ANTI-EpCAM ANTIBODIES, COMPOSITIONS COMPRISING ANTI-EpCAM ANTIBODIES AND METHODS OF MAKING AND USING ANTI-EpCAM ANTIBODIES

STAFFORD; Ryan ;   et al.

Patent Application Summary

U.S. patent application number 17/394556 was filed with the patent office on 2022-04-07 for anti-epcam antibodies, compositions comprising anti-epcam antibodies and methods of making and using anti-epcam antibodies. The applicant listed for this patent is SUTRO BIOPHARMA, INC.. Invention is credited to Stephanie ARMSTRONG, John LEE, Aaron SATO, Ryan STAFFORD, Alice YAM.

Application Number20220106401 17/394556
Document ID /
Family ID1000006028729
Filed Date2022-04-07

United States Patent Application 20220106401
Kind Code A1
STAFFORD; Ryan ;   et al. April 7, 2022

ANTI-EpCAM ANTIBODIES, COMPOSITIONS COMPRISING ANTI-EpCAM ANTIBODIES AND METHODS OF MAKING AND USING ANTI-EpCAM ANTIBODIES

Abstract

Provided herein are antibodies that selectively bind to EpCAM and its isoforms and homologs, and compositions comprising the antibodies. Also provided are methods of using the antibodies, such as therapeutic and diagnostic methods.


Inventors: STAFFORD; Ryan; (Emeryville, CA) ; YAM; Alice; (Tiburon, CA) ; LEE; John; (San Francisco, CA) ; ARMSTRONG; Stephanie; (South San Francisco, CA) ; SATO; Aaron; (Burlingame, CA)
Applicant:
Name City State Country Type

SUTRO BIOPHARMA, INC.

South San Francisco

CA

US
Family ID: 1000006028729
Appl. No.: 17/394556
Filed: August 5, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15748634 Jan 29, 2018 11098131
PCT/US2016/044564 Jul 28, 2016
17394556
62199924 Jul 31, 2015

Current U.S. Class: 1/1
Current CPC Class: C07K 2317/622 20130101; C07K 16/30 20130101; C07K 2317/56 20130101; C07K 2317/34 20130101; C07K 2317/33 20130101; C07K 2317/92 20130101; C12N 15/85 20130101; C07K 2317/565 20130101; A61P 35/00 20180101; C12N 15/62 20130101
International Class: C07K 16/30 20060101 C07K016/30; A61P 35/00 20060101 A61P035/00; C12N 15/62 20060101 C12N015/62; C12N 15/85 20060101 C12N015/85

Claims



1. A method of treating cancer that expresses EpCAM in a subject in need thereof, comprising administering to the subject an effective amount of an antibody comprising: three heavy chain CDRs of a V.sub.H region selected from the group consisting of SEQ ID NOS: 248, 252, and 253, and three light chain CDRs of a V.sub.L region selected from the group consisting of SEQ ID NOS: 273, 277, and 278.

2. The method of claim 1, wherein the antibody comprises: (a) three heavy chain CDRs and three light chain CDRs of an antibody comprising the V.sub.H region SEQ ID NO: 248, and the V.sub.L region SEQ ID NO: 273; (b) three heavy chain CDRs and three light chain CDRs of an antibody comprising the V.sub.H region SEQ ID NO: 252, and the V.sub.L region SEQ ID NO: 277; or (c) three heavy chain CDRs and three light chain CDRs of an antibody comprising the V.sub.H region SEQ ID NO: 253, and the V.sub.L region SEQ ID NO: 278.

3. The method of claim 1, wherein the antibody comprises: (a) a V.sub.H comprising: a CDR-H1 comprising SEQ ID NO: 23; a CDR-H2 comprising SEQ ID NO: 73; and a CDR-H3 comprising SEQ ID NO: 123, and a V.sub.L region comprising a CDR L1 comprising SEQ ID NO: 148; a CDR L2 comprising SEQ ID NO: 173, and a CDR L3 comprising SEQ ID NO: 198, according to the Chothia numbering scheme; (b) a V.sub.H comprising: a CDR-H1 comprising SEQ ID NO: 48; a CDR-H2 comprising SEQ ID NO: 98; and a CDR-H3 comprising SEQ ID NO: 123, and a V.sub.L region comprising a CDR L1 comprising SEQ ID NO: 148; a CDR L2 comprising SEQ ID NO: 173, and a CDR L3 comprising SEQ ID NO: 198, according to the Kabat numbering scheme; (c) a V.sub.H comprising: a CDR-H1 comprising SEQ ID NO: 27; a CDR-H2 comprising SEQ ID NO: 77; and a CDR-H3 comprising SEQ ID NO: 127, and a V.sub.L region comprising a CDR L1 comprising SEQ ID NO: 152; a CDR L2 comprising SEQ ID NO: 177, and a CDR L3 comprising SEQ ID NO: 202, according to the Kabat numbering scheme; (d) a V.sub.H comprising: a CDR-H1 comprising SEQ ID NO: 52; a CDR-H2 comprising SEQ ID NO: 102; and a CDR-H3 comprising SEQ ID NO: 127, and a V.sub.L region comprising a CDR L1 comprising SEQ ID NO: 152; a CDR L2 comprising SEQ ID NO: 177, and a CDR L3 comprising SEQ ID NO: 202, according to the Kabat numbering scheme; or (e) a V.sub.H comprising: a CDR-H1 comprising SEQ ID NO: 28; a CDR-H2 comprising SEQ ID NO: 78; and a CDR-H3 comprising SEQ ID NO: 128, and a V.sub.L region comprising a CDR L1 comprising SEQ ID NO: 153; a CDR L2 comprising SEQ ID NO: 178, and a CDR L3 comprising SEQ ID NO: 203, according to the Chothia numbering scheme; or (f) a V.sub.H comprising: a CDR-H1 comprising SEQ ID NO: 53; a CDR-H2 comprising SEQ ID NO: 103; and a CDR-H3 comprising SEQ ID NO: 128, and a V.sub.L region comprising a CDR L1 comprising SEQ ID NO: 153; a CDR L2 comprising SEQ ID NO: 178, and a CDR L3 comprising SEQ ID NO: 203, according to the Kabat numbering scheme.

4. The method of claim 1, wherein the antibody comprises: (a) the V.sub.H region SEQ ID NO: 248, and the V.sub.L region SEQ ID NO: 273; (b) the V.sub.H region SEQ ID NO: 252, and the V.sub.L region SEQ ID NO: 277; or (c) the V.sub.H region SEQ ID NO: 253, and the V.sub.L region SEQ ID NO: 278.

5.-33. (canceled)

34. The method of claim 1, wherein the antibody further comprises at least one constant region domain.

35. The method of claim 34, wherein the constant region comprises a sequence selected from the group consisting of SEQ ID NOs: 279, 281, and 282.

36. The method of claim 1, wherein the antibody is a monoclonal antibody.

37. The method of claim 1, wherein the antibody is an IgA, an IgD, an IgE, an IgG, or an IgM.

38. The method of claim 1, wherein the antibody is humanized or human.

39. The method of claim 1, wherein the antibody is aglycosylated.

40. The method of claim 1, wherein the antibody is an antibody fragment.

41. The method of claim 40, wherein the antibody fragment is selected from an Fv fragment, a Fab fragment, a F(ab').sub.2 fragment, a Fab' fragment, an scFv (sFv) fragment, and an scFv-Fc fragment.

42. The method of claim 41, wherein the antibody is an scFv fragment.

43. The method of claim 42, wherein the scFv fragment comprises a sequence selected from SEQ ID NOs: 337-361, with or without the N-terminal M residue.

44. The method of claim 41, wherein the antibody is an scFv-Fc fragment.

45. The method of claim 44, wherein the scFv-Fc fragment comprises a sequence selected from SEQ ID NOs: 204-228, with or without the N-terminal M residue.

46. The method of claim 1, wherein the antibody has a k.sub.a of about 6.52.times.10.sup.4 M.sup.-1.times.sec.sup.-1 to about 3.51.times.10.sup.5 M.sup.-1.times.sec.sup.-1 when associating with human EpCAM at a temperature of 25.degree. C.

47. The method of claim 1, wherein the antibody has a k.sub.d of about 1.75.times.10.sup.-3 sec.sup.-1 to about 1.74.times.10.sup.-5 sec.sup.-1 when dissociating from human EpCAM at a temperature of 25.degree. C.

48. The method of claim 1, wherein the antibody has a K.sub.D of about 7.21.times.10.sup.-9 M to about 1.93.times.10.sup.-1.degree. M when bound to human EpCAM at a temperature of 25.degree. C.

49. The method of claim 1, wherein the antibody specifically binds cynomolgus EpCAM.

50. The method of claim 49, wherein the antibody has a K.sub.D of about 1.62.times.10.sup.-7 M to about 1.17.times.10.sup.-9 M when bound to cynomolgus EpCAM at a temperature of 25.degree. C.

51. The method of claim 50, wherein the ratio of K.sub.D for human EpCAM to K.sub.D for cynomolgus EpCAM is about 0.029 to about 6.162.

52.-64. (canceled)

65. The method of claim 1, wherein the cancer is a carcinoma.

66. The method of claim 1, wherein the antibody is administered more than once and wherein the antibody is administered at least 15 days apart from each administration.

67. The method of claim 1, wherein the antibody is administered subcutaneously, intravenously, intramuscularly, and intraarterially.

68. The method of claim 1, wherein the antibody is administered intravenously.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a Continuation application of U.S. patent application Ser. No. 15/748,634, filed on Jan. 29, 2018, which is the U.S. entry under 35 U.S.C. .sctn. 371 of International Patent Application No. PCT/US2016/044564, filed on Jul. 28, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/199,924, filed on Jul. 15, 2015. Each of the foregoing applications is incorporated herein by reference in its entirety.

REFERENCE TO SEQUENCE LISTING SUBMITTED VIA EFS-WEB

[0002] This application includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled "108843_00362-Sequence Listing.txt," created on Aug. 3, 2021, and is 300 kilobytes in size. The sequence listing contained in this .txt file is part of the specification and is incorporated herein by reference in its entirety.

FIELD

[0003] Provided herein are antibodies with binding specificity for epithelial cell adhesion molecule (EpCAM) and compositions comprising the antibodies, including pharmaceutical compositions, diagnostic compositions, and kits. Also provided are methods of making anti-EpCAM antibodies, and methods of using anti-EpCAM antibodies, for example, for therapeutic, diagnostic purposes, and research purposes.

BACKGROUND

[0004] EpCAM is a type I transmembrane glycoprotein that mediates calcium-independent homotypic epithelial cell-cell adhesion. See Litvinov et al., J. Cell. Biol., 1994, 125:437-446, incorporated by reference in its entirety. EpCAM is also involved in cell signaling, migration, proliferation, and differentiation. See Maetzel et al., Nature Cell Biol., 2009, 11:162-171; Osta et al., Cancer Res., 2004, 64:5818-5824; and Litvinov et al., Am. J. Pathol., 1996, 148:865-875, each of which is incorporated by reference in its entirety.

[0005] EpCAM has oncogenic potential via its capacity to upregulate at least c-Myc, E-FABP, and cyclins A and E. See Munz et al., Oncogene, 2004, 23:5748-5758, incorporated by reference in its entirety. Because EpCAM is expressed exclusively in epithelia and epithelial-derived neoplasms, it can be used as diagnostic marker for some cancers. It may also be a useful prognostic marker for certain tumor types. See Munz et al., Cancer Res., 2009, 69:5627-5629 and Baeuerle and Gires, Br. J. Cancer, 2007, 96:417-423, each of which is incorporated by reference in its entirety.

[0006] EpCAM is known to be overexpressed in some cancers, and therefore represents a potential target for cancer therapy. See Osta et al., supra.; Haisma et al., Gene Therapy, 1999, 6:1469-1474; Heideman et al., Cancer Gene Ther., 2001, 8:342-351; and Seimetz et al., Cancer Treatment Reviews, 2010, 36:458-467, each of which is incorporated by reference in its entirety. Most known EpCAM antibodies bind an epitope encoded by EpCAM exon 2. See Munz et al., Cancer Cell Int., 2010, 10:44. One known EpCAM antibody, adecatumumab, binds outside exon 2 at an epitope encoded by EpCAM exon 5. See id. However, adecatumumab does not have significant binding affinity for cynomolgus EpCAM. See id. Cynomolgous cross-reactivity is advantageous because it facilitates evaluation of the potential toxicity of antibodies in a primate model, without exposing human subjects to molecules of unknown toxicity.

[0007] There is a need for targeted delivery of therapeutics to tumor cells in a manner that provides a localized therapeutic effect while minimizing or eliminating systemic side-effects. More particularly, in light of the overexpression of EpCAM in various cancers, there is a need for therapeutics that specifically target cancer cells over expressing EpCAM. Particularly advantageous therapeutics would bind epitopes outside those encoded by exon 2 of EpCAM and would cross-react with cynomolgus EpCAM.

SUMMARY

[0008] Provided herein are antibodies that specifically bind to EpCAM. In some embodiments, the antibodies bind human EpCAM. In some embodiments, the antibodies also bind homologs of human EpCAM. In some aspects, the homolog is a cynomolgus monkey homolog. In some aspects, the antibodies do not bind a murine homolog. In some embodiments, the antibodies bind to human EpCAM and a cynomolgus monkey homolog, but not a murine homolog.

[0009] In some embodiments, the antibodies comprise at least one CDR sequence defined by a consensus sequence provided in this disclosure. In some embodiments, the antibodies comprise an illustrative CDR, V.sub.H, or V.sub.L sequence provided in this disclosure, or a variant thereof. In some aspects, the variant is a variant with one or more conservative amino acid substitutions.

[0010] Also provided are compositions comprising the antibodies. In some embodiments, the composition is a pharmaceutical composition. In some embodiments, the pharmaceutical composition is for the treatment or diagnosis of a disease or condition, as described further elsewhere in this disclosure. In some embodiments, the pharmaceutical composition is a composition for parenteral administration.

[0011] This disclosure also provides methods of making the anti-EpCAM antibodies provided herein. The antibodies can be made, for example, in any suitable cell or organism. The antibodies can also be made in a cell-free reaction mixture.

[0012] Also provided are methods of using the anti-EpCAM antibodies provided herein. In some embodiments, the method of use is a method of treatment. In some embodiments, the method of use is a diagnostic method. In some embodiments, the method of use is an analytical method. In some embodiments, the method of use is a method of purifying and/or quantifying EpCAM.

[0013] In some embodiments, the antibodies are used to treat a disease or condition. In some aspects, the disease or condition is a cancer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIGS. 1A-1C provide an alignment of the "1304," "1464," and "1557" V.sub.H sequences provided herein.

[0015] FIGS. 2A and 2B provide an alignment of the "1332" V.sub.H sequences provided herein.

[0016] FIGS. 3A and 3B provide an alignment of the "1304," "1464," and "1557" V.sub.L sequences provided herein.

[0017] FIGS. 4A and 4B provide an alignment of the "1332" V.sub.L sequences provided herein.

DETAILED DESCRIPTION

1. Definitions

[0018] Unless otherwise defined, all terms of art, notations and other scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a difference over what is generally understood in the art. The techniques and procedures described or referenced herein are generally well understood and commonly employed using conventional methodologies by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2nd ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer-defined protocols and conditions unless otherwise noted.

[0019] As used herein, the singular forms "a," "an," and "the" include the plural referents unless the context clearly indicates otherwise.

[0020] The term "about" indicates and encompasses an indicated value and a range above and below that value. In certain embodiments, the term "about" indicates the designated value.+-.10%, .+-.5%, or .+-.1%. In certain embodiments, the term "about" indicates the designated value.+-.one standard deviation of that value.

[0021] The term "combinations thereof" includes every possible combination of elements to which the term refers to. For example, a sentence stating that "if .alpha..sub.2 is A, then .alpha..sub.3 is not D; as is not S; or .alpha..sub.6 is not S; or combinations thereof" includes the following combinations when .alpha..sub.2 is A: (1) .alpha..sub.3 is not D; (2) as is not S; (3) .alpha..sub.6 is not S; (4) .alpha..sub.3 is not D; as is not S; and .alpha..sub.6 is not S; (5) .alpha..sub.3 is not D and as is not S; (6) .alpha..sub.3 is not D and .alpha..sub.6 is not S; and (7) as is not S and .alpha..sub.6 is not S.

[0022] The terms "EpCAM" and "EpCAM antigen" are used interchangeably herein. EpCAM is also known by a variety of synonyms, including CD326, Ep-CAM, 17-1A, HEA125, MK-1, GA733-2, EGP-2, EGP34, KSA, TROP-1, ESA, and KS1/4, among others. Unless specified otherwise, the terms include any variants, isoforms and species homologs of human EpCAM that are naturally expressed by cells, or that are expressed by cells transfected with an EpCAM gene. EpCAM proteins include, for example, human EpCAM (GI: 15928632; SEQ ID NO: 1). In some embodiments, EpCAM proteins include cynomolgus monkey EpCAM (GI: 544483249; SEQ ID NO: 2). In some embodiments, EpCAM proteins include murine EpCAM (GI: 112293275; SEQ ID NO: 3). However, as discussed in detail elsewhere in this disclosure, in some embodiments the antibodies provided herein do not bind murine EpCAM proteins. The antibodies provided herein bind to an extracellular domain of EpCAM.

[0023] The term "immunoglobulin" refers to a class of structurally related proteins generally comprising two pairs of polypeptide chains: one pair of light (L) chains and one pair of heavy (H) chains. In an "intact immunoglobulin," all four of these chains are interconnected by disulfide bonds. The structure of immunoglobulins has been well characterized. See, e.g., Paul, Fundamental Immunology 7th ed., Ch. 5 (2013) Lippincott Williams & Wilkins, Philadelphia, Pa. Briefly, each heavy chain typically comprises a heavy chain variable region (V.sub.H) and a heavy chain constant region (CH). The heavy chain constant region typically comprises three domains, abbreviated C.sub.H1, C.sub.H2, and C.sub.H3. Each light chain typically comprises a light chain variable region (V.sub.L) and a light chain constant region. The light chain constant region typically comprises one domain, abbreviated CL.

[0024] The term "antibody" describes a type of immunoglobulin molecule and is used herein in its broadest sense. An antibody specifically includes intact antibodies (e.g., intact immunoglobulins), and antibody fragments. Antibodies comprise at least one antigen-binding domain. One example of an antigen-binding domain is an antigen binding domain formed by a V.sub.H-V.sub.L dimer. An "EpCAM antibody," "anti-EpCAM antibody," "EpCAM Ab," "EpCAM-specific antibody" or "anti-EpCAM Ab" is an antibody, as described herein, which binds specifically to the antigen EpCAM. In some embodiments, the antibody binds the extracellular domain of EpCAM.

[0025] The V.sub.H and V.sub.L regions may be further subdivided into regions of hypervariability ("hypervariable regions (HVRs);" also called "complementarity determining regions" (CDRs)) interspersed with regions that are more conserved. The more conserved regions are called framework regions (FRs). Each V.sub.H and V.sub.L generally comprises three CDRs and four FRs, arranged in the following order (from N-terminus to C-terminus): FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4. The CDRs are involved in antigen binding, and influence antigen specificity and binding affinity of the antibody. See Kabat et al., Sequences of Proteins of Immunological Interest 5th ed. (1991) Public Health Service, National Institutes of Health, Bethesda, Md., incorporated by reference in its entirety.

[0026] The light chain from any vertebrate species can be assigned to one of two types, called kappa and lambda, based on the sequence of the constant domain.

[0027] The heavy chain from any vertebrate species can be assigned to one of five different classes (or isotypes): IgA, IgD, IgE, IgG, and IgM. These classes are also designated .alpha., .delta., .epsilon., .gamma., and .mu., respectively. The IgG and IgA classes are further divided into subclasses on the basis of differences in sequence and function. Humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.

[0028] The amino acid sequence boundaries of a CDR can be determined by one of skill in the art using any of a number of known numbering schemes, including those described by Kabat et al., supra ("Kabat" numbering scheme); Al-Lazikani et al., 1997, J. Mol. Biol., 273:927-948 ("Chothia" numbering scheme); MacCallum et al., 1996, J. Mol. Biol. 262:732-745 ("Contact" numbering scheme); Lefranc et al., Dev. Comp. Immunol., 2003, 27:55-77 ("IMGT" numbering scheme); and Honegge and Pluckthun, J. Mol. Biol., 2001, 309:657-70 ("AHo" numbering scheme), each of which is incorporated by reference in its entirety.

[0029] Table 1 provides the positions of CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, and CDR-H3 as identified by the Kabat and Chothia schemes. For CDR-H1, residue numbering is provided using both the Kabat and Chothia numbering schemes.

[0030] Unless otherwise specified, the numbering scheme used for identification of a particular CDR herein is the Kabat/Chothia numbering scheme. Where the residues encompassed by these two numbering schemes diverge (e.g., CDR-H1 and/or CDR-H2), the numbering scheme is specified as either Kabat or Chothia. For convenience, CDR-H3 is sometimes referred to herein as either Kabat or Chothia. However, this is not intended to imply differences in sequence where they do not exist, and one of skill in the art can readily confirm whether the sequences are the same or different by examining the sequences.

[0031] CDRs may be assigned, for example, using antibody numbering software, such as Abnum, available at http://www.bioinf org.uk/abs/abnum/, and described in Abhinandan and Martin, Immunology, 2008, 45:3832-3839, incorporated by reference in its entirety.

TABLE-US-00001 TABLE 1 Residues in CDRs according to Kabat and Chothia numbering schemes. CDR Kabat Chothia Ll L24-L34 L24-L34 L2 L50-L56 L50-L56 L3 L89-L97 L89-L97 H1 (Kabat Numbering) H31-H35B H26-H32 or H34* H1 (Chothia Numbering) H31-H35 H26-H32 H2 H50-H65 H52-H56 H3 H95-H102 H95-H102 *The C-terminus of CDR-H1, when numbered using the Kabat numbering convention, varies between H32 and H34, depending on the length of the CDR, as illustrated in FIGS. 1A-1C.

[0032] The "EU numbering scheme" is generally used when referring to a residue in an antibody heavy chain constant region (e.g., as reported in Kabat et al., supra). Unless stated otherwise, the EU numbering scheme is used to refer to residues in antibody heavy chain constant regions described herein.

[0033] An "antibody fragment" comprises a portion of an intact antibody, such as the antigen binding or variable region of an intact antibody. Antibody fragments include, for example, Fv fragments, Fab fragments, F(ab').sub.2 fragments, Fab' fragments, scFv (sFv) fragments, and scFv-Fc fragments.

[0034] "Fv" fragments comprise a non-covalently-linked dimer of one heavy chain variable domain and one light chain variable domain.

[0035] "Fab" fragments comprise, in addition to the heavy and light chain variable domains, the constant domain of the light chain and the first constant domain (Cm) of the heavy chain. Fab fragments may be generated, for example, by recombinant methods or by papain digestion of a full-length antibody.

[0036] "F(ab').sub.2" fragments contain two Fab' fragments joined, near the hinge region, by disulfide bonds. F(ab').sub.2 fragments may be generated, for example, by recombinant methods or by pepsin digestion of an intact antibody. The F(ab') fragments can be dissociated, for example, by treatment with -mercaptoethanol.

[0037] "Single-chain Fv" or "sFv" or "scFv" antibody fragments comprise a V.sub.H domain and a V.sub.L domain in a single polypeptide chain. The V.sub.H and V.sub.L are generally linked by a peptide linker. See Pluckthun A. (1994). In some embodiments, the linker is SEQ ID NO: 283. Antibodies from Escherichia coli. In Rosenberg M. & Moore G. P. (Eds.), The Pharmacology of Monoclonal Antibodies vol. 113 (pp. 269-315). Springer-Verlag, New York, incorporated by reference in its entirety.

[0038] "scFv-Fc" fragments comprise an scFv attached to an Fc domain. For example, an Fc domain may be attached to the C-terminal of the scFv. The Fc domain may follow the V.sub.H or V.sub.L, depending on the orientation of the variable domains in the scFv (i.e., V.sub.H-V.sub.L or V.sub.L-V.sub.H). Any suitable Fc domain known in the art or described herein may be used. In some cases, the Fc domain comprises an IgG1 Fc domain. In some embodiments, the IgG1 Fc domain comprises SEQ ID NO: 279, or a portion thereof, or SEQ ID NO: 280. SEQ ID NO: 279 provides the sequence of C.sub.H1, C.sub.H2, and C.sub.H3 of the human IgG1 constant region. SEQ ID NO: 280 provides the sequence of the constant region used in the illustrative scFv-Fc antibodies provided herein.

[0039] The term "monoclonal antibody" refers to an antibody from a population of substantially homogeneous antibodies. A population of substantially homogeneous antibodies comprises antibodies that are substantially similar and that bind the same epitope(s), except for variants that may normally arise during production of the monoclonal antibody. Such variants are generally present in only minor amounts. A monoclonal antibody is typically obtained by a process that includes the selection of a single antibody from a plurality of antibodies. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, yeast clones, bacterial clones, or other recombinant DNA clones. The selected antibody can be further altered, for example, to improve affinity for the target ("affinity maturation"), to humanize the antibody, to improve its production in cell culture, and/or to reduce its immunogenicity in a subject.

[0040] The term "chimeric antibody" refers to an antibody in which a portion of the heavy and/or light chain is derived from a particular source or species, while the remainder of the heavy and/or light chain is derived from a different source or species.

[0041] "Humanized" forms of non-human antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. A humanized antibody is generally a human immunoglobulin (recipient antibody) in which residues from one or more CDRs are replaced by residues from one or more CDRs of a non-human antibody (donor antibody). The donor antibody can be any suitable non-human antibody, such as a mouse, rat, rabbit, chicken, or non-human primate antibody having a desired specificity, affinity, or biological effect. In some instances, selected framework region residues of the recipient antibody are replaced by the corresponding framework region residues from the donor antibody. Humanized antibodies may also comprise residues that are not found in either the recipient antibody or the donor antibody. Such modifications may be made to further refine antibody function. For further details, see Jones et al., Nature, 1986, 321:522-525; Riechmann et al., Nature, 1988, 332:323-329; and Presta, Curr. Op. Struct Biol., 1992, 2:593-596, each of which is incorporated by reference in its entirety.

[0042] A "human antibody" is one which possesses an amino acid sequence corresponding to that of an antibody produced by a human or a human cell, or derived from a non-human source that utilizes a human antibody repertoire or human antibody-encoding sequences (e.g., obtained from human sources or designed de novo). Human antibodies specifically exclude humanized antibodies.

[0043] An "isolated antibody" is one that has been separated and/or recovered from a component of its natural environment. Components of the natural environment may include enzymes, hormones, and other proteinaceous or nonproteinaceous materials. In some embodiments, an isolated antibody is purified to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence, for example by use of a spinning cup sequenator. In some embodiments, an isolated antibody is purified to homogeneity by gel electrophoresis (e.g., SDS-PAGE) under reducing or nonreducing conditions, with detection by Coomassie blue or silver stain. An isolated antibody includes an antibody in situ within recombinant cells, since at least one component of the antibody's natural environment is not present. In some aspects, an isolated antibody is prepared by at least one purification step.

[0044] In some embodiments, an isolated antibody is purified to at least 80%, 85%, 90%, 95%, or 99% by weight. In some embodiments, an isolated antibody is purified to at least 80%, 85%, 90%, 95%, or 99% by volume. In some embodiments, an isolated antibody is provided as a solution comprising at least 85%, 90%, 95%, 98%, 99% to 100% by weight. In some embodiments, an isolated antibody is provided as a solution comprising at least 85%, 90%, 95%, 98%, 99% to 100% by volume.

[0045] "Affinity" refers to the strength of the sum total of non-covalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity" refers to intrinsic binding affinity, which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can be represented by the dissociation constant (K.sub.D). Affinity can be measured by common methods known in the art, including those described herein. Affinity can be determined, for example, using surface plasmon resonance (SPR) technology, such as a Biacore.RTM. instrument. In some embodiments, the affinity is determined at 25.degree. C.

[0046] With regard to the binding of an antibody to a target molecule, the terms "specific binding," "specifically binds to," "specific for," "selectively binds," and "selective for" a particular antigen (e.g., a polypeptide target) or an epitope on a particular antigen mean binding that is measurably different from a non-specific or non-selective interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule. Specific binding can also be determined by competition with a control molecule that mimics the antibody binding site on the target. In that case, specific binding is indicated if the binding of the antibody to the target is competitively inhibited by the control molecule.

[0047] The term "k.sub.d" (sec.sup.-1), as used herein, refers to the dissociation rate constant of a particular antibody-antigen interaction. This value is also referred to as the k.sub.off value.

[0048] The term "k.sub.a" (M.sup.-1.times.sec.sup.-1), as used herein, refers to the association rate constant of a particular antibody-antigen interaction. This value is also referred to as the k.sub.on value.

[0049] The term "K.sub.D" (M), as used herein, refers to the dissociation equilibrium constant of a particular antibody-antigen interaction. K.sub.D=k.sub.d/k.sub.a.

[0050] The term "K.sub.A" (M.sup.-1), as used herein, refers to the association equilibrium constant of a particular antibody-antigen interaction. K.sub.A=k.sub.a/k.sub.d.

[0051] An "affinity matured" antibody is one with one or more alterations in one or more CDRs or FRs that result in an improvement in the affinity of the antibody for its antigen, compared to a parent antibody which does not possess the alteration(s). In one embodiment, an affinity matured antibody has nanomolar or picomolar affinity for the target antigen. Affinity matured antibodies may be produced using a variety of methods known in the art. For example, Marks et al. (Bio/Technology, 1992, 10:779-783, incorporated by reference in its entirety) describes affinity maturation by V.sub.H and V.sub.L domain shuffling. Random mutagenesis of CDR and/or framework residues is described by, for example, Barbas et al. (Proc. Nat. Acad. Sci. USA., 1994, 91:3809-3813); Schier et al., Gene, 1995, 169:147-155; Yelton et al., J. Immunol., 1995, 155:1994-2004; Jackson et al., J. Immunol., 1995, 154:3310-33199; and Hawkins et al, J. Mol. Biol., 1992, 226:889-896, each of which is incorporated by reference in its entirety.

[0052] When used herein in the context of two or more antibodies, the term "competes with" or "cross-competes with" indicates that the two or more antibodies compete for binding to an antigen (e.g., EpCAM). In one exemplary assay, EpCAM is coated on a plate and allowed to bind a first antibody, after which a second, labeled antibody is added. If the presence of the first antibody reduces binding of the second antibody, then the antibodies compete. In another exemplary assay, a first antibody is coated on a plate and allowed to bind the antigen, and then the second antibody is added. The term "competes with" also includes combinations of antibodies where one antibody reduces binding of another antibody, but where no competition is observed when the antibodies are added in the reverse order. However, in some embodiments, the first and second antibodies inhibit binding of each other, regardless of the order in which they are added. In some embodiments, one antibody reduces binding of another antibody to its antigen by at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%.

[0053] The term "epitope" means a portion of an antigen capable of specific binding to an antibody. Epitopes frequently consist of surface-accessible amino acid residues and/or sugar side chains and may have specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and non-conformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents. An epitope may comprise amino acid residues that are directly involved in the binding, and other amino acid residues, which are not directly involved in the binding. The epitope to which an antibody binds can be determined using known techniques for epitope determination such as, for example, testing for antibody binding to EpCAM variants with different point-mutations, or to chimeric EpCAM variants as described further in the Examples provided herein.

[0054] Percent "identity" between a polypeptide sequence and a reference sequence, is defined as the percentage of amino acid residues in the polypeptide sequence that are identical to the amino acid residues in the reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, MEGALIGN (DNASTAR), CLUSTALW, CLUSTAL OMEGA, or MUSCLE software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.

[0055] A "conservative substitution" or a "conservative amino acid substitution," refers to the substitution an amino acid with a chemically or functionally similar amino acid. Conservative substitution tables providing similar amino acids are well known in the art. Polypeptide sequences having such substitutions are known as "conservatively modified variants." By way of example, the groups of amino acids provided in Tables 2-4 are, in some embodiments, considered conservative substitutions for one another.

TABLE-US-00002 TABLE 2 Selected groups of amino acids that are considered conservative substitutions for one another, in certain embodiments. Acidic Residues D and E Basic Residues K, R, and H Hydrophilic Uncharged Residues S, T, N, and Q Aliphatic Uncharged Residues G, A, V, L, and I Non-polar Uncharged Residues C, M, and P Aromatic Residues F, Y, and W

TABLE-US-00003 TABLE 3 Additional selected groups of amino acids that are considered conservative substitutions for one another, in certain embodiments. Group 1 A, S, and T Group 2 D and E Group 3 N and Q Group 4 R and K Group 5 I, L, and M Group 6 F, Y, and W

TABLE-US-00004 TABLE 4 Further selected groups of amino acids that are considered conservative substitutions for one another, in certain embodiments. Group A A and G Group B D and E Group C N and Q Group D R, K, and H Group E I, L, M, V Group F F, Y, and W Group G S and T Group H C and M

[0056] Additional conservative substitutions may be found, for example, in Creighton, Proteins: Structures and Molecular Properties 2nd ed. (1993) W. H. Freeman & Co., New York, N.Y. An antibody generated by making one or more conservative substitutions of amino acid residues in a parent antibody is referred to as a "conservatively modified variant."

[0057] The term "amino acid" refers to the twenty common naturally occurring amino acids. Naturally occurring amino acids include alanine (Ala; A), arginine (Arg; R), asparagine (Asn; N), aspartic acid (Asp; D), cysteine (Cys; C); glutamic acid (Glu; E), glutamine (Gln; Q), Glycine (Gly; G); histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), and valine (Val; V).

[0058] "Treating" or "treatment" of any disease or disorder refers, in certain embodiments, to ameliorating a disease or disorder that exists in a subject. In another embodiment, "treating" or "treatment" includes ameliorating at least one physical parameter, which may be indiscernible by the subject. In yet another embodiment, "treating" or "treatment" includes modulating the disease or disorder, either physically (e.g., stabilization of a discernible symptom) or physiologically (e.g., stabilization of a physical parameter) or both. In yet another embodiment, "treating" or "treatment" includes delaying or preventing the onset of the disease or disorder.

[0059] As used herein, the term "therapeutically effective amount" or "effective amount" refers to an amount of an antibody or composition that when administered to a subject is effective to treat a disease or disorder.

[0060] As used herein, the term "subject" means a mammalian subject. Exemplary subjects include, but are not limited to humans, monkeys, dogs, cats, mice, rats, cows, horses, camels, avians, goats, and sheep. In certain embodiments, the subject is a human. In some embodiments, the subject has a cancer that can be treated or diagnosed with an antibody provided herein. In some embodiments, the cancer is a cancer of epithelial origin.

2. Antibodies

[0061] Provided herein are antibodies that selectively bind human EpCAM. In some aspects, the antibody selectively binds to the extracellular domain of human EpCAM. In some embodiments, the antibody selectively binds to a portion of the EpCAM protein encoded by an exon selected from exons 4-7 of the EpCAM gene. In some embodiments, the antibody does not bind the portion of the EpCAM protein encoded by exon 2 of the EpCAM gene.

[0062] In some embodiments, the antibody binds to a homolog of human EpCAM. In some aspects, the antibody binds to a homolog of human EpCAM from a species selected from monkeys, mice, dogs, cats, rats, cows, horses, goats and sheep. In some aspects, the homolog is a cynomolgus monkey homolog. In some aspects, the antibody does not bind a murine homolog.

[0063] In some embodiments, the antibody has one or more CDRs having particular lengths, in terms of the number of amino acid residues. In some embodiments, the Chothia CDR-H1 of the antibody is 6, 7, or 8 residues in length. In some embodiments, the Kabat CDR-H1 of the antibody is 4, 5, or 6 residues in length. In some embodiments, the Chothia CDR-H2 of the antibody is 5, 6, or 7 residues in length. In some embodiments, the Kabat CDR-H2 of the antibody is 16, 17, or 18 residues in length. In some embodiments, the Kabat/Chothia CDR-H3 of the antibody is 9, 10, 11, 12, or 13 residues in length.

[0064] In some aspects, the Kabat/Chothia CDR-L1 of the antibody is 11, 12, 13, 14, 15, 16, 17, or 18 residues in length. In some aspects, the Kabat/Chothia CDR-L2 of the antibody is 6, 7, or 8 residues in length. In some aspects, the Kabat/Chothia CDR-L3 of the antibody is 8, 9, or 10 residues in length.

[0065] In some embodiments, the antibody comprises a light chain. In some aspects, the light chain is a kappa light chain. In some aspects, the light chain is a lambda light chain.

[0066] In some embodiments, the antibody comprises a heavy chain. In some aspects, the heavy chain is an IgA. In some aspects, the heavy chain is an IgD. In some aspects, the heavy chain is an IgE. In some aspects, the heavy chain is an IgG. In some aspects, the heavy chain is an IgM. In some aspects, the heavy chain is an IgG1. In some aspects, the heavy chain is an IgG2. In some aspects, the heavy chain is an IgG3. In some aspects, the heavy chain is an IgG4. In some aspects, the heavy chain is an IgA1. In some aspects, the heavy chain is an IgA2.

[0067] In some embodiments, the antibody is an antibody fragment. In some aspects, the antibody fragment is an Fv fragment. In some aspects, the antibody fragment is a Fab fragment. In some aspects, the antibody fragment is a F(ab')2 fragment. In some aspects, the antibody fragment is a Fab' fragment. In some aspects, the antibody fragment is an scFv (sFv) fragment. In some aspects, the antibody fragment is an scFv-Fc fragment.

[0068] In some embodiments, the scFv-Fc fragment comprises a constant region wherein the constant region comprises SEQ ID NO: 280. The constant region in SEQ ID NO: 280 differs from the human IgG1 constant region of SEQ ID NO: 279 in several respects. First, the sequence in SEQ ID NO: 280 comprises the linker AAGSDQ (SEQ ID NO: 284). SEQ ID NO: 280 also does not comprise the CH1 domain of the IgG1 constant region. SEQ ID NO: 280 further comprises a C220S (EU numbering system) mutation, which removes an unpaired cysteine reside that is not needed when the light chain constant region is not present (e.g., in an scFv-Fc format). SEQ ID NO: 280 further comprises two, optional, P to S mutations (P230S and P238S by the EU numbering system). Either or both of these serine residues can be reverted to the naturally occurring proline residues. Finally, SEQ ID NO: 280 comprises an aspartic acid (D) residue at EU position 356 and a leucine (L) residue at EU position 358. In contrast, SEQ ID NO: 279 comprises glutamic acid (E) in EU position 356 and methionine (M) in EU position 358. In some embodiments, the antibodies provided herein comprise constant regions comprising D356/L358, E356/M358, D356/M358, or E356/L358 (EU numbering). However, a skilled person will recognize that the antibodies provide herein may comprise any suitable constant region and that the constant region sequences provided herein are for illustrative purposes.

[0069] In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a polyclonal antibody.

[0070] In some embodiments, the antibody is a chimeric antibody. In some embodiments, the antibody is a humanized antibody. In some embodiments, the antibody is a human antibody.

[0071] In some embodiments, the antibody is an affinity matured antibody. In some aspects, the antibody is an affinity matured antibody derived from an illustrative sequence provided in this disclosure.

[0072] In some embodiments, the antibody inhibits the binding of EpCAM to one or more of its ligands. In some aspects, the antibody inhibits the binding of EpCAM to a ligand selected from a second EpCAM molecule, claudin-7, CD44v4-v7, E-cadherin, and CD9.

[0073] The antibodies provided herein may be useful for the treatment of a variety of diseases and conditions including cancers. In particular, the antibodies provided herein may be useful for the treatment of cancers of epithelial origin.

[0074] 2.1. CDR-H3 Sequences

[0075] In some embodiments, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of a CDR-H3 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the CDR-H3 sequence is a CDR-H3 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the CDR-H3 sequence is a CDR-H3 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0076] In some embodiments, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 104. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 105. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 106. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 107. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 108. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 109. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 110. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 111. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 112. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 113. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 114. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 115. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 116. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 117. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 118. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 119. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 120. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 121. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 122. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 123. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 124. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 125. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 126. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 127. In some aspects, the antibody comprises a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 128.

[0077] In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-H3 sequence provided in this disclosure. In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-H3 sequences provided in this disclosure. In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-H3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0078] In some aspects, the CDR-H3 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 306-310. In some aspects, the CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 306. In some aspects, the CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 307. In some aspects, the CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 308. In some aspects, the CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 309. In some aspects, the CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 310.

[0079] 2.2. V.sub.H Sequences Comprising Illustrative CDRs

[0080] In some embodiments, the antibody comprises a V.sub.H sequence comprising one or more CDR-H sequences comprising, consisting of, or consisting essentially of one or more illustrative CDR-H sequences provided in this disclosure, and variants thereof. In some embodiments, the CDR-H sequences comprise, consist of, or consist essentially of one or more CDR-H sequences provided in a V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0081] 2.2.1. V.sub.H Sequences Comprising Illustrative Kabat CDRs

[0082] In some embodiments, the antibody comprises a V.sub.H sequence comprising one or more Kabat CDR-H sequences comprising, consisting of, or consisting essentially of one or more illustrative Kabat CDR-H sequences provided in this disclosure, and variants thereof 2.2.1.1. Kabat CDR-H3

[0083] In some embodiments, the antibody comprises a V.sub.H sequence comprising a CDR-H3 sequence, wherein the CDR-H3 sequence comprises, consists of, or consists essentially of a Kabat CDR-H3 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the Kabat CDR-H3 sequence is a Kabat CDR-H3 sequence of a scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of a scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the Kabat CDR-H3 sequence is a Kabat CDR-H3 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0084] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 104. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 105. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 106. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 107. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 108. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 109. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 110. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 111. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 112. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 113. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 114. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 115. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 116. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 117. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 118. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 119. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 120. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 121. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 122. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 123. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 124. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 125. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 126. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 127. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 128.

[0085] 2.2.1.2. Kabat CDR-H2

[0086] In some embodiments, the antibody comprises a V.sub.H sequence comprising a CDR-H2 sequence, wherein the CDR-H2 sequence comprises, consists of, or consists essentially of a Kabat CDR-H2 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the Kabat CDR-H2 sequence is a Kabat CDR-H2 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the Kabat CDR-H3 sequence is a Kabat CDR-H3 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0087] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 79-103. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 79. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 80. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 81. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 82. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 83. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 84. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 85. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 86. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 87. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 88. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 89. In some aspects, the antibody comprises a VII sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 90. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 91. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 92. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 93. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 94. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 95. In some aspects, the antibody comprises a VII sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 96. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 97. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 98. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 99. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 100. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 101. In some aspects, the antibody comprises a VII sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 102. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 103.

[0088] 2.2.1.3. Kabat CDR-H1

[0089] In some embodiments, the antibody comprises a V.sub.H sequence comprising a CDR-H1 sequence, wherein the CDR-H1 sequence comprises, consists of, or consists essentially of a Kabat CDR-H1 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the Kabat CDR-H1 sequence is a Kabat CDR-H1 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the Kabat CDR-H3 sequence is a Kabat CDR-H1 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0090] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 29-53. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 29. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 30. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 31. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 32. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 33. In some aspects, the antibody comprises a VII sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 34. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 35. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 36. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 37. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 38. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 39. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 40. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 41. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 42. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 43. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 44. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 45. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 46. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 47. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 48. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 49. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 50. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 51. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 52. In some aspects, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 53.

[0091] 2.2.1.4. Kabat CDR-H3+Kabat CDR-H2

[0092] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128, and a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 79-103. In some aspects, the Kabat CDR-H3 sequence and the Kabat CDR-H2 sequence are both from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Kabat CDR-H3 and Kabat CDR-H2 are both from a single illustrative V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0093] 2.2.1.5. Kabat CDR-H3+Kabat CDR-H1

[0094] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128, and a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 29-53. In some aspects, the Kabat CDR-H3 sequence and the Kabat CDR-H1 sequence are both from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Kabat CDR-H3 and Kabat CDR-H1 are both from a single illustrative V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0095] 2.2.1.6. Kabat CDR-H1+Kabat CDR-H2

[0096] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 29-53 and a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 79-103. In some aspects, the Kabat CDR-H1 sequence and the Kabat CDR-H2 sequence are both from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Kabat CDR-H1 and Kabat CDR-H2 are both from a single illustrative V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0097] 2.2.1.7. Kabat CDR-H1+Kabat CDR-H2+Kabat CDR-H3

[0098] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 29-53, a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 79-103, and a Kabat CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128. In some aspects, the Kabat CDR-H1 sequence, Kabat CDR-H2 sequence, and Kabat CDR-H3 sequence are all from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Kabat CDR-H1, Kabat CDR-H2, and Kabat CDR-H3 are all from a single illustrative V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0099] 2.2.1.8. Variants of V.sub.H Sequences Comprising Illustrative Kabat CDRs

[0100] In some embodiments, the V.sub.H sequences provided herein comprise a variant of an illustrative Kabat CDR-H3, CDR-H2, and/or CDR-H1 sequence provided in this disclosure.

[0101] In some aspects, the Kabat CDR-H3 sequence comprises, consists of, or consists essentially of a variant of an illustrative Kabat CDR-H3 sequence provided in this disclosure. In some aspects, the Kabat CDR-H3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Kabat CDR-H3 sequences provided in this disclosure. In some aspects, the Kabat CDR-H3 sequence comprises, consists of, or consists essentially of any of the illustrative Kabat CDR-H3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0102] In some aspects, the Kabat CDR-H2 sequence comprises, consists of, or consists essentially of a variant of an illustrative Kabat CDR-H2 sequence provided in this disclosure. In some aspects, the Kabat CDR-H2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Kabat CDR-H2 sequences provided in this disclosure. In some aspects, the Kabat CDR-H2 sequence comprises, consists of, or consists essentially of any of the illustrative Kabat CDR-H2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0103] In some aspects, the Kabat CDR-H1 sequence comprises, consists of, or consists essentially of a variant of an illustrative Kabat CDR-H1 sequence provided in this disclosure. In some aspects, the Kabat CDR-H1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Kabat CDR-H1 sequences provided in this disclosure. In some aspects, the Kabat CDR-H1 sequence comprises, consists of, or consists essentially of any of the illustrative Kabat CDR-H1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0104] 2.2.1.9. Excluded V.sub.H Sequences Comprising Kabat CDRs

[0105] In some embodiments, the V.sub.H sequences provided herein do not comprise certain Kabat CDR-H3, CDR-H2, and/or CDR-H1 sequences.

[0106] In some aspects, the Kabat CDR-H3 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 306-310. In some aspects, the Kabat CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 306. In some aspects, the Kabat CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 307. In some aspects, the Kabat CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 308. In some aspects, the Kabat CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 309. In some aspects, the Kabat CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 310.

[0107] In some aspects, the Kabat CDR-H2 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 301-305. In some aspects, the Kabat CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 301. In some aspects, the Kabat CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 302. In some aspects, the Kabat CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 303. In some aspects, the Kabat CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 304. In some aspects, the Kabat CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 305.

[0108] In some aspects, the Kabat CDR-H1 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 291-295. In some aspects, the Kabat CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 291. In some aspects, the Kabat CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 292. In some aspects, the Kabat CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 293. In some aspects, the Kabat CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 294. In some aspects, the Kabat CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 295.

[0109] 2.2.2. V.sub.H Sequences Comprising Illustrative Chothia CDRs

[0110] In some embodiments, the antibody comprises a V.sub.H sequence comprising one or more Chothia CDR-H sequences comprising, consisting of, or consisting essentially of one or more illustrative Chothia CDR-H sequences provided in this disclosure, and variants thereof.

[0111] 2.2.2.1. Chothia CDR-H3

[0112] In some embodiments, the antibody comprises a V.sub.H sequence comprising a CDR-H3 sequence, wherein the CDR-H3 sequence comprises, consists of, or consists essentially of a Chothia CDR-H3 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the Chothia CDR-H3 sequence is a Chothia CDR-H3 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the Chothia CDR-H3 sequence is a Chothia CDR-H3 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0113] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 104. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 105. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 106. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 107. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 108. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 109. In some aspects, the antibody comprises a VII sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 110. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 111. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 112. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 113. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 114. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 115. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 116. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 117. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 118. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 119. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 120. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 121. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 122. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 123. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 124. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 125. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 126. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 127. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 128.

[0114] 2.2.2.2. Chothia CDR-H2

[0115] In some embodiments, the antibody comprises a V.sub.H sequence comprising a CDR-H2 sequence, wherein the CDR-H2 sequence comprises, consists of, or consists essentially of a Chothia CDR-H2 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the Chothia CDR-H2 sequence is a Chothia CDR-H2 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the Chothia CDR-H2 sequence is a Chothia CDR-H2 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0116] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 54-78. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 54. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 55. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 56. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 57. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 58. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 59. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 60. In some aspects, the antibody comprises a VII sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 61. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 62. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 63. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 64. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 65. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 66. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 67. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 68. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 69. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 70. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 71. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 72. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 73. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 74. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 75. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 76. In some aspects, the antibody comprises a VII sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 77. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 78.

[0117] 2.2.2.3. Chothia CDR-H1

[0118] In some embodiments, the antibody comprises a V.sub.H sequence comprising a CDR-H1 sequence, wherein the CDR-H1 sequence comprises, consists of, or consists essentially of a Chothia CDR-H1 sequence of an illustrative antibody or V.sub.H sequence provided herein. In some aspects, the Chothia CDR-H1 sequence is a Chothia CDR-H1 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the Chothia CDR-H1 sequence is a Chothia CDR-H1 sequence of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0119] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 4-28. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 4. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 5. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 6. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 7. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 8. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 9. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 10. In some aspects, the antibody comprises a VII sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 11. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 12. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 13. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 14. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 15. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 16. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 17. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 18. In some aspects, the antibody comprises a VII sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 19. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 20. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 21. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 22. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 23. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 24. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 25. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 26. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 27. In some aspects, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 28.

[0120] 2.2.2.4. Chothia CDR-H3+Chothia CDR-H2

[0121] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128, and a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 54-78. In some aspects, the Chothia CDR-H3 sequence and the Chothia CDR-H2 sequence are both from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Chothia CDR-H3 and Chothia CDR-H2 are both from a single illustrative VII sequence selected from SEQ ID NOs: 229-253.

[0122] 2.2.2.5. Chothia CDR-H3+Chothia CDR-H1

[0123] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128, and a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 4-28. In some aspects, the Chothia CDR-H3 sequence and the Chothia CDR-H1 sequence are both from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Chothia CDR-H3 and Chothia CDR-H1 are both from a single illustrative VII sequence selected from SEQ ID NOs: 229-253.

[0124] 2.2.2.6. Chothia CDR-H1+Chothia CDR-H2

[0125] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 4-28 and a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 54-78. In some aspects, the Chothia CDR-H1 sequence and the Chothia CDR-H2 sequence are both from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Chothia CDR-H1 and Chothia CDR-H2 are both from a single illustrative V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0126] 2.2.2.7. Chothia CDR-H1+Chothia CDR-H2+Chothia CDR-H3

[0127] In some embodiments, the antibody comprises a V.sub.H sequence comprising a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 4-28, a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 54-78, and a Chothia CDR-H3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 104-128. In some aspects, the Chothia CDR-H1 sequence, Chothia CDR-H2 sequence, and Chothia CDR-H3 sequence are all from a single illustrative V.sub.H sequence provided in this disclosure. For example, in some aspects, the Chothia CDR-H1, Chothia CDR-H2, and Chothia CDR-H3 are all from a single illustrative V.sub.H sequence selected from SEQ ID NOs: 229-253.

[0128] 2.2.2.8. Variants of V.sub.H Sequences Comprising Illustrative Chothia CDRs

[0129] In some embodiments, the V.sub.H sequences provided herein comprise a variant of an illustrative Chothia CDR-H3, CDR-H2, and/or CDR-H1 sequence provided in this disclosure.

[0130] In some aspects, the Chothia CDR-H3 sequence comprises, consists of, or consists essentially of a variant of an illustrative Chothia CDR-H3 sequence provided in this disclosure. In some aspects, the Chothia CDR-H3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Chothia CDR-H3 sequences provided in this disclosure. In some aspects, the Chothia CDR-H3 sequence comprises, consists of, or consists essentially of any of the illustrative Chothia CDR-H3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0131] In some aspects, the Chothia CDR-H2 sequence comprises, consists of, or consists essentially of a variant of an illustrative Chothia CDR-H2 sequence provided in this disclosure. In some aspects, the Chothia CDR-H2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Chothia CDR-H2 sequences provided in this disclosure. In some aspects, the Chothia CDR-H2 sequence comprises, consists of, or consists essentially of any of the illustrative Chothia CDR-H2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0132] In some aspects, the Chothia CDR-H1 sequence comprises, consists of, or consists essentially of a variant of an illustrative Chothia CDR-H1 sequence provided in this disclosure. In some aspects, the Chothia CDR-H1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Chothia CDR-H1 sequences provided in this disclosure. In some aspects, the Chothia CDR-H1 sequence comprises, consists of, or consists essentially of any of the illustrative Chothia CDR-H1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0133] 2.2.2.9. Excluded V.sub.H Sequences Comprising Chothia CDRs

[0134] In some embodiments, the V.sub.H sequences provided herein do not comprise certain Chothia CDR-H3, CDR-H2, and/or CDR-H1 sequences.

[0135] In some aspects, the Chothia CDR-H3 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 306-310. In some aspects, the Chothia CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 306. In some aspects, the Chothia CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 307. In some aspects, the Chothia CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 308. In some aspects, the Chothia CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 309. In some aspects, the Chothia CDR-H3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 310.

[0136] In some aspects, the Chothia CDR-H2 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 296-300. In some aspects, the Chothia CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 296. In some aspects, the Chothia CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 297. In some aspects, the Chothia CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 298. In some aspects, the Chothia CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 299. In some aspects, the Chothia CDR-H2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 300.

[0137] In some aspects, the Chothia CDR-H1 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 286-290. In some aspects, the Chothia CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 286. In some aspects, the Chothia CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 287. In some aspects, the Chothia CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 288. In some aspects, the Chothia CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 289. In some aspects, the Chothia CDR-H1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 290.

[0138] 2.3. V.sub.H Sequences

[0139] In some embodiments, the antibody comprises, consists of, or consists essentially of a V.sub.H sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some embodiments, the antibody comprises, consists of, or consists essentially of a V.sub.H sequence provided in SEQ ID NOs.: 229-253.

[0140] In some embodiments, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 229-253. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 229. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 230. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 231. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 232. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 233. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 234. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 235. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 236. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 237. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 238. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 239. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 240. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 241. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 242. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 243. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 244. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 245. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 246. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 247. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 248. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 249. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 250. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 251. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 252. In some aspects, the antibody comprises a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 253.

[0141] 2.3.1. Variants of V.sub.H Sequences

[0142] In some embodiments, the V.sub.H sequences provided herein comprise, consist of, or consist essentially of a variant of an illustrative V.sub.H sequence provided in this disclosure.

[0143] In some aspects, the V.sub.H sequence comprises, consists of, or consists essentially of a variant of an illustrative V.sub.H sequence provided in this disclosure. In some aspects, the V.sub.H sequence comprises, consists of, or consists essentially of a sequence having at least 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identity with any of the illustrative V.sub.H sequences provided in this disclosure.

[0144] In some embodiments, the V.sub.H sequence comprises, consists of, or consists essentially of any of the illustrative V.sub.H sequences provided in this disclosure having 20 or fewer, 19 or fewer, 18 or fewer, 17 or fewer, 16 or fewer, 15 or fewer, 14 or fewer, 13 or fewer, 12 or fewer, 11 or fewer, 10 or fewer, 9 or fewer, 8 or fewer, 7 or fewer, 6 or fewer, 5 or fewer, 4 or fewer, 3 or fewer, 2 or fewer, or 1 or fewer amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0145] 2.3.2. Excluded V.sub.H Sequences

[0146] In some embodiments, the V.sub.H sequences provided herein do not comprise certain V.sub.H sequences.

[0147] In some aspects, the V.sub.H sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 326-330. In some aspects, the V.sub.H sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 326. In some aspects, the V.sub.H sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 327. In some aspects, the V.sub.H sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 328. In some aspects, the V.sub.H sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 329. In some aspects, the V.sub.H sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 330.

[0148] 2.4. CDR-L3 Sequences

[0149] In some embodiments, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of a CDR-L3 sequence of an illustrative antibody or V.sub.L sequence provided herein. In some aspects, the CDR-L3 sequence is a CDR-L3 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the CDR-L3 sequence is a CDR-L3 sequence of a V.sub.L sequence provided in SEQ ID NOs.: 254-278.

[0150] In some embodiments, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 179-203. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 179. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 180. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 181. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 182. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 183. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 184. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 185. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 186. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 187. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 188. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 189. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 190. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 191. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 192. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 193. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 194. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 195. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 196. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 197. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 198. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 199. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 200. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 201. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 202. In some aspects, the antibody comprises a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 203.

[0151] In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L3 sequence provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L3 sequences provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0152] In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 321-325. In some aspects the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 321. In some aspects the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 322. In some aspects the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 323. In some aspects the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 324. In some aspects the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 325.

[0153] 2.5. V.sub.L Sequences Comprising Illustrative CDRs

[0154] In some embodiments, the antibody comprises a V.sub.L sequence comprising one or more CDR-L sequences comprising, consisting of, or consisting essentially of one or more illustrative CDR-L sequences provided in this disclosure, and variants thereof.

[0155] 2.5.1. CDR-L3

[0156] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence, wherein the CDR-L3 sequence comprises, consists of, or consists essentially of a CDR-L3 sequence of an illustrative antibody or V.sub.L sequence provided herein. In some aspects, the CDR-L3 sequence is a CDR-L3 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the CDR-L3 sequence is a CDR-L3 sequence of a V.sub.L sequence provided in SEQ ID NOs.: 254-278.

[0157] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 179-203. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 179. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 180. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 181. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 182. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 183. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 184. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 185. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 186. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 187. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 188. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 189. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 190. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 191. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 192. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 193. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 194. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 195. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 196. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 197. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 198. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 199. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 200. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 201. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 202. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 203.

[0158] 2.5.2. CDR-L2

[0159] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence, wherein the CDR-L2 sequence comprises, consists of, or consists essentially of a CDR-L2 sequence of an illustrative antibody or V.sub.L sequence provided herein. In some aspects, the CDR-L2 sequence is a CDR-L2 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the CDR-L2 sequence is a CDR-L2 sequence of a V.sub.L sequence provided in SEQ ID NOs.: 254-278.

[0160] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 154-178. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 154. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 155. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 156. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 157. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 158. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 159. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 160. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 161. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 162. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 163. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 164. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 165. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 166. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 167. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 168. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 169. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 170. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 171. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 172. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 173. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 174. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 175. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 176. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 177. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 178.

[0161] 2.5.3. CDR-L1

[0162] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence, wherein the CDR-L1 sequence comprises, consists of, or consists essentially of a CDR-L1 sequence of an illustrative antibody or V.sub.L sequence provided herein. In some aspects, the CDR-L1 sequence is a CDR-L1 sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some aspects, the CDR-L1 sequence is a CDR-L1 sequence of a V.sub.L sequence provided in SEQ ID NOs.: 254-278.

[0163] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 129-153. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 129. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 130. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 131. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 132. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 133. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 134. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 135. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 136. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 137. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 138. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 139. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 140. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 141. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 142. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 143. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 144. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 145. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 146. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 147. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 148. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 149. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 150. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 151. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 152. In some aspects, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 153.

[0164] 2.5.4. CDR-L3+CDR-L2

[0165] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 179-203 and a CDR-L2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 154-178. In some aspects, the CDR-L3 sequence and the CDR-L2 sequence are both from a single illustrative V.sub.L sequence provided in this disclosure. For example, in some aspects, the CDR-L3 and CDR-L2 are both from a single illustrative V.sub.L sequence selected from SEQ ID NOs: 254-278.

[0166] 2.5.5. CDR-L3+CDR-L1

[0167] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 179-203 and a CDR-L1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 129-153. In some aspects, the CDR-L3 sequence and the CDR-L1 sequence are both from a single illustrative V.sub.L sequence provided in this disclosure. For example, in some aspects, the CDR-L3 and CDR-L1 are both from a single illustrative V.sub.L sequence selected from SEQ ID NOs: 254-278.

[0168] 2.5.6. CDR-L1+CDR-L2

[0169] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 129-153 and a CDR-L2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 154-178. In some aspects, the CDR-L1 sequence and the CDR-L2 sequence are both from a single illustrative V.sub.L sequence provided in this disclosure. For example, in some aspects, the CDR-L1 and CDR-L2 are both from a single illustrative V.sub.L sequence selected from SEQ ID NOs: 254-278.

[0170] 2.5.7. CDR-L1+CDR-L2+CDR-L3

[0171] In some embodiments, the antibody comprises a V.sub.L sequence comprising a CDR-L1 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 129-153, a CDR-L2 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 154-178, and a CDR-L3 sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 179-203. In some aspects, the CDR-L1 sequence, CDR-L2 sequence, and CDR-L3 sequence are all from a single illustrative V.sub.L sequence provided in this disclosure. For example, in some aspects, the CDR-L1, CDR-L2, and CDR-L3 are all from a single illustrative V.sub.L sequence selected from SEQ ID NOs: 254-278.

[0172] 2.5.8. Variants of V.sub.L Sequences Comprising Illustrative CDR-Ls

[0173] In some embodiments, the V.sub.L sequences provided herein comprise a variant of an illustrative CDR-L3, CDR-L2, and/or CDR-L1 sequence provided in this disclosure.

[0174] In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L3 sequence provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L3 sequences provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0175] In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L2 sequence provided in this disclosure. In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L2 sequences provided in this disclosure. In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0176] In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L1 sequence provided in this disclosure. In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L1 sequences provided in this disclosure. In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0177] 2.5.9. Excluded V.sub.L Sequences Comprising CDR-Ls

[0178] In some embodiments, the V.sub.L sequences provided herein do not comprise certain CDR-L3, CDR-L2, and/or CDR-L1 sequences.

[0179] In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 321-325. In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NOs: 321. In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NOs: 322. In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NOs: 323. In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NOs: 324. In some aspects, the CDR-L3 sequence does not comprise, consist of, or consist essentially of SEQ ID NOs: 325.

[0180] In some aspects, the CDR-L2 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 316-320. In some aspects, the CDR-L2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 316. In some aspects, the CDR-L2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 317. In some aspects, the CDR-L2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 318. In some aspects, the CDR-L2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 319. In some aspects, the CDR-L2 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 320.

[0181] In some aspects, the CDR-L1 sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 311-315. In some aspects, the CDR-L1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 311. In some aspects, the CDR-L1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 312. In some aspects, the CDR-L1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 313. In some aspects, the CDR-L1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 314. In some aspects, the CDR-L1 sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 315.

[0182] 2.6. V.sub.L Sequences

[0183] In some embodiments, the antibody comprises, consists of, or consists essentially of a V.sub.L sequence of an scFv-Fc sequence provided in SEQ ID NOs.: 204-228 or of an scFv sequence provided in SEQ ID NOs.: 337-361. In some embodiments, the antibody comprises, consists of, or consists essentially of a V.sub.L sequence provided in SEQ ID NOs.: 254-278.

[0184] In some embodiments, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of a sequence selected from SEQ ID NOs: 254-278. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 254. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 255. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 256. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 257. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 258. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 259. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 260. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 261. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 262. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 263. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 264. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 265. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 266. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 267. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 268. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 269. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 270. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 271. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 272. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 273. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 274. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 275. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 276. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 277. In some aspects, the antibody comprises a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NO: 278.

[0185] 2.6.1. Variants of V.sub.L Sequences

[0186] In some embodiments, the V.sub.L sequences provided herein comprise, consist of, or consist essentially of a variant of an illustrative V.sub.L sequence provided in this disclosure.

[0187] In some aspects, the V.sub.L sequence comprises, consists of, or consists essentially of a variant of an illustrative V.sub.L sequence provided in this disclosure. In some aspects, the V.sub.L sequence comprises, consists of, or consists essentially of a sequence having at least 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identity with any of the illustrative V.sub.L sequences provided in this disclosure.

[0188] In some embodiments, the V.sub.L sequence comprises, consists of, or consists essentially of any of the illustrative V.sub.L sequences provided in this disclosure having 20 or fewer, 19 or fewer, 18 or fewer, 17 or fewer, 16 or fewer, 15 or fewer, 14 or fewer, 13 or fewer, 12 or fewer, 11 or fewer, 10 or fewer, 9 or fewer, 8 or fewer, 7 or fewer, 6 or fewer, 5 or fewer, 4 or fewer, 3 or fewer, 2 or fewer, or 1 or fewer amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0189] 2.6.2. Excluded V.sub.L Sequences

[0190] In some embodiments, the V.sub.L sequences provided herein do not comprise certain V.sub.L sequences.

[0191] In some aspects, the V.sub.L sequence does not comprise, consist of, or consist essentially of a sequence selected from SEQ ID NOs: 331-335. In some aspects, the V.sub.L sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 331. In some aspects, the V.sub.L sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 332. In some aspects, the V.sub.L sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 333. In some aspects, the V.sub.L sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 334. In some aspects, the V.sub.L sequence does not comprise, consist of, or consist essentially of SEQ ID NO: 335.

[0192] 2.7. Pairs

[0193] 2.7.1. CDR-H3-CDR-L3 Pairs

[0194] In some embodiments, the antibody comprises a CDR-H3 sequence and a CDR-L3 sequence. In some aspects, the CDR-H3 sequence is part of a V.sub.H and the CDR-L3 sequence is part of a V.sub.L.

[0195] In some aspects, the CDR-H3 sequence is a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 104-128, and the CDR-L3 sequence is a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 179-203.

[0196] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 104 and SEQ ID NO: 179; SEQ ID NO: 104 and SEQ ID NO: 180; SEQ ID NO: 104 and SEQ ID NO: 181; SEQ ID NO: 104 and SEQ ID NO: 182; SEQ ID NO: 104 and SEQ ID NO: 183; SEQ ID NO: 104 and SEQ ID NO: 184; SEQ ID NO: 104 and SEQ ID NO: 185; SEQ ID NO: 104 and SEQ ID NO: 186; SEQ ID NO: 104 and SEQ ID NO: 187; SEQ ID NO: 104 and SEQ ID NO: 188; SEQ ID NO: 104 and SEQ ID NO: 189; SEQ ID NO: 104 and SEQ ID NO: 190; SEQ ID NO: 104 and SEQ ID NO: 191; SEQ ID NO: 104 and SEQ ID NO: 192; SEQ ID NO: 104 and SEQ ID NO: 193; SEQ ID NO: 104 and SEQ ID NO: 194; SEQ ID NO: 104 and SEQ ID NO: 195; SEQ ID NO: 104 and SEQ ID NO: 196; SEQ ID NO: 104 and SEQ ID NO: 197; SEQ ID NO: 104 and SEQ ID NO: 198; SEQ ID NO: 104 and SEQ ID NO: 199; SEQ ID NO: 104 and SEQ ID NO: 200; SEQ ID NO: 104 and SEQ ID NO: 201; SEQ ID NO: 104 and SEQ ID NO: 202; and SEQ ID NO: 104 and SEQ ID NO: 203.

[0197] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 105 and SEQ ID NO: 179; SEQ ID NO: 105 and SEQ ID NO: 180; SEQ ID NO: 105 and SEQ ID NO: 181; SEQ ID NO: 105 and SEQ ID NO: 182; SEQ ID NO: 105 and SEQ ID NO: 183; SEQ ID NO: 105 and SEQ ID NO: 184; SEQ ID NO: 105 and SEQ ID NO: 185; SEQ ID NO: 105 and SEQ ID NO: 186; SEQ ID NO: 105 and SEQ ID NO: 187; SEQ ID NO: 105 and SEQ ID NO: 188; SEQ ID NO: 105 and SEQ ID NO: 189; SEQ ID NO: 105 and SEQ ID NO: 190; SEQ ID NO: 105 and SEQ ID NO: 191; SEQ ID NO: 105 and SEQ ID NO: 192; SEQ ID NO: 105 and SEQ ID NO: 193; SEQ ID NO: 105 and SEQ ID NO: 194; SEQ ID NO: 105 and SEQ ID NO: 195; SEQ ID NO: 105 and SEQ ID NO: 196; SEQ ID NO: 105 and SEQ ID NO: 197; SEQ ID NO: 105 and SEQ ID NO: 198; SEQ ID NO: 105 and SEQ ID NO: 199; SEQ ID NO: 105 and SEQ ID NO: 200; SEQ ID NO: 105 and SEQ ID NO: 201; SEQ ID NO: 105 and SEQ ID NO: 202; and SEQ ID NO: 105 and SEQ ID NO: 203.

[0198] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 106 and SEQ ID NO: 179; SEQ ID NO: 106 and SEQ ID NO: 180; SEQ ID NO: 106 and SEQ ID NO: 181; SEQ ID NO: 106 and SEQ ID NO: 182; SEQ ID NO: 106 and SEQ ID NO: 183; SEQ ID NO: 106 and SEQ ID NO: 184; SEQ ID NO: 106 and SEQ ID NO: 185; SEQ ID NO: 106 and SEQ ID NO: 186; SEQ ID NO: 106 and SEQ ID NO: 187; SEQ ID NO: 106 and SEQ ID NO: 188; SEQ ID NO: 106 and SEQ ID NO: 189; SEQ ID NO: 106 and SEQ ID NO: 190; SEQ ID NO: 106 and SEQ ID NO: 191; SEQ ID NO: 106 and SEQ ID NO: 192; SEQ ID NO: 106 and SEQ ID NO: 193; SEQ ID NO: 106 and SEQ ID NO: 194; SEQ ID NO: 106 and SEQ ID NO: 195; SEQ ID NO: 106 and SEQ ID NO: 196; SEQ ID NO: 106 and SEQ ID NO: 197; SEQ ID NO: 106 and SEQ ID NO: 198; SEQ ID NO: 106 and SEQ ID NO: 199; SEQ ID NO: 106 and SEQ ID NO: 200; SEQ ID NO: 106 and SEQ ID NO: 201; SEQ ID NO: 106 and SEQ ID NO: 202; and SEQ ID NO: 106 and SEQ ID NO: 203.

[0199] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 107 and SEQ ID NO: 179; SEQ ID NO: 107 and SEQ ID NO: 180; SEQ ID NO: 107 and SEQ ID NO: 181; SEQ ID NO: 107 and SEQ ID NO: 182; SEQ ID NO: 107 and SEQ ID NO: 183; SEQ ID NO: 107 and SEQ ID NO: 184; SEQ ID NO: 107 and SEQ ID NO: 185; SEQ ID NO: 107 and SEQ ID NO: 186; SEQ ID NO: 107 and SEQ ID NO: 187; SEQ ID NO: 107 and SEQ ID NO: 188; SEQ ID NO: 107 and SEQ ID NO: 189; SEQ ID NO: 107 and SEQ ID NO: 190; SEQ ID NO: 107 and SEQ ID NO: 191; SEQ ID NO: 107 and SEQ ID NO: 192; SEQ ID NO: 107 and SEQ ID NO: 193; SEQ ID NO: 107 and SEQ ID NO: 194; SEQ ID NO: 107 and SEQ ID NO: 195; SEQ ID NO: 107 and SEQ ID NO: 196; SEQ ID NO: 107 and SEQ ID NO: 197; SEQ ID NO: 107 and SEQ ID NO: 198; SEQ ID NO: 107 and SEQ ID NO: 199; SEQ ID NO: 107 and SEQ ID NO: 200; SEQ ID NO: 107 and SEQ ID NO: 201; SEQ ID NO: 107 and SEQ ID NO: 202; and SEQ ID NO: 107 and SEQ ID NO: 203.

[0200] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 108 and SEQ ID NO: 179; SEQ ID NO: 108 and SEQ ID NO: 180; SEQ ID NO: 108 and SEQ ID NO: 181; SEQ ID NO: 108 and SEQ ID NO: 182; SEQ ID NO: 108 and SEQ ID NO: 183; SEQ ID NO: 108 and SEQ ID NO: 184; SEQ ID NO: 108 and SEQ ID NO: 185; SEQ ID NO: 108 and SEQ ID NO: 186; SEQ ID NO: 108 and SEQ ID NO: 187; SEQ ID NO: 108 and SEQ ID NO: 188; SEQ ID NO: 108 and SEQ ID NO: 189; SEQ ID NO: 108 and SEQ ID NO: 190; SEQ ID NO: 108 and SEQ ID NO: 191; SEQ ID NO: 108 and SEQ ID NO: 192; SEQ ID NO: 108 and SEQ ID NO: 193; SEQ ID NO: 108 and SEQ ID NO: 194; SEQ ID NO: 108 and SEQ ID NO: 195; SEQ ID NO: 108 and SEQ ID NO: 196; SEQ ID NO: 108 and SEQ ID NO: 197; SEQ ID NO: 108 and SEQ ID NO: 198; SEQ ID NO: 108 and SEQ ID NO: 199; SEQ ID NO: 108 and SEQ ID NO: 200; SEQ ID NO: 108 and SEQ ID NO: 201; SEQ ID NO: 108 and SEQ ID NO: 202; and SEQ ID NO: 108 and SEQ ID NO: 203.

[0201] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 109 and SEQ ID NO: 179; SEQ ID NO: 109 and SEQ ID NO: 180; SEQ ID NO: 109 and SEQ ID NO: 181; SEQ ID NO: 109 and SEQ ID NO: 182; SEQ ID NO: 109 and SEQ ID NO: 183; SEQ ID NO: 109 and SEQ ID NO: 184; SEQ ID NO: 109 and SEQ ID NO: 185; SEQ ID NO: 109 and SEQ ID NO: 186; SEQ ID NO: 109 and SEQ ID NO: 187; SEQ ID NO: 109 and SEQ ID NO: 188; SEQ ID NO: 109 and SEQ ID NO: 189; SEQ ID NO: 109 and SEQ ID NO: 190; SEQ ID NO: 109 and SEQ ID NO: 191; SEQ ID NO: 109 and SEQ ID NO: 192; SEQ ID NO: 109 and SEQ ID NO: 193; SEQ ID NO: 109 and SEQ ID NO: 194; SEQ ID NO: 109 and SEQ ID NO: 195; SEQ ID NO: 109 and SEQ ID NO: 196; SEQ ID NO: 109 and SEQ ID NO: 197; SEQ ID NO: 109 and SEQ ID NO: 198; SEQ ID NO: 109 and SEQ ID NO: 199; SEQ ID NO: 109 and SEQ ID NO: 200; SEQ ID NO: 109 and SEQ ID NO: 201; SEQ ID NO: 109 and SEQ ID NO: 202; and SEQ ID NO: 109 and SEQ ID NO: 203.

[0202] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 110 and SEQ ID NO: 179; SEQ ID NO: 110 and SEQ ID NO: 180; SEQ ID NO: 110 and SEQ ID NO: 181; SEQ ID NO: 110 and SEQ ID NO: 182; SEQ ID NO: 110 and SEQ ID NO: 183; SEQ ID NO: 110 and SEQ ID NO: 184; SEQ ID NO: 110 and SEQ ID NO: 185; SEQ ID NO: 110 and SEQ ID NO: 186; SEQ ID NO: 110 and SEQ ID NO: 187; SEQ ID NO: 110 and SEQ ID NO: 188; SEQ ID NO: 110 and SEQ ID NO: 189; SEQ ID NO: 110 and SEQ ID NO: 190; SEQ ID NO: 110 and SEQ ID NO: 191; SEQ ID NO: 110 and SEQ ID NO: 192; SEQ ID NO: 110 and SEQ ID NO: 193; SEQ ID NO: 110 and SEQ ID NO: 194; SEQ ID NO: 110 and SEQ ID NO: 195; SEQ ID NO: 110 and SEQ ID NO: 196; SEQ ID NO: 110 and SEQ ID NO: 197; SEQ ID NO: 110 and SEQ ID NO: 198; SEQ ID NO: 110 and SEQ ID NO: 199; SEQ ID NO: 110 and SEQ ID NO: 200; SEQ ID NO: 110 and SEQ ID NO: 201; SEQ ID NO: 110 and SEQ ID NO: 202; and SEQ ID NO: 110 and SEQ ID NO: 203.

[0203] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 111 and SEQ ID NO: 179; SEQ ID NO: 111 and SEQ ID NO: 180; SEQ ID NO: 111 and SEQ ID NO: 181; SEQ ID NO: 111 and SEQ ID NO: 182; SEQ ID NO: 111 and SEQ ID NO: 183; SEQ ID NO: 111 and SEQ ID NO: 184; SEQ ID NO: 111 and SEQ ID NO: 185; SEQ ID NO: 111 and SEQ ID NO: 186; SEQ ID NO: 111 and SEQ ID NO: 187; SEQ ID NO: 111 and SEQ ID NO: 188; SEQ ID NO: 111 and SEQ ID NO: 189; SEQ ID NO: 111 and SEQ ID NO: 190; SEQ ID NO: 111 and SEQ ID NO: 191; SEQ ID NO: 111 and SEQ ID NO: 192; SEQ ID NO: 111 and SEQ ID NO: 193; SEQ ID NO: 111 and SEQ ID NO: 194; SEQ ID NO: 111 and SEQ ID NO: 195; SEQ ID NO: 111 and SEQ ID NO: 196; SEQ ID NO: 111 and SEQ ID NO: 197; SEQ ID NO: 111 and SEQ ID NO: 198; SEQ ID NO: 111 and SEQ ID NO: 199; SEQ ID NO: 111 and SEQ ID NO: 200; SEQ ID NO: 111 and SEQ ID NO: 201; SEQ ID NO: 111 and SEQ ID NO: 202; and SEQ ID NO: 111 and SEQ ID NO: 203.

[0204] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 112 and SEQ ID NO: 179; SEQ ID NO: 112 and SEQ ID NO: 180; SEQ ID NO: 112 and SEQ ID NO: 181; SEQ ID NO: 112 and SEQ ID NO: 182; SEQ ID NO: 112 and SEQ ID NO: 183; SEQ ID NO: 112 and SEQ ID NO: 184; SEQ ID NO: 112 and SEQ ID NO: 185; SEQ ID NO: 112 and SEQ ID NO: 186; SEQ ID NO: 112 and SEQ ID NO: 187; SEQ ID NO: 112 and SEQ ID NO: 188; SEQ ID NO: 112 and SEQ ID NO: 189; SEQ ID NO: 112 and SEQ ID NO: 190; SEQ ID NO: 112 and SEQ ID NO: 191; SEQ ID NO: 112 and SEQ ID NO: 192; SEQ ID NO: 112 and SEQ ID NO: 193; SEQ ID NO: 112 and SEQ ID NO: 194; SEQ ID NO: 112 and SEQ ID NO: 195; SEQ ID NO: 112 and SEQ ID NO: 196; SEQ ID NO: 112 and SEQ ID NO: 197; SEQ ID NO: 112 and SEQ ID NO: 198; SEQ ID NO: 112 and SEQ ID NO: 199; SEQ ID NO: 112 and SEQ ID NO: 200; SEQ ID NO: 112 and SEQ ID NO: 201; SEQ ID NO: 112 and SEQ ID NO: 202; and SEQ ID NO: 112 and SEQ ID NO: 203.

[0205] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 113 and SEQ ID NO: 179; SEQ ID NO: 113 and SEQ ID NO: 180; SEQ ID NO: 113 and SEQ ID NO: 181; SEQ ID NO: 113 and SEQ ID NO: 182; SEQ ID NO: 113 and SEQ ID NO: 183; SEQ ID NO: 113 and SEQ ID NO: 184; SEQ ID NO: 113 and SEQ ID NO: 185; SEQ ID NO: 113 and SEQ ID NO: 186; SEQ ID NO: 113 and SEQ ID NO: 187; SEQ ID NO: 113 and SEQ ID NO: 188; SEQ ID NO: 113 and SEQ ID NO: 189; SEQ ID NO: 113 and SEQ ID NO: 190; SEQ ID NO: 113 and SEQ ID NO: 191; SEQ ID NO: 113 and SEQ ID NO: 192; SEQ ID NO: 113 and SEQ ID NO: 193; SEQ ID NO: 113 and SEQ ID NO: 194; SEQ ID NO: 113 and SEQ ID NO: 195; SEQ ID NO: 113 and SEQ ID NO: 196; SEQ ID NO: 113 and SEQ ID NO: 197; SEQ ID NO: 113 and SEQ ID NO: 198; SEQ ID NO: 113 and SEQ ID NO: 199; SEQ ID NO: 113 and SEQ ID NO: 200; SEQ ID NO: 113 and SEQ ID NO: 201; SEQ ID NO: 113 and SEQ ID NO: 202; and SEQ ID NO: 113 and SEQ ID NO: 203.

[0206] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 114 and SEQ ID NO: 179; SEQ ID NO: 114 and SEQ ID NO: 180; SEQ ID NO: 114 and SEQ ID NO: 181; SEQ ID NO: 114 and SEQ ID NO: 182; SEQ ID NO: 114 and SEQ ID NO: 183; SEQ ID NO: 114 and SEQ ID NO: 184; SEQ ID NO: 114 and SEQ ID NO: 185; SEQ ID NO: 114 and SEQ ID NO: 186; SEQ ID NO: 114 and SEQ ID NO: 187; SEQ ID NO: 114 and SEQ ID NO: 188; SEQ ID NO: 114 and SEQ ID NO: 189; SEQ ID NO: 114 and SEQ ID NO: 190; SEQ ID NO: 114 and SEQ ID NO: 191; SEQ ID NO: 114 and SEQ ID NO: 192; SEQ ID NO: 114 and SEQ ID NO: 193; SEQ ID NO: 114 and SEQ ID NO: 194; SEQ ID NO: 114 and SEQ ID NO: 195; SEQ ID NO: 114 and SEQ ID NO: 196; SEQ ID NO: 114 and SEQ ID NO: 197; SEQ ID NO: 114 and SEQ ID NO: 198; SEQ ID NO: 114 and SEQ ID NO: 199; SEQ ID NO: 114 and SEQ ID NO: 200; SEQ ID NO: 114 and SEQ ID NO: 201; SEQ ID NO: 114 and SEQ ID NO: 202; and SEQ ID NO: 114 and SEQ ID NO: 203.

[0207] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 115 and SEQ ID NO: 179; SEQ ID NO: 115 and SEQ ID NO: 180; SEQ ID NO: 115 and SEQ ID NO: 181; SEQ ID NO: 115 and SEQ ID NO: 182; SEQ ID NO: 115 and SEQ ID NO: 183; SEQ ID NO: 115 and SEQ ID NO: 184; SEQ ID NO: 115 and SEQ ID NO: 185; SEQ ID NO: 115 and SEQ ID NO: 186; SEQ ID NO: 115 and SEQ ID NO: 187; SEQ ID NO: 115 and SEQ ID NO: 188; SEQ ID NO: 115 and SEQ ID NO: 189; SEQ ID NO: 115 and SEQ ID NO: 190; SEQ ID NO: 115 and SEQ ID NO: 191; SEQ ID NO: 115 and SEQ ID NO: 192; SEQ ID NO: 115 and SEQ ID NO: 193; SEQ ID NO: 115 and SEQ ID NO: 194; SEQ ID NO: 115 and SEQ ID NO: 195; SEQ ID NO: 115 and SEQ ID NO: 196; SEQ ID NO: 115 and SEQ ID NO: 197; SEQ ID NO: 115 and SEQ ID NO: 198; SEQ ID NO: 115 and SEQ ID NO: 199; SEQ ID NO: 115 and SEQ ID NO: 200; SEQ ID NO: 115 and SEQ ID NO: 201; SEQ ID NO: 115 and SEQ ID NO: 202; and SEQ ID NO: 115 and SEQ ID NO: 203.

[0208] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 116 and SEQ ID NO: 179; SEQ ID NO: 116 and SEQ ID NO: 180; SEQ ID NO: 116 and SEQ ID NO: 181; SEQ ID NO: 116 and SEQ ID NO: 182; SEQ ID NO: 116 and SEQ ID NO: 183; SEQ ID NO: 116 and SEQ ID NO: 184; SEQ ID NO: 116 and SEQ ID NO: 185; SEQ ID NO: 116 and SEQ ID NO: 186; SEQ ID NO: 116 and SEQ ID NO: 187; SEQ ID NO: 116 and SEQ ID NO: 188; SEQ ID NO: 116 and SEQ ID NO: 189; SEQ ID NO: 116 and SEQ ID NO: 190; SEQ ID NO: 116 and SEQ ID NO: 191; SEQ ID NO: 116 and SEQ ID NO: 192; SEQ ID NO: 116 and SEQ ID NO: 193; SEQ ID NO: 116 and SEQ ID NO: 194; SEQ ID NO: 116 and SEQ ID NO: 195; SEQ ID NO: 116 and SEQ ID NO: 196; SEQ ID NO: 116 and SEQ ID NO: 197; SEQ ID NO: 116 and SEQ ID NO: 198; SEQ ID NO: 116 and SEQ ID NO: 199; SEQ ID NO: 116 and SEQ ID NO: 200; SEQ ID NO: 116 and SEQ ID NO: 201; SEQ ID NO: 116 and SEQ ID NO: 202; and SEQ ID NO: 116 and SEQ ID NO: 203.

[0209] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 117 and SEQ ID NO: 179; SEQ ID NO: 117 and SEQ ID NO: 180; SEQ ID NO: 117 and SEQ ID NO: 181; SEQ ID NO: 117 and SEQ ID NO: 182; SEQ ID NO: 117 and SEQ ID NO: 183; SEQ ID NO: 117 and SEQ ID NO: 184; SEQ ID NO: 117 and SEQ ID NO: 185; SEQ ID NO: 117 and SEQ ID NO: 186; SEQ ID NO: 117 and SEQ ID NO: 187; SEQ ID NO: 117 and SEQ ID NO: 188; SEQ ID NO: 117 and SEQ ID NO: 189; SEQ ID NO: 117 and SEQ ID NO: 190; SEQ ID NO: 117 and SEQ ID NO: 191; SEQ ID NO: 117 and SEQ ID NO: 192; SEQ ID NO: 117 and SEQ ID NO: 193; SEQ ID NO: 117 and SEQ ID NO: 194; SEQ ID NO: 117 and SEQ ID NO: 195; SEQ ID NO: 117 and SEQ ID NO: 196; SEQ ID NO: 117 and SEQ ID NO: 197; SEQ ID NO: 117 and SEQ ID NO: 198; SEQ ID NO: 117 and SEQ ID NO: 199; SEQ ID NO: 117 and SEQ ID NO: 200; SEQ ID NO: 117 and SEQ ID NO: 201; SEQ ID NO: 117 and SEQ ID NO: 202; and SEQ ID NO: 117 and SEQ ID NO: 203.

[0210] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 118 and SEQ ID NO: 179; SEQ ID NO: 118 and SEQ ID NO: 180; SEQ ID NO: 118 and SEQ ID NO: 181; SEQ ID NO: 118 and SEQ ID NO: 182; SEQ ID NO: 118 and SEQ ID NO: 183; SEQ ID NO: 118 and SEQ ID NO: 184; SEQ ID NO: 118 and SEQ ID NO: 185; SEQ ID NO: 118 and SEQ ID NO: 186; SEQ ID NO: 118 and SEQ ID NO: 187; SEQ ID NO: 118 and SEQ ID NO: 188; SEQ ID NO: 118 and SEQ ID NO: 189; SEQ ID NO: 118 and SEQ ID NO: 190; SEQ ID NO: 118 and SEQ ID NO: 191; SEQ ID NO: 118 and SEQ ID NO: 192; SEQ ID NO: 118 and SEQ ID NO: 193; SEQ ID NO: 118 and SEQ ID NO: 194; SEQ ID NO: 118 and SEQ ID NO: 195; SEQ ID NO: 118 and SEQ ID NO: 196; SEQ ID NO: 118 and SEQ ID NO: 197; SEQ ID NO: 118 and SEQ ID NO: 198; SEQ ID NO: 118 and SEQ ID NO: 199; SEQ ID NO: 118 and SEQ ID NO: 200; SEQ ID NO: 118 and SEQ ID NO: 201; SEQ ID NO: 118 and SEQ ID NO: 202; and SEQ ID NO: 118 and SEQ ID NO: 203.

[0211] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 119 and SEQ ID NO: 179; SEQ ID NO: 119 and SEQ ID NO: 180; SEQ ID NO: 119 and SEQ ID NO: 181; SEQ ID NO: 119 and SEQ ID NO: 182; SEQ ID NO: 119 and SEQ ID NO: 183; SEQ ID NO: 119 and SEQ ID NO: 184; SEQ ID NO: 119 and SEQ ID NO: 185; SEQ ID NO: 119 and SEQ ID NO: 186; SEQ ID NO: 119 and SEQ ID NO: 187; SEQ ID NO: 119 and SEQ ID NO: 188; SEQ ID NO: 119 and SEQ ID NO: 189; SEQ ID NO: 119 and SEQ ID NO: 190; SEQ ID NO: 119 and SEQ ID NO: 191; SEQ ID NO: 119 and SEQ ID NO: 192; SEQ ID NO: 119 and SEQ ID NO: 193; SEQ ID NO: 119 and SEQ ID NO: 194; SEQ ID NO: 119 and SEQ ID NO: 195; SEQ ID NO: 119 and SEQ ID NO: 196; SEQ ID NO: 119 and SEQ ID NO: 197; SEQ ID NO: 119 and SEQ ID NO: 198; SEQ ID NO: 119 and SEQ ID NO: 199; SEQ ID NO: 119 and SEQ ID NO: 200; SEQ ID NO: 119 and SEQ ID NO: 201; SEQ ID NO: 119 and SEQ ID NO: 202; and SEQ ID NO: 119 and SEQ ID NO: 203.

[0212] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 120 and SEQ ID NO: 179; SEQ ID NO: 120 and SEQ ID NO: 180; SEQ ID NO: 120 and SEQ ID NO: 181; SEQ ID NO: 120 and SEQ ID NO: 182; SEQ ID NO: 120 and SEQ ID NO: 183; SEQ ID NO: 120 and SEQ ID NO: 184; SEQ ID NO: 120 and SEQ ID NO: 185; SEQ ID NO: 120 and SEQ ID NO: 186; SEQ ID NO: 120 and SEQ ID NO: 187; SEQ ID NO: 120 and SEQ ID NO: 188; SEQ ID NO: 120 and SEQ ID NO: 189; SEQ ID NO: 120 and SEQ ID NO: 190; SEQ ID NO: 120 and SEQ ID NO: 191; SEQ ID NO: 120 and SEQ ID NO: 192; SEQ ID NO: 120 and SEQ ID NO: 193; SEQ ID NO: 120 and SEQ ID NO: 194; SEQ ID NO: 120 and SEQ ID NO: 195; SEQ ID NO: 120 and SEQ ID NO: 196; SEQ ID NO: 120 and SEQ ID NO: 197; SEQ ID NO: 120 and SEQ ID NO: 198; SEQ ID NO: 120 and SEQ ID NO: 199; SEQ ID NO: 120 and SEQ ID NO: 200; SEQ ID NO: 120 and SEQ ID NO: 201; SEQ ID NO: 120 and SEQ ID NO: 202; and SEQ ID NO: 120 and SEQ ID NO: 203.

[0213] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 121 and SEQ ID NO: 179; SEQ ID NO: 121 and SEQ ID NO: 180; SEQ ID NO: 121 and SEQ ID NO: 181; SEQ ID NO: 121 and SEQ ID NO: 182; SEQ ID NO: 121 and SEQ ID NO: 183; SEQ ID NO: 121 and SEQ ID NO: 184; SEQ ID NO: 121 and SEQ ID NO: 185; SEQ ID NO: 121 and SEQ ID NO: 186; SEQ ID NO: 121 and SEQ ID NO: 187; SEQ ID NO: 121 and SEQ ID NO: 188; SEQ ID NO: 121 and SEQ ID NO: 189; SEQ ID NO: 121 and SEQ ID NO: 190; SEQ ID NO: 121 and SEQ ID NO: 191; SEQ ID NO: 121 and SEQ ID NO: 192; SEQ ID NO: 121 and SEQ ID NO: 193; SEQ ID NO: 121 and SEQ ID NO: 194; SEQ ID NO: 121 and SEQ ID NO: 195; SEQ ID NO: 121 and SEQ ID NO: 196; SEQ ID NO: 121 and SEQ ID NO: 197; SEQ ID NO: 121 and SEQ ID NO: 198; SEQ ID NO: 121 and SEQ ID NO: 199; SEQ ID NO: 121 and SEQ ID NO: 200; SEQ ID NO: 121 and SEQ ID NO: 201; SEQ ID NO: 121 and SEQ ID NO: 202; and SEQ ID NO: 121 and SEQ ID NO: 203.

[0214] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 122 and SEQ ID NO: 179; SEQ ID NO: 122 and SEQ ID NO: 180; SEQ ID NO: 122 and SEQ ID NO: 181; SEQ ID NO: 122 and SEQ ID NO: 182; SEQ ID NO: 122 and SEQ ID NO: 183; SEQ ID NO: 122 and SEQ ID NO: 184; SEQ ID NO: 122 and SEQ ID NO: 185; SEQ ID NO: 122 and SEQ ID NO: 186; SEQ ID NO: 122 and SEQ ID NO: 187; SEQ ID NO: 122 and SEQ ID NO: 188; SEQ ID NO: 122 and SEQ ID NO: 189; SEQ ID NO: 122 and SEQ ID NO: 190; SEQ ID NO: 122 and SEQ ID NO: 191; SEQ ID NO: 122 and SEQ ID NO: 192; SEQ ID NO: 122 and SEQ ID NO: 193; SEQ ID NO: 122 and SEQ ID NO: 194; SEQ ID NO: 122 and SEQ ID NO: 195; SEQ ID NO: 122 and SEQ ID NO: 196; SEQ ID NO: 122 and SEQ ID NO: 197; SEQ ID NO: 122 and SEQ ID NO: 198; SEQ ID NO: 122 and SEQ ID NO: 199; SEQ ID NO: 122 and SEQ ID NO: 200; SEQ ID NO: 122 and SEQ ID NO: 201; SEQ ID NO: 122 and SEQ ID NO: 202; and SEQ ID NO: 122 and SEQ ID NO: 203.

[0215] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 123 and SEQ ID NO: 179; SEQ ID NO: 123 and SEQ ID NO: 180; SEQ ID NO: 123 and SEQ ID NO: 181; SEQ ID NO: 123 and SEQ ID NO: 182; SEQ ID NO: 123 and SEQ ID NO: 183; SEQ ID NO: 123 and SEQ ID NO: 184; SEQ ID NO: 123 and SEQ ID NO: 185; SEQ ID NO: 123 and SEQ ID NO: 186; SEQ ID NO: 123 and SEQ ID NO: 187; SEQ ID NO: 123 and SEQ ID NO: 188; SEQ ID NO: 123 and SEQ ID NO: 189; SEQ ID NO: 123 and SEQ ID NO: 190; SEQ ID NO: 123 and SEQ ID NO: 191; SEQ ID NO: 123 and SEQ ID NO: 192; SEQ ID NO: 123 and SEQ ID NO: 193; SEQ ID NO: 123 and SEQ ID NO: 194; SEQ ID NO: 123 and SEQ ID NO: 195; SEQ ID NO: 123 and SEQ ID NO: 196; SEQ ID NO: 123 and SEQ ID NO: 197; SEQ ID NO: 123 and SEQ ID NO: 198; SEQ ID NO: 123 and SEQ ID NO: 199; SEQ ID NO: 123 and SEQ ID NO: 200; SEQ ID NO: 123 and SEQ ID NO: 201; SEQ ID NO: 123 and SEQ ID NO: 202; and SEQ ID NO: 123 and SEQ ID NO: 203.

[0216] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 124 and SEQ ID NO: 179; SEQ ID NO: 124 and SEQ ID NO: 180; SEQ ID NO: 124 and SEQ ID NO: 181; SEQ ID NO: 124 and SEQ ID NO: 182; SEQ ID NO: 124 and SEQ ID NO: 183; SEQ ID NO: 124 and SEQ ID NO: 184; SEQ ID NO: 124 and SEQ ID NO: 185; SEQ ID NO: 124 and SEQ ID NO: 186; SEQ ID NO: 124 and SEQ ID NO: 187; SEQ ID NO: 124 and SEQ ID NO: 188; SEQ ID NO: 124 and SEQ ID NO: 189; SEQ ID NO: 124 and SEQ ID NO: 190; SEQ ID NO: 124 and SEQ ID NO: 191; SEQ ID NO: 124 and SEQ ID NO: 192; SEQ ID NO: 124 and SEQ ID NO: 193; SEQ ID NO: 124 and SEQ ID NO: 194; SEQ ID NO: 124 and SEQ ID NO: 195; SEQ ID NO: 124 and SEQ ID NO: 196; SEQ ID NO: 124 and SEQ ID NO: 197; SEQ ID NO: 124 and SEQ ID NO: 198; SEQ ID NO: 124 and SEQ ID NO: 199; SEQ ID NO: 124 and SEQ ID NO: 200; SEQ ID NO: 124 and SEQ ID NO: 201; SEQ ID NO: 124 and SEQ ID NO: 202; and SEQ ID NO: 124 and SEQ ID NO: 203.

[0217] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 125 and SEQ ID NO: 179; SEQ ID NO: 125 and SEQ ID NO: 180; SEQ ID NO: 125 and SEQ ID NO: 181; SEQ ID NO: 125 and SEQ ID NO: 182; SEQ ID NO: 125 and SEQ ID NO: 183; SEQ ID NO: 125 and SEQ ID NO: 184; SEQ ID NO: 125 and SEQ ID NO: 185; SEQ ID NO: 125 and SEQ ID NO: 186; SEQ ID NO: 125 and SEQ ID NO: 187; SEQ ID NO: 125 and SEQ ID NO: 188; SEQ ID NO: 125 and SEQ ID NO: 189; SEQ ID NO: 125 and SEQ ID NO: 190; SEQ ID NO: 125 and SEQ ID NO: 191; SEQ ID NO: 125 and SEQ ID NO: 192; SEQ ID NO: 125 and SEQ ID NO: 193; SEQ ID NO: 125 and SEQ ID NO: 194; SEQ ID NO: 125 and SEQ ID NO: 195; SEQ ID NO: 125 and SEQ ID NO: 196; SEQ ID NO: 125 and SEQ ID NO: 197; SEQ ID NO: 125 and SEQ ID NO: 198; SEQ ID NO: 125 and SEQ ID NO: 199; SEQ ID NO: 125 and SEQ ID NO: 200; SEQ ID NO: 125 and SEQ ID NO: 201; SEQ ID NO: 125 and SEQ ID NO: 202; and SEQ ID NO: 125 and SEQ ID NO: 203.

[0218] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 126 and SEQ ID NO: 179; SEQ ID NO: 126 and SEQ ID NO: 180; SEQ ID NO: 126 and SEQ ID NO: 181; SEQ ID NO: 126 and SEQ ID NO: 182; SEQ ID NO: 126 and SEQ ID NO: 183; SEQ ID NO: 126 and SEQ ID NO: 184; SEQ ID NO: 126 and SEQ ID NO: 185; SEQ ID NO: 126 and SEQ ID NO: 186; SEQ ID NO: 126 and SEQ ID NO: 187; SEQ ID NO: 126 and SEQ ID NO: 188; SEQ ID NO: 126 and SEQ ID NO: 189; SEQ ID NO: 126 and SEQ ID NO: 190; SEQ ID NO: 126 and SEQ ID NO: 191; SEQ ID NO: 126 and SEQ ID NO: 192; SEQ ID NO: 126 and SEQ ID NO: 193; SEQ ID NO: 126 and SEQ ID NO: 194; SEQ ID NO: 126 and SEQ ID NO: 195; SEQ ID NO: 126 and SEQ ID NO: 196; SEQ ID NO: 126 and SEQ ID NO: 197; SEQ ID NO: 126 and SEQ ID NO: 198; SEQ ID NO: 126 and SEQ ID NO: 199; SEQ ID NO: 126 and SEQ ID NO: 200; SEQ ID NO: 126 and SEQ ID NO: 201; SEQ ID NO: 126 and SEQ ID NO: 202; and SEQ ID NO: 126 and SEQ ID NO: 203.

[0219] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 127 and SEQ ID NO: 179; SEQ ID NO: 127 and SEQ ID NO: 180; SEQ ID NO: 127 and SEQ ID NO: 181; SEQ ID NO: 127 and SEQ ID NO: 182; SEQ ID NO: 127 and SEQ ID NO: 183; SEQ ID NO: 127 and SEQ ID NO: 184; SEQ ID NO: 127 and SEQ ID NO: 185; SEQ ID NO: 127 and SEQ ID NO: 186; SEQ ID NO: 127 and SEQ ID NO: 187; SEQ ID NO: 127 and SEQ ID NO: 188; SEQ ID NO: 127 and SEQ ID NO: 189; SEQ ID NO: 127 and SEQ ID NO: 190; SEQ ID NO: 127 and SEQ ID NO: 191; SEQ ID NO: 127 and SEQ ID NO: 192; SEQ ID NO: 127 and SEQ ID NO: 193; SEQ ID NO: 127 and SEQ ID NO: 194; SEQ ID NO: 127 and SEQ ID NO: 195; SEQ ID NO: 127 and SEQ ID NO: 196; SEQ ID NO: 127 and SEQ ID NO: 197; SEQ ID NO: 127 and SEQ ID NO: 198; SEQ ID NO: 127 and SEQ ID NO: 199; SEQ ID NO: 127 and SEQ ID NO: 200; SEQ ID NO: 127 and SEQ ID NO: 201; SEQ ID NO: 127 and SEQ ID NO: 202; and SEQ ID NO: 127 and SEQ ID NO: 203.

[0220] In some aspects, the CDR-H3-CDR-L3 pairs are selected from SEQ ID NO: 128 and SEQ ID NO: 179; SEQ ID NO: 128 and SEQ ID NO: 180; SEQ ID NO: 128 and SEQ ID NO: 181; SEQ ID NO: 128 and SEQ ID NO: 182; SEQ ID NO: 128 and SEQ ID NO: 183; SEQ ID NO: 128 and SEQ ID NO: 184; SEQ ID NO: 128 and SEQ ID NO: 185; SEQ ID NO: 128 and SEQ ID NO: 186; SEQ ID NO: 128 and SEQ ID NO: 187; SEQ ID NO: 128 and SEQ ID NO: 188; SEQ ID NO: 128 and SEQ ID NO: 189; SEQ ID NO: 128 and SEQ ID NO: 190; SEQ ID NO: 128 and SEQ ID NO: 191; SEQ ID NO: 128 and SEQ ID NO: 192; SEQ ID NO: 128 and SEQ ID NO: 193; SEQ ID NO: 128 and SEQ ID NO: 194; SEQ ID NO: 128 and SEQ ID NO: 195; SEQ ID NO: 128 and SEQ ID NO: 196; SEQ ID NO: 128 and SEQ ID NO: 197; SEQ ID NO: 128 and SEQ ID NO: 198; SEQ ID NO: 128 and SEQ ID NO: 199; SEQ ID NO: 128 and SEQ ID NO: 200; SEQ ID NO: 128 and SEQ ID NO: 201; SEQ ID NO: 128 and SEQ ID NO: 202; and SEQ ID NO: 128 and SEQ ID NO: 203.

[0221] 2.7.1.1. Variants of CDR-H3-CDR-L3 Pairs

[0222] In some embodiments, the CDR-H3-CDR-L3 pairs provided herein comprise a variant of an illustrative CDR-H3 and/or CDR-L1 sequence provided in this disclosure.

[0223] In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-H3 sequence provided in this disclosure. In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-H3 sequences provided in this disclosure. In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-H3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0224] In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L3 sequence provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L3 sequences provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0225] 2.7.1.2. Excluded CDR-H3-CDR-L3 Pairs

[0226] In some embodiments, the CDR-H3-CDR-L3 pairs provided herein do not comprise certain CDR-H3-CDR-L3 pairs.

[0227] In some aspects, the CDR-H3 sequence is not selected from SEQ ID NOs: 306-310, and the CDR-L3 sequence is not selected from SEQ ID NOs: 321-325.

[0228] In some aspects, the CDR-H3-CDR-L3 pairs are not selected from SEQ ID NO: 306 and SEQ ID NO: 321; SEQ ID NO: 306 and SEQ ID NO: 322; SEQ ID NO: 306 and SEQ ID NO: 323; SEQ ID NO: 306 and SEQ ID NO: 324; and SEQ ID NO: 306 and SEQ ID NO: 325.

[0229] In some aspects, the CDR-H3-CDR-L3 pairs are not selected from SEQ ID NO: 307 and SEQ ID NO: 321; SEQ ID NO: 307 and SEQ ID NO: 322; SEQ ID NO: 307 and SEQ ID NO: 323; SEQ ID NO: 307 and SEQ ID NO: 324; and SEQ ID NO: 307 and SEQ ID NO: 325.

[0230] In some aspects, the CDR-H3-CDR-L3 pairs are not selected from SEQ ID NO: 308 and SEQ ID NO: 321; SEQ ID NO: 308 and SEQ ID NO: 322; SEQ ID NO: 308 and SEQ ID NO: 323; SEQ ID NO: 308 and SEQ ID NO: 324; and SEQ ID NO: 308 and SEQ ID NO: 325.

[0231] In some aspects, the CDR-H3-CDR-L3 pairs are not selected from SEQ ID NO: 309 and SEQ ID NO: 321; SEQ ID NO: 309 and SEQ ID NO: 322; SEQ ID NO: 309 and SEQ ID NO: 323; SEQ ID NO: 309 and SEQ ID NO: 324; and SEQ ID NO: 309 and SEQ ID NO: 325.

[0232] In some aspects, the CDR-H3-CDR-L3 pairs are not selected from SEQ ID NO: 310 and SEQ ID NO: 321; SEQ ID NO: 310 and SEQ ID NO: 322; SEQ ID NO: 310 and SEQ ID NO: 323; SEQ ID NO: 310 and SEQ ID NO: 324; and SEQ ID NO: 310 and SEQ ID NO: 325.

[0233] 2.7.2. CDR-H1-CDR-L1 Pairs

[0234] In some embodiments, the antibody comprises a CDR-H1 sequence and a CDR-L1 sequence. In some aspects, the CDR-H1 sequence is part of a V.sub.H and the CDR-L1 sequence is part of a V.sub.L.

[0235] In some aspects, the CDR-H1 sequence is a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 4-28, and the CDR-L1 sequence is a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 129-153.

[0236] In some aspects, the CDR-H1 sequence is a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 29-53, and the CDR-L1 sequence is a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 129-153.

[0237] 2.7.2.1. Variants of CDR-H1-CDR-L1 Pairs

[0238] In some embodiments, the CDR-H1-CDR-L1 pairs provided herein comprise a variant of an illustrative CDR-H1 and/or CDR-L1 sequence provided in this disclosure.

[0239] In some aspects, the CDR-H1 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-H1 sequence provided in this disclosure. In some aspects, the CDR-H1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-H1 sequences provided in this disclosure. In some aspects, the CDR-H1 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-H1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0240] In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L1 sequence provided in this disclosure. In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L1 sequences provided in this disclosure. In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0241] 2.7.2.2. Excluded CDR-H1-CDR-L1 Pairs

[0242] In some embodiments, the CDR-H1-CDR-L1 pairs provided herein do not comprise certain CDR-H1-CDR-L1 pairs.

[0243] In some aspects, the Chothia CDR-H1 sequence is not selected from SEQ ID NOs: 286-290, and the CDR-L1 sequence is not selected from SEQ ID NOs: 311-315. In some aspects, the Kabat CDR-H1 sequence is not selected from SEQ ID NOs: 290-295, and the CDR-L1 sequence is not selected from SEQ ID NOs: 311-315.

[0244] 2.7.3. CDR-H2-CDR-L2 Pairs

[0245] In some embodiments, the antibody comprises a CDR-H2 sequence and a CDR-L2 sequence. In some aspects, the CDR-H2 sequence is part of a V.sub.H and the CDR-L2 sequence is part of a V.sub.L.

[0246] In some aspects, the CDR-H2 sequence is a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 54-78, and the CDR-L2 sequence is a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 154-178.

[0247] In some aspects, the CDR-H1 sequence is a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 79-103, and the CDR-L2 sequence is a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 154-178.

[0248] 2.7.3.1. Variants of CDR-H2-CDR-L2 Pairs

[0249] In some embodiments, the CDR-H2-CDR-L2 pairs provided herein comprise a variant of an illustrative CDR-H2 and/or CDR-L2 sequence provided in this disclosure.

[0250] In some aspects, the CDR-H2 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-H2 sequence provided in this disclosure. In some aspects, the CDR-H2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-H2 sequences provided in this disclosure. In some aspects, the CDR-H2 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-H2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0251] In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L2 sequence provided in this disclosure. In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L2 sequences provided in this disclosure. In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0252] 2.7.3.2. Excluded CDR-H2-CDR-L2 Pairs

[0253] In some embodiments, the CDR-H2-CDR-L2 pairs provided herein do not comprise certain CDR-H2-CDR-L2 pairs.

[0254] In some aspects, the Chothia CDR-H2 sequence is not selected from SEQ ID NOs: 296-300, and the CDR-L2 sequence is not selected from SEQ ID NOs: 316-320. In some aspects, the Kabat CDR-H2 sequence is not selected from SEQ ID NOs: 301-305, and the CDR-L2 sequence is not selected from SEQ ID NOs: 316-320.

[0255] 2.7.4. V.sub.H V.sub.L Pairs

[0256] In some embodiments, the antibody comprises a V.sub.H sequence and a V.sub.L sequence.

[0257] In some aspects, the V.sub.H sequence is a V.sub.H sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 229-253, and the V.sub.L sequence is a V.sub.L sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 254-278.

[0258] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 229 and SEQ ID NO: 254; SEQ ID NO: 229 and SEQ ID NO: 255; SEQ ID NO: 229 and SEQ ID NO: 256; SEQ ID NO: 229 and SEQ ID NO: 257; SEQ ID NO: 229 and SEQ ID NO: 258; SEQ ID NO: 229 and SEQ ID NO: 259; SEQ ID NO: 229 and SEQ ID NO: 260; SEQ ID NO: 229 and SEQ ID NO: 261; SEQ ID NO: 229 and SEQ ID NO: 262; SEQ ID NO: 229 and SEQ ID NO: 263; SEQ ID NO: 229 and SEQ ID NO: 264; SEQ ID NO: 229 and SEQ ID NO: 265; SEQ ID NO: 229 and SEQ ID NO: 266; SEQ ID NO: 229 and SEQ ID NO: 267; SEQ ID NO: 229 and SEQ ID NO: 268; SEQ ID NO: 229 and SEQ ID NO: 269; SEQ ID NO: 229 and SEQ ID NO: 270; SEQ ID NO: 229 and SEQ ID NO: 271; SEQ ID NO: 229 and SEQ ID NO: 272; SEQ ID NO: 229 and SEQ ID NO: 273; SEQ ID NO: 229 and SEQ ID NO: 274; SEQ ID NO: 229 and SEQ ID NO: 275; SEQ ID NO: 229 and SEQ ID NO: 276; SEQ ID NO: 229 and SEQ ID NO: 277; and SEQ ID NO: 229 and SEQ ID NO: 278.

[0259] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 230 and SEQ ID NO: 254; SEQ ID NO: 230 and SEQ ID NO: 255; SEQ ID NO: 230 and SEQ ID NO: 256; SEQ ID NO: 230 and SEQ ID NO: 257; SEQ ID NO: 230 and SEQ ID NO: 258; SEQ ID NO: 230 and SEQ ID NO: 259; SEQ ID NO: 230 and SEQ ID NO: 260; SEQ ID NO: 230 and SEQ ID NO: 261; SEQ ID NO: 230 and SEQ ID NO: 262; SEQ ID NO: 230 and SEQ ID NO: 263; SEQ ID NO: 230 and SEQ ID NO: 264; SEQ ID NO: 230 and SEQ ID NO: 265; SEQ ID NO: 230 and SEQ ID NO: 266; SEQ ID NO: 230 and SEQ ID NO: 267; SEQ ID NO: 230 and SEQ ID NO: 268; SEQ ID NO: 230 and SEQ ID NO: 269; SEQ ID NO: 230 and SEQ ID NO: 270; SEQ ID NO: 230 and SEQ ID NO: 271; SEQ ID NO: 230 and SEQ ID NO: 272; SEQ ID NO: 230 and SEQ ID NO: 273; SEQ ID NO: 230 and SEQ ID NO: 274; SEQ ID NO: 230 and SEQ ID NO: 275; SEQ ID NO: 230 and SEQ ID NO: 276; SEQ ID NO: 230 and SEQ ID NO: 277; and SEQ ID NO: 230 and SEQ ID NO: 278.

[0260] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 231 and SEQ ID NO: 254; SEQ ID NO: 231 and SEQ ID NO: 255; SEQ ID NO: 231 and SEQ ID NO: 256; SEQ ID NO: 231 and SEQ ID NO: 257; SEQ ID NO: 231 and SEQ ID NO: 258; SEQ ID NO: 231 and SEQ ID NO: 259; SEQ ID NO: 231 and SEQ ID NO: 260; SEQ ID NO: 231 and SEQ ID NO: 261; SEQ ID NO: 231 and SEQ ID NO: 262; SEQ ID NO: 231 and SEQ ID NO: 263; SEQ ID NO: 231 and SEQ ID NO: 264; SEQ ID NO: 231 and SEQ ID NO: 265; SEQ ID NO: 231 and SEQ ID NO: 266; SEQ ID NO: 231 and SEQ ID NO: 267; SEQ ID NO: 231 and SEQ ID NO: 268; SEQ ID NO: 231 and SEQ ID NO: 269; SEQ ID NO: 231 and SEQ ID NO: 270; SEQ ID NO: 231 and SEQ ID NO: 271; SEQ ID NO: 231 and SEQ ID NO: 272; SEQ ID NO: 231 and SEQ ID NO: 273; SEQ ID NO: 231 and SEQ ID NO: 274; SEQ ID NO: 231 and SEQ ID NO: 275; SEQ ID NO: 231 and SEQ ID NO: 276; SEQ ID NO: 231 and SEQ ID NO: 277; and SEQ ID NO: 231 and SEQ ID NO: 278.

[0261] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 232 and SEQ ID NO: 254; SEQ ID NO: 232 and SEQ ID NO: 255; SEQ ID NO: 232 and SEQ ID NO: 256; SEQ ID NO: 232 and SEQ ID NO: 257; SEQ ID NO: 232 and SEQ ID NO: 258; SEQ ID NO: 232 and SEQ ID NO: 259; SEQ ID NO: 232 and SEQ ID NO: 260; SEQ ID NO: 232 and SEQ ID NO: 261; SEQ ID NO: 232 and SEQ ID NO: 262; SEQ ID NO: 232 and SEQ ID NO: 263; SEQ ID NO: 232 and SEQ ID NO: 264; SEQ ID NO: 232 and SEQ ID NO: 265; SEQ ID NO: 232 and SEQ ID NO: 266; SEQ ID NO: 232 and SEQ ID NO: 267; SEQ ID NO: 232 and SEQ ID NO: 268; SEQ ID NO: 232 and SEQ ID NO: 269; SEQ ID NO: 232 and SEQ ID NO: 270; SEQ ID NO: 232 and SEQ ID NO: 271; SEQ ID NO: 232 and SEQ ID NO: 272; SEQ ID NO: 232 and SEQ ID NO: 273; SEQ ID NO: 232 and SEQ ID NO: 274; SEQ ID NO: 232 and SEQ ID NO: 275; SEQ ID NO: 232 and SEQ ID NO: 276; SEQ ID NO: 232 and SEQ ID NO: 277; and SEQ ID NO: 232 and SEQ ID NO: 278.

[0262] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 233 and SEQ ID NO: 254; SEQ ID NO: 233 and SEQ ID NO: 255; SEQ ID NO: 233 and SEQ ID NO: 256; SEQ ID NO: 233 and SEQ ID NO: 257; SEQ ID NO: 233 and SEQ ID NO: 258; SEQ ID NO: 233 and SEQ ID NO: 259; SEQ ID NO: 233 and SEQ ID NO: 260; SEQ ID NO: 233 and SEQ ID NO: 261; SEQ ID NO: 233 and SEQ ID NO: 262; SEQ ID NO: 233 and SEQ ID NO: 263; SEQ ID NO: 233 and SEQ ID NO: 264; SEQ ID NO: 233 and SEQ ID NO: 265; SEQ ID NO: 233 and SEQ ID NO: 266; SEQ ID NO: 233 and SEQ ID NO: 267; SEQ ID NO: 233 and SEQ ID NO: 268; SEQ ID NO: 233 and SEQ ID NO: 269; SEQ ID NO: 233 and SEQ ID NO: 270; SEQ ID NO: 233 and SEQ ID NO: 271; SEQ ID NO: 233 and SEQ ID NO: 272; SEQ ID NO: 233 and SEQ ID NO: 273; SEQ ID NO: 233 and SEQ ID NO: 274; SEQ ID NO: 233 and SEQ ID NO: 275; SEQ ID NO: 233 and SEQ ID NO: 276; SEQ ID NO: 233 and SEQ ID NO: 277; and SEQ ID NO: 233 and SEQ ID NO: 278.

[0263] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 234 and SEQ ID NO: 254; SEQ ID NO: 234 and SEQ ID NO: 255; SEQ ID NO: 234 and SEQ ID NO: 256; SEQ ID NO: 234 and SEQ ID NO: 257; SEQ ID NO: 234 and SEQ ID NO: 258; SEQ ID NO: 234 and SEQ ID NO: 259; SEQ ID NO: 234 and SEQ ID NO: 260; SEQ ID NO: 234 and SEQ ID NO: 261; SEQ ID NO: 234 and SEQ ID NO: 262; SEQ ID NO: 234 and SEQ ID NO: 263; SEQ ID NO: 234 and SEQ ID NO: 264; SEQ ID NO: 234 and SEQ ID NO: 265; SEQ ID NO: 234 and SEQ ID NO: 266; SEQ ID NO: 234 and SEQ ID NO: 267; SEQ ID NO: 234 and SEQ ID NO: 268; SEQ ID NO: 234 and SEQ ID NO: 269; SEQ ID NO: 234 and SEQ ID NO: 270; SEQ ID NO: 234 and SEQ ID NO: 271; SEQ ID NO: 234 and SEQ ID NO: 272; SEQ ID NO: 234 and SEQ ID NO: 273; SEQ ID NO: 234 and SEQ ID NO: 274; SEQ ID NO: 234 and SEQ ID NO: 275; SEQ ID NO: 234 and SEQ ID NO: 276; SEQ ID NO: 234 and SEQ ID NO: 277; and SEQ ID NO: 234 and SEQ ID NO: 278.

[0264] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 235 and SEQ ID NO: 254; SEQ ID NO: 235 and SEQ ID NO: 255; SEQ ID NO: 235 and SEQ ID NO: 256; SEQ ID NO: 235 and SEQ ID NO: 257; SEQ ID NO: 235 and SEQ ID NO: 258; SEQ ID NO: 235 and SEQ ID NO: 259; SEQ ID NO: 235 and SEQ ID NO: 260; SEQ ID NO: 235 and SEQ ID NO: 261; SEQ ID NO: 235 and SEQ ID NO: 262; SEQ ID NO: 235 and SEQ ID NO: 263; SEQ ID NO: 235 and SEQ ID NO: 264; SEQ ID NO: 235 and SEQ ID NO: 265; SEQ ID NO: 235 and SEQ ID NO: 266; SEQ ID NO: 235 and SEQ ID NO: 267; SEQ ID NO: 235 and SEQ ID NO: 268; SEQ ID NO: 235 and SEQ ID NO: 269; SEQ ID NO: 235 and SEQ ID NO: 270; SEQ ID NO: 235 and SEQ ID NO: 271; SEQ ID NO: 235 and SEQ ID NO: 272; SEQ ID NO: 235 and SEQ ID NO: 273; SEQ ID NO: 235 and SEQ ID NO: 274; SEQ ID NO: 235 and SEQ ID NO: 275; SEQ ID NO: 235 and SEQ ID NO: 276; SEQ ID NO: 235 and SEQ ID NO: 277; and SEQ ID NO: 235 and SEQ ID NO: 278.

[0265] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 236 and SEQ ID NO: 254; SEQ ID NO: 236 and SEQ ID NO: 255; SEQ ID NO: 236 and SEQ ID NO: 256; SEQ ID NO: 236 and SEQ ID NO: 257; SEQ ID NO: 236 and SEQ ID NO: 258; SEQ ID NO: 236 and SEQ ID NO: 259; SEQ ID NO: 236 and SEQ ID NO: 260; SEQ ID NO: 236 and SEQ ID NO: 261; SEQ ID NO: 236 and SEQ ID NO: 262; SEQ ID NO: 236 and SEQ ID NO: 263; SEQ ID NO: 236 and SEQ ID NO: 264; SEQ ID NO: 236 and SEQ ID NO: 265; SEQ ID NO: 236 and SEQ ID NO: 266; SEQ ID NO: 236 and SEQ ID NO: 267; SEQ ID NO: 236 and SEQ ID NO: 268; SEQ ID NO: 236 and SEQ ID NO: 269; SEQ ID NO: 236 and SEQ ID NO: 270; SEQ ID NO: 236 and SEQ ID NO: 271; SEQ ID NO: 236 and SEQ ID NO: 272; SEQ ID NO: 236 and SEQ ID NO: 273; SEQ ID NO: 236 and SEQ ID NO: 274; SEQ ID NO: 236 and SEQ ID NO: 275; SEQ ID NO: 236 and SEQ ID NO: 276; SEQ ID NO: 236 and SEQ ID NO: 277; and SEQ ID NO: 236 and SEQ ID NO: 278.

[0266] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 237 and SEQ ID NO: 254; SEQ ID NO: 237 and SEQ ID NO: 255; SEQ ID NO: 237 and SEQ ID NO: 256; SEQ ID NO: 237 and SEQ ID NO: 257; SEQ ID NO: 237 and SEQ ID NO: 258; SEQ ID NO: 237 and SEQ ID NO: 259; SEQ ID NO: 237 and SEQ ID NO: 260; SEQ ID NO: 237 and SEQ ID NO: 261; SEQ ID NO: 237 and SEQ ID NO: 262; SEQ ID NO: 237 and SEQ ID NO: 263; SEQ ID NO: 237 and SEQ ID NO: 264; SEQ ID NO: 237 and SEQ ID NO: 265; SEQ ID NO: 237 and SEQ ID NO: 266; SEQ ID NO: 237 and SEQ ID NO: 267; SEQ ID NO: 237 and SEQ ID NO: 268; SEQ ID NO: 237 and SEQ ID NO: 269; SEQ ID NO: 237 and SEQ ID NO: 270; SEQ ID NO: 237 and SEQ ID NO: 271; SEQ ID NO: 237 and SEQ ID NO: 272; SEQ ID NO: 237 and SEQ ID NO: 273; SEQ ID NO: 237 and SEQ ID NO: 274; SEQ ID NO: 237 and SEQ ID NO: 275; SEQ ID NO: 237 and SEQ ID NO: 276; SEQ ID NO: 237 and SEQ ID NO: 277; and SEQ ID NO: 237 and SEQ ID NO: 278.

[0267] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 238 and SEQ ID NO: 254; SEQ ID NO: 238 and SEQ ID NO: 255; SEQ ID NO: 238 and SEQ ID NO: 256; SEQ ID NO: 238 and SEQ ID NO: 257; SEQ ID NO: 238 and SEQ ID NO: 258; SEQ ID NO: 238 and SEQ ID NO: 259; SEQ ID NO: 238 and SEQ ID NO: 260; SEQ ID NO: 238 and SEQ ID NO: 261; SEQ ID NO: 238 and SEQ ID NO: 262; SEQ ID NO: 238 and SEQ ID NO: 263; SEQ ID NO: 238 and SEQ ID NO: 264; SEQ ID NO: 238 and SEQ ID NO: 265; SEQ ID NO: 238 and SEQ ID NO: 266; SEQ ID NO: 238 and SEQ ID NO: 267; SEQ ID NO: 238 and SEQ ID NO: 268; SEQ ID NO: 238 and SEQ ID NO: 269; SEQ ID NO: 238 and SEQ ID NO: 270; SEQ ID NO: 238 and SEQ ID NO: 271; SEQ ID NO: 238 and SEQ ID NO: 272; SEQ ID NO: 238 and SEQ ID NO: 273; SEQ ID NO: 238 and SEQ ID NO: 274; SEQ ID NO: 238 and SEQ ID NO: 275; SEQ ID NO: 238 and SEQ ID NO: 276; SEQ ID NO: 238 and SEQ ID NO: 277; and SEQ ID NO: 238 and SEQ ID NO: 278.

[0268] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 239 and SEQ ID NO: 254; SEQ ID NO: 239 and SEQ ID NO: 255; SEQ ID NO: 239 and SEQ ID NO: 256; SEQ ID NO: 239 and SEQ ID NO: 257; SEQ ID NO: 239 and SEQ ID NO: 258; SEQ ID NO: 239 and SEQ ID NO: 259; SEQ ID NO: 239 and SEQ ID NO: 260; SEQ ID NO: 239 and SEQ ID NO: 261; SEQ ID NO: 239 and SEQ ID NO: 262; SEQ ID NO: 239 and SEQ ID NO: 263; SEQ ID NO: 239 and SEQ ID NO: 264; SEQ ID NO: 239 and SEQ ID NO: 265; SEQ ID NO: 239 and SEQ ID NO: 266; SEQ ID NO: 239 and SEQ ID NO: 267; SEQ ID NO: 239 and SEQ ID NO: 268; SEQ ID NO: 239 and SEQ ID NO: 269; SEQ ID NO: 239 and SEQ ID NO: 270; SEQ ID NO: 239 and SEQ ID NO: 271; SEQ ID NO: 239 and SEQ ID NO: 272; SEQ ID NO: 239 and SEQ ID NO: 273; SEQ ID NO: 239 and SEQ ID NO: 274; SEQ ID NO: 239 and SEQ ID NO: 275; SEQ ID NO: 239 and SEQ ID NO: 276; SEQ ID NO: 239 and SEQ ID NO: 277; and SEQ ID NO: 239 and SEQ ID NO: 278.

[0269] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 240 and SEQ ID NO: 254; SEQ ID NO: 240 and SEQ ID NO: 255; SEQ ID NO: 240 and SEQ ID NO: 256; SEQ ID NO: 240 and SEQ ID NO: 257; SEQ ID NO: 240 and SEQ ID NO: 258; SEQ ID NO: 240 and SEQ ID NO: 259; SEQ ID NO: 240 and SEQ ID NO: 260; SEQ ID NO: 240 and SEQ ID NO: 261; SEQ ID NO: 240 and SEQ ID NO: 262; SEQ ID NO: 240 and SEQ ID NO: 263; SEQ ID NO: 240 and SEQ ID NO: 264; SEQ ID NO: 240 and SEQ ID NO: 265; SEQ ID NO: 240 and SEQ ID NO: 266; SEQ ID NO: 240 and SEQ ID NO: 267; SEQ ID NO: 240 and SEQ ID NO: 268; SEQ ID NO: 240 and SEQ ID NO: 269; SEQ ID NO: 240 and SEQ ID NO: 270; SEQ ID NO: 240 and SEQ ID NO: 271; SEQ ID NO: 240 and SEQ ID NO: 272; SEQ ID NO: 240 and SEQ ID NO: 273; SEQ ID NO: 240 and SEQ ID NO: 274; SEQ ID NO: 240 and SEQ ID NO: 275; SEQ ID NO: 240 and SEQ ID NO: 276; SEQ ID NO: 240 and SEQ ID NO: 277; and SEQ ID NO: 240 and SEQ ID NO: 278.

[0270] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 241 and SEQ ID NO: 254; SEQ ID NO: 241 and SEQ ID NO: 255; SEQ ID NO: 241 and SEQ ID NO: 256; SEQ ID NO: 241 and SEQ ID NO: 257; SEQ ID NO: 241 and SEQ ID NO: 258; SEQ ID NO: 241 and SEQ ID NO: 259; SEQ ID NO: 241 and SEQ ID NO: 260; SEQ ID NO: 241 and SEQ ID NO: 261; SEQ ID NO: 241 and SEQ ID NO: 262; SEQ ID NO: 241 and SEQ ID NO: 263; SEQ ID NO: 241 and SEQ ID NO: 264; SEQ ID NO: 241 and SEQ ID NO: 265; SEQ ID NO: 241 and SEQ ID NO: 266; SEQ ID NO: 241 and SEQ ID NO: 267; SEQ ID NO: 241 and SEQ ID NO: 268; SEQ ID NO: 241 and SEQ ID NO: 269; SEQ ID NO: 241 and SEQ ID NO: 270; SEQ ID NO: 241 and SEQ ID NO: 271; SEQ ID NO: 241 and SEQ ID NO: 272; SEQ ID NO: 241 and SEQ ID NO: 273; SEQ ID NO: 241 and SEQ ID NO: 274; SEQ ID NO: 241 and SEQ ID NO: 275; SEQ ID NO: 241 and SEQ ID NO: 276; SEQ ID NO: 241 and SEQ ID NO: 277; and SEQ ID NO: 241 and SEQ ID NO: 278.

[0271] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 242 and SEQ ID NO: 254; SEQ ID NO: 242 and SEQ ID NO: 255; SEQ ID NO: 242 and SEQ ID NO: 256; SEQ ID NO: 242 and SEQ ID NO: 257; SEQ ID NO: 242 and SEQ ID NO: 258; SEQ ID NO: 242 and SEQ ID NO: 259; SEQ ID NO: 242 and SEQ ID NO: 260; SEQ ID NO: 242 and SEQ ID NO: 261; SEQ ID NO: 242 and SEQ ID NO: 262; SEQ ID NO: 242 and SEQ ID NO: 263; SEQ ID NO: 242 and SEQ ID NO: 264; SEQ ID NO: 242 and SEQ ID NO: 265; SEQ ID NO: 242 and SEQ ID NO: 266; SEQ ID NO: 242 and SEQ ID NO: 267; SEQ ID NO: 242 and SEQ ID NO: 268; SEQ ID NO: 242 and SEQ ID NO: 269; SEQ ID NO: 242 and SEQ ID NO: 270; SEQ ID NO: 242 and SEQ ID NO: 271; SEQ ID NO: 242 and SEQ ID NO: 272; SEQ ID NO: 242 and SEQ ID NO: 273; SEQ ID NO: 242 and SEQ ID NO: 274; SEQ ID NO: 242 and SEQ ID NO: 275; SEQ ID NO: 242 and SEQ ID NO: 276; SEQ ID NO: 242 and SEQ ID NO: 277; and SEQ ID NO: 242 and SEQ ID NO: 278.

[0272] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 243 and SEQ ID NO: 254; SEQ ID NO: 243 and SEQ ID NO: 255; SEQ ID NO: 243 and SEQ ID NO: 256; SEQ ID NO: 243 and SEQ ID NO: 257; SEQ ID NO: 243 and SEQ ID NO: 258; SEQ ID NO: 243 and SEQ ID NO: 259; SEQ ID NO: 243 and SEQ ID NO: 260; SEQ ID NO: 243 and SEQ ID NO: 261; SEQ ID NO: 243 and SEQ ID NO: 262; SEQ ID NO: 243 and SEQ ID NO: 263; SEQ ID NO: 243 and SEQ ID NO: 264; SEQ ID NO: 243 and SEQ ID NO: 265; SEQ ID NO: 243 and SEQ ID NO: 266; SEQ ID NO: 243 and SEQ ID NO: 267; SEQ ID NO: 243 and SEQ ID NO: 268; SEQ ID NO: 243 and SEQ ID NO: 269; SEQ ID NO: 243 and SEQ ID NO: 270; SEQ ID NO: 243 and SEQ ID NO: 271; SEQ ID NO: 243 and SEQ ID NO: 272; SEQ ID NO: 243 and SEQ ID NO: 273; SEQ ID NO: 243 and SEQ ID NO: 274; SEQ ID NO: 243 and SEQ ID NO: 275; SEQ ID NO: 243 and SEQ ID NO: 276; SEQ ID NO: 243 and SEQ ID NO: 277; and SEQ ID NO: 243 and SEQ ID NO: 278.

[0273] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 244 and SEQ ID NO: 254; SEQ ID NO: 244 and SEQ ID NO: 255; SEQ ID NO: 244 and SEQ ID NO: 256; SEQ ID NO: 244 and SEQ ID NO: 257; SEQ ID NO: 244 and SEQ ID NO: 258; SEQ ID NO: 244 and SEQ ID NO: 259; SEQ ID NO: 244 and SEQ ID NO: 260; SEQ ID NO: 244 and SEQ ID NO: 261; SEQ ID NO: 244 and SEQ ID NO: 262; SEQ ID NO: 244 and SEQ ID NO: 263; SEQ ID NO: 244 and SEQ ID NO: 264; SEQ ID NO: 244 and SEQ ID NO: 265; SEQ ID NO: 244 and SEQ ID NO: 266; SEQ ID NO: 244 and SEQ ID NO: 267; SEQ ID NO: 244 and SEQ ID NO: 268; SEQ ID NO: 244 and SEQ ID NO: 269; SEQ ID NO: 244 and SEQ ID NO: 270; SEQ ID NO: 244 and SEQ ID NO: 271; SEQ ID NO: 244 and SEQ ID NO: 272; SEQ ID NO: 244 and SEQ ID NO: 273; SEQ ID NO: 244 and SEQ ID NO: 274; SEQ ID NO: 244 and SEQ ID NO: 275; SEQ ID NO: 244 and SEQ ID NO: 276; SEQ ID NO: 244 and SEQ ID NO: 277; and SEQ ID NO: 244 and SEQ ID NO: 278.

[0274] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 245 and SEQ ID NO: 254; SEQ ID NO: 245 and SEQ ID NO: 255; SEQ ID NO: 245 and SEQ ID NO: 256; SEQ ID NO: 245 and SEQ ID NO: 257; SEQ ID NO: 245 and SEQ ID NO: 258; SEQ ID NO: 245 and SEQ ID NO: 259; SEQ ID NO: 245 and SEQ ID NO: 260; SEQ ID NO: 245 and SEQ ID NO: 261; SEQ ID NO: 245 and SEQ ID NO: 262; SEQ ID NO: 245 and SEQ ID NO: 263; SEQ ID NO: 245 and SEQ ID NO: 264; SEQ ID NO: 245 and SEQ ID NO: 265; SEQ ID NO: 245 and SEQ ID NO: 266; SEQ ID NO: 245 and SEQ ID NO: 267; SEQ ID NO: 245 and SEQ ID NO: 268; SEQ ID NO: 245 and SEQ ID NO: 269; SEQ ID NO: 245 and SEQ ID NO: 270; SEQ ID NO: 245 and SEQ ID NO: 271; SEQ ID NO: 245 and SEQ ID NO: 272; SEQ ID NO: 245 and SEQ ID NO: 273; SEQ ID NO: 245 and SEQ ID NO: 274; SEQ ID NO: 245 and SEQ ID NO: 275; SEQ ID NO: 245 and SEQ ID NO: 276; SEQ ID NO: 245 and SEQ ID NO: 277; and SEQ ID NO: 245 and SEQ ID NO: 278.

[0275] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 246 and SEQ ID NO: 254; SEQ ID NO: 246 and SEQ ID NO: 255; SEQ ID NO: 246 and SEQ ID NO: 256; SEQ ID NO: 246 and SEQ ID NO: 257; SEQ ID NO: 246 and SEQ ID NO: 258; SEQ ID NO: 246 and SEQ ID NO: 259; SEQ ID NO: 246 and SEQ ID NO: 260; SEQ ID NO: 246 and SEQ ID NO: 261; SEQ ID NO: 246 and SEQ ID NO: 262; SEQ ID NO: 246 and SEQ ID NO: 263; SEQ ID NO: 246 and SEQ ID NO: 264; SEQ ID NO: 246 and SEQ ID NO: 265; SEQ ID NO: 246 and SEQ ID NO: 266; SEQ ID NO: 246 and SEQ ID NO: 267; SEQ ID NO: 246 and SEQ ID NO: 268; SEQ ID NO: 246 and SEQ ID NO: 269; SEQ ID NO: 246 and SEQ ID NO: 270; SEQ ID NO: 246 and SEQ ID NO: 271; SEQ ID NO: 246 and SEQ ID NO: 272; SEQ ID NO: 246 and SEQ ID NO: 273; SEQ ID NO: 246 and SEQ ID NO: 274; SEQ ID NO: 246 and SEQ ID NO: 275; SEQ ID NO: 246 and SEQ ID NO: 276; SEQ ID NO: 246 and SEQ ID NO: 277; and SEQ ID NO: 246 and SEQ ID NO: 278.

[0276] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 247 and SEQ ID NO: 254; SEQ ID NO: 247 and SEQ ID NO: 255; SEQ ID NO: 247 and SEQ ID NO: 256; SEQ ID NO: 247 and SEQ ID NO: 257; SEQ ID NO: 247 and SEQ ID NO: 258; SEQ ID NO: 247 and SEQ ID NO: 259; SEQ ID NO: 247 and SEQ ID NO: 260; SEQ ID NO: 247 and SEQ ID NO: 261; SEQ ID NO: 247 and SEQ ID NO: 262; SEQ ID NO: 247 and SEQ ID NO: 263; SEQ ID NO: 247 and SEQ ID NO: 264; SEQ ID NO: 247 and SEQ ID NO: 265; SEQ ID NO: 247 and SEQ ID NO: 266; SEQ ID NO: 247 and SEQ ID NO: 267; SEQ ID NO: 247 and SEQ ID NO: 268; SEQ ID NO: 247 and SEQ ID NO: 269; SEQ ID NO: 247 and SEQ ID NO: 270; SEQ ID NO: 247 and SEQ ID NO: 271; SEQ ID NO: 247 and SEQ ID NO: 272; SEQ ID NO: 247 and SEQ ID NO: 273; SEQ ID NO: 247 and SEQ ID NO: 274; SEQ ID NO: 247 and SEQ ID NO: 275; SEQ ID NO: 247 and SEQ ID NO: 276; SEQ ID NO: 247 and SEQ ID NO: 277; and SEQ ID NO: 247 and SEQ ID NO: 278.

[0277] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 248 and SEQ ID NO: 254; SEQ ID NO: 248 and SEQ ID NO: 255; SEQ ID NO: 248 and SEQ ID NO: 256; SEQ ID NO: 248 and SEQ ID NO: 257; SEQ ID NO: 248 and SEQ ID NO: 258; SEQ ID NO: 248 and SEQ ID NO: 259; SEQ ID NO: 248 and SEQ ID NO: 260; SEQ ID NO: 248 and SEQ ID NO: 261; SEQ ID NO: 248 and SEQ ID NO: 262; SEQ ID NO: 248 and SEQ ID NO: 263; SEQ ID NO: 248 and SEQ ID NO: 264; SEQ ID NO: 248 and SEQ ID NO: 265; SEQ ID NO: 248 and SEQ ID NO: 266; SEQ ID NO: 248 and SEQ ID NO: 267; SEQ ID NO: 248 and SEQ ID NO: 268; SEQ ID NO: 248 and SEQ ID NO: 269; SEQ ID NO: 248 and SEQ ID NO: 270; SEQ ID NO: 248 and SEQ ID NO: 271; SEQ ID NO: 248 and SEQ ID NO: 272; SEQ ID NO: 248 and SEQ ID NO: 273; SEQ ID NO: 248 and SEQ ID NO: 274; SEQ ID NO: 248 and SEQ ID NO: 275; SEQ ID NO: 248 and SEQ ID NO: 276; SEQ ID NO: 248 and SEQ ID NO: 277; and SEQ ID NO: 248 and SEQ ID NO: 278.

[0278] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 249 and SEQ ID NO: 254; SEQ ID NO: 249 and SEQ ID NO: 255; SEQ ID NO: 249 and SEQ ID NO: 256; SEQ ID NO: 249 and SEQ ID NO: 257; SEQ ID NO: 249 and SEQ ID NO: 258; SEQ ID NO: 249 and SEQ ID NO: 259; SEQ ID NO: 249 and SEQ ID NO: 260; SEQ ID NO: 249 and SEQ ID NO: 261; SEQ ID NO: 249 and SEQ ID NO: 262; SEQ ID NO: 249 and SEQ ID NO: 263; SEQ ID NO: 249 and SEQ ID NO: 264; SEQ ID NO: 249 and SEQ ID NO: 265; SEQ ID NO: 249 and SEQ ID NO: 266; SEQ ID NO: 249 and SEQ ID NO: 267; SEQ ID NO: 249 and SEQ ID NO: 268; SEQ ID NO: 249 and SEQ ID NO: 269; SEQ ID NO: 249 and SEQ ID NO: 270; SEQ ID NO: 249 and SEQ ID NO: 271; SEQ ID NO: 249 and SEQ ID NO: 272; SEQ ID NO: 249 and SEQ ID NO: 273; SEQ ID NO: 249 and SEQ ID NO: 274; SEQ ID NO: 249 and SEQ ID NO: 275; SEQ ID NO: 249 and SEQ ID NO: 276; SEQ ID NO: 249 and SEQ ID NO: 277; and SEQ ID NO: 249 and SEQ ID NO: 278.

[0279] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 250 and SEQ ID NO: 254; SEQ ID NO: 250 and SEQ ID NO: 255; SEQ ID NO: 250 and SEQ ID NO: 256; SEQ ID NO: 250 and SEQ ID NO: 257; SEQ ID NO: 250 and SEQ ID NO: 258; SEQ ID NO: 250 and SEQ ID NO: 259; SEQ ID NO: 250 and SEQ ID NO: 260; SEQ ID NO: 250 and SEQ ID NO: 261; SEQ ID NO: 250 and SEQ ID NO: 262; SEQ ID NO: 250 and SEQ ID NO: 263; SEQ ID NO: 250 and SEQ ID NO: 264; SEQ ID NO: 250 and SEQ ID NO: 265; SEQ ID NO: 250 and SEQ ID NO: 266; SEQ ID NO: 250 and SEQ ID NO: 267; SEQ ID NO: 250 and SEQ ID NO: 268; SEQ ID NO: 250 and SEQ ID NO: 269; SEQ ID NO: 250 and SEQ ID NO: 270; SEQ ID NO: 250 and SEQ ID NO: 271; SEQ ID NO: 250 and SEQ ID NO: 272; SEQ ID NO: 250 and SEQ ID NO: 273; SEQ ID NO: 250 and SEQ ID NO: 274; SEQ ID NO: 250 and SEQ ID NO: 275; SEQ ID NO: 250 and SEQ ID NO: 276; SEQ ID NO: 250 and SEQ ID NO: 277; and SEQ ID NO: 250 and SEQ ID NO: 278.

[0280] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 251 and SEQ ID NO: 254; SEQ ID NO: 251 and SEQ ID NO: 255; SEQ ID NO: 251 and SEQ ID NO: 256; SEQ ID NO: 251 and SEQ ID NO: 257; SEQ ID NO: 251 and SEQ ID NO: 258; SEQ ID NO: 251 and SEQ ID NO: 259; SEQ ID NO: 251 and SEQ ID NO: 260; SEQ ID NO: 251 and SEQ ID NO: 261; SEQ ID NO: 251 and SEQ ID NO: 262; SEQ ID NO: 251 and SEQ ID NO: 263; SEQ ID NO: 251 and SEQ ID NO: 264; SEQ ID NO: 251 and SEQ ID NO: 265; SEQ ID NO: 251 and SEQ ID NO: 266; SEQ ID NO: 251 and SEQ ID NO: 267; SEQ ID NO: 251 and SEQ ID NO: 268; SEQ ID NO: 251 and SEQ ID NO: 269; SEQ ID NO: 251 and SEQ ID NO: 270; SEQ ID NO: 251 and SEQ ID NO: 271; SEQ ID NO: 251 and SEQ ID NO: 272; SEQ ID NO: 251 and SEQ ID NO: 273; SEQ ID NO: 251 and SEQ ID NO: 274; SEQ ID NO: 251 and SEQ ID NO: 275; SEQ ID NO: 251 and SEQ ID NO: 276; SEQ ID NO: 251 and SEQ ID NO: 277; and SEQ ID NO: 251 and SEQ ID NO: 278.

[0281] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 252 and SEQ ID NO: 254; SEQ ID NO: 252 and SEQ ID NO: 255; SEQ ID NO: 252 and SEQ ID NO: 256; SEQ ID NO: 252 and SEQ ID NO: 257; SEQ ID NO: 252 and SEQ ID NO: 258; SEQ ID NO: 252 and SEQ ID NO: 259; SEQ ID NO: 252 and SEQ ID NO: 260; SEQ ID NO: 252 and SEQ ID NO: 261; SEQ ID NO: 252 and SEQ ID NO: 262; SEQ ID NO: 252 and SEQ ID NO: 263; SEQ ID NO: 252 and SEQ ID NO: 264; SEQ ID NO: 252 and SEQ ID NO: 265; SEQ ID NO: 252 and SEQ ID NO: 266; SEQ ID NO: 252 and SEQ ID NO: 267; SEQ ID NO: 252 and SEQ ID NO: 268; SEQ ID NO: 252 and SEQ ID NO: 269; SEQ ID NO: 252 and SEQ ID NO: 270; SEQ ID NO: 252 and SEQ ID NO: 271; SEQ ID NO: 252 and SEQ ID NO: 272; SEQ ID NO: 252 and SEQ ID NO: 273; SEQ ID NO: 252 and SEQ ID NO: 274; SEQ ID NO: 252 and SEQ ID NO: 275; SEQ ID NO: 252 and SEQ ID NO: 276; SEQ ID NO: 252 and SEQ ID NO: 277; and SEQ ID NO: 252 and SEQ ID NO: 278.

[0282] In some aspects, the V.sub.H-V.sub.L pairs are selected from SEQ ID NO: 253 and SEQ ID NO: 254; SEQ ID NO: 253 and SEQ ID NO: 255; SEQ ID NO: 253 and SEQ ID NO: 256; SEQ ID NO: 253 and SEQ ID NO: 257; SEQ ID NO: 253 and SEQ ID NO: 258; SEQ ID NO: 253 and SEQ ID NO: 259; SEQ ID NO: 253 and SEQ ID NO: 260; SEQ ID NO: 253 and SEQ ID NO: 261; SEQ ID NO: 253 and SEQ ID NO: 262; SEQ ID NO: 253 and SEQ ID NO: 263; SEQ ID NO: 253 and SEQ ID NO: 264; SEQ ID NO: 253 and SEQ ID NO: 265; SEQ ID NO: 253 and SEQ ID NO: 266; SEQ ID NO: 253 and SEQ ID NO: 267; SEQ ID NO: 253 and SEQ ID NO: 268; SEQ ID NO: 253 and SEQ ID NO: 269; SEQ ID NO: 253 and SEQ ID NO: 270; SEQ ID NO: 253 and SEQ ID NO: 271; SEQ ID NO: 253 and SEQ ID NO: 272; SEQ ID NO: 253 and SEQ ID NO: 273; SEQ ID NO: 253 and SEQ ID NO: 274; SEQ ID NO: 253 and SEQ ID NO: 275; SEQ ID NO: 253 and SEQ ID NO: 276; SEQ ID NO: 253 and SEQ ID NO: 277; and SEQ ID NO: 253 and SEQ ID NO: 278. 2.7.4.1. Variants of V.sub.H V.sub.L Pairs

[0283] In some embodiments, the V.sub.H-V.sub.L pairs provided herein comprise a variant of an illustrative V.sub.H and/or V.sub.L sequence provided in this disclosure.

[0284] In some aspects, the V.sub.H sequence comprises, consists of, or consists essentially of a variant of an illustrative V.sub.H sequence provided in this disclosure. In some aspects, the V.sub.H sequence comprises, consists of, or consists essentially of a sequence having at least 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.1% identity with any of the illustrative V.sub.H sequences provided in this disclosure.

[0285] In some embodiments, the V.sub.H sequence comprises, consists of, or consists essentially of any of the illustrative V.sub.H sequences provided in this disclosure having 20 or fewer, 19 or fewer, 18 or fewer, 17 or fewer, 16 or fewer, 15 or fewer, 14 or fewer, 13 or fewer, 12 or fewer, 11 or fewer, 10 or fewer, 9 or fewer, 8 or fewer, 7 or fewer, 6 or fewer, 5 or fewer, 4 or fewer, 3 or fewer, 2 or fewer, or 1 or fewer amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0286] In some aspects, the V.sub.L sequence comprises, consists of, or consists essentially of a variant of an illustrative V.sub.L sequence provided in this disclosure. In some aspects, the V.sub.L sequence comprises, consists of, or consists essentially of a sequence having at least 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identity with any of the illustrative V.sub.L sequences provided in this disclosure.

[0287] In some embodiments, the V.sub.L sequence comprises, consists of, or consists essentially of any of the illustrative V.sub.L sequences provided in this disclosure having 20 or fewer, 19 or fewer, 18 or fewer, 17 or fewer, 16 or fewer, 15 or fewer, 14 or fewer, 13 or fewer, 12 or fewer, 11 or fewer, 10 or fewer, 9 or fewer, 8 or fewer, 7 or fewer, 6 or fewer, 5 or fewer, 4 or fewer, 3 or fewer, 2 or fewer, or 1 or fewer amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0288] 2.7.4.2. Excluded V.sub.H-V.sub.L Pairs

[0289] In some embodiments, the V.sub.H-V.sub.L pairs provided herein do not comprise certain V.sub.H-V.sub.L pairs.

[0290] In some aspects, the V.sub.H sequence is not selected from SEQ ID NOs: 326-330, and the V.sub.L sequence is not selected from SEQ ID NOs: 331-335.

[0291] In some aspects, the V.sub.H-V.sub.L pairs are not selected from SEQ ID NO: 326 and SEQ ID NO: 331; SEQ ID NO: 326 and SEQ ID NO: 332; SEQ ID NO: 326 and SEQ ID NO: 333; SEQ ID NO: 326 and SEQ ID NO: 334; and SEQ ID NO: 326 and SEQ ID NO: 335.

[0292] In some aspects, the V.sub.H-V.sub.L pairs are not selected from SEQ ID NO: 327 and SEQ ID NO: 331; SEQ ID NO: 327 and SEQ ID NO: 332; SEQ ID NO: 327 and SEQ ID NO: 333; SEQ ID NO: 327 and SEQ ID NO: 334; and SEQ ID NO: 327 and SEQ ID NO: 335.

[0293] In some aspects, the V.sub.H-V.sub.L pairs are not selected from SEQ ID NO: 328 and SEQ ID NO: 331; SEQ ID NO: 328 and SEQ ID NO: 332; SEQ ID NO: 328 and SEQ ID NO: 333; SEQ ID NO: 328 and SEQ ID NO: 334; and SEQ ID NO: 328 and SEQ ID NO: 335.

[0294] In some aspects, the V.sub.H-V.sub.L pairs are not selected from SEQ ID NO: 329 and SEQ ID NO: 331; SEQ ID NO: 329 and SEQ ID NO: 332; SEQ ID NO: 329 and SEQ ID NO: 333; SEQ ID NO: 329 and SEQ ID NO: 334; and SEQ ID NO: 329 and SEQ ID NO: 335.

[0295] In some aspects, the V.sub.H-V.sub.L pairs are not selected from SEQ ID NO: 330 and SEQ ID NO: 331; SEQ ID NO: 330 and SEQ ID NO: 332; SEQ ID NO: 330 and SEQ ID NO: 333; SEQ ID NO: 330 and SEQ ID NO: 334; and SEQ ID NO: 330 and SEQ ID NO: 335.

[0296] 2.8. Antibodies Comprising All Six CDRs

[0297] In some embodiments, the antibody comprises a CDR-H1 sequence, a CDR-H2 sequence, a CDR-H3 sequence, a CDR-L1 sequence, and a CDR-L3 sequence. In some aspects, the CDR sequences are part of a V.sub.H (for CDR-H) or V.sub.L (for CDR-L).

[0298] In some aspects, the CDR-H1 sequence is a Chothia CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 4-28; the CDR-H2 sequence is a Chothia CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 59-78; the CDR-H3 sequence is a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 104-128; the CDR-L1 sequence is a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 129-153; the CDR-L2 sequence is a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 154-178; and the CDR-L3 sequence is a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 179-203.

[0299] In some aspects, the CDR-H1 sequence is a Kabat CDR-H1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 29-53; the CDR-H2 sequence is a Kabat CDR-H2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 79-103; the CDR-H3 sequence is a CDR-H3 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 104-128; the CDR-L1 sequence is a CDR-L1 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 129-153; the CDR-L2 sequence is a CDR-L2 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 154-178; and the CDR-L3 sequence is a CDR-L3 sequence comprising, consisting of, or consisting essentially of SEQ ID NOs: 179-203.

[0300] 2.8.1. Variants of Antibodies Comprising All Six CDRs

[0301] In some embodiments, the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 provided herein comprise a variant of an illustrative CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and/or CDR-L3 sequence provided in this disclosure.

[0302] In some aspects, the CDR-H1 sequence comprises, consists of, or consists essentially of a variant of an illustrative Chothia or Kabat CDR-H1 sequence provided in this disclosure. In some aspects, the CDR-H1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Chothia or Kabat CDR-H1 sequences provided in this disclosure. In some aspects, the CDR-H1 sequence comprises, consists of, or consists essentially of any of the illustrative Chothia or Kabat CDR-H1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0303] In some aspects, the CDR-H2 sequence comprises, consists of, or consists essentially of a variant of an illustrative Chothia or Kabat CDR-H2 sequence provided in this disclosure. In some aspects, the CDR-H2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative Chothia or Kabat CDR-H2 sequences provided in this disclosure. In some aspects, the CDR-H2 sequence comprises, consists of, or consists essentially of any of the illustrative Chothia or Kabat CDR-H2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0304] In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-H3 sequence provided in this disclosure. In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-H3 sequences provided in this disclosure. In some aspects, the CDR-H3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-H3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0305] In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L1 sequence provided in this disclosure. In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L1 sequences provided in this disclosure. In some aspects, the CDR-L1 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L1 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0306] In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L2 sequence provided in this disclosure. In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L2 sequences provided in this disclosure. In some aspects, the CDR-L2 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L2 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0307] In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a variant of an illustrative CDR-L3 sequence provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of a sequence having at least 70%, 75%, 80%, 85%, 90%, or 95% identity with any of the illustrative CDR-L3 sequences provided in this disclosure. In some aspects, the CDR-L3 sequence comprises, consists of, or consists essentially of any of the illustrative CDR-L3 sequences provided in this disclosure, with 1, 2, or 3 amino acid substitutions. In some aspects, the amino acid substitutions are conservative amino acid substitutions.

[0308] 2.8.2. Excluded Six CDR Combinations

[0309] In some embodiments, the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 provided herein do not comprise certain CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and/or CDR-L3.

[0310] In some aspects, the Chothia CDR-H1 sequence is not selected from SEQ ID NOs: 286-290; the Kabat CDR-H1 sequence is not selected from SEQ ID NOs: 291-295; the Chothia CDR-H2 sequence is not selected from SEQ ID NOs: 296-300; the Kabat CDR-H2 sequence is not selected from SEQ ID NOs: 301-305; the CDR-H3 sequence is not selected from 306-310; the CDR-L1 sequence is not selected from SEQ ID NOs: 311-315; the CDR-L2 sequence is not selected from SEQ ID NOs: 316-320; and/or the CDR-L3 sequence is not selected from SEQ ID NOs: 321-325.

[0311] 2.9. Consensus Sequences

[0312] In some embodiments, provided herein are anti-EpCAM antibodies comprising one or more sequences defined by consensus sequences. Each consensus sequence is based, at least in part, on one or more alignments of two or more useful anti-EpCAM CDR sequences provided in this disclosure. Based on such alignments, a person of skill in the art would recognize that different amino acid residues may useful in certain positions of the CDRs. Accordingly, each consensus sequence encompasses two or more useful anti-EpCAM CDR sequences.

[0313] In some embodiments, the antibodies comprise one to six of the consensus CDR sequences provided herein. In some embodiments, the antibodies comprise two to six of the consensus CDR sequences provided herein. In some embodiments, the antibodies comprise three to six of the consensus CDR sequences provided herein. In some embodiments, the antibodies comprise four to six of the consensus CDR sequences provided herein. In some embodiments, the antibodies comprise five to six of the consensus CDR sequences provided herein. In some embodiments, the antibodies comprise six of the consensus CDR sequences provided herein. In some embodiments, the antibodies comprise a V.sub.L comprising the CDR-L consensus sequence(s). In some embodiments, the antibodies comprise a V.sub.H comprising the CDR-H consensus sequence(s). In some embodiments, the antibodies comprise a V.sub.H comprising the CDR-H consensus sequence(s) and a V.sub.L comprising the CDR-L consensus sequence(s).

[0314] 2.9.1. CDR-H3 Consensus Sequences

[0315] In some embodiments, the antibody comprises a CDR-H3 sequence defined by the consensus sequence .alpha..sub.1-W-.alpha..sub.3-.alpha..sub.4-Q-.alpha..sub.6-.alpha..sub.7- -Y-.alpha..sub.9-.alpha..sub.10-D-Y, where .alpha..sub.1 is G, A, or D; .alpha..sub.3 is H or N; .alpha..sub.4 is P, D, or R; .alpha..sub.6 is T, S, or D; .alpha..sub.7 is L, M, or Y; .alpha..sub.9 is D, G, H, or N; and am is L, Q, R, or V.

[0316] In some embodiments, the antibody comprises a CDR-H3 sequence defined by the consensus sequence L-R-N-W- .sub.5- .sub.6-P-M-D-Y, where .sub.5 is E or D; and .sub.6 is G or M.

[0317] 2.9.2. Chothia CDR-H1 Consensus Sequences

[0318] In some embodiments, the antibody comprises a Chothia CDR-H1 sequence defined by the consensus sequence G-F-T-F-.gamma..sub.5-.gamma..sub.6-.gamma..sub.7, where .gamma..sub.5 is S, R, G, or C; .gamma..sub.6 is G, V, A, or S; and .gamma..sub.7 is S, T, A, C, E, or F.

[0319] In some embodiments, the antibody comprises a Chothia CDR-H1 sequence defined by the consensus sequence .delta..sub.1-Y-A-F-.delta..sub.5-N-.delta..sub.7, where .delta..sub.1 is G or D; .delta..sub.5 is A or T; and .delta..sub.7 is R or S.

[0320] 2.9.3. Chothia CDR-H2 Consensus Sequences

[0321] In some embodiments, the antibody comprises a Chothia CDR-H2 sequence defined by the consensus sequence .epsilon..sub.1-G-.epsilon..sub.3-.epsilon..sub.4-G-.epsilon..sub.6, where .epsilon..sub.1 is D, A, or G; .epsilon..sub.3 is G, H, or S; .epsilon..sub.4 is E, D, V, G, or Q; and .epsilon..sub.6 is S, Y, or N.

[0322] 2.9.4. Kabat CDR-H1 Consensus Sequences

[0323] In some embodiments, the antibody comprises a Kabat CDR-H1 sequence defined by the consensus sequence .zeta..sub.1-.zeta..sub.2-S-M-S, where .zeta..sub.1 is G, V, A, or S; and .zeta..sub.2 is S, T, A, C, E, or F.

[0324] In some embodiments, the antibody comprises a Kabat CDR-H1 sequence defined by the consensus sequence N-.eta..sub.2-W-L-G, where .eta..sub.2 is R or S.

[0325] 2.9.5. Kabat CDR-H2 Consensus Sequences

[0326] In some embodiments, the antibody comprises a Kabat CDR-H2 sequence defined by the consensus sequence A-I-.theta..sub.3-G-.theta..sub.5-.theta..sub.6-G-.theta..sub.8-T-.theta.- .sub.10-Y-A-D-S-V-.theta..sub.16-.theta..sub.17, where .theta..sub.3 is D, A, or G; .theta..sub.5 is G, H, or S; .theta..sub.6 is E, D, V, G, or Q; .theta..sub.8 is S, Y, or N; .theta..sub.10 is G, A, N, or S; .theta..sub.16 is K or R; and .theta..sub.17 is G or D.

[0327] 2.9.6. CDR-L3 Consensus Sequences

[0328] In some embodiments, the antibody comprises a CDR-L3 sequence defined by the consensus sequence Q-Q-.sub.3-.sub.4-.sub.5-.sub.6-P-.sub.8-T, where .sub.3 is L, D, H, N, R, T, V, or Y; .sub.4 is V, A, L, Q, S, E, F, M, or W; .sub.5 is T, A, P, S, E, F, N, or Y; .sub.6 is S, A, I, N, G, K, P, R, or V; and .sub.8 is P or A.

[0329] In some embodiments, the antibody comprises a CDR-L3 sequence defined by the consensus sequence Q-N-D-.kappa..sub.4-.kappa..sub.5-Y-P-L-T, where .kappa..sub.4 is L, S, or Y; and .kappa..sub.5 is S or R.

[0330] In some aspects, if .kappa..sub.4 is Y, then .sub.5 is not S.

[0331] 2.9.7. CDR-L2 Consensus Sequences

[0332] In some embodiments, the antibody comprises a CDR-L2 sequence defined by the consensus sequence .lamda..sub.1-A-S-T-R-E-S, where .lamda..sub.1 is W or R.

[0333] In some aspects, .lamda..sub.1 is not W.

[0334] 2.9.8. CDR-L1 Consensus Sequences

[0335] In some embodiments, the antibody comprises a CDR-L1 sequence defined by the consensus sequence .mu..sub.1-A-S-Q-.mu..sub.5-.mu..sub.6-.mu..sub.7-.mu..sub.8-.mu..sub.9-.- mu..sub.10-.mu..sub.11-A, where pa is R or S; .mu..sub.1 is S, V, G, T, K, N, P, or R; .mu..sub.6 is V, L, C, D, G, or I; .mu..sub.7 is S, P, A, H, K, or T; .mu..sub.8 is S, T, N, or P; .mu..sub.9 is S, G, N, R, or T; pa is Y, S, V, D, K, or T; and .mu..sub.11 is L, M, or I.

3. Germline

[0336] In some embodiments, the antibody that specifically binds EpCAM is an antibody comprising a variable region that is encoded by a particular germline gene, or a variant thereof. The illustrative antibodies provided herein comprise variable regions that are encoded by the heavy chain variable region germline genes VH3-23 and VH5-51, or variants thereof and the light chain variable region germline genes V.kappa.3-20 and V.kappa.4-1, or variants thereof.

[0337] One of skill in the art would recognize that the CDR sequences provided herein may also be useful when combined with variable regions encoded by other variable region germline genes, or variants thereof. In particular, the CDR sequences provided herein may be useful when combined with variable regions encoded by variable region germline genes, or variants thereof, that are structurally similar to the variable region germline genes recited above. For example, in some embodiments, a CDR-H sequence provided herein may be combined with a variable region encoded by a variable region germline gene selected from the V.sub.H 3 or V.sub.H 5 families, or a variant thereof. In some embodiments, a CDR-L sequence provided herein may be combined with a variable region encoded by a variable region germline gene selected from the V.kappa.3 or V.kappa.4 families, or a variant thereof.

4. Affinity

[0338] In some embodiments, the affinity of the antibody for EpCAM as indicated by K.sub.D, is less than about 10.sup.-5 M, less than about 10.sup.-6 M, less than about 10.sup.-7 M, less than about 10.sup.-8 M, less than about 10.sup.-9 M, less than about 10.sup.-10 M, less than about 10.sup.-11 M, or less than about 10.sup.-12 M. In some embodiments, the affinity of the antibody is between about 10.sup.-7 M and 10.sup.-11 M. In some embodiments, the affinity of the antibody is between about 10.sup.-7 M and 10.sup.-10 M. In some embodiments, the affinity of the antibody is between about 10.sup.-7 M and 10.sup.-9 M. In some embodiments, the affinity of the antibody is between about 10.sup.-7 M and 10.sup.-8 M. In some embodiments, the affinity of the antibody is between about 10.sup.-8 M and 10.sup.-11 M. In some embodiments, the affinity of the antibody is between about 10.sup.-8 M and 10.sup.-10 M. In some embodiments, the affinity of the antibody is between about 10.sup.-9 M and 10.sup.-11 M. In some embodiments, the affinity of the antibody is between about 10.sup.-10 M and 10.sup.-11M.

[0339] In some embodiments, the affinity of the antibody for human EpCAM, as determined by surface plasmon resonance at 25.degree. C., and as indicated by K.sub.D, is between about 7.21.times.10.sup.-9 M and about 1.93.times.10.sup.-10 M. In some embodiments, the affinity of the antibody for human EpCAM is about 7.21.times.10.sup.-9 M, about 6.91.times.10.sup.-9 M, about 6.70.times.10.sup.-9 M, about 6.17.times.10.sup.-9 M, about 5.46.times.10.sup.-9 M, about 5.24.times.10.sup.-9 M, about 4.17.times.10.sup.-9 M, about 3.99.times.10.sup.-9 M, about 3.93.times.10.sup.-9 M, about 3.56.times.10.sup.-9 M, about 3.50.times.10.sup.-9 M, about 3.44.times.10.sup.-9 M, about 3.43.times.10.sup.-9 M, about 2.75.times.10.sup.-9 M, about 2.54.times.10.sup.-9 M, about 1.78.times.10.sup.-9 M, about 1.49.times.10.sup.-9 M, about 1.45.times.10.sup.-9 M, about 1.41.times.10.sup.-9 M, about 1.19.times.10.sup.-9 M, about 9.83.times.10.sup.-10 M, about 9.04.times.10.sup.-10 M, or about 1.93.times.10.sup.-1.degree. M.

[0340] In some embodiments, the affinity of the antibody for human EpCAM expressed on the surface of a cell, as indicated by K.sub.D, is between about 3.68 and about 1.08 nM. In some embodiments, the affinity of the antibody for human EpCAM expressed on the surface of a cell is about 3.68 nM, about 3.24 nM, about 3 nM, about 2.6 nM, about 2.59 nM, about 2.49 nM, about 2.47 nM, about 2 nM, about 1.96 nM, about 1.91 nM, about 1.89 nM, about 1.85 nM, about 1.79 nM, about 1.71 nM, about 1.69 nM, about 1.6 nM, about 1.54 nM, about 1.5 nM, about 1.45 nM, about 1.2 nM, about 1.17 nM, about 1.14 nM, or about 1.08 nM. In some embodiments, the cell is a CHO cell.

[0341] In some embodiments, the affinity of the antibody for human EpCAM expressed on the surface of a cell, as indicated by K.sub.D, is between about 6.9 and about 3.6 nM. In some embodiments, the affinity of the antibody for human EpCAM expressed on the surface of a cell is about 6.9 nM, about 6.7 nM, or about 3.6 nM. In some embodiments, the cell is an HCT 116 cell (ATCC No. CCL-247).

[0342] In some embodiments, the affinity of the antibody for human EpCAM expressed on the surface of a cell, as indicated by K.sub.D, is between about 7.6 and about 2.7 nM. In some embodiments, the affinity of the antibody for human EpCAM expressed on the surface of a cell is about 7.6 nM, about 5.2 nM, or about 2.7 nM. In some embodiments, the cell is a JIMT-1 cell (DSMZ No. ACC 589).

[0343] In some embodiments, the affinity of the antibody for cynomolgus EpCAM, as determined by surface plasmon resonance at 25.degree. C., and as indicated by K.sub.D, is between about 1.62.times.10.sup.-7 M and about 1.17.times.10.sup.-9 M. In some embodiments, the affinity of the antibody for cynomolgus EpCAM is about 1.62.times.10.sup.-7 M, about 1.20.times.10.sup.-7 M, about 4.52.times.10.sup.-8 M, about 3.99.times.10.sup.-8 M, about 3.52.times.10.sup.-8 M, about 2.97.times.10.sup.-8 M, about 2.91.times.10.sup.-8 M, about 2.29.times.10.sup.-8 M, about 1.82.times.10.sup.-8 M, about 1.52.times.10.sup.-8 M, about 8.59.times.10.sup.-9 M, about 8.10.times.10.sup.-9 M, about 7.52.times.10.sup.-9 M, about 7.22.times.10.sup.-9 M, about 4.41.times.10.sup.-9 M, or about 1.17.times.10.sup.-9 M.

[0344] In some embodiments, the antibody is characterized by a ratio of affinity for human EpCAM to affinity for cynomolgus EpCAM, each as determined by surface plasmon resonance at 25.degree. C., and as indicated by K.sub.D. In some embodiments, the ratio is from about 0.029 to about 6.162. In some embodiments, the ratio is about 0.029, about 0.034, about 0.043, about 0.051, about 0.076, about 0.098, about 0.105, about 0.155, about 0.184, about 0.352, about 0.366, about 0.441, about 0.610, about 0.762, about 0.794, or about 6.162.

[0345] In some embodiments, the affinity of the antibody for cynomolgus EpCAM expressed on the surface of a cell, as indicated by K.sub.D, is between about 2.99 and about 0.66 nM. In some embodiments, the affinity of the antibody for cynomolgus EpCAM expressed on the surface of a cell is about 2.99 nM, about 2.5 nM, about 1.83 nM, about 1.79 nM, about 1.62 nM, about 1.59 nM, about 1.38 nM, about 1.35 nM, about 1.21 nM, about 1.2 nM, about 1.07 nM, about 0.99 nM, about 0.9 nM, about 0.87 nM, about 0.7 nM, or about 0.66 nM. In some embodiments, the cell is a CHO cell.

[0346] In some embodiments the antibody has a k.sub.a of at least about 10.sup.4 M.sup.-1.times.sec.sup.-1. In some embodiments the antibody has a k.sub.a of at least about 10.sup.5 M.sup.-1.times.sec.sup.-1. In some embodiments the antibody has a k.sub.a of at least about 10.sup.6 M.sup.-1.times.sec.sup.-1. In some embodiments the antibody has a k.sub.a of between about 10.sup.4 M.sup.-1.times.sec.sup.-1 and about 10.sup.5 M.sup.-1.times.sec.sup.-1. In some embodiments the antibody has a k.sub.a of between about 10.sup.5 M.sup.-1.times.sec.sup.-1 and about 10.sup.6 M.sup.-1.times.sec.sup.-1.

[0347] In some embodiments the antibody has a k.sub.a when associating with human EpCAM, as determined by surface plasmon resonance at 25.degree. C., of between about 6.52.times.10.sup.4 M.sup.-1.times.sec.sup.-1 and about 3.51.times.10.sup.5 M.sup.-1.times.sec.sup.-1. In some embodiments the antibody has a k.sub.a when associating with human EpCAM of about 6.52.times.10.sup.4 M.sup.-1.times.sec.sup.-1, about 9.03.times.10.sup.4 M.sup.-1.times.sec.sup.-1, about 1.03.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.40.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.43.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.49.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.66.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.70.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.76.times.10.sup.5 m.sup.-1.times.sec.sup.-1, about 1.82.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 1.92.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.00.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.05.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.10.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.20.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.35.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.54.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.56.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.57.times.10.sup.5 m.sup.-1.times.sec.sup.-1, about 2.84.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 2.88.times.10.sup.5 M.sup.-1.times.sec.sup.-1, about 3.10.times.10.sup.5 M.sup.-1.times.sec.sup.-1, or about 3.51.times.10.sup.5 M.sup.-1.times.sec.sup.-1.

[0348] In some embodiments the antibody has a k.sub.d of about 10.sup.-5 sec.sup.-1 or less. In some embodiments the antibody has a k.sub.d of about 10.sup.-4 sec.sup.-1 or less. In some embodiments the antibody has a k.sub.d of about 10.sup.-3 sec.sup.-1 or less. In some embodiments the antibody has a k.sub.d of between about 10.sup.-2 sec.sup.-1 and about 10.sup.-5 sec.sup.-1. In some embodiments the antibody has a k.sub.d of between about 10.sup.-2 sec.sup.-1 and about 10.sup.-4 sec.sup.-1. In some embodiments the antibody has a k.sub.d of between about 10.sup.-3 sec.sup.-1 and about 10.sup.-5 sec.sup.-1.

[0349] In some embodiments the antibody has a k.sub.d when dissociating from human EpCAM, as determined by surface plasmon resonance at 25.degree. C., of between about 1.75.times.10.sup.-3 sec.sup.-1 and about 1.74.times.10.sup.-5 sec.sup.-1. In some embodiments the antibody has a k.sub.d when dissociating from human EpCAM of about 1.75.times.10.sup.-3 sec.sup.-1, about 1.69.times.10.sup.-3 sec.sup.-1, about 1.58.times.10.sup.-3 sec.sup.-1, about 1.23.times.10.sup.-3 sec.sup.-1, about 1.00.times.10.sup.-3 sec.sup.-1, about 9.39.times.10.sup.-4 sec.sup.-1, about 9.08.times.10.sup.-4 sec.sup.-1, about 7.90.times.10.sup.4 sec.sup.-1, about 7.87.times.10.sup.-4 sec.sup.-1, about 7.84.times.10.sup.4 sec.sup.-1, about 6.04.times.10.sup.-4 sec.sup.-1, about 5.98.times.10.sup.4 sec.sup.-1, about 5.10.times.10.sup.-4 sec.sup.-1, about 4.12.times.10.sup.4 sec.sup.-1, about 3.75.times.10.sup.-4 sec.sup.-1, about 3.06.times.10.sup.4 sec.sup.-1, about 2.97.times.10.sup.-4 sec.sup.-1, about 2.57.times.10.sup.4 sec.sup.-1, about 2.57.times.10.sup.-4 sec.sup.-1, about 2.56.times.10.sup.-4 sec.sup.-1, about 2.54.times.10.sup.-4 sec.sup.-1, about 1.97.times.10.sup.-4 sec.sup.-1, or about 1.74.times.10.sup.-5 sec.sup.-1.

[0350] In some aspects, the K.sub.D, k.sub.a, and k.sub.d are determined at 25.degree. C. In some embodiments, the K.sub.D, k.sub.a, and k.sub.d are determined by surface plasmon resonance. In some embodiments, the K.sub.D, k.sub.a, and k.sub.d are determined according to the methods described in the Examples provided herein.

5. Epitope Bins

[0351] In some embodiments, the antibody binds the same epitope as the scFv antibody provided in SEQ ID NO: 336. In some embodiments, the antibody binds to a different epitope from the scFv antibody provided in SEQ ID NO: 336. In some embodiments, the antibody binds to part of the epitope bound by the scFv antibody provided in SEQ ID NO: 336.

[0352] In some embodiments, the antibody binds to the same epitope as the scFv-Fc antibody provided in SEQ ID NO: 210, which binds to an epitope encoded by exons 4-7 of the EpCAM gene.

6. Glycosylation Variants

[0353] In certain embodiments, an antibody may be altered to increase, decrease or eliminate the extent to which it is glycosylated. Glycosylation of polypeptides is typically either "N-linked" or "O-linked."

[0354] "N-linked" glycosylation refers to the attachment of a carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site.

[0355] "O-linked" glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

[0356] Addition or deletion of N-linked glycosylation sites to the antibody may be accomplished by altering the amino acid sequence such that one or more of the above-described tripeptide sequences is created or removed. Addition or deletion of O-linked glycosylation sites may be accomplished by addition, deletion, or substitution of one or more serine or threonine residues in or to (as the case may be) the sequence of an antibody.

7. Fc Variants

[0357] In certain embodiments, amino acid modifications may be introduced into the Fc region of an antibody provided herein to generate an Fc region variant. In certain embodiments, the Fc region variant possesses some, but not all, effector functions. Such antibodies may be useful, for example, in applications in which the half-life of the antibody in vivo is important, yet certain effector functions are unnecessary or deleterious. Examples of effector functions include complement-dependent cytotoxicity (CDC) and antibody-directed complement-mediated cytotoxicity (ADCC). Numerous substitutions or substitutions or deletions with altered effector function are known in the art.

[0358] An alteration in in CDC and/or ADCC activity can be confirmed using in vitro and/or in vivo assays. For example, Fc receptor (FcR) binding assays can be conducted to measure Fc.gamma.R binding. The primary cells for mediating ADCC, NK cells, express Fc.gamma.RIII only, whereas monocytes express Fc.gamma.RI, Fc.gamma.RII and Fc.gamma.RIII. FcR expression on hematopoietic cells is summarized in Ravetch and Kinet, Ann. Rev. Immunol., 1991, 9:457-492, incorporated by reference in its entirety.

[0359] Non-limiting examples of in vitro assays to assess ADCC activity of a molecule of interest are provided in U.S. Pat. Nos. 5,500,362 and 5,821,337; Hellstrom et al., Proc. Natl. Acad. Sci. USA., 1986, 83:7059-7063; Hellstrom et al., Proc. Natl. Acad. Sci. USA., 1985, 82:1499-1502; and Bruggemann et al., J. Exp. Med., 1987, 166:1351-1361; each of which is incorporated by reference in its entirety. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, using an animal model such as that disclosed in Clynes et al. Proc. Natl. Acad. Sci. USA., 1998, 95:652-656, incorporated by reference in its entirety.

[0360] C1q binding assays may also be carried out to confirm that the antibody is unable to bind C1q and hence lacks CDC activity. Examples of C1q binding assays include those described in WO 2006/029879 and WO 2005/100402, each of which is incorporated by reference in its entirety.

[0361] Complement activation assays include those described, for example, in Gazzano-Santoro et al., J. Immunol. Methods, 1996, 202:163-171; Cragg et al., Blood, 2003, 101:1045-1052; and Cragg and Glennie, Blood, 2004, 103:2738-2743; each of which is incorporated by reference in its entirety.

[0362] FcRn binding and in vivo clearance (half-life determination) can also be measured, for example, using the methods described in Petkova et al., Intl. Immunol., 2006, 18:1759-1769, incorporated by reference in its entirety.

8. Preparation of Antibodies

[0363] 8.1. Antigen Preparation

[0364] The EpCAM antigen to be used for isolation of the antibodies may be intact EpCAM or a fragment of EpCAM. The intact EpCAM, or fragment of EpCAM, may be in the form of an isolated protein or protein expressed by a cell. Other forms of EpCAM useful for generating antibodies will be apparent to those skilled in the art.

[0365] 8.2. Monoclonal Antibodies

[0366] Monoclonal antibodies may be obtained, for example, using the hybridoma method first described by Kohler et al., Nature, 1975, 256:495-497 (incorporated by reference in its entirety), and/or by recombinant DNA methods (see e.g., U.S. Pat. No. 4,816,567, incorporated by reference in its entirety). Monoclonal antibodies may also be obtained, for example, using phage or yeast-based libraries. See e.g., U.S. Pat. Nos. 8,258,082 and 8,691,730, each of which is incorporated by reference in its entirety.

[0367] In the hybridoma method, a mouse or other appropriate host animal is immunized to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes are then fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell. See Goding J. W., Monoclonal Antibodies: Principles and Practice 3.sup.rd ed. (1986) Academic Press, San Diego, Calif., incorporated by reference in its entirety.

[0368] The hybridoma cells are seeded and grown in a suitable culture medium that contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

[0369] Useful myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive media conditions, such as the presence or absence of HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOP-21 and MC-11 mouse tumors (available from the Salk Institute Cell Distribution Center, San Diego, Calif.), and SP-2 or X63-Ag8-653 cells (available from the American Type Culture Collection, Rockville, Md.). Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies. See e.g., Kozbor, J. Immunol., 1984, 133:3001, incorporated by reference in its entirety.

[0370] After the identification of hybridoma cells that produce antibodies of the desired specificity, affinity, and/or biological activity, selected clones may be subcloned by limiting dilution procedures and grown by standard methods. See Goding, supra. Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.

[0371] DNA encoding the monoclonal antibodies may be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). Thus, the hybridoma cells can serve as a useful source of DNA encoding antibodies with the desired properties. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as bacteria (e.g., E. coli), yeast (e.g., Saccharomyces or Pichia sp.), COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody, to produce the monoclonal antibodies.

[0372] 8.3. Humanized Antibodies

[0373] Humanized antibodies may be generated by replacing most, or all, of the structural portions of a non-human monoclonal antibody with corresponding human antibody sequences. Consequently, a hybrid molecule is generated in which only the antigen-specific variable, or CDR, is composed of non-human sequence. Methods to obtain humanized antibodies include those described in, for example, Winter and Milstein, Nature, 1991, 349:293-299; Rader et al., Proc. Nat. Acad. Sci. USA., 1998, 95:8910-8915; Steinberger et al., J. Biol. Chem., 2000, 275:36073-36078; Queen et al., Proc. Natl. Acad. Sci. USA., 1989, 86:10029-10033; and U.S. Pat. Nos. 5,585,089, 5,693,761, 5,693,762, and 6,180,370; each of which is incorporated by reference in its entirety.

[0374] 8.4. Human Antibodies

[0375] Human antibodies can be generated by a variety of techniques known in the art, for example by using transgenic animals (e.g., humanized mice). See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA., 1993, 90:2551; Jakobovits et al., Nature, 1993, 362:255-258; Bruggermann et al., Year in Immuno., 1993, 7:33; and U.S. Pat. Nos. 5,591,669, 5,589,369 and 5,545,807; each of which is incorporated by reference in its entirety. Human antibodies can also be derived from phage-display libraries (see e.g., Hoogenboom et al., J. Mol. Biol., 1991, 227:381-388; Marks et al., J. Mol. Biol., 1991, 222:581-597; and U.S. Pat. Nos. 5,565,332 and 5,573,905; each of which is incorporated by reference in its entirety). Human antibodies may also be generated by in vitro activated B cells (see e.g., U.S. Pat. Nos. 5,567,610 and 5,229,275, each of which is incorporated by reference in its entirety). Human antibodies may also be derived from yeast-based libraries (see e.g., U.S. Pat. No. 8,691,730, incorporated by reference in its entirety).

9. Vectors, Host Cells, and Recombinant Methods

[0376] The invention also provides isolated nucleic acids encoding anti-EpCAM antibodies, vectors and host cells comprising the nucleic acids, and recombinant techniques for the production of the antibodies.

[0377] For recombinant production of the antibody, the nucleic acid(s) encoding it may be isolated and inserted into a replicable vector for further cloning (i.e., amplification of the DNA) or expression. In some aspects, the nucleic acid may be produced by homologous recombination, for example as described in U.S. Pat. No. 5,204,244, incorporated by reference in its entirety.

[0378] Many different vectors are known in the art. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence, for example as described in U.S. Pat. No. 5,534,615, incorporated by reference in its entirety.

[0379] Illustrative examples of suitable host cells are provided below. these host cells are not meant to be limiting.

[0380] Suitable host cells include any prokaryotic (e.g., bacterial), lower eukaryotic (e.g., yeast), or higher eukaryotic (e.g., mammalian) cells. Suitable prokaryotes include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia (E. coli), Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella (S. typhimurium), Serratia (S. marcescans), Shigella, Bacilli (B. subtilis and B. licheniformis), Pseudomonas (P. aeruginosa), and Streptomyces. One useful E. coli cloning host is E. coli 294, although other strains such as E. coli B, E. coli X1776, and E. coli W3110 are suitable.

[0381] In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are also suitable cloning or expression hosts for anti-EpCAM antibody-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is a commonly used lower eukaryotic host microorganism. However, a number of other genera, species, and strains are available and useful, such as Schizosaccharomyces pombe, Kluyveromyces (K. lactis, K. fragilis, K. bulgaricus K. wickeramii, K. waltii, K. drosophilarum, K. thermotolerans, and K. marxianus), Yarrowia, Pichia pastoris, Candida (C. albicans), Trichoderma reesia, Neurospora crassa, Schwanniomyces (S. occidentalis), and filamentous fungi such as, for example Penicillium, Tolypocladium, and Aspergillus (A. nidulans and A. niger).

[0382] Useful mammalian host cells include COS-7 cells, HEK293 cells; baby hamster kidney (BHK) cells; Chinese hamster ovary (CHO); mouse sertoli cells; African green monkey kidney cells (VERO-76), and the like.

[0383] The host cells used to produce the anti-EpCAM antibody of this invention may be cultured in a variety of media. Commercially available media such as, for example, Ham's F10, Minimal Essential Medium (MEM), RPMI-1640, and Dulbecco's Modified Eagle's Medium (DMEM) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz., 1979, 58:44; Barnes et al., Anal. Biochem., 1980, 102:255; and U.S. Pat. Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, and 5,122,469, or WO 90/03430 and WO 87/00195 may be used. Each of the foregoing references is incorporated by reference in its entirety.

[0384] Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics, trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.

[0385] The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

[0386] When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. For example, Carter et al. (Bio/Technology, 1992, 10:163-167) describes a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation.

[0387] In some embodiments, the antibody is produced in a cell-free system. In some aspects, the cell-free system is an in vitro transcription and translation system as described in Yin et al., mAbs, 2012, 4:217-225, incorporated by reference in its entirety. In some aspects, the cell-free system utilizes a cell-free extract from a eukaryotic cell or from a prokaryotic cell. In some aspects, the prokaryotic cell is E. coli. Cell-free expression of the antibody may be useful, for example, where the antibody accumulates in a cell as an insoluble aggregate, or where yields from periplasmic expression are low.

[0388] Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon.RTM. or Millipore.RTM. Pellcon.RTM. ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

[0389] The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being a particularly useful purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human .gamma.1, .gamma.2, or .gamma.4 heavy chains (Lindmark et al., J. Immunol. Meth., 1983, 62:1-13, incorporated by reference in its entirety). Protein G is useful for all mouse isotypes and for human .gamma.3 (Guss et al., EMBO J., 1986, 5:1567-1575, incorporated by reference in its entirety).

[0390] The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C.sub.H3 domain, the BakerBond ABX.RTM. resin is useful for purification.

[0391] Other techniques for protein purification, such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin Sepharose.RTM., chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available, and can be applied by one of skill in the art.

[0392] Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5 to about 4.5, generally performed at low salt concentrations (e.g., from about 0 to about 0.25 M salt).

10. Pharmaceutical Compositions and Methods of Administration

[0393] Any of the antibodies provided herein can be provided in any appropriate pharmaceutical composition and be administered by any suitable route of administration. Suitable routes of administration include, but are not limited to, the inhalation, intraarterial, intradermal, intramuscular, intraperitoneal, intravenous, nasal, parenteral, pulmonary, and subcutaneous routes.

[0394] The pharmaceutical composition may comprise one or more pharmaceutical excipients. Any suitable pharmaceutical excipient may be used, and one of ordinary skill in the art is capable of selecting suitable pharmaceutical excipients. Accordingly, the pharmaceutical excipients provided below are intended to be illustrative, and not limiting. Additional pharmaceutical excipients include, for example, those described in the Handbook of Pharmaceutical Excipients, Rowe et al. (Eds.) 6th Ed. (2009), incorporated by reference in its entirety.

[0395] In some embodiments, the pharmaceutical composition comprises an anti-foaming agent. Any suitable anti-foaming agent may be used. In some aspects, the anti-foaming agent is selected from an alcohol, an ether, an oil, a wax, a silicone, a surfactant, and combinations thereof. In some aspects, the anti-foaming agent is selected from a mineral oil, a vegetable oil, ethylene bis stearamide, a paraffin wax, an ester wax, a fatty alcohol wax, a long chain fatty alcohol, a fatty acid soap, a fatty acid ester, a silicon glycol, a fluorosilicone, a polyethylene glycol-polypropylene glycol copolymer, polydimethylsiloxane-silicon dioxide, ether, octyl alcohol, capryl alcohol, sorbitan trioleate, ethyl alcohol, 2-ethyl-hexanol, dimethicone, oleyl alcohol, simethicone, and combinations thereof.

[0396] In some embodiments, the pharmaceutical composition comprises a cosolvent. Illustrative examples of cosolvents include ethanol, poly(ethylene) glycol, butylene glycol, dimethylacetamide, glycerin, and propylene glycol.

[0397] In some embodiments, the pharmaceutical composition comprises a buffer. Illustrative examples of buffers include acetate, borate, carbonate, lactate, malate, phosphate, citrate, hydroxide, diethanolamine, monoethanolamine, glycine, methionine, guar gum, and monosodium glutamate.

[0398] In some embodiments, the pharmaceutical composition comprises a carrier or filler. Illustrative examples of carriers or fillers include lactose, maltodextrin, mannitol, sorbitol, chitosan, stearic acid, xanthan gum, and guar gum.

[0399] In some embodiments, the pharmaceutical composition comprises a surfactant. Illustrative examples of surfactants include d-alpha tocopherol, benzalkonium chloride, benzethonium chloride, cetrimide, cetylpyridinium chloride, docusate sodium, glyceryl behenate, glyceryl monooleate, lauric acid, macrogol 15 hydroxystearate, myristyl alcohol, phospholipids, polyoxyethylene alkyl ethers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearates, polyoxylglycerides, sodium lauryl sulfate, sorbitan esters, and vitamin E polyethylene(glycol) succinate.

[0400] In some embodiments, the pharmaceutical composition comprises an anti-caking agent. Illustrative examples of anti-caking agents include calcium phosphate (tribasic), hydroxymethyl cellulose, hydroxypropyl cellulose, and magnesium oxide.

[0401] Other excipients that may be used with the pharmaceutical compositions include, for example, albumin, antioxidants, antibacterial agents, antifungal agents, bioabsorbable polymers, chelating agents, controlled release agents, diluents, dispersing agents, dissolution enhancers, emulsifying agents, gelling agents, ointment bases, penetration enhancers, preservatives, solubilizing agents, solvents, stabilizing agents, and sugars. Specific examples of each of these agents are described, for example, in the Handbook of Pharmaceutical Excipients, Rowe et al. (Eds.) 6th Ed. (2009), The Pharmaceutical Press, incorporated by reference in its entirety.

[0402] In some embodiments, the pharmaceutical composition comprises a solvent. In some aspects, the solvent is saline solution, such as a sterile isotonic saline solution or dextrose solution. In some aspects, the solvent is water for injection.

[0403] In some embodiments, the pharmaceutical compositions are in a particulate form, such as a microparticle or a nanoparticle. Microparticles and nanoparticles may be formed from any suitable material, such as a polymer or a lipid. In some aspects, the microparticles or nanoparticles are micelles, liposomes, or polymersomes.

[0404] Further provided herein are anhydrous pharmaceutical compositions and dosage forms comprising an antibody, since water can facilitate the degradation of some antibodies.

[0405] Anhydrous pharmaceutical compositions and dosage forms provided herein can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprises a primary or secondary amine can be anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.

[0406] An anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions can be packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.

[0407] 10.1. Parenteral Dosage Forms

[0408] In certain embodiments, provided are parenteral dosage forms. Parenteral dosage forms can be administered to subjects by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses subjects' natural defenses against contaminants, parenteral dosage forms are typically, sterile or capable of being sterilized prior to administration to a subject. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions.

[0409] Suitable vehicles that can be used to provide parenteral dosage forms are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.

[0410] Excipients that increase the solubility of one or more of the antibodies disclosed herein can also be incorporated into the parenteral dosage forms.

[0411] 10.2. Dosage and Unit Dosage Forms

[0412] In human therapeutics, the doctor will determine the posology which he considers most appropriate according to a preventive or curative treatment and according to the age, weight, condition and other factors specific to the subject to be treated.

[0413] In certain embodiments, a composition provided herein is a pharmaceutical composition or a single unit dosage form. Pharmaceutical compositions and single unit dosage forms provided herein comprise a prophylactically or therapeutically effective amount of one or more prophylactic or therapeutic antibodies.

[0414] The amount of the antibody or composition which will be effective in the prevention or treatment of a disorder or one or more symptoms thereof will vary with the nature and severity of the disease or condition, and the route by which the antibody is administered. The frequency and dosage will also vary according to factors specific for each subject depending on the specific therapy (e.g., therapeutic or prophylactic agents) administered, the severity of the disorder, disease, or condition, the route of administration, as well as age, body, weight, response, and the past medical history of the subject. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

[0415] In certain embodiments, exemplary doses of a composition include milligram or microgram amounts of the antibody per kilogram of subject or sample weight (e.g., about 10 micrograms per kilogram to about 50 milligrams per kilogram, about 100 micrograms per kilogram to about 25 milligrams per kilogram, or about 100 microgram per kilogram to about 10 milligrams per kilogram). In certain embodiment, the dosage of the antibody provided herein, based on weight of the antibody, administered to prevent, treat, manage, or ameliorate a disorder, or one or more symptoms thereof in a subject is 0.1 mg/kg, 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/kg, 6 mg/kg, 10 mg/kg, or 15 mg/kg or more of a subject's body weight. In another embodiment, the dosage of the composition or a composition provided herein administered to prevent, treat, manage, or ameliorate a disorder, or one or more symptoms thereof in a subject is 0.1 mg to 200 mg, 0.1 mg to 100 mg, 0.1 mg to 50 mg, 0.1 mg to 25 mg, 0.1 mg to 20 mg, 0.1 mg to 15 mg, 0.1 mg to 10 mg, 0.1 mg to 7.5 mg, 0.1 mg to 5 mg, 0.1 to 2.5 mg, 0.25 mg to 20 mg, 0.25 to 15 mg, 0.25 to 12 mg, 0.25 to 10 mg, 0.25 mg to 7.5 mg, 0.25 mg to 5 mg, 0.25 mg to 2.5 mg, 0.5 mg to 20 mg, 0.5 to 15 mg, 0.5 to 12 mg, 0.5 to 10 mg, 0.5 mg to 7.5 mg, 0.5 mg to 5 mg, 0.5 mg to 2.5 mg, 1 mg to 20 mg, 1 mg to 15 mg, 1 mg to 12 mg, 1 mg to 10 mg, 1 mg to 7.5 mg, 1 mg to 5 mg, or 1 mg to 2.5 mg.

[0416] The dose can be administered according to a suitable schedule, for example, once, two times, three times, or for times weekly. It may be necessary to use dosages of the antibody outside the ranges disclosed herein in some cases, as will be apparent to those of ordinary skill in the art. Furthermore, it is noted that the clinician or treating physician will know how and when to interrupt, adjust, or terminate therapy in conjunction with subject response.

[0417] Different therapeutically effective amounts may be applicable for different diseases and conditions, as will be readily known by those of ordinary skill in the art. Similarly, amounts sufficient to prevent, manage, treat or ameliorate such disorders, but insufficient to cause, or sufficient to reduce, adverse effects associated with the antibodies provided herein are also encompassed by the herein described dosage amounts and dose frequency schedules. Further, when a subject is administered multiple dosages of a composition provided herein, not all of the dosages need be the same. For example, the dosage administered to the subject may be increased to improve the prophylactic or therapeutic effect of the composition or it may be decreased to reduce one or more side effects that a particular subject is experiencing.

[0418] In certain embodiments, treatment or prevention can be initiated with one or more loading doses of an antibody or composition provided herein followed by one or more maintenance doses.

[0419] In certain embodiments, a dose of an antibody or composition provided herein can be administered to achieve a steady-state concentration of the antibody in blood or serum of the subject. The steady-state concentration can be determined by measurement according to techniques available to those of skill or can be based on the physical characteristics of the subject such as height, weight and age.

[0420] In certain embodiments, administration of the same composition may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or 6 months. In other embodiments, administration of the same prophylactic or therapeutic agent may be repeated and the administration may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or 6 months.

11. Therapeutic Applications

[0421] For therapeutic applications, the antibodies of the invention are administered to a mammal, generally a human, in a pharmaceutically acceptable dosage form such as those known in the art and those discussed above. For example, the antibodies of the invention may be administered to a human intravenously as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intra-cerebrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, or intratumoral routes. The antibodies also are suitably administered by peritumoral, intralesional, or perilesional routes, to exert local as well as systemic therapeutic effects. The intraperitoneal route may be particularly useful, for example, in the treatment of ovarian tumors.

[0422] The antibodies provided herein may be useful for the treatment of any disease or condition involving EpCAM. In some embodiments, the disease or condition is a disease or condition that can be diagnosed by overexpression of EpCAM. In some embodiments, the disease or condition is a disease or condition that can benefit from treatment with an anti-EpCAM antibody. In some embodiments, the disease or condition is a cancer.

[0423] Any suitable cancer may be treated with the antibodies provided herein. Illustrative suitable cancers include, for example, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, basal cell carcinoma, brain tumor, bile duct cancer, bladder cancer, bone cancer, breast cancer, bronchial tumor, carcinoma of unknown primary origin, cardiac tumor, cervical cancer, chordoma, colon cancer, colorectal cancer, craniopharyngioma, ductal carcinoma, embryonal tumor, endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, fibrous histiocytoma, Ewing sarcoma, eye cancer, germ cell tumor, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gestational trophoblastic disease, glioma, head and neck cancer, hepatocellular cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular melanoma, islet cell tumor, Kaposi sarcoma, kidney cancer, Langerhans cell histiocytosis, laryngeal cancer, lip and oral cavity cancer, liver cancer, lobular carcinoma in situ, lung cancer, macroglobulinemia, malignant fibrous histiocytoma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, midline tract carcinoma involving NUT gene, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fungoides, myelodysplastic syndrome, myelodysplastic/myeloproliferative neoplasm, nasal cavity and par nasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-small cell lung cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, papillomatosis, paraganglioma, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytomas, pituitary tumor, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell cancer, renal pelvis and ureter cancer, retinoblastoma, rhabdoid tumor, salivary gland cancer, Sezary syndrome, skin cancer, small cell lung cancer, small intestine cancer, soft tissue sarcoma, spinal cord tumor, stomach cancer, T-cell lymphoma, teratoid tumor, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, urethral cancer, uterine cancer, vaginal cancer, vulvar cancer, and Wilms tumor.

[0424] In particular embodiments, the cancer is a cancer of epithelial origin. In some aspects, the cancer is a carcinoma. In some aspects, the cancer is selected from an adenocarcinoma, a squamous cell carcinoma, an adenosquamos carcinoma, an anaplastic carcinoma, a large cell carcinoma, small cell carcinoma, and carcinoma of unknown primary origin.

12. Diagnostic Applications

[0425] In some embodiments, the antibodies provided herein are used in diagnostic applications. For example, an ant-EpCAM antibody may be useful in assays for EpCAM protein. In some aspects the antibody can be used to detect the expression of EpCAM in various cells and tissues. These assays may be useful, for example, in making a diagnosis and/or prognosis for a disease, such as a cancer.

[0426] In some diagnostic and prognostic applications, the antibody may be labeled with a detectable moiety. Suitable detectable moieties include, but are not limited to radioisotopes, fluorescent labels, and enzyme-substrate labels. In another embodiment, the anti-EpCAM antibody need not be labeled, and the presence of the antibody can be detected using a labeled antibody which specifically binds to the anti-EpCAM antibody.

13. Affinity Purification Reagents

[0427] The antibodies of the invention may be used as affinity purification agents. In this process, the antibodies may be immobilized on a solid phase such a resin or filter paper, using methods well known in the art. The immobilized antibody is contacted with a sample containing the EpCAM protein (or fragment thereof) to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the EpCAM protein, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the EpCAM protein from the antibody.

14. Kits

[0428] In some embodiments, an anti-EpCAM antibody provided herein is provided in the form of a kit, i.e., a packaged combination of reagents in predetermined amounts with instructions for performing a procedure. In some embodiments, the procedure is a diagnostic assay. In other embodiments, the procedure is a therapeutic procedure.

[0429] In some embodiments, the kit further comprises a solvent for the reconstitution of the anti-EpCAM antibody. In some embodiments, the anti-EpCAM antibody is provided in the form of a pharmaceutical composition.

EXAMPLES

Example 1: Generation and Primary Screening of Anti-EpCAM Antibodies

[0430] Antibody scFv libraries were constructed using a standard overlap extension PCR protocol with mutagenic primers targeting complementary determining regions (CDRs). See Heckman and Pease, Nat. Protoc., 2007, 2:924-932, incorporated by reference in its entirety. Selections for novel antibodies were performed using standard ribosome display protocols. See Dreier and Pluckthun, Methods Mol. Biol., 2003, 687:283-306, Clifton, N.J., incorporated by reference in its entirety. scFv-based selection was performed according to published protocols. See Hanes and Pluckthun, Proc. Natl. Acad. Sci. USA., 1997, 94:4937-4942, incorporated by reference in its entirety. After multiple rounds of selection, the DNA from RT-PCR output was cloned into an optimized vector for cell-free expression using standard molecular biology techniques. See Yin et al., mAbs, 2012, 4:217-225, incorporated by reference in its entirety. All constructs were HIS- and FLAG-tagged to streamline purification and testing during screening.

[0431] Libraries of antibody variants generated by selection workflow were transformed into E. coli and grown on agar plates with antibiotic (kanamycin). Individual colonies were grown in liquid broth (TB+kanamycin), and used as a template for DNA amplification via rolling circle amplification (RCA). The variants were then expressed in cell-free protein synthesis reactions as described in Zawada et al., Biotechnol. Bioeng., 2011, 108:1570-1578, incorporated by reference in its entirety.

[0432] Briefly, cell-free extracts were treated with 50 .mu.M iodoacetamide for 30 min at room temperature (20.degree. C.) and added to a premix containing cell-free components (see Groff et al., mAbs, 2014, 6:671-678, incorporated by reference in its entirety) and 10% (v/v) RCA DNA template (approximately 10 .mu.g/mL DNA) for variants of interest. Sixty microliters of cell-free reactions were incubated at 30.degree. C. for 12 hr on a shaker at 650 rpm in 96-well plates. Four hundred to one-thousand-five-hundred colonies were screened, depending on the predicted diversity of different selection campaigns.

[0433] Following synthesis, each reaction was diluted 1:50 into PBST (PBS at pH 7.4 with 0.2% Tween-20+0.2% BSA) and expressed variants were tested for functional activity via ELISA-based binding to recombinant human EpCAM extracellular domain (ECD) (Gln 24-Lys 265; Acro Biosystems; Cat. No. EPM-H5223). Standard ELISA-based methods were employed. Specifically, 384-well plates were coated with 2 .mu.g/mL recombinant EpCAM diluted in bicarbonate buffer, and then blocked with BSA. Antibody variants of interest were allowed to bind to the EpCAM-coated plates, and detected with secondary antibodies (e.g., HRP-conjugated anti-human Fc or anti-FLAG) and then detected with chemiluminescent substrate (Pierce ELISA SuperSignal.TM. Substrate). Chemiluminescence was quantified on a Molecular Devices SpectraMax.RTM. M5 plate reader. Top hits were selected based on ELISA signal or signal/noise ratio and their nucleotides were sequenced. Based on functional activity and sequence analysis, a subset of variants was selected for further scale-up and characterization.

Example 2: Secondary Screening of Antibodies

[0434] The top leads from the initial round of screening were cultured and plasmid minipreps were performed using a QlAprep.RTM. 96 Turbo miniprep kit (Qiagen) according to the manufacturer's instructions. 10 .mu.g/mL miniprepped DNA was added to 4 mL cell-free reactions and incubated overnight for 12 hr at 30.degree. C., at 650 rpm.

[0435] Expressed variants from clarified cell-free reactions were purified via immobilized metal ion affinity chromatography (IMAC) purification using a semi-automated high throughput batch purification method. Briefly, purifications were performed in a 96-well plate format where 50 .mu.L/well of IMAC resin (Ni Sepharose High Performance, GE Healthcare) was equilibrated in IMAC binding buffer (50 mM Tris pH 8.0, 300 mM NaCl, 10 mM imidazole), incubated with 1 mL cell-free reaction for 15 minutes followed by two washes in IMAC binding buffer. His-tagged antibody variants were then eluted using 200 .mu.L IMAC elution buffer (50 mM Tris pH 8.0, 300 mM NaCl, 500 mM imidazole) and buffer exchanged into PBS using a 96-well Zeba plate (7 kD MWCO, Thermo Fisher). Purified antibodies were quantified via high throughput capillary electrophoresis using the LabChip GXII (Perkin Elmer) against a Herceptin standard curve, according to the manufacturer's instructions.

Example 3: Affinity and Kinetic Binding Analyses

[0436] Monoclonal Anti-FLAG M2 IgG (Sigma-Aldrich # F9291) was immobilized onto a CMS chip (GE Life Sciences) using amine coupling chemistry (from Amine Coupling Kit, GE Life Sciences). The immobilization steps were carried out at a flow rate of 25 .mu.L/min in 1.times.HBS-EP+ buffer (GE Life Sciences; 10.times. Stock diluted before use). The sensor surfaces were activated for 7 min with a mixture of NHS (0.05 M) and EDC (0.2 M). The Anti-Flag M2 IgG was injected over all 4 flow cells at a concentration of 25 .mu.g/mL in 10 mM sodium acetate, pH 4.5, for 7 min. Ethanolamine (1 M, pH 8.5) was injected for 7 min to block any remaining activated groups. An average of 12,000 response units (RU) of capture antibody was immobilized on each flow cell.

[0437] Off-rate and Kinetic binding experiments were performed at 25.degree. C. using 1.times.HBS-EP+ buffer. Test and control antibodies were injected over the Anti-FLAG surface at concentrations of 5-10 .mu.g/mL for 12 seconds at a flow rate of 10 .mu.L/min on flow cells 2, 3 and 4, followed by a buffer wash for 30 seconds at the same flow rate. Kinetic characterization of antibody samples was carried out with a single concentration of antigen (for off-rate ranking) or a 1:2 dilution series of antigen (for kinetic characterization) and 1 injection of 0 nM antigen. After capturing ligand (antibody) on the anti-FLAG surface, the analyte (human EpCAM-His) was bound at 50, 25, 12.5, 6.25 and 0 nM for 180 seconds, followed by a 600 second dissociation phase at a flow rate of 50 .mu.l/min. Between each ligand capture and analyte binding cycle, regeneration was carried out using 2 injections of 10 mM glycine pH 2.0 for 30 seconds at 30 .mu.L/min, followed by a 30 second buffer wash step.

[0438] The data were fit with the Biacore T200 Evaluation software, using a 1:1 Langmuir binding model. K.sub.D (affinity, nM) was determined as a ratio of the kinetic rate constants calculated from the fits of the association and dissociation phases.

Example 4: EpCAM Epitope Binning ELISA

[0439] An anti-EpCAM antibody, 5-10 scFv-Fc (SEQ ID NO: 362), was adsorbed on Nunc 384-well white Maxisorp plates at 2 .mu.g/mL in in sodium bicarbonate buffer (pH 8.9) and incubated at 30.degree. C. for 1 hour or overnight at 4.degree. C. The plate was washed 3 times with PBS pH 7.4 with 0.05% Tween and blocked with 2% bovine serum albumin (BSA) in PBS pH 7.4+0.1% Tween for 1 hour at 30.degree. C. The block was removed by aspiration.

[0440] A dilution series of antibody was mixed with 1 nM biotinylated EpCAM-Fc (R&D Systems) in 0.2% BSA in PBS pH 7.4+0.1% Tween (diluent buffer) and incubated at 30.degree. C. for 1 hour. The plate was washed, and streptavidin-HRP (horseradish peroxidase; Thermo Pierce) was diluted 1:10,000 in diluent buffer, added to each well, and incubated at 30.degree. C. for 1 hour. The plate was washed and detected by SuperSignal West Pico Chemiluminescent Substrate (Thermo Pierce). Luminescence was detected on a SpectraMax plate reader (Molecular Devices).

Example 5: Fluorescence-Assisted Cell Sorting (FACS)-Based Cell Sorting

[0441] CHO-k cells were transfected to stably express EpCAM on the cell surface. CHO parental and stably transfected CHO-EpCAM (human, cynomolgus and mouse EpCAM-expressing cells) cells were washed with DPBS, detached with Accutase.TM. (BD Biosciences; San Jose, Calif.), and resuspended in ice-cold FACS buffer (DPBS buffer supplemented with 0.5% bovine serum albumin).

[0442] A total of 200,000 cells per 96-well were incubated on ice for 60 mins with 100 nM of test antibodies diluted in FACS buffer. Cells were washed twice with FACS buffer and incubated on ice for 30 mins with R-phycoerythrin AffiniPure F(ab').sub.2 fragment, goat anti-Human IgG, Fc.gamma. fragment specific secondary detection antibody (Jackson ImmunoResearch Laboratories, West Grove, Pa.) diluted at 1:200 with FACS buffer. Cells were washed twice with FACS buffer, fixed in 4% paraformaldehyde in PBS (Santa Cruz Biotechnology; Dallas, Tex.) for 20 mins on ice in the dark, washed twice with FACS buffer and analyzed using the BD LSR II Flow Cytometer (BD Biosciences; San Jose, Calif.). Data were analyzed using FlowJo (FlowJo, LLC; Ashland, Oreg.) to determine mean fluorescence intensities. Binding constants were calculated using the statistical software, GraphPad Prism (GraphPad Software; La Jolla, Calif.) using the nonlinear regression equation, one site--specific binding with Hill slope. Secondary antibody alone was used as a control, in addition to measuring non-specific EpCAM antibody binding to CHO parental cells. For some variants, binding to human tumor cells, HCT 116 and JIMT1 cells were also evaluated.

Example 6: Epitope Binding and Domain Mapping

[0443] The EpCAM domain bound by the anti-human EpCAM Abs was mapped by cell binding analysis on stably transfected CHO cells expressing human/mouse chimeric EpCAM constructs. Since anti-human EpCAM Abs do not have cross-reactive binding to mouse EpCAM, chimeric human/mouse EpCAM constructs were generated to map the binding region on human EpCAM. To make the expression constructs, human and mouse EpCAM amino acid sequences corresponding to exon 2, exon 3 and exons 4-9 were switched with the alternative mouse and human amino acid sequences, respectively. The following constructs were generated and expressed in CHO cells: 1) MHH, 2) HMH, 3) HHM, 4) HMM, 5) MHM and 6) MMH, where the three letters denote human (H) or mouse (M) amino acid sequences in exon 2, exon 3 and exons 4-9, respectively. EpCAM Abs were tested for binding to the different chimeric cell lines at a concentration of 10 .mu.g/mL by FACS binding analysis.

[0444] The results show that the SRP1464-A08 and SRP1464-B04 antibodies provided herein bind an epitope on EpCAM that is encoded by exons 4-7 of the EpCAM gene. On the other hand, 1332-A05 binds to an epitope encoded by exon 2.

[0445] Based on sequence similarity, it is expected that other SRP1464-antibodies, as well as the (parent) SRP1304-antibodies and (child) SRP1557-antibodies also bind an epitope on EpCAM that is encoded by exons 4-7. Similarly, it is expected that other SRP1332-antibodies also bind an epitope encoded by exon 2.

[0446] Despite the fact that they bind epitopes encoded by different exons both the SRP1332-A05 antibody (exon 2) and the 1464-A08 and 1464-B04 antibodies (exons 4-7) competed with a known exon 2 binder (SEQ ID NO: 336) in an experiment where each antibody was tested for its ability to block binding of the known exon 2 binder. This suggests that the epitope encoded by exon 2 (bound by SRP1332- and SEQ ID NO: 336) and exons 4-7 (bound by SRP1464-) are proximal to each other in the folded EpCAM structure, as expressed on the cell surface.

Example 7: Refined Epitope Binding and Competition Assay

[0447] The EpCAM domain bound by the anti-human EpCAM Abs within exons 4-7 was mapped by additional cell binding analysis on stably transfected CHO cells expressing human/mouse chimeric EpCAM constructs for exons 4 and 5 only. To make the expression constructs, human EpCAM amino acid sequences within parts of exon 4 and/or exons were replaced with mouse EpCAM amino acid sequences. The following constructs were generated and expressed in CHO cells: 1) MH, 2) HM, and 3) MM, where the two letters denote human (H) or mouse (M) amino acid sequences within exons 4 and exon 5, respectively. EpCAM Abs were tested for binding to the different chimeric cell lines at a concentration of 10 .mu.g/mL by FACS binding analysis.

[0448] The results show that the SRP1464-B04 and SRP1557-G01 antibodies provided herein bind an epitope on EpCAM that is encoded by exon 5 of the EpCAM gene. Positive control Adecatumumab (known to bind exon 5) also bound to exon 5 in the same assay. This is further confirmed by competition binding experiment using CHO cells expressing human EpCAM, which showed that both SRP1464-B04 and SRP1557-G01 compete with Adecatumumab for binding to EpCAM.

[0449] Based on sequence similarity, it is expected that other SRP1464-antibodies, as well as the (parent) SRP1304-antibodies and other (child) SRP1557-antibodies also bind an epitope on EpCAM that is encoded by exon 5.

[0450] It should be noted that though the SRP1464-B04 and SRP1557-G01 antibodies bind to the same exon as, and compete for binding with, Adecatumumab, both SRP1464-B04 and SRP1557-G01 have significant binding affinity for cynomolgous EpCAM protein (see Tables 5 and 6, below), while Adecatumumab does not have significant binding affinity for cynomolgous EpCAM. See Munz et al., Cancer Cell Int, 2010, 10:44. Cynomolgous cross-reactivity is advantageous because it evaluation of the toxicity of antibodies in a primate model, allowing such evaluation without exposing human subjects to molecules of unknown toxicity. Thus, the SRP1464-B04 and SRP1557-G01 antibodies demonstrate a significant and unexpected biological property not found in known antibodies binding exon 5 of human EpCAM.

Example 8: Characteristics of Illustrative Anti-EpCAM Antibodies

[0451] FIGS. 1A-1C provide an alignment of the "1304," "1464," and "1557" V.sub.H sequences provided herein. FIGS. 2A-2B provide an alignment of the "1332" V.sub.H sequences provided herein. FIGS. 3A-3B provide an alignment of the "1304," "1464," and "1557" V.sub.L sequences provided herein. FIGS. 4A-4B provide an alignment of the "1332" V.sub.L sequences provided herein.

[0452] Tables 5-7 show results obtained using the illustrative antibodies described herein.

[0453] Table 5 shows results obtained from certain antibodies provided herein. Antibody SRP-1304-G11 was isolated from a naive library constructing using trinucleotides to introduce variability into CDRs. SRP-1464-A02, SRP-1464-A08, and SRP-1464-B04 were isolated from a first affinity maturation library that was based on SRP-1304-G11, and constructed using a soft randomization approach.

[0454] Briefly, during soft randomization, polynucleotides encoding the antibodies were synthesized by incorporating low levels (.about.30%) of non-parent nucleotides at each position within a CDR. For example, for a parent polynucleotide with A at a position to be soft randomized, a series of oligonucleotides were synthesized where about 70% have A at the position, 10% have C at the position, 10% have G at the position, and 10% have T at the position. As a result, when each position in a codon is soft randomized, approximately 34.3% of codons will remain unchanged, but any of the other 19 amino acids may also occur at the soft randomized position.

TABLE-US-00005 TABLE 5 Human Cyno Human Human Human Human EpCAM EpCAM EpCAM EpCAM EpCAM EpCAM (Biacore) (ELISA) (ELISA) (CHO) (HCT-116) (JIMT1) Epitope scFv-Fc k.sub.a k.sub.d K.sub.D EC.sub.50 EC.sub.50 K.sub.D K.sub.D K.sub.D BinExon Antibody (1/Ms) (1/s) (M) (nM) (nM) (nM) (nM) (nM) 5 SRP1304-G11 1.03E+05 4.12E-04 3.99E-09 not deter- not deter- 3 not deter- not deter- not deter- (SEQ ID NO: mined mined mined mined mined 204) SRP 1464-A02 2.00E+05 1.97E-04 9.83E-10 0.009 not 2.6 6.7 5.2 not deter- (SEQ ID NO: detected mined 208) SRP 1464-A08 9.03E+04 1.74E-05 1.93E-10 0.39 not 1.2 3.6 2.7 yes (SEQ ID NO: detected 209) SRP1464-B04 6.52E+04 2.56E-04 3.93E-09 0.39 16.18 2 6.9 7.6 yes (SEQ ID NO: 210)

[0455] Table 6 shows results obtained from antibodies isolated from a second affinity matured library, constructed using soft randomization, based on the SRP1464-B04 antibody.

[0456] The "EC.sub.50" value is the concentration of the antibody at which half-maximum signal is achieved in an ELISA assay where EpCAM protein is adsorbed onto a plate and then bound by the respective antibody provided herein. The anti-EpCAM antibody is detected with horseradish peroxidase (HRP)-conjugated anti-human Fc antibody.

TABLE-US-00006 TABLE 6 Results obtained from antibodies isolated from a first affinity matured library, based on the SRP1464-B04 antibody provided in Table 5. Human EpCAM Cyno EpCAM Human EpCAM Cyno EpCAM (Biacore) (Biacore) (CHO) (CHO) scFv-Fc k.sub.a k.sub.d K.sub.D K.sub.D K.sub.D K.sub.D Epitope bin Antibody (1/Ms) (1/s) (M) (M) (nM) (nM) Exon 5 SRP1557-A04 2.10E+05 3.75E-04 1.78E-09 1.82E-08 1.85 2.5 Not tested (SEQ ID NO: 211) SRP1557-A05 2.20E+05 7.84E-04 3.56E-09 2.29E-08 2.49 1.83 Not tested (SEQ ID NO: 212) SRP1557-B03 1.49E+05 5.10E-04 3.43E-09 1.20E-07 1.45 1.59 Not tested (SEQ ID NO: 213) SRP1557-B10 1.43E+05 5.98E-04 4.17E-09 3.99E-08 1.71 1.35 Not tested (SEQ ID NO: 214) SRP1557-006 1.66E+05 9.08E-04 5.46E-09 2.97E-08 1.08 0.7 Not tested (SEQ ID NO: 215) SRP1557-E07 2.56E+05 1.58E-03 6.17E-09 8.10E-09 1.54 0.9 Not tested (SEQ ID NO: 216) SRP1557-E08 2.88E+05 7.90E-04 2.75E-09 7.52E-09 1.17 1.2 Not tested (SEQ ID NO: 217) SRP1557-E11 1.76E+05 6.04E-04 3.44E-09 4.52E-08 1.69 1.07 Not tested (SEQ ID NO: 218) SRP1557-F01 2.35E+05 1.69E-03 7.21E-09 1.17E-09 1.96 1.21 Not tested (SEQ ID NO: 219) SRP1557-F02 1.70E+05 2.54E-04 1.49E-09 2.91E-08 1.91 0.9 Not tested (SEQ ID NO: 220) SRP1557-F03 1.92E+05 1.00E-03 5.24E-09 8.59E-09 1.5 0.66 Not tested (SEQ ID NO: 221) SRP1557-F05 ND ND ND ND 3.24 2.99 Not tested (SEQ ID NO: 222) SRP1557-G01 3.51E+05 1.23E-03 3.50E-09 4.41E-09 1.79 1.79 yes (SEQ ID NO: 223) SRP1557-G03 2.54E+05 1.75E-03 6.91E-09 1.62E-07 1.91 1.38 Not tested (SEQ ID NO: 224) SRP1557-G04 ND ND ND ND 3.68 1.83 Not tested (SEQ ID NO: 225) SRP1557-G06 1.40E+05 9.39E-04 6.70E-09 1.52E-08 2.47 1.62 Not tested (SEQ ID NO: 226) SRP1557-H04 3.10E+05 7.87E-04 2.54E-09 7.22E-09 1.89 0.87 Not tested (SEQ ID NO: 227) SRP1557-H10 2.57E+05 3.06E-04 1.19E-09 3.52E-08 2.59 0.99 Not tested (SEQ ID NO: 228)

[0457] Table 7 shows results obtained from antibodies isolated from a third affinity matured library constructed by performing soft randomization on a different antibody.

TABLE-US-00007 TABLE 7 Results obtained from antibodies isolated from a third affinity matured library. Human Human Human EpCAM EpCAM EpCAM Cyno EpCAM (Biacore) (CHO) (ELISA) (ELISA) Epitope scFv-Fc k.sub.a k.sub.d K.sub.D K.sub.D EC.sub.50 EC.sub.50 bin Antibody (1/Ms) (1/s) (M) (nM) (nM) (nM) Exon 5 SRP1332-C01 2.84E+05 2.57E-04 9.04E-10 1.6 0.33 not detected Yes (SEQ ID NO: 206) SRP1332-A05 2.05E+05 2.97E-04 1.45E-09 2 0.47 not detected Yes (SEQ ID NO: 205) SRP1332-F11 1.82E+05 2.57E-04 1.41E-09 1.14 0.47 not detected Yes (SEQ ID NO: 207)

Example 9: Sequences

[0458] Table 8 provides sequences referred to herein. In Table 8, the numbering scheme is indicated as Chothia or Kabat for the sequences where the scheme is significant, e.g., for CDR-H1 and CDR-H2 regions. Otherwise, the scheme is not indicated, and those of skill will recognize that either numbering scheme, or another, can apply.

TABLE-US-00008 TABLE 8 Sequences. SEQ ID NO: Molecule Region Scheme Sequence Length 1 hEpCAM MAPPQVLAFGLLLAAATATFAAAQEECVCE 314 NYKLAVNCFVNNNRQCQCTSVGAQNTVICS KLAAKCLVMKAEMNGSKLGRRAKPEGALQN NDGLYDPDCDESGLFKAKQONGTSTCWCVN TAGVRRTDKDTEITCSERVRTYWIIIELKH KAREKPYDSKSLRTALQKEITTRYQLDPKF ITSILYENNVITIDLVQNSSQKTQNDVDIA DVAYYFEKDVKGESLFHSKKMDLTVNGEQL DLDPGQTLIYYVDEKAPEFSMQGLKAGVIA VIVVVVIAVVAGIVVLVISRKKRMAKYEKA EIKEMGEMHRELNA 2 cEpCAM MAQSGQQCLQEEQETSLQQHYSFFVFLNFL 319 ECVCENYKLAVNCFLNDNGQCQCTSIGAQN TVLCSKLAAKCLVMKAEMNGSKLGRRAKPE GALQNNDGLYDPDCDESGLFKAKQONGTST CWCVNTAGVRRTDKDTEITCSERVRTYWII IELKHKAREKPYDVQSLRTALEEAIKTRYQ LDPKFITNILYEDNVITIDLVQNSSQKTQN DVDIADVAYYFEKDVKGESLFHSKKMDLRV NGEQLDLDPGQTLIYYVDEKAPEFSMQGLK AGVIAVIVVVVIAIVAGIVVLVISRKKRMA KYEKAEIKEMGEIHRELNA 3 mEpCAM MAGPQALAFGLLLAVVTATLAAAQRDCVCD 315 NYKLATSCSLNEYGECQCTSYGTQNTVICS KLASKCLAMKAEMTHSKSGRRIKPEGAIQN NDGLYDPDCDEQGLFKAKQCNGTATCWCVN TAGVRRTDKDTEITCSERVRTYWIIIELKH KERESPYDHQSLQTALQEAFTSRYKLNQKF IKNIMYENNVITIDLMQNSSQKTQDDVDIA DVAYYFEKDVKGESLFHSSKSMDLRVNGEP LDLDPGQTLIYYVDEKAPEFSMQGLTAGII AVIVVVSLAVIAGIVVLVISTRKKSAKYEK AEIKEMGEIHRELNA 4 1304-G11 CDR-H1 Chothia GFTFSGS 7 5 1332-A05 CDR-H1 Chothia DYAFANR 7 6 1332-C01 CDR-H1 Chothia GYAFTNS 7 7 1332-F11 CDR-H1 Chothia GYAFANR 7 8 1464-A02 CDR-H1 Chothia GFTFGVE 7 9 1464-A08 CDR-H1 Chothia GFTFSGS 7 10 1464-B04 CDR-H1 Chothia GFTFSGS 7 11 1557-A04 CDR-H1 Chothia GFTFSGS 7 12 1557-A05 CDR-H1 Chothia GFTFGGS 7 13 1557-B03 CDR-H1 Chothia GFTFRSS 7 14 1557-B10 CDR-H1 Chothia GFTFSGC 7 15 1557-C06 CDR-H1 Chothia GFTFRGA 7 16 1557-E07 CDR-H1 Chothia GFTFSGS 7 17 1557-E08 CDR-H1 Chothia GFTFRAS 7 18 1557-E11 CDR-H1 Chothia GFTFRGS 7 19 1557-F01 CDR-H1 Chothia GFTFSGS 7 20 1557-F02 CDR-H1 Chothia GFTFRGS 7 21 1557-F03 CDR-H1 Chothia GFTFSGS 7 22 1557-F05 CDR-H1 Chothia GFTFRGS 7 23 1557-G01 CDR-H1 Chothia GFTFSVT 7 24 1557-G03 CDR-H1 Chothia GFTFGGS 7 25 1557-G04 CDR-H1 Chothia GFTFCGS 7 26 1557-G06 CDR-H1 Chothia GFTFSGF 7 27 1557-H04 CDR-H1 Chothia GFTFSVT 7 28 1557-H10 CDR-H1 Chothia GFTFSGS 7 29 1304-G11 CDR-H1 Kabat GSSMS 5 30 1332-A05 CDR-H1 Kabat NRWLG 5 31 1332-C01 CDR-H1 Kabat NSWLG 5 32 1332-F11 CDR-H1 Kabat NRWLG 5 33 1464-A02 CDR-H1 Kabat VESMS 5 34 1464-A08 CDR-H1 Kabat GSSMS 5 35 1464-B04 CDR-H1 Kabat GSSMS 5 36 1557-A04 CDR-H1 Kabat GSSMS 5 37 1557-A05 CDR-H1 Kabat GSSMS 5 38 1557-B03 CDR-H1 Kabat SSSMS 5 39 1557-B10 CDR-H1 Kabat GCSMS 5 40 1557-C06 CDR-H1 Kabat GASMS 5 41 1557-E07 CDR-H1 Kabat GSSMS 5 42 1557-E08 CDR-H1 Kabat ASSMS 5 43 1557-E11 CDR-H1 Kabat GSSMS 5 44 1557-F01 CDR-H1 Kabat GSSMS 5 45 1557-F02 CDR-H1 Kabat GSSMS 5 46 1557-F03 CDR-H1 Kabat GSSMS 5 47 1557-F05 CDR-H1 Kabat GSSMS 5 48 1557-G01 CDR-H1 Kabat VTSMS 5 49 1557-G03 CDR-H1 Kabat GSSMS 5 50 1557-G04 CDR-H1 Kabat GSSMS 5 51 1557-G06 CDR-H1 Kabat GFSMS 5 52 1557-H04 CDR-H1 Kabat VTSMS 5 53 1557-H10 CDR-H1 Kabat GSSMS 5 54 1304-G11 CDR-H2 Chothia DGGDGY 6 55 1332-A05 CDR-H2 Chothia FPGSGN 6 56 1332-C01 CDR-H2 Chothia FPGSGN 6 57 1332-F11 CDR-H2 Chothia FPGSGN 6 58 1464-A02 CDR-H2 Chothia DGGDGY 6 59 1464-A08 CDR-H2 Chothia AGGDGY 6 60 1464-B04 CDR-H2 Chothia DGGEGY 6 61 1557-A04 CDR-H2 Chothia DGGEGS 6 62 1557-A05 CDR-H2 Chothia GGGEGS 6 63 1557-B03 CDR-H2 Chothia GGHEGY 6 64 1557-B10 CDR-H2 Chothia AGGEGN 6 65 1557-006 CDR-H2 Chothia DGSQGS 6 66 1557-E07 CDR-H2 Chothia DGGEGS 6 67 1557-E08 CDR-H2 Chothia DGGVGS 6 68 1557-E11 CDR-H2 Chothia DGGEGS 6 69 1557-F01 CDR-H2 Chothia DGGEGS 6 70 1557-F02 CDR-H2 Chothia DGGEGS 6 71 1557-F03 CDR-H2 Chothia AGGGGS 6 72 1557-F05 CDR-H2 Chothia DGGEGS 6 73 1557-G01 CDR-H2 Chothia AGGEGS 6 74 1557-G03 CDR-H2 Chothia GGGEGY 6 75 1557-G04 CDR-H2 Chothia DGGVGS 6 76 1557-G06 CDR-H2 Chothia DGGEGS 6 77 1557-H04 CDR-H2 Chothia AGGEGS 6 78 1557-H10 CDR-H2 Chothia DGGEGS 6 79 1304-G11 CDR-H2 Kabat AIDGGDGYTNYADSVRG 17 80 1332-A05 CDR-H2 Kabat DIFPGSGNIHYNEKFKG 17 81 1332-C01 CDR-H2 Kabat DIFPGSGNIHYNEKFKG 17 82 1332-F11 CDR-H2 Kabat DIFPGSGNIHYNEKFKG 17 83 1464-A02 CDR-H2 Kabat AIDGGDGYTGYADSVKD 17 84 1464-A08 CDR-H2 Kabat AIAGGDGYTGYADSVKG 17 85 1464-B04 CDR-H2 Kabat AIDGGEGYTSYADSVKG 17 86 1557-A04 CDR-H2 Kabat AIDGGEGSTAYADSVKG 17 87 1557-A05 CDR-H2 Kabat AIGGGEGSTGYADSVKG 17 88 1557-B03 CDR-H2 Kabat AIGGHEGYTGYADSVKG 17 89 1557-B10 CDR-H2 Kabat AIAGGEGNTGYADSVKG 17 90 1557-C06 CDR-H2 Kabat AIDGSQGSTGYADSVKG 17 91 1557-E07 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 92 1557-E08 CDR-H2 Kabat AIDGGVGSTGYADSVKG 17 93 1557-E11 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 94 1557-F01 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 95 1557-F02 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 96 1557-F03 CDR-H2 Kabat AIAGGGGSTGYADSVKG 17 97 1557-F05 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 98 1557-G01 CDR-H2 Kabat AIAGGEGSTGYADSVKG 17 99 1557-G03 CDR-H2 Kabat AIGGGEGYTGYADSVKG 17 100 1557-G04 CDR-H2 Kabat AIDGGVGSTGYADSVKG 17 101 1557-G06 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 102 1557-H04 CDR-H2 Kabat AIAGGEGSTGYADSVKG 17 103 1557-H10 CDR-H2 Kabat AIDGGEGSTGYADSVKG 17 104 1304-G11 CDR-H3 GWHPQTYYGLDY 12 105 1332-A05 CDR-H3 LRNWEGPMDY 10 106 1332-C01 CDR-H3 LRNWDMPMDY 10 107 1332-F11 CDR-H3 LRNWEGPMDY 10

108 1464-A02 CDR-H3 AWHPQTYYGVDY 12 109 1464-A08 CDR-H3 GWHRQDYYGQDY 12 110 1464-B04 CDR-H3 GWHPQTLYDLDY 12 111 1557-A04 CDR-H3 GWHPQTMYDLDY 12 112 1557-A05 CDR-H3 GWHDQSLYDRDY 12 113 1557-B03 CDR-H3 GWNPQTLYHLDY 12 114 1557-B10 CDR-H3 GWHPQTLYDLDY 12 115 1557-C06 CDR-H3 GWHPQTMYDLDY 12 116 1557-E07 CDR-H3 GWHPQTLYDLDY 12 117 1557-E08 CDR-H3 GWHPQTLYDLDY 12 118 1557-E11 CDR-H3 GWHPQSLYDLDY 12 119 1557-F01 CDR-H3 GWHPQTLYDLDY 12 120 1557-F02 CDR-H3 GWHPQTMYNLDY 12 121 1557-F03 CDR-H3 GWHPQTLYDLDY 12 122 1557-F05 CDR-H3 DWHPQTLYDLDY 12 123 1557-G01 CDR-H3 GWHPQTLYDLDY 12 124 1557-G03 CDR-H3 GWHPQTLYDLDY 12 125 1557-G04 CDR-H3 GWHPQTLYDLDY 12 126 1557-G06 CDR-H3 GWHPQTLYHLDY 12 127 1557-H04 CDR-H3 GWHPQTLYDLDY 12 128 1557-H10 CDR-H3 GWHPQSMYDLDY 12 129 1304-G11 CDR-L1 RASQSVSSSYLA 12 130 1332-A05 CDR-L1 KSSQSLLNSGNQKNYLT 17 131 1332-C01 CDR-L1 KSSQSLLNSGNQKNYLT 17 132 1332-F11 CDR-L1 KSSQSLLNSGNQKNYLT 17 133 1464-A02 CDR-L1 RASQSVSSSYLA 12 134 1464-A08 CDR-L1 RASQSVSSSYLA 12 135 1464-B04 CDR-L1 RASQSVSSSYLA 12 136 1557-A04 CDR-L1 RASQNVSTNYLA 12 137 1557-A05 CDR-L1 SASQTVSSSYIA 12 138 1557-B03 CDR-L1 RASQKCSSSSMA 12 139 1557-B10 CDR-L1 RASQGLASRYMA 12 140 1557-C06 CDR-L1 RASQRGTSSYLA 12 141 1557-E07 CDR-L1 RASQVLSSSSLA 12 142 1557-E08 CDR-L1 RASQGDSSSVLA 12 143 1557-E11 CDR-L1 RASQPVPNTTLA 12 144 1557-F01 CDR-L1 RASQSVSSSKLA 12 145 1557-F02 CDR-L1 RASQSVSSSYLA 12 146 1557-F03 CDR-L1 RASQSVKTSDLA 12 147 1557-F05 CDR-L1 RASQTVSPSVLA 12 148 1557-G01 CDR-L1 RASQVLSSSSLA 12 149 1557-G03 CDR-L1 RASQSVHSSYLA 12 150 1557-G04 CDR-L1 RASQSVSSSYLA 12 151 1557-G06 CDR-L1 RASQSIPSSYLA 12 152 1557-H04 CDR-L1 RASQSVSTGYLA 12 153 1557-H10 CDR-L1 RASQVLSSSSLA 12 154 1304-G11 CDR-L2 GASSRAT 7 155 1332-A05 CDR-L2 WASTRES 7 156 1332-C01 CDR-L2 WASTRES 7 157 1332-F11 CDR-L2 RASTRES 7 158 1464-A02 CDR-L2 GASSRAT 7 159 1464-A08 CDR-L2 GASSRAT 7 160 1464-B04 CDR-L2 GASSRAT 7 161 1557-A04 CDR-L2 GASSRAT 7 162 1557-A05 CDR-L2 GASSRAT 7 163 1557-B03 CDR-L2 GASSRAT 7 164 1557-B10 CDR-L2 GASSRAT 7 165 1557-C06 CDR-L2 GASSRAT 7 166 1557-E07 CDR-L2 GASSRAT 7 167 1557-E08 CDR-L2 GASSRAT 7 168 1557-E11 CDR-L2 GASSRAT 7 169 1557-F01 CDR-L2 GASSRAT 7 170 1557-F02 CDR-L2 GASSRAT 7 171 1557-F03 CDR-L2 GASSRAT 7 172 1557-F05 CDR-L2 GASSRAT 7 173 1557-G01 CDR-L2 GASSRAT 7 174 1557-G03 CDR-L2 GASSRAT 7 175 1557-G04 CDR-L2 GASSRAT 7 176 1557-G06 CDR-L2 GASSRAT 7 177 1557-H04 CDR-L2 GASSRAT 7 178 1557-H10 CDR-L2 GASSRAT 7 179 1304-G11 CDR-L3 QQYWYGPPT 9 180 1332-A05 CDR-L3 QNDLSYPLT 9 181 1332-C01 CDR-L3 QNDYRYPLT 9 182 1332-F11 CDR-L3 QNDSSYPLT 9 183 1464-A02 CDR-L3 QQTSEAPPT 9 184 1464-A08 CDR-L3 QQNQAAPAT 9 185 1464-B04 CDR-L3 QQLVTSPPT 9 186 1557-A04 CDR-L3 QQLVTNPPT 9 187 1557-A05 CDR-L3 QQLLTSPPT 9 188 1557-B03 CDR-L3 QQLQTSPPT 9 189 1557-B10 CDR-L3 QQVMTIPPT 9 190 1557-C06 CDR-L3 QQHVTSPPT 9 191 1557-E07 CDR-L3 QQRAAPPPT 9 192 1557-E08 CDR-L3 QQLVPSPPT 9 193 1557-E11 CDR-L3 QQLVPSPPT 9 194 1557-F01 CDR-L3 QQLETIPPT 9 195 1557-F02 CDR-L3 QQLFNSPPT 9 196 1557-F03 CDR-L3 QQLVSKPPT 9 197 1557-F05 CDR-L3 QQLVTNPPT 9 198 1557-G01 CDR-L3 QQLVTSPPT 9 199 1557-G03 CDR-L3 QQLLSSPPT 9 200 1557-G04 CDR-L3 QQDSFVPPT 9 201 1557-G06 CDR-L3 QQLATSPPT 9 202 1557-H04 CDR-L3 QQLVTRPPT 9 203 1557-H10 CDR-L3 QQLVTAPPT 9 204 1304-G11 scFv-Fc MEVQLLESGGGLVRPGGSLRLSCAASGFTF 492 SGSSMSWVRQAPGKGLEWVGAIDGGDGYTN YADSVRGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTYYGLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSSSGTDFT LTISRLEPEDFAVYYCQQYWYGPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGGSHHHHHH 205 1332-A05 scFv-Fc MELVMTQSPSSLTVTAGEKVTMSCKSSQSL 507 LNSGNQKNYLTWYQQKPGQPPKLLIYWAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDLSYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASDYAFANRWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWEGPMDYWG QGTTVTVSSAAGSDQEPKSSDKTHTCPPCS APELLGGSSVFLFPPKPKDTLMISRTPEVT CVVVDVSHEDPEVKFNWYVDGVEVHNAKTK PREEQYNSTYRVVSVLTVLHQDWLNGKEYK CKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKL TVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGKGSGDYKDDDDKGSGHHHHHH 206 1332-C01 scFv-Fc MELVMTQSPSSLTVTAGEKVTMSCKSSQSL 507 LNSGNQKNYLTWYQQKPGQPPKLLIYWAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDYRYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASGYAFTNSWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWDMPMDYWG QGTTVTVSSAAGSDQEPKSSDKTHTCPPCS APELLGGSSVFLFPPKPKDTLMISRTPEVT CVVVDVSHEDPEVKFNWYVDGVEVHNAKTK PREEQYNSTYRVVSVLTVLHQDWLNGKEYK CKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKL TVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGKGSGDYKDDDDKGSGHHHHHH 207 1332-F11 scFv-Fc MELVMTQSPSSLTVTAGEKVTMSCKSSQSL 507 LNSGNQKNYLTWYQQKPGQPPKLLIYRAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDSSYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI

SCKASGYAFANRWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWEGPMDYWG QGTTVTVSSAAGSDQEPKSSDKTHTCPPCS APELLGGSSVFLFPPKPKDTLMISRTPEVT CVVVDVSHEDPEVKFNWYVDGVEVHNAKTK PREEQYNSTYRVVSVLTVLHQDWLNGKEYK CKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKL TVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGKGSGDYKDDDDKGSGHHHHHH 208 1464-A02 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 GVESMSWVRQAPGKGLEWVGAIDGGDGYTG YADSVKDRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKAWHPQTYYGVDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQTSEAPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 209 1464-A08 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIAGGDGYTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHRQDYYGQDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLGCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQNQAAPATFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 210 1464-B04 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIDGGEGYTS YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 211 1557-A04 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTA YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTMYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGNEIVLTQSPGTLSL SPGERATLSCRASQNVSTNYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTNPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 212 1557-A05 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 GGSSMSWVRQAPGKGLEWVGAIGGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHDQSLYDRDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCSASQTVSSSYIAWYQQKPGQ APRLLIYGASSRATGIPDRFGGSGSGTDFT LTISRLEPEDFAVYYCQQLLTSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 213 1557-B03 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 RSSSMSWVRQAPGKGLEWVGAIGGHEGYTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWNPQTLYHLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQKCSSSSMAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLQTSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 214 1557-B10 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGCSMSWVRQAPGKGLEWVGAIAGGEGNTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQGLASRYMAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQVMTIPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 215 1557-C06 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 RGASMSWVRQAPGKGLEWVGAIDGSQGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTMYDLDYWGQGTLVTV SSGGCGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQRGTSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQHVTSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 216 1557-E07 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATMSCRASQVLSSSSLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFA LTISRLEPEDFAVYYCQQRAAPPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 217 1557-E08 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 RASSMSWMRQAPGKGLEWVGAIDGGVGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQGDSSSVLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVPSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 218 1557-E11 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 RGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTINRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQSLYDLDYWGQGTLVTV SSGGGGSGGGDSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQPVPNTTLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAAYYCQQLVPSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 219 1557-F01 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSKLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGYGSGTDFT LTISRLEPEDFAVYYCQQLETIPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 220 1557-F02 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 RGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTMYNLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLFNSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 221 1557-F03 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIAGGGGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV

SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVKTSDLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVSKPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 222 1557-F05 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 RGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKDWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQTVSPSVLAWYQQKPGQ APRLLIYGASSRATGIPGRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTNPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 223 1557-G01 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SVTSMSWMRQAPGKGLEWVGAIAGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATMSCRASQVLSSSSLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 224 1557-G03 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 GGSSMSWVRQAPGKGLEWVGAIGGGEGYTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVHSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLLSSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 225 1557-G04 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 CGSSMSWVRQAPGKGLEWVGAIDGGVGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGDSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQDSFVPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 226 1557-G06 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGFSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYHLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSIPSSYLAWYQQEPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLATSPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 227 1557-H04 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SVTSMSWMRQAPGKGLEWVGAIAGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSDGGGSGGGGSEIVLTQGPSTLSL SPGERATLSCRASQSVSTGYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTRPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 228 1557-H10 scFv-Fc MEVQLLESGGGLVQPGGSLRLSCAASGFTF 503 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQSMYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATMSCRASQVLSSSSLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTAPPTFGQGT KVEIKAAGSDQEPKSSDKTHTCPPCSAPEL LGGSSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGKGSGDYKDDDDKGSGHHHHHH 229 1304-G11 VH EVQLLESGGGLVRPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIDGGDGYTNY ADSVRGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTYYGLDYWGQGTLVTVS S 230 1332-A05 VH EVQLLEQSGAELVRPGTSVKISCKASDYAF 120 ANRWLGWVKQRPGHGLEWIGDIFPGSGNIH YNEKFKGKATLTADKSSSTAYMQLSSLTFE DSAVYFCARLRNWEGPMDYWGQGTTVTVSS 231 1332-C01 VH EVQLLEQSGAELVRPGTSVKISCKASGYAF 120 TNSWLGWVKQRPGHGLEWIGDIFPGSGNIH YNEKFKGKATLTADKSSSTAYMQLSSLTFE DSAVYFCARLRNWDMPMDYWGQGTTVTVSS 232 1332-F11 VH EVQLLEQSGAELVRPGTSVKISCKASGYAF 120 ANRWLGWVKQRPGHGLEWIGDIFPGSGNIH YNEKFKGKATLTADKSSSTAYMQLSSLTFE DSAVYFCARLRNWEGPMDYWGQGTTVTVSS 233 1464-A02 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFG 121 VESMSWVRQAPGKGLEWVGAIDGGDGYTGY ADSVKDRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKAWHPQTYYGVDYWGQGTLVTVS S 234 1464-A08 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIAGGDGYTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHRQDYYGQDYWGQGTLVTVS S 235 1464-B04 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIDGGEGYTSY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 236 1557-A04 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTAY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTMYDLDYWGQGTLVTVS S 237 1557-A05 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFG 121 GSSMSWVRQAPGKGLEWVGAIGGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHDQSLYDRDYWGQGTLVTVS S 238 1557-B03 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFR 121 SSSMSWVRQAPGKGLEWVGAIGGHEGYTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWNPQTLYHLDYWGQGTLVTVS S 239 1557-B10 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GCSMSWVRQAPGKGLEWVGAIAGGEGNTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 240 1557-C06 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFR 121 GASMSWVRQAPGKGLEWVGAIDGSQGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTMYDLDYWGQGTLVTVS S 241 1557-E07 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 242 1557-E08 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFR 121 ASSMSWMRQAPGKGLEWVGAIDGGVGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 243 1557-E11 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFR 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTINRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQSLYDLDYWGQGTLVTVS S 244 1557-F01 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 245 1557-F02 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFR 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTMYNLDYWGQGTLVTVS S 246 1557-F03 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIAGGGGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 247 1557-F05 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFR 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKDWHPQTLYDLDYWGQGTLVTVS S

248 1557-G01 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 VTSMSWMRQAPGKGLEWVGAIAGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 249 1557-G03 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFG 121 GSSMSWVRQAPGKGLEWVGAIGGGEGYTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 250 1557-G04 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFC 121 GSSMSWVRQAPGKGLEWVGAIDGGVGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 251 1557-G06 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GFSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYHLDYWGQGTLVTVS S 252 1557-H04 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 VTSMSWMRQAPGKGLEWVGAIAGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQTLYDLDYWGQGTLVTVS S 253 1557-H10 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFS 121 GSSMSWVRQAPGKGLEWVGAIDGGEGSTGY ADSVKGRFTISRDNSKNTLYLQMNSLRAED TAVYYCAKGWHPQSMYDLDYWGQGTLVTVS S 254 1304-G11 VL EIVLTQSPGTLSLSPGERATLSCRASQSVS 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSSSGTDFTLTISRLEPEDFAVYYCQ QYWYGPPTFGQGTKVEIK 255 1332-A05 VL ELVMTQSPSSLTVTAGEKVTMSCKSSQSLL 113 NSGNQKNYLTWYQQKPGQPPKLLIYWASTR ESGVPDRFTGSGSGTDFTLTISSVQAEDLA VYYCQNDLSYPLTFGAGTKLEIK 256 1332-C01 VL ELVMTQSPSSLTVTAGEKVTMSCKSSQSLL 113 NSGNQKNYLTWYQQKPGQPPKLLIYWASTR ESGVPDRFTGSGSGTDFTLTISSVQAEDLA VYYCQNDYRYPLTFGAGTKLEIK 257 1332-F11 VL ELVMTQSPSSLTVTAGEKVTMSCKSSQSLL 113 NSGNQKNYLTWYQQKPGQPPKLLIYRASTR ESGVPDRFTGSGSGTDFTLTISSVQAEDLA VYYCQNDSSYPLTFGAGTKLEIK 258 1464-A02 VL EIVLTQSPGTLSLSPGERATLSCRASQSVS 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QTSEAPPTFGQGTKVEIK 259 1464-A08 VL EIVLTQSPGTLSLSPGERATLGCRASQSVS 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QNQAAPATFGQGTKVEIK 260 1464-B04 VL EIVLTQSPGTLSLSPGERATLSCRASQSVS 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVTSPPTFGQGTKVEIK 261 1557-A04 VL EIVLTQSPGTLSLSPGERATLSCRASQNVS 108 TNYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVTNPPTFGQGTKVEIK 262 1557-A05 VL EIVLTQSPGTLSLSPGERATLSCSASQTVS 108 SSYIAWYQQKPGQAPRLLIYGASSRATGIP DRFGGSGSGTDFTLTISRLEPEDFAVYYCQ QLLTSPPTFGQGTKVEIK 263 1557-B03 VL EIVLTQSPGTLSLSPGERATLSCRASQKCS 108 SSSMAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLQTSPPTFGQGTKVEIK 264 1557-B10 VL EIVLTQSPGTLSLSPGERATLSCRASQGLA 108 SRYMAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QVMTIPPTFGQGTKVEIK 265 1557-C06 VL EIVLTQSPGTLSLSPGERATLSCRASQRGT 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QHVTSPPTFGQGTKVEIK 266 1557-E07 VL EIVLTQSPGTLSLSPGERATMSCRASQVLS 108 SSSLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFALTISRLEPEDFAVYYCQ QRAAPPPTFGQGTKVEIK 267 1557-E08 VL EIVLTQSPGTLSLSPGERATLSCRASQGDS 108 SSVLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVPSPPTFGQGTKVEIK 268 1557-E11 VL EIVLTQSPGTLSLSPGERATLSCRASQPVP 108 NTTLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAAYYCQ QLVPSPPTFGQGTKVEIK 269 1557-F01 VL EIVLTQSPGTLSLSPGERATLSCRASQSVS 108 SSKLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGYGSGTDFTLTISRLEPEDFAVYYCQ QLETIPPTFGQGTKVEIK 270 1557-F02 VL EIVLTQSPGTLSLSPGERATLSCRASQSVS 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLFNSPPTFGQGTKVEIK 271 1557-F03 VL EIVLTQSPGTLSLSPGERATLSCRASQSVK 108 TSDLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVSKPPTFGQGTKVEIK 272 1557-F05 VL EIVLTQSPGTLSLSPGERATLSCRASQTVS 108 PSVLAWYQQKPGQAPRLLIYGASSRATGIP GRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVTNPPTFGQGTKVEIK 273 1557-G01 VL EIVLTQSPGTLSLSPGERATMSCRASQVLS 108 SSSLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVTSPPTFGQGTKVEIK 274 1557-G03 VL EIVLTQSPGTLSLSPGERATLSCRASQSVH 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLLSSPPTFGQGTKVEIK 275 1557-G04 VL EIVLTQSPGTLSLSPGERATLSCRASQSVS 108 SSYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QDSFVPPTFGQGTKVEIK 276 1557-G06 VL EIVLTQSPGTLSLSPGERATLSCRASQSIP 108 SSYLAWYQQEPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLATSPPTFGQGTKVEIK 277 1557-H04 VL EIVLTQGPSTLSLSPGERATLSCRASQSVS 108 TGYLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVTRPPTFGQGTKVEIK 278 1557-H10 VL EIVLTQSPGTLSLSPGERATMSCRASQVLS 108 SSSLAWYQQKPGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLEPEDFAVYYCQ QLVTAPPTFGQGTKVEIK 279 IgG1 ASTKGPSVFPLAPSSKSTSGGTAALGCLVK 330 Constant DYFPEPVTVSWNSGALTSGVHTFPAVLQSS Region GLYSLSSVVTVPSSSLGTQTYICNVNHKPS NTKVDKKVEPKSCDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYN STYRVVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPVLDSDGSFFLYSKLTVDKSRW QQGNVFSCSVMHEALHNHYTQKSLSLSPGK 280 IgG1 Fc AAGSDQEPKSSDKTHTCPPCSAPELLGGSS 252 from VFLFPPKPKDTLMISRTPEVTCVVVDVSHE scFv-Fc DPEVKFNWYVDGVEVHNAKTKPREEQYNST YRVVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSRDELT KNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGKGS GDYKDDDDKGSG 281 Lambda GQPKAAPSVTLFPPSSEELQANKATLVCLI 106 Constant SDFYPGAVTVAWKADSSPVKAGVETTTPSK Region QSNNKYAASSYLSLTPEQWKSHRSYSCQVT HEGSTVEKTVAPTECS 282 Kappa RTVAAPSVFIFPPSDEQLKSGTASVVCLLN 107 Constant NFYPREAKVQWKVDNALQSGNSQESVTEQD Region SKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGEC 283 Linker GGGGSGGGGSGGGGS 15 284 Linker AAGSDQ 6 285 His Tag GSGDYKDDDDKGSGHHHHHH 20 with Linker 286 mAb_3-1 CDR-H1 Chothia GYAFTNY 7 287 mAb_3-5 CDR-H1 Chothia GYTFTSY 7 288 mAb_4-1 CDR-H1 Chothia GYAFTNY 7 289 mAb_4-7 CDR-H1 Chothia GYTFTNY 7 290 mAb_5-10 CDR-H1 Chothia GYAFTNY 7 291 mAb_3-1 CDR-H1 Kabat NYWLG 5 292 mAb_3-5 CDR-H1 Kabat SYGLS 5 293 mAb_4-1 CDR-H1 Kabat NYWLG 5 294 mAb_4-7 CDR-H1 Kabat NYGLS 5 295 mAb_5-10 CDR-H1 Kabat NYWLG 5 296 mAb_3-1 CDR-H2 Chothia FPGSGN 6 297 mAb_3-5 CDR-H2 Chothia YPRIGN 6 298 mAb_4-1 CDR-H2 Chothia FPGSGN 6 299 mAb_4-7 CDR-H2 Chothia YPRIGN 6 300 mAb_5-10 CDR-H2 Chothia FPGSGN 6 301 mAb_3-1 CDR-H2 Kabat DLFPGSGNTHYNERFRG 17 302 mAb_3-5 CDR-H2 Kabat EVYPRIGNAYYNEKFKG 17 303 mAb_4-1 CDR-H2 Kabat DIFPGSGNAHYNEKFKG 17 304 mAb_4-7 CDR-H2 Kabat EVYPRIGNAYYNEKFKG 17 305 mAb_5-10 CDR-H2 Kabat DIFPGSGNIHYNEKFKG 17 306 mAb_3-1 CDR-H3 LRNWDEAMDY 10 307 mAb_3-5 CDR-H3 RGSYGSNYDWYFDV 14 308 mAb_4-1 CDR-H3 LRNWDEAMDY 10 309 mAb_4-7 CDR-H3 RGSYDTNYDWYFDV 14 310 mAb_5-10 CDR-H3 LRNWDEPMDY 10

311 mAb_3-1 CDR-L1 RASKSISKYLA 11 312 mAb_3-5 CDR-L1 RSSQSLVHSNGNTYLH 16 313 mAb_4-1 CDR-L1 KSSQSLLNSGNQKNYLA 17 314 mAb_4-7 CDR-L1 RSSQSLVHSNGNTYLH 16 315 mAb_5-10 CDR-L1 KSSQSLLNSGNQKNYLT 17 316 mAb_3-1 CDR-L2 SGSTLQS 7 317 mAb_3-5 CDR-L2 KVSNRFS 7 318 mAb_4-1 CDR-L2 GASTRES 7 319 mAb_4-7 CDR-L2 KVSNRFS 7 320 mAb_5-10 CDR-L2 WASTRES 7 321 mAb_3-1 CDR-L3 QQHNEYPYT 9 322 mAb_3-5 CDR-L3 SQSTHVPYT 9 323 mAb_4-1 CDR-L3 QNDYSYPYT 9 324 mAb_4-7 CDR-L3 SQSTHVPYT 9 325 mAb_5-10 CDR-L3 QNDYSYPLT 9 326 mAb_3-1 VH EVQLLEQSGAELVKPGASVKISCKASGYAF TNYWLGWVKQRPGHGLEWIGDLFPGSGNTH YNERFRGKATLTADKSSSTAFMQLSSLTSE DSAVYFCARLRNWDEAMDYWGQGTTVTVSS 327 mAb_3-5 VH EVQLLEQSGAELVRPGTSVKLSCKASGYTF TSYGLSWVKQRTGQGLEWIGEVYPRIGNAY YNEKFKGKATLTADKSSSTASMELRSLTSE DSAVYFCARRGSYGSNYDWYFDVWGQGTTV TVSS 328 mAb_4-1 VH EVQLLEQSGAELVRPGTSVKISCKASGYAF TNYWLGWVKQRPGHGLEWVGDIFPGSGNAH YNEKFKGKATLTADKSSYTAYMQLSSLTSE DSAVYFCARLRNWDEAMDYWGQGTTVTVSS 329 mAb_4-7 VH EVQLLEQSGAELARPGASVKLSCKASGYTF TNYGLSWVKQRPGQVLEWIGEVYPRIGNAY YNEKFKGKATLTADKSSSTASMELRSLTSE DSAVYFCARRGSYDTNYDWYFDVWGQGTTV TVSS 330 mAb_5-10 VH EVQLLEQSGAELVRPGTSVKISCKASGYAF TNYWLGWVKQRPGHGLEWIGDIFPGSGNIH YNEKFKGKATLTADKSSSTAYMQLSSLTFE DSAVYFCARLRNWDEPMDYWGQGTTVTVSS 331 mAb_3-1 VL ELVMTQSPSYLAASPGETITINCRASKSIS KYLAWYQEKPGKTNKLLIYSGSTLQSGIPS RFSGSGSGTDFTLTISSLEPEDFAMYYCQQ HNEYPYTFGGGTKLEIK 332 mAb_3-5 VL ELVMTQTPLSLPVSLGDQASISCRSSQSLV HSNGNTYLHWYLQKPGQSPKLLIYKVSNRF SGVPDRFSGSGSGTDFTLKISRVEAEDLGV YFCSQSTHVPYTFGGGTKLEIK 333 mAb_4-1 VL ELVMTQSPSSLSVSAGEKVTMSCKSSQSLL NSGNQKNYLAWYQQKPGQPPKLLIYGASTR ESGVPDRFTGSGSGTDFTLTISSVQAEDLA VYYCQNDYSYPYTFGGGTKLEIK 334 mAb_4-7 VL ELVMTQTPLSLPVSLGDQASISCRSSQSLV HSNGNTYLHWYLQKPGQSPKLLIYKVSNRF SGVPDRFSGSGSGTDFTLKISRVEAEDLGV YFCSQSTHVPYTFGGGTKLEIK 335 mAb_5-10 VL ELVMTQSPSSLTVTAGEKVTMSCKSSQSLL NSGNQKNYLTWYQQKPGQPPKLLIYWASTR ESGVPDRFTGSGSGTDFTLTISSVQAEDLA VYYCQNDYSYPLTFGAGTKLEIK 336 mAB_5-10 scFv ELVMTQSPSSLTVTAGEKVTMSCKSSQSLL NSGNQKNYLTWYQQKPGQPPKLLIYWAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDYSYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASGYAFTNYWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWDEPMDYWG QGTTVTVSS 337 1304-G11 scFv MEVQLLESGGGLVRPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIDGGDGYTN YADSVRGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTYYGLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSSSGTDFT LTISRLEPEDFAVYYCQQYWYGPPTFGQGT KVEIK 338 1332-A05 scFv MELVMTQSPSSLTVTAGEKVTMSCKSSQSL 249 LNSGNQKNYLTWYQQKPGQPPKLLIYWAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDLSYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASDYAFANRWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWEGPMDYWG QGTTVTVSS 339 1332-C01 scFv MELVMTQSPSSLTVTAGEKVTMSCKSSQSL 249 LNSGNQKNYLTWYQQKPGQPPKLLIYWAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDYRYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASGYAFTNSWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWDMPMDYWG QGTTVTVSS 340 1332-F11 scFv MELVMTQSPSSLTVTAGEKVTMSCKSSQSL 249 LNSGNQKNYLTWYQQKPGQPPKLLIYRAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDSSYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASGYAFANRWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWEGPMDYWG QGTTVTVSS 341 1464-A02 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 GVESMSWVRQAPGKGLEWVGAIDGGDGYTG YADSVKDRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKAWHPQTYYGVDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQTSEAPPTFGQGT KVEIK 342 1464-A08 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIAGGDGYTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHRQDYYGQDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLGCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQNQAAPATFGQGT KVEIK 343 1464-B04 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIDGGEGYTS YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTSPPTFGQGT KVEIK 344 1557-A04 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTA YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTMYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGNEIVLTQSPGTLSL SPGERATLSCRASQNVSTNYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTNPPTFGQGT KVEIK 345 1557-A05 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 GGSSMSWVRQAPGKGLEWVGAIGGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHDQSLYDRDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCSASQTVSSSYIAWYQQKPGQ APRLLIYGASSRATGIPDRFGGSGSGTDFT LTISRLEPEDFAVYYCQQLLTSPPTFGQGT KVEIK 346 1557-B03 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 RSSSMSWVRQAPGKGLEWVGAIGGHEGYTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWNPQTLYHLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQKCSSSSMAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLQTSPPTFGQGT KVEIK 347 1557-B10 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGCSMSWVRQAPGKGLEWVGAIAGGEGNTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQGLASRYMAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQVMTIPPTFGQGT KVEIK 348 1557-C06 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 RGASMSWVRQAPGKGLEWVGAIDGSQGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTMYDLDYWGQGTLVTV SSGGCGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQRGTSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQHVTSPPTFGQGT KVEIK 349 1557-E07 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATMSCRASQVLSSSSLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFA LTISRLEPEDFAVYYCQQRAAPPPTFGQGT KVEIK 350 1557-E08 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 RASSMSWMRQAPGKGLEWVGAIDGGVGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQGDSSSVLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVPSPPTFGQGT KVEIK 351 1557-E11 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 RGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTINRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQSLYDLDYWGQGTLVTV SSGGGGSGGGDSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQPVPNTTLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAAYYCQQLVPSPPTFGQGT KVEIK 352 1557-F01 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSKLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGYGSGTDFT LTISRLEPEDFAVYYCQQLETIPPTFGQGT KVEIK

353 1557-F02 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 RGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTMYNLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLFNSPPTFGQGT KVEIK 354 1557-F03 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIAGGGGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVKTSDLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVSKPPTFGQGT KVEIK 355 1557-F05 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 RGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKDWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQTVSPSVLAWYQQKPGQ APRLLIYGASSRATGIPGRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTNPPTFGQGT KVEIK 356 1557-G01 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SVTSMSWMRQAPGKGLEWVGAIAGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATMSCRASQVLSSSSLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTSPPTFGQGT KVEIK 357 1557-G03 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 GGSSMSWVRQAPGKGLEWVGAIGGGEGYTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVHSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLLSSPPTFGQGT KVEIK 358 1557-G04 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 CGSSMSWVRQAPGKGLEWVGAIDGGVGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGDSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSVSSSYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQDSFVPPTFGQGT KVEIK 359 1557-G06 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGFSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYHLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATLSCRASQSIPSSYLAWYQQEPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLATSPPTFGQGT KVEIK 360 1557-H04 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SVTSMSWMRQAPGKGLEWVGAIAGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQTLYDLDYWGQGTLVTV SSGGGGSDGGGSGGGGSEIVLTQGPSTLSL SPGERATLSCRASQSVSTGYLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTRPPTFGQGT KVEIK 361 1557-H10 scFv MEVQLLESGGGLVQPGGSLRLSCAASGFTF 245 SGSSMSWVRQAPGKGLEWVGAIDGGEGSTG YADSVKGRFTISRDNSKNTLYLQMNSLRAE DTAVYYCAKGWHPQSMYDLDYWGQGTLVTV SSGGGGSGGGGSGGGGSEIVLTQSPGTLSL SPGERATMSCRASQVLSSSSLAWYQQKPGQ APRLLIYGASSRATGIPDRFSGSGSGTDFT LTISRLEPEDFAVYYCQQLVTAPPTFGQGT KVEIK 362 mAB_5-10 scFv-Fc MELVMTQSPSSLTVTAGEKVTMSCKSSQSL LNSGNQKNYLTWYQQKPGQPPKLLIYWAST RESGVPDRFTGSGSGTDFTLTISSVQAEDL AVYYCQNDYSYPLTFGAGTKLEIKGGGGSG GGGSGGGGSEVQLLEQSGAELVRPGTSVKI SCKASGYAFTNYWLGWVKQRPGHGLEWIGD IFPGSGNIHYNEKFKGKATLTADKSSSTAY MQLSSLTFEDSAVYFCARLRNWDEPMDYWG QGTTVTVSSAAGSDQEPKSSDKTHTCPPCS APELLGGSSVFLFPPKPKDTLMISRTPEVT CVVVDVSHEDPEVKFNWYVDGVEVHNAKTK PREEQYNSTYRVVSVLTVLHQDWLNGKEYK CKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKL TVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGKGGSHHHHHH

EQUIVALENTS

[0459] The disclosure set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the inventions includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in this application, in applications claiming priority from this application, or in related applications. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope in comparison to the original claims, also are regarded as included within the subject matter of the inventions of the present disclosure.

Sequence CWU 1

1

3621314PRTHomo sapiensmisc_featurehEpCAM 1Met Ala Pro Pro Gln Val Leu Ala Phe Gly Leu Leu Leu Ala Ala Ala1 5 10 15Thr Ala Thr Phe Ala Ala Ala Gln Glu Glu Cys Val Cys Glu Asn Tyr 20 25 30Lys Leu Ala Val Asn Cys Phe Val Asn Asn Asn Arg Gln Cys Gln Cys 35 40 45Thr Ser Val Gly Ala Gln Asn Thr Val Ile Cys Ser Lys Leu Ala Ala 50 55 60Lys Cys Leu Val Met Lys Ala Glu Met Asn Gly Ser Lys Leu Gly Arg65 70 75 80Arg Ala Lys Pro Glu Gly Ala Leu Gln Asn Asn Asp Gly Leu Tyr Asp 85 90 95Pro Asp Cys Asp Glu Ser Gly Leu Phe Lys Ala Lys Gln Cys Asn Gly 100 105 110Thr Ser Thr Cys Trp Cys Val Asn Thr Ala Gly Val Arg Arg Thr Asp 115 120 125Lys Asp Thr Glu Ile Thr Cys Ser Glu Arg Val Arg Thr Tyr Trp Ile 130 135 140Ile Ile Glu Leu Lys His Lys Ala Arg Glu Lys Pro Tyr Asp Ser Lys145 150 155 160Ser Leu Arg Thr Ala Leu Gln Lys Glu Ile Thr Thr Arg Tyr Gln Leu 165 170 175Asp Pro Lys Phe Ile Thr Ser Ile Leu Tyr Glu Asn Asn Val Ile Thr 180 185 190Ile Asp Leu Val Gln Asn Ser Ser Gln Lys Thr Gln Asn Asp Val Asp 195 200 205Ile Ala Asp Val Ala Tyr Tyr Phe Glu Lys Asp Val Lys Gly Glu Ser 210 215 220Leu Phe His Ser Lys Lys Met Asp Leu Thr Val Asn Gly Glu Gln Leu225 230 235 240Asp Leu Asp Pro Gly Gln Thr Leu Ile Tyr Tyr Val Asp Glu Lys Ala 245 250 255Pro Glu Phe Ser Met Gln Gly Leu Lys Ala Gly Val Ile Ala Val Ile 260 265 270Val Val Val Val Ile Ala Val Val Ala Gly Ile Val Val Leu Val Ile 275 280 285Ser Arg Lys Lys Arg Met Ala Lys Tyr Glu Lys Ala Glu Ile Lys Glu 290 295 300Met Gly Glu Met His Arg Glu Leu Asn Ala305 3102319PRTMacaca fascicularismisc_featurecEpCAM 2Met Ala Gln Ser Gly Gln Gln Cys Leu Gln Glu Glu Gln Glu Thr Ser1 5 10 15Leu Gln Gln His Tyr Ser Phe Phe Val Phe Leu Asn Phe Leu Glu Cys 20 25 30Val Cys Glu Asn Tyr Lys Leu Ala Val Asn Cys Phe Leu Asn Asp Asn 35 40 45Gly Gln Cys Gln Cys Thr Ser Ile Gly Ala Gln Asn Thr Val Leu Cys 50 55 60Ser Lys Leu Ala Ala Lys Cys Leu Val Met Lys Ala Glu Met Asn Gly65 70 75 80Ser Lys Leu Gly Arg Arg Ala Lys Pro Glu Gly Ala Leu Gln Asn Asn 85 90 95Asp Gly Leu Tyr Asp Pro Asp Cys Asp Glu Ser Gly Leu Phe Lys Ala 100 105 110Lys Gln Cys Asn Gly Thr Ser Thr Cys Trp Cys Val Asn Thr Ala Gly 115 120 125Val Arg Arg Thr Asp Lys Asp Thr Glu Ile Thr Cys Ser Glu Arg Val 130 135 140Arg Thr Tyr Trp Ile Ile Ile Glu Leu Lys His Lys Ala Arg Glu Lys145 150 155 160Pro Tyr Asp Val Gln Ser Leu Arg Thr Ala Leu Glu Glu Ala Ile Lys 165 170 175Thr Arg Tyr Gln Leu Asp Pro Lys Phe Ile Thr Asn Ile Leu Tyr Glu 180 185 190Asp Asn Val Ile Thr Ile Asp Leu Val Gln Asn Ser Ser Gln Lys Thr 195 200 205Gln Asn Asp Val Asp Ile Ala Asp Val Ala Tyr Tyr Phe Glu Lys Asp 210 215 220Val Lys Gly Glu Ser Leu Phe His Ser Lys Lys Met Asp Leu Arg Val225 230 235 240Asn Gly Glu Gln Leu Asp Leu Asp Pro Gly Gln Thr Leu Ile Tyr Tyr 245 250 255Val Asp Glu Lys Ala Pro Glu Phe Ser Met Gln Gly Leu Lys Ala Gly 260 265 270Val Ile Ala Val Ile Val Val Val Val Ile Ala Ile Val Ala Gly Ile 275 280 285Val Val Leu Val Ile Ser Arg Lys Lys Arg Met Ala Lys Tyr Glu Lys 290 295 300Ala Glu Ile Lys Glu Met Gly Glu Ile His Arg Glu Leu Asn Ala305 310 3153315PRTMus musculusmisc_featuremEpCAM 3Met Ala Gly Pro Gln Ala Leu Ala Phe Gly Leu Leu Leu Ala Val Val1 5 10 15Thr Ala Thr Leu Ala Ala Ala Gln Arg Asp Cys Val Cys Asp Asn Tyr 20 25 30Lys Leu Ala Thr Ser Cys Ser Leu Asn Glu Tyr Gly Glu Cys Gln Cys 35 40 45Thr Ser Tyr Gly Thr Gln Asn Thr Val Ile Cys Ser Lys Leu Ala Ser 50 55 60Lys Cys Leu Ala Met Lys Ala Glu Met Thr His Ser Lys Ser Gly Arg65 70 75 80Arg Ile Lys Pro Glu Gly Ala Ile Gln Asn Asn Asp Gly Leu Tyr Asp 85 90 95Pro Asp Cys Asp Glu Gln Gly Leu Phe Lys Ala Lys Gln Cys Asn Gly 100 105 110Thr Ala Thr Cys Trp Cys Val Asn Thr Ala Gly Val Arg Arg Thr Asp 115 120 125Lys Asp Thr Glu Ile Thr Cys Ser Glu Arg Val Arg Thr Tyr Trp Ile 130 135 140Ile Ile Glu Leu Lys His Lys Glu Arg Glu Ser Pro Tyr Asp His Gln145 150 155 160Ser Leu Gln Thr Ala Leu Gln Glu Ala Phe Thr Ser Arg Tyr Lys Leu 165 170 175Asn Gln Lys Phe Ile Lys Asn Ile Met Tyr Glu Asn Asn Val Ile Thr 180 185 190Ile Asp Leu Met Gln Asn Ser Ser Gln Lys Thr Gln Asp Asp Val Asp 195 200 205Ile Ala Asp Val Ala Tyr Tyr Phe Glu Lys Asp Val Lys Gly Glu Ser 210 215 220Leu Phe His Ser Ser Lys Ser Met Asp Leu Arg Val Asn Gly Glu Pro225 230 235 240Leu Asp Leu Asp Pro Gly Gln Thr Leu Ile Tyr Tyr Val Asp Glu Lys 245 250 255Ala Pro Glu Phe Ser Met Gln Gly Leu Thr Ala Gly Ile Ile Ala Val 260 265 270Ile Val Val Val Ser Leu Ala Val Ile Ala Gly Ile Val Val Leu Val 275 280 285Ile Ser Thr Arg Lys Lys Ser Ala Lys Tyr Glu Lys Ala Glu Ile Lys 290 295 300Glu Met Gly Glu Ile His Arg Glu Leu Asn Ala305 310 31547PRTArtificial SequenceSynthetic 1304-G11, CDR-H1 4Gly Phe Thr Phe Ser Gly Ser1 557PRTArtificial SequenceSynthetic 1332-A05, CDR-H1 5Asp Tyr Ala Phe Ala Asn Arg1 567PRTArtificial SequenceSynthetic 1332-C01, CDR-H1 6Gly Tyr Ala Phe Thr Asn Ser1 577PRTArtificial SequenceSynthetic 1332-F11, CDR-H1 7Gly Tyr Ala Phe Ala Asn Arg1 587PRTArtificial SequenceSynthetic 1464-A02, CDR-H1 8Gly Phe Thr Phe Gly Val Glu1 597PRTArtificial SequenceSynthetic 1464-A08, CDR-H1 9Gly Phe Thr Phe Ser Gly Ser1 5107PRTArtificial SequenceSynthetic 1464-B04, CDR-H1 10Gly Phe Thr Phe Ser Gly Ser1 5117PRTArtificial SequenceSynthetic 1557-A04, CDR-H1 11Gly Phe Thr Phe Ser Gly Ser1 5127PRTArtificial SequenceSynthetic 1557-A05, CDR-H1 12Gly Phe Thr Phe Gly Gly Ser1 5137PRTArtificial SequenceSynthetic 1557-B03, CDR-H1 13Gly Phe Thr Phe Arg Ser Ser1 5147PRTArtificial SequenceSynthetic 1557-B10, CDR-H1 14Gly Phe Thr Phe Ser Gly Cys1 5157PRTArtificial SequenceSynthetic 1557-C06, CDR-H1 15Gly Phe Thr Phe Arg Gly Ala1 5167PRTArtificial SequenceSynthetic 1557-E07, CDR-H1 16Gly Phe Thr Phe Ser Gly Ser1 5177PRTArtificial SequenceSynthetic 1557-E08, CDR-H1 17Gly Phe Thr Phe Arg Ala Ser1 5187PRTArtificial SequenceSynthetic 1557-E11, CDR-H1 18Gly Phe Thr Phe Arg Gly Ser1 5197PRTArtificial SequenceSynthetic 1557-F01, CDR-H1 19Gly Phe Thr Phe Ser Gly Ser1 5207PRTArtificial SequenceSynthetic 1557-F02, CDR-H1 20Gly Phe Thr Phe Arg Gly Ser1 5217PRTArtificial SequenceSynthetic 1557-F03, CDR-H1 21Gly Phe Thr Phe Ser Gly Ser1 5227PRTArtificial SequenceSynthetic 1557-F05, CDR-H1 22Gly Phe Thr Phe Arg Gly Ser1 5237PRTArtificial SequenceSynthetic 1557-G01, CDR-H1 23Gly Phe Thr Phe Ser Val Thr1 5247PRTArtificial SequenceSynthetic 1557-G03, CDR-H1 24Gly Phe Thr Phe Gly Gly Ser1 5257PRTArtificial SequenceSynthetic 1557-G04, CDR-H1 25Gly Phe Thr Phe Cys Gly Ser1 5267PRTArtificial SequenceSynthetic 1557-G06, CDR-H1 26Gly Phe Thr Phe Ser Gly Phe1 5277PRTArtificial SequenceSynthetic 1557-H04, CDR-H1 27Gly Phe Thr Phe Ser Val Thr1 5287PRTArtificial SequenceSynthetic 1557-H10, CDR-H1 28Gly Phe Thr Phe Ser Gly Ser1 5295PRTArtificial SequenceSynthetic 1304-G11, CDR-H1 29Gly Ser Ser Met Ser1 5305PRTArtificial SequenceSynthetic 1332-A05, CDR-H1 30Asn Arg Trp Leu Gly1 5315PRTArtificial SequenceSynthetic 1332-C01, CDR-H1 31Asn Ser Trp Leu Gly1 5325PRTArtificial SequenceSynthetic 1332-F11, CDR-H1 32Asn Arg Trp Leu Gly1 5335PRTArtificial SequenceSynthetic 1464-A02, CDR-H1 33Val Glu Ser Met Ser1 5345PRTArtificial SequenceSynthetic 1464-A08, CDR-H1 34Gly Ser Ser Met Ser1 5355PRTArtificial SequenceSynthetic 1464-B04, CDR-H1 35Gly Ser Ser Met Ser1 5365PRTArtificial SequenceSynthetic 1557-A04, CDR-H1 36Gly Ser Ser Met Ser1 5375PRTArtificial SequenceSynthetic 1557-A05, CDR-H1 37Gly Ser Ser Met Ser1 5385PRTArtificial SequenceSynthetic 1557-B03, CDR-H1 38Ser Ser Ser Met Ser1 5395PRTArtificial SequenceSynthetic 1557-B10, CDR-H1 39Gly Cys Ser Met Ser1 5405PRTArtificial SequenceSynthetic 1557-C06, CDR-H1 40Gly Ala Ser Met Ser1 5415PRTArtificial SequenceSynthetic 1557-E07, CDR-H1 41Gly Ser Ser Met Ser1 5425PRTArtificial SequenceSynthetic 1557-E08, CDR-H1 42Ala Ser Ser Met Ser1 5435PRTArtificial SequenceSynthetic 1557-E11, CDR-H1 43Gly Ser Ser Met Ser1 5445PRTArtificial SequenceSynthetic 1557-F01, CDR-H1 44Gly Ser Ser Met Ser1 5455PRTArtificial SequenceSynthetic 1557-F02, CDR-H1 45Gly Ser Ser Met Ser1 5465PRTArtificial SequenceSynthetic 1557-F03, CDR-H1 46Gly Ser Ser Met Ser1 5475PRTArtificial SequenceSynthetic 1557-F05, CDR-H1 47Gly Ser Ser Met Ser1 5485PRTArtificial SequenceSynthetic 1557-G01, CDR-H1 48Val Thr Ser Met Ser1 5495PRTArtificial SequenceSynthetic 1557-G03, CDR-H1 49Gly Ser Ser Met Ser1 5505PRTArtificial SequenceSynthetic 1557-G04, CDR-H1 50Gly Ser Ser Met Ser1 5515PRTArtificial SequenceSynthetic 1557-G06, CDR-H1 51Gly Phe Ser Met Ser1 5525PRTArtificial SequenceSynthetic 1557-H04, CDR-H1 52Val Thr Ser Met Ser1 5535PRTArtificial SequenceSynthetic 1557-H10, CDR-H1 53Gly Ser Ser Met Ser1 5546PRTArtificial SequenceSynthetic 1304-G11, CDR-H2 54Asp Gly Gly Asp Gly Tyr1 5556PRTArtificial SequenceSynthetic 1332-A05, CDR-H2 55Phe Pro Gly Ser Gly Asn1 5566PRTArtificial SequenceSynthetic 1332-C01, CDR-H2 56Phe Pro Gly Ser Gly Asn1 5576PRTArtificial SequenceSynthetic 1332-F11, CDR-H2 57Phe Pro Gly Ser Gly Asn1 5586PRTArtificial SequenceSynthetic 1464-A02, CDR-H2 58Asp Gly Gly Asp Gly Tyr1 5596PRTArtificial SequenceSynthetic 1464-A08, CDR-H2 59Ala Gly Gly Asp Gly Tyr1 5606PRTArtificial SequenceSynthetic 1464-B04, CDR-H2 60Asp Gly Gly Glu Gly Tyr1 5616PRTArtificial SequenceSynthetic 1557-A04, CDR-H2 61Asp Gly Gly Glu Gly Ser1 5626PRTArtificial SequenceSynthetic 1557-A05, CDR-H2 62Gly Gly Gly Glu Gly Ser1 5636PRTArtificial SequenceSynthetic 1557-B03, CDR-H2 63Gly Gly His Glu Gly Tyr1 5646PRTArtificial SequenceSynthetic 1557-B10, CDR-H2 64Ala Gly Gly Glu Gly Asn1 5656PRTArtificial SequenceSynthetic 1557-C06, CDR-H2 65Asp Gly Ser Gln Gly Ser1 5666PRTArtificial SequenceSynthetic 1557-E07, CDR-H2 66Asp Gly Gly Glu Gly Ser1 5676PRTArtificial SequenceSynthetic 1557-E08, CDR-H2 67Asp Gly Gly Val Gly Ser1 5686PRTArtificial SequenceSynthetic 1557-E11, CDR-H2 68Asp Gly Gly Glu Gly Ser1 5696PRTArtificial SequenceSynthetic 1557-F01, CDR-H2 69Asp Gly Gly Glu Gly Ser1 5706PRTArtificial SequenceSynthetic 1557-F02, CDR-H2 70Asp Gly Gly Glu Gly Ser1 5716PRTArtificial SequenceSynthetic 1557-F03, CDR-H2 71Ala Gly Gly Gly Gly Ser1 5726PRTArtificial SequenceSynthetic 1557-F05, CDR-H2 72Asp Gly Gly Glu Gly Ser1 5736PRTArtificial SequenceSynthetic 1557-G01, CDR-H2 73Ala Gly Gly Glu Gly Ser1 5746PRTArtificial SequenceSynthetic 1557-G03, CDR-H2 74Gly Gly Gly Glu Gly Tyr1 5756PRTArtificial SequenceSynthetic 1557-G04, CDR-H2 75Asp Gly Gly Val Gly Ser1 5766PRTArtificial SequenceSynthetic 1557-G06, CDR-H2 76Asp Gly Gly Glu Gly Ser1 5776PRTArtificial SequenceSynthetic 1557-H04, CDR-H2 77Ala Gly Gly Glu Gly Ser1 5786PRTArtificial SequenceSynthetic 1557-H10, CDR-H2 78Asp Gly Gly Glu Gly Ser1 57917PRTArtificial SequenceSynthetic 1304-G11, CDR-H2 79Ala Ile Asp Gly Gly Asp Gly Tyr Thr Asn Tyr Ala Asp Ser Val Arg1 5 10 15Gly8017PRTArtificial SequenceSynthetic 1332-A05, CDR-H2 80Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys Phe Lys1 5 10 15Gly8117PRTArtificial SequenceSynthetic 1332-C01, CDR-H2 81Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys Phe Lys1 5 10 15Gly8217PRTArtificial SequenceSynthetic 1332-F11, CDR-H2 82Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys Phe Lys1 5 10 15Gly8317PRTArtificial SequenceSynthetic 1464-A02, CDR-H2 83Ala Ile Asp Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Asp8417PRTArtificial SequenceSynthetic 1464-A08, CDR-H2 84Ala Ile Ala Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly8517PRTArtificial SequenceSynthetic 1464-B04, CDR-H2 85Ala Ile Asp Gly Gly Glu Gly Tyr Thr Ser Tyr Ala Asp Ser Val Lys1 5 10 15Gly8617PRTArtificial SequenceSynthetic 1557-A04, CDR-H2 86Ala Ile Asp Gly Gly Glu Gly Ser Thr Ala Tyr Ala Asp Ser Val Lys1 5 10 15Gly8717PRTArtificial SequenceSynthetic 1557-A05, CDR-H2 87Ala Ile Gly Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly8817PRTArtificial SequenceSynthetic 1557-B03, CDR-H2 88Ala Ile Gly Gly His Glu Gly Tyr Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly8917PRTArtificial SequenceSynthetic 1557-B10, CDR-H2 89Ala Ile Ala Gly Gly Glu Gly Asn Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9017PRTArtificial SequenceSynthetic 1557-C06, CDR-H2 90Ala Ile Asp Gly Ser Gln Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9117PRTArtificial SequenceSynthetic 1557-E07, CDR-H2 91Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9217PRTArtificial SequenceSynthetic 1557-E08, CDR-H2 92Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9317PRTArtificial SequenceSynthetic 1557-E11, CDR-H2 93Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9417PRTArtificial SequenceSynthetic 1557-F01, CDR-H2 94Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9517PRTArtificial SequenceSynthetic 1557-F02, CDR-H2 95Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9617PRTArtificial SequenceSynthetic 1557-F03, CDR-H2 96Ala Ile Ala Gly Gly Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9717PRTArtificial SequenceSynthetic 1557-F05, CDR-H2 97Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9817PRTArtificial SequenceSynthetic 1557-G01, CDR-H2 98Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly9917PRTArtificial SequenceSynthetic 1557-G03, CDR-H2 99Ala Ile Gly Gly Gly Glu Gly Tyr Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly10017PRTArtificial SequenceSynthetic 1557-G04, CDR-H2 100Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1

5 10 15Gly10117PRTArtificial SequenceSynthetic 1557-G06, CDR-H2 101Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly10217PRTArtificial SequenceSynthetic 1557-H04, CDR-H2 102Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly10317PRTArtificial SequenceSynthetic 1557-H10, CDR-H2 103Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys1 5 10 15Gly10412PRTArtificial SequenceSynthetic 1304-G11, CDR-H3 104Gly Trp His Pro Gln Thr Tyr Tyr Gly Leu Asp Tyr1 5 1010510PRTArtificial SequenceSynthetic 1332-A05, CDR-H3 105Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr1 5 1010610PRTArtificial SequenceSynthetic 1332-C01, CDR-H3 106Leu Arg Asn Trp Asp Met Pro Met Asp Tyr1 5 1010710PRTArtificial SequenceSynthetic 1332-F11, CDR-H3 107Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr1 5 1010812PRTArtificial SequenceSynthetic 1464-A02, CDR-H3 108Ala Trp His Pro Gln Thr Tyr Tyr Gly Val Asp Tyr1 5 1010912PRTArtificial SequenceSynthetic 1464-A08, CDR-H3 109Gly Trp His Arg Gln Asp Tyr Tyr Gly Gln Asp Tyr1 5 1011012PRTArtificial SequenceSynthetic 1464-B04, CDR-H3 110Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1011112PRTArtificial SequenceSynthetic 1557-A04, CDR-H3 111Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr1 5 1011212PRTArtificial SequenceSynthetic 1557-A05, CDR-H3 112Gly Trp His Asp Gln Ser Leu Tyr Asp Arg Asp Tyr1 5 1011312PRTArtificial SequenceSynthetic 1557-B03, CDR-H3 113Gly Trp Asn Pro Gln Thr Leu Tyr His Leu Asp Tyr1 5 1011412PRTArtificial SequenceSynthetic 1557-B10, CDR-H3 114Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1011512PRTArtificial SequenceSynthetic 1557-C06, CDR-H3 115Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr1 5 1011612PRTArtificial SequenceSynthetic 1557-E07, CDR-H3 116Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1011712PRTArtificial SequenceSynthetic 1557-E08, CDR-H3 117Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1011812PRTArtificial SequenceSynthetic 1557-E11, CDR-H3 118Gly Trp His Pro Gln Ser Leu Tyr Asp Leu Asp Tyr1 5 1011912PRTArtificial SequenceSynthetic 1557-F01, CDR-H3 119Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012012PRTArtificial SequenceSynthetic 1557-F02, CDR-H3 120Gly Trp His Pro Gln Thr Met Tyr Asn Leu Asp Tyr1 5 1012112PRTArtificial SequenceSynthetic 1557-F03, CDR-H3 121Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012212PRTArtificial SequenceSynthetic 1557-F05, CDR-H3 122Asp Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012312PRTArtificial SequenceSynthetic 1557-G01, CDR-H3 123Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012412PRTArtificial SequenceSynthetic 1557-G03, CDR-H3 124Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012512PRTArtificial SequenceSynthetic 1557-G04, CDR-H3 125Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012612PRTArtificial SequenceSynthetic 1557-G06, CDR-H3 126Gly Trp His Pro Gln Thr Leu Tyr His Leu Asp Tyr1 5 1012712PRTArtificial SequenceSynthetic 1557-H04, CDR-H3 127Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr1 5 1012812PRTArtificial SequenceSynthetic 1557-H10, CDR-H3 128Gly Trp His Pro Gln Ser Met Tyr Asp Leu Asp Tyr1 5 1012912PRTArtificial SequenceSynthetic 1304-G11, CDR-L1 129Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala1 5 1013017PRTArtificial SequenceSynthetic 1332-A05, CDR-L1 130Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu1 5 10 15Thr13117PRTArtificial SequenceSynthetic 1332-C01, CDR-L1 131Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu1 5 10 15Thr13217PRTArtificial SequenceSynthetic 1332-F11, CDR-L1 132Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu1 5 10 15Thr13312PRTArtificial SequenceSynthetic 1464-A02, CDR-L1 133Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala1 5 1013412PRTArtificial SequenceSynthetic 1464-A08, CDR-L1 134Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala1 5 1013512PRTArtificial SequenceSynthetic 1464-B04, CDR-L1 135Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala1 5 1013612PRTArtificial SequenceSynthetic 1557-A04, CDR-L1 136Arg Ala Ser Gln Asn Val Ser Thr Asn Tyr Leu Ala1 5 1013712PRTArtificial SequenceSynthetic 1557-A05, CDR-L1 137Ser Ala Ser Gln Thr Val Ser Ser Ser Tyr Ile Ala1 5 1013812PRTArtificial SequenceSynthetic 1557-B03, CDR-L1 138Arg Ala Ser Gln Lys Cys Ser Ser Ser Ser Met Ala1 5 1013912PRTArtificial SequenceSynthetic 1557-B10, CDR-L1 139Arg Ala Ser Gln Gly Leu Ala Ser Arg Tyr Met Ala1 5 1014012PRTArtificial SequenceSynthetic 1557-C06, CDR-L1 140Arg Ala Ser Gln Arg Gly Thr Ser Ser Tyr Leu Ala1 5 1014112PRTArtificial SequenceSynthetic 1557-E07, CDR-L1 141Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala1 5 1014212PRTArtificial SequenceSynthetic 1557-E08, CDR-L1 142Arg Ala Ser Gln Gly Asp Ser Ser Ser Val Leu Ala1 5 1014312PRTArtificial SequenceSynthetic 1557-E11, CDR-L1 143Arg Ala Ser Gln Pro Val Pro Asn Thr Thr Leu Ala1 5 1014412PRTArtificial SequenceSynthetic 1557-F01, CDR-L1 144Arg Ala Ser Gln Ser Val Ser Ser Ser Lys Leu Ala1 5 1014512PRTArtificial SequenceSynthetic 1557-F02, CDR-L1 145Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala1 5 1014612PRTArtificial SequenceSynthetic 1557-F03, CDR-L1 146Arg Ala Ser Gln Ser Val Lys Thr Ser Asp Leu Ala1 5 1014712PRTArtificial SequenceSynthetic 1557-F05, CDR-L1 147Arg Ala Ser Gln Thr Val Ser Pro Ser Val Leu Ala1 5 1014812PRTArtificial SequenceSynthetic 1557-G01, CDR-L1 148Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala1 5 1014912PRTArtificial SequenceSynthetic 1557-G03, CDR-L1 149Arg Ala Ser Gln Ser Val His Ser Ser Tyr Leu Ala1 5 1015012PRTArtificial SequenceSynthetic 1557-G04, CDR-L1 150Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala1 5 1015112PRTArtificial SequenceSynthetic 1557-G06, CDR-L1 151Arg Ala Ser Gln Ser Ile Pro Ser Ser Tyr Leu Ala1 5 1015212PRTArtificial SequenceSynthetic 1557-H04, CDR-L1 152Arg Ala Ser Gln Ser Val Ser Thr Gly Tyr Leu Ala1 5 1015312PRTArtificial SequenceSynthetic 1557-H10, CDR-L1 153Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala1 5 101547PRTArtificial SequenceSynthetic 1304-G11, CDR-L2 154Gly Ala Ser Ser Arg Ala Thr1 51557PRTArtificial SequenceSynthetic 1332-A05, CDR-L2 155Trp Ala Ser Thr Arg Glu Ser1 51567PRTArtificial SequenceSynthetic 1332-C01, CDR-L2 156Trp Ala Ser Thr Arg Glu Ser1 51577PRTArtificial SequenceSynthetic 1332-F11, CDR-L2 157Arg Ala Ser Thr Arg Glu Ser1 51587PRTArtificial SequenceSynthetic 1464-A02, CDR-L2 158Gly Ala Ser Ser Arg Ala Thr1 51597PRTArtificial SequenceSynthetic 1464-A08, CDR-L2 159Gly Ala Ser Ser Arg Ala Thr1 51607PRTArtificial SequenceSynthetic 1464-B04, CDR-L2 160Gly Ala Ser Ser Arg Ala Thr1 51617PRTArtificial SequenceSynthetic 1557-A04, CDR-L2 161Gly Ala Ser Ser Arg Ala Thr1 51627PRTArtificial SequenceSynthetic 1557-A05, CDR-L2 162Gly Ala Ser Ser Arg Ala Thr1 51637PRTArtificial SequenceSynthetic 1557-B03, CDR-L2 163Gly Ala Ser Ser Arg Ala Thr1 51647PRTArtificial SequenceSynthetic 1557-B10, CDR-L2 164Gly Ala Ser Ser Arg Ala Thr1 51657PRTArtificial SequenceSynthetic 1557-C06, CDR-L2 165Gly Ala Ser Ser Arg Ala Thr1 51667PRTArtificial SequenceSynthetic 1557-E07, CDR-L2 166Gly Ala Ser Ser Arg Ala Thr1 51677PRTArtificial SequenceSynthetic 1557-E08, CDR-L2 167Gly Ala Ser Ser Arg Ala Thr1 51687PRTArtificial SequenceSynthetic 1557-E11, CDR-L2 168Gly Ala Ser Ser Arg Ala Thr1 51697PRTArtificial SequenceSynthetic 1557-F01, CDR-L2 169Gly Ala Ser Ser Arg Ala Thr1 51707PRTArtificial SequenceSynthetic 1557-F02, CDR-L2 170Gly Ala Ser Ser Arg Ala Thr1 51717PRTArtificial SequenceSynthetic 1557-F03, CDR-L2 171Gly Ala Ser Ser Arg Ala Thr1 51727PRTArtificial SequenceSynthetic 1557-F05, CDR-L2 172Gly Ala Ser Ser Arg Ala Thr1 51737PRTArtificial SequenceSynthetic 1557-G01, CDR-L2 173Gly Ala Ser Ser Arg Ala Thr1 51747PRTArtificial SequenceSynthetic 1557-G03, CDR-L2 174Gly Ala Ser Ser Arg Ala Thr1 51757PRTArtificial SequenceSynthetic 1557-G04, CDR-L2 175Gly Ala Ser Ser Arg Ala Thr1 51767PRTArtificial SequenceSynthetic 1557-G06, CDR-L2 176Gly Ala Ser Ser Arg Ala Thr1 51777PRTArtificial SequenceSynthetic 1557-H04, CDR-L2 177Gly Ala Ser Ser Arg Ala Thr1 51787PRTArtificial SequenceSynthetic 1557-H10, CDR-L2 178Gly Ala Ser Ser Arg Ala Thr1 51799PRTArtificial SequenceSynthetic 1304-G11, CDR-L3 179Gln Gln Tyr Trp Tyr Gly Pro Pro Thr1 51809PRTArtificial SequenceSynthetic 1332-A05, CDR-L3 180Gln Asn Asp Leu Ser Tyr Pro Leu Thr1 51819PRTArtificial SequenceSynthetic 1332-C01, CDR-L3 181Gln Asn Asp Tyr Arg Tyr Pro Leu Thr1 51829PRTArtificial SequenceSynthetic 1332-F11, CDR-L3 182Gln Asn Asp Ser Ser Tyr Pro Leu Thr1 51839PRTArtificial SequenceSynthetic 1464-A02, CDR-L3 183Gln Gln Thr Ser Glu Ala Pro Pro Thr1 51849PRTArtificial SequenceSynthetic 1464-A08, CDR-L3 184Gln Gln Asn Gln Ala Ala Pro Ala Thr1 51859PRTArtificial SequenceSynthetic 1464-B04, CDR-L3 185Gln Gln Leu Val Thr Ser Pro Pro Thr1 51869PRTArtificial SequenceSynthetic 1557-A04, CDR-L3 186Gln Gln Leu Val Thr Asn Pro Pro Thr1 51879PRTArtificial SequenceSynthetic 1557-A05, CDR-L3 187Gln Gln Leu Leu Thr Ser Pro Pro Thr1 51889PRTArtificial SequenceSynthetic 1557-B03, CDR-L3 188Gln Gln Leu Gln Thr Ser Pro Pro Thr1 51899PRTArtificial SequenceSynthetic 1557-B10, CDR-L3 189Gln Gln Val Met Thr Ile Pro Pro Thr1 51909PRTArtificial SequenceSynthetic 1557-C06, CDR-L3 190Gln Gln His Val Thr Ser Pro Pro Thr1 51919PRTArtificial SequenceSynthetic 1557-E07, CDR-L3 191Gln Gln Arg Ala Ala Pro Pro Pro Thr1 51929PRTArtificial SequenceSynthetic 1557-E08, CDR-L3 192Gln Gln Leu Val Pro Ser Pro Pro Thr1 51939PRTArtificial SequenceSynthetic 1557-E11, CDR-L3 193Gln Gln Leu Val Pro Ser Pro Pro Thr1 51949PRTArtificial SequenceSynthetic 1557-F01, CDR-L3 194Gln Gln Leu Glu Thr Ile Pro Pro Thr1 51959PRTArtificial SequenceSynthetic 1557-F02, CDR-L3 195Gln Gln Leu Phe Asn Ser Pro Pro Thr1 51969PRTArtificial SequenceSynthetic 1557-F03, CDR-L3 196Gln Gln Leu Val Ser Lys Pro Pro Thr1 51979PRTArtificial SequenceSynthetic 1557-F05, CDR-L3 197Gln Gln Leu Val Thr Asn Pro Pro Thr1 51989PRTArtificial SequenceSynthetic 1557-G01, CDR-L3 198Gln Gln Leu Val Thr Ser Pro Pro Thr1 51999PRTArtificial SequenceSynthetic 1557-G03, CDR-L3 199Gln Gln Leu Leu Ser Ser Pro Pro Thr1 52009PRTArtificial SequenceSynthetic 1557-G04, CDR-L3 200Gln Gln Asp Ser Phe Val Pro Pro Thr1 52019PRTArtificial SequenceSynthetic 1557-G06, CDR-L3 201Gln Gln Leu Ala Thr Ser Pro Pro Thr1 52029PRTArtificial SequenceSynthetic 1557-H04, CDR-L3 202Gln Gln Leu Val Thr Arg Pro Pro Thr1 52039PRTArtificial SequenceSynthetic 1557-H10, CDR-L3 203Gln Gln Leu Val Thr Ala Pro Pro Thr1 5204492PRTArtificial SequenceSynthetic 1304-G11, scFv-Fc 204Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Arg Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Asp Gly Tyr Thr Asn Tyr Ala Asp Ser 50 55 60Val Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Tyr Tyr Gly Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Tyr Trp Tyr Gly Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Gly Ser His His His His His His 485 490205507PRTArtificial SequenceSynthetic 1332-A05, scFv-Fc 205Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Leu Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Asp Tyr Ala Phe Ala145 150 155 160Asn Arg Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu

165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ala Gly Ser Asp Gln Glu 245 250 255Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro 260 265 270Glu Leu Leu Gly Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 275 280 285Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 290 295 300Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp305 310 315 320Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 325 330 335Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 340 345 350Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 355 360 365Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 370 375 380Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys385 390 395 400Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 405 410 415Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 420 425 430Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 435 440 445Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 450 455 460Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser465 470 475 480Leu Ser Leu Ser Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp 485 490 495Asp Lys Gly Ser Gly His His His His His His 500 505206507PRTArtificial SequenceSynthetic 1332-C01, scFv-Fc 206Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Tyr Arg Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr145 150 155 160Asn Ser Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu 165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Asp Met Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ala Gly Ser Asp Gln Glu 245 250 255Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro 260 265 270Glu Leu Leu Gly Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 275 280 285Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 290 295 300Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp305 310 315 320Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 325 330 335Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 340 345 350Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 355 360 365Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 370 375 380Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys385 390 395 400Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 405 410 415Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 420 425 430Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 435 440 445Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 450 455 460Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser465 470 475 480Leu Ser Leu Ser Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp 485 490 495Asp Lys Gly Ser Gly His His His His His His 500 505207507PRTArtificial SequenceSynthetic 1332-F11, scFv-Fc 207Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ala145 150 155 160Asn Arg Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu 165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ala Gly Ser Asp Gln Glu 245 250 255Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro 260 265 270Glu Leu Leu Gly Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 275 280 285Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 290 295 300Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp305 310 315 320Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 325 330 335Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 340 345 350Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 355 360 365Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 370 375 380Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys385 390 395 400Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 405 410 415Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 420 425 430Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 435 440 445Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 450 455 460Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser465 470 475 480Leu Ser Leu Ser Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp 485 490 495Asp Lys Gly Ser Gly His His His His His His 500 505208503PRTArtificial SequenceSynthetic 1464-A02, scFv-Fc 208Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Val 20 25 30Glu Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Ala Trp His Pro Gln Thr Tyr Tyr Gly Val Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Thr Ser Glu Ala Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500209503PRTArtificial SequenceSynthetic 1464-A08, scFv-Fc 209Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Arg Gln Asp Tyr Tyr Gly Gln Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Gly Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Asn Gln Ala Ala Pro Ala Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500210503PRTArtificial SequenceSynthetic 1464-B04, scFv-Fc 210Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Tyr Thr Ser Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75

80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500211503PRTArtificial SequenceSynthetic 1557-A04, scFv-Fc 211Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Ala Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Asn Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Asn Val Ser Thr Asn Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Asn Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500212503PRTArtificial SequenceSynthetic 1557-A05, scFv-Fc 212Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Gly Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Asp Gln Ser Leu Tyr Asp Arg Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Ser Ala Ser Gln Thr Val Ser Ser Ser Tyr Ile Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Gly Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Leu Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500213503PRTArtificial SequenceSynthetic 1557-B03, scFv-Fc 213Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ser 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Gly Gly His Glu Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp Asn Pro Gln Thr Leu Tyr His Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Lys Cys Ser Ser Ser Ser Met Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Gln Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500214503PRTArtificial SequenceSynthetic 1557-B10, scFv-Fc 214Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Cys Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Glu Gly Asn Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Gly Leu Ala Ser Arg Tyr Met Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Val Met Thr Ile Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500215503PRTArtificial SequenceSynthetic 1557-C06, scFv-Fc 215Met Glu Val

Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ala Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Ser Gln Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Cys Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Arg Gly Thr Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln His Val Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500216503PRTArtificial SequenceSynthetic 1557-E07, scFv-Fc 216Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Met Ser Cys145 150 155 160Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Ala Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Arg Ala Ala Pro Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500217503PRTArtificial SequenceSynthetic 1557-E08, scFv-Fc 217Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ala 20 25 30Ser Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Gly Asp Ser Ser Ser Val Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Pro Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500218503PRTArtificial SequenceSynthetic 1557-E11, scFv-Fc 218Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Asn Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Ser Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Asp Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Pro Val Pro Asn Thr Thr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Ala Tyr 210 215 220Tyr Cys Gln Gln Leu Val Pro Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500219503PRTArtificial SequenceSynthetic 1557-F01, scFv-Fc 219Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Lys Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Tyr Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Glu Thr Ile Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu

Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500220503PRTArtificial SequenceSynthetic 1557-F02, scFv-Fc 220Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asn Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Phe Asn Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500221503PRTArtificial SequenceSynthetic 1557-F03, scFv-Fc 221Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Gly Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Lys Thr Ser Asp Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Ser Lys Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500222503PRTArtificial SequenceSynthetic 1557-F05, scFv-Fc 222Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Asp Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Thr Val Ser Pro Ser Val Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Gly Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Asn Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500223503PRTArtificial SequenceSynthetic 1557-G01, scFv-Fc 223Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val 20 25 30Thr Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Met Ser Cys145 150 155 160Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500224503PRTArtificial SequenceSynthetic 1557-G03, scFv-Fc 224Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Gly Gly Gly Glu Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val His Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Leu Ser Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala

Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500225503PRTArtificial SequenceSynthetic 1557-G04, scFv-Fc 225Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Cys Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Asp Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Asp Ser Phe Val Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500226503PRTArtificial SequenceSynthetic 1557-G06, scFv-Fc 226Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Phe Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr His Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Ile Pro Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Glu Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Ala Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500227503PRTArtificial SequenceSynthetic 1557-H04, scFv-Fc 227Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val 20 25 30Thr Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Gly 130 135 140Pro Ser Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Thr Gly Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Arg Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500228503PRTArtificial SequenceSynthetic 1557-H10, scFv-Fc 228Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Ser Met Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Met Ser Cys145 150 155 160Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Ala Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser 245 250 255Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly 260 265 270Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 275 280 285Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 290 295 300Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val305 310 315 320His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 325 330 335Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 340 345 350Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 360 365Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 380Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser385 390 395 400Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 410 415Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 420 425 430Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 445Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 455 460His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser465 470 475 480Pro Gly Lys Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 485 490 495Gly His His His His His His 500229121PRTArtificial SequenceSynthetic 1304-G11, VH 229Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Arg Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Asp Gly Tyr Thr Asn Tyr Ala Asp Ser Val 50 55 60Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Tyr Tyr Gly Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120230120PRTArtificial SequenceSynthetic 1332-A05, VH 230Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly1 5 10 15Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Asp Tyr Ala Phe Ala Asn 20 25 30Arg Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 35 40 45Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser 115 120231120PRTArtificial SequenceSynthetic 1332-C01, VH 231Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly1 5 10 15Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn 20 25

30Ser Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 35 40 45Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Leu Arg Asn Trp Asp Met Pro Met Asp Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser 115 120232120PRTArtificial SequenceSynthetic 1332-F11, VH 232Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly1 5 10 15Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ala Asn 20 25 30Arg Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 35 40 45Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser 115 120233121PRTArtificial SequenceSynthetic 1464-A02, VH 233Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Val Glu 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Asp Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Ala Trp His Pro Gln Thr Tyr Tyr Gly Val Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120234121PRTArtificial SequenceSynthetic 1464-A08, VH 234Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Ala Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Arg Gln Asp Tyr Tyr Gly Gln Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120235121PRTArtificial SequenceSynthetic 1464-B04, VH 235Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Tyr Thr Ser Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120236121PRTArtificial SequenceSynthetic 1557-A04, VH 236Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Ala Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120237121PRTArtificial SequenceSynthetic 1557-A05, VH 237Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Gly Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Asp Gln Ser Leu Tyr Asp Arg Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120238121PRTArtificial SequenceSynthetic 1557-B03, VH 238Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ser Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Gly Gly His Glu Gly Tyr Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp Asn Pro Gln Thr Leu Tyr His Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120239121PRTArtificial SequenceSynthetic 1557-B10, VH 239Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Cys 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Ala Gly Gly Glu Gly Asn Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120240121PRTArtificial SequenceSynthetic 1557-C06, VH 240Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly Ala 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Ser Gln Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120241121PRTArtificial SequenceSynthetic 1557-E07, VH 241Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120242121PRTArtificial SequenceSynthetic 1557-E08, VH 242Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ala Ser 20 25 30Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120243121PRTArtificial SequenceSynthetic 1557-E11, VH 243Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Asn Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Ser Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120244121PRTArtificial SequenceSynthetic 1557-F01, VH 244Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120245121PRTArtificial SequenceSynthetic 1557-F02, VH 245Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asn Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120246121PRTArtificial SequenceSynthetic 1557-F03, VH 246Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Ala Gly Gly Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120247121PRTArtificial SequenceSynthetic 1557-F05, VH 247Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Asp Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120248121PRTArtificial SequenceSynthetic 1557-G01, VH 248Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val Thr 20 25 30Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120249121PRTArtificial SequenceSynthetic 1557-G03, VH 249Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Gly Gly Gly Glu Gly Tyr Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120250121PRTArtificial SequenceSynthetic 1557-G04, VH 250Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Cys Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65

70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120251121PRTArtificial SequenceSynthetic 1557-G06, VH 251Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Phe 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr His Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120252121PRTArtificial SequenceSynthetic 1557-H04, VH 252Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val Thr 20 25 30Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120253121PRTArtificial SequenceSynthetic 1557-H10, VH 253Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Ser 20 25 30Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Gly Trp His Pro Gln Ser Met Tyr Asp Leu Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 120254108PRTArtificial SequenceSynthetic 1304-G11, VL 254Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Ser Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Trp Tyr Gly Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105255113PRTArtificial SequenceSynthetic 1332-A05, VL 255Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Leu Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile 100 105 110Lys256113PRTArtificial SequenceSynthetic 1332-C01, VL 256Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Tyr Arg Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile 100 105 110Lys257113PRTArtificial SequenceSynthetic 1332-F11, VL 257Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile 100 105 110Lys258108PRTArtificial SequenceSynthetic 1464-A02, VL 258Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Thr Ser Glu Ala Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105259108PRTArtificial SequenceSynthetic 1464-A08, VL 259Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Gly Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Asn Gln Ala Ala Pro 85 90 95Ala Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105260108PRTArtificial SequenceSynthetic 1464-B04, VL 260Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Thr Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105261108PRTArtificial SequenceSynthetic 1557-A04, VL 261Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Asn Val Ser Thr Asn 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Thr Asn Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105262108PRTArtificial SequenceSynthetic 1557-A05, VL 262Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Ser Ala Ser Gln Thr Val Ser Ser Ser 20 25 30Tyr Ile Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Gly 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Leu Thr Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105263108PRTArtificial SequenceSynthetic 1557-B03, VL 263Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Lys Cys Ser Ser Ser 20 25 30Ser Met Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Gln Thr Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105264108PRTArtificial SequenceSynthetic 1557-B10, VL 264Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Gly Leu Ala Ser Arg 20 25 30Tyr Met Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Val Met Thr Ile Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105265108PRTArtificial SequenceSynthetic 1557-C06, VL 265Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Arg Gly Thr Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln His Val Thr Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105266108PRTArtificial SequenceSynthetic 1557-E07, VL 266Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Met Ser Cys Arg Ala Ser Gln Val Leu Ser Ser Ser 20 25 30Ser Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Ala Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ala Ala Pro Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105267108PRTArtificial SequenceSynthetic 1557-E08, VL 267Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Gly Asp Ser Ser Ser 20 25 30Val Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Pro Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105268108PRTArtificial SequenceSynthetic 1557-E11, VL 268Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Pro Val Pro Asn Thr 20 25 30Thr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Ala Tyr Tyr Cys Gln Gln Leu Val Pro Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105269108PRTArtificial SequenceSynthetic 1557-F01, VL 269Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Lys Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Tyr Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Glu Thr Ile Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105270108PRTArtificial SequenceSynthetic 1557-F02, VL 270Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Phe Asn Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105271108PRTArtificial SequenceSynthetic 1557-F03, VL 271Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Lys Thr Ser 20 25 30Asp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser

Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Ser Lys Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105272108PRTArtificial SequenceSynthetic 1557-F05, VL 272Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Thr Val Ser Pro Ser 20 25 30Val Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Gly Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Thr Asn Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105273108PRTArtificial SequenceSynthetic 1557-G01, VL 273Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Met Ser Cys Arg Ala Ser Gln Val Leu Ser Ser Ser 20 25 30Ser Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Thr Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105274108PRTArtificial SequenceSynthetic 1557-G03, VL 274Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val His Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Leu Ser Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105275108PRTArtificial SequenceSynthetic 1557-G04, VL 275Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Asp Ser Phe Val Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105276108PRTArtificial SequenceSynthetic 1557-G06, VL 276Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Ile Pro Ser Ser 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Glu Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Ala Thr Ser Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105277108PRTArtificial SequenceSynthetic 1557-H04, VL 277Glu Ile Val Leu Thr Gln Gly Pro Ser Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Thr Gly 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Thr Arg Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105278108PRTArtificial SequenceSynthetic 1557-H10, VL 278Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Met Ser Cys Arg Ala Ser Gln Val Leu Ser Ser Ser 20 25 30Ser Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu65 70 75 80Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Leu Val Thr Ala Pro 85 90 95Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105279330PRTArtificial SequenceSynthetic IgG1 Constant Region 279Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys1 5 10 15Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr65 70 75 80Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp145 150 155 160Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu225 230 235 240Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr305 310 315 320Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330280252PRTArtificial SequenceSynthetic IgG1 Fc from scFv-Fc 280Ala Ala Gly Ser Asp Gln Glu Pro Lys Ser Ser Asp Lys Thr His Thr1 5 10 15Cys Pro Pro Cys Ser Ala Pro Glu Leu Leu Gly Gly Ser Ser Val Phe 20 25 30Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 35 40 45Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 50 55 60Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr65 70 75 80Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 85 90 95Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 100 105 110Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 115 120 125Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 130 135 140Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val145 150 155 160Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 165 170 175Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp 180 185 190Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 195 200 205Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 210 215 220Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Gly Ser225 230 235 240Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Gly 245 250281106PRTArtificial SequenceSynthetic Lambda Constant Region 281Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser1 5 10 15Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 20 25 30Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro 35 40 45Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn 50 55 60Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys65 70 75 80Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val 85 90 95Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 105282107PRTArtificial SequenceSynthetic Kappa Constant Region 282Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu1 5 10 15Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35 40 45Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 50 55 60Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu65 70 75 80Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 10528315PRTArtificial SequenceSynthetic Linker 283Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser1 5 10 152846PRTArtificial SequenceSynthetic Linker 284Ala Ala Gly Ser Asp Gln1 528520PRTArtificial SequenceSynthetic His Tag with Linker 285Gly Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Gly His His1 5 10 15His His His His 202867PRTArtificial SequenceSynthetic mAb_3-1, CDR-H1 286Gly Tyr Ala Phe Thr Asn Tyr1 52877PRTArtificial SequenceSynthetic mAb_3-5, CDR-H1 287Gly Tyr Thr Phe Thr Ser Tyr1 52887PRTArtificial SequenceSynthetic mAb_4-1, CDR-H1 288Gly Tyr Ala Phe Thr Asn Tyr1 52897PRTArtificial SequenceSynthetic mAb_4-7, CDR-H1 289Gly Tyr Thr Phe Thr Asn Tyr1 52907PRTArtificial SequenceSynthetic mAb_5-10, CDR-H1 290Gly Tyr Ala Phe Thr Asn Tyr1 52915PRTArtificial SequenceSynthetic mAb_3-1, CDR-H1 291Asn Tyr Trp Leu Gly1 52925PRTArtificial SequenceSynthetic mAb_3-5, CDR-H1 292Ser Tyr Gly Leu Ser1 52935PRTArtificial SequenceSynthetic mAb_4-1, CDR-H1 293Asn Tyr Trp Leu Gly1 52945PRTArtificial SequenceSynthetic mAb_4-7, CDR-H1 294Asn Tyr Gly Leu Ser1 52955PRTArtificial SequenceSynthetic mAb_5-10, CDR-H1 295Asn Tyr Trp Leu Gly1 52966PRTArtificial SequenceSynthetic mAb_3-1, CDR-H2 296Phe Pro Gly Ser Gly Asn1 52976PRTArtificial SequenceSynthetic mAb_3-5, CDR-H2 297Tyr Pro Arg Ile Gly Asn1 52986PRTArtificial SequenceSynthetic mAb_4-1, CDR-H2 298Phe Pro Gly Ser Gly Asn1 52996PRTArtificial SequenceSynthetic mAb_4-7, CDR-H2 299Tyr Pro Arg Ile Gly Asn1 53006PRTArtificial SequenceSynthetic mAb_5-10, CDR-H2 300Phe Pro Gly Ser Gly Asn1 530117PRTArtificial SequenceSynthetic mAb_3-1, CDR-H2 301Asp Leu Phe Pro Gly Ser Gly Asn Thr His Tyr Asn Glu Arg Phe Arg1 5 10 15Gly30217PRTArtificial SequenceSynthetic mAb_3-5, CDR-H2 302Glu Val Tyr Pro Arg Ile Gly Asn Ala Tyr Tyr Asn Glu Lys Phe Lys1 5 10 15Gly30317PRTArtificial SequenceSynthetic mAb_4-1, CDR-H2 303Asp Ile Phe Pro Gly Ser Gly Asn Ala His Tyr Asn Glu Lys Phe Lys1 5 10 15Gly30417PRTArtificial SequenceSynthetic mAb_4-7, CDR-H2 304Glu Val Tyr Pro Arg Ile Gly Asn Ala Tyr Tyr Asn Glu Lys Phe Lys1 5 10 15Gly30517PRTArtificial SequenceSynthetic mAb_5-10, CDR-H2 305Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys Phe Lys1 5 10 15Gly30610PRTArtificial SequenceSynthetic mAb_3-1, CDR-H3 306Leu Arg Asn Trp Asp Glu Ala Met Asp Tyr1 5 1030714PRTArtificial SequenceSynthetic mAb_3-5, CDR-H3 307Arg Gly Ser Tyr Gly Ser Asn Tyr Asp Trp Tyr Phe Asp Val1 5 1030810PRTArtificial SequenceSynthetic mAb_4-1, CDR-H3 308Leu Arg Asn Trp Asp Glu Ala Met Asp Tyr1 5 1030914PRTArtificial SequenceSynthetic mAb_4-7, CDR-H3 309Arg Gly Ser Tyr Asp Thr Asn Tyr Asp Trp Tyr Phe Asp Val1 5 1031010PRTArtificial SequenceSynthetic mAb_5-10, CDR-H3 310Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr1 5 1031111PRTArtificial SequenceSynthetic mAb_3-1, CDR-L1 311Arg Ala Ser Lys Ser Ile Ser Lys Tyr Leu Ala1 5 1031216PRTArtificial SequenceSynthetic mAb_3-5, CDR-L1 312Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Leu His1 5 10 1531317PRTArtificial SequenceSynthetic mAb_4-1, CDR-L1 313Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu1 5 10 15Ala31416PRTArtificial SequenceSynthetic mAb_4-7, CDR-L1 314Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Leu His1 5 10 1531517PRTArtificial SequenceSynthetic mAb_5-10, CDR-L1 315Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu1 5 10 15Thr3167PRTArtificial SequenceSynthetic mAb_3-1, CDR-L2 316Ser Gly Ser Thr Leu Gln Ser1 53177PRTArtificial SequenceSynthetic mAb_3-5, CDR-L2 317Lys Val Ser Asn Arg Phe Ser1 53187PRTArtificial SequenceSynthetic mAb_4-1, CDR-L2 318Gly Ala Ser Thr Arg Glu Ser1 53197PRTArtificial SequenceSynthetic mAb_4-7, CDR-L2 319Lys Val Ser Asn Arg Phe Ser1 53207PRTArtificial SequenceSynthetic mAb_5-10, CDR-L2 320Trp Ala Ser Thr Arg Glu Ser1 53219PRTArtificial SequenceSynthetic mAb_3-1, CDR-L3 321Gln Gln His Asn Glu Tyr Pro Tyr Thr1 53229PRTArtificial SequenceSynthetic mAb_3-5, CDR-L3 322Ser Gln Ser Thr His Val Pro Tyr Thr1 53239PRTArtificial SequenceSynthetic mAb_4-1, CDR-L3 323Gln Asn Asp Tyr Ser Tyr Pro Tyr Thr1 53249PRTArtificial SequenceSynthetic mAb_4-7, CDR-L3 324Ser Gln Ser Thr His Val Pro Tyr Thr1 53259PRTArtificial SequenceSynthetic mAb_5-10, CDR-L3 325Gln Asn Asp Tyr Ser Tyr Pro Leu Thr1 5326120PRTArtificial SequenceSynthetic mAb_3-1, VH 326Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Lys Pro Gly1 5 10 15Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn 20 25 30Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp

35 40 45Ile Gly Asp Leu Phe Pro Gly Ser Gly Asn Thr His Tyr Asn Glu Arg 50 55 60Phe Arg Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Phe Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Leu Arg Asn Trp Asp Glu Ala Met Asp Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser 115 120327124PRTArtificial SequenceSynthetic mAb_3-5, VH 327Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly1 5 10 15Thr Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser 20 25 30Tyr Gly Leu Ser Trp Val Lys Gln Arg Thr Gly Gln Gly Leu Glu Trp 35 40 45Ile Gly Glu Val Tyr Pro Arg Ile Gly Asn Ala Tyr Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Ser Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Arg Gly Ser Tyr Gly Ser Asn Tyr Asp Trp Tyr Phe Asp 100 105 110Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120328120PRTArtificial SequenceSynthetic mAb_4-1, VH 328Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly1 5 10 15Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn 20 25 30Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 35 40 45Val Gly Asp Ile Phe Pro Gly Ser Gly Asn Ala His Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Tyr Thr Ala65 70 75 80Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Leu Arg Asn Trp Asp Glu Ala Met Asp Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser 115 120329124PRTArtificial SequenceSynthetic mAb_4-7, VH 329Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly1 5 10 15Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn 20 25 30Tyr Gly Leu Ser Trp Val Lys Gln Arg Pro Gly Gln Val Leu Glu Trp 35 40 45Ile Gly Glu Val Tyr Pro Arg Ile Gly Asn Ala Tyr Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Ser Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Arg Gly Ser Tyr Asp Thr Asn Tyr Asp Trp Tyr Phe Asp 100 105 110Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120330120PRTArtificial SequenceSynthetic mAb_5-10, VH 330Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly1 5 10 15Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn 20 25 30Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 35 40 45Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 50 55 60Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala65 70 75 80Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr Phe 85 90 95Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln 100 105 110Gly Thr Thr Val Thr Val Ser Ser 115 120331107PRTArtificial SequenceSynthetic mAb_3-1, VL 331Glu Leu Val Met Thr Gln Ser Pro Ser Tyr Leu Ala Ala Ser Pro Gly1 5 10 15Glu Thr Ile Thr Ile Asn Cys Arg Ala Ser Lys Ser Ile Ser Lys Tyr 20 25 30Leu Ala Trp Tyr Gln Glu Lys Pro Gly Lys Thr Asn Lys Leu Leu Ile 35 40 45Tyr Ser Gly Ser Thr Leu Gln Ser Gly Ile Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro65 70 75 80Glu Asp Phe Ala Met Tyr Tyr Cys Gln Gln His Asn Glu Tyr Pro Tyr 85 90 95Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105332112PRTArtificial SequenceSynthetic mAb_3-5, VL 332Glu Leu Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly1 5 10 15Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 20 25 30Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile65 70 75 80Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95Thr His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110333113PRTArtificial SequenceSynthetic mAb_4-1, VL 333Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Val Ser Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 100 105 110Lys334112PRTArtificial SequenceSynthetic mAb_4-7, VL 334Glu Leu Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly1 5 10 15Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 20 25 30Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile65 70 75 80Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95Thr His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110335113PRTArtificial SequenceSynthetic mAb_5-10, VL 335Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile 100 105 110Lys336248PRTArtificial SequenceSynthetic mAB_5-10, scFv 336Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile 100 105 110Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 115 120 125Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly 130 135 140Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn145 150 155 160Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 165 170 175Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 180 185 190Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala 195 200 205Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr Phe 210 215 220Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln225 230 235 240Gly Thr Thr Val Thr Val Ser Ser 245337245PRTArtificial SequenceSynthetic 1304-G11, scFv 337Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Arg Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Asp Gly Tyr Thr Asn Tyr Ala Asp Ser 50 55 60Val Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Tyr Tyr Gly Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Tyr Trp Tyr Gly Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245338249PRTArtificial SequenceSynthetic 1332-A05, scFv 338Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Leu Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Asp Tyr Ala Phe Ala145 150 155 160Asn Arg Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu 165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser 245339249PRTArtificial SequenceSynthetic 1332-C01, scFv 339Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Tyr Arg Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr145 150 155 160Asn Ser Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu 165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Asp Met Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser 245340249PRTArtificial SequenceSynthetic 1332-F11, scFv 340Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ala145 150 155 160Asn Arg Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu 165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Glu Gly Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser 245341245PRTArtificial SequenceSynthetic 1464-A02, scFv 341Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5

10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Val 20 25 30Glu Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Ala Trp His Pro Gln Thr Tyr Tyr Gly Val Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Thr Ser Glu Ala Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245342245PRTArtificial SequenceSynthetic 1464-A08, scFv 342Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Asp Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Arg Gln Asp Tyr Tyr Gly Gln Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Gly Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Asn Gln Ala Ala Pro Ala Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245343245PRTArtificial SequenceSynthetic 1464-B04, scFv 343Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Tyr Thr Ser Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245344245PRTArtificial SequenceSynthetic 1557-A04, scFv 344Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Ala Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Asn Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Asn Val Ser Thr Asn Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Asn Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245345245PRTArtificial SequenceSynthetic 1557-A05, scFv 345Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Gly Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Asp Gln Ser Leu Tyr Asp Arg Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Ser Ala Ser Gln Thr Val Ser Ser Ser Tyr Ile Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Gly Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Leu Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245346245PRTArtificial SequenceSynthetic 1557-B03, scFv 346Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ser 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Gly Gly His Glu Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp Asn Pro Gln Thr Leu Tyr His Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Lys Cys Ser Ser Ser Ser Met Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Gln Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245347245PRTArtificial SequenceSynthetic 1557-B10, scFv 347Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Cys Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Glu Gly Asn Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Gly Leu Ala Ser Arg Tyr Met Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Val Met Thr Ile Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245348245PRTArtificial SequenceSynthetic 1557-C06, scFv 348Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ala Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Ser Gln Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Cys Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Arg Gly Thr Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln His Val Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245349245PRTArtificial SequenceSynthetic 1557-E07, scFv 349Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Met Ser Cys145 150 155 160Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Ala Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Arg Ala Ala Pro Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245350245PRTArtificial SequenceSynthetic 1557-E08, scFv 350Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ala 20 25 30Ser Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Gly Asp Ser Ser Ser Val Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr

Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Pro Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245351245PRTArtificial SequenceSynthetic 1557-E11, scFv 351Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Asn Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Ser Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Asp Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Pro Val Pro Asn Thr Thr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Ala Tyr 210 215 220Tyr Cys Gln Gln Leu Val Pro Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245352245PRTArtificial SequenceSynthetic 1557-F01, scFv 352Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Lys Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Tyr Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Glu Thr Ile Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245353245PRTArtificial SequenceSynthetic 1557-F02, scFv 353Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Met Tyr Asn Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Phe Asn Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245354245PRTArtificial SequenceSynthetic 1557-F03, scFv 354Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Gly Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Lys Thr Ser Asp Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Ser Lys Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245355245PRTArtificial SequenceSynthetic 1557-F05, scFv 355Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Asp Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Thr Val Ser Pro Ser Val Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Gly Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Asn Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245356245PRTArtificial SequenceSynthetic 1557-G01, scFv 356Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val 20 25 30Thr Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Met Ser Cys145 150 155 160Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245357245PRTArtificial SequenceSynthetic 1557-G03, scFv 357Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Gly Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Gly Gly Gly Glu Gly Tyr Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val His Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Leu Ser Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245358245PRTArtificial SequenceSynthetic 1557-G04, scFv 358Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Cys Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Val Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Asp Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Asp Ser Phe Val Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245359245PRTArtificial SequenceSynthetic 1557-G06, scFv 359Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Phe Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr His Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145 150 155 160Arg Ala Ser Gln Ser Ile Pro Ser Ser Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Glu Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Ala Thr Ser Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245360245PRTArtificial SequenceSynthetic 1557-H04, scFv 360Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val 20 25 30Thr Ser Met Ser Trp Met Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Ala Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Thr Leu Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Gly 130 135 140Pro Ser Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys145

150 155 160Arg Ala Ser Gln Ser Val Ser Thr Gly Tyr Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Arg Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245361245PRTArtificial SequenceSynthetic 1557-H10, scFv 361Met Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly1 5 10 15Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly 20 25 30Ser Ser Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45Val Gly Ala Ile Asp Gly Gly Glu Gly Ser Thr Gly Tyr Ala Asp Ser 50 55 60Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Lys Gly Trp His Pro Gln Ser Met Tyr Asp Leu Asp Tyr Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser 130 135 140Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Met Ser Cys145 150 155 160Arg Ala Ser Gln Val Leu Ser Ser Ser Ser Leu Ala Trp Tyr Gln Gln 165 170 175Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg 180 185 190Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 195 200 205Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr 210 215 220Tyr Cys Gln Gln Leu Val Thr Ala Pro Pro Thr Phe Gly Gln Gly Thr225 230 235 240Lys Val Glu Ile Lys 245362496PRTArtificial SequenceSynthetic mAB_5-10, scFv-Fc 362Met Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala1 5 10 15Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn 20 25 30Ser Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly 35 40 45Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly 50 55 60Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu65 70 75 80Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln 85 90 95Asn Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu 100 105 110Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Ser Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro 130 135 140Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr145 150 155 160Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu 165 170 175Trp Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu 180 185 190Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr 195 200 205Ala Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr 210 215 220Phe Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly225 230 235 240Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ala Gly Ser Asp Gln Glu 245 250 255Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Ser Ala Pro 260 265 270Glu Leu Leu Gly Gly Ser Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 275 280 285Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 290 295 300Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp305 310 315 320Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 325 330 335Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 340 345 350Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 355 360 365Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 370 375 380Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys385 390 395 400Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 405 410 415Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 420 425 430Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 435 440 445Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 450 455 460Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser465 470 475 480Leu Ser Leu Ser Pro Gly Lys Gly Gly Ser His His His His His His 485 490 495

* * * * *

References

Patent Diagrams and Documents
D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
S00001
XML
US20220106401A1 – US 20220106401 A1

uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed