed once every 7-60 days with a dose from 60 mg to 1 g.

[0031] In certain such embodiments, the polypeptide dimer is administered intravenously, dosed once every 7-30 days with a dose from 60 mg to 1 g.

[0032] In an exemplary embodiment, the polypeptide dimer is administered intravenously, dosed weekly with a dose from 60 mg to 1 g.

[0033] In another exemplary embodiment, the polypeptide dimer is administered intravenously, dosed biweekly with a dose from 60 mg to 1 g.

[0034] In certain embodiments, the polypeptide dimer is administered subcutaneously, dosed once every 7-60 days with a dose from 60 mg to 600 g.

[0035] In certain embodiments, the polypeptide dimer is administered subcutaneously, dosed once every 7-30 days with a dose from 60 mg to 600 g.

[0036] In an exemplary embodiment, the polypeptide dimer is administered subcutaneously, dosed once weekly with a dose from 60 mg to 600 g.

[0037] In another exemplary embodiment, the polypeptide dimer is administered subcutaneously, dosed once biweekly with a dose from 60 mg to 600 g.

Safety

[0038] The polypeptide dimer comprising monomers of SEQ ID NO: 1 has been administered up to 750 mg as a single dose and 600 mg once weekly for 4 weeks. The safety profile of the polypeptide was favourable with few adverse events occurring in all treatment groups, including the placebo group, all being mild or moderate. No apparent dose-related trends in incidence or frequency of adverse events were observed. There were no apparent dose-related trends or treatment related changes in vital signs, ECG, or clinical chemistry parameters. Three events of infusion reactions occurred, all were mild/moderate with cutaneous symptoms like urticaria and swelling, and rapidly resolved without any sequelae.

[0039] Overall, the polypeptide dimer comprising monomers of SEQ ID NO: 1 was safe and well tolerated when administered i.v. up to 600 mg once weekly for 4 weeks and up to 750 mg as a single dose.

[0040] The potential risk of the polypeptide comprising monomers of SEQ ID NO: 1 in humans can also be addressed indirectly by analysing the clinical studies investigating similar compounds targeting IL-6R or IL-6. To date, there is no approved compound which blocks the same signalling pathway as this polypeptide dimer, i.e. targeting and neutralising IL-6/sIL-6R-complex to inhibit the trans-signalling pathway, without any interaction with either IL-6 or IL-6R individually. However, there are experiences with compounds targeting IL-6 receptors. One of these compound is tocilizumab, which has been approved in Europe and United States. Tocilizumab binds specifically to both soluble and membrane-bound IL-6 receptors and has been shown to inhibit sIL-6R and mIL-6R mediated signalling.

[0041] The most common reported adverse drug reactions in RA patients treated with tocilizumab (occurring in .gtoreq.5%) were upper respiratory tract infections, nasopharyngitis, headache, hypertension and increased ALT. The most serious adverse drug reactions were serious infections, complications of diverticulits and hypersensitivity reactions. Decreases in neutrophil and platelet counts have occurred following treatment with tocilizumab. Decreases in neutrophil counts below 10.sup.9/L occurred in 3.4% of patients on tocilizumab 8 mg/kg plus disease-modifying anti-rheumatic drugs (DMARDs). Approximately half of the patients who developed an ANC <10.sup.9/L did so within 8 weeks after starting therapy. Decreases below 5.times.10.sup.8/L were reported in 0.3% patients receiving tocilizumab 8 mg/kg and DMARDs. Severe neutropenia may be associated with an increased risk of serious infections, although there has been no clear association between decreases in neutrophils and the occurrence of serious infections in clinical trials with tocilizumab to date. Events reported during the infusion were primarily episodes of hypertension; events reported within 24 hours of finishing an infusion were headache and skin reactions (rash, urticaria). These events were not treatment limiting. Clinically significant hypersensitivity reactions associated with tocilizumab and requiring treatment discontinuation were reported in a total of 13 out of 3,778 patients (0.3%) treated with tocilizumab during the controlled and open-label clinical studies. These reactions were generally observed during the second to fifth infusions of tocilizumab. Gastrointestinal perforations, primarily in patients with a history of diverticulitis, have been reported as rare events, both in tocilizumab clinical trials and post-marketing. The etiology is unclear but RA patients have a generally increased risk for perforations of both the upper and lower GI tract (regardless of DMARD therapy); the risk is highest in RA patients on glucocorticoid therapy, NSAIDs, or with a history of diverticulitis. Fatal anaphylaxis has been reported after marketing authorisation during treatment with tocilizumab. It should be noted that RA patients may have other background diseases as confounding factors.

[0042] Because the polypeptide dimer comprising monomers of SEQ ID NO: 1 is a first-in-class fusion protein, comparisons with the different monoclonal antibody products with different mechanisms of action is of limited value. In contrast to other products which completely block IL-6 activity, this polypeptide dimer is believed to only interfere with the IL-6/sIL-6R complex, leaving the membrane bound IL-6 pathway accessible.

[0043] IL-6 has a broad involvement in the immune and inflammatory responses in the body. When both soluble and membrane-bound IL-6R is blocked, there is potentially an increased risk of infections and other immuno-dependent diseases as well as a less prominent inflammatory response. While not wishing to be bound by theory, it is believed that treatment with the polypeptide dimer comprising monomers of SEQ ID NO: 1, which only targets the IL-6/sIL-6R complex, would prevent the perpetuation of chronic intestinal inflammation in IBD and preserve the acute phase inflammatory response activated by classical IL-6 signalling, thereby lowering the risk of opportunistic infections. However, it could not be predicted whether there is a concentration of polypeptide dimer of the invention above which classical IL-6 signalling would be impacted. Thus, the data herein surprisingly demonstrate that there is less impact on classical IL-6 signalling relative to other treatments targeting IL-6 activity.

[0044] Based on the data presented herein, an advantage of the polypeptide dimer of the invention is that it may have a lesser effect on neutrophil counts, platelet counts and/or levels of C-reactive protein than other compounds that inhibit IL-6. In certain embodiments, the polypeptide dimer of the invention does not significantly lower neutrophil counts, platelet counts and/or levels of C-reactive protein or without lowering neutrophil counts, platelet counts and/or levels of C-reactive protein below a normal range in healthy subjects or patients suffering from an IL-6-mediated condition. For example, the administration of the polypeptide dimer at a dose amount described herein maintains neutrophil counts, platelet counts and/or levels of C-reactive protein within a normal physiological range. In certain embodiments, neutrophil counts, platelet counts and/or levels of C-reactive protein are no more than 50%, 40%, 30%, 20%, 15%, 10% or 5% less than the lower limit of the normal physiological range. The measurement of neutrophil counts, platelet counts and/or levels of C-reactive protein can occur immediately after treatment, one day after days, three days after treatment, one week after treatment, two weeks after treatment, one month after treatment, three months after treatment, six months after treatment or a year after treatment.

[0045] The determination of neutrophil counts, platelet counts, and levels of C-reactive protein can be performed by any number of assays well-known in the art. Neutrophil count, also referred to as absolute neutrophil count (ANC) is a measure of the number of neutrophil granulocytes present in blood (see, e.g., Al-Gwaiz LA, Babay HH (2007). "The diagnostic value of absolute neutrophil count, band count and morphologic changes of neutrophils in predicting bacterial infections". Med Princ Pract 16 (5): 344-7). Normal physiological values for C-reactive protein in adult males and females are 0-5.00 mg/L (e.g., via turbidimetry). Normal physiological values for neutrophils in adult females are 1.61-6.45.times.10.sup.9 per L (absolute value, e.g., via laser flow cytometry) or 37.9-70.5% (calculated); in adult males, the corresponding values are 1.46-5.85.times.10.sup.9 per L and 38.2-71.5%. Normal physiological values for platelets in adult females are 173-369.times.10.sup.9 per L (e.g., via high frequency impedance measurement); in adult males, the corresponding values are 155-342.times.10.sup.9 per L.

[0046] The polypeptide dimer of the invention preferably does not significantly induce the formation of antibodies (e.g., antibodies to the polypeptide dimer) in humans. Even more preferably, the antibodies are not neutralizing antibodies. In certain embodiments, antibodies against the polypeptide dimer of the invention are detectable in fewer than 5%, 2%, 1%, 0.5%, 0.2%, 0.1% or 0.01% of treated subjects or patients. Typically, the limit of detection is approximately 9 ng/mL serum.

Indications

[0047] In acute inflammation, IL-6 has been shown to induce the acute phase response in the liver leading to release of the cascade of acute phase proteins, in particular CRP. By forming a complex with sIL-6R shed by apoptotic neutrophils at the site of inflammation and binding of the resulting IL-6/sIL-6R trans-signalling complex to the signal transducer gp130 on endothelial cells, IL-6 induces expression of chemokines such as monocyte chemotactic protein (MCP)-1 and attracts mononuclear cells. This leads to the resolution of acute inflammation and to the initiation of an adaptive immune response. Thus, in acute inflammation, IL-6 with sIL-6R complex supports the transition between the early predominantly neutrophilic stage of inflammation and the more sustained mononuclear cell influx ultimately also leading to the resolution of inflammation.

[0048] Chronic inflammation, such as in Crohn's disease (CD), ulcerative colitis (UC), rheumatoid arthritis (RA) or psoriasis, is histologically associated with the presence of mononuclear cells, such as macrophages and lymphocytes, persisting in the tissue after having been acquired for the resolution of the acute inflammatory phase. In models of chronic inflammatory diseases, IL-6 seems to have a detrimental role favouring mononuclear-cell accumulation at the site of injury, through induction of continuous MCP-1 secretion, angio-proliferation and anti-apoptotic functions on T-cells.

[0049] Inflammatory bowel disease (IBD), namely CD or UC, is a chronic inflammation occurring in the gut of susceptible individuals that is believed to be independent of a specific pathogen. Alterations in the epithelial mucosal barrier with increased intestinal permeability lead to an enhanced exposure of the mucosal immune system to luminal antigens, which causes an inappropriate activation of the intestinal immune system in patients. The uncontrolled activation of mucosal CD4+ T-lymphocytes with the consecutive excessive release of proinflammatory cytokines induces pathogenic gastrointestinal inflammation and tissue damage. There is a consensus that the main activated immune cells involved in the pathogenesis of IBD are intestinal T-cells and macrophages.

[0050] IL-6 is shown to be a central cytokine in IBD in humans. Patients with CD and UC have been found to produce increased levels of IL-6 when compared with controls, the IL-6 levels being correlated to clinical activity. CD patients have also been found to have increased levels of sIL-6R and consequently, IL-6/sIL-6R complex in serum. Lamina propria mononuclear cells obtained from surgical colon specimens from patients with CD and UC showed that both CD4+ T-cells and macrophages produced increased amounts of IL-6 compared to controls. sIL-6R was found to be released via shedding from the surface of macrophages and mononuclear cells with increased production associated with elevated levels of IL-6. In patients with CD, mucosal T-cells showed strong evidence for IL-6 trans-signalling with activation of STAT3, bcl-2 and bcl-xl. The blockade of IL-6 trans-signalling caused T-cell apoptosis, indicating that the IL-6/sIL-6R system mediates the resistance of T-cells to apoptosis in CD.

[0051] Thus, in IBD patients, acquired accumulation of disease-promoting CD4+ T-cells in the lamina propria leading to perpetuation of inflammation is critically dependent on anti-apoptotic IL-6/sIL-6R trans-signalling. It is believed that by acting on the IL-6/sIL-6R complex, the polypeptide dimer disclosed herein is useful in treating CD and other inflammatory diseases.

[0052] Thus, the polypeptide dimer of the invention can treat IL-6-mediated conditions. IL-6-mediated conditions include inflammatory disease or a cancer. In this regard, the polypeptides and compositions described herein may be administered to a subject having an inflammatory disease, such as juvenile idiopathic arthritis, Crohn's disease, colitis (e.g., colitis not associated with IBD, including radiation colitis, diverticular colitis, ischemic colitis, infectious colitis, celiac disease, autoimmune colitis, or colitis resulting from allergies affecting the colon), dermatitis, psoriasis, uveitis, diverticulitis, hepatitis, irritable bowel syndrome (IBS), lupus erythematous, nephritis, Parkinson's disease, ulcerative colitis, multiple sclerosis (MS), Alzheimer's disease, arthritis, rheumatoid arthritis, asthma, and various cardiovascular diseases such as atherosclerosis and vasculitis. In certain embodiments, the inflammatory disease is selected from the group consisting of, diabetes, gout, cryopyrin-associated periodic syndrome, and chronic obstructive pulmonary disorder.

[0053] Preferably, the inflammatory disease or IL-6-mediated condition is inflammatory bowel disease, preferably wherein the treatment induces the remission of inflammatory bowel disease. Preferably, the inflammatory bowel disease is Crohn's disease or ulcerative colitis, preferably wherein the treatment maintains the remission of inflammatory bowel disease. Preferably, the inflammatory disease or IL-6-mediated condition is rheumatoid arthritis, psoriasis, uveitis or atherosclerosis. Preferably, the inflammatory disease or IL-6-mediated condition is colitis not associated with inflammatory bowel disease, preferably wherein the colitis is radiation colitis, diverticular colitis, ischemic colitis, infectious colitis, celiac disease, autoimmune colitis, or colitis resulting from allergies affecting the colon.

[0054] For inflammatory disease such as inflammatory bowel disease, treatment can include remission of the condition, maintenance of remission of the condition, or both.

[0055] Other embodiments provide a method of treating, reducing the severity of or preventing a cancer, including, but not limited to multiple myeloma, plasma cell leukemia, renal cell carcinoma, Kaposi's sarcoma, colorectal cancer, gastric cancer, melanoma, leukemia, lymphoma, glioma, glioblastoma multiforme, lung cancer (including but not limited to non-small cell lung cancer (NSCLC; both adenocarcinoma and squamous cell carcinoma)), non-Hodgkin's lymphoma, Hodgkin's disease, plasmocytoma, sarcoma, thymoma, breast cancer, prostate cancer, hepatocellular carcinoma, bladder cancer, uterine cancer, pancreatic cancer, esophageal cancer, brain cancer, head and neck cancers, ovarian cancer, cervical cancer, testicular cancer, stomach cancer, esophageal cancer, hepatoma, acute lymphoblastic leukemia (ALL), T-ALL, acute myelogenous leukemia (AML), chronic myelogenous leukemia (CIVIL), and chronic lymphocytic leukemia (CLL), salivary carcinomas, or other cancers.

[0056] Further embodiments of the present disclosure provide a method of treating, reducing the severity of or preventing a disease selected from the group consisting of sepsis, bone resorption (osteoporosis), cachexia, cancer-related fatigue, psoriasis, systemic-onset juvenile idiopathic arthritis, systemic lupus erythematosus (SLE), mesangial proliferative glomerulonephritis, hyper gammaglobulinemia, Castleman's disease, IgM gammopathy, cardiac myxoma and autoimmune insulin-dependent diabetes.

[0057] As used herein, the terms "treatment," "treat," and "treating" refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed. In other embodiments, treatment may be administered in the absence of symptoms. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.

[0058] The polypeptide dimer of the invention can be administered in conjunction with a second active agent. The second active agent can be one or more of 5-aminosalicylic acid, azathioprine, 5-mercaptopurine and a corticosteroid. Dosage regimes for the administration of 5-aminosalicylic acid, azathioprine, 5-mercaptopurine and corticosteroids are well-known to a skilled person.

[0059] The polypeptide dimers may be produced, for example, by expressing the monomers, e.g. monomers comprising SEQ ID NO: 1, in cells. In an exemplary embodiment, a vector comprising a nucleic acid encoding SEQ ID NO: 1 or SEQ ID NO:2 is transfected into cells. The design of the expression vector, including the selection of regulatory sequences, may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and so forth. Regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from retroviral LTRs, cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)), polyoma and strong mammalian promoters such as native immunoglobulin and actin promoters. The host cell may be a mammalian, insect, plant, bacterial, or yeast cell, preferably the cell is a mammalian cell such as a CHO cell.

[0060] The transfected cells are cultured to allow the cells to express the desired protein. The cells and culture media are then collected and polypeptide dimers are purified, e.g., by chromatography column steps (e.g., MAbSelect Sure, SP Sepharose, Capto Q). The dimer can also be concentrated and/or treated with viral reduction/inactivation steps. The resulting dimers can then be used to prepare compositions, preferably pharmaceutical compositions useful for therapy.

EXEMPLIFICATION

Example 1

Animal Studies

Example 1a

Mouse Pharmacokinetics

[0061] Four groups with 54 mice (27 male and 27 female) weighing 25-38 g received a single dose of the polypeptide of SEQ ID NO: 1 in its active dimerized form ("Peptide 1") by either i.v. (3 mg/animal) or s.c. (0.3, 3 and 30 mg/animal) injection.

[0062] Bioavailability was approximately 60%, and apparent dose linearity was observed for AUC, AUC.sub.t and C.sub.max. The t.sub.max of 8-24 hours was as expected for a protein. Peptide 1 was cleared slowly from the systemic circulation with a clearance of 142 mL/day/kg. Distribution volumes estimated by the elimination phase (Vz) and first moment curve (Vss) were 397 mL/kg and 284 mL/kg, respectively, indicating that Peptide 1 was distributed outside the vascular bed. The terminal half-life ranged from 1.3-2.3 days.

Example 1b

Rat Pharmacokinetics

Single-Dose Administration

[0063] The single-dose PK of Peptide 1 was investigated after i.v. and s.c. administration in two different strains of rats, Sprague Dawley (8 rats/group) and Wistar (24 rats/group), showing somewhat different results. The clearance (57 and 93 mL/kg/day, respectively) and distribution volume appeared to be lower in the Sprague Dawley rat, with a 2-fold higher bioavailability, 60%, as compared to approximately 30% for the Wistar rat. T.sub.max was observed 0.5-1.5 days after s.c. administration, and the terminal half-life was approximately 2 days, ranging from 1.7-2.7 days, with only small differences between the two administration routes.

Repeat-Dose Administration

[0064] Intravenous Administration

[0065] Rats (n=18) received i.v. bolus doses 10, 30 and 100 mg/kg/occasion twice a week for 2 weeks. The increase in C.sub.max and AUC after the first administration seemed to be approximately dose linear. However, exposure appeared to be consistently higher in males than in females at all dose levels. The 100 mg/kg/occasion group reached C.sub.max levels of 2100 .mu.g/mL for male rats and 1740 .mu.g/mL for female rats. The AUC.sub.t values were 942 and 642 day.times..mu.g/mL.

[0066] After two weeks, the systemic exposure to Peptide 1 in rats decreased for the 10 mg/kg and 30 mg/kg dose groups. As anti-drug antibody (ADA) responses were confirmed in all animals by Week 8 of the study, decreases in expected exposure over time may be attributed to ADA-mediated clearance of Peptide 1.

[0067] Subcutaneous Administration

[0068] In 2- and 4-week repeat dose s.c. studies, the C.sub.max and AUC after the first administration seemed to increase approximately dose linearly. However, at the last dose, a notably lower drug exposure was seen, possibly due to antibody formation; all animals tested showed antibodies towards Peptide 1.

Example 1c

Cynomolgus Monkey Pharmacokinetics

Single-Dose Administration

[0069] The PK of single administration of Peptide 1 was investigated in male and female cynomolgus monkeys at doses of 0.1-100 mg/kg s.c. (n=4) and 1.0 mg/kg i.v (n=4). The bioavailability was approximately 60% following s.c. administration with a t.sub.max of 6-24 hours. The clearance was 98 mL/day/kg, and the distribution volume approximately 70-90 mL/kg. The half-life determined after i.v. administration was 0.68 days, and approximately 1.5 days after s.c. administration.

Repeat-Dose Administration

[0070] Cynomolgus monkeys were dosed s.c. with 2 (n=4), 10 (n=4), 50 (n=2), or 100 (n=2) mg/kg Peptide 1 twice weekly for 2 weeks, and with 10 (n=4), 30 (n=4), or 100 (n=4) mg/kg Peptide 1 twice weekly for 4 weeks. The exposure by means of C.sub.max and AUC increased approximately dose linearly, and similar exposure and maximal concentration between the first and last dose at the higher doses were observed after 2 weeks. However, after 4 weeks, the last administered dose showed a lower drug exposure compared to the first administration, possibly due to antibody formation. The mean half-life of Peptide 1 ranged from 1.0-1.8 days for the first administration in the different treatment groups with a shorter half-life after the last administration.

Example 2

Clinical Trial 000067 (Single Dose)

Design

[0071] This was a single-dose, placebo controlled, single blinded, randomised within dose, parallel group dose-escalating trial. The trial was conducted in two parts, where Part 1 included healthy subjects and Part 2 included patients with CD in clinical remission. The objective was to examine the safety and tolerability, and if possible, to obtain signs of pharmacological effects, after single doses of Peptide 1.

[0072] In Part 1, 64 subjects were included, of whom 48 (44 men, 4 women) received active treatment and 16 (all men) received placebo. Seven doses were investigated and administered as an i.v. infusion over 30 minutes (0.75 mg, 7.5 mg, 75 mg), or 1 hour (150 mg, 300 mg, 600 mg, and 750 mg). In addition, 6 subjects received a s.c. dose of 60 mg Peptide 1 and 2 subjects received a s.c. dose of placebo. Peptide 1 was administered at 15 mg/mL in 25 mM histidine, 200 mM sucrose and 0.1 mg/mL polysorbate 20.

[0073] In Part 2, 24 patients were included, of whom 18 (11 men, 7 women), received active treatment (75 mg, 300 mg, and 750 mg) and 6 (4 men, 2 women) received placebo, all administered by i.v.

Results

[0074] The PK evaluation after i.v. administrations of Peptide 1 showed dose proportionality for both AUC and Cmax in the range 0.75 mg to 750 mg, the Cmax concentrations in plasma ranging from 0.2 to 170 .mu.g/mL (FIG. 3). The clearance was approx. 0.13 L/h, the mean terminal half-life approx. 4.5 days, and the distribution volume approx. 20 L, the latter indicating some extravascular distribution. The s.c. administration of 60 mg Peptide 1 showed a Cmax of 1.1 .mu.g/mL at 2.3 days, and a half-life of 5.0 days. The bioavailability after s.c. administration of Peptide 1 was calculated to be approx. 50%. There was no indication of target-mediated drug disposition.

[0075] The i.v. administration of 75, 300, and 750 mg to CD patients in remission showed very similar results as for the healthy subjects (FIG. 4). The AUC and Cmax were dose proportional with Cmax concentrations of 16, 76, and 186 .mu.g/mL (16, 77, and 161 .mu.g/mL for healthy subjects). The clearance was approx. 0.13 L/h, the mean terminal half-life approx. 4.6 days, and the distribution volume approx. 22 L.

[0076] The safety profile of Peptide 1 was favourable with few adverse events occurring in all treatment groups, including the placebo group, all being mild or moderate. No apparent dose-related trends in incidence or frequency of adverse events were observed. The infusions were discontinued in two subjects, one due to mild (Part 1, 300 mg group) and one due to moderate (Part 2, 75 mg group) infusion reactions.

[0077] There were no apparent dose-related trends or treatment-related changes in vital signs, ECG, or clinical chemistry parameters (including neutrophil counts, platelet counts, or C-reactive protein levels).

[0078] One healthy subject in the 300 mg group showed non-neutralising treatment emergent anti-Peptide 1 antibodies at the follow-up visit 5-6 weeks after administration.

[0079] Overall, Peptide 1 was safe and well tolerated when administered intravenously up to 750 mg as a single i.v. dose, and at 60 mg as a single s.c. dose.

Example 3

Clinical Trial 000115 (Multiple Ascending Dose)

Design

[0080] This was a placebo controlled, double-blind, within dose-group randomised, parallel group trial with the objective to investigate the safety, tolerability, and pharmacokinetics of multiple ascending doses of Peptide 1. The doses investigated were 75, 300 and 600 mg Peptide 1 administered once a week, for 4 weeks, by i.v. infusion over 30 minutes (75 mg) or 1 hour (300 mg and 600 mg).

[0081] Twenty-four (24) healthy subjects were included, of whom 18 (11 men and 7 women) received active treatment and 6 (2 men and 4 women) received placebo.

Results

[0082] The PK evaluation showed very close characteristics on the first and last treatment days, and similar to the results in the single-dose study. The AUC and Cmax were dose proportional after first and fourth dosing with Cmax concentrations of 19, 78, and 148 .mu.g/mL after the first dose, and 19, 79, and 142 .mu.g/mL after the fourth dose (16, 77, and 161 .mu.g/mL for single dose in healthy subjects; FIG. 5). The corresponding trough values were 0.66, 2.68, 4.56 .mu.g/mL and 0.98, 3.95 and 7.67 .mu.g/mL for the three dose levels. The mean terminal half-life as calculated after the last dose was approx. 5.5 days.

[0083] The safety profile of Peptide 1 was favourable with few adverse events occurring in all treatment groups, including the placebo group, all being mild or moderate. No apparent dose-related trends in incidence or frequency of adverse events were observed. One subject (600 mg group) was withdrawn due to mild infusion reactions.

[0084] There were no apparent dose-related trends or treatment related changes in vital signs, ECG, or clinical chemistry parameters (including neutrophil counts, platelet counts, or C-reactive protein levels).

[0085] No anti-Peptide 1 antibodies were detected in any of the subjects.

[0086] Overall, Peptide 1 was safe and well tolerated when administered i.v. up to 600 mg once weekly for 4 weeks.

Example 4

Modeling of Pharmacokinetic Data

[0087] The PK data from the 000115 trial can be adequately described using a 2-compartment structural model. Predicted profiles of 75, 300 and 600 mg of Peptide 1 and observed data are depicted in FIG. 6 and the estimated mean PK parameters are listed in Table 1.

TABLE-US-00001 TABLE 1 Model Estimates for Peptide 1 Using 2-compartment Structural Pharmacokinetic Model Parameter Estimate SE CV % V 1.7 L 0.08 4.8 V2 8.8 L 0.32 3.6 CL 3.2 L/day 0.06 1.8 CL2 16.4 L/day 0.24 14.4

[0088] Peptide 1 has a binding affinity in humans of 130 pM to the IL-6/sIL-6R complex. At doses of 75-600 mg, the occupancy level are more than 90% at estimated steady state levels of Peptide 1 using the binding affinity (KD; 130 pM) and the IL-6/sIL-6R levels (C.sub.target; 2.0 nM based on sIL-6R).

Example 5

Preparation of Peptide 1

Cloning and Expression of Peptide 1 in CHO/dhfr--Cells

[0089] CHO/dhfr.sup.- cells were obtained from the European collection of cell cultures (ECACC, No. 9406067). The adherent CHO/dhfr.sup.- cells are deficient in dihydrofolate reductase (DHFR), an enzyme that catalyses the reduction of folate to dihydrofolate and then to tetrahydrofolate. CHO/dhfr.sup.- cells thus display sensitivity to the antifolate drug, methotrexate (MTX).

[0090] The CHO/dhfr.sup.- cell line is well characterised and tested. The safety of the CHO/dhfr.sup.- parental cell line as a cell substrate for the production of biopharmaceuticals for human use was confirmed by ECACC (Porton Down, UK) for microbial sterility, mycoplasma, and adventitious viruses according to 21 CFR.

Selection and Construction of the cDNA Sequence

[0091] The cDNA sequence of a monomer of Peptide 1 (the polypeptide sequence of SEQ ID NO: 1) was synthesised as a single DNA fragment by GeneArt AG (Regensburg, Germany) using the sequence for the extracellular domain of gp130 (IL6ST, NCBI Gene ID 3572, transcript variant 1 (NP 002175), amino acids 23-617) and Fc domain of human IgG1 (IGHG1, NCBI Gene ID 3500, amino acids 221-447 according to Kabat EU numbering). The sequence was optimised for optimal codon usage in CHO cells. Three well-characterised point mutations were introduced into the lower hinge region of the Fc part.

[0092] The cDNA sequence was further modified by replacing the original gp130 signal peptide with a mouse IgG heavy chain signal peptide of known efficacy in CHO cell expression systems. The signal peptide is cleaved off during protein synthesis. The presence of the IgG1 Cys-Pro-Pro-Cys sequence in the Fc region results in the dimerisation of two identical gp130-Fc subunits via the sulfhydryl residues on the Fc region, which together form Peptide 1.

[0093] FIG. 7 presents the nucleotide and amino acid sequence of the gp130-Fc subunit used for the formation of Peptide 1.

Construction of the Expression Plasmid for Selection of the Master Cell Bank (MCB)

[0094] The monomer cDNA was cloned into a pANTVhG1 expression vector (Antitope) containing the dhfr gene for transfectant selection with MTX as follows: First, the expression vector was digested with MluI and EagI restriction enzymes to permit the insertion of Peptide 1 cDNA. Second, the monomer coding region was PCR amplified using the OL1425 and OL1426 primers (Table 2) and digested with MluI and EagI restriction enzymes. Third, the digested fragments were gel purified and ligated together to generate the pFER02 expression vector. The monomer cDNA was inserted under the control of the cytomegalovirus (CMV) promoter.

[0095] Table 3 presents the function of the pFER02 expression elements. FIG. 8 presents the nucleotide sequences of the pFER02 expression elements.

TABLE-US-00002 TABLE 2 Oligonucleotide Sequences Used to Amplify the Monomer Coding Region for Cloning into pANTVhG1 Primer Sequence (5'-3')* OL1425 ctgttgctacgcgtgtccactccGAGCTGCTGGATCCTTGCGGC (SEQ ID NO: 6) OL1426 gcgggggcttgccggccgtggcactcaCTTGCCAGGAGACAGAGACAG (SEQ ID NO: 7) *Monomer 1-specific sequences are shown in upper case, vector-specific sequences are shown in lower case and restriction sites are underlined

TABLE-US-00003 TABLE 3 pFER02Expression Elements Feature Function CMV promoter Immediate-early promoter/enhancer. Permits efficient, high-level expression of the recombinant protein hIgG1 polyA Human IgG polyadenylation sequence Ampicillin resistance Selection of vector in E. coli gene (.beta.-lactamase) SV40 early promoter Allows efficient, high-level expression and origin of the neomycin resistance gene and episomal replication in cells expressing SV40 large T antigen DHFR Selection of stable transfectants in CHO dhfr- cells SV40 polyadenylation Efficient transcription termination and signal polyadenylation of mRNA

Cell Line Selection Process Leading to the Final Peptide 1 Producing Clone

[0096] The pFER02 vector was linearised with the blunt-end restriction enzyme SspI, which has a single recognition site located in the beta-lactamase gene. The linearised plasmid was transfected into 5.times.10.sup.6CHO/dhfr.sup.- cells using lipid-mediated transfection. Twenty-four hours after transfection, transfected cells were selected in medium supplemented with 5% dialysed foetal calf serum (FCS) and 100 nM methotrexate (MTX). Transfected cells were diluted into this medium at various densities and dispensed into 96-well, flat bottom tissue culture plates. Cells were then incubated in a humidified atmosphere at 5% CO.sub.2 and 37.degree. C. Fresh MTX selection medium was added at regular intervals during the incubation time to ensure that MTX levels and nutrient levels remained constant.

Initial Cell Line Selection with MTX selection

[0097] For several weeks post transfection, tissue culture plates were examined using a Genetix CloneSelect.RTM. Imager, and >2,000 wells were observed to have actively growing colonies. Supernatants from these wells were sampled and assayed for Peptide 1 titre by ELISA. Based on the results of this assay, a total of 105 of the best expressing wells were expanded into 48-well plates. A total of 83 cell lines were selected for expansion into 6-well plates or T-25 flasks; supernatant from each of the cell lines was sampled and assayed for Peptide 1 titre (ELISA). Based on these results, 54 of the best expressing cell lines with optimal growth characteristics were selected for expansion into T-75 or T-175 flasks; supernatants from the confluent flasks were sampled and Peptide 1 titres quantified (ELISA). Comparison of the expression levels between the cell lines allowed for the identification of the 38 best cell lines which were selected for productivity analysis. Productivity was assessed as follows:

Productivity (pg/cell/day)=((Th-Ti)/((Vh+Vi)/2))/time

[0098] Where: [0099] Th is the harvest titre [.mu.g/mL] [0100] Ti is the initial titre [.mu.g/mL] [0101] Vh is the viable cell count at harvest [.times.10.sup.6 cells/mL] [0102] Vi is the initial viable cell count [.times.10.sup.6 cells/mL] [0103] Time is the elapsed time (days) between Ti and Th Based on productivity results (pg/cell/day), 13 cell lines were selected for gene amplification.

MTX-Driven Gene Amplification for Peptide 1 Cell Line Selection

[0104] The 13 selected cell lines were chosen for the first round of gene amplification by selective pressure under increasing concentrations of MTX (0.1-50 M). After 7-10 days, supernatant from each well from each of the 13 cell lines were sampled and assayed for Peptide 1 titre (ELISA). Wells from each cell line with high Peptide 1 expression levels were assessed for productivity (pg/cell/day). A second round of gene amplification was initiated with a total of 16 wells from cell lines that showed significant increases in productivity.

[0105] The second round of gene amplification was conducted in the presence of increased MTX concentrations; supernatants from each culture were assayed for Peptide 1 titre (ELISA). Selected wells from each cell line were expanded and productivity was assessed (pg/cell/day); five cell lines with increased productivity in response to increased MTX selection pressure were identified. These five cell lines were progressed to a third round of gene amplification using selection pressure under increased MTX concentration; supernatants from each well were assayed for Peptide 1 titre (ELISA). Selected wells for each cell line were expanded and productivity (pg/cell/day) was assessed; five cell lines demonstrating high Peptide 1 expression were selected.

Limiting Dilution of Clones

[0106] Limiting dilution cloning was performed on the five cell lines demonstrating Peptide 1 expression. After one week of incubation, plates were examined using a Genetix CloneSelect.RTM. Imager and single colonies were identified. The growth rates of two cell lines during dilution cloning were noted as being particularly slow and so these cell lines were discontinued. In total, from the three remaining cell lines, 58 clonal colonies were selected for expansion, first into 48-well plates and then successively expanded through 12-well plates, T-25 flasks and T-75 flasks in the absence of MTX. Each of the 58 selected clones was then assessed for productivity (pg/cell/day); 16 clones were selected for suspension adaptation and adaptation to growth in a chemically-defined medium.

Adaptation of Cell Lines to Suspension Culture in Chemically Defined Medium

[0107] The 16 cell lines were adapted to suspension culture in a chemically-defined medium as follows: selected cell lines in adherent culture were first adapted to suspension both in CHO suspension growth medium (DMEM high glucose, including L-glutamine and sodium pyruvate, 5% dialysed FCS, 20 mg/L L-proline, 1.times. penicillin/streptomycin, 1% pluronic F68) and then in chemically defined suspension growth medium (CD Opti-CHO.RTM. from Life Technologies Ltd. (Paisley, UK), 2.5% dialysed FCS, 0.1.times. penicillin/streptomycin, 8 mM Glutamax.RTM.).

[0108] Once adapted to suspension culture, the cell lines were weaned, in stages, into a serum-free chemically-defined suspension growth medium (CD Opti-CHO.RTM., 0.1.times. penicillin/streptomycin, 8 mM Glutamax.RTM.). MTX was omitted from all suspension cultures. The adapted lines were expanded and seed cell banks were prepared. Briefly, cells were expanded to 300 mL total volume and harvested when cell density exceeded 0.85.times.10.sup.6 cells/mL and viability was >90%. A further 3.times.10.sup.7 cells were seeded into a fresh flask containing 70 mL suspension growth medium for growth and productivity analysis. The remaining cells were harvested by centrifugation and resuspended in an appropriate volume of freezing medium to yield a cell suspension at 1.times.10.sup.7 cells/mL. Vials were frozen down to -80.degree. C. The cell bank was then transferred to liquid nitrogen for long-term storage.

[0109] The 16 cell lines were further refined down to 5 clones after serum-free adaptation. The 5 clones were assessed for growth (cell density and cell doubling time) and productivity (pg/cell/day), after which 3 clones were selected. One clone was selected to make a master cell bank.

[0110] Preparation of the master cell bank (MCB) and working cell bank (WCB) was carried out. One vial from the pre-seed stock was used for the preparation of a 200 vial MCB, and one vial of MCB was used to prepare a 200 vial WCB. In each case, a vial was thawed and the cryopreservation medium removed by centrifugation. The cells were resuspended and propagated in volume in growth medium (CD OptiCHO.RTM./4 mM L-glutamine). Four passages were performed during the creation of MCB and six passages were performed during the creation of WCB.

[0111] When sufficient cells were obtained, cells were aliquoted in cryopreservation medium (92.5% CD OptiCHO.RTM./7.5% DMSO) into polypropylene vials (each containing approximately 1.5.times.10.sup.7 viable cells) and cryopreserved by reducing the temperature to -100.degree. C. over a period of at least 60 minutes in a gradual freezing process. Vials are stored in a vapour phase liquid nitrogen autofill container in a GMP controlled area.

Description of the Drug Substance (DS) Manufacturing Process

[0112] A brief description of the Peptide 1 DS manufacturing process is as follows. Cells from a WCB vial are revived and progressively expanded using protein-free medium prior to inoculation into a production bioreactor. Upon completion of the cell culture, cells and cell debris are removed by filtration of the culture.

[0113] Purification consists of three chromatography column steps (MAbSelect Sure, SP Sepharose, Capto Q or Sartobind Phenyl), a concentration and diafiltration step and includes two specific viral reduction/inactivation steps; Triton X-100 (inactivation of enveloped viruses) treatment and a nanofiltration step (removal of enveloped and non-enveloped viruses).

[0114] Following concentration and diafiltration, excipients are added for the formulation of the DS. The formulated Peptide 1 is 0.22 .mu.m filtered into containers.

Description and Composition of the Drug Product (DP)

[0115] The DP is a sterile solution to be administered by i.v. infusion. The DP consists of Peptide 1 at a concentration of 15 mg/mL in an isotonic solution containing 25 mM L-histidine, 200 mM sucrose and 0.1 mg polysorbate 20/mL at pH 7.6. The vials are overlaid with nitrogen for protection against oxidation. The product is intended for single use and storage at -20.degree. C. until thawing for clinical administration.

Composition and Batch Formula

[0116] The batch formula for the drug product is presented in Table 4.

TABLE-US-00004 TABLE 4 DP Batch Composition Component Amount Quality standard Peptide 1 720 g Ferring specification L-Histidine 186.18 g Ph. Eur./USP* Sucrose 3286.08 g Ph. Eur./USP* Polysorbate 20 4.8 g Ph. Eur./USP* WFI ad 49536 g Ph. Eur./USP* Sodium hydroxide quantum satis Ph. Eur./USP* Nitrogen quantum satis Ph. Eur./USP* *curr. Ed.

Sequence CWU 1

1

151822PRTArtificial Sequencegp130-Fc fusion monomer 1Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser Pro Glu Ser Pro Val Val1 5 10 15Gln Leu His Ser Asn Phe Thr Ala Val Cys Val Leu Lys Glu Lys Cys 20 25 30Met Asp Tyr Phe His Val Asn Ala Asn Tyr Ile Val Trp Lys Thr Asn 35 40 45His Phe Thr Ile Pro Lys Glu Gln Tyr Thr Ile Ile Asn Arg Thr Ala 50 55 60Ser Ser Val Thr Phe Thr Asp Ile Ala Ser Leu Asn Ile Gln Leu Thr65 70 75 80Cys Asn Ile Leu Thr Phe Gly Gln Leu Glu Gln Asn Val Tyr Gly Ile 85 90 95Thr Ile Ile Ser Gly Leu Pro Pro Glu Lys Pro Lys Asn Leu Ser Cys 100 105 110Ile Val Asn Glu Gly Lys Lys Met Arg Cys Glu Trp Asp Gly Gly Arg 115 120 125Glu Thr His Leu Glu Thr Asn Phe Thr Leu Lys Ser Glu Trp Ala Thr 130 135 140His Lys Phe Ala Asp Cys Lys Ala Lys Arg Asp Thr Pro Thr Ser Cys145 150 155 160Thr Val Asp Tyr Ser Thr Val Tyr Phe Val Asn Ile Glu Val Trp Val 165 170 175Glu Ala Glu Asn Ala Leu Gly Lys Val Thr Ser Asp His Ile Asn Phe 180 185 190Asp Pro Val Tyr Lys Val Lys Pro Asn Pro Pro His Asn Leu Ser Val 195 200 205Ile Asn Ser Glu Glu Leu Ser Ser Ile Leu Lys Leu Thr Trp Thr Asn 210 215 220Pro Ser Ile Lys Ser Val Ile Ile Leu Lys Tyr Asn Ile Gln Tyr Arg225 230 235 240Thr Lys Asp Ala Ser Thr Trp Ser Gln Ile Pro Pro Glu Asp Thr Ala 245 250 255Ser Thr Arg Ser Ser Phe Thr Val Gln Asp Leu Lys Pro Phe Thr Glu 260 265 270Tyr Val Phe Arg Ile Arg Cys Met Lys Glu Asp Gly Lys Gly Tyr Trp 275 280 285Ser Asp Trp Ser Glu Glu Ala Ser Gly Ile Thr Tyr Glu Asp Arg Pro 290 295 300Ser Lys Ala Pro Ser Phe Trp Tyr Lys Ile Asp Pro Ser His Thr Gln305 310 315 320Gly Tyr Arg Thr Val Gln Leu Val Trp Lys Thr Leu Pro Pro Phe Glu 325 330 335Ala Asn Gly Lys Ile Leu Asp Tyr Glu Val Thr Leu Thr Arg Trp Lys 340 345 350Ser His Leu Gln Asn Tyr Thr Val Asn Ala Thr Lys Leu Thr Val Asn 355 360 365Leu Thr Asn Asp Arg Tyr Leu Ala Thr Leu Thr Val Arg Asn Leu Val 370 375 380Gly Lys Ser Asp Ala Ala Val Leu Thr Ile Pro Ala Cys Asp Phe Gln385 390 395 400Ala Thr His Pro Val Met Asp Leu Lys Ala Phe Pro Lys Asp Asn Met 405 410 415Leu Trp Val Glu Trp Thr Thr Pro Arg Glu Ser Val Lys Lys Tyr Ile 420 425 430Leu Glu Trp Cys Val Leu Ser Asp Lys Ala Pro Cys Ile Thr Asp Trp 435 440 445Gln Gln Glu Asp Gly Thr Val His Arg Thr Tyr Leu Arg Gly Asn Leu 450 455 460Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val Thr Pro Val Tyr Ala Asp465 470 475 480Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala Tyr Leu Lys Gln Ala Pro 485 490 495Pro Ser Lys Gly Pro Thr Val Arg Thr Lys Lys Val Gly Lys Asn Glu 500 505 510Ala Val Leu Glu Trp Asp Gln Leu Pro Val Asp Val Gln Asn Gly Phe 515 520 525Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr Ile Ile Gly Asn Glu Thr 530 535 540Ala Val Asn Val Asp Ser Ser His Thr Glu Tyr Thr Leu Ser Ser Leu545 550 555 560Thr Ser Asp Thr Leu Tyr Met Val Arg Met Ala Ala Tyr Thr Asp Glu 565 570 575Gly Gly Lys Asp Gly Pro Glu Phe Thr Phe Thr Thr Pro Lys Phe Ala 580 585 590Gln Gly Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 595 600 605Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 610 615 620Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp625 630 635 640Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 645 650 655Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 660 665 670Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 675 680 685Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 690 695 700Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu705 710 715 720Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 725 730 735Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 740 745 750Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 755 760 765Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 770 775 780Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys785 790 795 800Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 805 810 815Ser Leu Ser Pro Gly Lys 8202844PRTArtificial Sequencegp130-Fc fusion monomer with endogenous signal peptide 2Met Leu Thr Leu Gln Thr Trp Leu Val Gln Ala Leu Phe Ile Phe Leu1 5 10 15Thr Thr Glu Ser Thr Gly Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser 20 25 30Pro Glu Ser Pro Val Val Gln Leu His Ser Asn Phe Thr Ala Val Cys 35 40 45Val Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val Asn Ala Asn Tyr 50 55 60Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys Glu Gln Tyr Thr65 70 75 80Ile Ile Asn Arg Thr Ala Ser Ser Val Thr Phe Thr Asp Ile Ala Ser 85 90 95Leu Asn Ile Gln Leu Thr Cys Asn Ile Leu Thr Phe Gly Gln Leu Glu 100 105 110Gln Asn Val Tyr Gly Ile Thr Ile Ile Ser Gly Leu Pro Pro Glu Lys 115 120 125Pro Lys Asn Leu Ser Cys Ile Val Asn Glu Gly Lys Lys Met Arg Cys 130 135 140Glu Trp Asp Gly Gly Arg Glu Thr His Leu Glu Thr Asn Phe Thr Leu145 150 155 160Lys Ser Glu Trp Ala Thr His Lys Phe Ala Asp Cys Lys Ala Lys Arg 165 170 175Asp Thr Pro Thr Ser Cys Thr Val Asp Tyr Ser Thr Val Tyr Phe Val 180 185 190Asn Ile Glu Val Trp Val Glu Ala Glu Asn Ala Leu Gly Lys Val Thr 195 200 205Ser Asp His Ile Asn Phe Asp Pro Val Tyr Lys Val Lys Pro Asn Pro 210 215 220Pro His Asn Leu Ser Val Ile Asn Ser Glu Glu Leu Ser Ser Ile Leu225 230 235 240Lys Leu Thr Trp Thr Asn Pro Ser Ile Lys Ser Val Ile Ile Leu Lys 245 250 255Tyr Asn Ile Gln Tyr Arg Thr Lys Asp Ala Ser Thr Trp Ser Gln Ile 260 265 270Pro Pro Glu Asp Thr Ala Ser Thr Arg Ser Ser Phe Thr Val Gln Asp 275 280 285Leu Lys Pro Phe Thr Glu Tyr Val Phe Arg Ile Arg Cys Met Lys Glu 290 295 300Asp Gly Lys Gly Tyr Trp Ser Asp Trp Ser Glu Glu Ala Ser Gly Ile305 310 315 320Thr Tyr Glu Asp Arg Pro Ser Lys Ala Pro Ser Phe Trp Tyr Lys Ile 325 330 335Asp Pro Ser His Thr Gln Gly Tyr Arg Thr Val Gln Leu Val Trp Lys 340 345 350Thr Leu Pro Pro Phe Glu Ala Asn Gly Lys Ile Leu Asp Tyr Glu Val 355 360 365Thr Leu Thr Arg Trp Lys Ser His Leu Gln Asn Tyr Thr Val Asn Ala 370 375 380Thr Lys Leu Thr Val Asn Leu Thr Asn Asp Arg Tyr Leu Ala Thr Leu385 390 395 400Thr Val Arg Asn Leu Val Gly Lys Ser Asp Ala Ala Val Leu Thr Ile 405 410 415Pro Ala Cys Asp Phe Gln Ala Thr His Pro Val Met Asp Leu Lys Ala 420 425 430Phe Pro Lys Asp Asn Met Leu Trp Val Glu Trp Thr Thr Pro Arg Glu 435 440 445Ser Val Lys Lys Tyr Ile Leu Glu Trp Cys Val Leu Ser Asp Lys Ala 450 455 460Pro Cys Ile Thr Asp Trp Gln Gln Glu Asp Gly Thr Val His Arg Thr465 470 475 480Tyr Leu Arg Gly Asn Leu Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val 485 490 495Thr Pro Val Tyr Ala Asp Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala 500 505 510Tyr Leu Lys Gln Ala Pro Pro Ser Lys Gly Pro Thr Val Arg Thr Lys 515 520 525Lys Val Gly Lys Asn Glu Ala Val Leu Glu Trp Asp Gln Leu Pro Val 530 535 540Asp Val Gln Asn Gly Phe Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr545 550 555 560Ile Ile Gly Asn Glu Thr Ala Val Asn Val Asp Ser Ser His Thr Glu 565 570 575Tyr Thr Leu Ser Ser Leu Thr Ser Asp Thr Leu Tyr Met Val Arg Met 580 585 590Ala Ala Tyr Thr Asp Glu Gly Gly Lys Asp Gly Pro Glu Phe Thr Phe 595 600 605Thr Thr Pro Lys Phe Ala Gln Gly Glu Asp Lys Thr His Thr Cys Pro 610 615 620Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe625 630 635 640Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 645 650 655Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe 660 665 670Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 675 680 685Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 690 695 700Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val705 710 715 720Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 725 730 735Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 740 745 750Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 755 760 765Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 770 775 780Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser785 790 795 800Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 805 810 815Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 820 825 830Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 835 840311PRTArtificial Sequencegp130 D6 domain 3Thr Phe Thr Thr Pro Lys Phe Ala Gln Gly Glu1 5 1044PRTArtificial Sequencegp130 D6 domain 4Ala Glu Gly Ala154PRTArtificial SequenceIgG1 sequence 5Cys Pro Pro Cys1644DNAArtificial Sequenceprimer OL1425 6ctgttgctac gcgtgtccac tccgagctgc tggatccttg cggc 44748DNAArtificial Sequenceprimer OL1426 7gcgggggctt gccggccgtg gcactcactt gccaggagac agagacag 4882466DNAArtificial Sequencesingle gp130-Fc subunitCDS(1)..(2466) 8gag ctg ctg gat cct tgc ggc tat atc tcc cct gag tct cct gtg gtg 48Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser Pro Glu Ser Pro Val Val1 5 10 15cag ctg cat tct aac ttc acc gcc gtg tgt gtg ctg aag gaa aag tgc 96Gln Leu His Ser Asn Phe Thr Ala Val Cys Val Leu Lys Glu Lys Cys 20 25 30atg gac tac ttc cac gtg aac gcc aac tac atc gtg tgg aaa acc aac 144Met Asp Tyr Phe His Val Asn Ala Asn Tyr Ile Val Trp Lys Thr Asn 35 40 45cac ttc acc atc ccc aag gag cag tac acc atc atc aac cgg acc gct 192His Phe Thr Ile Pro Lys Glu Gln Tyr Thr Ile Ile Asn Arg Thr Ala 50 55 60tct tct gtg acc ttc acc gat atc gcc tcc ctg aat atc cag ctg acc 240Ser Ser Val Thr Phe Thr Asp Ile Ala Ser Leu Asn Ile Gln Leu Thr65 70 75 80tgc aac atc ctg acc ttt gga cag ctg gag cag aat gtg tac ggc atc 288Cys Asn Ile Leu Thr Phe Gly Gln Leu Glu Gln Asn Val Tyr Gly Ile 85 90 95acc atc atc tct ggc ctg cct cca gag aag cct aag aac ctg tcc tgc 336Thr Ile Ile Ser Gly Leu Pro Pro Glu Lys Pro Lys Asn Leu Ser Cys 100 105 110atc gtg aat gag ggc aag aag atg agg tgt gag tgg gat ggc ggc aga 384Ile Val Asn Glu Gly Lys Lys Met Arg Cys Glu Trp Asp Gly Gly Arg 115 120 125gag aca cat ctg gag acc aac ttc acc ctg aag tct gag tgg gcc acc 432Glu Thr His Leu Glu Thr Asn Phe Thr Leu Lys Ser Glu Trp Ala Thr 130 135 140cac aag ttt gcc gac tgc aag gcc aag aga gat acc cct acc tct tgc 480His Lys Phe Ala Asp Cys Lys Ala Lys Arg Asp Thr Pro Thr Ser Cys145 150 155 160acc gtg gac tac tcc acc gtg tac ttc gtg aac atc gag gtg tgg gtg 528Thr Val Asp Tyr Ser Thr Val Tyr Phe Val Asn Ile Glu Val Trp Val 165 170 175gag gct gag aat gct ctg ggc aag gtg acc tct gac cac atc aac ttc 576Glu Ala Glu Asn Ala Leu Gly Lys Val Thr Ser Asp His Ile Asn Phe 180 185 190gac ccc gtg tac aag gtg aag cct aac cct cct cac aac ctg tcc gtg 624Asp Pro Val Tyr Lys Val Lys Pro Asn Pro Pro His Asn Leu Ser Val 195 200 205atc aac tct gag gag ctg tcc tct atc ctg aag ctg acc tgg acc aac 672Ile Asn Ser Glu Glu Leu Ser Ser Ile Leu Lys Leu Thr Trp Thr Asn 210 215 220cct tcc atc aag tcc gtg atc atc ctg aag tac aac atc cag tac agg 720Pro Ser Ile Lys Ser Val Ile Ile Leu Lys Tyr Asn Ile Gln Tyr Arg225 230 235 240acc aag gat gct tct acc tgg tct cag atc cct cct gag gat acc gct 768Thr Lys Asp Ala Ser Thr Trp Ser Gln Ile Pro Pro Glu Asp Thr Ala 245 250 255tcc acc aga tcc agc ttc aca gtg cag gac ctg aag cct ttt acc gag 816Ser Thr Arg Ser Ser Phe Thr Val Gln Asp Leu Lys Pro Phe Thr Glu 260 265 270tac gtg ttc agg atc cgg tgc atg aag gag gat ggc aag ggc tat tgg 864Tyr Val Phe Arg Ile Arg Cys Met Lys Glu Asp Gly Lys Gly Tyr Trp 275 280 285tct gac tgg tct gag gag gct tct ggc atc acc tac gag gac aga cct 912Ser Asp Trp Ser Glu Glu Ala Ser Gly Ile Thr Tyr Glu Asp Arg Pro 290 295 300tct aag gcc cct agc ttc tgg tac aag atc gac cct tct cac acc cag 960Ser Lys Ala Pro Ser Phe Trp Tyr Lys Ile Asp Pro Ser His Thr Gln305 310 315 320ggc tat aga aca gtg cag ctg gtg tgg aaa acc ctg cct cca ttc gag 1008Gly Tyr Arg Thr Val Gln Leu Val Trp Lys Thr Leu Pro Pro Phe Glu 325 330 335gct aat ggc aag atc ctg gac tat gag gtg acc ctg acc aga tgg aag 1056Ala Asn Gly Lys Ile Leu Asp Tyr Glu Val Thr Leu Thr Arg Trp Lys 340 345 350tct cac ctg cag aac tac acc gtg aac gct acc aag ctg acc gtg aac 1104Ser His Leu Gln Asn Tyr Thr Val Asn Ala Thr Lys Leu Thr Val Asn 355 360 365ctg acc aac gat aga tac ctg gct acc ctg acc gtg aga aat ctg gtg 1152Leu Thr Asn Asp Arg Tyr Leu Ala Thr Leu Thr Val Arg Asn Leu Val 370 375 380ggc aag tct gat gct gct gtg ctg acc atc cct gcc tgt gat ttt cag 1200Gly Lys Ser Asp Ala Ala Val Leu Thr Ile Pro Ala Cys Asp Phe Gln385 390 395 400gct acc cac cct gtg atg gat ctg aag gcc ttc ccc aag gat aac atg 1248Ala Thr His Pro Val Met Asp Leu Lys Ala Phe Pro Lys Asp Asn Met 405 410 415ctg tgg gtg gag tgg aca aca cct aga gag tcc gtg aag aag tac atc 1296Leu Trp Val Glu Trp Thr Thr Pro Arg Glu Ser Val Lys Lys Tyr Ile 420 425 430ctg gag tgg tgc gtg ctg tct gat aag gcc cct tgc atc aca gat tgg 1344Leu Glu Trp Cys Val Leu Ser Asp Lys Ala Pro Cys Ile Thr Asp Trp 435 440

445cag cag gag gat ggc acc gtg cat aga acc tac ctg aga ggc aat ctg 1392Gln Gln Glu Asp Gly Thr Val His Arg Thr Tyr Leu Arg Gly Asn Leu 450 455 460gcc gag tct aag tgc tat ctg atc acc gtg acc cct gtg tat gct gat 1440Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val Thr Pro Val Tyr Ala Asp465 470 475 480gga cct ggc tct cct gag tct atc aag gcc tac ctg aag cag gct cct 1488Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala Tyr Leu Lys Gln Ala Pro 485 490 495cca tct aag gga cct acc gtg agg aca aag aag gtg ggc aag aac gag 1536Pro Ser Lys Gly Pro Thr Val Arg Thr Lys Lys Val Gly Lys Asn Glu 500 505 510gct gtg ctg gag tgg gat cag ctg cct gtg gat gtg cag aac ggc ttc 1584Ala Val Leu Glu Trp Asp Gln Leu Pro Val Asp Val Gln Asn Gly Phe 515 520 525atc cgg aac tac acc atc ttc tac cgg acc atc atc ggc aat gag acc 1632Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr Ile Ile Gly Asn Glu Thr 530 535 540gcc gtg aac gtg gat tct tcc cac acc gag tac aca ctg tcc tct ctg 1680Ala Val Asn Val Asp Ser Ser His Thr Glu Tyr Thr Leu Ser Ser Leu545 550 555 560acc tct gac acc ctg tac atg gtg aga atg gcc gct tat acc gat gag 1728Thr Ser Asp Thr Leu Tyr Met Val Arg Met Ala Ala Tyr Thr Asp Glu 565 570 575ggc ggc aag gat gga cct gag ttc acc ttc acc acc cct aag ttc gcc 1776Gly Gly Lys Asp Gly Pro Glu Phe Thr Phe Thr Thr Pro Lys Phe Ala 580 585 590cag ggc gag gac aag acc cac acc tgt cct cct tgt cct gct cct gag 1824Gln Gly Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 595 600 605gct gag ggc gct cct tct gtg ttt ctg ttc ccc cca aag cct aag gat 1872Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 610 615 620acc ctg atg atc tcc aga acc cct gag gtg aca tgt gtg gtg gtg gat 1920Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp625 630 635 640gtg tct cat gag gac ccc gag gtg aag ttc aac tgg tac gtg gat ggc 1968Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 645 650 655gtg gag gtg cac aat gct aag acc aag cct agg gag gag cag tac aac 2016Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 660 665 670tcc acc tac aga gtg gtg tct gtg ctg aca gtg ctg cat cag gat tgg 2064Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 675 680 685ctg aac ggc aag gag tac aag tgc aag gtg tcc aac aag gct ctg cct 2112Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 690 695 700gct cct atc gaa aag acc atc tcc aag gct aag gga cag cct aga gag 2160Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu705 710 715 720cct cag gtg tac aca ctg cct cca tct agg gag gag atg acc aag aat 2208Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 725 730 735cag gtg tcc ctg acc tgt ctg gtg aag ggc ttc tac cct tct gat atc 2256Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 740 745 750gct gtg gag tgg gag tct aat ggc cag ccc gag aac aat tac aag acc 2304Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 755 760 765acc cct cct gtg ctg gat tct gac ggc tcc ttc ttc ctg tac tcc aaa 2352Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 770 775 780ctg acc gtg gac aag tct aga tgg cag cag ggc aac gtg ttc tct tgt 2400Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys785 790 795 800tcc gtg atg cac gag gct ctg cac aat cac tat acc cag aag tcc ctg 2448Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 805 810 815tct ctg tct cct ggc aag 2466Ser Leu Ser Pro Gly Lys 8209822PRTArtificial SequenceSynthetic Construct 9Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser Pro Glu Ser Pro Val Val1 5 10 15Gln Leu His Ser Asn Phe Thr Ala Val Cys Val Leu Lys Glu Lys Cys 20 25 30Met Asp Tyr Phe His Val Asn Ala Asn Tyr Ile Val Trp Lys Thr Asn 35 40 45His Phe Thr Ile Pro Lys Glu Gln Tyr Thr Ile Ile Asn Arg Thr Ala 50 55 60Ser Ser Val Thr Phe Thr Asp Ile Ala Ser Leu Asn Ile Gln Leu Thr65 70 75 80Cys Asn Ile Leu Thr Phe Gly Gln Leu Glu Gln Asn Val Tyr Gly Ile 85 90 95Thr Ile Ile Ser Gly Leu Pro Pro Glu Lys Pro Lys Asn Leu Ser Cys 100 105 110Ile Val Asn Glu Gly Lys Lys Met Arg Cys Glu Trp Asp Gly Gly Arg 115 120 125Glu Thr His Leu Glu Thr Asn Phe Thr Leu Lys Ser Glu Trp Ala Thr 130 135 140His Lys Phe Ala Asp Cys Lys Ala Lys Arg Asp Thr Pro Thr Ser Cys145 150 155 160Thr Val Asp Tyr Ser Thr Val Tyr Phe Val Asn Ile Glu Val Trp Val 165 170 175Glu Ala Glu Asn Ala Leu Gly Lys Val Thr Ser Asp His Ile Asn Phe 180 185 190Asp Pro Val Tyr Lys Val Lys Pro Asn Pro Pro His Asn Leu Ser Val 195 200 205Ile Asn Ser Glu Glu Leu Ser Ser Ile Leu Lys Leu Thr Trp Thr Asn 210 215 220Pro Ser Ile Lys Ser Val Ile Ile Leu Lys Tyr Asn Ile Gln Tyr Arg225 230 235 240Thr Lys Asp Ala Ser Thr Trp Ser Gln Ile Pro Pro Glu Asp Thr Ala 245 250 255Ser Thr Arg Ser Ser Phe Thr Val Gln Asp Leu Lys Pro Phe Thr Glu 260 265 270Tyr Val Phe Arg Ile Arg Cys Met Lys Glu Asp Gly Lys Gly Tyr Trp 275 280 285Ser Asp Trp Ser Glu Glu Ala Ser Gly Ile Thr Tyr Glu Asp Arg Pro 290 295 300Ser Lys Ala Pro Ser Phe Trp Tyr Lys Ile Asp Pro Ser His Thr Gln305 310 315 320Gly Tyr Arg Thr Val Gln Leu Val Trp Lys Thr Leu Pro Pro Phe Glu 325 330 335Ala Asn Gly Lys Ile Leu Asp Tyr Glu Val Thr Leu Thr Arg Trp Lys 340 345 350Ser His Leu Gln Asn Tyr Thr Val Asn Ala Thr Lys Leu Thr Val Asn 355 360 365Leu Thr Asn Asp Arg Tyr Leu Ala Thr Leu Thr Val Arg Asn Leu Val 370 375 380Gly Lys Ser Asp Ala Ala Val Leu Thr Ile Pro Ala Cys Asp Phe Gln385 390 395 400Ala Thr His Pro Val Met Asp Leu Lys Ala Phe Pro Lys Asp Asn Met 405 410 415Leu Trp Val Glu Trp Thr Thr Pro Arg Glu Ser Val Lys Lys Tyr Ile 420 425 430Leu Glu Trp Cys Val Leu Ser Asp Lys Ala Pro Cys Ile Thr Asp Trp 435 440 445Gln Gln Glu Asp Gly Thr Val His Arg Thr Tyr Leu Arg Gly Asn Leu 450 455 460Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val Thr Pro Val Tyr Ala Asp465 470 475 480Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala Tyr Leu Lys Gln Ala Pro 485 490 495Pro Ser Lys Gly Pro Thr Val Arg Thr Lys Lys Val Gly Lys Asn Glu 500 505 510Ala Val Leu Glu Trp Asp Gln Leu Pro Val Asp Val Gln Asn Gly Phe 515 520 525Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr Ile Ile Gly Asn Glu Thr 530 535 540Ala Val Asn Val Asp Ser Ser His Thr Glu Tyr Thr Leu Ser Ser Leu545 550 555 560Thr Ser Asp Thr Leu Tyr Met Val Arg Met Ala Ala Tyr Thr Asp Glu 565 570 575Gly Gly Lys Asp Gly Pro Glu Phe Thr Phe Thr Thr Pro Lys Phe Ala 580 585 590Gln Gly Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 595 600 605Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 610 615 620Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp625 630 635 640Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 645 650 655Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 660 665 670Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 675 680 685Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 690 695 700Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu705 710 715 720Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 725 730 735Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 740 745 750Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 755 760 765Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 770 775 780Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys785 790 795 800Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 805 810 815Ser Leu Ser Pro Gly Lys 82010584DNAArtificial SequenceCMV IE Promoter 10attaatagta atcaattacg gggtcattag ttcatagccc atatatggag ttccgcgtta 60cataacttac ggtaaatggc ccgcctggct gaccgcccaa cgacccccgc ccattgacgt 120caataatgac gtatgttccc atagtaacgc caatagggac tttccattga cgtcaatggg 180tggagtattt acggtaaact gcccacttgg cagtacatca agtgtatcat atgccaagta 240cgccccctat tgacgtcaat gacggtaaat ggcccgcctg gcattatgcc cagtacatga 300ccttatggga ctttcctact tggcagtaca tctacgtatt agtcatcgct attaccatgg 360tgatgcggtt ttggcagtac atcaatgggc gtggatagcg gtttgactca cggggatttc 420caagtctcca ccccattgac gtcaatggga gtttgttttg gcaccaaaat caacgggact 480ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat gggcggtagg cgtgtacggt 540gggaggtcta tataagcaga gctcgtttag tgaaccgtca gatc 58411327DNAArtificial SequenceHuman IgH Poly A 11gtgccacggc cggcaagccc ccgctccccg ggctctcgcg gtcgcacgag gatgcttggc 60acgtaccccg tctacatact tcccaggcac ccagcatgga aataaagcac ccaccactgc 120cctgggcccc tgcgagactg tgatggttct ttccacgggt caggccgagt ctgaggcctg 180agtggcatga gggaggcaga gtgggtccca ctgtccccac actggcccag gctgtgcagg 240tgtgcctggg ccgcctaggg tggggctcag ccaggggctg ccctcggcag ggtgggggat 300ttgccagcgt ggccctccct ccagcag 32712861DNAArtificial SequenceAmp (bla) gene 12ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc tgtctatttc gttcatccat 60agttgcctga ctccccgtcg tgtagataac tacgatacgg gagggcttac catctggccc 120cagtgctgca atgataccgc gagacccacg ctcaccggct ccagatttat cagcaataaa 180ccagccagcc ggaagggccg agcgcagaag tggtcctgca actttatccg cctccatcca 240gtctattaat tgttgccggg aagctagagt aagtagttcg ccagttaata gtttgcgcaa 300cgttgttgcc attgctacag gcatcgtggt gtcacgctcg tcgtttggta tggcttcatt 360cagctccggt tcccaacgat caaggcgagt tacatgatcc cccatgttgt gcaaaaaagc 420ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag ttggccgcag tgttatcact 480catggttatg gcagcactgc ataattctct tactgtcatg ccatccgtaa gatgcttttc 540tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc gaccgagttg 600ctcttgcccg gcgtcaatac gggataatac cgcgccacat agcagaactt taaaagtgct 660catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc tgttgagatc 720cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttta ctttcaccag 780cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa taagggcgac 840acggaaatgt tgaatactca t 86113356DNAArtificial SequenceSV40 Promoter 13cacgaggccc tattgattat tgactagcta gtgtggaatg tgtgtcagtt agggtgtgga 60aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatctcaa ttagtcagca 120accaggtgtg gaaagtcccc aggctcccca gcaggcagaa gtatgcaaag catgcatctc 180aattagtcag caaccatagt cccgccccta actccgccca tcccgcccct aactccgccc 240agttccgccc attctccgcc ccatggctga ctaatttttt ttatttatgc agaggccgag 300gccgcctcgg cctctgagct attccagaag tagtgaggag gcttttttgg aggcct 35614564DNAArtificial SequenceDihydrofolate Reductase Coding Sequence 14atggttcgac cattgaactg catcgtcgcc gtgtcccaaa atatggggat tggcaagaac 60ggagaccgac cctggcctcc gctcaggaac gagttcaagt acttccaaag aatgaccaca 120acctcttcag tggaaggtaa acagaatctg gtgattatgg gtaggaaaac ctggttctcc 180attcctgaga agaatcgacc tttaaaggac agaattaata tagttctcag tagagaactc 240aaagaaccac cacgaggagc tcattttctt gccaaaagtt tggatgatgc cttaagactt 300attgaacaac cggaattggc aagtaaagta gacatggttt ggatagtcgg aggcagttct 360gtttaccagg aagccatgaa tcaaccaggc cacctcagac tctttgtgac aaggatcatg 420caggaatttg aaagtgacac gtttttccca gaaattgatt tggggaaata taaacttctc 480ccagaatacc caggcgtcct ctctgaggtc caggaggaaa aaggcatcaa gtataagttt 540gaagtctacg agaagaaaga ctaa 56415323DNAArtificial SequenceSV40 Poly 15caggaagatg ctttcaagtt ctctgctccc ctcctaaagc tatgcatttt tataagacca 60tgggactttt gctggcttta gatcataatc agccatacca catttgtaga ggttttactt 120gctttaaaaa acctcccaca cctccccctg aacctgaaac ataaaatgaa tgcaattgtt 180gttgttaact tgtttattgc agcttctaat ggttacaaat aaagcaatag catcacaaat 240ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat 300gtatcttatc atgtctggat cgg 323

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed