Agriculturally Beneficial Microbes, Microbial Compositions, And Consortia

WIGLEY; Peter ;   et al.

Patent Application Summary

U.S. patent application number 17/382875 was filed with the patent office on 2022-01-27 for agriculturally beneficial microbes, microbial compositions, and consortia. The applicant listed for this patent is BioConsortia, Inc.. Invention is credited to Caroline GEORGE, Graham HYMUS, Kelly ROBERTS, Susan TURNER, Peter WIGLEY, Thomas WILLIAMS, Damian WRIGHT.

Application Number20220022461 17/382875
Document ID /
Family ID
Filed Date2022-01-27

United States Patent Application 20220022461
Kind Code A1
WIGLEY; Peter ;   et al. January 27, 2022

AGRICULTURALLY BENEFICIAL MICROBES, MICROBIAL COMPOSITIONS, AND CONSORTIA

Abstract

The disclosure relates to isolated microorganisms--including novel strains of the microorganisms--microbial consortia, and agricultural compositions comprising the same. Furthermore, the disclosure teaches methods of utilizing the described microorganisms, microbial consortia, and agricultural compositions comprising the same, in methods for imparting beneficial properties to target plant species. In particular aspects, the disclosure provides methods of increasing desirable plant traits in agronomically important crop species.


Inventors: WIGLEY; Peter; (Parnell Auckland, NZ) ; TURNER; Susan; (Davis, CA) ; GEORGE; Caroline; (Meadowbank Auckland, NZ) ; WRIGHT; Damian; (Greenlane Auckland, NZ) ; WILLIAMS; Thomas; (Woodland, CA) ; ROBERTS; Kelly; (Davis, CA) ; HYMUS; Graham; (Davis, CA)
Applicant:
Name City State Country Type

BioConsortia, Inc.

Davis

CA

US
Appl. No.: 17/382875
Filed: July 22, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15747721 Jan 25, 2018 11102981
PCT/US16/43933 Jul 25, 2016
17382875
62196951 Jul 25, 2015

International Class: A01N 63/20 20060101 A01N063/20; C12N 1/20 20060101 C12N001/20; A01N 63/22 20060101 A01N063/22; A01N 63/25 20060101 A01N063/25; A01N 63/27 20060101 A01N063/27

Claims



1. A method of improving a trait of agronomic importance of a plant species, comprising: applying an isolated bacterial species to a plant, or to a growth medium in which the plant is located, wherein the isolated bacterial species is Arthrobacter nicotinovorans.

2. The method of claim 1, wherein the method comprises applying a microbial consortium which comprises the isolated bacterial species.

3. The method of claim 1, wherein the isolated bacterial species is formulated in an agricultural composition with one or more of the following: an agriculturally acceptable carrier, a pesticide, a plant growth regulator, a beneficial agent, and a biologically active agent.

4. The method of claim 3, wherein the isolated bacterial species is present in the agricultural composition at about 1.times.10.sup.3 to about 1.times.10.sup.12 bacterial cells per gram.

5. The method of claim 1, wherein the applying step occurs by: coating a plant seed with the isolated bacterial species thereby resulting in a bacterial seed coating, coating a plant part with the bacteria, spraying the bacteria onto a plant part, spraying the bacteria into a furrow into which a plant or seed will be placed, drenching the bacteria onto a plant part or into an area into which a plant will be placed, spreading the bacteria onto a plant part or into an area into which a plant will be placed, broadcasting the bacteria onto a plant part or into an area into which a plant will be placed, combining the bacteria with a fertilizer or other agricultural composition, or combinations thereof.

6. The method of claim 5, wherein the bacterial seed coating comprises the isolated bacterial species at a concentration of about 1.times.10.sup.5 to about 1.times.10.sup.9 bacterial cells per seed.

7. A method of improving a trait of agronomic importance of a plant species, the method comprising: applying an isolated bacterial species to a plant or to a growth medium having a plant, wherein the bacterial species is Arthrobacter nicotiovorans deposited as Accession Deposit No. NRRL B-67289, NRRL B-67290, or ATCC 49919.

8. A method of improving a trait of agronomic importance of a plant species, the method comprising: applying an isolated bacterial species to a plant or to a growth medium having a plant, wherein the bacterial species comprises SEQID NO:8 or SEQID NO:9.

9. The method of claim 1, wherein the trait of agronomic importance is plant biomass, root biomass, shoot biomass, root length, shoot length, solubilization of minerals, chelation of micronutrients, or any combination of the preceding.

10. The method of claim 1, wherein the trait of agronomic importance is plant biomass, root biomass, shoot biomass, root length, shoot length, solubilization of minerals, chelation of micronutrients, cold tolerance, leaf chlorophyll content, root nodulation, or any combination of the preceding.

11. The method of claim 7, wherein the trait of agronomic importance is plant biomass, root biomass, shoot biomass, root length, shoot length, solubilization of minerals, chelation of micronutrients, or any combination of the preceding.

12. The method of claim 7, wherein the trait of agronomic importance is plant biomass, root biomass, shoot biomass, root length, shoot length, solubilization of minerals, chelation of micronutrients, cold tolerance, leaf chlorophyll content, root nodulation, or any combination of the preceding.

13. The method of claim 8, wherein the trait of agronomic importance is plant biomass, root biomass, shoot biomass, root length, shoot length, solubilization of minerals, chelation of micronutrients, or any combination of the preceding.

14. The method of claim 8, wherein the trait of agronomic importance is plant biomass, root biomass, shoot biomass, root length, shoot length, solubilization of minerals, chelation of micronutrients, cold tolerance, leaf chlorophyll content, root nodulation, or any combination of the preceding.

15. The method of claim 2, wherein the consortium further comprises Chryseobacterium rhizosphaerae, Defluviimonas denitrificans, Pseudomonas putida, or any combination thereof.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 15/747,721, filed Jan. 25, 2018, which is a 371 national phase of PCT International Patent Application No. PCT/US2016/043933, filed Jul. 25, 2016, claiming the benefit of priority to U.S. Provisional Patent Application No. 62/196,951, filed on Jul. 25, 2015, which is hereby incorporated by reference in its entirety for all purposes. The following applications are generally related to the instant disclosure, U.S. Provisional Patent Application No. 62/113,792, filed on Feb. 9, 2015, and U.S. Provisional Patent Application No. 62/165,620, filed on May 22, 2015, and U.S. Provisional Patent Application No. 62/280,503, filed on Jan. 19, 2016, each of which is hereby incorporated by reference in its entirety for all purposes.

DESCRIPTION OF THE TEXT FILE SUBMITTED ELECTRONICALLY

[0002] The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: 82246-344474_Seq_List_ST25.txt, date recorded Jul. 22, 2021, file size 480 kilobytes).

FIELD

[0003] The present disclosure relates to isolated and biologically pure microorganisms that have application, inter alia, in agriculture. The disclosed microorganisms can be utilized in their isolated and biologically pure states, as well as being formulated into agriculturally acceptable compositions. Further, the disclosure provides agriculturally beneficial microbial consortia, containing at least two members of the disclosed microorganisms, as well as methods of utilizing said consortia in agricultural applications.

BACKGROUND

[0004] According to the United Nations World Food Program, there are close to 900 million malnourished people in the world. The malnourishment epidemic is particularly striking in the developing nations of the world, where one in six children is underweight. The paucity of available food can be attributed to many socioeconomic factors; however, regardless of ultimate cause, the fact remains that there is a shortage of food available to feed a growing world population, which is expected to reach 9 billion people by 2050. The United Nations estimates that agricultural yields must increase by 70-100% to feed the projected global population in 2050.

[0005] These startling world population and malnutrition figures highlight the importance of agricultural efficiency and productivity, in sustaining the world's growing population. The technological advancements achieved by modern row crop agriculture, which has led to never before seen crop yields, are impressive. However, despite the advancements made by technological innovations such as genetically engineered crops and new novel pesticidal and herbicidal compounds, there is a need for improved crop performance, in order to meet the demands of an exponentially increasing global population.

[0006] Scientists have estimated that if the global agricultural "yield gap" (which is the difference between the best observed yield and results elsewhere) could be closed, then worldwide crop production would rise by 45-70%. That is, if all farmers, regardless of worldwide location, could achieve the highest attainable yield expected for their respective regions, then a great majority of the deficiencies in worldwide food production could be addressed. However, solving the problem of how to achieve higher yields across a heterogenous worldwide landscape are difficult.

[0007] Often, yield gaps can be explained by inadequate water, substandard farming practices, inadequate fertilizers, and the non-availability of herbicides and pesticides. However, to vastly increase the worldwide use of water, fertilizers, herbicides, and pesticides, would not only be economically infeasible for most of the world, but would have negative environmental consequences.

[0008] Thus, meeting global agricultural yield expectations, by simply scaling up current high-input agricultural systems--utilized in most of the developed world--is simply not feasible.

[0009] There is therefore an urgent need in the art for improved methods of increasing crop performance and imparting beneficial traits to desired plant species.

SUMMARY OF THE DISCLOSURE

[0010] The present disclosure addresses this important issue of how to improve crop performance, thereby closing the worldwide yield gap, along with providing ways of imparting other beneficial traits to plant species.

[0011] The solution to increasing crop performance and increasing yield proffered by the present disclosure is not detrimental to the earth's resources, as it does not rely upon increased water consumption or increased input of synthetic chemicals into a system. Rather, the present disclosure utilizes microbes to impart beneficial properties, including increased yields, to desirable plants.

[0012] The disclosure therefore offers an environmentally sustainable solution that allows farmers to increase yields of important crops, which is not reliant upon increased utilization of synthetic herbicides and pesticides.

[0013] In embodiments, the disclosure provides for an efficient and broadly applicable agricultural platform utilizing microbes and microbial consortia that promote one or more desirable plant properties.

[0014] In some embodiments, a single microbe is utilized. In some aspects, the single microbe is isolated and purified. In some aspects, the single microbe is a taxonomic species of bacteria. In some aspects, the single microbe is an identifiable strain of a taxonomic species of bacteria. In some aspects, the single microbe is a novel, newly discovered strain of a taxonomic species of bacteria.

[0015] In some embodiments, a single microbe from Table 1 is utilized. In other embodiments, a single microbe from Table 2 is utilized. In yet other embodiments, a single microbe from Table 3 is utilized. In additional embodiments, a single microbe from Table 4 is utilized.

[0016] In some embodiments, a microbe from the genus Bosea is utilized.

[0017] In some aspects, the single microbe--whether a taxonomically identifiable species or strain--is combined with one or more other microbes of a different species or strain. In certain aspects, the combination of two or more microbes forms a consortia or consortium. The terms consortia and consortium are utilized interchangeably.

[0018] In certain aspects, the disclosure provides for the development of highly functional microbial consortia that help promote the development and expression of a desired phenotypic or genotypic plant trait. In some embodiments, the consortia of the present disclosure possess functional attributes that are not found in nature, when the individual microbes are living alone. That is, in various embodiments, the combination of particular microbial species into consortia, leads to the microbial combination possessing functional attributes that are not possessed by any one individual member of the consortia when considered alone.

[0019] In some embodiments, this functional attribute possessed by the microbial consortia is the ability to impart one or more beneficial properties to a plant species, for example: increased growth, increased yield, increased nitrogen utilization efficiency, increased stress tolerance, increased drought tolerance, increased photosynthetic rate, enhanced water use efficiency, increased pathogen resistance, modifications to plant architecture that don't necessarily impact plant yield, but rather address plant functionality, etc.

[0020] The ability to impart these beneficial properties upon a plant is not possessed, in some embodiments, by the individual microbes as they would occur in nature. Rather, in some embodiments, it is by the hand of man combining these microbes into consortia that a functional composition is developed, said functional composition possessing attributes and functional properties that do not exist in nature.

[0021] However, in other embodiments, the disclosure provides for individual isolated and biologically pure microbes that are able to impart beneficial properties upon a desired plant species, without the need to combine said microbes into consortia.

[0022] In embodiments, the microbial consortia can be any combination of individual microbes from Table 1. In other embodiments, the microbial consortia can be any combination of individual microbes from Table 2. In yet other embodiments, the microbial consortia can be any combination of individual microbes from Table 3. In additional embodiments, the microbial consortia can be any combination of individual microbes from Table 4. In yet other embodiments, the microbial consortia can be any combination of individual microbes from any of Tables 1-4. In certain embodiments, the microbial consortia comprise two microbes, or three microbes, or four microbes, or five microbes, or six microbes, or seven microbes, or eight microbes, or nine microbes, or 10 microbes, or more than 10 microbes.

[0023] Another object of the disclosure relates to the use of the isolated microbes and microbial consortia as plant growth promoters. In other aspects, the isolated microbes and microbial consortia function as growth modifiers, which can, e.g. subvert normal senescence that leads to increased biomass.

[0024] Yet another object of the disclosure relates to the use of the isolated microbes and microbial consortia as soil health enhancers and plant health enhancers.

[0025] Another object of the disclosure is to design a microbial consortium, which is able to perform multidimensional activities in common. In certain aspects, the microbes comprising the consortium act synergistically. In aspects, the effect that the microbial consortium has on a certain plant characteristic is greater than the effect that would be observed had any one individual microbial member of the consortium been utilized singularly. That is, in some aspects, the consortium exhibit a greater than additive effect upon a desired plant characteristic, as compared to the effect that would be found if any individual member of the consortium had been utilized by itself.

[0026] In some aspects, the consortia lead to the establishment of other plant-microbe interactions, e.g. by acting as primary colonizers or founding populations that set the trajectory for the future microbiome development.

[0027] In embodiments, the disclosure is directed to synergistic combinations (or mixtures) of microbial isolates.

[0028] In some aspects, the consortia taught herein provide a wide range of agricultural applications, including: improvements in yield of grain, fruit, and flowers; improvements in growth of plant parts; improved resistance to disease; improved survivability in extreme climate; and improvements in other desired plant phenotypic characteristics. Significantly, these benefits to plants can be obtained without any hazardous side effects to the environment.

[0029] In some aspects, the individual microbes of the disclosure, or consortia comprising same, can be combined into an agriculturally acceptable composition.

[0030] In some embodiments, the agricultural compositions of the present disclosure include, but are not limited to: wetters, compatibilizing agents, antifoam agents, cleaning agents, sequestering agents, drift reduction agents, neutralizing agents, buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, sticking agents, binders, dispersing agents, thickening agents, stabilizers, emulsifiers, freezing point depressants, antimicrobial agents, fertilizers, pesticides, herbicides, inert carriers, polymers, and the like.

[0031] In one embodiment of the present disclosure, the microbes (including isolated single species, or strains, or consortia), are supplied in the form of seed coatings or other applications to the seed. In embodiments, the seed coating may be applied to a naked and untreated seed. In other embodiments, the seed coating may be applied as a seed overcoat to a previously treated seed.

[0032] In some embodiments, the applied microbes may become endophytic and consequently will be present in the growing plant that was treated and its subsequent offspring. In other embodiments the microbes might be applied at the same time as a co-treatment with seed treatments.

[0033] In one embodiment of the present disclosure, the microbes are supplied in the form of granules, or plug, or soil drench that is applied to the plant growth media. In other embodiments, the microbes are supplied in the form of a foliar application, such as a foliar spray or liquid composition. The foliar spray or liquid application may be applied to a growing plant or to a growth media, e.g. soil.

[0034] In embodiments, the agricultural compositions of the disclosure can be formulated as: (1) solutions; (2) wettable powders; (3) dusting powders; (4) soluble powders; (5) emulsions or suspension concentrates; (6) seed dressings, (7) tablets; (8) water-dispersible granules; (9) water soluble granules (slow or fast release); (10) microencapsulated granules or suspensions; and (11) as irrigation components, among others. In certain aspects, the compositions may be diluted in an aqueous medium prior to conventional spray application. The compositions of the present disclosure can be applied to the soil, plant, seed, rhizosphere, rhizosheath, or other area to which it would be beneficial to apply the microbial compositions.

[0035] Still another object of the disclosure relates to the agricultural compositions being formulated to provide a high colony forming units (CFU) bacterial population or consortia. In some aspects, the agricultural compositions have adjuvants that provide for a pertinent shelf life. In embodiments, the CFU concentration of the taught agricultural compositions is higher than the concentration at which the microbes would exist naturally, outside of the disclosed methods. In another embodiment, the agricultural composition contains the microbial cells in a concentration of 10.sup.3-10.sup.12 CFU per gram of the carrier or 10.sup.5-10.sup.9 CFU per gram of the carrier. In an aspect, the microbial cells are applied as a seed coat directly to a seed at a concentration of 10.sup.5-10.sup.9 CFU. In other aspects, the microbial cells are applied as a seed overcoat on top of another seed coat at a concentration of 10.sup.5-10.sup.9 CFU. In other aspects, the microbial cells are applied as a co-treatment together with another seed treatment at a rate of 10.sup.5-10.sup.9 CFU.

[0036] In aspects, the disclosure is directed to agricultural microbial formulations that promote plant growth. In aspects, the disclosure provides for the taught isolated microbes, and consortia comprising same, to be formulated as an agricultural bioinoculant. The taught bioinoculants can be applied to plants, seeds, or soil. Suitable examples of formulating bioinoculants comprising isolated microbes can be found in U.S. Pat. No. 7,097,830, which is herein incorporated by reference.

[0037] The disclosed polymicrobial formulations can: lower the need for nitrogen containing fertilizers, solubilize minerals, protect plants against pathogens, and make available to the plant valuable nutrients, such as phosphate, thus reducing and eliminating the need for using chemical pesticides and chemical fertilizers.

[0038] In some embodiments, the isolated and biologically pure microbes of the present disclosure can be utilized, in a method of imparting one or more beneficial properties or traits to a desired plant species.

[0039] In some embodiments, the agriculturally acceptable composition containing isolated and biologically pure microbes of the present disclosure can be utilized, in a method of imparting one or more beneficial properties or traits to a desired plant species.

[0040] In some embodiments, the consortia of the present disclosure can be utilized, in a method of imparting one or more beneficial properties or traits to a desired plant species.

[0041] In some embodiments, the agriculturally acceptable composition containing consortia of the present disclosure can be utilized, in a method of imparting one or more beneficial properties or traits to a desired plant species.

[0042] In some aspects, the isolated and biologically pure microbes of the present disclosure, and/or the consortia of the present disclosure, are derived from an accelerated microbial selection process ("AMS" process). The AMS process utilized in some aspects of the present disclosure is described, for example, in: (1) International Patent Application No. PCT/NZ2012/000041, published on Sep. 20, 2012, as International Publication No. WO 2012125050 A1, and (2) International Patent Application No. PCT/NZ2013/000171, published on Mar. 27, 2014, as International Publication No. WO 2014046553 A1, each of these PCT Applications is herein incorporated by reference in their entirety for all purposes. The AMS process is described in the present disclosure, for example, in FIGS. 1-4.

[0043] However, in other embodiments, the microbes of the present disclosure are not derived from an accelerated microbial selection process. In some aspects, the microbes utilized in embodiments of the disclosure are chosen from amongst members of microbes present in a database. In particular aspects, the microbes utilized in embodiments of the disclosure are chosen from microbes present in a database based upon particular characteristics of said microbes.

[0044] The present disclosure provides that a plant element or plant part can be effectively augmented, by coating said plant element or plant part with an isolated microbe or microbial consortia, in an amount that is not normally found on the plant element or plant part

[0045] Some embodiments described herein are methods for preparing an agricultural seed composition, or seed coating, comprising: contacting the surface of a seed with a formulation comprising a purified microbial population that comprises at least one isolated microbe that is heterologous to, or rarely present on the seed. Further embodiments entail preparing an agricultural plant composition, comprising: contacting the surface of a plant with a formulation comprising a purified microbial population that comprises at least one isolated microbe that is heterologous to the plant.

[0046] In some aspects, applying an isolated microbe, microbial consortia, and/or agricultural composition of the disclosure to a seed or plant modulates a trait of agronomic importance. The trait of agronomic importance can be, e.g., disease resistance, drought tolerance, heat tolerance, cold tolerance, salinity tolerance, metal tolerance, herbicide tolerance, chemical tolerance, improved water use efficiency, improved nitrogen utilization, improved resistance to nitrogen stress, improved nitrogen fixation, pest resistance, herbivore resistance, pathogen resistance, increased yield, increased yield under water limited conditions, health enhancement, vigor improvement, growth improvement, photosynthetic capability improvement, nutrition enhancement, altered protein content, altered oil content, increased biomass, increased shoot length, increased root length, improved root architecture, increased seed weight, faster seed germination, altered seed carbohydrate composition, altered seed oil composition, number of pods, delayed senescence, stay-green, and altered seed protein composition. In some aspects, at least 2, 3, 4, or more traits of agronomic importance are modulated. In some aspects, the modulation is a positive effect on one of the aforementioned agronomic traits.

[0047] In some aspects, the isolated microbes, consortia, and/or agricultural compositions of the disclosure can be applied to a plant, in order to modulate or alter a plant characteristic such as altered oil content, altered protein content, altered seed carbohydrate composition, altered seed oil composition, altered seed protein composition, chemical tolerance, cold tolerance, delayed senescence, disease resistance, drought tolerance, ear weight, growth improvement, health enhancement, heat tolerance, herbicide tolerance, herbivore resistance, improved nitrogen fixation, improved nitrogen utilization, improved root architecture, improved water use efficiency, increased biomass, decreased biomass, increased root length, decreased root length, increased seed weight, increased shoot length, decreased shoot length, increased yield, increased yield under water-limited conditions, kernel mass, kernel moisture content, metal tolerance, number of ears, number of kernels per ear, number of pods, nutrition enhancement, pathogen resistance, pest resistance, photosynthetic capability improvement, salinity tolerance, stay-green, vigor improvement, increased dry weight of mature seeds, increased fresh weight of mature seeds, increased number of mature seeds per plant, increased chlorophyll content, increased number of pods per plant, increased length of pods per plant, reduced number of wilted leaves per plant, reduced number of severely wilted leaves per plant, and increased number of non-wilted leaves per plant, a detectable modulation in the level of a metabolite, a detectable modulation in the level of a transcript, and a detectable modulation in the proteome relative to a reference plant.

[0048] In some embodiments, the agricultural formulations taught herein comprise at least one member selected from the group consisting of an agriculturally compatible carrier, a tackifier, a microbial stabilizer, a fungicide, an antibacterial agent, an herbicide, a nematicide, an insecticide, a plant growth regulator, a rodenticide, and a nutrient

[0049] The methods described herein can include contacting a seed or plant with at least 100 CFU or spores, at least 300 CFU or spores, at least 1,000 CFU or spores, at least 3,000 CFU or spores, at least 10,000 CFU or spores, at least 30,000 CFU or spores, at least 100,000 CFU or spores, at least 300,000 CFU or spores, at least 1,000,000 CFU or spores or more, of the microbes taught herein.

[0050] In some embodiments of the methods described herein, an isolated microbe of the disclosure is present in a formulation in an amount effective to be detectable within and/or on a target tissue of an agricultural plant. For example, the microbe is detected in an amount of at least 100 CFU or spores, at least 300 CFU or spores, at least 1,000 CFU or spores, at least 3,000 CFU or spores, at least 10,000 CFU or spores, at least 30,000 CFU or spores, at least 100,000 CFU or spores, at least 300,000 CFU or spores, at least 1,000,000 CFU or spores, or more, in and/or on a target tissue of a plant. Alternatively or in addition, the microbes of the disclosure may be present in a formulation in an amount effective to increase the biomass and/or yield of a plant that has had such a formulation applied thereto, by at least 1%, at least 2%, at least 3%, at least 5%, at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, or more, when compared with a reference agricultural plant that has not had the formulations of the disclosure applied. Alternatively or in addition, the microbes of the disclosure may be present in a formulation in an amount effective to detectably modulate an agronomic trait of interest of a plant that has had such a formulation applied thereto, by at least 1%, at least 2%, at least 3%, at least 5%, at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, or more, when compared with a reference agricultural plant that has not had the formulations of the disclosure applied.

[0051] In some embodiments, the agricultural compositions taught herein are shelf-stable. In some aspects, the microbes taught herein are freeze dried. Also described herein are a plurality of isolated microbes confined within an object selected from the group consisting of: bottle, jar, ampule, package, vessel, bag, box, bin, envelope, carton, container, silo, shipping container, truck bed, and case.

[0052] In some aspects, combining a selected plant species with a disclosed microbe--operational taxonomic unit (OTU), strain, or composition comprising any of the aforementioned--leads to improved yield from crops and generation of products thereof. Therefore, in one aspect, the present disclosure provides a synthetic combination of a seed of a first plant and a preparation of a microbe(s) that is coated onto the surface of the seed of the first plant, such that the microbe is present at a higher level on the surface of the seed, than is present on the surface of an uncoated reference seed. In another aspect, the present disclosure provides a synthetic combination of a part of a first plant and a preparation of a microbe(s) that is coated onto the surface of the part of the first plant, such that the microbe is present at a higher level on the surface of the part of the first plant, than is present on the surface of an uncoated reference plant part. The aforementioned methods can be used alone, or in parallel with plant breeding and transgenic technologies.

[0053] In some embodiments, an isolated bacterial strain may be selected from the group consisting of Chryseobacterium daecheongense deposited as NRRL Accession Deposit No. NRRL B-67291; Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67288; Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67287; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67285; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67283; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67284; Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67289; Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67209; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67295; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-97296; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67297; Agrobacterium fabrum deposited as NRRL Accession Deposit No. NRRL B-67286; Exiguobacterium sibiricum deposited as NRRL Accession Deposit No. NRRL B-67294; Exiguobacterium antarcticum deposited as NRRL Accession Deposit No. NRRL B-67292; Exiguobacterium antarcticum deposited as NRRL Accession Deposit No. NRRL B-67293; Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67298; Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67299; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67302; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67300; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67303; and Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67301.

[0054] In some embodiments, the isolated bacterial strain has substantially similar morphological and physiological characteristics as an isolated bacterial strain of the present disclosure. In some embodiments, the isolated bacterial strain has substantially similar genetic characteristics as an isolated bacterial strain of the present disclosure. In some embodiments, an isolated bacterial strain of the present disclosure is in substantially pure culture.

[0055] In some embodiments, progeny and/or mutants of an isolated bacterial strain of the present disclosure are contemplated. In some embodiments, an isolated bacterial strain of the present disclosure comprises a polynucleotide sequence sharing at least 97% sequence identity with any one of SEQ ID Nos: 1-307. In other embodiments, an isolate bacterial strain of the present disclosure comprises a polynucleotide sequence sharing at least 97% sequence identity with any one of SEQ ID NOs: 2-13, 14, 17-19, 22-27, 29, 31, 33, and 34.

[0056] In some embodiments, a cell-free or inactivated preparation of an isolated bacterial strain of the present disclosure is contemplated, or a mutant of said isolated bacterial strain. In some embodiments, a metabolite produced by an isolated bacterial strain of the present disclosure is contemplated, or a mutant of said isolated bacterial strain.

[0057] In some embodiments, an agricultural composition comprises an isolated bacterial strain and an agriculturally acceptable carrier. The isolated bacterial strain may be present in the composition at 1.times.10.sup.3 to 1.times.10.sup.12 bacterial cells per gram. The agricultural composition may be formulated as a seed coating.

[0058] In some embodiments, a method of imparting at least one beneficial train upon a plant species comprises applying an isolated bacterial strain to the plant or to a growth medium in which said plant is located. In some embodiments, a method of imparting at least one beneficial trait upon a plant species comprises applying an agricultural composition of the present disclosure to the plant or to a growth medium in which the plant is located.

[0059] In some embodiments a microbial consortium comprises at least two microbes selected from the groups consisting of: A) Stenotrophomonas maltophilia, Rhodococcus erythropolis, Pantoea vagans, Pseudomonas oryzihabitans, Rahnella aquatilis, Duganella radicis, Exiguobacterium acetylicum, Arthrobacter pascens, Pseudomonas putida, Bacillus megatarium, Bacillus aryabhattai, Bacillus cereus, Novosphingobium sediminicola, Rhizobium etli, Ensifer adhaerens, Chitinophaga terrae, Variovorax ginsengisoli, Pedobacter terrae, Massilia albidiflava, Dyadobacter soli, Bosea robiniae, Microbacterium maritypicum, Microbacterium azadirachtae, Sphingopyxis alaskensis, Arthrobacter pascens, Chryseobacterium rhizosphaerae, Variovorax paradoxus, Hydrogenophaga atypica, and Microbacterium oleivorans; and/or B) Chryseobacterium daecheongense, Chryseobacterium rhizosphaerae, Frigidibacter albus, Arthrobacter nicotinovorans, Pseudomonas helmanticensis, Agrobacterium fabrum, Achromobacter pulmonis, Exiguobacterium sibiricum, Exiguobacterium antarcticum, Leifsonia lichenia, Tumebacillus permanentifrigoris, Novosphingobium lindaniclasticum, and Massilia kyonggiensis; and combinations thereof, and wherein at least one microbe from B) is selected.

[0060] In some embodiments, the microbial consortium has substantially similar morphological and physiological characteristics as a microbial consortium of the present disclosure. In some embodiments, the microbial consortium has substantially similar genetic characteristics as a microbial consortium of the present disclosure. In some embodiments, the microbial consortium is in substantially pure culture. In some embodiments, a subsequent generation of any microbe of the microbial consortium is contemplated. In some embodiments, a mutant of any microbe of microbial consortium is contemplated. In some embodiments, a cell-free or inactivated preparation of the microbial consortium, or a mutant of any microbe in the microbial consortium, is contemplated. In some embodiments, a metabolite produced by the microbial consortium, or a mutant of any microbe in the microbial consortium, is contemplated.

[0061] In some embodiments, an agricultural composition comprises a microbial consortium and an agriculturally acceptable carrier. The microbial consortium of the agricultural composition may be present in the composition at 1.times.10.sup.3 to 1.times.10.sup.12 bacterial cells per gram. In some embodiments, the agricultural composition is formulated as a seed coating. In some embodiments, a method of imparting at least one beneficial train upon a plant species comprises applying a microbial consortium to said plant, or to a growth medium in which said plant is located. In some embodiments, a method of imparting at least one beneficial trait upon a plant species, comprising applying the agricultural composition to the plant, or to a growth medium in which said plant is located.

[0062] In some embodiments, a microbial consortium comprises at least two microbes selected from the group consisting of Chryseobacterium daecheongense deposited as NRRL Accession Deposit No. NRRL B-67291; Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67288; Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67287; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67285; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67283; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67284; Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67289; Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67290; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67295; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67296; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67297; Agrobacterium fabrum deposited as NRRL Accession Deposit No. NRRL B-67286; Exiguobacterium sibiricum deposited as NRRL Accession Deposit No. NRRL B-67294; Exiguobacterium antarcticum deposited as NRRL Accession Deposit No. NRRL B-67292; Exiguobacterium antarcticum deposited as NRRL Accession Deposit No. NRRL B-67293; Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67298; Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67299; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67302; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67300; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67303; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67301; and combinations thereof.

[0063] In one embodiment, the microbial consortium comprises Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67298, Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67301, Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67288, and Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67285. In another embodiment, the microbial consortium comprises Exiguobacterium sibiricum deposited as NRRL Accession Deposit No. NRRL B-67294, and Massilia kyonggiensis deposited as NRRL Accession Deposit No. NRRL B-67198. In another embodiment, the microbial consortium comprises Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67288, Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67285, and Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67289.

[0064] In some embodiments, a method of imparting at least one beneficial train upon a plant species comprises applying at least one isolated bacterial species to the plant, or to a growth medium in which the plant is located, wherein the at least one isolated bacterial species is selected from the group consisting of: Agrobacterium fabrum, Novosphingobium lindaniclasticum, Pedobacter terrae, Chryseobacterium daecheongense, Chryseobacterium rhizosphaerae, Frigidibacter albus, Arthrobacter nicotinovorans, Pseudomonas helmanticensis, Agrobacterium fabrum, Achromobacter pulmonis, Exiguobacterium sibiricum, Exiguobacterium antarcticum, Pedobacter terrae, Leifsonia lichenia, Massilia kyongiensis, Tumebacillus permanentifrigoris, and combinations thereof. In a further embodiment, the at least one isolated bacterial species is a strain selected from the group consisting of: Chryseobacterium daecheongense deposited as NRRL Accession Deposit No. NRRL B-67291; Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67288; Chryseobacterium rhizosphaerae deposited as NRRL Accession Deposit No. NRRL B-67287; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67285; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67283; Frigidibacter albus deposited as NRRL Accession Deposit No. NRRL B-67284; Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67289; Arthrobacter nicotinovorans deposited as NRRL Accession Deposit No. NRRL B-67290; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67295; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67296; Pseudomonas helmanticensis deposited as NRRL Accession Deposit No. NRRL B-67297; Agrobacterium fabrum deposited as NRRL Accession Deposit No. NRRL B-67286; Exiguobacterium sibiricum deposited as NRRL Accession Deposit No. NRRL B-67294; Exiguobacterium antarcticum deposited as NRRL Accession Deposit No. NRRL B-67292; Exiguobacterium antarcticum deposited as NRRL Accession Deposit No. NRRL B-67293; Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67298; Leifsonia lichenia deposited as NRRL Accession Deposit No. NRRL B-67299; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67302; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67300; Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67303; and Tumebacillus permanentifrigoris deposited as NRRL Accession Deposit No. NRRL B-67301.

[0065] In some embodiments, an isolated bacterial strain is selected from Table 4. In some embodiments, an isolated bacterial strain is contemplated having substantially similar morphological and physiological characteristics as an isolated bacterial strain selected from Table 4. In some embodiments, an isolated bacterial strain is contemplated having substantially similar genetic characteristics as an isolated bacterial strain from Table 4. In some embodiments, a substantially pure culture is contemplated of an isolated bacterial strain from Table 4. In some embodiments, a progeny or a mutant of an isolated bacterial strain from Table 4 is contemplated. In some embodiments, a cell-free or inactivated preparation is contemplated from an isolated bacterial strain, or a mutant thereof, from Table 4. In some embodiments, a metabolite produced by an isolated bacterial strain, or a mutant thereof, from Table 4.

[0066] In some embodiments, an agricultural composition comprises an isolated bacterial strain from Table 4 and an agriculturally acceptable carrier. In some embodiments, the isolated bacterial strain is present in the agricultural composition at 1.times.10.sup.3 to 1.times.10.sup.12 bacterial cells per gram. In some embodiments, the agricultural composition is formulated as a seed coating. In some embodiments, a method of imparting at least one beneficial train upon a plant species comprises applying an isolated bacterial strain from Table 4 to the plant, or to a growth medium in which said plant is located. In some embodiments, a method of imparting at least one beneficial trait upon a plant species comprises applying an agricultural composition of the present disclosure to the plant, or to a growth medium in which said plant is located.

[0067] In some embodiments, a microbial consortium comprises at least two microbes selected from those listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 5, wherein the consortium comprises at least one microbe listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 6, wherein the consortium comprises at least one microbe listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 7, wherein the consortium comprises at least one microbe listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 8, wherein the consortium comprises at least one microbe listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 9, wherein the consortium comprises at least one microbe listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 10, wherein the consortium comprises at least one microbe listed in Table 4. In some embodiments, a microbial consortium is selected from the consortia listed in Table 11, wherein the consortium comprises at least one microbe listed in Table 4.

[0068] In some embodiments, a plant seed enhanced with a microbial seed coating comprises a plant seed and a seed coating applied onto said plant seed, wherein the seed coating comprises at least two microbes as listed in Tables 1-4, and wherein at least one microbe is selected from Table 4. In a further embodiment, the seed coating comprises a consortium of microbes as listed in Tables 5-11. In a further embodiment, the seed coating comprises at least one microbe as listed in Table 4 at a concentration of 1.times.10.sup.5 to 1.times.10.sup.9 bacterial cells per seed. In some embodiments, a microbe selected from Table 4 is used in agriculture. In some embodiments, a synthetic combination of a plant and microbe comprises at least one plant and at least one microbe selected from Table 4.

[0069] In some embodiments, a method of increasing or promoting a desirable phenotypic trait of a plant species comprises applying at least one bacteria selected from Table 4 to said plant, or to a growth medium in which said plant is located. In a further embodiment, the method of applying the at least one bacteria occurs by coating a plant seed with said bacteria, coating a plant part with said bacteria, spraying said bacteria onto a plant part, spraying said bacteria into a furrow into which a plant or seed will be placed, drenching said bacteria onto a plant part or into an area into which a plant will be placed, spreading said bacteria onto a plant part or into an area into which a plant will be placed, broadcasting said bacteria onto a plant part or into an area into which a plant will be placed, and combinations thereof.

[0070] In any of the methods, the microbe can include a 16S nucleic acid sequence having at least 97% sequence identity to a 16S nucleic acid sequence of a bacteria selected from a genus provided in Table 4.

BRIEF DESCRIPTION OF THE FIGURES

[0071] FIG. 1 shows a generalized process schematic of a disclosed method of accelerated microbial selection (AMS), also referred to herein as directed microbial selection. When the process is viewed in the context of a microbial consortium, the schematic is illustrative of a process of directed evolution of a microbial consortium. The process is one method, by which the beneficial microbes of the present disclosure were obtained.

[0072] FIG. 2 shows a generalized process flow chart of an embodiment, by which the beneficial microbes of the present disclosure were obtained.

[0073] FIG. 3 shows a graphic representation and associated flow chart of an embodiment, by which the beneficial microbes of the present disclosure were obtained.

[0074] FIG. 4 shows a graphic representation and associated flow chart of an embodiment, by which the beneficial microbes of the present disclosure were obtained.

[0075] FIG. 5 shows a graphic representation of the average total biomass of wheat, in grams of fresh weight, at seven days post inoculation with individual microbial strains (BCI).

[0076] FIG. 6A and FIG. 6B shows a graphic representation of the average wheat shoot (A) and root (B) biomass, in grams of fresh weight, at six days post inoculation (DPI) with individual microbial strains. Seeds were inoculated, placed on wet germination paper and rolled. Rolls were incubated at 25.degree. C. in sealed plastic bins. Each individual strain was tested in triplicates of 30 seeds each. The horizontal red line represents the water control.

[0077] FIG. 7A and FIG. 7B shows a graphic representation of average corn shoot biomass, in grams of fresh weight, at six days post inoculation (DPI) with individual microbial strains. Seeds were inoculated, placed on wet germination paper and rolled. Rolls were incubated at 25.degree. C. in sealed plastic bins. Each individual strain was tested in triplicates of 30 seeds each. Due to the amount of samples tested, rolls were placed in two independent bins with a respective water control, represented individually in FIG. 7 by graphs A and B. The horizontal red line represents the water control.

[0078] FIG. 8A and FIG. 8B shows a graphic representation of average corn root biomass, in grams of fresh weight, at six days post inoculation (DPI) with individual microbial strains. Seeds were inoculated, placed on wet germination paper and rolled. Rolls were incubated at 25.degree. C. in sealed plastic bins. Each individual strain was tested in triplicates of 30 seeds each. Due to the amount of samples tested, rolls were placed in two independent bins with a respective water control, represented individually in FIG. 8 by graphs A and B. The horizontal red line represents the water control.

[0079] FIG. 9 shows a graphic representation of the average shoot length, in millimeters, of maize at 4 days post treatment with individual microbial strains. Maize seeds were inoculated with individual microbial strains (BDNZ numbers) and subjected to a germination test. Seeds were inoculated, placed on wet paper towels and rolled. Rolls were incubated in sealed plastic bags at 25.degree. C. Each individual strain was tested in duplicates of 30 seeds each. Shoot length was measured at 4 days post inoculation (DPI). Standard error bars are shown. Results show that while germination rates were good for all strains tested, some strains caused a relative increase in shoot length at 4 days post inoculation (DPI) compared to the water control in vivo.

[0080] FIG. 10 shows a graphic representation of the average root length, in millimeters, of maize at 4 days post treatment with individual microbial strains. Maize seeds were inoculated with individual microbial strains (BDNZ numbers) and subjected to a germination test. Seeds were inoculated, placed on wet paper towels and rolled. Rolls were incubated in sealed plastic bags at 25.degree. C. Each individual strain was tested in duplicates of 30 seeds each. Root length was measured at 4 days post inoculation (DPI). Standard error bars are shown. Results show that while germination rates were good for all strains tested, some strains caused a relative increase in root length at 4 days post inoculation (DPI) compared to the water control in vivo.

[0081] FIG. 11 shows a graphic representation of the average shoot length, in millimeters, of wheat at 4 days post treatment with individual microbial strains. Wheat seeds were inoculated with individual microbial strains (BDNZ numbers) and subjected to a germination test. Seed were inoculated, placed on wet paper towels and rolled. Rolls were incubated in sealed plastic bags at 25.degree. C. Each individual strain was tested in duplicates of 30 seeds each. Shoot length was measured at 4 days post treatment. Results show that germination rates were good for all strains tested (>90%) and some strains caused a relative increase in shoot length at 4 days post inoculation (DPI) compared to the water control in vitro.

[0082] FIG. 12 shows a graphic representation of the average root length, in millimeters, of wheat at 4 days post treatment with individual microbial strains. Wheat seeds were inoculated with individual microbial strains (BDNZ numbers) and subjected to a germination test. Seed were inoculated, placed on wet paper towels and rolled. Rolls were incubated in sealed plastic bags at 25.degree. C. Each individual strain was tested in duplicates of 30 seeds each. Root length was measured at 4 days post treatment. Results show that germination rates were good for all strains tested (>90%) and some strains caused a relative increase in root length at 4 days post inoculation (DPI) compared to the water control in vitro.

[0083] FIG. 13 shows a graphic representation of the average shoot length, in millimeters, of tomato at 4 days post treatment with individual microbial strains. Tomato seeds were inoculated with individual microbial strains (BDNZ numbers) and subjected to a germination test. Seeds were inoculated, placed on wet paper towels and rolled. Rolls were incubated in sealed plastic bags at 25.degree. C. Each individual strain was tested in duplicates of 50 seeds each. Shoot length was measured at 4 days post treatment. The mean length of shoots of the water control seed can be seen in the far right bar labelled "H2O". Results show that germination rates were good for all strains tested and some strains caused a relative increase in shoot length at 4 days post inoculation (DPI) compared to the water control in vitro.

[0084] FIG. 14 shows a graphic representation of the average root length, in millimeters, of tomato at 4 days post treatment with individual microbial strains. Tomato seeds were inoculated with individual microbial strains (BDNZ numbers) and subjected to a germination test. Seeds were inoculated, placed on wet paper towels and rolled. Rolls were incubated in sealed plastic bags at 25.degree. C. Each individual strain was tested in duplicates of 50 seeds each. Root length was measured at 4 days post treatment. The mean length of roots of the water control seed can be seen in the far right bar labelled "H2O". Results show that germination rates were good for all strains tested and some strains caused a relative increase in root length at 4 days post inoculation (DPI) compared to the water control in vitro.

[0085] FIG. 15A and FIG. 15B shows a graphic representation of average corn shoot length, in millimeters, at six days post inoculation (DPI) with individual microbial strains. Seeds were inoculated, placed on wet germination paper and rolled. Rolls were incubated at 25.degree. C. in sealed plastic bins. Each individual strain was tested in triplicates of 30 seeds each. Due to the amount of samples tested, rolls were placed in two independent bins with a respective water control, represented individually in FIG. 15 by graphs A and B. The horizontal red line represents the water control.

[0086] FIG. 16A and FIG. 16 B shows a graphic representation of average corn root length, in millimeters, at six days post inoculation (DPI) with individual microbial strains. Seeds were inoculated, placed on wet germination paper and rolled. Rolls were incubated at 25.degree. C. in sealed plastic bins. Each individual strain was tested in triplicates of 30 seeds each. Due to the amount of samples tested, rolls were placed in two independent bins with a respective water control, represented individually in FIG. 16 by graphs A and B. The horizontal red line represents the water control.

Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedures

[0087] The microorganisms described in this Application were deposited with the Agricultural Research Service Culture Collection (NRRL), which is an International Depositary Authority, located at 1815 North University Street, Peoria, Ill. 61604, USA.

[0088] The deposits were made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

[0089] The deposits were made in accordance with, and to satisfy, the criteria set forth in 37 C.F.R. .sctn..sctn. 1.801-1.809 and the Manual of Patent Examining Procedure .sctn..sctn. 2402-2411.05.

[0090] The NRRL accession numbers, dates of deposit, and descriptions for the aforementioned Budapest Treaty deposits are provided in Tables 1-4.

TABLE-US-00001 TABLE 1 Budapest Treaty International Representative Depositary Deposited Authority Species Accession No. & Available to SEQ ID Microbial Species Strains Origin Date of Deposit the Public No. 1. Azotobacter chroococcum BDNZ 57597 NZ DSM-2286* 289 2. Pantoea agglomerans BDNZ 54499 NZ NRRL B-67224 278 (recently reassigned to BDNZ 55529 Jan. 29, 2016 289 Pantoea vagans) BDNZ 57547 288 3. Pantoea agglomerans BCI 1208 US DSM-23078* 62 (recently reassigned to BCI 1274 68 Pantoea vagans) BCI 1355 90 4. Pseudomonas fluorescens BDNZ 54480 NZ DSM-50090* 276 BDNZ 56530 285 BDNZ 56249 284 5. Pseudomonas fluorescens BCI 1352 US DSM-50090* 88 6. Pseudomonas oryzihabitans BDNZ 55530 NZ NRRL B-67225 283 Jan. 29, 2016 7. Pseudomonas oryzihabitans BCI 1184 US DSM-6835* 58 BCI 1195 59 BCI 1199 60 8. Pseudomonas putida BDNZ 60303 NZ DSM-291* 294 9. Pseudomonas putida BCI 159 US DSM-291* 100 BCI 178 104 BCI 234 109 BCI 235 110 BCI 244 112 BCI 357 124 BCI 360 126 BCI 363 127 BCI 365 128 BCI 367 129 BCI 368 130 BCI 369 131 BCI 370 132 BCI 372 134 BCI 375 135 BCI 458 144 BCI 459 145 BCI 460 147 BCI 461 148 BCI 462 149 BCI 467 150 BCI 469 151 BCI 470 152 BCI 571 162 BCI 593 168 BCI 731 198 BCI 791 205 BCI 802 208 BCI 805 210 BCI 806 211 BCI 809 213 BCI 1312 73 BCI 1314 74 BCI 1315 75 BCI 1319 77 BCI 1330 82 BCI 1333 84 BCI 1351 87 BCI 1353 89 BCI 1356 91 BCI 1358 93 BCI 1363 96 10. Rahnella aquatilis BDNZ 56532 NZ NRRL B-67228 286 BDNZ 57157 Jan. 29, 2016 287 BDNZ 58013 NRRL B-67229 293 Jan. 29, 2016 11. Rahnella aquatilis BCI 29 US NRRL B-67165 118 BCI 1158 Dec. 18, 2015 54 12. Rhizobium etli BDNZ 60473 NZ DSM-11541* 295 13. Rhodococcus erythropolis BDNZ 54093 NZ NRRL B-67227 274 BDNZ 54299 Jan. 29, 2016 275 14. Rhodococcus erythropolis BCI 1182 US DSM-43066* 57 15. Stenotrophomonas BDNZ 54073 NZ NRRL B-67226 273 maltophilia Jan. 29, 2016 16. Stenotrophomonas BCI 7 US DSM-50170* 194 maltophilia BCI 64 183 BCI 77 201 BCI 115 52 BCI 120 61 BCI 164 102 BCI 171 103 BCI 181 105 BCI 271 114 BCI 343 122 BCI 344 123 BCI 380 136 BCI 539 157 BCI 545 158 BCI 551 159 BCI 574 163 BCI 588 165 BCI 590 167 BCI 601 170 BCI 602 171 BCI 606 172 BCI 607 173 BCI 610 176 BCI 617 177 BCI 618 178 BCI 619 179 BCI 620 181 BCI 623 182 BCI 665 185 BCI 693 193 BCI 787 202 BCI 790 204 BCI 793 206 BCI 795 207 BCI 808 212 BCI 903 218 BCI 908 219 BCI 970 224 BCI 996 226 BCI 997 227 BCI 1032 37 BCI 1092 45 BCI 1096 46 BCI 1116 50 BCI 1224 64 BCI 1279 69 BCI 1316 76 BCI 1320 79 BCI 1322 80 BCI 1325 81 BCI 1331 83 BCI 1344 85 BCI 1350 86 BCI 1357 92 BCI 1362 95 *Denotes a microbial species that has been deposited and is available to the public but said species is not a deposit of the exact BCI or BDNZ strain.

TABLE-US-00002 TABLE 2 Budapest Treaty International Depositary Representative Authority Deposited Accession No. Species & Date of Available to SEQ ID Microbial Species Strain Origin Deposit the Public No. 1. Azospirillum lipoferum BDNZ 57661 DSM-1838* 291 BDNZ 66460 NZ 300 2. Bacillus megaterium BDNZ 55076 NZ DSM-32* 279 3. Bacillus megaterium BCI 251 US DSM-32* 113 BCI 255 114 BCI 262 115 BCI 264 116 4. Bacillus BDNZ 66518 NZ DSM-13778* 303 psychrosaccharolyticus BDNZ 66544 306 5. Duganella zoogloeoides BDNZ 66500 NZ DSM-16928* 302 6. Herbaspirillum huttiense BDNZ 54487 NZ DSM-10281* 277 7. Herbaspirillum huttiense BCI 9 US DSM-10281* 217 8. Paenibacillus chondroitinus BDNZ 57634 NZ DSM-5051* 290 9. Paenibacillus polymyxa BDNZ 55146 NZ DSM-36* 280 BDNZ 66545 304 10. Paenibacillus polymyxa BCI 1118 US DSM-36* 51 *Denotes a microbial species that has been deposited and is available to the public, but said species is not a deposit of the exact BCI or BDNZ strain.

TABLE-US-00003 TABLE 3 Budapest Treaty International Depositary Representative Authority Deposited Accession No. Species & Date of Available to SEQ ID Microbial Species Strain Origin Deposit the Public No. 1. Flavobacterium glaciei BDNZ 66487 NZ DSM-19728* 301 2. Massilia niastensis BDNZ 55184 NZ NRRL B-67235 281 Feb. 8, 2016 BCI 1217 US NRRL B-67199 63 Dec. 29, 2015 3. Massilia kyonggiensis BCI 36 US DSM-17472* 125 (Massilia albidiflava) 4. Sphingobium yanoikuyae BDNZ 57662 NZ DSM-7462* 292 5. Bacillus subtilis BDNZ 66347 NZ DSM-1088* 263 6. Bacillus subtilis BCI 395 US DSM-1088* 138 BCI 989 225 BCI 1089 43 7. Bosea minatitlanensis BDNZ 66354 NZ DSM-13099* 264 8. Bosea thiooxidans BDNZ 54522 NZ DSM-9653* 240 9. Bosea thiooxidans BCI 703 US NRRL B-67187 196 Dec. 29, 2015 BCI 985 36 BCI 1111 49 10. Bosea robinae BCI 1041 US NRRL B-67186 38 Dec. 29, 2015 BCI 689 190 BCI 765 200 11. Bosea eneae BCI 1267 US NRRL B-67185 67 Dec. 29, 2015 12. Caulobacter henrici BDNZ 66341 NZ DSM-4730* 262 13. Pseudoduganella BDNZ 66361 NZ DSM-15887* 265 violaceinigra 14. Luteibacter yeojuensis BDNZ 57549 NZ DSM-17673* 235 15. Mucilaginibacter gossypii BDNZ 66321 NZ 297 16. Mucilaginibacter gossypii BCI 142 US 99 BCI 1156 53 BCI 1307 71 17. Paenibacillus amylolyticus BDNZ 66316 NZ DSM-11730* 296 18. Polaromonas ginseng/soil BDNZ 66373 NZ NRRL B-67231 DSM-14656* 266 Feb. 8, 2016 BDNZ 66821 NZ NRRL B-67234 270 Feb. 8, 2016 19. Ramlibacter henchirensis BDNZ 66331 NZ DSM-14656* 261 20. Ramlibacter henchirensis BCI 739 US NRRL B-67208 199 Dec. 29, 2015 21. Leifsonia shinshuensis BDNZ 61433 NZ DSM-15165* 250 (previously Rhizobium leguminosarum bv. trifolii) 22. Rhizobium pisi BDNZ 66326 NZ DSM-30132* 260 23. Rhodoferax ferrireducens BDNZ 66374 NZ DSM-15236* 267 24. Sphingobium BDNZ 61473 NZ DSM-24952* 251 chlorophenolicum 25. Sphingobium BDNZ 66576 NZ DSM-24952* 269 quisquiliarum 26. Herbaspirillum frisingense BDNZ 50525 NZ DSM-13128* 234 27. Caulibacter henrici BDNZ 66341 NZ DSM-4730* 262 28. Chitinophaga arvensicola BDNZ 56343 NZ DSM-3695* 246 29. Duganella violaceinigra BDNZ 66361 NZ NRRL B-67232 DSM-15887* 265 Feb. 8, 2016 BDNZ 58291 NZ NRRL B-67233 248 Feb. 8, 2016 30. Frateuria sp. BDNZ 52707 NZ DSM-6220* 238 (Frateuria aurantia) BDNZ 60517 DSM-26515* 249 (Frateuria terrea) 31. Janthinobacterium sp. BDNZ 54456 NZ 239 BDNZ 63491 252 32. Luteibacter rhizovicinus BDNZ 65069 NZ DSM-16549* 255 33. Lysinibacillus fusiformis BDNZ 63466 NZ DSM-2898* 254 34. Novosphingobium rosa BDNZ 65589 NZ DSM-7285* 258 BDNZ 65619 259 35. Rhizobium miluonense BDNZ 65070 NZ 256 36. Stenotrophomonas BDNZ 54952 NZ DSM-21508* 243 chelatiphaga 37. Stenotrophomonas BDNZ 47207 NZ DSM-21508* 232 chelatiphaga 38. Stenotrophomonas BDNZ 64212 NZ DSM-21508* 253 chelatiphaga 39. Stenotrophomonas BDNZ 64208 NZ DSM-21508* 305 chelatiphaga 40. Stenotrophomonas BDNZ 58264 NZ DSM-21508* 247 chelatiphaga 41. Stenotrophomonas BDNZ 50839 NZ DSM-14405* 236 rhizophila 42. Stenotrophomonas BDNZ 48183 NZ DSM-14405* 233 rhizophila 43. Stenotrophomonas BDNZ 45125 NZ DSM-14405* 228 rhizophila 44. Stenotrophomonas BDNZ 46120 NZ DSM-14405* 230 rhizophila 45. Stenotrophomonas BDNZ 46012 NZ DSM-14405* 229 rhizophila 46. Stenotrophomonas BDNZ 51718 NZ DSM-14405* 237 rhizophila 47. Stenotrophomonas BDNZ 56181 NZ DSM-14405* 245 rhizophila 48. Stenotrophomonas BDNZ 54999 NZ DSM-14405* 244 rhizophila 49. Stenotrophomonas BDNZ 54850 NZ DSM-14405* 242 rhizophila 50. Stenotrophomonas BDNZ 54841 NZ DSM-14405* 241 rhizophila 51. Stenotrophomonas BDNZ 66478 NZ DSM-14405* 268 rhizophila 52. Stenotrophomonas BDNZ 46856 NZ DSM-14405* 231 rhizophila 53. Stenotrophomonas BDNZ 65303 NZ DSM-14405* 257 rhizophila 54. Stenotrophomonas terrae BDNZ 68599 NZ DSM-15236* 271 55. Stenotrophomonas terrae BDNZ 68741 NZ DSM-18941* 272 56. Achromobacter spanius BCI 385 US DSM-23806* 137 57. Acidovorax soli BCI 690 US NRRL B-67182 191 Dec. 29, 2015 58. Arthrobacter cupressi BCI 59 US NRRL B-67183 166 Dec. 29, 2015 59. Arthrobacter mysorens BCI 700 US DSM-12798* 195 60. Arthrobacter pascens BCI 682 US DSM-20545* 187 61. Bacillus oleronius BCI 1071 US DSM-9356* 42 62. Bacillus cereus or Bacillus BCI 715 US DSM-2046* 197 thuringiensis (In Taxonomic Flux) 63. Chitinophaga terrae BCI 79 US NRRL B-67188 203 Dec. 29, 2015 64. Delftia lacustris BCI 124 US NRRL B-67190 65 Dec. 29, 2015 65. Duganella radicis BCI 105 US NRRL B-67192 39 Dec. 29, 2015 66. Duganella radicis BCI 57 US 161 67. Duganella radicis BCI 31 US NRRL B-67166 21 Jan. 13, 2016 68. Dyadobacter soli BCI 68 US NRRL B-67194 186 Dec. 29, 2015 69. Exiguobacterium BCI 23 US DSM-20416* 108 acetylicum 70. Exiguobacterium BCI 83 US DSM-20416* 216 acetylicum 71. Exiguobacterium BCI 125 US DSM-20416* 66 acetylicum 72. Exiguobacterium BCI 50 US NRRL B-67175 155 aurantiacum Dec. 18, 2015 73. Exiguobacterium sp. (In BCI 81 US DSM-27935* 214 Taxonomic Flux) 74. Exiguobacterium BCI 116 US NRRL B-67167 16 sibiricum Dec. 18, 2016 75. Herbaspirillum BCI 58 US NRRL B-67236 DSM-17796* 164 chlorophenolicum Feb. 8, 2016 76. Kosakonia radicincitans BCI 107 US DSM-16656* 41 77. Massilia kyonggiensis BCI 97 US NRRL B-67198 32 (Massilia albidiflava) Dec. 29, 2015 78. Microbacterium sp. BCI 688 US DSM-16050* 189 79. Microbacterium BCI 132 US NRRL B-67170 78 oleivorans Dec. 18, 2015 80. Mucilaginibacter gossypii BCI 142 US 98 81. Novosphigobium BCI 684 US NRRL B-67201 188 lindaniclasticum Dec. 29, 2015 82. Novosphingobium BCI 557 US NRRL B-67202 160 resinovorum Dec. 29, 2015 83. Novosphingobium BCI 136 US DSM-27057* 94 sediminicola 84. Novosphingobium BCI 82 US DSM-27057* 215 sediminicola 85. Novosphingobium BCI 130 US NRRL B-67168 28 sediminicola Dec. 18, 2015 86. Paenibacillus BCI 418 US NRRL B-67204 141 glycanilyticus Dec. 29, 2015 87. Pedobacter rhizosphaerae BCI 598 US NRRL B-67205 169 (Pedobacter soli) Dec. 29, 2015 88. Pedobacter terrae BCI 91 US NRRL B-67206 220 Dec. 29, 2015 89. Pseudomonas jinjuensis BCI 804 US NRRL B-67207 209 Dec. 29, 2015 90. Rhizobium grahamii BCI 691 US 192 91. Rhizobium lemnae BCI 34 US NRRL B-67210 121 (taxonomic name changed Dec. 29, 2015 Dec. 2015 to Rhizobium rhizoryzae) 92. Agrobacterium fabrum or BCI 106 US NRRL B-67212 DSM-22668* 40 Rhizobium pusense (In Dec. 29, 2015 Taxonomic Flux) 93. Agrobacterium fabrum or BCI 11 US DSM-22668* 47 Rhizobium pusense (In Taxonomic Flux) 94. Agrobacterium fabrum or BCI 609 US DSM-22668* 175 Rhizobium pusense (In Taxonomic Flux) 95. Ensifer adhaerens BCI 131 US NRRL B-67169 72 Dec. 18, 2015 96. Sphingopyxis alaskensis BCI 914 US NRRL B-67215 DSM-13593* 221 Dec. 29, 2015 97. Variovorax ginsengisoli BCI 137 US NRRL B-67216 97 Dec. 29, 2015 98. Bacillus niacini BCI 4718 US NRRL B-67230 DSM-2923* 153 Feb. 8, 2016 99. Exiguobacterium BCI 116 US NRRL B-67167 16 sibiricum Dec. 18, 2015 100. Chryseobacterium BCI 45 US NRRL B-67172 1 daecheongense Dec. 18, 2015 101. Achromobacter BCI 49 NRRL B-67174 15 pulmonis Dec. 18, 2015 102. Acidovorax soli BCI 648 NRRL B-67181 184 Dec. 29, 2015 103. Arthrobacter cupressi BCI 62 NRRL B-67184 180 Dec. 29, 2015 104. Chininophaga terrae BCI 109 NRRL B-67189 44 Dec. 29, 2015 105. Delftia lacustris BCI 2350 NRRL B-67191 111 Dec. 29, 2015 106. Duganella violaceinigra BCI 2204 NRRL B-67193 107 Dec. 29, 2015 107. Dyadobactersoli BCI 96 NRRL B-67195 222 Dec. 29, 2015 108. Flavobacterium glacei BCI 4005 NRRL B-67196 139 Dec. 29, 2015 109. Herbaspirillum BCI 162 NRRL B-67197 101 chlorophenol/cum Dec. 29, 2015 110. Novosphingobium BCI 608 NRRL B-67200 30 lindaniclasticum Dec. 29, 2015 111. Nocosphingobium BCI 3709 NRRL B-67203 133 resinovorum Dec. 29, 2015 112. Ramlibacter BCI 1959 NRRL B-67209 106 henchirensis Dec. 29, 2015 113. Rhizobium rhizoryzae BCI 661 NRRL B-67211 35 Dec. 29, 2015 114. Sinorhizobium BCI 111 NRRL B-67213 48 chiapanecum (Ensifer Dec. 29, 2015 adhaerens) 115. Sphingopyxis alaskensis BCI 412 NRRL B-67214 140 Dec. 29, 2015 116. Variovorax ginsengisoil BCI 3078 NRRL B-67217 119 Dec. 29, 2015 117. Kosakonia radicincitans BCI 44 NRRL B-67171 142 Dec. 18, 2015 118. Pedobacter terrae BCI 53 NRRL B-67176 DSM-17933* 20 Dec. 18, 2015 119. Agrobacterium fabrum BCI 46 NRRL B-67173 146 or Rhizobium pusense (In Dec. 18, 2015 Taxonomic Flux) (previously Rhizobium sp.) *Denotes a microbial species that has been deposited and is available to the public, but said species is not a deposit of the exact BCI or BDNZ

strain.

TABLE-US-00004 TABLE 4 Budapest Treaty International Depositary Representative Authority Deposited Accession Species SEQ No. & Date of Available to ID Microbial Species Strain Origin Deposit the Public No. 1. Chryseobacterium BCI 191 US NRRL B-67291 DSM15235* 2 daecheongense Jul. 14, 2016 2. Chryseobacterium BCI 597 US NRRL B-67288 3 rhizosphaerae Jul. 14, 2016 BCI 615 US NRRL B-67287 4 Jul. 14, 2016 3. Frigidibacter albus or BCI 712 US NRRL B-67285 5 Delfulviimonas dentrificans Jul. 14, 2016 (In Taxonomic Flux) BCI 402 US NRRL B-67283 6 Jul. 14, 2016 BCI 745 US NRRL B-67284 7 Jul. 14, 2016 4. Arthrobacter nicotinovorans BCI 717 US NRRL B-67289 DSM420* 8 Jul. 14, 2016 BCI 3189 US NRRL B-67290 9 Jul. 14, 2016 5. Pseudomonas helmanficensis BCI 616 US NRRL B-67295 DSM28442* 10 Jul. 14, 2016 BCI 2945 US NRRL B-67296 11 Jul. 14, 2016 BCI 800 US NRRL B-67297 12 Jul. 14, 2016 6. Agrobacterium fabrum or BCI 958 US NRRL B-67286 DSM22668* 14 Rhizobium pusense (In Jul. 14, 2016 Taxonomic Flux) (previously Rhizobium sp.) 7. Exiguobacterium sibiricum BCI 718 US NRRL B-67294 DSM17290* 17 Jul. 14, 2016 8. Exiguobacterium BCI 63 US NRRL B-67292 DSM14480* 18 antarciticum Jul. 14, 2016 BCI 225 US NRRL B-67293 19 Jul. 14, 2016 9. Leifsonia lichenia BDNZ 72243 NZ NRRL B-67298 22 Jul. 21, 2016 BDNZ 72289 NZ NRRL B-67299 23 Jul. 21, 2016 10. Tumebacillus BDNZ 72229 NZ NRRL B-67302 DSM118773* 24 permanentifrigoris Jul. 22, 2016 BDNZ 74542 NZ NRRL B-67300 25 Jul. 21, 2016 BDNZ 72366 NZ NRRL B-67303 26 Jul. 22, 2016 BDNZ 72287 NZ NRRL B-67301 307 Jul. 21, 2016 11. Bacillus asahii BCI 928 US 27 12. Novosphingobium BDNZ 71628 NZ DSM27057* 29 sediminicola 13. Novosphingobium BDNZ 71222 NZ DSM25409* 31 lindaniclasticum 14. Massilia kyonggiensis BCI 94 US DSM101532* 33 BDNZ 73021 NZ 34 *Denotes a microbial species that has been deposited and is available to the public, but said species is not a deposit of the exact BCI or BDNZ strain.

DETAILED DESCRIPTION

Definitions

[0091] While the following terms are believed to be well understood by one of ordinary skill in the art, the following definitions are set forth to facilitate explanation of the presently disclosed subject matter.

[0092] The term "a" or "an" refers to one or more of that entity, i.e. can refer to a plural referents. As such, the terms "a" or "an", "one or more" and "at least one" are used interchangeably herein. In addition, reference to "an element" by the indefinite article "a" or "an" does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there is one and only one of the elements.

[0093] As used herein the terms "microorganism" or "microbe" should be taken broadly. These terms are used interchangeably and include, but are not limited to, the two prokaryotic domains, Bacteria and Archaea, as well as eukaryotic fungi and protists. In some embodiments, the disclosure refers to the "microbes" of Tables 1-4, or the "microbes" of various other tables present in the disclosure. This characterization can refer to not only the identified taxonomic bacterial genera of the tables, but also the identified taxonomic species, as well as the various novel and newly identified bacterial strains of said tables.

[0094] The term "microbial consortia" or "microbial consortium" refers to a subset of a microbial community of individual microbial species, or strains of a species, which can be described as carrying out a common function, or can be described as participating in, or leading to, or correlating with, a recognizable parameter or plant phenotypic trait. The community may comprise two or more species, or strains of a species, of microbes. In some instances, the microbes coexist within the community symbiotically.

[0095] The term "microbial community" means a group of microbes comprising two or more species or strains. Unlike microbial consortia, a microbial community does not have to be carrying out a common function, or does not have to be participating in, or leading to, or correlating with, a recognizable parameter or plant phenotypic trait.

[0096] The term "accelerated microbial selection" or "AMS" is used interchangeably with the term "directed microbial selection" or "DMS" and refers to the iterative selection methodology that was utilized, in some embodiments of the disclosure, to derive the claimed microbial species or consortia of said species.

[0097] As used herein, "isolate," "isolated," "isolated microbe," and like terms, are intended to mean that the one or more microorganisms has been separated from at least one of the materials with which it is associated in a particular environment (for example soil, water, plant tissue).

[0098] Thus, an "isolated microbe" does not exist in its naturally occurring environment; rather, it is through the various techniques described herein that the microbe has been removed from its natural setting and placed into a non-naturally occurring state of existence. Thus, the isolated strain may exist as, for example, a biologically pure culture, or as spores (or other forms of the strain) in association with an agricultural carrier.

[0099] In certain aspects of the disclosure, the isolated microbes exist as isolated and biologically pure cultures. It will be appreciated by one of skill in the art, that an isolated and biologically pure culture of a particular microbe, denotes that said culture is substantially free (within scientific reason) of other living organisms and contains only the individual microbe in question. The culture can contain varying concentrations of said microbe. The present disclosure notes that isolated and biologically pure microbes often "necessarily differ from less pure or impure materials." See, e.g. In re Bergstrom, 427 F.2d 1394, (CCPA 1970)(discussing purified prostaglandins), see also, In re Bergy, 596 F.2d 952 (CCPA 1979)(discussing purified microbes), see also, Parke-Davis & Co. v. H.K. Mulford & Co., 189 F. 95 (S.D.N.Y. 1911) (Learned Hand discussing purified adrenaline), aff'd in part, rev'd in part, 196 F. 496 (2d Cir. 1912), each of which are incorporated herein by reference. Furthermore, in some aspects, the disclosure provides for certain quantitative measures of the concentration, or purity limitations, that must be found within an isolated and biologically pure microbial culture. The presence of these purity values, in certain embodiments, is a further attribute that distinguishes the presently disclosed microbes from those microbes existing in a natural state. See, e.g., Merck & Co. v. Olin Mathieson Chemical Corp., 253 F.2d 156 (4th Cir. 1958) (discussing purity limitations for vitamin B12 produced by microbes), incorporated herein by reference.

[0100] As used herein, "individual isolates" should be taken to mean a composition, or culture, comprising a predominance of a single genera, species, or strain, of microorganism, following separation from one or more other microorganisms. The phrase should not be taken to indicate the extent to which the microorganism has been isolated or purified. However, "individual isolates" can comprise substantially only one genus, species, or strain, of microorganism.

[0101] The term "growth medium" as used herein, is any medium which is suitable to support growth of a plant. By way of example, the media may be natural or artificial including, but not limited to: soil, potting mixes, bark, vermiculite, hydroponic solutions alone and applied to solid plant support systems, and tissue culture gels. It should be appreciated that the media may be used alone or in combination with one or more other media. It may also be used with or without the addition of exogenous nutrients and physical support systems for roots and foliage.

[0102] In one embodiment, the growth medium is a naturally occurring medium such as soil, sand, mud, clay, humus, regolith, rock, or water. In another embodiment, the growth medium is artificial. Such an artificial growth medium may be constructed to mimic the conditions of a naturally occurring medium; however, this is not necessary. Artificial growth media can be made from one or more of any number and combination of materials including sand, minerals, glass, rock, water, metals, salts, nutrients, water. In one embodiment, the growth medium is sterile. In another embodiment, the growth medium is not sterile.

[0103] The medium may be amended or enriched with additional compounds or components, for example, a component which may assist in the interaction and/or selection of specific groups of microorganisms with the plant and each other. For example, antibiotics (such as penicillin) or sterilants (for example, quaternary ammonium salts and oxidizing agents) could be present and/or the physical conditions (such as salinity, plant nutrients (for example organic and inorganic minerals (such as phosphorus, nitrogenous salts, ammonia, potassium and micronutrients such as cobalt and magnesium), pH, and/or temperature) could be amended.

[0104] As used herein, the term "plant" includes the whole plant or any parts or derivatives thereof, such as plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, embryos, pollen, ovules, fruit, flowers, leaves, seeds, roots, root tips and the like.

[0105] As used herein, the term "cultivar" refers to a variety, strain, or race, of plant that has been produced by horticultural or agronomic techniques and is not normally found in wild populations.

[0106] As used herein, the terms "dicotyledon," "dicot" and "dicotyledonous" refer to a flowering plant having an embryo containing two cotyledons. As used herein, the terms "monocotyledon," "monocot" and "monocotyledonous" refer to a flowering plant having an embryo containing only one cotyledon. There are of course other known differences between these groups, which would be readily recognized by one of skill in the art.

[0107] As used herein, "improved" should be taken broadly to encompass improvement of a characteristic of a plant, as compared to a control plant, or as compared to a known average quantity associated with the characteristic in question. For example, "improved" plant biomass associated with application of a beneficial microbe, or consortia, of the disclosure can be demonstrated by comparing the biomass of a plant treated by the microbes taught herein to the biomass of a control plant not treated. Alternatively, one could compare the biomass of a plant treated by the microbes taught herein to the average biomass normally attained by the given plant, as represented in scientific or agricultural publications known to those of skill in the art. In the present disclosure, "improved" does not necessarily demand that the data be statistically significant (i.e. p<0.05); rather, any quantifiable difference demonstrating that one value (e.g. the average treatment value) is different from another (e.g. the average control value) can rise to the level of "improved."

[0108] As used herein, "inhibiting and suppressing" and like terms should not be construed to require complete inhibition or suppression, although this may be desired in some embodiments.

[0109] As used herein, the term "genotype" refers to the genetic makeup of an individual cell, cell culture, tissue, organism (e.g., a plant), or group of organisms.

[0110] As used herein, the term "allele(s)" means any of one or more alternative forms of a gene, all of which alleles relate to at least one trait or characteristic. In a diploid cell, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes. Since the present disclosure, in embodiments, relates to QTLs, i.e. genomic regions that may comprise one or more genes or regulatory sequences, it is in some instances more accurate to refer to "haplotype" (i.e. an allele of a chromosomal segment) instead of "allele", however, in those instances, the term "allele" should be understood to comprise the term "haplotype". Alleles are considered identical when they express a similar phenotype. Differences in sequence are possible but not important as long as they do not influence phenotype.

[0111] As used herein, the term "locus" (loci plural) means a specific place or places or a site on a chromosome where for example a gene or genetic marker is found.

[0112] As used herein, the term "genetically linked" refers to two or more traits that are co-inherited at a high rate during breeding such that they are difficult to separate through crossing.

[0113] A "recombination" or "recombination event" as used herein refers to a chromosomal crossing over or independent assortment. The term "recombinant" refers to a plant having a new genetic makeup arising as a result of a recombination event.

[0114] As used herein, the term "molecular marker" or "genetic marker" refers to an indicator that is used in methods for visualizing differences in characteristics of nucleic acid sequences. Examples of such indicators are restriction fragment length polymorphism (RFLP) markers, amplified fragment length polymorphism (AFLP) markers, single nucleotide polymorphisms (SNPs), insertion mutations, microsatellite markers (SSRs), sequence-characterized amplified regions (SCARs), cleaved amplified polymorphic sequence (CAPS) markers or isozyme markers or combinations of the markers described herein which defines a specific genetic and chromosomal location. Mapping of molecular markers in the vicinity of an allele is a procedure which can be performed by the average person skilled in molecular-biological techniques.

[0115] As used herein, the term "trait" refers to a characteristic or phenotype. For example, in the context of some embodiments of the present disclosure, yield of a crop relates to the amount of marketable biomass produced by a plant (e.g., fruit, fiber, grain). Desirable traits may also include other plant characteristics, including but not limited to: water use efficiency, nutrient use efficiency, production, mechanical harvestability, fruit maturity, shelf life, pest/disease resistance, early plant maturity, tolerance to stresses, etc. A trait may be inherited in a dominant or recessive manner, or in a partial or incomplete-dominant manner. A trait may be monogenic (i.e. determined by a single locus) or polygenic (i.e. determined by more than one locus) or may also result from the interaction of one or more genes with the environment.

[0116] A dominant trait results in a complete phenotypic manifestation at heterozygous or homozygous state; a recessive trait manifests itself only when present at homozygous state.

[0117] In the context of this disclosure, traits may also result from the interaction of one or more plant genes and one or more microorganism genes.

[0118] As used herein, the term "homozygous" means a genetic condition existing when two identical alleles reside at a specific locus, but are positioned individually on corresponding pairs of homologous chromosomes in the cell of a diploid organism. Conversely, as used herein, the term "heterozygous" means a genetic condition existing when two different alleles reside at a specific locus, but are positioned individually on corresponding pairs of homologous chromosomes in the cell of a diploid organism.

[0119] As used herein, the term "phenotype" refers to the observable characteristics of an individual cell, cell culture, organism (e.g., a plant), or group of organisms which results from the interaction between that individual's genetic makeup (i.e., genotype) and the environment.

[0120] As used herein, the term "chimeric" or "recombinant" when describing a nucleic acid sequence or a protein sequence refers to a nucleic acid, or a protein sequence, that links at least two heterologous polynucleotides, or two heterologous polypeptides, into a single macromolecule, or that re-arranges one or more elements of at least one natural nucleic acid or protein sequence. For example, the term "recombinant" can refer to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.

[0121] As used herein, a "synthetic nucleotide sequence" or "synthetic polynucleotide sequence" is a nucleotide sequence that is not known to occur in nature or that is not naturally occurring. Generally, such a synthetic nucleotide sequence will comprise at least one nucleotide difference when compared to any other naturally occurring nucleotide sequence.

[0122] As used herein, the term "nucleic acid" refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides, or analogs thereof. This term refers to the primary structure of the molecule, and thus includes double- and single-stranded DNA, as well as double- and single-stranded RNA. It also includes modified nucleic acids such as methylated and/or capped nucleic acids, nucleic acids containing modified bases, backbone modifications, and the like. The terms "nucleic acid" and "nucleotide sequence" are used interchangeably.

[0123] As used herein, the term "gene" refers to any segment of DNA associated with a biological function. Thus, genes include, but are not limited to, coding sequences and/or the regulatory sequences required for their expression. Genes can also include non-expressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.

[0124] As used herein, the term "homologous" or "homologue" or "ortholog" is known in the art and refers to related sequences that share a common ancestor or family member and are determined based on the degree of sequence identity. The terms "homology," "homologous," "substantially similar" and "corresponding substantially" are used interchangeably herein. They refer to nucleic acid fragments wherein changes in one or more nucleotide bases do not affect the ability of the nucleic acid fragment to mediate gene expression or produce a certain phenotype. These terms also refer to modifications of the nucleic acid fragments of the instant disclosure such as deletion or insertion of one or more nucleotides that do not substantially alter the functional properties of the resulting nucleic acid fragment relative to the initial, unmodified fragment. It is therefore understood, as those skilled in the art will appreciate, that the disclosure encompasses more than the specific exemplary sequences. These terms describe the relationship between a gene found in one species, subspecies, variety, cultivar or strain and the corresponding or equivalent gene in another species, subspecies, variety, cultivar or strain. For purposes of this disclosure homologous sequences are compared. "Homologous sequences" or "homologues" or "orthologs" are thought, believed, or known to be functionally related. A functional relationship may be indicated in any one of a number of ways, including, but not limited to: (a) degree of sequence identity and/or (b) the same or similar biological function. Preferably, both (a) and (b) are indicated. Homology can be determined using software programs readily available in the art, such as those discussed in Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987) Supplement 30, section 7.718, Table 7.71. Some alignment programs are MacVector (Oxford Molecular Ltd, Oxford, U.K.), ALIGN Plus (Scientific and Educational Software, Pennsylvania) and AlignX (Vector NTI, Invitrogen, Carlsbad, Calif.). Another alignment program is Sequencher (Gene Codes, Ann Arbor, Mich.), using default parameters.

[0125] As used herein, the term "nucleotide change" refers to, e.g., nucleotide substitution, deletion, and/or insertion, as is well understood in the art. For example, mutations contain alterations that produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded protein or how the proteins are made.

[0126] As used herein, the term "protein modification" refers to, e.g., amino acid substitution, amino acid modification, deletion, and/or insertion, as is well understood in the art.

[0127] As used herein, the term "at least a portion" or "fragment" of a nucleic acid or polypeptide means a portion having the minimal size characteristics of such sequences, or any larger fragment of the full length molecule, up to and including the full length molecule. A fragment of a polynucleotide of the disclosure may encode a biologically active portion of a genetic regulatory element. A biologically active portion of a genetic regulatory element can be prepared by isolating a portion of one of the polynucleotides of the disclosure that comprises the genetic regulatory element and assessing activity as described herein. Similarly, a portion of a polypeptide may be 4 amino acids, 5 amino acids, 6 amino acids, 7 amino acids, and so on, going up to the full length polypeptide. The length of the portion to be used will depend on the particular application. A portion of a nucleic acid useful as a hybridization probe may be as short as 12 nucleotides; in some embodiments, it is 20 nucleotides. A portion of a polypeptide useful as an epitope may be as short as 4 amino acids. A portion of a polypeptide that performs the function of the full-length polypeptide would generally be longer than 4 amino acids.

[0128] Variant polynucleotides also encompass sequences derived from a mutagenic and recombinogenic procedure such as DNA shuffling. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) PNAS 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) PNAS 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Pat. Nos. 5,605,793 and 5,837,458. For PCR amplifications of the polynucleotides disclosed herein, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any plant of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.

[0129] The term "primer" as used herein refers to an oligonucleotide which is capable of annealing to the amplification target allowing a DNA polymerase to attach, thereby serving as a point of initiation of DNA synthesis when placed under conditions in which synthesis of primer extension product is induced, i.e., in the presence of nucleotides and an agent for polymerization such as DNA polymerase and at a suitable temperature and pH. The (amplification) primer is preferably single stranded for maximum efficiency in amplification. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the agent for polymerization. The exact lengths of the primers will depend on many factors, including temperature and composition (A/T vs. G/C content) of primer. A pair of bi-directional primers consists of one forward and one reverse primer as commonly used in the art of DNA amplification such as in PCR amplification.

[0130] The terms "stringency" or "stringent hybridization conditions" refer to hybridization conditions that affect the stability of hybrids, e.g., temperature, salt concentration, pH, formamide concentration and the like. These conditions are empirically optimized to maximize specific binding and minimize non-specific binding of primer or probe to its target nucleic acid sequence. The terms as used include reference to conditions under which a probe or primer will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g. at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5.degree. C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe or primer. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na+ ion, typically about 0.01 to 1.0 M Na+ ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30.degree. C. for short probes or primers (e.g. 10 to 50 nucleotides) and at least about 60.degree. C. for long probes or primers (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringent conditions or "conditions of reduced stringency" include hybridization with a buffer solution of 30% formamide, 1 M NaCl, 1% SDS at 37.degree. C. and a wash in 2.times.SSC at 40.degree. C. Exemplary high stringency conditions include hybridization in 50% formamide, 1M NaCl, 1% SDS at 37.degree. C., and a wash in 0.1.times.SSC at 60.degree. C. Hybridization procedures are well known in the art and are described by e.g. Ausubel et al., 1998 and Sambrook et al., 2001. In some embodiments, stringent conditions are hybridization in 0.25 M Na2HPO4 buffer (pH 7.2) containing 1 mM Na2EDTA, 0.5-20% sodium dodecyl sulfate at 45.degree. C., such as 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, followed by a wash in 5.times.SSC, containing 0.1% (w/v) sodium dodecyl sulfate, at 55.degree. C. to 65.degree. C.

[0131] As used herein, "promoter" refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an "enhancer" is a DNA sequence that can stimulate promoter activity, and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity.

[0132] As used herein, a "plant promoter" is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell, e.g. it is well known that Agrobacterium promoters are functional in plant cells. Thus, plant promoters include promoter DNA obtained from plants, plant viruses and bacteria such as Agrobacterium and Bradyrhizobium bacteria. A plant promoter can be a constitutive promoter or a non-constitutive promoter.

[0133] As used herein, a "constitutive promoter" is a promoter which is active under most conditions and/or during most development stages. There are several advantages to using constitutive promoters in expression vectors used in plant biotechnology, such as: high level of production of proteins used to select transgenic cells or plants; high level of expression of reporter proteins or scorable markers, allowing easy detection and quantification; high level of production of a transcription factor that is part of a regulatory transcription system; production of compounds that requires ubiquitous activity in the plant; and production of compounds that are required during all stages of plant development. Non-limiting exemplary constitutive promoters include, CaMV 35S promoter, opine promoters, ubiquitin promoter, alcohol dehydrogenase promoter, etc.

[0134] As used herein, a "non-constitutive promoter" is a promoter which is active under certain conditions, in certain types of cells, and/or during certain development stages. For example, tissue specific, tissue preferred, cell type specific, cell type preferred, inducible promoters, and promoters under development control are non-constitutive promoters. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as stems, leaves, roots, or seeds.

[0135] As used herein, "inducible" or "repressible" promoter is a promoter which is under chemical or environmental factors control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions, or certain chemicals, or the presence of light.

[0136] As used herein, a "tissue specific" promoter is a promoter that initiates transcription only in certain tissues. Unlike constitutive expression of genes, tissue-specific expression is the result of several interacting levels of gene regulation. As such, in the art sometimes it is preferable to use promoters from homologous or closely related plant species to achieve efficient and reliable expression of transgenes in particular tissues. This is one of the main reasons for the large amount of tissue-specific promoters isolated from particular plants and tissues found in both scientific and patent literature.

[0137] As used herein, the term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a coding sequence when it is capable of regulating the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in a sense or antisense orientation. In another example, the complementary RNA regions of the disclosure can be operably linked, either directly or indirectly, 5' to the target mRNA, or 3' to the target mRNA, or within the target mRNA, or a first complementary region is 5' and its complement is 3' to the target mRNA.

[0138] As used herein, the phrases "recombinant construct", "expression construct", "chimeric construct", "construct", and "recombinant DNA construct" are used interchangeably herein. A recombinant construct comprises an artificial combination of nucleic acid fragments, e.g., regulatory and coding sequences that are not found together in nature. For example, a chimeric construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. Such construct may be used by itself or may be used in conjunction with a vector. If a vector is used then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments of the disclosure. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., (1985) EMBO J. 4:2411-2418; De Almeida et al., (1989) Mol. Gen. Genetics 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, immunoblotting analysis of protein expression, or phenotypic analysis, among others. Vectors can be plasmids, viruses, bacteriophages, pro-viruses, phagemids, transposons, artificial chromosomes, and the like, that replicate autonomously or can integrate into a chromosome of a host cell. A vector can also be a naked RNA polynucleotide, a naked DNA polynucleotide, a polynucleotide composed of both DNA and RNA within the same strand, a poly-lysine-conjugated DNA or RNA, a peptide-conjugated DNA or RNA, a liposome-conjugated DNA, or the like, that is not autonomously replicating. As used herein, the term "expression" refers to the production of a functional end-product e.g., an mRNA or a protein (precursor or mature).

[0139] In some embodiments, the cell or organism has at least one heterologous trait. As used herein, the term "heterologous trait" refers to a phenotype imparted to a transformed host cell or transgenic organism by an exogenous DNA segment, heterologous polynucleotide or heterologous nucleic acid. Various changes in phenotype are of interest to the present disclosure, including but not limited to modifying the fatty acid composition in a plant, altering the amino acid content of a plant, altering a plant's pathogen defense mechanism, increasing a plant's yield of an economically important trait (e.g., grain yield, forage yield, etc.) and the like. These results can be achieved by providing expression of heterologous products or increased expression of endogenous products in plants using the methods and compositions of the present disclosure

[0140] A "synthetic combination" can include a combination of a plant and a microbe of the disclosure. The combination may be achieved, for example, by coating the surface of a seed of a plant, such as an agricultural plant, or host plant tissue (root, stem, leaf, etc.), with a microbe of the disclosure. Further, a "synthetic combination" can include a combination of microbes of various strains or species. Synthetic combinations have at least one variable that distinguishes the combination from any combination that occurs in nature. That variable may be, inter alia, a concentration of microbe on a seed or plant tissue that does not occur naturally, or a combination of microbe and plant that does not naturally occur, or a combination of microbes or strains that do not occur naturally together. In each of these instances, the synthetic combination demonstrates the hand of man and possesses structural and/or functional attributes that are not present when the individual elements of the combination are considered in isolation.

[0141] In some embodiments, a microbe can be "endogenous" to a seed or plant. As used herein, a microbe is considered "endogenous" to a plant or seed, if the microbe is derived from the plant specimen from which it is sourced. That is, if the microbe is naturally found associated with said plant. In embodiments in which an endogenous microbe is applied to a plant, then the endogenous microbe is applied in an amount that differs from the levels found on the plant in nature. Thus, a microbe that is endogenous to a given plant can still form a synthetic combination with the plant, if the microbe is present on said plant at a level that does not occur naturally.

[0142] In some embodiments, a microbe can be "exogenous" (also termed "heterologous") to a seed or plant. As used herein, a microbe is considered "exogenous" to a plant or seed, if the microbe is not derived from the plant specimen from which it is sourced. That is, if the microbe is not naturally found associated with said plant. For example, a microbe that is normally associated with leaf tissue of a maize plant is considered exogenous to a leaf tissue of another maize plant that naturally lacks said microbe. In another example, a microbe that is normally associated with a maize plant is considered exogenous to a wheat plant that naturally lacks said microbe.

[0143] Microbes can also be "exogenously disposed" on a given plant tissue. This means that the microbe is placed upon a plant tissue that it is not naturally found upon. For instance, if a given microbe only naturally occurs on the roots of a given plant, then that microbe could be exogenously applied to the above-ground tissue of a plant and would thereby be "exogenously disposed" upon said plant tissue. As such, a microbe is deemed exogenously disposed, when applied on a plant that does not naturally have the microbe present or does not naturally have the microbe present in the number that is being applied

[0144] The compositions and methods herein may provide for an improved "agronomic trait" or "trait of agronomic importance" to a host plant, which may include, but not be limited to, the following: altered oil content, altered protein content, altered seed carbohydrate composition, altered seed oil composition, and altered seed protein composition, chemical tolerance, cold tolerance, delayed senescence, disease resistance, drought tolerance, ear weight, growth improvement, health enhancement, heat tolerance, herbicide tolerance, herbivore resistance, improved nitrogen fixation, improved nitrogen utilization, improved root architecture, improved water use efficiency, increased biomass, increased root length, increased seed weight, increased shoot length, increased yield, increased yield under water-limited conditions, kernel mass, kernel moisture content, metal tolerance, number of ears, number of kernels per ear, number of pods, nutrition enhancement, pathogen resistance, pest resistance, photosynthetic capability improvement, salinity tolerance, stay-green, vigor improvement, increased dry weight of mature seeds, increased fresh weight of mature seeds, increased number of mature seeds per plant, increased chlorophyll content, increased number of pods per plant, increased length of pods per plant, reduced number of wilted leaves per plant, reduced number of severely wilted leaves per plant, and increased number of non-wilted leaves per plant, a detectable modulation in the level of a metabolite, a detectable modulation in the level of a transcript, and a detectable modulation in the proteome, compared to an isoline plant grown from a seed without said seed treatment formulation.

Ability to Impart Beneficial Traits Upon a Given Plant Species by Microbes and Consortia of the Disclosure

[0145] The present disclosure utilizes microbes to impart beneficial properties (or beneficial traits) to desirable plant species, such as agronomic species of interest. In the current disclosure, the terminology "beneficial property" or "beneficial trait" is used interchangeably and denotes that a desirable plant phenotypic or genetic property of interest is modulated, by the application of a microbe or microbial consortia as described herein. As aforementioned, in some aspects, it may very well be that a metabolite produced by a given microbe is ultimately responsible for modulating or imparting a beneficial trait to a given plant.

[0146] There are a vast number of beneficial traits that can be modulated by the application of microbes of the disclosure. For instance, the microbes may have the ability to impart one or more beneficial properties to a plant species, for example: increased growth, increased yield, increased nitrogen utilization efficiency, increased stress tolerance, increased drought tolerance, increased photosynthetic rate, enhanced water use efficiency, increased pathogen resistance, modifications to plant architecture that don't necessarily impact plant yield, but rather address plant functionality, causing the plant to increase production of a metabolite of interest, etc.

[0147] In aspects, the microbes taught herein provide a wide range of agricultural applications, including: improvements in yield of grain, fruit, and flowers, improvements in growth of plant parts, improved resistance to disease, improved survivability in extreme climate, and improvements in other desired plant phenotypic characteristics.

[0148] In some aspects, the isolated microbes, consortia, and/or agricultural compositions of the disclosure can be applied to a plant, in order to modulate or alter a plant characteristic such as altered oil content, altered protein content, altered seed carbohydrate composition, altered seed oil composition, altered seed protein composition, chemical tolerance, cold tolerance, delayed senescence, disease resistance, drought tolerance, ear weight, growth improvement, health enhancement, heat tolerance, herbicide tolerance, herbivore resistance, improved nitrogen fixation, improved nitrogen utilization, improved root architecture, improved water use efficiency, increased biomass, increased root length, increased seed weight, increased shoot length, increased yield, increased yield under water-limited conditions, kernel mass, kernel moisture content, metal tolerance, number of ears, number of kernels per ear, number of pods, nutrition enhancement, pathogen resistance, pest resistance, photosynthetic capability improvement, salinity tolerance, stay-green, vigor improvement, increased dry weight of mature seeds, increased fresh weight of mature seeds, increased number of mature seeds per plant, increased chlorophyll content, increased number of pods per plant, increased length of pods per plant, reduced number of wilted leaves per plant, reduced number of severely wilted leaves per plant, and increased number of non-wilted leaves per plant, a detectable modulation in the level of a metabolite, a detectable modulation in the level of a transcript, and a detectable modulation in the proteome relative to a reference plant.

[0149] In some aspects, the isolated microbes, consortia, and/or agricultural compositions of the disclosure can be applied to a plant, in order to modulate in a negative way, a particular plant characteristic. For example, in some aspects, the microbes of the disclosure are able to decrease a phenotypic trait of interest, as this functionality can be desirable in some applications. For instance, the microbes of the disclosure may possess the ability to decrease root growth or decrease root length. Or the microbes may possess the ability to decrease shoot growth or decrease the speed at which a plant grows, as these modulations of a plant trait could be desirable in certain applications.

Isolated Microbes--Tables 1-4

[0150] In aspects, the present disclosure provides isolated microbes, including novel strains of identified microbial species, presented in Tables 1-4.

[0151] In other aspects, the present disclosure provides isolated whole microbial cultures of the species and strains identified in Tables 1-4. These cultures may comprise microbes at various concentrations.

[0152] In aspects, the disclosure provides for utilizing a microbe selected from Tables 1-4 in agriculture.

[0153] In some embodiments, the disclosure provides isolated microbial species belonging to genera of: Achromobacter, Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Bosea, Caulobacter, Chryseobacterium, Delfulviimonas, Duganella, Exiguobacterium, Flavobacterium, Frigidibacter, Herbaspirillum, Leifsonia, Luteibacter, Massilia, Mucilaginibacter, Novosphingobium, Pantoeo, Paenibacillus, Pedobacter, Polaromonas, Pseudoduganella, Pseudomonas, Rahnella, Ramlibacter, Rhizobium, Rhodococcus, Rhodoferax, Sphingobium, Stenotrophomonas and Tumebacillus.

[0154] In some embodiments, the disclosure provides isolated microbial species belonging to genera of: Achromobacter, Agrobacterium, Arthrobacter, Chryseobacterium, Delfulviimonas, Exiguobacterium, Frigidibacter, Leifsonia, Massilia, Novosphingobium, Pedobacter, Pseudomonas, and Tumebacillus.

[0155] In some embodiments, a microbe from the genus Bosea is utilized in agriculture to impart one or more beneficial properties to a plant species.

[0156] In some embodiments, the disclosure provides isolated microbial species, selected from the group consisting of: Achromobacter pulmonis, Agrobacterium fabrum (previously Rhizobium pusense), Arthrobacter nicotinovorans, Azotobacter chroococcum, Chryseobacterium daecheongense, Chryseobacterium rhizosphaerae, Duganella radicis, Exiguobacterium antarcticum, Exiguobacterium sibiricum, Frigidibacter albus (previously Delfulviimonas dentrificans) Leifsonia lichenia, Pantoea agglomerans (recently reassigned to Pantoea vagans), Pedobacter terrae, Pseudomonas fluorescens, Pseudomonas helmanticensis, Pseudomonas oryzihabitans, Pseudomonas putida, Rahnella aquatilis, Rhizobium etli, Rhodococcus erythropolis, Stenotrophomonas maltophilia and Tumebacillus permanentifrigoris.

[0157] In some embodiments, the disclosure provides isolated microbial species, selected from the group consisting of: Achromobacter pulmonis, Agrobacterium fabrum (previously Rhizobium pusense), Arthrobacter nicotinovorans, Chryseobacterium daecheongense, Chryseobacterium rhizosphaerae, Exiguobacterium antarcticum, Exiguobacterium sibiricum, Frigidibacter albus (previously Delfulviimonas dentrificans) Leifsonia lichenia, Massilia kyonggiensis, Novosphingobium lindaniclasticum, Novosphingobium sediminicola, Pedobacter terrae, Pseudomonas helmanticensis, and Tumebacillus permanentifrigoris.

[0158] In some embodiments, the disclosure provides novel isolated microbial strains of species, selected from the group consisting of: Achromobacter, Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Bosea, Caulobacter, Chryseobacterium, Delfulviimonas, Duganella, Exiguobacterium, Flavobacterium, Frigidibacter, Herbaspirillum, Leifsonia, Luteibacter, Massilia, Mucilaginibacter, Novosphingobium, Pantoeo, Paenibacillus, Pedobacter, Polaromonas, Pseudoduganella, Pseudomonas, Rahnella, Ramlibacter, Rhizobium, Rhodococcus, Rhodoferax, Sphingobium, Stenotrophomonas and Tumebacillus. Particular novel strains of these aforementioned species can be found in Tables 1-4.

[0159] Furthermore, the disclosure relates to microbes having characteristics substantially similar to that of a microbe identified in Tables 1-4.

[0160] The isolated microbial species, and novel strains of said species, identified in the present disclosure, are able to impart beneficial properties or traits to target plant species.

[0161] For instance, the isolated microbes described in Tables 1-4, or consortia of said microbes, are able to improve plant health and vitality. The improved plant health and vitality can be quantitatively measured, for example, by measuring the effect that said microbial application has upon a plant phenotypic or genotypic trait.

Microbial Consortia--Tables 1-4

[0162] In aspects, the disclosure provides microbial consortia comprising a combination of at least any two microbes selected from amongst the microbes identified in Table 1.

[0163] In other aspects, the disclosure provides microbial consortia comprising a combination of at least any two microbes selected from amongst the microbes identified in Table 2.

[0164] In yet other aspects, the disclosure provides microbial consortia comprising a combination of at least any two microbes selected from amongst the microbes identified in Table 3.

[0165] In additional aspects, the disclosure provides microbial consortia comprising a combination of at least any two microbes selected from amongst the microbes identified in Table 4.

[0166] Also, the disclosure provides microbial consortia comprising a combination of at least any two microbes selected from amongst the microbes identified in Tables 1-4.

[0167] In certain embodiments, the consortia of the present disclosure comprise two microbes, or three microbes, or four microbes, or five microbes, or six microbes, or seven microbes, or eight microbes, or nine microbes, or ten or more microbes. Said microbes of the consortia are different microbial species, or different strains of a microbial species.

[0168] In some embodiments, the disclosure provides consortia, comprising: at least two isolated microbial species belonging to genera of: Achromobacter, Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Bosea, Caulobacter, Chryseobacterium, Delfulviimonas, Duganella, Exiguobacterium, Flavobacterium, Frigidibacter, Herbaspirillum, Leifsonia, Luteibacter, Massilia, Mucilaginibacter, Novosphingobium, Pantoeo, Paenibacillus, Pedobacter, Polaromonas, Pseudoduganella, Pseudomonas, Rahnella, Ramlibacter, Rhizobium, Rhodococcus, Rhodoferax, Sphingobium, Stenotrophomonas and Tumebacillus.

[0169] In some embodiments, the disclosure provides consortia, comprising: at least two isolated microbial species, selected from the group consisting of: Achromobacter pulmonis, Agrobacterium fabrum (previously Rhizobium pusense), Arthrobacter nicotinovorans, Azotobacter chroococcum, Chryseobacterium daecheongense, Chryseobacterium rhizosphaerae, Duganella radicis, Exiguobacterium antarcticum, Exiguobacterium sibiricum, Frigidibacter albus (previously Delfulviimonas dentrificans) Leifsonia lichenia, Massilia kyonggiensis, Novosphingobium sediminicola, Novosphingobium lindaniclasticum, Pantoea agglomerans (recently reassigned to Pantoea vagans), Pedobacter terrae, Pseudomonas fluorescens, Pseudomonas helmanticensis, Pseudomonas oryzihabitans, Pseudomonas putida, Rahnella aquatilis, Rhizobium etli, Rhodococcus erythropolis, Stenotrophomonas maltophilia and Tumebacillus permanentifrigoris.

[0170] In some embodiments, the disclosure provides consortia, comprising: at least two novel isolated microbial strains of species, selected from the group consisting of: Achromobacter pulmonis, Agrobacterium fabrum (previously Rhizobium pusense), Arthrobacter nicotinovorans, Azotobacter chroococcum, Chryseobacterium daecheongense, Chryseobacterium rhizosphaerae, Duganella radicis, Exiguobacterium antarcticum, Exiguobacterium sibiricum, Frigidibacter albus (previously Delfulviimonas dentrificans) Leifsonia lichenia, Massilia kyonggiensis, Novosphingobium sediminicola, Novosphingobium lindaniclasticum, Pantoea agglomerans (recently reassigned to Pantoea vagans), Pedobacter terrae, Pseudomonas fluorescens, Pseudomonas helmanticensis, Pseudomonas oryzihabitans, Pseudomonas putida, Rahnella aquatilis, Rhizobium etli, Rhodococcus erythropolis, Stenotrophomonas maltophilia and Tumebacillus permanentifrigoris. Particular novel strains of these aforementioned species can be found in Tables 1-4.

[0171] In some embodiments, the disclosure provides consortia, comprising: at least two isolated microbial species selected from Tables 1-4, and further comprising a Bradyrhizobium species.

[0172] In particular aspects, the disclosure provides microbial consortia, comprising species as grouped in Tables 5-11. With respect to Tables-5-11, the letters A through I represent a non-limiting selection of microbes of the present disclosure, defined as:

[0173] A=Rahnella aquatilis and associated novel strains identified in Table 1;

[0174] B=Bacillus megatarium and associated novel strains identified in Table 2;

[0175] C=Bacillus niacini and associated novel strains identified in Table 3;

[0176] D=Chryseobacterium rhizosphaerae and associated novel strains identified in Table 4;

[0177] E=Frigidibacter albus or Delfulviimonas dentrificans (In Taxonomic Flux) and associated novel strains identified in Table 4;

[0178] F=Pedobacter terrae and associated novel strains identified in Table 4;

[0179] G=Leifsonia lichenia and associated novel strains identified in Table 4;

[0180] H=Tumebacillus permanentifrigoris and associated novel strains identified in Table 4; and

[0181] I=Novosphingobium sediminicola and associated novel strains identified in Table 4.

TABLE-US-00005 TABLE 5 Eight and Nine Strain Consortia A, B, C, D, E, F, G, H A, B, C, D, E, F, G, I A, B, C, D, E, F, H, I A, B, D, E, F, G, H, I A, C, D, E, F, G, H, I B, C, D, E, F, G, H, I A, B, C, D, E, G, H, I A, B, C, D, F, G, H, I A, B, C, E, F, G, H, I A, B, C, D, E, F, G, H, I

TABLE-US-00006 TABLE 6 Seven Strain Consortia A,B,C,D,E,F,G A,B,C,D,E,F,H A,B,C,D,E,F,I A,B,C,D,E,G,H A,B,C,D,E,G,I A,B,C,D,E,H,I A,B,C,D,F,G,H A,B,C,D,F,G,I A,B,C,D,F,H,I A,B,C,D,G,H,I A,B,C,E,F,G,H A,B,C,E,F,G,I A,B,C,E,F,H,I A,B,C,E,G,H,I A,B,C,F,G,H,I A,B,D,E,F,G,H A,B,D,E,F,G,I A,B,D,E,F,H,I A,B,D,E,G,H,I A,B,D,F,G,H,I A,B,E,F,G,H,I A,C,D,E,F,G,H A,C,D,E,F,G,I A,C,D,E,F,H,I A,C,D,E,G,H,I A,C,D,F,G,H,I A,C,E,F,G,H,I A,D,E,F,G,H,I B,C,D,E,F,G,H B,C,D,E,F,G,I B,C,D,E,F,H,I B,C,D,E,G,H,I B,C,D,F,G,H,I B,C,E,F,G,H,I B,D,E,F,G,H,I C,D,E,F,G,H,I

TABLE-US-00007 TABLE 7 Six Strain Consortia A,B,C,D,E,F A,B,C,D,E,G A,B,C,D,E,H A,B,C,D,E,I A,B,C,D,F,G A,B,C,D,F,H A,B,C,D,F,I A,B,C,D,G,H A,B,C,D,G,I A,B,C,D,H,I A,B,C,E,F,G A,B,C,E,F,H A,B,C,E,F,I A,B,C,E,G,H A,B,C,E,G,I A,B,C,E,H,I A,B,C,F,G,H A,B,C,F,G,I A,B,C,F,H,I A,B,C,G,H,I A,B,D,E,F,G A,B,D,E,F,H A,B,D,E,F,I A,B,D,E,G,H A,B,D,E,G,I A,B,D,E,H,I A,B,D,F,G,H A,B,D,F,G,I D,E,F,G,H,I C,E,F,G,H,I A,B,D,F,H,I A,B,D,G,H,I A,B,E,F,G,H A,B,E,F,G,I A,B,E,F,H,I A,B,E,G,H,I A,B,F,G,H,I A,C,D,E,F,G A,C,D,E,F,H A,C,D,E,F,I A,C,D,E,G,H A,C,D,E,G,I A,C,D,E,H,I A,C,D,F,G,H A,C,D,F,G,I A,C,D,F,H,I A,C,D,G,H,I A,C,E,F,G,H A,C,E,F,G,I A,C,E,F,H,I A,C,E,G,H,I A,C,F,G,H,I A,D,E,F,G,H A,D,E,F,G,I A,D,E,F,H,I A,D,E,G,H,I A,D,F,G,H,I A,E,F,G,H,I B,C,D,E,F,G B,C,D,E,F,H B,C,D,E,F,I B,C,D,E,G,H B,C,D,E,G,I B,C,D,E,H,I B,C,D,F,G,H B,C,D,F,G,I B,C,D,F,H,I B,C,D,G,H,I B,C,E,F,G,H B,C,E,F,G,I B,C,E,F,H,I B,C,E,G,H,I B,C,F,G,H,I B,D,E,F,G,H B,D,E,F,G,I B,D,E,F,H,I B,D,E,G,H,I B,D,F,G,H,I B,E,F,G,H,I C,D,E,F,G,H C,D,E,F,G,I C,D,E,F,H,I C,D,E,G,H,I C,D,F,G,H,I

TABLE-US-00008 TABLE 8 Five Strain Consortia A, B, C, D, E A, B, C, D, F A, B, C, D, G A, B, C, D, H A, B, C, D, I A, B, C, E, F A, B, C, E, G A, B, C, E, H A, B, C, F, H A, B, C, F, G A, B, C, F, I A, B, C, G, H A, B, C, G, I A, B, C, H, I A, B, D, E, F A, B, D, E, G A, B, D, E, I A, B, D, F, G A, B, D, F, H A, B, D, F, I A, B, D, G, H A, B, D, G, I A, B, D, H, I A, B, E, F, G A, B, E, F, I A, B, E, G, H A, B, E, G, I A, B, E, H, I A, B, F, G, H A, B, F, G, I A, B, F, H, I A, B, G, H, I A, C, D, E, G A, C, D, E, H A, C, D, E, I A, C, D, F, G A, C, D, F, H A, C, D, F, I A, C, D, G, H A, C, D, G, I A, C, E, F, G A, C, E, F, H A, C, E, F, I A, C, E, G, H A, C, E, G, I A, C, E, H, I A, C, F, G, H A, C, F, G, I A, C, G, H, I A, D, E, F, G A, D, E, F, H A, D, E, F, I A, D, E, G, H A, D, E, G, I A, D, E, H, I A, D, F, G, H A, D, F, H, I A, D, G, H, I A, E, F, G, H A, E, F, G, I A, E, F, H, I A, E, G, H, I A, F, G, H, I B, C, D, E, F B, C, D, E, H B, C, D, E, I B, C, D, F, G B, C, D, F, H B, C, D, F, I B, C, D, G, H B, C, D, G, I B, C, D, H, I B, C, E, F, H B, C, E, F, I B, C, E, G, H B, C, E, G, I B, C, E, H, I B, C, F, G, H B, C, F, G, I B, C, F, H, I B, D, E, F, G B, D, E, F, H B, D, E, F, I B, D, E, G, H B, D, E, G, I B, D, E, H, I B, D, F, G, H B, D, F, G, I B, D, G, H, I B, E, F, G, H B, E, F, G, I B, E, F, H, I B, E, G, H, I B, F, G, H, I C, D, E, F, G C, D, E, F, H C, D, E, G, H C, D, E, G, I C, D, E, H, I C, D, F, G, H C, D, F, G, I C, D, F, H, I C, D, G, H, I C, E, F, G, H C, E, F, H, I C, E, G, H, I C, F, G, H, I D, E, F, G, H D, E, F, G, I D, E, F, H, I D, E, G, H, I D, F, G, H, I A, B, C, E, I A, B, D, E, H A, B, E, F, H A, C, D, E, F A, C, D, H, I A, C, F, H, I A, D, F,G, I B, C, D, E, G B, C, E, F, G B, C, G, H, I B, D, F, H, I C, D, E, F, I C, E, F, G, I E, F, G, H, I

TABLE-US-00009 TABLE 9 Four Strain Consortia A, B, C, D A, B, C, E A, B, C, F A, B, C, G A, B, C, H A, B, C, I A, B, D, E A, B, D, F D, G, H, I A, B, D, G A, B, D, H A, B, D, I A, B, E, F A, B, E, G A, B, E, H A, B, E, I A, B, F, G E, F, G, H A, B, F, H A, D, F, H A, D, F, I A, D, G, H A, D, G, I A, D, H, I A, E, F, G A, E, F, H E, F, G, I A, B, F, I A, B, G, H A, B, G, I A, B, H, I A, C, D, E A, C, D, F A, C, D, G A, C, D, H E, F, H, I A, C, D, I A, C, E, F A, C, E, G A, C, E, H A, C, E, I A, C, F, G A, C, F, H A, C, F, I E, G, H, I A, C, G, H A, C, G, I A, C, H, I A, D, E, F A, D, E, G A, D, E, H A, D, E, I A, D, F, G F, G, H, I A, E, F, I A, E, G, H A, E, G, I A, E, H, I A, F, G, H A, F, G, I A, F, H, I A, G, H, I D, E, F, H B, C, D, E B, C, D, F B, C, D, G B, C, D, H B, C, D, I B, C, E, F B, C, E, G B, C, E, H D, E, F, I B, C, E, I B, C, F, G B, C, F, H B, C, F, I B, C, G, H B, C, G, I B, C, H, I B, D, E, F D, E, G, H B, D, E, G B, D, E, H B, D, E, I B, D, F, G B, D, F, H B, D, F, I B, D, G, H B, D, G, I D, E, G, I B, D, H, I B, E, F, G B, E, F, H B, E, F, I B, E, G, H B, E, G, I B, E, H, I B, F, G, H D, E, H, I B, F, G, I B, F, H, I B, G, H, I C, D, E, F C, D, E, G C, D, E, H C, D, E, I C, D, F, G D, F, G, H C, D, F, H C, D, F, I C, D, G, H C, D, G, I C, D, H, I C, E, F, G C, E, F, H C, E, F, I D, F, G, I C, E, G, H C, E, G, I C, E, H, I C, F, G, H C, F, G, I C, F, H, I C, G, H, I D, E, F, G D, F, H, I

TABLE-US-00010 TABLE 10 Three Strain Consortia A, B, C A, B, D A, B, E A, B, F A, B, G A, B, H A, B, I A, C, D A, C, E G, H, I E, F, H A, C, F A, C, G A, C, H A, C, I A, D, E A, D, F A, D, G A, D, H A, D, I F, H, I E, F, G A, E, F A, E, G A, E, H A, E, I A, F, G A, F, H A, F, I A, G, H A, G, I F, G, I D, H, I A, H, I B, C, D B, C, E B, C, F B, C, G B, C, H B, C, I B, D, E B, D, F F, G, H D, G, I B, D, G B, D, H B, D, I B, E, F B, E, G B, E, H B, E, I B, F, G B, F, H E, H, I E, F, I B, F, I B, G, H B, G, I B, H, I C, D, E C, D, F C, D, G C, D, H C, D, I E, G, I D, G, H C, E, F C, E, G C, E, H C, E, I C, F, G C, F, H C, F, I C, G, H C, G, I E, G, H D, F, I C, H, I D, E, F D, E, G D, E, H D, E, I D, F, G D, F, H

TABLE-US-00011 TABLE 11 Two Strain Consortia A, B A, C A, D A, E A, F A, G A, H A, I B, C B, D B, E B, F B, G B, H B, I C, D C, E C, F C, G C, H C, I D, E D, F D, G D, H D, I E, F E, G E, H E, I F, G F, H F, I G, H G, I H, I

[0182] In some embodiments, the microbial consortia may be selected from any member group from Tables 5-11.

Isolated Microbes--Source Material

[0183] The microbes of the present disclosure were obtained, among other places, at various locales in New Zealand and the United States.

Isolated Microbes--Microbial Culture Techniques

[0184] The microbes of Tables 1-4 were identified by utilizing standard microscopic techniques to characterize the microbes' phenotype, which was then utilized to identify the microbe to a taxonomically recognized species.

[0185] The isolation, identification, and culturing of the microbes of the present disclosure can be effected using standard microbiological techniques. Examples of such techniques may be found in Gerhardt, P. (ed.) Methods for General and Molecular Microbiology. American Society for Microbiology, Washington, D.C. (1994) and Lennette, E. H. (ed.) Manual of Clinical Microbiology, Third Edition. American Society for Microbiology, Washington, D.C. (1980), each of which is incorporated by reference.

[0186] Isolation can be effected by streaking the specimen on a solid medium (e.g., nutrient agar plates) to obtain a single colony, which is characterized by the phenotypic traits described hereinabove (e.g., Gram positive/negative, capable of forming spores aerobically/anaerobically, cellular morphology, carbon source metabolism, acid/base production, enzyme secretion, metabolic secretions, etc.) and to reduce the likelihood of working with a culture which has become contaminated.

[0187] For example, for isolated bacteria of the disclosure, biologically pure isolates can be obtained through repeated subculture of biological samples, each subculture followed by streaking onto solid media to obtain individual colonies. Methods of preparing, thawing, and growing lyophilized bacteria are commonly known, for example, Gherna, R. L. and C. A. Reddy. 2007. Culture Preservation, p 1019-1033. In C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. A. Marzluf, T. M. Schmidt, and L. R. Snyder, eds. American Society for Microbiology, Washington, D.C., 1033 pages; herein incorporated by reference. Thus freeze dried liquid formulations and cultures stored long term at -70.degree. C. in solutions containing glycerol are contemplated for use in providing formulations of the present inventions.

[0188] The bacteria of the disclosure can be propagated in a liquid medium under aerobic conditions. Medium for growing the bacterial strains of the present disclosure includes a carbon source, a nitrogen source, and inorganic salts, as well as specially required substances such as vitamins, amino acids, nucleic acids and the like. Examples of suitable carbon sources which can be used for growing the bacterial strains include, but are not limited to, starch, peptone, yeast extract, amino acids, sugars such as glucose, arabinose, mannose, glucosamine, maltose, and the like; salts of organic acids such as acetic acid, fumaric acid, adipic acid, propionic acid, citric acid, gluconic acid, malic acid, pyruvic acid, malonic acid and the like; alcohols such as ethanol and glycerol and the like; oil or fat such as soybean oil, rice bran oil, olive oil, corn oil, sesame oil. The amount of the carbon source added varies according to the kind of carbon source and is typically between 1 to 100 gram(s) per liter of medium. Preferably, glucose, starch, and/or peptone is contained in the medium as a major carbon source, at a concentration of 0.1-5% (W/V). Examples of suitable nitrogen sources which can be used for growing the bacterial strains of the present invention include, but are not limited to, amino acids, yeast extract, tryptone, beef extract, peptone, potassium nitrate, ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, ammonia or combinations thereof. The amount of nitrogen source varies according to the type of nitrogen source, typically between 0.1 to 30 gram per liter of medium. The inorganic salts, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, magnesium sulfate, magnesium chloride, ferric sulfate, ferrous sulfate, ferric chloride, ferrous chloride, manganous sulfate, manganous chloride, zinc sulfate, zinc chloride, cupric sulfate, calcium chloride, sodium chloride, calcium carbonate, sodium carbonate can be used alone or in combination. The amount of inorganic acid varies according to the kind of the inorganic salt, typically between 0.001 to 10 gram per liter of medium. Examples of specially required substances include, but are not limited to, vitamins, nucleic acids, yeast extract, peptone, meat extract, malt extract, dried yeast and combinations thereof. Cultivation can be effected at a temperature, which allows the growth of the bacterial strains, essentially, between 20.degree. C. and 46.degree. C. In some aspects, a temperature range is 30.degree. C.-37.degree. C. For optimal growth, in some embodiments, the medium can be adjusted to pH 7.0-7.4. It will be appreciated that commercially available media may also be used to culture the bacterial strains, such as Nutrient Broth or Nutrient Agar available from Difco, Detroit, Mich. It will be appreciated that cultivation time may differ depending on the type of culture medium used and the concentration of sugar as a major carbon source.

[0189] In aspects, cultivation lasts between 24-96 hours. Bacterial cells thus obtained are isolated using methods, which are well known in the art. Examples include, but are not limited to, membrane filtration and centrifugal separation. The pH may be adjusted using sodium hydroxide and the like and the culture may be dried using a freeze dryer, until the water content becomes equal to 4% or less. Microbial co-cultures may be obtained by propagating each strain as described hereinabove. It will be appreciated that the microbial strains may be cultured together when compatible culture conditions can be employed.

Isolated Microbes--Microbial Strains

[0190] Microbes can be distinguished into a genus based on polyphasic taxonomy, which incorporates all available phenotypic and genotypic data into a consensus classification (Vandamme et al. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996, 60:407-438). One accepted genotypic method for defining species is based on overall genomic relatedness, such that strains which share approximately 70% or more relatedness using DNA-DNA hybridization, with 5.degree. C. or less .DELTA.T.sub.m (the difference in the melting temperature between homologous and heterologous hybrids), under standard conditions, are considered to be members of the same species. Thus, populations that share greater than the aforementioned 70% threshold can be considered to be variants of the same species.

[0191] The 16S rRNA sequences are often used for making distinctions between species, in that if a 16S rRNA sequence shares less than a specified % sequence identity from a reference sequence, then the two organisms from which the sequences were obtained are said to be of different species.

[0192] Thus, one could consider microbes to be of the same species, if they share at least 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity across the 16S or 18S rRNA or rDNA sequence. In some aspects, a microbe could be considered to be the same species only if it shares at least 95% identity.

[0193] Further, one could define microbial strains of a species, as those that share at least 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity across the 16S rRNA sequence. Comparisons may also be made with 23S rRNA sequences against reference sequences. In some aspects, a microbe could be considered to be the same strain only if it shares at least 95% identity. In some embodiments, "substantially similar genetic characteristics" means a microbe sharing at least 95% identity.

[0194] In one embodiment, microbial strains of the present disclosure include those that comprise polynucleotide sequences that share at least 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity with any one of SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 39, 30, 31, 32, 33, 34, or 307; or any one of SEQ ID NOs:35-306.

[0195] In one embodiment, microbes of the present disclosure include those that comprise polynucleotide sequences that share at least 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity with any one of SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 39, 30, 31, 32, 33, 34, or 307; or any one of SEQ ID NOs:35-306.

[0196] In one embodiment, microbial consortia of the present disclosure include two or more microbes those that comprise polynucleotide sequences that share at least 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity with any one of SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 39, 30, 31, 32, 33, 34, and/or 307; or any one of SEQ ID NOs:35-306.

[0197] Unculturable microbes often cannot be assigned to a definite species in the absence of a phenotype determination, the microbes can be given a candidatus designation within a genus provided their 16S rRNA sequences subscribes to the principles of identity with known species.

[0198] One approach is to observe the distribution of a large number of strains of closely related species in sequence space and to identify clusters of strains that are well resolved from other clusters. This approach has been developed by using the concatenated sequences of multiple core (house-keeping) genes to assess clustering patterns, and has been called multilocus sequence analysis (MLSA) or multilocus sequence phylogenetic analysis. MLSA has been used successfully to explore clustering patterns among large numbers of strains assigned to very closely related species by current taxonomic methods, to look at the relationships between small numbers of strains within a genus, or within a broader taxonomic grouping, and to address specific taxonomic questions. More generally, the method can be used to ask whether bacterial species exist--that is, to observe whether large populations of similar strains invariably fall into well-resolved clusters, or whether in some cases there is a genetic continuum in which clear separation into clusters is not observed.

[0199] In order to more accurately make a determination of genera, a determination of phenotypic traits, such as morphological, biochemical, and physiological characteristics are made for comparison with a reference genus archetype. The colony morphology can include color, shape, pigmentation, production of slime, etc. Features of the cell are described as to shape, size, Gram reaction, extracellular material, presence of endospores, flagella presence and location, motility, and inclusion bodies. Biochemical and physiological features describe growth of the organism at different ranges of temperature, pH, salinity and atmospheric conditions, growth in presence of different sole carbon and nitrogen sources. One of ordinary skill in the art would be reasonably apprised as to the phenotypic traits that define the genera of the present disclosure. For instance, colony color, form, and texture on a particular agar (e.g. YMA) was used to identify species of Rhizobium.

[0200] In one embodiment, the microbes taught herein were identified utilizing 16S rRNA gene sequences. It is known in the art that 16S rRNA contains hypervariable regions that can provide species/strain-specific signature sequences useful for bacterial identification. In the present disclosure, many of the microbes were identified via partial (500-1200 bp) 16S rRNA sequence signatures. In aspects, each strain represents a pure colony isolate that was selected from an agar plate. Selections were made to represent the diversity of organisms present based on any defining morphological characteristics of colonies on agar medium. The medium used, in embodiments, was R2A, PDA, Nitrogen-free semi-solid medium, or MRS agar. Colony descriptions of each of the `picked` isolates were made after 24-hour growth and then entered into our database. Sequence data was subsequently obtained for each of the isolates.

[0201] Phylogenetic analysis using the 16S rRNA gene was used to define "substantially similar" species belonging to common genera and also to define "substantially similar" strains of a given taxonomic species. Further, we recorded physiological and/or biochemical properties of the isolates that can be utilized to highlight both minor and significant differences between strains that could lead to advantageous behavior on plants.

Agricultural Compositions

[0202] In some embodiments, the microbes of the disclosure are combined into agricultural compositions. In some embodiments, the agricultural compositions of the present disclosure include, but are not limited to: wetters, compatibilizing agents (also referred to as "compatibility agents"), antifoam agents, cleaning agents, sequestering agents, drift reduction agents, neutralizing agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents (also referred to as "spreaders"), penetration aids (also referred to as "penetrants"), sticking agents (also referred to as "stickers" or "binders"), dispersing agents, thickening agents (also referred to as "thickeners"), stabilizers, emulsifiers, freezing point depressants, antimicrobial agents, and the like.

[0203] In some embodiments, the agricultural compositions of the present disclosure are solid. Where solid compositions are used, it may be desired to include one or more carrier materials with the active isolated microbe or consortia. In some embodiments, the present disclosure teaches the use of carriers including, but not limited to: mineral earths such as silicas, silica gels, silicates, talc, kaolin, attaclay, limestone, chalk, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, thiourea and urea, products of vegetable origin such as cereal meals, tree bark meal, wood meal and nutshell meal, cellulose powders, attapulgites, montmorillonites, mica, vermiculites, synthetic silicas and synthetic calcium silicates, or compositions of these.

[0204] In some embodiments, the agricultural compositions of the present disclosure are liquid. Thus in some embodiments, the present disclosure teaches that the agricultural compositions disclosed herein can include compounds or salts such as monoethanolamine salt, sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, sodium acetate, ammonium hydrogen sulfate, ammonium chloride, ammonium acetate, ammonium formate, ammonium oxalate, ammonium carbonate, ammonium hydrogen carbonate, ammonium thiosulfate, ammonium hydrogen diphosphate, ammonium dihydrogen monophosphate, ammonium sodium hydrogen phosphate, ammonium thiocyanate, ammonium sulfamate or ammonium carbamate.

[0205] In some embodiments, the present disclosure teaches that agricultural compositions can include binders such as: polyvinylpyrrolidone, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, carboxymethylcellulose, starch, vinylpyrrolidone/vinyl acetate copolymers and polyvinyl acetate, or compositions of these; lubricants such as magnesium stearate, sodium stearate, talc or polyethylene glycol, or compositions of these; antifoams such as silicone emulsions, long-chain alcohols, phosphoric esters, acetylene diols, fatty acids or organofluorine compounds, and complexing agents such as: salts of ethylenediaminetetraacetic acid (EDTA), salts of trinitrilotriacetic acid or salts of polyphosphoric acids, or compositions of these.

[0206] In some embodiments, the agricultural compositions comprise surface-active agents. In some embodiments, the surface-active agents are added to liquid agricultural compositions. In other embodiments, the surface-active agents are added to solid formulations, especially those designed to be diluted with a carrier before application. Thus, in some embodiments, the agricultural compositions comprise surfactants. Surfactants are sometimes used, either alone or with other additives, such as mineral or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the microbes on the target. The types of surfactants used for bioenhancement depend generally on the nature and mode of action of the microbes. The surface-active agents can be anionic, cationic, or nonionic in character, and can be employed as emulsifying agents, wetting agents, suspending agents, or for other purposes. In some embodiments, the surfactants are non-ionics such as: alky ethoxylates, linear aliphatic alcohol ethoxylates, and aliphatic amine ethoxylates. Surfactants conventionally used in the art of formulation and which may also be used in the present formulations are described, in McCutcheon's Detergents and Emulsifiers Annual, MC Publishing Corp., Ridgewood, N.J., 1998, and in Encyclopedia of Surfactants, Vol. I-III, Chemical Publishing Co., New York, 1980-81. In some embodiments, the present disclosure teaches the use of surfactants including alkali metal, alkaline earth metal or ammonium salts of aromatic sulfonic acids, for example, ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids of arylsulfonates, of alkyl ethers, of lauryl ethers, of fatty alcohol sulfates and of fatty alcohol glycol ether sulfates, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of the naphthalenesulfonic acids with phenol and formaldehyde, condensates of phenol or phenolsulfonic acid with formaldehyde, condensates of phenol with formaldehyde and sodium sulfite, polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octyl- or nonylphenol, tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, ethoxylated castor oil, ethoxylated triarylphenols, salts of phosphated triarylphenolethoxylates, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose, or compositions of these.

[0207] In some embodiments, the present disclosure teaches other suitable surface-active agents, including salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate; alkylphenol-alkylene oxide addition products, such as nonylphenol-C.sub.18 ethoxylate; alcohol-alkylene oxide addition products, such as tridecyl alcohol-C.sub.16 ethoxylate; soaps, such as sodium stearate; alkylnaphthalene-sulfonate salts, such as sodium dibutyl-naphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride; polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; salts of mono and dialkyl phosphate esters; vegetable oils such as soybean oil, rapeseed/canola oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; and esters of the above vegetable oils, particularly methyl esters.

[0208] In some embodiments, the agricultural compositions comprise wetting agents. A wetting agent is a substance that when added to a liquid increases the spreading or penetration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading. Wetting agents are used for two main functions in agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders in water to make concentrates for soluble liquids or suspension concentrates; and during mixing of a product with water in a spray tank or other vessel to reduce the wetting time of wettable powders and to improve the penetration of water into water-dispersible granules. In some embodiments, examples of wetting agents used in the agricultural compositions of the present disclosure, including wettable powders, suspension concentrates, and water-dispersible granule formulations are: sodium lauryl sulphate; sodium dioctyl sulphosuccinate; alkyl phenol ethoxylates; and aliphatic alcohol ethoxylates.

[0209] In some embodiments, the agricultural compositions of the present disclosure comprise dispersing agents. A dispersing agent is a substance which adsorbs onto the surface of particles and helps to preserve the state of dispersion of the particles and prevents them from re-aggregating. In some embodiments, dispersing agents are added to agricultural compositions of the present disclosure to facilitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water in a spray tank. In some embodiments, dispersing agents are used in wettable powders, suspension concentrates, and water-dispersible granules. Surfactants that are used as dispersing agents have the ability to adsorb strongly onto a particle surface and provide a charged or steric barrier to re-aggregation of particles. In some embodiments, the most commonly used surfactants are anionic, non-ionic, or mixtures of the two types.

[0210] In some embodiments, for wettable powder formulations, the most common dispersing agents are sodium lignosulphonates. In some embodiments, suspension concentrates provide very good adsorption and stabilization using polyelectrolytes, such as sodium naphthalene sulphonate formaldehyde condensates. In some embodiments, tristyrylphenol ethoxylate phosphate esters are also used. In some embodiments, such as alkylarylethylene oxide condensates and EO-PO block copolymers are sometimes combined with anionics as dispersing agents for suspension concentrates.

[0211] In some embodiments, the agricultural compositions of the present disclosure comprise polymeric surfactants. In some embodiments, the polymeric surfactants have very long hydrophobic `backbones` and a large number of ethylene oxide chains forming the `teeth` of a `comb` surfactant. In some embodiments, these high molecular weight polymers can give very good long-term stability to suspension concentrates, because the hydrophobic backbones have many anchoring points onto the particle surfaces. In some embodiments, examples of dispersing agents used in agricultural compositions of the present disclosure are: sodium lignosulphonates; sodium naphthalene sulphonate formaldehyde condensates; tristyrylphenol ethoxylate phosphate esters; aliphatic alcohol ethoxylates; alky ethoxylates; EO-PO block copolymers; and graft copolymers.

[0212] In some embodiments, the agricultural compositions of the present disclosure comprise emulsifying agents. An emulsifying agent is a substance, which stabilizes a suspension of droplets of one liquid phase in another liquid phase. Without the emulsifying agent the two liquids would separate into two immiscible liquid phases. In some embodiments, the most commonly used emulsifier blends include alkylphenol or aliphatic alcohol with 12 or more ethylene oxide units and the oil-soluble calcium salt of dodecylbenzene sulphonic acid. A range of hydrophile-lipophile balance ("HLB") values from 8 to 18 will normally provide good stable emulsions. In some embodiments, emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.

[0213] In some embodiments, the agricultural compositions of the present disclosure comprise solubilizing agents. A solubilizing agent is a surfactant, which will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobic part of the micelle. The types of surfactants usually used for solubilization are non-ionics: sorbitan monooleates; sorbitan monooleate ethoxylates; and methyl oleate esters.

[0214] In some embodiments, the agricultural compositions of the present disclosure comprise organic solvents. Organic solvents are used mainly in the formulation of emulsifiable concentrates, ULV formulations, and to a lesser extent granular formulations. Sometimes mixtures of solvents are used. In some embodiments, the present disclosure teaches the use of solvents including aliphatic paraffinic oils such as kerosene or refined paraffins. In other embodiments, the present disclosure teaches the use of aromatic solvents such as xylene and higher molecular weight fractions of C9 and C10 aromatic solvents. In some embodiments, chlorinated hydrocarbons are useful as co-solvents to prevent crystallization of pesticides when the formulation is emulsified into water. Alcohols are sometimes used as co-solvents to increase solvent power.

[0215] In some embodiments, the agricultural compositions comprise gelling agents. Thickeners or gelling agents are used mainly in the formulation of suspension concentrates, emulsions, and suspoemulsions to modify the rheology or flow properties of the liquid and to prevent separation and settling of the dispersed particles or droplets. Thickening, gelling, and anti-settling agents generally fall into two categories, namely water-insoluble particulates and water-soluble polymers. It is possible to produce suspension concentrate formulations using clays and silicas. In some embodiments, the agricultural compositions comprise one or more thickeners including, but not limited to: montmorillonite, e.g. bentonite; magnesium aluminum silicate; and attapulgite. In some embodiments, the present disclosure teaches the use of polysaccharides as thickening agents. The types of polysaccharides most commonly used are natural extracts of seeds and seaweeds or synthetic derivatives of cellulose. Some embodiments utilize xanthan and some embodiments utilize cellulose. In some embodiments, the present disclosure teaches the use of thickening agents including, but are not limited to: guar gum; locust bean gum; carrageenam; alginates; methyl cellulose; sodium carboxymethyl cellulose (SCMC); hydroxyethyl cellulose (HEC). In some embodiments, the present disclosure teaches the use of other types of anti-settling agents such as modified starches, polyacrylates, polyvinyl alcohol, and polyethylene oxide. Another good anti-settling agent is xanthan gum.

[0216] In some embodiments, the presence of surfactants, which lower interfacial tension, can cause water-based formulations to foam during mixing operations in production and in application through a spray tank. Thus, in some embodiments, in order to reduce the tendency to foam, anti-foam agents are often added either during the production stage or before filling into bottles/spray tanks. Generally, there are two types of anti-foam agents, namely silicones and non-silicones. Silicones are usually aqueous emulsions of dimethyl polysiloxane, while the non-silicone anti-foam agents are water-insoluble oils, such as octanol and nonanol, or silica. In both cases, the function of the anti-foam agent is to displace the surfactant from the air-water interface.

[0217] In some embodiments, the agricultural compositions comprise a preservative.

[0218] Further, the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods can be combined with known actives available in the agricultural space, such as: pesticide, herbicide, bactericide, fungicide, insecticide, virucide, miticide, nemataicide, acaricide, plant growth regulator, rodenticide, anti-algae agent, biocontrol or beneficial agent. Further, the microbes, microbial consortia, or microbial communities developed according to the disclosed methods can be combined with known fertilizers. Such combinations may exhibit synergistic properties. Further still, the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods can be combined with inert ingredients. Also, in some aspects, the disclosed microbes are combined with biological active agents.

Metabolites Produced by Microbes and Consortia of the Disclosure

[0219] In some cases, the microbes of the present disclosure may produce one or more compounds and/or have one or more activities, e.g., one or more of the following: production of a metabolite, production of a phytohormone such as auxin, production of acetoin, production of an antimicrobial compound, production of a siderophore, production of a cellulase, production of a pectinase, production of a chitinase, production of a xylanase, nitrogen fixation, or mineral phosphate solubilization.

[0220] For example, a microbe of the disclosure may produce a phytohormone selected from the group consisting of an auxin, a cytokinin, a gibberellin, ethylene, a brassinosteroid, and abscisic acid.

[0221] Thus, a "metabolite produced by" a microbe of the disclosure, is intended to capture any molecule (small molecule, vitamin, mineral, protein, nucleic acid, lipid, fat, carbohydrate, etc.) produced by the microbe. Often, the exact mechanism of action, whereby a microbe of the disclosure imparts a beneficial trait upon a given plant species is not known. It is hypothesized, that in some instances, the microbe is producing a metabolite that is beneficial to the plant. Thus, in some aspects, a cell-free or inactivated preparation of microbes is beneficial to a plant, as the microbe does not have to be alive to impart a beneficial trait upon the given plant species, so long as the preparation includes a metabolite that was produced by said microbe and which is beneficial to a plant.

[0222] In one embodiment, the microbes of the disclosure may produce auxin (e.g., indole-3-acetic acid (IAA)). Production of auxin can be assayed. Many of the microbes described herein may be capable of producing the plant hormone auxin indole-3-acetic acid (IAA) when grown in culture. Auxin plays a key role in altering the physiology of the plant, including the extent of root growth.

[0223] Therefore, in an embodiment, the microbes of the disclosure are present as a population disposed on the surface or within a tissue of a given plant species. The microbes may produce a metabolite in an amount effective to cause a detectable increase in the amount of metabolite that is found on or within the plant, when compared to a reference plant not treated with the microbes or cell-free or inactive preparations of the disclosure. The metabolites produced by said microbial population may be beneficial to the plant species.

Plant Growth Regulators and Biostimulants

[0224] In some embodiments, the agricultural compositions of the present disclosure comprise plant growth regulators and/or biostimulants, used in combination with the taught microbes.

[0225] In some embodiments, the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods can be combined with known plant growth regulators in the agricultural space, such as: auxins, gibberellins, cytokinins, ethylene generators, growth inhibitors, and growth retardants.

[0226] For example, in some embodiments, the present disclosure teaches agricultural compositions comprising one or more of the following active ingredients including: ancymidol, butralin, alcohols, chloromequat chloride, cytokinin, daminozide, ethepohon, flurprimidol, giberrelic acid, gibberellin mixtures, indole-3-butryic acid (IBA), maleic hydrazide, mefludide, mepiquat chloride, mepiquat pentaborate, naphthalene-acetic acid (NAA), 1-napthaleneacetemide, (NAD), n-decanol, placlobutrazol, prohexadione calcium, trinexapac-ethyl, uniconazole, salicylic acid, abscisic acid, ethylene, brassinosteroids, jasmonates, polyamines, nitric oxide, strigolactones, or karrikins among others.

[0227] In some embodiments, the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods can be combined with seed inoculants known in the agricultural space, such as: QUICKROOTS.RTM., VAULT.RTM., RHIZO-STICK.RTM., NODULATOR.RTM., DORMAL.RTM., SABREX.RTM., among others. In some embodiments, a Bradyrhizobium inoculant is utilized in combination with any single microbe or microbial consortia disclosed here. In particular aspects, a synergistic effect is observed when one combines one of the aforementioned inoculants, e.g. QUICKROOTS.RTM. or Bradyrhizobium, with a microbe or microbial consortia as taught herein.

[0228] In some embodiments, the agricultural compositions of the present disclosure comprise a plant growth regulator, which contains: kinetin, gibberellic acid, and indole butyric acid, along with copper, manganese, and zinc.

[0229] In some aspects, the agricultural compositions comprising microbes of the disclosure (e.g. any microbe or combination thereof from Tables 1-4) and kinetin, gibberellic acid, and indole butyric acid, along with copper, manganese, and zinc, exhibit the ability to act synergistically together.

[0230] In some embodiments, the present disclosure teaches agricultural compositions comprising one or more commercially available plant growth regulators, including but not limited to: Abide.RTM., A-Rest.RTM., Butralin.RTM., Fair.RTM., Royaltac Sucker-Plucker.RTM., Off-Shoot.RTM., Contact-85.RTM., Citadel.RTM., Cycocel.RTM., E-Pro.RTM., Conklin.RTM., Culbac.RTM., Cytoplex.RTM., Early Harvest.RTM., Foli-Zyme.RTM., Goldengro.RTM., Happygro.RTM., Incite.RTM., Megagro.RTM., Ascend.RTM., Radiate.RTM., Stimulate.RTM., Suppress.RTM., Validate.RTM., X-Cyte.RTM., B-Nine.RTM., Compress.RTM., Dazide.RTM., Boll Buster.RTM., BollD.RTM., Cerone.RTM., Cotton Quik.RTM., Ethrel.RTM., Finish.RTM., Flash.RTM., Florel.RTM., Mature.RTM., MFX.RTM., Prep.RTM., Proxy.RTM., Quali-Pro.RTM., SA-50.RTM., Setup.RTM., Super Boll.RTM., Whiteout.RTM., Cutless.RTM., Legacy.RTM., Mastiff.RTM., Topflor.RTM., Ascend.RTM., Cytoplex.RTM., Ascend.RTM., Early Harvest.RTM., Falgro.RTM., Florgib.RTM., Foli-Zyme.RTM., GA3.RTM., GibGro.RTM., Green Sol.RTM., Incite.RTM., N-Large.RTM., PGR IVO, Pro-Gibb.RTM., Release.RTM., Rouse.RTM., Ryzup.RTM., Stimulate.RTM., BVB.RTM., Chrysal.RTM., Fascination.RTM., Procone.RTM., Fair.RTM., Rite-Hite.RTM., Royal.RTM., Sucker Stuff.RTM., Embark.RTM., Sta-Lo.RTM., Pix.RTM., Pentia.RTM., DipN Grow.RTM., Goldengrot.RTM., Rootonet.RTM., Antact.RTM., FST-7.RTM., Royaltac.RTM., Bonzi.RTM., Cambistat.RTM., Cutdown.RTM., Downsize.RTM., Florazol.RTM., Paclo.RTM., Paczol.RTM., Piccolo.RTM., Profile.RTM., Shortstop.RTM., Trimmit.RTM., Turf Enhancer.RTM., Apogee.RTM., Armor Tech.RTM., Goldwing.RTM., Governor.RTM., Groom.RTM., Legacy.RTM., Primeraone.RTM., Primo.RTM., Provair.RTM., Solace.RTM., T-Nex.RTM., T-Pac.RTM., Concise.RTM., and Sumagic.RTM..

[0231] In some embodiments, the present invention teaches a synergistic use of the presently disclosed microbes or microbial consortia with plant growth regulators and/or stimulants such as phytohormones or chemicals that influence the production or disruption of plant growth regulators.

[0232] In some embodiments, the present invention teaches that phytohormones can include: Auxins (e.g., Indole acetic acid IAA), Gibberellins, Cytokinins (e.g., Kinetin), Abscisic acid, Ethylene (and its production as regulated by ACC synthase and disrupted by ACC deaminase).

[0233] In some embodiments, the present invention teaches additional plant-growth promoting chemicals that may act in synergy with the microbes and microbial consortia disclosed herein, such as: humic acids, fulvic acids, amino acids, polyphenols and protein hydrolysates.

[0234] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with Ascend.RTM. or other similar plant growth regulators. Ascend.RTM. is described as comprising 0.090% cytokinin as kinetin, 0.030% gibberellic acid, 0.045% indole butyric acid, and 99.835% other ingredients.

[0235] Thus, in some embodiments, the disclosure provides for the application of the taught microbes in combination with Ascend.RTM. upon any crop. Further, the disclosure provides for the application of the taught microbes in combination with Ascend.RTM. upon any crop and utilizing any method or application rate.

[0236] In some embodiments, the present disclosure teaches agricultural compositions with biostimulants.

[0237] As used herein, the term "biostimulant" refers to any substance that acts to stimulate the growth of microorganisms that may be present in soil or other plant growing medium.

[0238] The level of microorganisms in the soil or growing medium is directly correlated to plant health. Microorganisms feed on biodegradable carbon sources, and therefore plant health is also correlated with the quantity of organic matter in the soil. While fertilizers provide nutrients to feed and grow plants, in some embodiments, biostimulants provide biodegradable carbon, e.g., molasses, carbohydrates, e.g., sugars, to feed and grow microorganisms. Unless clearly stated otherwise, a biostimulant may comprise a single ingredient, or a combination of several different ingredients, capable of enhancing microbial activity or plant growth and development, due to the effect of one or more of the ingredients, either acting independently or in combination.

[0239] In some embodiments, biostimulants are compounds that produce non-nutritional plant growth responses. In some embodiments, many important benefits of biostimulants are based on their ability to influence hormonal activity. Hormones in plants (phytohormones) are chemical messengers regulating normal plant development as well as responses to the environment. Root and shoot growth, as well as other growth responses are regulated by phytohormones. In some embodiments, compounds in biostimulants can alter the hormonal status of a plant and exert large influences over its growth and health. Thus, in some embodiments, the present disclosure teaches sea kelp, humic acids, fulvic acids, and B Vitamins as common components of biostimulants. In some embodiments, the biostimulants of the present disclosure enhance antioxidant activity, which increases the plant's defensive system. In some embodiments, vitamin C, vitamin E, and amino acids such as glycine are antioxidants contained in biostimulants.

[0240] In other embodiments, biostimulants may act to stimulate the growth of microorganisms that are present in soil or other plant growing medium. Prior studies have shown that when certain biostimulants comprising specific organic seed extracts (e.g., soybean) were used in combination with a microbial inoculant, the biostimulants were capable of stimulating growth of microbes included in the microbial inoculant. Thus, in some embodiments, the present disclosure teaches one or more biostimulants that, when used with a microbial inoculant, is capable of enhancing the population of both native microbes and inoculant microbes. For a review of some popular uses of biostimulants, please see Calvo et al., 2014, Plant Soil 383:3-41.

[0241] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with any plant biostimulant.

[0242] In some embodiments, the present disclosure teaches agricultural compositions comprising one or more commercially available biostimulants, including but not limited to: Vitazyme.RTM., Diehard.TM. Biorush.RTM., Diehard.TM. Biorush.RTM. Fe, Diehard.TM. Soluble Kelp, Diehard.TM. Humate SP, Phocon.RTM., Foliar Plus.TM., Plant Plus.TM., Accomplish LM.RTM., Titan.RTM., Soil Builder.TM., Nutri Life, Soil Solution.TM., Seed Coat.TM. PercPlus.TM., Plant Power, CropKarb.RTM., Thrust.TM., Fast2Grow.RTM., Baccarat.RTM., and Potente.RTM. among others.

[0243] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with ProGibb.RTM. or other similar plant growth regulators. ProGibb.RTM. is described as comprising 4.0% Gibberellic Acid and 96.00% other ingredients.

[0244] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with Release.RTM. or other similar plant growth regulators. Release.RTM. is described as comprising 10.0% Gibberellic Acid and 90.00% other ingredients.

[0245] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with RyzUp SmartGrass.RTM. or other similar plant growth regulators. RyzUp SmartGrass.RTM. is described as comprising 40.0% Gibberellin A3 and 60.00% other ingredients.

[0246] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with X-CYTE.TM. or other similar plant growth regulators. X-CYTE.TM. is described as comprising 0.04% Cytokinin, as kinetin and 99.96% other ingredients.

[0247] In some embodiments, the present disclosure teaches that the individual microbes, or microbial consortia, or microbial communities, developed according to the disclosed methods--including any single microorganism or combination of microorganisms disclosed in Tables 1-4 of the specification--can be combined with N-Large.TM. or other similar plant growth regulators. N-Large.TM. is described as comprising 4.0% Gibberellin A3 and 96.00% other ingredients.

[0248] In some embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with an active chemical agent one witnesses an additive effect on a plant phenotypic trait of interest. In other embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with an active chemical agent one witness a synergistic effect on a plant phenotypic trait of interest.

[0249] In some embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a fertilizer one witnesses an additive effect on a plant phenotypic trait of interest. In other embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a fertilizer one witness a synergistic effect on a plant phenotypic trait of interest.

[0250] In some embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a plant growth regulator, one witnesses an additive effect on a plant phenotypic trait of interest. In some embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a plant growth regulator, one witnesses a synergistic effect. In some aspects, the microbes of the present disclosure are combined with Ascend.RTM. and a synergistic effect is observed for one or more phenotypic traits of interest.

[0251] In some embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a biostimulant, one witnesses an additive effect on a plant phenotypic trait of interest. In some embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a biostimulant, one witnesses a synergistic effect.

[0252] The synergistic effect obtained by the taught methods can be quantified according to Colby's formula (i.e. (E)=X+Y-(X*Y/100). See Colby, R. S., "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations," 1967 Weeds, vol. 15, pp. 20-22, incorporated herein by reference in its entirety. Thus, by "synergistic" is intended a component which, by virtue of its presence, increases the desired effect by more than an additive amount.

[0253] The isolated microbes and consortia of the present disclosure can synergistically increase the effectiveness of agricultural active compounds and also agricultural auxiliary compounds.

[0254] In other embodiments, when the microbe or microbial consortia identified according to the taught methods is combined with a fertilizer one witnesses a synergistic effect.

[0255] Furthermore, in certain embodiments, the disclosure utilizes synergistic interactions to define microbial consortia. That is, in certain aspects, the disclosure combines together certain isolated microbial species, which act synergistically, into consortia that impart a beneficial trait upon a plant, or which are correlated with increasing a beneficial plant trait.

[0256] The agricultural compositions developed according to the disclosure can be formulated with certain auxiliaries, in order to improve the activity of a known active agricultural compound. This has the advantage that the amounts of active ingredient in the formulation may be reduced while maintaining the efficacy of the active compound, thus allowing costs to be kept as low as possible and any official regulations to be followed. In individual cases, it may also possible to widen the spectrum of action of the active compound since plants, where the treatment with a particular active ingredient without addition was insufficiently successful, can indeed be treated successfully by the addition of certain auxiliaries along with the disclosed microbial isolates and consortia. Moreover, the performance of the active may be increased in individual cases by a suitable formulation when the environmental conditions are not favorable.

[0257] Such auxiliaries that can be used in an agricultural composition can be an adjuvant. Frequently, adjuvants take the form of surface-active or salt-like compounds. Depending on their mode of action, they can roughly be classified as modifiers, activators, fertilizers, pH buffers, and the like. Modifiers affect the wetting, sticking, and spreading properties of a formulation. Activators break up the waxy cuticle of the plant and improve the penetration of the active ingredient into the cuticle, both short-term (over minutes) and long-term (over hours). Fertilizers such as ammonium sulfate, ammonium nitrate or urea improve the absorption and solubility of the active ingredient and may reduce the antagonistic behavior of active ingredients. pH buffers are conventionally used for bringing the formulation to an optimal pH.

[0258] For further embodiments of agricultural compositions of the present disclosure, See "Chemistry and Technology of Agrochemical Formulations," edited by D. A. Knowles, copyright 1998 by Kluwer Academic Publishers, hereby incorporated by reference.

Seed Treatments

[0259] In some embodiments, the present disclosure also concerns the discovery that treating seeds before they are sown or planted with a combination of one or more of the microbes or agricultural compositions of the present disclosure can enhance a desired plant trait, e.g. plant growth, plant health, and/or plant resistance to pests.

[0260] Thus, in some embodiments, the present disclosure teaches the use of one or more of the microbes or microbial consortia as seed treatments. The seed treatment can be a seed coating applied directly to an untreated and "naked" seed. However, the seed treatment can be a seed overcoat that is applied to a seed that has already been coated with one or more previous seed coatings or seed treatments. The previous seed treatments may include one or more active compounds, either chemical or biological, and one or more inert ingredients.

[0261] The term "seed treatment" generally refers to application of a material to a seed prior to or during the time it is planted in soil. Seed treatment with microbes, and other agricultural compositions of the present disclosure, has the advantages of delivering the treatments to the locus at which the seeds are planted shortly before germination of the seed and emergence of a seedling.

[0262] In other embodiments, the present disclosure also teaches that the use of seed treatments minimizes the amount of microbe or agricultural composition that is required to successfully treat the plants, and further limits the amount of contact of workers with the microbes and compositions compared to application techniques such as spraying over soil or over emerging seedlings.

[0263] Moreover, in some embodiments, the present disclosure teaches that the microbes disclosed herein are important for enhancing the early stages of plant life (e.g., within the first thirty days following emergence of the seedling). Thus, in some embodiments, delivery of the microbes and/or compositions of the present disclosure as a seed treatment places the microbe at the locus of action at a critical time for its activity.

[0264] In some embodiments, the microbial compositions of the present disclosure are formulated as a seed treatment. In some embodiments, it is contemplated that the seeds can be substantially uniformly coated with one or more layers of the microbes and/or agricultural compositions disclosed herein, using conventional methods of mixing, spraying, or a combination thereof through the use of treatment application equipment that is specifically designed and manufactured to accurately, safely, and efficiently apply seed treatment products to seeds. Such equipment uses various types of coating technology such as rotary coaters, drum coaters, fluidized bed techniques, spouted beds, rotary mists, or a combination thereof. Liquid seed treatments such as those of the present disclosure can be applied via either a spinning "atomizer" disk or a spray nozzle, which evenly distributes the seed treatment onto the seed as it moves though the spray pattern. In aspects, the seed is then mixed or tumbled for an additional period of time to achieve additional treatment distribution and drying.

[0265] The seeds can be primed or unprimed before coating with the microbial compositions to increase the uniformity of germination and emergence. In an alternative embodiment, a dry powder formulation can be metered onto the moving seed and allowed to mix until completely distributed.

[0266] In some embodiments, the seeds have at least part of the surface area coated with a microbiological composition, according to the present disclosure. In some embodiments, a seed coat comprising the microbial composition is applied directly to a naked seed. In some embodiments, a seed overcoat comprising the microbial composition is applied to a seed that already has a seed coat applied thereon. In some aspects, the seed may have a seed coat comprising, e.g. clothianidin and/or Bacillus firmus-I-1582, upon which the present composition will be applied on top of, as a seed overcoat. In some aspects, the taught microbial compositions are applied as a seed overcoat to seeds that have already been treated with PONCHO.TM. VOTiVO.TM.. In some aspects, the seed may have a seed coat comprising, e.g. Metalaxyl, and/or clothianidin, and/or Bacillus firmus-I-1582, upon which the present composition will be applied on top of, as a seed overcoat. In some aspects, the taught microbial compositions are applied as a seed overcoat to seeds that have already been treated with ACCELERON.TM..

[0267] In some embodiments, the microorganism-treated seeds have a microbial spore concentration, or microbial cell concentration, from about: 10.sup.3 to 10.sup.12, 10.sup.3 to 10.sup.11, 10.sup.3 to 10.sup.10, 10.sup.3 to 10.sup.9, 10.sup.3 to 10.sup.8, 10.sup.3 to 10.sup.7, 10.sup.3 to 10.sup.6, 10.sup.3 to 10.sup.5, or 10.sup.3 to 10.sup.4 per seed.

[0268] In some embodiments, the microorganism-treated seeds have a microbial spore concentration, or microbial cell concentration, from about: 10.sup.4 to 10.sup.12, 10.sup.4 to 1.sup.11, 10.sup.4 to 10.sup.10, 10.sup.4 to 10.sup.9, 10.sup.4 to 10.sup.8, 10.sup.4 to 10.sup.7, 10.sup.4 to 10.sup.6, or 10.sup.4 to 10.sup.5 per seed.

[0269] In some embodiments, the microorganism-treated seeds have a microbial spore concentration, or microbial cell concentration, from about: 10.sup.5 to 10.sup.12, 10.sup.5 to 10.sup.11, 10.sup.5 to 10.sup.10, 10.sup.5 to 10.sup.9, 10.sup.5 to 10.sup.8, 10.sup.5 to 10.sup.7, or 10.sup.5 to 10.sup.6 per seed.

[0270] In some embodiments, the microorganism-treated seeds have a microbial spore concentration, or microbial cell concentration, from about: 10.sup.5 to 10.sup.9 per seed.

[0271] In some embodiments, the microorganism-treated seeds have a microbial spore concentration, or microbial cell concentration, of at least about: 1.times.10.sup.3, or 1.times.10.sup.4, or 1.times.10.sup.5, or 1.times.10.sup.6, or 1.times.10.sup.7, or 1.times.10.sup.8, or 1.times.10.sup.9 per seed.

[0272] In some embodiments, the amount of one or more of the microbes and/or agricultural compositions applied to the seed depend on the final formulation, as well as size or type of the plant or seed utilized. In some embodiments, one or more of the microbes are present in about 2% w/w/to about 80% w/w of the entire formulation. In some embodiments, the one or more of the microbes employed in the compositions is about 5% w/w to about 65% w/w, or 10% w/w to about 60% w/w by weight of the entire formulation.

[0273] In some embodiments, the seeds may also have more spores or microbial cells per seed, such as, for example about 10.sup.2, 10.sup.3, 10.sup.4, 10.sup.5, 10.sup.6, 10.sup.7, 10.sup.8, 10.sup.9, 10.sup.10, 10.sup.11, 10.sup.12, 10.sup.13, 10.sup.14, 10.sup.15, 10.sup.16, or 10.sup.17 spores or cells per seed.

[0274] In some embodiments, the seed coats of the present disclosure can be up to 10 .mu.m, 20 .mu.m, 30 .mu.m, 40 .mu.m, 50 .mu.m, 60 .mu.m, 70 .mu.m, 80 .mu.m, 90 .mu.m, 100 .mu.m, 110 .mu.m, 120 .mu.m, 130 .mu.m, 140 .mu.m, 150 .mu.m, 160 .mu.m, 170 .mu.m, 180 .mu.m, 190 .mu.m, 200 .mu.m, 210 .mu.m, 220 .mu.m, 230 .mu.m, 240 .mu.m, 250 .mu.m, 260 .mu.m, 270 .mu.m, 280 .mu.m, 290 .mu.m, 300 .mu.m, 310 .mu.m, 320 .mu.m, 330 .mu.m, 340 .mu.m, 350 .mu.m, 360 .mu.m, 370 .mu.m, 380 .mu.m, 390 .mu.m, 400 .mu.m, 410 .mu.m, 420 .mu.m, 430 .mu.m, 440 .mu.m, 450 .mu.m, 460 .mu.m, 470 .mu.m, 480 .mu.m, 490 .mu.m, 500 .mu.m, 510 .mu.m, 520 .mu.m, 530 .mu.m, 540 .mu.m, 550 .mu.m, 560 .mu.m, 570 .mu.m, 580 .mu.m, 590 .mu.m, 600 .mu.m, 610 .mu.m, 620 .mu.m, 630 .mu.m, 640 .mu.m, 650 .mu.m, 660 .mu.m, 670 .mu.m, 680 .mu.m, 690 .mu.m, 700 .mu.m, 710 .mu.m, 720 .mu.m, 730 .mu.m, 740 .mu.m, 750 .mu.m, 760 .mu.m, 770 .mu.m, 780 .mu.m, 790 .mu.m, 800 .mu.m, 810 .mu.m, 820 .mu.m, 830 .mu.m, 840 .mu.m, 850 .mu.m, 860 .mu.m, 870 .mu.m, 880 .mu.m, 890 .mu.m, 900 .mu.m, 910 .mu.m, 920 .mu.m, 930 .mu.m, 940 .mu.m, 950 .mu.m, 960 .mu.m, 970 .mu.m, 980 .mu.m, 990 .mu.m, 1000 .mu.m, 1010 .mu.m, 1020 .mu.m, 1030 .mu.m, 1040 .mu.m, 1050 .mu.m, 1060 .mu.m, 1070 .mu.m, 1080 .mu.m, 1090 .mu.m, 1100 .mu.m, 1110 .mu.m, 1120 .mu.m, 1130 .mu.m, 1140 .mu.m, 1150 .mu.m, 1160 .mu.m, 1170 .mu.m, 1180 .mu.m, 1190 .mu.m, 1200 .mu.m, 1210 .mu.m, 1220 .mu.m, 1230 .mu.m, 1240 .mu.m, 1250 .mu.m, 1260 .mu.m, 1270 .mu.m, 1280 .mu.m, 1290 .mu.m, 1300 .mu.m, 1310 .mu.m, 1320 .mu.m, 1330 .mu.m, 1340 .mu.m, 1350 .mu.m, 1360 .mu.m, 1370 .mu.m, 1380 .mu.m, 1390 .mu.m, 1400 .mu.m, 1410 .mu.m, 1420 .mu.m, 1430 .mu.m, 1440 .mu.m, 1450 .mu.m, 1460 .mu.m, 1470 .mu.m, 1480 .mu.m, 1490 .mu.m, 1500 .mu.m, 1510 .mu.m, 1520 .mu.m, 1530 .mu.m, 1540 .mu.m, 1550 .mu.m, 1560 .mu.m, 1570 .mu.m, 1580 .mu.m, 1590 .mu.m, 1600 .mu.m, 1610 .mu.m, 1620 .mu.m, 1630 .mu.m, 1640 .mu.m, 1650 .mu.m, 1660 .mu.m, 1670 .mu.m, 1680 .mu.m, 1690 .mu.m, 1700 .mu.m, 1710 .mu.m, 1720 .mu.m, 1730 .mu.m, 1740 .mu.m, 1750 .mu.m, 1760 .mu.m, 1770 .mu.m, 1780 .mu.m, 1790 .mu.m, 1800 .mu.m, 1810 .mu.m, 1820 .mu.m, 1830 .mu.m, 1840 .mu.m, 1850 .mu.m, 1860 .mu.m, 1870 .mu.m, 1880 .mu.m, 1890 .mu.m, 1900 .mu.m, 1910 .mu.m, 1920 .mu.m, 1930 .mu.m, 1940 .mu.m, 1950 .mu.m, 1960 .mu.m, 1970 .mu.m, 1980 .mu.m, 1990 .mu.m, 2000 .mu.m, 2010 .mu.m, 2020 .mu.m, 2030 .mu.m, 2040 .mu.m, 2050 .mu.m, 2060 .mu.m, 2070 .mu.m, 2080 .mu.m, 2090 .mu.m, 2100 .mu.m, 2110 .mu.m, 2120 .mu.m, 2130 .mu.m, 2140 .mu.m, 2150 .mu.m, 2160 .mu.m, 2170 .mu.m, 2180 .mu.m, 2190 .mu.m, 2200 .mu.m, 2210 .mu.m, 2220 .mu.m, 2230 .mu.m, 2240 .mu.m, 2250 .mu.m, 2260 .mu.m, 2270 .mu.m, 2280 .mu.m, 2290 .mu.m, 2300 .mu.m, 2310 .mu.m, 2320 .mu.m, 2330 .mu.m, 2340 .mu.m, 2350 .mu.m, 2360 .mu.m, 2370 .mu.m, 2380 .mu.m, 2390 .mu.m, 2400 .mu.m, 2410 .mu.m, 2420 .mu.m, 2430 .mu.m, 2440 .mu.m, 2450 .mu.m, 2460 .mu.m, 2470 .mu.m, 2480 .mu.m, 2490 .mu.m, 2500 .mu.m, 2510 .mu.m, 2520 .mu.m, 2530 .mu.m, 2540 .mu.m, 2550 .mu.m, 2560 .mu.m, 2570 .mu.m, 2580 .mu.m, 2590 .mu.m, 2600 .mu.m, 2610 .mu.m, 2620 .mu.m, 2630 .mu.m, 2640 .mu.m, 2650 .mu.m, 2660 .mu.m, 2670 .mu.m, 2680 .mu.m, 2690 .mu.m, 2700 .mu.m, 2710 .mu.m, 2720 .mu.m, 2730 .mu.m, 2740 .mu.m, 2750 .mu.m, 2760 .mu.m, 2770 .mu.m, 2780 .mu.m, 2790 .mu.m, 2800 .mu.m, 2810 .mu.m, 2820 .mu.m, 2830 .mu.m, 2840 .mu.m, 2850 .mu.m, 2860 .mu.m, 2870 .mu.m, 2880 .mu.m, 2890 .mu.m, 2900 .mu.m, 2910 .mu.m, 2920 .mu.m, 2930 .mu.m, 2940 .mu.m, 2950 .mu.m, 2960 .mu.m, 2970 .mu.m, 2980 .mu.m, 2990 .mu.m, or 3000 .mu.m thick.

[0275] In some embodiments, the seed coats of the present disclosure can be 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or 5 mm thick.

[0276] In some embodiments, the seed coats of the present disclosure can be at least 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20%, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, 24.5%, 25%, 25.5%, 26%, 26.5%, 27%, 27.5%, 28%, 28.5%, 29%, 29.5%, 30%, 30.5%, 31%, 31.5%, 32%, 32.5%, 33%, 33.5%, 34%, 34.5%, 35%, 35.5%, 36%, 36.5%, 37%, 37.5%, 38%, 38.5%, 39%, 39.5%, 40%, 40.5%, 41%, 41.5%, 42%, 42.5%, 43%, 43.5%, 44%, 44.5%, 45%, 45.5%, 46%, 46.5%, 47%, 47.5%, 48%, 48.5%, 49%, 49.5%, or 50% of the uncoated seed weight.

[0277] In some embodiments, the microbial spores and/or cells can be coated freely onto the seeds or they can be formulated in a liquid or solid composition before being coated onto the seeds. For example, a solid composition comprising the microorganisms can be prepared by mixing a solid carrier with a suspension of the spores until the solid carriers are impregnated with the spore or cell suspension. This mixture can then be dried to obtain the desired particles.

[0278] In some other embodiments, it is contemplated that the solid or liquid microbial compositions of the present disclosure further contain functional agents e.g., activated carbon, nutrients (fertilizers), and other agents capable of improving the germination and quality of the products or a combination thereof.

[0279] Seed coating methods and compositions that are known in the art can be particularly useful when they are modified by the addition of one of the embodiments of the present disclosure. Such coating methods and apparatus for their application are disclosed in, for example: U.S. Pat. Nos. 5,916,029; 5,918,413; 5,554,445; 5,389,399; 4,759,945; 4,465,017, and U.S. patent application Ser. No. 13/260,310, each of which is incorporated by reference herein.

[0280] Seed coating compositions are disclosed in, for example: U.S. Pat. Nos. 5,939,356; 5,876,739, 5,849,320; 5,791,084, 5,661,103; 5,580,544, 5,328,942; 4,735,015; 4,634,587; 4,372,080, 4,339,456; and 4,245,432, each of which is incorporated by reference herein.

[0281] In some embodiments, a variety of additives can be added to the seed treatment formulations comprising the inventive compositions. Binders can be added and include those composed of an adhesive polymer that can be natural or synthetic without phytotoxic effect on the seed to be coated. The binder may be selected from polyvinyl acetates; polyvinyl acetate copolymers; ethylene vinyl acetate (EVA) copolymers; polyvinyl alcohols; polyvinyl alcohol copolymers; celluloses, including ethylcelluloses, methylcelluloses, hydroxymethylcelluloses, hydroxypropylcelluloses and carboxymethylcellulose; polyvinylpyrolidones; polysaccharides, including starch, modified starch, dextrins, maltodextrins, alginate and chitosans; fats; oils; proteins, including gelatin and zeins; gum arabics; shellacs; vinylidene chloride and vinylidene chloride copolymers; calcium lignosulfonates; acrylic copolymers; polyvinylacrylates; polyethylene oxide; acrylamide polymers and copolymers; polyhydroxyethyl acrylate, methylacrylamide monomers; and polychloroprene.

[0282] Any of a variety of colorants may be employed, including organic chromophores classified as nitroso; nitro; azo, including monoazo, bisazo and polyazo; acridine, anthraquinone, azine, diphenylmethane, indamine, indophenol, methine, oxazine, phthalocyanine, thiazine, thiazole, triarylmethane, xanthene. Other additives that can be added include trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

[0283] A polymer or other dust control agent can be applied to retain the treatment on the seed surface.

[0284] In some specific embodiments, in addition to the microbial cells or spores, the coating can further comprise a layer of adherent. The adherent should be non-toxic, biodegradable, and adhesive. Examples of such materials include, but are not limited to, polyvinyl acetates; polyvinyl acetate copolymers; polyvinyl alcohols; polyvinyl alcohol copolymers; celluloses, such as methyl celluloses, hydroxymethyl celluloses, and hydroxymethyl propyl celluloses; dextrins; alginates; sugars; molasses; polyvinyl pyrrolidones; polysaccharides; proteins; fats; oils; gum arabics; gelatins; syrups; and starches. More examples can be found in, for example, U.S. Pat. No. 7,213,367, incorporated herein by reference.

[0285] Various additives, such as adherents, dispersants, surfactants, and nutrient and buffer ingredients, can also be included in the seed treatment formulation. Other conventional seed treatment additives include, but are not limited to: coating agents, wetting agents, buffering agents, and polysaccharides. At least one agriculturally acceptable carrier can be added to the seed treatment formulation such as water, solids, or dry powders. The dry powders can be derived from a variety of materials such as calcium carbonate, gypsum, vermiculite, talc, humus, activated charcoal, and various phosphorous compounds.

[0286] In some embodiments, the seed coating composition can comprise at least one filler, which is an organic or inorganic, natural or synthetic component with which the active components are combined to facilitate its application onto the seed. In aspects, the filler is an inert solid such as clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), natural soil minerals, such as kaolins, clays, talc, lime, quartz, attapulgite, montmorillonite, bentonite or diatomaceous earths, or synthetic minerals, such as silica, alumina or silicates, in particular aluminium or magnesium silicates.

[0287] In some embodiments, the seed treatment formulation may further include one or more of the following ingredients: other pesticides, including compounds that act only below the ground; fungicides, such as captan, thiram, metalaxyl, fludioxonil, oxadixyl, and isomers of each of those materials, and the like; herbicides, including compounds selected from glyphosate, carbamates, thiocarbamates, acetamides, triazines, dinitroanilines, glycerol ethers, pyridazinones, uracils, phenoxys, ureas, and benzoic acids; herbicidal safeners such as benzoxazine, benzhydryl derivatives, N,N-diallyl dichloroacetamide, various dihaloacyl, oxazolidinyl and thiazolidinyl compounds, ethanone, naphthalic anhydride compounds, and oxime derivatives; chemical fertilizers; biological fertilizers; and biocontrol agents such as other naturally-occurring or recombinant bacteria and fungi from the genera Rhizobium, Bacillus, Pseudomonas, Serratia, Trichoderma, Glomus, Gliocladium and mycorrhizal fungi. These ingredients may be added as a separate layer on the seed, or alternatively may be added as part of the seed coating composition of the disclosure.

[0288] In some embodiments, the formulation that is used to treat the seed in the present disclosure can be in the form of a suspension; emulsion; slurry of particles in an aqueous medium (e.g., water); wettable powder; wettable granules (dry flowable); and dry granules. If formulated as a suspension or slurry, the concentration of the active ingredient in the formulation can be about 0.5% to about 99% by weight (w/w), or 5-40%, or as otherwise formulated by those skilled in the art.

[0289] As mentioned above, other conventional inactive or inert ingredients can be incorporated into the formulation. Such inert ingredients include, but are not limited to: conventional sticking agents; dispersing agents such as methylcellulose, for example, serve as combined dispersant/sticking agents for use in seed treatments; polyvinyl alcohol; lecithin, polymeric dispersants (e.g., polyvinylpyrrolidone/vinyl acetate); thickeners (e.g., clay thickeners to improve viscosity and reduce settling of particle suspensions); emulsion stabilizers; surfactants; antifreeze compounds (e.g., urea), dyes, colorants, and the like. Further inert ingredients useful in the present disclosure can be found in McCutcheon's, vol. 1, "Emulsifiers and Detergents," MC Publishing Company, Glen Rock, N.J., U.S.A., 1996, incorporated by reference herein.

[0290] The seed coating formulations of the present disclosure can be applied to seeds by a variety of methods, including, but not limited to: mixing in a container (e.g., a bottle or bag), mechanical application, tumbling, spraying, and immersion. A variety of active or inert material can be used for contacting seeds with microbial compositions according to the present disclosure.

[0291] In some embodiments, the amount of the microbes or agricultural composition that is used for the treatment of the seed will vary depending upon the type of seed and the type of active ingredients, but the treatment will comprise contacting the seeds with an agriculturally effective amount of the inventive composition.

[0292] As discussed above, an effective amount means that amount of the inventive composition that is sufficient to affect beneficial or desired results. An effective amount can be administered in one or more administrations.

[0293] In some embodiments, in addition to the coating layer, the seed may be treated with one or more of the following ingredients: other pesticides including fungicides and herbicides; herbicidal safeners; fertilizers and/or biocontrol agents. These ingredients may be added as a separate layer or alternatively may be added in the coating layer.

[0294] In some embodiments, the seed coating formulations of the present disclosure may be applied to the seeds using a variety of techniques and machines, such as fluidized bed techniques, the roller mill method, rotostatic seed treaters, and drum coaters. Other methods, such as spouted beds may also be useful. The seeds may be pre-sized before coating. After coating, the seeds are typically dried and then transferred to a sizing machine for sizing. Such procedures are known in the art.

[0295] In some embodiments, the microorganism-treated seeds may also be enveloped with a film overcoating to protect the coating. Such overcoatings are known in the art and may be applied using fluidized bed and drum film coating techniques.

[0296] In other embodiments of the present disclosure, compositions according to the present disclosure can be introduced onto a seed by use of solid matrix priming. For example, a quantity of an inventive composition can be mixed with a solid matrix material and then the seed can be placed into contact with the solid matrix material for a period to allow the composition to be introduced to the seed. The seed can then optionally be separated from the solid matrix material and stored or used, or the mixture of solid matrix material plus seed can be stored or planted directly. Solid matrix materials which are useful in the present disclosure include polyacrylamide, starch, clay, silica, alumina, soil, sand, polyurea, polyacrylate, or any other material capable of absorbing or adsorbing the inventive composition for a time and releasing that composition into or onto the seed. It is useful to make sure that the inventive composition and the solid matrix material are compatible with each other. For example, the solid matrix material should be chosen so that it can release the composition at a reasonable rate, for example over a period of minutes, hours, or days.

Microorganisms

[0297] As used herein the term "microorganism" should be taken broadly. It includes, but is not limited to, the two prokaryotic domains, Bacteria and Archaea, as well as eukaryotic fungi and protists.

[0298] By way of example, the microorganisms may include: Proteobacteria (such as Pseudomonas, Enterobacter, Stenotrophomonas, Burkholderia, Rhizobium, Herbaspirillum, Pantoea, Serratia, Rahnella, Azospirillum, Azorhizobium, Azotobacter, Duganella, Delftia, Bradyrhizobiun, Sinorhizobium and Halomonas), Firmicutes (such as Bacillus, Paenibacillus, Lactobacillus, Mycoplasma, and Acetobacterium), Actinobacteria (such as Streptomyces, Rhodococcus, Microbacterium, and Curtobacterium), and the fungi Ascomycota (such as Trichoderma, Ampelomyces, Coniothyrium, Paecoelomyces, Penicillium, Cladosporium, Hypocrea, Beauveria, Metarhizium, Verticullium, Cordyceps, Pichea, and Candida, Basidiomycota (such as Coprinus, Corticium, and Agaricus) and Oomycota (such as Pythium, Mucor, and Mortierella).

[0299] In a particular embodiment, the microorganism is an endophyte, or an epiphyte, or a microorganism inhabiting the plant rhizosphere or rhizosheath. That is, the microorganism may be found present in the soil material adhered to the roots of a plant or in the area immediately adjacent a plant's roots. In one embodiment, the microorganism is a seed-borne endophyte.

[0300] Endophytes may benefit host plants by preventing pathogenic organisms from colonizing them. Extensive colonization of the plant tissue by endophytes creates a "barrier effect," where the local endophytes outcompete and prevent pathogenic organisms from taking hold. Endophytes may also produce chemicals which inhibit the growth of competitors, including pathogenic organisms.

[0301] In certain embodiments, the microorganism is unculturable. This should be taken to mean that the microorganism is not known to be culturable or is difficult to culture using methods known to one skilled in the art.

[0302] Microorganisms of the present disclosure may be collected or obtained from any source or contained within and/or associated with material collected from any source.

[0303] In an embodiment, the microorganisms are obtained from any general terrestrial environment, including its soils, plants, fungi, animals (including invertebrates) and other biota, including the sediments, water and biota of lakes and rivers; from the marine environment, its biota and sediments (for example sea water, marine muds, marine plants, marine invertebrates (for example sponges), marine vertebrates (for example, fish)); the terrestrial and marine geosphere (regolith and rock, for example crushed subterranean rocks, sand and clays); the cryosphere and its meltwater; the atmosphere (for example, filtered aerial dusts, cloud and rain droplets); urban, industrial and other man-made environments (for example, accumulated organic and mineral matter on concrete, roadside gutters, roof surfaces, road surfaces).

[0304] In another embodiment the microorganisms are collected from a source likely to favor the selection of appropriate microorganisms. By way of example, the source may be a particular environment in which it is desirable for other plants to grow, or which is thought to be associated with terroir. In another example, the source may be a plant having one or more desirable traits, for example a plant which naturally grows in a particular environment or under certain conditions of interest. By way of example, a certain plant may naturally grow in sandy soil or sand of high salinity, or under extreme temperatures, or with little water, or it may be resistant to certain pests or disease present in the environment, and it may be desirable for a commercial crop to be grown in such conditions, particularly if they are, for example, the only conditions available in a particular geographic location. By way of further example, the microorganisms may be collected from commercial crops grown in such environments, or more specifically from individual crop plants best displaying a trait of interest amongst a crop grown in any specific environment, for example the fastest-growing plants amongst a crop grown in saline-limiting soils, or the least damaged plants in crops exposed to severe insect damage or disease epidemic, or plants having desired quantities of certain metabolites and other compounds, including fiber content, oil content, and the like, or plants displaying desirable colors, taste, or smell. The microorganisms may be collected from a plant of interest or any material occurring in the environment of interest, including fungi and other animal and plant biota, soil, water, sediments, and other elements of the environment as referred to previously. In certain embodiments, the microorganisms are individual isolates separated from different environments.

[0305] In one embodiment, a microorganism or a combination of microorganisms, of use in the methods of the disclosure may be selected from a pre-existing collection of individual microbial species or strains based on some knowledge of their likely or predicted benefit to a plant. For example, the microorganism may be predicted to: improve nitrogen fixation; release phosphate from the soil organic matter; release phosphate from the inorganic forms of phosphate (e.g. rock phosphate); "fix carbon" in the root microsphere; live in the rhizosphere of the plant thereby assisting the plant in absorbing nutrients from the surrounding soil and then providing these more readily to the plant; increase the number of nodules on the plant roots and thereby increase the number of symbiotic nitrogen fixing bacteria (e.g. Rhizobium species) per plant and the amount of nitrogen fixed by the plant; elicit plant defensive responses such as ISR (induced systemic resistance) or SAR (systemic acquired resistance) which help the plant resist the invasion and spread of pathogenic microorganisms; compete with microorganisms deleterious to plant growth or health by antagonism, or competitive utilization of resources such as nutrients or space; change the color of one or more part of the plant, or change the chemical profile of the plant, its smell, taste or one or more other quality.

[0306] In one embodiment a microorganism or combination of microorganisms is selected from a pre-existing collection of individual microbial species or strains that provides no knowledge of their likely or predicted benefit to a plant. For example, a collection of unidentified microorganisms isolated from plant tissues without any knowledge of their ability to improve plant growth or health, or a collection of microorganisms collected to explore their potential for producing compounds that could lead to the development of pharmaceutical drugs.

[0307] In one embodiment, the microorganisms are acquired from the source material (for example, soil, rock, water, air, dust, plant or other organism) in which they naturally reside. The microorganisms may be provided in any appropriate form, having regard to its intended use in the methods of the disclosure. However, by way of example only, the microorganisms may be provided as an aqueous suspension, gel, homogenate, granule, powder, slurry, live organism or dried material.

[0308] The microorganisms of the disclosure may be isolated in substantially pure or mixed cultures. They may be concentrated, diluted, or provided in the natural concentrations in which they are found in the source material. For example, microorganisms from saline sediments may be isolated for use in this disclosure by suspending the sediment in fresh water and allowing the sediment to fall to the bottom. The water containing the bulk of the microorganisms may be removed by decantation after a suitable period of settling and either applied directly to the plant growth medium, or concentrated by filtering or centrifugation, diluted to an appropriate concentration and applied to the plant growth medium with the bulk of the salt removed. By way of further example, microorganisms from mineralized or toxic sources may be similarly treated to recover the microbes for application to the plant growth material to minimize the potential for damage to the plant.

[0309] In another embodiment, the microorganisms are used in a crude form, in which they are not isolated from the source material in which they naturally reside. For example, the microorganisms are provided in combination with the source material in which they reside; for example, as soil, or the roots, seed or foliage of a plant. In this embodiment, the source material may include one or more species of microorganisms.

[0310] In some embodiments, a mixed population of microorganisms is used in the methods of the disclosure.

[0311] In embodiments of the disclosure where the microorganisms are isolated from a source material (for example, the material in which they naturally reside), any one or a combination of a number of standard techniques which will be readily known to skilled persons may be used. However, by way of example, these in general employ processes by which a solid or liquid culture of a single microorganism can be obtained in a substantially pure form, usually by physical separation on the surface of a solid microbial growth medium or by volumetric dilutive isolation into a liquid microbial growth medium. These processes may include isolation from dry material, liquid suspension, slurries or homogenates in which the material is spread in a thin layer over an appropriate solid gel growth medium, or serial dilutions of the material made into a sterile medium and inoculated into liquid or solid culture media.

[0312] Whilst not essential, in one embodiment, the material containing the microorganisms may be pre-treated prior to the isolation process in order to either multiply all microorganisms in the material, or select portions of the microbial population, either by enriching the material with microbial nutrients (for example, by pasteurizing the sample to select for microorganisms resistant to heat exposure (for example, bacilli), or by exposing the sample to low concentrations of an organic solvent or sterilant (for example, household bleach) to enhance the survival of spore-forming or solvent-resistant microorganisms). Microorganisms can then be isolated from the enriched materials or materials treated for selective survival, as above.

[0313] In an embodiment of the disclosure, endophytic or epiphytic microorganisms are isolated from plant material. Any number of standard techniques known in the art may be used and the microorganisms may be isolated from any appropriate tissue in the plant, including for example root, stem and leaves, and plant reproductive tissues. By way of example, conventional methods for isolation from plants typically include the sterile excision of the plant material of interest (e.g. root or stem lengths, leaves), surface sterilization with an appropriate solution (e.g. 2% sodium hypochlorite), after which the plant material is placed on nutrient medium for microbial growth (See, for example, Strobel G and Daisy B (2003) Microbiology and Molecular Biology Reviews 67 (4): 491-502; Zinniel D K et al. (2002) Applied and Environmental Microbiology 68 (5): 2198-2208).

[0314] In one embodiment of the disclosure, the microorganisms are isolated from root tissue. Further methodology for isolating microorganisms from plant material are detailed hereinafter.

[0315] In one embodiment, the microbial population is exposed (prior to the method or at any stage of the method) to a selective pressure. For example, exposure of the microorganisms to pasteurisation before their addition to a plant growth medium (preferably sterile) is likely to enhance the probability that the plants selected for a desired trait will be associated with spore-forming microbes that can more easily survive in adverse conditions, in commercial storage, or if applied to seed as a coating, in an adverse environment.

[0316] In certain embodiments, as mentioned herein before, the microorganism(s) may be used in crude form and need not be isolated from a plant or a media. For example, plant material or growth media which includes the microorganisms identified to be of benefit to a selected plant may be obtained and used as a crude source of microorganisms for the next round of the method or as a crude source of microorganisms at the conclusion of the method. For example, whole plant material could be obtained and optionally processed, such as mulched or crushed. Alternatively, individual tissues or parts of selected plants (such as leaves, stems, roots, and seeds) may be separated from the plant and optionally processed, such as mulched or crushed. In certain embodiments, one or more part of a plant which is associated with the second set of one or more microorganisms may be removed from one or more selected plants and, where any successive repeat of the method is to be conducted, grafted on to one or more plant used in any step of the plant breeding methods.

Plants that are Able to Benefit from the Application of the Disclosed Microbes, Consortia, and Compositions Comprising the Same

[0317] Any number of a variety of different plants, including mosses and lichens and algae, may be used in the methods of the disclosure. In embodiments, the plants have economic, social, or environmental value. For example, the plants may include those used as: food crops, fiber crops, oil crops, in the forestry industry, in the pulp and paper industry, as a feedstock for biofuel production, and as ornamental plants.

[0318] In other embodiments, the plants may be economically, socially, or environmentally undesirable, such as weeds. The following is a list of non-limiting examples of the types of plants the methods of the disclosure may be applied to:

Food Crops:

[0319] Cereals e.g maize, rice, wheat, barley, sorghum, millet, oats, rye, triticale, and buckwheat;

[0320] Leafy vegetables e.g. brassicaceous plants such as cabbages, broccoli, bok Choy, rocket; salad greens such as spinach, cress, and lettuce;

[0321] Fruiting and flowering vegetables e.g. avocado, sweet corn, artichokes; curcubits e.g. squash, cucumbers, melons, courgettes, pumpkins; solanaceous vegetables/fruits e.g. tomatoes, eggplant, and capsicums;

[0322] Podded vegetables e.g. groundnuts, peanuts, peas, soybeans, beans, lentils, chickpea, okra;

[0323] Bulbed and stem vegetables e.g. asparagus, celery, Allium crops e.g garlic, onions, and leeks;

[0324] Roots and tuberous vegetables e.g. carrots, beet, bamboo shoots, cassava, yams, ginger, Jerusalem artichoke, parsnips, radishes, potatoes, sweet potatoes, taro, turnip, and wasabi;

[0325] Sugar crops including sugar beet (Beta vulgaris), sugar cane (Saccharum officinarum);

[0326] Crops grown for the production of non-alcoholic beverages and stimulants e.g. coffee, black, herbal, and green teas, cocoa, marijuana, and tobacco;

[0327] Fruit crops such as true berry fruits (e.g. kiwifruit, grape, currants, gooseberry, guava, feijoa, pomegranate), citrus fruits (e.g. oranges, lemons, limes, grapefruit), epigynous fruits (e.g. bananas, cranberries, blueberries), aggregate fruit (blackberry, raspberry, boysenberry), multiple fruits (e.g. pineapple, fig), stone fruit crops (e.g. apricot, peach, cherry, plum), pip-fruit (e.g. apples, pears) and others such as strawberries, sunflower seeds;

[0328] Culinary and medicinal herbs e.g. rosemary, basil, bay laurel, coriander, mint, dill, Hypericum, foxglove, alovera, rosehips, and cannabis;

[0329] Crop plants producing spices e.g. black pepper, cumin cinnamon, nutmeg, ginger, cloves, saffron, cardamom, mace, paprika, masalas, star anise;

[0330] Crops grown for the production of nuts e.g. almonds and walnuts, Brazil nut, cashew nuts, coconuts, chestnut, macadamia nut, pistachio nuts; peanuts, pecan nuts;

[0331] Crops grown for production of beers, wines and other alcoholic beverages e.g grapes, and hops;

[0332] Oilseed crops e.g. soybean, peanuts, cotton, olives, sunflower, sesame, lupin species and brassicaeous crops (e.g. canola/oilseed rape); and, edible fungi e.g. white mushrooms, Shiitake and oyster mushrooms;

Plants Used in Pastoral Agriculture:

[0333] Legumes: Trifolium species, Medicago species, and Lotus species; White clover (T. repens); Red clover (T. pratense); Caucasian clover (T. ambigum); subterranean clover (T. subterraneum); Alfalfa/Lucerne (Medicago sativum); annual medics; barrel medic; black medic; Sainfoin (Onobrychis viciifolia); Birdsfoot trefoil (Lotus corniculatus); Greater Birdsfoot trefoil (Lotus pedunculatus);

[0334] Seed legumes/pulses including Peas (Pisum sativum), Common bean (Phaseolus vulgaris), Broad beans (Vicia faba), Mung bean (Vigna radiata), Cowpea (Vigna unguiculata), Chick pea (Cicer arietum), Lupins (Lupinus species); Cereals including Maize/com (Zea mays), Sorghum (Sorghum spp.), Millet (Panicum miliaceum, P. sumatrense), Rice (Oryza sativa indica, Oryza sativa japonica), Wheat (Triticum sativa), Barley (Hordeum vulgare), Rye (Secale cereale), Triticale (Triticum X Secale), Oats (Avena sativa);

[0335] Forage and Amenity grasses: Temperate grasses such as Lolium species; Festuca species; Agrostis spp., Perennial ryegrass (Lolium perenne); hybrid ryegrass (Lolium hybridum); annual ryegrass (Lolium multiflorum), tall fescue (Festuca arundinacea); meadow fescue (Festuca pratensis); red fescue (Festuca rubra); Festuca ovina; Festuloliums (Lolium X Festuca crosses); Cocksfoot (Dactylis glomerata); Kentucky bluegrass Poa pratensis; Poa palustris; Poa nemoralis; Poa trivialis; Poa compresa; Bromus species; Phalaris (Phleum species); Arrhenatherum elatius; Agropyron species; Avena strigosa; Setaria italic;

[0336] Tropical grasses such as: Phalaris species; Brachiaria species; Eragrostis species; Panicum species; Bahai grass (Paspalum notatum); Brachypodium species; and, grasses used for biofuel production such as Switchgrass (Panicum virgatum) and Miscanthus species;

Fiber Crops:

[0337] Cotton, hemp, jute, coconut, sisal, flax (Linum spp.), New Zealand flax (Phormium spp.); plantation and natural forest species harvested for paper and engineered wood fiber products such as coniferous and broadleafed forest species;

Tree and Shrub Species Used in Plantation Forestry and Bio-Fuel Crops:

[0338] Pine (Pinus species); Fir (Pseudotsuga species); Spruce (Picea species); Cypress (Cupressus species); Wattle (Acacia species); Alder (Alnus species); Oak species (Quercus species); Redwood (Sequoiadendron species); willow (Salix species); birch (Betula species); Cedar (Cedurus species); Ash (Fraxinus species); Larch (Larix species); Eucalyptus species; Bamboo (Bambuseae species) and Poplars (Populus species).

Plants Grown for Conversion to Energy, Biofuels or Industrial Products by Extractive. Biological. Physical or Biochemical Treatment:

[0339] Oil-producing plants such as oil palm, jatropha, soybean, cotton, linseed; Latex-producing plants such as the Para Rubber tree, Hevea brasiliensis and the Panama Rubber Tree Castilla elastica; plants used as direct or indirect feedstocks for the production of biofuels i.e. after chemical, physical (e.g. thermal or catalytic) or biochemical (e.g. enzymatic pre-treatment) or biological (e.g. microbial fermentation) transformation during the production of biofuels, industrial solvents or chemical products e.g. ethanol or butanol, propane dials, or other fuel or industrial material including sugar crops (e.g. beet, sugar cane), starch producing crops (e.g. C3 and C4 cereal crops and tuberous crops), cellulosic crops such as forest trees (e.g. Pines, Eucalypts) and Graminaceous and Poaceous plants such as bamboo, switch grass, miscanthus; crops used in energy, biofuel or industrial chemical production via gasification and/or microbial or catalytic conversion of the gas to biofuels or other industrial raw materials such as solvents or plastics, with or without the production of biochar (e.g. biomass crops such as coniferous, eucalypt, tropical or broadleaf forest trees, graminaceous and poaceous crops such as bamboo, switch grass, miscanthus, sugar cane, or hemp or softwoods such as poplars, willows; and, biomass crops used in the production of biochar;

Crops Producing Natural Products Useful for the Pharmaceutical. Agricultural Nutraceutical and Cosmeceutical Industries:

[0340] Crops producing pharmaceutical precursors or compounds or nutraceutical and cosmeceutical compounds and materials for example, star anise (shikimic acid), Japanese knotweed (resveratrol), kiwifruit (soluble fiber, proteolytic enzymes);

Floricultural, Ornamental and Amenity Plants Grown for their Aesthetic or Environmental Properties:

[0341] Flowers such as roses, tulips, chrysanthemums;

[0342] Ornamental shrubs such as Buxus, Hebe, Rosa, Rhododendron, Hedera

[0343] Amenity plants such as Platanus, Choisya, Escallonia, Euphorbia, Carex

[0344] Mosses such as sphagnum moss

Plants Grown for Bioremediation:

[0345] Helianthus, Brassica, Salix, Populus, Eucalyptus

Hybrid and GM Plant Improvement

[0346] In certain aspects, the microbes of the present disclosure are applied to hybrid plants to increase beneficial traits of said hybrids. In other aspects, the microbes of the present disclosure are applied to genetically modified plants to increase beneficial traits of said GM plants. The microbes taught herein are able to be applied to hybrids and GM plants and thus maximize the elite genetics and trait technologies of these plants.

[0347] It should be appreciated that a plant may be provided in the form of a seed, seedling, cutting, propagule, or any other plant material or tissue capable of growing. In one embodiment the seed may be surface-sterilised with a material such as sodium hypochlorite or mercuric chloride to remove surface-contaminating microorganisms. In one embodiment, the propagule is grown in axenic culture before being placed in the plant growth medium, for example as sterile plantlets in tissue culture.

Methods of Application

[0348] The microorganisms may be applied to a plant, seedling, cutting, propagule, or the like and/or the growth medium containing said plant, using any appropriate technique known in the art.

[0349] However, by way of example, an isolated microbe, consortia, or composition comprising the same may be applied to a plant, seedling, cutting, propagule, or the like, by spraying or dusting.

[0350] In another embodiment, the isolated microbe, consortia, or composition comprising the same may applied directly to a plant seed prior to sowing.

[0351] In another embodiment, the isolated microbe, consortia, or composition comprising the same may applied directly to a plant seed, as a seed coating.

[0352] In one embodiment of the present disclosure, the isolated microbe, consortia, or composition comprising the same is supplied in the form of granules, or plug, or soil drench that is applied to the plant growth media.

[0353] In other embodiments, the the isolated microbe, consortia, or composition comprising the same are supplied in the form of a foliar application, such as a foliar spray or liquid composition. The foliar spray or liquid application may be applied to a growing plant or to a growth media, e.g. soil.

[0354] In another embodiment, the isolated microbe, consortia, or composition comprising the same may be formulated into granules and applied alongside seeds during planting. Or the granules may be applied after planting. Or the granules may be applied before planting.

[0355] In some embodiments, the isolated microbe, consortia, or composition comprising the same are administered to a plant or growth media as a topical application and/or drench application to improve crop growth, yield, and quality. The topical application may be via utilization of a dry mix or powder or dusting composition or may be a liquid based formulation.

[0356] In embodiments, the the isolated microbe, consortia, or composition comprising the same can be formulated as: (1) solutions; (2) wettable powders; (3) dusting powders; (4) soluble powders; (5) emulsions or suspension concentrates; (6) seed dressings or coatings, (7) tablets; (8) water-dispersible granules; (9) water soluble granules (slow or fast release); (10) microencapsulated granules or suspensions; and (11) as irrigation components, among others. In in certain aspects, the compositions may be diluted in an aqueous medium prior to conventional spray application. The compositions of the present disclosure can be applied to the soil, plant, seed, rhizosphere, rhizosheath, or other area to which it would be beneficial to apply the microbial compositions. Further still, ballistic methods can be utilized as a means for introducing endophytic microbes.

[0357] In aspects, the compositions are applied to the foliage of plants. The compositions may be applied to the foliage of plants in the form of an emulsion or suspension concentrate, liquid solution, or foliar spray. The application of the compositions may occur in a laboratory, growth chamber, greenhouse, or in the field.

[0358] In another embodiment, microorganisms may be inoculated into a plant by cutting the roots or stems and exposing the plant surface to the microorganisms by spraying, dipping, or otherwise applying a liquid microbial suspension, or gel, or powder.

[0359] In another embodiment, the microorganisms may be injected directly into foliar or root tissue, or otherwise inoculated directly into or onto a foliar or root cut, or else into an excised embryo, or radicle, or coleoptile. These inoculated plants may then be further exposed to a growth media containing further microorganisms; however, this is not necessary.

[0360] In other embodiments, particularly where the microorganisms are unculturable, the microorganisms may be transferred to a plant by any one or a combination of grafting, insertion of explants, aspiration, electroporation, wounding, root pruning, induction of stomatal opening, or any physical, chemical or biological treatment that provides the opportunity for microbes to enter plant cells or the intercellular space. Persons of skill in the art may readily appreciate a number of alternative techniques that may be used.

[0361] In one embodiment, the microorganisms infiltrate parts of the plant such as the roots, stems, leaves and/or reproductive plant parts (become endophytic), and/or grow upon the surface of roots, stems, leaves and/or reproductive plant parts (become epiphytic) and/or grow in the plant rhizosphere. In one embodiment, the microorganisms form a symbiotic relationship with the plant.

EXAMPLES

I. Increased Yield in Agriculturally Important Crops

[0362] In certain embodiments of the disclosure, the present methods aim to increase the yields for a given crop.

[0363] The methodologies presented herein--based upon utilizing the disclosed isolated microbes, consortia, and compositions comprising the same--have the potential to increase the yield of important agricultural crops. These yield increases can be realized without the need for further fertilizer addition.

Example 1: Increasing Ryegrass Biomass with Isolated Microbes and Microbial Consortia

[0364] A. Seed Treatment with Isolated Microbe

[0365] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of ryegrass (Lolium perenne). Upon applying the isolated microbe as a seed coating, the ryegrass will be planted and cultivated in the standard manner.

[0366] A control plot of ryegrass seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0367] It is expected that the ryegrass plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control ryegrass plants.

[0368] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0369] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0370] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

B. Seed Treatment with Microbial Consortia

[0371] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of ryegrass (Lolium perenne). Upon applying the microbial consortium as a seed coating, the ryegrass will be planted and cultivated in the standard manner.

[0372] A control plot of ryegrass seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0373] It is expected that the ryegrass plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control ryegrass plants.

[0374] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0375] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0376] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0377] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the ryegrass seed at the time of sowing.

[0378] For example, it is anticipated that a farmer will apply the agricultural composition to the ryegrass seeds simultaneously upon broadcasting said seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper or spreader, which contains the ryegrass seeds and which is configured to broadcast the same.

[0379] A control plot of ryegrass seeds, which are not administered the agricultural composition, will also be planted.

[0380] It is expected that the ryegrass plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control ryegrass plants.

[0381] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0382] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0383] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0384] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the ryegrass seed at the time of sowing.

[0385] For example, it is anticipated that a farmer will apply the agricultural composition to the ryegrass seeds simultaneously upon broadcasting said seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper or spreader, which contains the ryegrass seeds and which is configured to broadcast the same.

[0386] A control plot of ryegrass seeds, which are not administered the agricultural composition, will also be planted.

[0387] It is expected that the ryegrass plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control ryegrass plants.

[0388] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0389] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0390] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

Example 2: Increasing Maize Biomass with Isolated Microbes and Microbial Consortia

[0391] A. Seed Treatment with Isolated Microbe

[0392] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

[0393] A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0394] It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.

[0395] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0396] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0397] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

B. Seed Treatment with Microbial Consortia

[0398] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

[0399] A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0400] It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.

[0401] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0402] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0403] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0404] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

[0405] For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

[0406] A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

[0407] It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.

[0408] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0409] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0410] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0411] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

[0412] For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

[0413] A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

[0414] It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.

[0415] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0416] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0417] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

Example 3: Increasing Soybean Biomass with Isolated Microbes and Microbial Consortia

[0418] A. Seed Treatment with Isolated Microbe

[0419] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of soybean (Glycine max). Upon applying the isolated microbe as a seed coating, the soybean will be planted and cultivated in the standard manner.

[0420] A control plot of soybean seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0421] It is expected that the soybean plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control soybean plants.

[0422] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0423] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0424] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

B. Seed Treatment with Microbial Consortia

[0425] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of soybean (Glycine max). Upon applying the microbial consortium as a seed coating, the soybean will be planted and cultivated in the standard manner.

[0426] A control plot of soybean seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0427] It is expected that the soybean plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control soybean plants.

[0428] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0429] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0430] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0431] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the soybean seed at the time of sowing.

[0432] For example, it is anticipated that a farmer will apply the agricultural composition to the soybean seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the soybean seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the soybean seed.

[0433] A control plot of soybean seeds, which are not administered the agricultural composition, will also be planted.

[0434] It is expected that the soybean plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control soybean plants.

[0435] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0436] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0437] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0438] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the soybean seed at the time of sowing.

[0439] For example, it is anticipated that a farmer will apply the agricultural composition to the soybean seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the soybean seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the soybean seed.

[0440] A control plot of soybean seeds, which are not administered the agricultural composition, will also be planted.

[0441] It is expected that the soybean plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control soybean plants.

[0442] The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.

[0443] The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.

[0444] In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.

Example 4: Modifying Wheat Seedling Biomass with Isolated Microbes

[0445] A. Seed Treatment with Isolated Microbe

[0446] In this example, wheat seeds were inoculated with individual microbial strains (BCIs), and allowed to germinate (FIG. 5).

[0447] The seeds were inoculated and placed on wet paper towels and rolled. The rolls were then incubated at 25.degree. C. in plastic bins covered with wet towels. Each strain appearing in FIG. 5 was tested in triplicate, with 20 seeds per replicate test.

[0448] Total biomass was measured at seven days post treatment. An uninoculated `water` control treatment was run and measured simultaneously. The solid line parallel to the x axis and bisecting the bars near the top of the y-axis of FIG. 5 represents uninoculated control seeds. Some of the inoculated strains revealed relative increases in biomass at seven days post inoculation (DPI) compared to untreated control in vitro.

[0449] Table 12 provides a breakout of the biomass increase in wheat having been inoculated as described above, relative to a water-only treatment control (H.sub.2O) and an untreated (Unt) control. The two columns immediately to the right of the species reflect the percentage increase over control (% IOC) for the water-only treatment control and the untreated control. Both increases and decreases in the biomasses are reflected in the data of table 12. A smaller plant reflects potential for in-field conservation of nutrients and water where these resources may be limited by drought or local conditions, thus decreases are hypothesized to be yield relevant.

[0450] The results demonstrated that .about.19 strains caused a relative increase in total biomass of wheat at seven days post inoculation (DPI) compared to the water-only and untreated controls in vitro. Eight strains showed greater than a 5% increase over both controls, whereas 19 strains showed greater than a 5% decrease in biomass over the water control.

TABLE-US-00012 TABLE 12 % IOC % IOC % IOC Strain Species % IOC UNT H2O Strain Species UNT H2O 557 Novosphingobium 26.2 10.9 1217 Massilia 10.4 -3.0 resinovorum niastensis 55529 Pantoea vagans 25.7 10.4 914 Sphingopyxis 10.1 -3.3 alaskensis 2204 Duganella 24.3 9.2 23 Exiguobacterium 9.8 -3.5 violaceinigra acetylicum 50 Exiguobacterium 22.7 7.8 79 Chitinophaga 9.7 -3.6 aurantiacum terrae 116 Exiguobacterium 21.5 6.7 412 Sphingopyxis 9.3 -4.0 sibiricum alaskensis 3078 Variovorax 21.3 6.6 124 Delftia 8.7 -4.5 ginsengisoli lacustris 82 Novosphingobium 20.4 5.7 53 Pedobacter 8.6 -4.6 sediminicola terrae 418 Paenibacillus 19.9 5.3 130 Novosphingobium 8.4 -4.8 glycanilyticus sediminicola 648 Acidovorax soli 19.3 4.8 131 Ensifer adhaerens 7.4 -5.7 137 Variovorax 19.0 4.6 31 Duganella 7.3 -5.8 ginsengisoli radicis 385 Achromobacter 18.6 4.1 29 Rahnella 5.7 -7.2 spanius aquatilis 598 Pedobacter 17.2 3.0 44 Kosakonia 5.6 -7.3 rhizosphaerae radicincitans 109 Chitinophaga 16.7 2.5 59 Arthrobacter 4.7 -8.0 terrae cupressi 62 Arthrobacter 16.4 2.2 83 Exiguobacterium 4.7 -8.0 cupressi acetylicum 703 Bosea thiooxidans 15.8 1.7 91 Pedobacter terrae 4.7 -8.0 690 Acidovorax soli 15.2 1.2 34 Rhizobium 4.7 -8.1 rhizoryzae 3709 Novosphingobium 14.2 0.3 132 Microbacterium 3.0 -9.5 resinovorum oleivorans 96 Dyadobacter soli 14.1 0.2 2350 Delftia lacustris 2.8 -9.7 162 Herbaspirillum 13.9 0.1 689 Bosea robiniae 2.3 -10.1 chlorophenolicum H2O 13.8 0.0 105 Duganella radicis 1.9 -10.5 97 Massilia 13.5 -0.3 46 Agrobacterium 1.7 -10.7 albidiflava fabrum or Rhizobium pusense (In Taxonomic Flux) (previously Rhizobium sp.) 54073 Stenotrophomonas 13.5 -0.3 45 Chryseobacterium 1.2 -11.1 maltophilia daecheongense 608 Novosphingobium 13.2 -0.5 UNT 0.0 -12.2 lindaniclasticum 684 Novosphingobium 13.1 -0.7 661 Rhizobium -0.3 -12.4 lindaniclasticum rhizoryzae 54093 Rhodococcus 13.0 -0.8 1267 Bosea eneae -0.4 -12.5 erythropolis 55530 Pseudomonas 11.6 -1.9 68 Dyadobacter soli -1.8 -13.8 oryzihabitans 81 Exiguobacterium sp. 10.9 -2.6 49 Achromobacter -5.0 -16.5 pulmonis 804 Pseudomonas 10.4 -3.0 jinjuensis

Example 5: Modifying Wheat Seedling Shoot and Root Biomass with Isolated Microbes

[0451] A. Seed Treatment with Isolated Microbe

[0452] In this example, wheat seeds were inoculated with individual microbial strains (BCIs), and subjected to a germination test (FIG. 6 A and FIG. 6 B).

[0453] The seeds were inoculated, placed on wet germination paper, and rolled. The rolls were then incubated at 25.degree. C. in plastic bins. Each strain in FIG. 6 was tested in triplicate, with 30 seeds per replicate.

[0454] Shoot and root biomass was measured at six days post treatment. An uninoculated `water` control treatment was run and measured simultaneously. The solid line parallel to the x axis and bisecting the bars near the top of the y-axis in each figure represents the average of values for the water-treated control seeds. Some of the inoculated strains revealed relative increases in shoot and/or root biomass at six days post inoculation (DPI) compared to untreated control in vitro.

[0455] Table 13 provides a breakout of the shoot and root biomass increase in wheat having been inoculated and treated as described above, relative to a water-only control (H2O). The two columns immediately to the right of the species reflect the percentage increase over control (% IOC). Both increases and decreases in biomass are reflected in the data of table 13. A smaller plant reflects potential for in-field conservation of nutrients and water where these resources may be limited by drought or local conditions, thus decreases are hypothesized to be yield relevant.

[0456] The results demonstrated that 16 strains caused a relative increase in shoot biomass of wheat at six days post inoculation (DPI) compared to the water-only controls in vitro. Twelve strains showed greater than a 5% increase over water control, whereas 10 strains showed greater than a 5% decrease in shoot biomass over the water control.

[0457] The results demonstrated that 26 strains caused a relative increase in root biomass of wheat at six days post inoculation (DPI) compared to the water-only control in vitro. Eighteen strains showed greater than a 5% increase over control, whereas 2 strains showed greater than a 5% decrease in biomass relative to the water control.

TABLE-US-00013 TABLE 13 Shoot Root Biomass Biomass BCI % % Strain IOC IOC # Crop Species Control Control 49 Wheat Achromobacter pulmonis 9.03 18.55 46 Wheat Agrobacterium fabrum or Rhizobium 3.31 18.55 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 958 Wheat Agrobacterium fabrum or Rhizobium 13.55 21.26 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 5222 Wheat Agrobacterium fabrum or Rhizobium -10.54 0.90 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 717 Wheat Arthrobacter nicotinovorans 13.85 11.76 3189 Wheat Arthrobacter nicotinovorans 2.41 19.90 3444 Wheat Arthrobacter nicotinovorans -3.32 4.07 45 Wheat Chryseobacterium daecheongense -2.41 5.88 191 Wheat Chryseobacterium daecheongense -3.92 2.71 774 Wheat Chryseobacterium daecheongense -8.14 0.90 597 Wheat Chryseobacterium rhizosphaerae -1.81 6.78 615 Wheat Chryseobacterium rhizosphaerae -17.17 -4.98 1075 Wheat Chryseobacterium rhizosphaerae 5.42 4.97 402 Wheat Frigidibacter albus or Delfulviimonas -7.23 8.14 dentrificans (In Taxonomic Flux) 745 Wheat Frigidibacter albus or Delfulviimonas -19.28 -2.27 dentrificans (In Taxonomic Flux) 31 Wheat Duganella radicis -15.97 -8.60 105 Wheat Duganella radicis 6.32 22.62 63 Wheat Exiguobacterium antarcticum -6.03 -5.43 718 Wheat Exiguobacterium sibircum or 12.04 18.55 antarcticum 116 Wheat Exiguobacterium sibiricum 11.14 12.66 225 Wheat Exiguobacterium soli -10.24 -3.17 712 Wheat Frigidibacter albus 1.20 15.83 3231 Wheat Massilia kyonggiensis 12.04 21.71 94 Wheat Massilia kyonggiensis 9.94 11.31 97 Wheat Massilia kyonggiensis -1.51 0.90 138 Wheat Novosphingobium sediminicola -3.32 5.43 53 Wheat Pedobacter terrae 5.72 12.21 91 Wheat Pedobacter terrae -10.24 -0.91 110 Wheat Pedobacter terrae -7.83 4.52 616 Wheat Pseudomonas helmanticensis 9.33 15.38 800 Wheat Pseudomonas helmanticensis 8.73 14.47 2945 Wheat Pseudomonas helmanticensis 0.60 4.97

Example 6: Modifying Corn Seedling Shoot and Root Biomass with Isolated Microbes

[0458] A. Seed Treatment with Isolated Microbe

[0459] In this example, corn seeds were inoculated with individual microbial strains (BCIs), and subjected to a germination test (FIGS. 7 A, 7 B, 8 A and 8 B).

[0460] The seeds were inoculated, placed on wet germination paper, and rolled. The rolls were then incubated at 25.degree. C. in plastic bins. Each strain appearing in FIGS. 7 A, 7 B, 8 A and 8 B was tested in triplicates, with 30 seeds per replicate test. Due to the amount of samples tested, rolls were placed in two independent bins with a respective water control, represented individually in FIGS. 7 A, 7 B, 8 A and 8 B.

[0461] Shoot and root biomass was measured at six days post treatment. An uninoculated `water` control treatment was run and measured simultaneously. The solid line parallel to the x axis and bisecting the bars near the top of the y-axis in each figure represents the average of values for the water-treated control seeds. Some of the inoculated strains revealed relative increases in shoot and/or root biomass at six days post inoculation (DPI) compared to untreated control in vitro.

[0462] Table 14 provides a breakout of the shoot and root biomass changes in corn having been inoculated and treated as described above, relative to a water-only control (H2O). The two columns immediately to the right of the species reflect the percentage increase over control (% IOC). Both increases and decreases in the biomasses are reflected in the data of table 14. A smaller plant reflects potential for in-field conservation of nutrients and water where these resources may be limited by drought or local conditions, thus decreases are hypothesized to be yield relevant.

[0463] The results demonstrated that 25 strains caused a relative increase in shoot biomass of corn at six days post inoculation (DPI) compared to the water-only control in vitro. Twenty-two strains showed greater than a 10% increase, whereas 7 strains caused a decrease in biomass relative the water control.

[0464] The results demonstrated that 15 strains caused a relative increase in root biomass of corn at six days post inoculation (DPI) compared to the water-only control in vitro. Eight strains showed greater than a 5% increase over water control, whereas 11 strains showed greater than a 5% decrease in root biomass over the water control.

[0465] Results demonstrated that a number of strains isolated from superior plants caused a significant increase over the water control in root and/or shoot biomass (p<0.05 Dunnett's Multiple Comparisons Test). Statistically significant results are labeled with an asterisk. In one embodiment, superior plants are defined as a subset of individual plants observed in an AMS process to exhibit a phenotype of interest that is improved relative to the plurality of plants screened in the same assay. Phenotypes of interest may be screened in the absence or presence of biotic or abiotic stress and include early vigor, as manifested by improved germination rate, foliar and or root biomass; chlorophyll content; leaf canopy temperature; and water use efficiency.

TABLE-US-00014 TABLE 14 BCI Shoot Root Strain Biomass Biomass # Crop Species % IOC % IOC 49 Corn Achromobacter pulmonis -4.28 -16.12 46 Corn Agrobacterium fabrum or Rhizobium 15.10 -4.41 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 958 Corn Agrobacterium fabrum or Rhizobium 17.31 -0.63 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 5222 Corn Agrobacterium fabrum or Rhizobium 22.22 -2.52 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 717 Corn Arthrobacter nicotinovorans 26.21 22.61* 3189 Corn Arthrobacter nicotinovorans 74.15* 14.05 3444 Corn Arthrobacter nicotinovorans 6.48 -15.54 45 Corn Chryseobacterium daecheongense 31.48 -3.60 191 Corn Chryseobacterium daecheongense 19.44 -14.86 774 Corn Chryseobacterium daecheongense 21.58 1.17 597 Corn Chryseobacterium rhizosphaerae 15.53 3.15 615 Corn Chryseobacterium rhizosphaerae 17.52 1.89 1075 Corn Chryseobacterium rhizosphaerae 73.79* 11.26 402 Corn Frigidibacter albus or Delfulviimonas 11.25 2.97 dentrificans (In Taxonomic Flux) 745 Corn Frigidibacter albus or Delfulviimonas 8.76 -17.75 dentrificans (In Taxonomic Flux) 31 Corn Duganella radicis 35.68* -2.07 105 Corn Duganella radicis 19.73 5.05 63 Corn Exiguobacterium antarcticum 17.17 2.61 718 Corn Exiguobacterium sibircum or 1.29 -12.27 antarcticum 116 Corn Exiguobacterium sibiricum 77.56* 24.05* 225 Corn Exiguobacterium soli 15.67 -7.75 138 Corn Exiguobacterium sp. 16.31 0.81 712 Corn Frigidibacter albus 15.24 4.77 3231 Corn Massilia kyonggiensis -12.84 -10.53 94 Corn Massilia kyonggiensis -6.44 -8.54 97 Corn Massilia kyonggiensis -2.29 -13.74 53 Corn Pedobacter terrae -7.90 -14.58 91 Corn Pedobacter terrae 50.64* 23.87* 110 Corn Pedobacter terrae -0.17 -7.64 616 Corn Pseudomonas helmanticensis 16.67 14.05 800 Corn Pseudomonas helmanticensis -3.21 -2.88 2945 Corn Pseudomonas helmanticensis 14.60 5.68 *Statstically significant results

Example 7: Increasing Root and Shoot Length of Maize, Wheat, and Tomato with Isolated Microbes

[0466] A. Seed Treatment with Isolated Microbe

[0467] In this example, seeds of maize, wheat, and tomato were inoculated with individual microbial strains (BDNZ strains), and allowed to germinate.

[0468] The seeds were inoculated, placed on wet paper towels and rolled. The rolls were then incubated at 25.degree. C. in sealed plastic bags. Each strain appearing in table 15 was tested in germination tests in duplicate, with 30 seeds per replicate test for wheat and maize and 50 seeds for tomato.

[0469] Root length and shoot length (RL and SL) were measured at four days post treatment. Some of the inoculated strains revealed relative increases in root and/or shoot length at four days point inoculation (DPI) compared to untreated control.

[0470] Each strain applied to maize seed was tested in duplicates of 30 seeds each. Results show that while germination rates were good for all strains tested, some strains caused a relative increase in root and/or shoot length at 4 days post inoculation (DPI) compared to the water control in vitro (See FIGS. 9 and 10).

[0471] Each strain applied to wheat seed was tested in duplicates of 30 seeds each. Root and shoot length were measured at 4 days post treatment. Results show that germination rates were good for all strains tested (>90%), and some strains caused a relative increase in root and/or shoot length at 4 days post inoculation (DPI) compared to the water control in vitro (See FIGS. 11 and 12).

[0472] Each strain applied to tomato seed was tested in duplicates of 50 seeds each. Root and shoot length were measured at 4 days post inoculation (DPI). Results show that germination rates were good for all strains tested, and some strains caused a relative increase in root and/or shoot length at 4 days post inoculation (DPI) compared to the water control in vitro (See FIGS. 13 and 14).

[0473] Table 15 provides a breakout of the root and shoot length increase (in mm) after inoculation and treatment as described above, relative to a water-only control (H2O). The columns immediately to the right of the species reflect the percentage increase over control (% IOC) for the water-only control. Both increases and decreases are reflected in the data. A smaller plant reflects potential for in-field conservation of nutrients and water where these resources may be limited by drought or local conditions, thus decreases are hypothesized to be yield relevant.

[0474] The results demonstrated that a number of strains isolated from superior plants caused a significant increase over the water control in root and/or shoot length (p<0.1, Fisher's LSD) at four days post inoculation (DPI). Twenty strains isolated from superior plants caused a significant increase over the water control in maize root length and 19 caused a significant increase in maize shoot length. Four strains caused a significant increase over control in root and shoot length of wheat. Four strains caused a significant increase over control in root and shoot length of tomato.

TABLE-US-00015 TABLE 15 BDNZ % % Strain IOC IOC # Crop Species RL SL 54073 Maize Stenotrophomonas maltophilia 61.8 5 54093 Maize Rhodococcus erythropolis 54.6 29.7 54137 Maize Pantoea agglomerans 36.1 -10.5 54299 Maize Rhodococcus erythropolis 102.7 40.7 55529 Maize Pantoea agglomerans 142.4 47.3 55530 Maize Pseudomonas oryzihabitans 52.3 0.6 56343 Maize Chitinophaga arvensicola 188.6 54.3 56654 Maize Paenibacillus chondroitinus 72.1 3.1 56682 Maize Paenibacillus chondroitinus 192.5 61.8 57157 Maize Rahnella aquatilis 58.5 23.2 57494 Maize Bosea minatitlanensis 298.9 93.8 57549 Maize Luteibacter yeojuensis 183 35.9 57570 Maize Caulobacter henricii 30.5 30.6 58001 Maize Stenotrophomonas maltophilia 78 50.5 58013 Maize Rahnella aquatilis 67 -9 60510 Maize Dyella ginsengisoli 118 58.2 60517 Maize Frateuria sp. 278.5 96.9 65589 Maize Novosphingobium rosa 223 33.2 65600 Maize Herbaspirillum huttiense 23 18 65619 Maize Novosphingobium rosa 22.4 -19.3 66374 Maize Albidiferax sp. 75.3 10.9 68775 Maize Rhodoferax ferrireducens 93 63.1 68999 Maize Chitinophaga arvensicola 65.4 14.5 71420 Maize Luteibacter yeojuensis 42.3 11.6 74038 Maize Pseudomonas oryzihabitans 92.2 40.7 54456 Wheat Janthinobacterium sp. 7.7 0.5 54660 Wheat Paenibacillus amylolyticus -4 -3.9 55184 Wheat Massilia niastensis 16.1 12.2 56699 Wheat Massilia niastensis 0.8 3.6 66487 Wheat Flavobacterium saccharophilum 7.2 13 69132 Wheat Flavobacterium glaciei -10.2 -6.8 63491 Wheat Janthinobacterium sp. 10.2 13.9 66821 Wheat Polaromonas ginsengisoli -3.1 11.1 56782 Tomato Sphingobium quisquiliarum 14.1 7 58291 Tomato Duganella violaceinigra 13.4 -3.5 58577 Tomato Ramlibacter sp. 5.6 -8 66316 Tomato Paenibacillus amylolyticus 28.1 16.2 66341 Tomato Caulobacter henricii -4.8 -17.4 66354 Tomato Bosea minatitlanensis 9.4 3.4 66361 Tomato Duganella violaceinigra 34.9 24.6 66373 Tomato Polaromonas ginsengisoli 23.5 34 66576 Tomato Sphingobium quisquiliarum 28.1 35.4 68599 Tomato Stenotrophomonas terrae 15.9 9.6 68741 Tomato Stenotrophomonas terrae 15.8 20.3

[0475] In table 15, the root and shoot length were assessed to evaluate the effect of the microbe treatments on early plant development. Both increases and decreases in biomass have been noted to reflect the possibility that decreases are hypothesized to be yield relevant; for example a smaller plant reflects potential for in-field conservation of nutrients and water where these may be limited by drought or local conditions. Results show that of all strains tested, some 40 strains caused a relative increase in root length at 4 days post inoculation (DPI) and 35 strains caused a relative increase in shoot length compared to water controls in vitro. Four tomato strains, three wheat strains and 17 maize strains caused a significant increase in both shoot length and root length (p<0.1, Fishers least squared difference).

Example 8: Modifying Root and Shoot Length of Corn with Isolated Microbes

[0476] A. Seed Treatment with Isolated Microbe

[0477] In this example, corn seeds were inoculated with individual microbial strains and allowed to germinate (FIGS. 15A, 15B, 16A and 16B).

[0478] The seeds were inoculated, placed on wet germination paper, and rolled. The rolls were then incubated at 25.degree. C. in plastic bins. Each strain appearing in FIGS. 15 and 16 was tested in germination tests in triplicates, with 30 seeds per replicate. Due to the amount of samples tested, rolls were placed in two independent bins with a respective water control, represented individually in FIGS. 15 and 16 by graphs A and B.

[0479] Root length and shoot length (RL and SL) were measured at six days post treatment. A control treatment was included comprising seeds treated with water in the absence of a microbial inoculant of the present disclosure. Some of the inoculated strains revealed relative increases in root and/or shoot length at six days point inoculation (DPI) compared to untreated control (FIGS. 15 and 16).

[0480] Table 16 provides a breakout of the root and shoot length increase (in mm) after inoculation and treatment as described above, relative to a water-only control (H2O). The columns immediately to the right of the species reflect the percentage increase over control (% IOC). Both increases and decreases are reflected in the data. A smaller plant reflects potential for in-field conservation of nutrients and water where these resources may be limited by drought or local conditions, thus decreases are hypothesized to be yield relevant.

[0481] Results demonstrated that a number of strains listed in Table 16 which were originally isolated from superior plants caused a significant increase, over the water-only control, in root and/or shoot length (p<0.05, Fisher's LSD) at six days post inoculation (DPI). Statistically significant results are labeled with an asterisk. Ten strains isolated from superior plants caused a significant increase over the water control in corn shoot length and 5 caused a significant increase in corn root length.

TABLE-US-00016 TABLE 16 % % IOC IOC Strain Crop Species SL RL 49 Corn Achromobacter pulmonis 23.30 -0.84 46 Corn Agrobacterium fabrum or Rhizobium 21.79 1.56 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 958 Corn Agrobacterium fabrum or Rhizobium 47.76* 6.25 pusense (In Taxonomic Flux) (previously Rhizobium sp.) 5222 Corn Agrobacterium fabrum or Rhizobium 38.31* 17.55* pusense (In Taxonomic Flux) (previously Rhizobium sp.) 717 Corn Arthrobacter nicotinovorans 60.20* 53.32* 3189 Corn Arthrobacter nicotinovorans N/A N/A 3444 Corn Arthrobacter nicotinovorans 21.04 3.36 45 Corn Chryseobacterium daecheongense 39.99* 11.43 191 Corn Chryseobacterium daecheongense 17.91 -1.62 774 Corn Chryseobacterium daecheongense 45.65* 6.84 597 Corn Chryseobacterium rhizosphaerae 20.90 5.29 615 Corn Chryseobacterium rhizosphaerae 25.57 9.98 1075 Corn Chryseobacterium rhizosphaerae N/A N/A 402 Corn Frigidibacter albus or Delfulviimonas 44.78* 18.96* dentrificans (In Taxonomic Flux) 745 Corn Frigidibacter albus or Delfulviimonas 15.92 -0.36 dentrificans (In Taxonomic Flux) 31 Corn Duganella radicis 22.39 12.81 105 Corn Duganella radicis 36.02 7.51 63 Corn Exiguobacterium antarcticum 42.29* 4.59 718 Corn Exiguobacterium sibircum or 18.12 -6.56 antarcticum 116 Corn Exiguobacterium sibiricum N/A N/A 225 Corn Exiguobacterium soli 23.88 9.48 138 Corn Exiguobacterium sp. 37.11 20.56* 712 Corn Frigidibacter albus 38.81* 10.24 3231 Corn Massilia kyonggiensis -13.92 -10.76 94 Corn Massilia kyonggiensis 16.50 -9.92 97 Corn Massilia kyonggiensis 11.72 -4.68 53 Corn Pedobacter terrae 3.88 4.33 91 Corn Pedobacter terrae N/A N/A 110 Corn Pedobacter terrae 12.30 4.87 616 Corn Pseudomonas helmanticensis 42.79* 56.95* 800 Corn Pseudomonas helmanticensis 6.97 2.62 2945 Corn Pseudomonas helmanticensis 38.81* 8.22 *Statistically significant results

[0482] In table 16, the root and shoot length were assessed to evaluate the effect of the microbe treatments on early plant development. Both increases and decreases have been noted to reflect the possibility that decreases are hypothesized to be yield relevant; for example a smaller plant reflects potential for in-field conservation of nutrients and water where these may be limited by drought or local conditions. Results show that of all strains tested, some 21 strains caused a relative increase in root length at six days post inoculation (DPI) and 27 strains caused a relative increase in shoot length compared to water controls in vitro. A total of six strains tested on corn caused a significant increase in both shoot length and root length (p<0.1, Fishers least squared difference). Asterisks show significance (p<0.1, Dunnette's Multiple-Comparison Test).

Example 9: Biochemical Characterization of Microbial Isolates

A. In Vitro Analysis of Plant Beneficial Properties of a Microbe in US Trials

[0483] In this example, isolated microbes from Table 4 were grown on minimal or nutrient-deficient agar plates supplemented with insoluble nutrient substrates to determine biochemical activity (Table 17).

[0484] Isolates were tested, in triplicate, for phosphate, potassium, and zinc solubilization, siderophore production and the ability to grow on low nitrogen media. Plates were incubated at 25.degree. C. for six days.

[0485] Table 17 provides a summary of the growth response of each isolate, having been grown as described above. Tests are abbreviated as follows: Mica (K solubilization)--isolates were grown on modified Alexandrov medium supplemented with Mica (Parmar and Sindhu 2013); PO4-isolates were grown on NBRIP media (Nautiyal, 1999) containing insoluble tri-calcium phosphate as the sole source of P; ZnO and ZnO3 (Zn solubilization)--isolates were grown on minimal media supplemented with insoluble Zn as described by Goteti et al., (2013); NfA--isolates were grown on Nfb media (Dobereiner et al., 1976) without Bromothymol blue, solidified with 12.5% agar; CAS agar--isolates were grown on Chrome Azurol-s agar for detection of iron chelation according to the method of Perez-Miranda et al (2007).

[0486] Within table 17, a (+) symbol represents an isolates ability to grow under the test conditions and solubilize the respective element, (-) symbol represents a lack of solubilization, (N/A) represents no isolate growth observed on the respective media.

[0487] Results show that microbes on table 4 exhibit a broad spectrum of known plant-beneficial biochemical activities (Rana et al., 2012, Rodriguez and Reynaldo, 1999) including solubilization of mineral nutrients and chelation of micronutrients. By enhancing nutrient availability for plant growth promotion, the microbes exhibit a potential for increasing plant yields.

TABLE-US-00017 TABLE 17 Media Strain Mica CAS BCI # Species (K) PO4 ZnO ZnCO3 NfA agar 49 Achromobacter N/A + + + + - pulmonis 46 Agrobacterium - - + - + - fabrum or Rhizobium pusense 958 Agrobacterium - - + + + - fabrum or Rhizobium pusense 717 Arthrobacter - + + + + - nicotinovorans 3189 Arthrobacter - + + + + - nicotinovorans 3444 Arthrobacter - + + + + - nicotinovorans 774 Chryseobacterium - N/A N/A N/A N/A - daecheongense 615 Chryseobacterium N/A N/A N/A N/A N/A + rhizosphaerae 1075 Chryseobacterium N/A N/A N/A N/A N/A + rhizosphaerae 597 Chryseobacterium N/A N/A N/A N/A N/A + rhizosphaerae 402 Frigidibacter - - N/A N/A + - albus or Delfulviimonas dentrificans (In Taxonomic Flux) 745 Frigidibacter - - N/A N/A + - albus or Delfulviimonas dentrificans (In Taxonomic Flux) 31 Duganella radicis - N/A + + + - 105 Duganella radicis - N/A + + + - 712 Frigidibacter albus - - N/A N/A + - 3231 Massilia kyonggiensis - + N/A N/A + - 94 Massilia kyonggiensis - + + + + - 97 Massilia kyonggiensis - - N/A N/A N/A + 53 Pedobacter terrae - N/A + + + - 91 Pedobacter terrae - - + + + - 110 Pedobacter terrae - - + + + - 616 Pseudomonas + + N/A N/A + - helmanticensis 800 Pseudomonas + + N/A N/A + - helmanticensis 2945 Pseudomonas + + N/A + + + helmanticensis 5222 Agrobacterium - - + + + - fabrum or Rhizobium pusense

B. In Vitro Analysis of Plant Beneficial Properties of a Microbe on New Zealand Trials

[0488] Microbes from Table 18 were grown on minimal or nutrient-deficient agar plates supplemented with insoluble nutrient substrates to determine biochemical activity.

[0489] Phosphate solubilization was determined using NBRIP media containing 5 g/L tri-calcium phosphate according to the method Islam et al., (2007). The ability to use phytate as the sole source of phosphorus for growth was assessed using media containing (g/L): phytic acid (10) NaNO.sub.3 (3); KCl (0.5); FeSO.sub.4.7H.sub.2O (0.01); MgSO.sub.4.7H.sub.2O (0.5); glucose (10) and noble agar (15), pH 7.5. Growth on low-nitrogen media (Low N) was assessed using NfA media as described above.

[0490] Within table 18, a (+) symbol represents an isolates ability to grow under the test conditions and solubilize the respective element, (-) symbol represents a lack of solubilization.

TABLE-US-00018 TABLE 18 Media Strain low Tri Ca Phytic BDNZ Species N (P) (P) 74542 Tumebacillus permanenafrigoris - - - 72366 Tumebacillus permanenafrigoris + + + 72229 Tumebacillus permanenafrigoris + - + 72287 Tumebacillus permanenafrigoris + - - 72243 Leifsonia lichenia + - + 72289 Leifsonia lichenia + - + 73021 Massilia kyonggiensis + - - 71222 Novosphingobium lindaniclasticum + + + 71628 Novosphingobium sediminicola + - +

II. Increased Drought Tolerance and H.sub.2O Use Efficiency in Agriculturally Important Crops

[0491] In certain embodiments of the disclosure, the present methods aim to increase the drought tolerance and water use efficiency for a given crop.

[0492] The methodologies presented herein--based upon utilizing the disclosed isolated microbes, consortia, and compositions comprising the same--have the potential to increase the drought tolerance and water use efficiency of important agricultural crops. This will enable a more sustainable agricultural system and increase the regions of the world that are suitable for growing important crops.

Example 1: Increasing Ryegrass Drought Tolerance and H.sub.2O Use Efficiency with Isolated Microbes and Microbial Consortia

[0493] A. Seed Treatment with Isolated Microbe

[0494] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of ryegrass (Lolium perenne). Upon applying the isolated microbe as a seed coating, the ryegrass will be planted and cultivated in the standard manner.

[0495] A control plot of ryegrass seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0496] It is expected that the ryegrass plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control ryegrass plants.

[0497] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

B. Seed Treatment with Microbial Consortia

[0498] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of ryegrass (Lolium perenne). Upon applying the microbial consortium as a seed coating, the ryegrass will be planted and cultivated in the standard manner.

[0499] A control plot of ryegrass seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0500] It is expected that the ryegrass plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control ryegrass plants.

[0501] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0502] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the ryegrass seed at the time of sowing.

[0503] For example, it is anticipated that a farmer will apply the agricultural composition to the ryegrass seeds simultaneously upon broadcasting said seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper or spreader, which contains the ryegrass seeds and which is configured to broadcast the same.

[0504] A control plot of ryegrass seeds, which are not administered the agricultural composition, will also be planted.

[0505] It is expected that the ryegrass plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control ryegrass plants.

[0506] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0507] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the ryegrass seed at the time of sowing.

[0508] For example, it is anticipated that a farmer will apply the agricultural composition to the ryegrass seeds simultaneously upon broadcasting said seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper or spreader, which contains the ryegrass seeds and which is configured to broadcast the same.

[0509] A control plot of ryegrass seeds, which are not administered the agricultural composition, will also be planted.

[0510] It is expected that the ryegrass plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control ryegrass plants.

[0511] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

Example 2: Increasing Maize Drought Tolerance and H.sub.2O Use Efficiency with Isolated Microbes and Microbial Consortia

[0512] A. Seed Treatment with Isolated Microbe

[0513] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

[0514] A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0515] It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

[0516] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

B. Seed Treatment with Microbial Consortia

[0517] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

[0518] A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0519] It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

[0520] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0521] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

[0522] For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

[0523] A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

[0524] It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

[0525] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0526] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

[0527] For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

[0528] A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

[0529] It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.

[0530] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

Example 3: Increasing Soybean Drought Tolerance and H.sub.2O Use Efficiency with Isolated Microbes and Microbial Consortia

[0531] A. Seed Treatment with Isolated Microbe

[0532] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of soybean (Glycine max). Upon applying the isolated microbe as a seed coating, the soybean will be planted and cultivated in the standard manner.

[0533] A control plot of soybean seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0534] It is expected that the soybean plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control soybean plants.

[0535] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

B. Seed Treatment with Microbial Consortia

[0536] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of soybean (Glycine max). Upon applying the microbial consortium as a seed coating, the soybean will be planted and cultivated in the standard manner.

[0537] A control plot of soybean seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0538] It is expected that the soybean plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control soybean plants.

[0539] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0540] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the soybean seed at the time of sowing.

[0541] For example, it is anticipated that a farmer will apply the agricultural composition to the soybean seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the soybean seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the soybean seed.

[0542] A control plot of soybean seeds, which are not administered the agricultural composition, will also be planted.

[0543] It is expected that the soybean plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control soybean plants.

[0544] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0545] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the soybean seed at the time of sowing.

[0546] For example, it is anticipated that a farmer will apply the agricultural composition to the soybean seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the soybean seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the soybean seed.

[0547] A control plot of soybean seeds, which are not administered the agricultural composition, will also be planted.

[0548] It is expected that the soybean plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control soybean plants.

[0549] The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.

III. Increased Nitrogen Use Efficiency in Agriculturally Important Crops

[0550] In certain embodiments of the disclosure, the present methods aim to decrease the amount of nitrogen that must be deposited into a given agricultural system and yet achieve the same or better yields for a given crop.

[0551] The methodologies presented herein--based upon utilizing the disclosed isolated microbes, consortia, and compositions comprising the same--have the potential to reduce the amount of nitrogen fertilizer that is lost by farmers every year due to nitrogen leaching into the air, soil, and waterways. This will enable a more sustainable agricultural system that is still able to produce yield results consistent with today's agricultural expectations.

Example 1: Increasing Ryegrass NUE with Isolated Microbes and Microbial Consortia

[0552] A. Seed Treatment with Isolated Microbe

[0553] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of ryegrass (Lolium perenne). Upon applying the isolated microbe as a seed coating, the ryegrass will be planted and cultivated in the standard manner.

[0554] A control plot of ryegrass seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0555] It is expected that the ryegrass plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control ryegrass plants.

[0556] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

B. Seed Treatment with Microbial Consortia

[0557] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of ryegrass (Lolium perenne). Upon applying the microbial consortium as a seed coating, the ryegrass will be planted and cultivated in the standard manner.

[0558] A control plot of ryegrass seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0559] It is expected that the ryegrass plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control ryegrass plants.

[0560] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0561] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the ryegrass seed at the time of sowing.

[0562] For example, it is anticipated that a farmer will apply the agricultural composition to the ryegrass seeds simultaneously upon broadcasting said seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper or spreader, which contains the ryegrass seeds and which is configured to broadcast the same.

[0563] A control plot of ryegrass seeds, which are not administered the agricultural composition, will also be planted.

[0564] It is expected that the ryegrass plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control ryegrass plants.

[0565] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0566] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the ryegrass seed at the time of sowing.

[0567] For example, it is anticipated that a farmer will apply the agricultural composition to the ryegrass seeds simultaneously upon broadcasting said seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper or spreader, which contains the ryegrass seeds and which is configured to broadcast the same.

[0568] A control plot of ryegrass seeds, which are not administered the agricultural composition, will also be planted.

[0569] It is expected that the ryegrass plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control ryegrass plants.

[0570] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

Example 2: Increasing Maize NUE with Isolated Microbes and Microbial Consortia

[0571] A. Seed Treatment with Isolated Microbe

[0572] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.

[0573] A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0574] It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

[0575] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

B. Seed Treatment with Microbial Consortia

[0576] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.

[0577] A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0578] It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

[0579] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0580] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

[0581] For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

[0582] A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

[0583] It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

[0584] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0585] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.

[0586] For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.

[0587] A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.

[0588] It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.

[0589] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

Example 3: Increasing Soybean NUE with Isolated Microbes and Microbial Consortia

[0590] A. Seed Treatment with Isolated Microbe

[0591] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of soybean (Glycine max). Upon applying the isolated microbe as a seed coating, the soybean will be planted and cultivated in the standard manner.

[0592] A control plot of soybean seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0593] It is expected that the soybean plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control soybean plants.

[0594] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

B. Seed Treatment with Microbial Consortia

[0595] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of soybean (Glycine max). Upon applying the microbial consortium as a seed coating, the soybean will be planted and cultivated in the standard manner.

[0596] A control plot of soybean seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0597] It is expected that the soybean plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control soybean plants.

[0598] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

C. Treatment with Agricultural Composition Comprising Isolated Microbe

[0599] In this example, an isolated microbe from Tables 1-4 will be applied as an agricultural composition, administered to the soybean seed at the time of sowing.

[0600] For example, it is anticipated that a farmer will apply the agricultural composition to the soybean seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the soybean seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the soybean seed.

[0601] A control plot of soybean seeds, which are not administered the agricultural composition, will also be planted.

[0602] It is expected that the soybean plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control soybean plants.

[0603] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

D. Treatment with Agricultural Composition Comprising Microbial Consortia

[0604] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as an agricultural composition, administered to the soybean seed at the time of sowing.

[0605] For example, it is anticipated that a farmer will apply the agricultural composition to the soybean seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the soybean seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the soybean seed.

[0606] A control plot of soybean seeds, which are not administered the agricultural composition, will also be planted.

[0607] It is expected that the soybean plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control soybean plants.

[0608] The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.

IV. Increased Metabolite Expression in Agriculturally Important Crops

[0609] In certain embodiments of the disclosure, the present methods aim to increase the production of a metabolite of interest for a given crop.

[0610] The methodologies presented herein--based upon utilizing the disclosed isolated microbes, consortia, and compositions comprising the same--have the potential to increase the production of a metabolite of interest for a given crop.

Example 1: Increasing Sugar Content in Basil with Isolated Microbes and Microbial Consortia

[0611] A. Seed Treatment with Isolated Microbe

[0612] In this example, an isolated microbe from Tables 1-4 will be applied as a seed coating to seeds of basil (Ocium basilicum). Upon applying the isolated microbe as a seed coating, the basil will be planted and cultivated in the standard manner.

[0613] A control plot of basil seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.

[0614] It is expected that the basil plants grown from the seeds treated with the seed coating will exhibit a quantifiable increase in water-soluble carbohydrate content, as compared to the control basil plants.

B. Seed Treatment with Microbial Consortia

[0615] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be applied as a seed coating to seeds of basil (Ocium basilicum). Upon applying the microbial consortium as a seed coating, the basil will be planted and cultivated in the standard manner.

[0616] A control plot of basil seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.

[0617] It is expected that the basil plants grown from the seeds treated with the seed coating will exhibit a quantifiable increase in water-soluble carbohydrate content, as compared to the control basil plants.

V. Synergistic Effect Achievable with Combination of Microbes and Ascend.RTM. A. Seed Treatment with Isolated Microbe Combined with Ascend.RTM.

[0618] In this example, an isolated microbe from Tables 1-4 will be combined with Ascend.RTM. and applied as a seed coating to seeds of a plant. Upon applying the isolated microbe/Ascend.RTM. combination as a seed coating, the plant will be planted and cultivated in the standard manner.

[0619] A control plot of plant seeds, which did not have the isolated microbe/Ascend.RTM. combination applied as a seed coating, will also be planted.

[0620] It is expected that the plants grown from the seeds treated with the seed coating will exhibit a quantifiable increase in a phenotypic trait of interest, as compared to the control plants. It is expected that a synergistic effect may be observed for the phenotypic trait of interest.

B. Seed Treatment with Microbial Consortia Combined with Ascend.RTM.

[0621] In this example, a microbial consortium, comprising at least two microbes from Tables 1-4 will be combined with Ascend.RTM. and then applied as a seed coating to seeds of a plant. Upon applying the microbial consortium/Ascend.RTM. combination as a seed coating, the plant will be planted and cultivated in the standard manner.

[0622] A control plot of plant seeds, which did not have the microbial consortium/Ascend.RTM. combination applied as a seed coating, will also be planted.

[0623] It is expected that the plants grown from the seeds treated with the seed coating will exhibit a quantifiable increase in a phenotypic trait of interest, as compared to the control plants. It is expected that a synergistic effect may be observed for the phenotypic trait of interest.

VI. Microbial Consortia

[0624] The microbial consortia utilized in the examples are presented in Table 18 in a non-limiting matter, while recognizing that the microbial consortia may comprise any one or more microbes presented in tables 1-4.

TABLE-US-00019 TABLE 19 Consortia Compositions ID Microbes ID Microbes D1 Stenotrophomonas maltophilia D2 Rhodococcus erythropolis BDNZ BDNZ 54073 54093 Rhodococcus erythropolis BDNZ Pseudomonas oryzihabitans BDNZ 54093 55530 Pantoea vagans BDNZ 55529 Rahnella aquatilis BDNZ 56532 Pseudomonas oryzihabitans BDNZ 55530 D3 Stenotrophomonas maltophilia D4 Stenotrophomonas maltophilia BDNZ 54073 BDNZ 54073 Rhodococcus erythropolis BDNZ Rhodococcus erythropolis BDNZ 54093 54093 Pantoea vagans BDNZ 55529 Pseudomonas fluorescens BDNZ Rahnella aquatilis BDNZ 56532 56530 Pantoea agglomerans BDNZ 57547 D5 Rhodococcus erythropolis BDNZ D6 Rahnella aquatilis BDNZ 57157 54093 Rahnella aquatilis BDNZ 58013 Pseudomonas fluorescens BDNZ Rhizobium etli BDNZ 60473 56530 Pantoea agglomerans BDNZ 57547 D7 Stenotrophomonas maltophilia D8 Stenotrophomonas maltophilia BDNZ 54073 BDNZ 54073 Rhodococcus erythropolis BDNZ Rhodococcus erythropolis BDNZ 54093 54093 Pantoea vagans BDNZ 55529 Pantoea vagans BDNZ 55529 Pseudomonas oryzihabitans BDNZ Pseudomonas oryzihabitans BDNZ 55530 55530 Rahnella aquatilis BDNZ 56532 Rahnella aquatilis BDNZ 57157 Rahnella aquatilis BDNZ 58013 Rhizobium etli BDNZ 60473 D9 Rahnella aquatilis BDNZ 56532 D10 Rhodococcus erythropolis BDNZ 54093 Pantoea vagans BDNZ 55529 Pseudomonas oryzihabitans BDNZ 55530 Rahnella aquatilis BDNZ 56532 D11 Exiguobacterium aurantiacum BCI 50 D12 Rahnella aquatilis BCI 29 Duganella radicis BCI 105 Duganella radicis BCI 31 Rhizobium pusense BCI 106 Exiguobacterium sibiricum BCI 116 Kosakonia radicincitans BCI 107 Novosphingobiurn sediminicola Delftia lacustris BCI 124 BCI 130 Ensifer sp. BCI 131 Microbacterium oleivorans BCI 132 D13 Chitinophaga terrae BCI 79 D14 Exiguobacterium acetylicum BCI 23 Exiguobacterium sp. BCI 81 Rahnella aquatilis BCI 29 Novosphingobium sediminicola BCI 82 Rhizobium lemnae BCI 34 Exiguobacterium acetylicum BCI 83 Achromobacter spanius BCI 385 Variovorax ginsengisoli BCI 137 D15 Dyadobacter soli BCI 68 D16 Rhodococcus erythropolis BDNZ Chitinophaga terrae BCI 79 54093 Pedobacter terrae BCI 91 Pantoea vagans BDNZ 55529 Massilia albidijlava BCI 97 Pseudomonas oryzihabitans BDNZ Novosphingobium sediminicola BCI 136 55530 D17 Rhodococcus erythropolis BDNZ D18 Exiguobacterium acetylicum 54093 BCI 125 Rahnella aquatilis BDNZ 56532 Bacillus megaterium BCI 255 Rahnella aquatilis BDNZ 58013 Paenibacillus glycanilyticus BCI 418 Rhizobium etli BDNZ 60473 D19 Agrobacterium fabrum BCI 608 D20 Arthrobacter pascens BCI 682 Acidovorax soli BCI 690 Novosphingobium lindaniclasticum Rhizobium grahamii BCI 691 BCI 684 Bacillus subtilis BCI 989 Bosea robiniae BCI 688 Microbacterium maritypicum BCI 689 Sphingopyxis alaskensis BCI 914 D21 Chryseobacterium rhizosphaerae D22 Novosphingobiurn resinovorum BCI 615 BCI 557 Hydrogenophaga atypica BCI 687 Arthrobacter mysorens BCI 700 Bosea robiniae BCI 689 Bosea thiooxidans BCI 703 Microbacterium maritypicum BCI 688 Bacillus oleronius BCI 1071 Agrobacterium fabrum BCI 958 D23 Pedobacter rhizosphaerae BCI 598 D24 Novosphingobium sediminicola Bacillus sp. BCI 715 BCI 130 Pseudomonas jinjuensis BCI 804 Ensifer sp. BCI 131 Pseudomonas putida BCI 805 Microbacterium oleivorans BCI 132 D25 Arthrobacter cupressi BCI 59 D26 Bosea robiniae BCI 689 Dyadobacter soli BCI 68 Bosea thiooxidans BCI 703 Bosea eneae BCI 1267 D27 Pseudomonas helmanticensis BCI D28 Chryseobacterium rhizosphaerae 616 BCI 597 Arthrobacter pascens BCI 682 Defluviimonas denitrificans BCI 712 Bosea robiniae BCI 689 Arthrobacter nicotinovorans BCI 717 Pseudomonas putida BCI 791 Pseudomonas putida BCI 802 Agrobacterium fabrum BCI 958 D29 Pseudomonas florescens BDNZ D30 Rhodococcus erythropolis BDNZ 71627 74552 Novosphingobium sediminicola Tumebacillus permanentifrigoris BDNZ 71628 BDNZ 74542 Microbacterium azadirachtae BDNZ 71629 D31 Tumebacillus permanentifrigoris D32 Rhodococcus erythropolis BNDZ BDNZ 72229 72250 Bacillus megatarium BDNZ 72242 Leifsonia lichenia BDNZ 72243 D33 Bacillus megatarium BDNZ 72242 D34 Novosphingobium lindaniclasticum Leifsonia lichenia BDNZ 72243 BDNZ 71222 Bacillus aryabhattai BDNZ 72259 D35 Rhodococcus erythropolis BDNZ D36 Bacillus cereus BDNZ 71220 71221 Rhodococcus erythropolis BNDZ Novosphingobium lindaniclasticum 71221 BDNZ 71222 Novosphingobium lindaniclasticum Microbacterium azadirachtae BDNZ 71222 BDNZ 71663 D37 Massilia kyonggiensis BDNZ D38 Variovorax paradoxus BDNZ 73021 72150 Microbacterium azadirachtae Tumebacillus permanentifrigoris BDNZ 72996 BDNZ 72366 Rhizobium tibeticum BDNZ 72135 D39 Tumebacillus permanentifrigoris BDNZ 72287 Bacillus megatarium BDNZ 72255 A1 Stenotrophomonas maltophilia A2 Flavobacterium glaciei BDNZ BDNZ 54073 66487 Rhodococcus erythropolis BDNZ Massilia niastensis BDNZ 55184 54093 Pseudomonas fluorescens BDNZ Pantoea vagans BDNZ 55529 54480 Pseudomonas oryzihabitans BDNZ55530 A3 Azospirillum lipoferum BDNZ A4 Janthinobacterium sp. BDNZ 57661 54456 Herbaspirillum huttiense BDNZ Mucilaginibacter dorajii BDNZ 54487 66513 Pantoea agglomerans BDNZ 54499 Pseudomonas psychrotolerans Pseudomonas fluorescens BDNZ BDNZ 54517 54480 A5 Janthinobacterium sp. BDNZ A6 Rhizobium etli BDNZ 61443 54456 Caulobacter henrici BDNZ 66341 Mucilaginibacter dorajii BDNZ Duganella violaceinigra BDNZ 66513 66361 Pseudomonas psychrotolerans BDNZ 54517 A7 Duganella violaceinigra BDNZ A8 Ramlibacter henchirensis BDNZ 66361 66331 Rhizobium pisi BDNZ 66326 Mucilaginibacter gosypii BDNZ 66321 Paenibacillus amylolyticus BDNZ 66316 A9 Polaromonas ginsengisoli BDNZ A10 Sphingobium quisquiliarum BDNZ 66373 66576 Bacillus subtilis BDNZ 66347 Azospirillum hpoferum BDNZ 66297 A11 Rhodoferax ferrireducens BDNZ A12 Rhodococcus erythropolis BDNZ 66374 54093 Mucilaginibacter gosypii BDNZ Pseudomonas oryzihabitans BDNZ 66321 55530 Paenibacillus amylolyticus BDNZ Rahnella aquatilis BDNZ 56532 66316 Azospirillum lipoferum BDNZ66315 A13 Rhodococcus erythropolis BDNZ A14 Rhodococcus erythropolis 54093 BDNZ54299 Rahnella aquatilis BDNZ 57157 Rahnella aquatilis BDNZ58013 Azotobacter chroococcum Herbaspirillum huttiense BDNZ BDNZ57597 65600 A15 Rhodococcus erythropolis BDNZ 54093 Pseudomonas oryzihabitans BDNZ 55530 Rahnella aquatilis BDNZ 56532

VII. Effects of Microbial Consortia on Plant Phenotypes

Example 1: Evaluation of Phenotype of Plants Exposed to Microbial Consortia in U.S. Trials

[0625] Plants disclosed in Table 20 were grown in a controlled environment in a rooting volume of 167 ml and typically in a soil substrate. The chamber photoperiod was set to 16 hours for all experiments on all species. The light intensity ranged from 180 .mu.mol PAR m.sup.-2 s.sup.-1 to approximately 200 .mu.mol PAR m.sup.-2 s.sup.-1 as plant height increased during experiments.

[0626] The air temperature was typically 28.degree. C. during the photoperiod, decreasing to 23.degree. C. during the night for Zea mays, Glycine max, and Sorghum bicolor experiments. Air temperature was typically 24.degree. C. during the photoperiod, decreasing to 20.degree. C. during the night for Triticum aestivum experiments.

[0627] Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage.

[0628] Leaf chlorophyll content was measured midway along the youngest fully-expanded leaf, non-destructively using a meter providing an index of leaf chlorophyll content (CCM-200, Opti Sciences, Hudson, N.H., US).

[0629] Whole plant, shoot, and root dry weight was measured after plants had been dried to a constant weight in a drying oven set to 80.degree. C. At least 10 replicate plants were measured for each phenotype measured in each experiment.

[0630] For evaluations on Glycine max, the number of nodules were counted.

[0631] A control treatment of uninoculated seeds was run in each experiment for comparison with plants grown from seeds inoculated with microbial consortia.

TABLE-US-00020 TABLE 20 Controlled Environment Efficacy (%) Consortia Crop Assay Evatuations Plant Shoot Root Chlorophyll T leaf Nodulation D1 Zea mays early vigor 21 74 25 D6 Zea mays early vigor 15 36 36 22 D7 Zea mays early vigor 15 72 63 65 25 0 D11 Zea mays early vigor 17 60 20 D13 Zea mays early vigor 12 40 33 0 D14 Zea mays early vigor 15 62 69 22 10 D15 Zea mays early vigor 12 70 25 0 D25 Zea mays early vigor 13 63 22 0 D2 Zea mays early vigor 5/4* 100 100 100* 60 _ D3 Zea mays early vigor 5/4* 80 100 75* 60 _ D4 Zea mays early vigor 5/4* 80 80 75* 60 _ D5 Zea mays early vigor 5/4* 60 80 100* 80 _ D8 Zea mays early vigor 5/4* 60 80 75* 40 _ D12 Zea mays early vigor 3 100 100 100 66 _ D24 Zea mays early vigor 2 100 100 100 0 0 D1 Sorghum bicolor early vigor 5 60 80 80 40 20 D11 Sorghum bicolor early vigor 3 60 80 80 40 20 D13 Sorghum bicolor early vigor 5 80 60 80 60 40 D14 Sorghum bicolor early vigor 5 80 80 100 40 20 D15 Sorghum bicolor early vigor 3 100 66 100 33 0 D6 Sorghum bicolor early vigor 3 100 100 100 33 66 D7 Sorghum bicolor early vigor 3 33 33 33 33 66 D25 Sorghum bicolor early vigor 3 66 100 66 33 66 D9 Triticum aestivum early vigor 8/6* 38 63 33* _ D10 Triticum aestivum early vigor 8/6* 63 38 63 _ D16 Triticum aestivum early vigor 8/6* 63 33* _ D17 Triticum aestivum early vigor 8/6* 76 63 75 33* _ D18 Triticum aestivum early vigor 8/6* 50 50 33* _ D26 Triticum aestivum early vigor 8/6* 66 66 0* _ D19 Glycine max early vigor 2 0 0 0 _ D20 Glycine max early vigor 2 100 100 100 0 _ D21 Glycine max early vigor 2 0 0 0 0 _ D22 Glycine max early vigor 2 0 _ D23 Glycine max early vigor 2 100 _ D27 Glycine max cold tolerance 3 100 D28 Glycine max cold tolerance 12/3* 67* 75 A1 Zea mays early vigor 5 _ 80 80 _ _ A2 Triticum aestivum cold tolerance 4 _ 75 75 _ _ A3 Triticum aestivum cold tolerance 4 _ 75 75 _ _ A4 Triticum aestivum cold tolerance 2 _ 100 100 _ _ A5 Triticum aestivum early vigor 2 _ 50 50 _ _ A6 Solarium sp. early vigor 2 _ 100 100 _ _ A7 Solanum sp. early vigor 3 _ 100 100 _ _ A8 Solanum sp. early vigor 3 _ 100 66 _ _ A9 Solanum sp. early vigor 3 _ 66 100 _ _ A10 Solanum sp. early vigor 3 _ 66 66 _ _ A11 Solanum sp. early vigor 3 _ 100 66 _ _ A12 Solanum sp. early vigor 2 _ 100 50 _ _ A13 Triticum aestivum early vigor 2 _ 0 0 _ _ A14 Triticum aestivum early vigor 2 _ _ _

[0632] The data presented in table 20 describes the percentage of time (efficiency) a particular consortium changed a phenotype of interest relative to a control run in the same experiment. The measured phenotypes were whole plant dry weight (plant), shoot dry weight (shoot), root dry weight (root), leaf chlorophyll content (chlorophyll), leaf temperature (Tleaf), and nodulation.

[0633] The data presented is averaged across the number of times a specific consortium was tested against a control (evaluations). For consortia where different phenotypes were measured in a different number of evaluations, an asterisk was placed next to data points to match the phenotype with the number of evaluations. Evaluations have been broken down and displayed for specific crop species (crop).

[0634] The presented data identifies consortia that have increased a phenotype of interest in greater than 60% of evaluations (hit rate >59) and consortia that decreased a phenotype of interest in greater than 60% of evaluations (hit rate<41). Both increases and decreases in a phenotype of interest were recorded to reflect the possibility that decreases in select phenotypes of interest are yield relevant. Improvement in canopy photosynthesis through decreased leaf chlorophyll, and improvement in drought tolerance through decreased shoot biomass constitute two examples.

Example 2: Evaluation of Phenotype of Plants Exposed to Microbial Consortia in New Zealand Trials

[0635] A. Seed Treatment with Microbial Consortia

[0636] The inoculants were prepared from isolates grown as spread plates on R2A incubated at 25.degree. C. for 48 to 72 hours. Colonies were harvested by blending with sterile distilled water (SDW) which was then transferred into sterile containers. Serial dilutions of the harvested cells were plated and incubated at 25.degree. C. for 24 hours to estimate the number of colony forming units (CFU) in each suspension. Dilutions were prepared using individual isolates or blends of isolates (consortia) to deliver 1.times.10.sup.5 cfu/microbe/seed and seeds inoculated by either imbibition in the liquid suspension or by overtreatment with 5% vegetable gum and oil.

[0637] Seeds corresponding to the plants of table 21 were planted within 24 to 48 hours of treatment in agricultural soil, potting media or inert growing media. Plants were grown in small pots (28 mL to 200 mL) in either a controlled environment or in a greenhouse. Chamber photoperiod was set to 16 hours for all experiments on all species. Air temperature was typically maintained between 22-24.degree. C.

[0638] Unless otherwise stated, all plants were watered with tap water 2 to 3 times weekly. Growth conditions were varied according to the trait of interest and included manipulation of applied fertilizer, watering regime and salt stress as follows: [0639] Low N--seeds planted in soil potting media or inert growing media with no applied N fertilizer [0640] Moderate N--seeds planted in soil or growing media supplemented with commercial N fertilizer to equivalent of 135 kg/ha applied N [0641] Insol P--seeds planted in potting media or inert growth substrate and watered with quarter strength Pikovskaya's liquid medium containing tri-calcium phosphate as the only form phosphate fertilizer. [0642] Cold Stress--seeds planted in soil, potting media or inert growing media and incubated at 10.degree. C. for one week before being transferred to the plant growth room. [0643] Salt stress--seeds planted in soil, potting media or inert growing media and watered with a solution containing between 100 to 200 mg/L NaCl.

[0644] Untreated (no applied microbe) controls were prepared for each experiment. Plants were randomized on trays throughout the growth environment. Between 10 and 30 replicate plants were prepared for each treatment in each experiment. Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage and between 3 and 6 weeks after sowing. Foliage was cut and weighed. Roots were washed, blotted dry and weighed. Results indicate performance of treatments against the untreated control.

TABLE-US-00021 TABLE 21 Strain Shoot Root. Microbe sp. ID Crop Assay IOC (%) IOC (%) Bosea thiooxidans overall 1 2 3 Efficacy 100% Efficacy 100% Bosea thiooxidans 54522 Wheat Early vigor-insol P 30-40 -- Bosea thiooxidans 54522 Ryegrass Early vigor 50-60 50-60 Bosea thiooxidans 54522 Ryegrass Early vigor-moderate P 0-10 0-10 Duganella violaceinigra overall 1 1 1 Efficacy 100% Efficacy 100% Duganella violaceinigra 66361 Tomato Early vigor 0-10 0-10 Duganella violaceinigra 66361 Tomato Early vigor 30-40 40-50 Duganella violaceinigra 66361 Tomato Early vigor 20-30 20-30 Herbaspirillum huttiense 2 2 2 Efficacy 100% -- overall Herbaspirillum huttiense 54487 Wheat Early vigor-insol P 30-40 -- Herbaspirillum huttiense 60507 Maize Early vigor-salt stress 0-10 0-10 Janthinobacterium sp. Overall 2 2 2 Efficacy 100% -- Janthinobacterium sp. 54456 Wheat Early vigor-insol P 30-40 -- Janthinobacterium sp. 54456 Wheat Early vigor-insol P 0-10 -- Janthinobacterium sp. 63491 Ryegrass Early vigor-drought 0-10 0-10 stress Massilia niastensis overall 1 1 2 Efficacy 80% Efficacy 80% Massilia niastensis 55184 Wheat Early vigor-salt stress 0-10 20-30 Massilia niastensis 55184 Winter Early vigor-cold stress 0-10 10-20 wheat Massilia niastensis 55184 Winter Early vigor-cod stress 20-30 20-30 wheat Massilia niastensis 55184 Winter Early vigor-cold stress 10-20 10-20 wheat Massilia niastensis 55184 Winter Early vigor-cold stress <0 <0 wheat Novosphingobium rosa overall 2 1 1 Efficacy 100% Efficacy 100% Novosphingobium rosa 65589 Maize Early vigor-cold stress 0-10 0-10 Novosphingobium rosa 65619 Maize Early vigor-cold stress 0-10 0-10 Paenibacillus amylolyticus 1 1 1 Efficacy 100% Efficacy 100% overall Paenibacillus amylolyticus 66316 Tomato Early vigor 0-10 0-10 Paenibacillus amylolyticus 66316 Tomato Early vigor 10-20 10-20 Paenibacillus amylolyticus 66316 Tomato Early vigor 0-10 0-10 Pantoea agglomerans 3 2 3 Efficacy 33% Efficacy 50% Pantoea agglomerans 54499 Wheat Early vigor-insol P 40-50 -- Pantoea agglomerans 57547 Maize Early vigor-low N <0 0-10 Pantoea vagans (formerly P. 55529 Maize Early vigor <0 <0 agglomerans) Polaromonas ginsengisoli 1 1 1 Efficacy 66% Efficacy 100% Polaromonas ginsengisoli 66373 Tomato Early vigor 0-10 0-10 Polaromonas ginsengisoli 66373 Tomato Early vigor 20-30 30-40 Polaromonas ginsengisoli 66373 Tomato Early vigor <0 10-20 Pseudomonas fluorescens 1 2 2 Efficacy 100% -- Pseudomonas fluarescens 54480 Wheat Early vigor-insol P >100 -- Pseudomonas fluorescens 56530 Maize Early vigor-moderate N 0-10 -- Rahnella aquatilis 3 3 4 Efficacy 80% Efficacy 63% Rahnella aquatilis 56532 Maize Early vigor-moderate N 10-20 -- Rahnella aquatilis 56532 Maize Early vigor-moderate N 0-10 0-10 Rahnella aquatilis 56532 Wheat Early vigor-cold stress 0-10 10-20 Rahnella aquatilis 56532 Wheat Early vigor-cold stress <0 0-10 Rahnella aquatilis 56532 Wheat Early vigor-cold stress 10-20 <0 Rahnella aquatilis 57157 Ryegrass Early vigor <0 -- Rahnella aquatilis 57157 Maize Early vigor-low N 0-10 0-10 Rahnella aquatilis 57157 Maize Early vigor-low N 0-10 <0 Rahnella aquatilis 58013 Maize Early vigor 0-10 10-20 Rahnella aquatilis 58013 Maize Early vigor-low N 0-10 <0 Rhodococcus erythropolis 3 1 3 Efficacy 66% -- Rhodococcus erythropolis 54093 Maize Early vigor-low N 40-50 -- Rhodococcus erythropolis 54299 Maize Early vigor-insol P >100 -- Rhodococcus erythropolis 54299 Maize Early vigor <0 <0 Stenotrophomonas 6 1 1 Efficacy 60% Efficacy 60% chelatiphaga Stenotrophomonas 54952 Maize Early vigor 0-10 0-10 chelatiphaga Stenotrophomonas 47207 Maize Early vigor <0 0 chelatiphaga Stenotrophomonas 64212 Maize Early vigor 0-10 10-20 chelatiphaga Stenotrophomonas 64208 Maize Early vigor 0-10 0-10 chelatiphaga Stenotrophomonas 58264 Maize Early vigor <0 <0 chelatiphaga Stenotrophomonas maltophilia 6 1 2 Efficacy 43% Efficacy 66% Stenotrophomonas maltophilia 54073 Maize Early vigor-low N 50-60 -- Stenotrophomonas maltophilia 54073 Maize Early vigor <0 0-10 Stenotrophomonas maltophilia 56181 Maize Early vigor 0-10 <0 Stenotrophomonas maltophilia 54999 Maize Early vigor 0-10 0-10 Stenotrophomonas maltophilia 54850 Maize Early vigor 0 0-10 Stenotrophomonas maltophilia 54841 Maize Early vigor <0 0-10 Stenotrophomonas maltophilia 46856 Maize Early vigor <0 <0 Stenotrophomonas rhizophila 8 1 1 Efficacy 12.5% Efficacy 37.5% Stenotrophomonas rhizophila 50839 Maize Early vigor <0 <0 Stenotrophomonas rhizophila 48183 Maize Early vigor <0 <0 Stenotrophomonas rhizophila 45125 Maize Early vigor <0 <0 Stenotrophomonas rhizophila 46120 Maize Early vigor <0 0-10 Stenotrophomonas rhizophila 46012 Maize Early vigor <0 <0 Stenotrophomonas rhizophila 51718 Maize Early vigor 0-10 0-10 Stenotrophomonas rhizophila 66478 Maize Early vigor <0 <0 Stenotrophomonas rhizophila 65303 Maize Early vigor <0 0-10 Stenotrophomonas terrae 2 2 1 Efficacy 50% Efficacy 50% Stenotrophomonas terrae 68741 Maize Early vigor <0 <0 Stenotrophomonas terrae 68599 Maize Early vigor <0 0-10 Stenotrophomonas terrae 68599 Capsicum * Early vigor 20-30 20-30 Stenotrophomonas terrae 68741 Capsicum * Early vigor 10-20 20-30

[0645] The data presented in table 21 describes the efficacy with which a microbial species or strain can change a phenotype of interest relative to a control run in the same experiment. Phenotypes measured were shoot fresh weight and root fresh weight for plants growing either in the absence of presence of a stress (assay). For each microbe species, an overall efficacy score indicates the percentage of times a strain of that species increased a both shoot and root fresh weight in independent evaluations. For each species, the specifics of each independent assay is given, providing a strain ID (strain) and the crop species the assay was performed on (crop). For each independent assay the percentage increase in shoot and root fresh weight over the controls is given.

B. Seed Treatment with Microbial Consortia

[0646] The inoculants were prepared from isolates grown as spread plates on R2A incubated at 25.degree. C. for 48 to 72 hours. Colonies were harvested by blending with sterile distilled water (SDW) which was then transferred into sterile containers. Serial dilutions of the harvested cells were plated and incubated at 25.degree. C. for 24 hours to estimate the number of colony forming units (CFU) in each suspension. Dilutions were prepared using individual isolates or blends of isolates (consortia) to deliver .about.1.times.10.sup.5 cfu/microbe/seed and seeds inoculated by either imbibition in the liquid suspension or by overtreatment in combination with 0.1-1% vegetable gum.

[0647] Seeds corresponding to the plants of table 22 were planted within 24 to 48 hours of treatment in agricultural soil, potting media or inert growing media. Plants were grown in small pots (28 mL) in a controlled environment. The chamber photoperiod was set to 16 hours for all experiments on all species. Air temperature was typically maintained between 22-24.degree. C.

[0648] All plants were watered with tap water 2 to 3 times weekly. Plants were subjected to either no stress (NS) or limited nitrogen to investigate nitrogen use efficiency (NUE). Growth conditions were varied according to the trait of interest and included manipulation of applied fertilizer as follows: [0649] Low N--seeds planted in soil potting media or inert growing media with no applied N fertilizer [0650] Moderate N--seeds planted in soil or growing media supplemented with commercial N fertilizer to equivalent of 135 kg/ha applied N

[0651] Untreated (no applied microbe) controls were prepared for each experiment. Plants were randomized on trays throughout the growth environment. Between 10 and 30 replicate plants were prepared for each treatment in each experiment. Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage and between 3 and 6 weeks after sowing. Fresh foliar weight was measured 18h after watering substrate to saturation. Dry root weight was measured after drying to a constant weight at 80.degree. C. Results indicate performance of treatments against the untreated control.

TABLE-US-00022 TABLE 22 Controlled Environment Efficacy (%) Foliar Root Consortia Crop Assay Evaluations Weight Weight D29 Wheat NS 7 71 57 D36 Wheat NS 1 100 100 D32 Wheat NS 8 88 63 D33 Wheat NS 9 78 33 D35 Wheat NS 1 100 100 D34 Wheat NS 1 100 100 D37 Wheat NS 1 100 100 D38 Wheat NS 1 100 100 D39 Wheat NS 6 67 50 D39 Wheat NUE 8 100 75 D31 Wheat NS 7 71 43 D31 Wheat NUE 8 75 50 D30 Tomato NS 6 (FW) 3 RW 50 33

[0652] The data presented in table 22 describes the percentage of time a particular consortium changed a phenotype of interest relative to an inert-only control run in the same experiment. The measured phenotypes were fresh shoot weight, measured 18 hours after watering to saturation, and dry root weight, measured after drying to a constant state at 80 degrees Celsius.

[0653] The presented data identifies consortia that have increased a phenotype of interest in greater than 60% of evaluations (hit rate >59) and consortia that decreased a phenotype of interest in greater than 60% of evaluations (hit rate<41). Both increases and decreases in a phenotype of interest were recorded to reflect the possibility that decreases in select phenotypes of interest are yield relevant.

Example 3: Evaluation of Yield Effect of Maize Exposed to Microbial Consortia in U.S. Field Trials

[0654] The data presented in Table 23 summarizes the changes in final yield relative to a control for six consortia tested in eight locations in the mid-West of the United States. Also presented is final yield data from two drought trials performed in California in the United States. Data is expressed as the percentage of trials in which a yield effect in bushels per acre of a particular magnitude was observed. All field trials were run in accordance with standard agronomic practices.

TABLE-US-00023 TABLE 23 Field Trial Yield Increases (%) Consortia Trials >6 bu ac 0-6 bu ac <0 bu ac D1 8 Yield 62.5 25 12.2 D6 8 Yield 25 25 50 D7 8 Yield 25 37.5 37.5 D2 8 Yield 25 37.5 37.5 D3 8 Yield 25 25 50 D4 8 Yield 25 37.5 37.5 D5 8 Yield 25 50 25 D12 2 Drought 100 -- --

Example 4: Evaluate Yield Effect of Maize Exposed to Microbial Consortia in New Zealand Field Trials

[0655] The data presented in Table 24 summarizes the results of New Zealand field trials for select consortia. The presented data describes the number of trials in which a particular consortia has been tested relative to a control, and the number of trials in which the consortia treatment increased the final yield relative to the control treatment. All field trials were run in accordance with standard agronomic practices.

TABLE-US-00024 TABLE 24 Trials with Consortia Trials yield > control A1 3 3 D6 2 1 A13 2 1 A14 1 1 A15 3 3

Example 5: Microbes Deposited with the ARS Culture Collection (NRRL)

[0656] In one experimental embodiment, the inventors utilized the following microbial species in applications of the present disclosure. Table 25 details microbial species of the present disclosure which have been deposited with the United States Department of Agriculture ARS Culture Collection (NRRL).

TABLE-US-00025 TABLE 25 USDA BCI BDNZ Deposited Accession Viability Taxonomy (US) (NZ) date number Date 1 Acidovorax soli 648 12.29.2015 NRRL B-67181 Jan. 4, 2016 2 Acidovorax soli 690 12.29.2015 NRRL B-67182 Jan. 4, 2016 3 Arthrobacter 59 12.29.2015 NRRL B-67183 Jan. 4, 2016 cupressi 4 Arthrobacter 62 12.29.2015 NRRL B-67184 Jan. 4, 2016 cupressi 5 Bosea eneae 1267 12.29.2015 NRRL B-67185 Jan. 4, 2016 6 Bosea robiniae 689 12.29.2015 NRRL B-67186 Jan. 4, 2016 7 Bosea thiooxidans 703 12.29.2015 NRRL B-67187 Jan. 4, 2016 8 Chitinophaga 79 12.29.2015 NRRL B-67188 Jan. 4, 2016 terrae 9 Chitinophaga 109 12.29.2015 NRRL B-67189 Jan. 4, 2016 terrae 10 Delftia lacustris 124 12.29.2015 NRRL B-67190 Jan. 4, 2016 11 Delftia lacustris 2350 12.29.2015 NRRL B-67191 Jan. 4, 2016 12 Duganella radicis 105 12.29.2015 NRRL B-67192 Jan. 4, 2016 13 Duganella 2204 12.29.2015 NRRL B-67193 Jan. 4, 2016 violaceinigra 14 Dyadobacter soli 68 12.29.2015 NRRL B-67194 Jan. 4, 2016 15 Dyadobacter soli 96 12.29.2015 NRRL B-67195 Jan. 4, 2016 16 Flavobacterium 4005 12.29.2015 NRRL B-67196 Jan. 4, 2016 glacei 17 Herbaspirillum 162 12.29.2015 NRRL B-67197 Jan. 4, 2016 chlorophenolicum 18 Massilia 97 12.29.2015 NRRL B-67198 Jan. 4, 2016 kyonggiensis (deposited as Massilia albidiflava) 19 Massilia niastensis 1217 12.29.2015 NRRL B-67199 Jan. 4, 2016 20 Novosphingobium 684 12.29.2015 NRRL B-67201 Jan. 4, 2016 lindaniclasticum 21 Novosphingobium 608 12.29.2015 NRRL B-67200 Jan. 4, 2016 lindaniclasticum 22 Novosphingobium 557 12.29.2015 NRRL B-67202 Jan. 4, 2016 resinovorum 23 Novosphingobium 3709 12.29.2015 NRRL B-67203 Jan. 4, 2016 resinovorum 24 Paenibacillus 418 12.29.2015 NRRL B-67204 Jan. 4, 2016 glycanilyticus 25 Pedobacter 598 12.29.2015 NRRL B-67205 Jan. 4, 2016 rhizosphaerae (deposited as Pedobacter soli) 26 Pedobacter terrae 91 12.29.2015 NRRL B-67206 Jan. 4, 2016 27 Pseudomonas 804 12.29.2015 NRRL B-67207 Jan. 4, 2016 jinjuensis 28 Ramlibacter 739 12.29.2015 NRRL B-67208 Jan. 4, 2016 henchirensis 29 Ramlibacter 1959 12.29.2015 NRRL B-67209 Jan. 4, 2016 henchirensis 30 Rhizobium 34 12.29.2015 NRRL B-67210 Jan. 4, 2016 rhizoryzae (previously R. lemnae) 31 Rhizobium 661 12.29.2015 NRRL B-67211 Jan. 4, 2016 rhizoryzae (previously R. lemnae) 32 Rhizobium sp. 106 12.29.2015 NRRL B-67212 Jan. 4, 2016 33 Sinorhizobium 111 12.29.2015 NRRL B-67213 Jan. 4, 2016 Chiapanecum (now Ensifer adhaerens) 34 Sphingopyxis 412 12.29.2015 NRRL B-67214 Jan. 4, 2016 alaskensis 35 Sphingopyxis 914 12.29.2015 NRRL B-67215 Jan. 4, 2016 alaskensis 36 Variovorax 137 12.29.2015 NRRL B-67216 Jan. 4, 2016 ginsengisoli 37 Variovorax 3078 12.29.2015 NRRL B-67217 Jan. 4, 2016 ginsengisoli 38 Achromobacter 49 12.18.15 NRRL B-67174 Dec. 21, 2015 pulmonis 39 Chryseobacterium 45 12.18.15 NRRL B-67172 Dec. 21, 2015 daecheongense 40 Duganella radicis 31 1.13.16 NRRL B-67166 Jan. 15, 2016 41 Exiguobacterium 50 12.18.15 NRRL B-67175 Dec. 21, 2015 aurantiacum 42 Exiguobacterium 116 12.18.15 NRRL B-67167 Dec. 21, 2015 sibiricum 43 Kosakonia 44 12.18.15 NRRL B-67171 Dec. 21, 2015 radicincitans 44 Microbacterium 132 12.18.15 NRRL B-67170 Dec. 21, 2015 oleivorans 45 Novosphingobium 130 12.18.15 NRRL B-67168 Dec. 21, 2015 sediminicola 46 Pedobacter terrae 53 12.18.15 NRRL B-67176 Dec. 21, 2015 47 Rahnella aquatilis 29 12.18.15 NRRL B-67165 Dec. 21, 2015 48 Agrobacterium 46 12.18.15 NRRL B-67173 Dec. 21, 2015 fabrum or Rhizobium pusense (In Taxonomic Flux) (previously Rhizobium sp.) 49 Sinorhizobium 131 12.18.15 NRRL B-67169 Dec. 21, 2015 chiapanecum (Ensifer adhaerens- current classification) 50 Pantoea vagans 55529 1.29.2016 NRRL B-67224 Feb. 4, 2016 51 Pseudomonas 55530 1.29.2016 NRRL B-67225 Feb. 4, 2016 oryzihabitans 52 Stenotrophomonas 54073 1.29.2016 NRRL B-67226 Feb. 4, 2016 maltophilia 53 Rahnella aquatilis 58013 1.29.2016 NRRL B-67229 Feb. 4, 2016 54 Rahnella aquatilis 56532 1.29.2016 NRRL B-67228 Feb. 4, 2016 55 Rhodococcus 54093 1.29.2016 NRRL B-67227 Feb. 4, 2016 erythropolis 56 Herbaspirillum 58 2.8.2016 NRRL B-67236 Feb. 10, 2016 chlorophenolicum 57 Bacillus niacini 4718 2.8.2016 NRRL B-67230 Feb. 4, 2016 58 Polaromonas 66373 2.8.2016 NRRL B-67231 Feb. 4, 2016 ginsengisoli 59 Polaromonas 66821 2.8.2016 NRRL B-67234 Feb. 4, 2016 ginsengisoli 60 Duganella 66361 2.8.2016 NRRL B-67232 Feb. 4, 2016 violaceinigra 61 Duganella 58291 2.8.2016 NRRL B-67233 Feb. 4, 2016 violaceinigra 62 Massilia niastensis 55184 2.8.2016 NRRL B-67235 Feb. 4, 2016 63 Agrobacterium 958 7.14.2016 NRRL B-67286 Jul. 17, 2016 fabrum or Rhizobium pusense 64 Arthrobacter 717 7.14.2016 NRRL B-67289 Jul. 17, 2016 nicotinovorans 65 Arthrobacter 3189 7.14.2016 NRRL B-67290 Jul. 17, 2016 nicotinovorans 66 Chryseobacterium 191 7.14.2016 NRRL B-67291 Jul. 17, 2016 daecheongense 67 Chryseobacterium 597 7.14.2016 NRRL B-67288 Jul. 17, 2016 rhizosphaerae 68 Chryseobacterium 615 7.14.2016 NRRL B-67287 Jul. 17, 2016 rhizosphaerae 69 Frigidibacter albus 712 7.14.2016 NRRL B-67285 Jul. 17, 2016 or Delfulviimonas dentrificans (In Taxonomic Flux) 70 Frigidibacter albus 402 7.14.2016 NRRL B-67283 Jul. 17, 2016 or Delfulviimonas dentrificans (In Taxonomic Flux) 71 Frigidibacter albus 745 7.14.2016 NRRL B-67284 Jul. 17, 2016 or Delfulviimonas dentrificans (In Taxonomic Flux) 72 Exiguobacterium 63 7.14.2016 NRRL B-67292 Jul. 17, 2016 antarcticum 73 Exiguobacterium 225 7.14.2016 NRRL B-67293 Jul. 17, 2016 antarcticum 74 Exiguobacterium 718 7.14.2016 NRRL B-67294 Jul. 17, 2016 sibiricum 75 Pseudomonas 616 7.14.2016 NRRL B-67295 Jul. 17, 2016 helmanticensis 76 Pseudomonas 2945 7.14.2016 NRRL B-67296 Jul. 17, 2016 helmanticensis 77 Pseudomonas 800 7.14.2016 NRRL B-67297 Jul. 17, 2016 helmanticensis 78 Leifsonia lichenia 72243 7.21.2016 NRRL B-67298 Jul. 22, 2016 79 Leifsonia lichenia 72289 7.21.2016 NRRL B-67299 Jul. 22, 2016 80 Tumebacillus 72229 7.21.2016 NRRL B-67302 In process permanebfrigoris 81 Tumebacillus 74542 7.21.2016 NRRL B-67300 In process permanebfrigoris 82 Tumebacillus 72366 7.22.2016 NRRL B-67303 In process permanebfrigoris 83 Tumebacillus 72287 7.21.2016 NRRL B-67301 In process permanebfrigoris *In process notes that viability testing has been conducted and outcome is awaiting transmittal

Example 6: Novel Microbial Species Deposited with the ARS Culture Collection (NRRL)

[0657] In one experimental embodiment, the inventors utilized the following microbial species in applications of the present disclosure.

TABLE-US-00026 TABLE 26 Taxonomy BCI (US) BDNZ (NZ) Achromobacter pulmonis 49 Acidovorax soli 648 Acidovorax soli 690 Agrobacterium fabrum or 46 Rhizobium pusense (in Taxonomix flux) Agrobacterium fabrum or 958 Rhizobium pusense (in Taxonomix flux) Arthrobacter cupressi 59 Arthrobacter cupressi 62 Arthrobacter nicotinovorans 717 Arthrobacter nicotinovorans 3189 Bacillus niacini 4718 Bosea eneae 1267 Bosea robiniae 689 Bosea thiooxidans 703 Chitinophaga terrae 79 Chitinophaga terrae 109 Chryseobacterium 45 daecheongense Chryseobacterium 191 daecheongense Chryseobacterium rhizospaerae 597 Chryseobacterium rhizospaerae 615 Delftia lacustris 124 Delftia lacustris 2350 Frigidibacter albus or 712 Delfulviimonas dentrificans (In Taxonomic Flux) Frigidibacter albus or 402 Delfulviimonas dentrificans (In Taxonomic Flux) Frigidibacter albus or 745 Delfulviimonas dentrificans (In Taxonomic Flux) Duganella radicis 105 Duganella radicis 31 Duganella violaceinigra 2204 Duganella violaceinigra 66361 Duganella violaceinigra 58291 Dyadobacter soli 68 Dyadobacter soli 96 Exiguobacterium antarcticum 63 Exiguobacterium antarcticum 225 Exiguobacterium aurantiacum 50 Exiguobacterium sibiricum 116 Exiguobacterium sibiricum 718 Flavobacterium glacei 4005 Herbaspirillum chlorophenolicum 162 Herbaspirillum chlorophenolicum 58 Kosakonia radicincitans 44 Leifsonia lichenia 72243 Leifsonia lichenia 72289 Massilia kyonggiensis (deposited 97 as Massilia albidiflava; new taxonomy is kyonggiensis) Massilia niastensis 1217 Massilia niastensis 55184 Microbacterium oleivorans 132 Novosphingobium 684 lindaniclasticum Novosphingobium 608 lindaniclasticum Novosphingobium resinovorum 557 Novosphingobium resinovorum 3709 Novosphingobium sediminicola 130 Paenibacillus glycanilyticus 418 Pantoea vagans 55529 Pedobacter rhizosphaerae 598 (deposited as Pedobacter soli) Pedobacter terrae 91 Pedobacter terrae 53 Polaromonas ginsengisoli 66373 Polaromonas ginsengisoli 66821 Pseudomonas helmanticensis 616 Pseudomonas helmanticensis 2945 Pseudomonas helmanticensis 800 Pseudomonas jinjuensis 804 Pseudomonas oryzihabitans 55530 Rahnella aquatilis 29 Rahnella aquatilis 58013 Rahnella aquatilis 56532 Ramlibacter henchirensis 739 Ramlibacter henchirensis 1959 Rhizobium rhizoryzae 34 Rhizobium rhizoryzae 661 Rhizobium sp. 106 Rhodococcus erythropolis 54093 Sinorhizobium chiapanecum (now 131 Ensifer adhaerens) Sinorhizobium Chiapanecum (now 111 Ensifer adhaerens) Sphingopyxis alaskensis 412 Sphingopyxis alaskensis 914 Stenotrophomonas maltophilia 54073 Tumebacillus permanentifrigoris 72229 Tumebacillus permanentifrigoris 74542 Tumebacillus permanentifrigoris 72366 Tumebacillus permanentifrigoris 72287 Variovorax ginsengisoli 137 Variovorax ginsengisoli 3078

Example 7: Deposited Microbial Species Novel to Agriculture

[0658] In one experimental embodiment, the inventors utilized the following microbial species in applications of the present disclosure. Table 27 notes microbial organisms of the present disclosure which have been deposited with the NRRL, ATCC, and/or DSMZ depositories with the respective accession numbers.

TABLE-US-00027 TABLE 27 Species novel to Agriculture (in Tables 1, 2, 3, 4 and 25) NRRL # DSMZ # ATTC # Achromobacter pulmonis NRRL B-67174 DSM29617 Acidovorax soli NRRL B-67181 NRRL B-67182 Agrobacterium fabrum or NRRL B-67173 DSM22668 Rhizobium pusense (In NRRL B-67286 Taxonomic Flux) (previously Rhizobium sp.) Arthrobacter cupressi NRRL B-67183 NRRL B-67184 Arthrobacter NRRL B-67289 DSM420 49919 nicotinovorans NRRL B-67290 Bosea eneae NRRL B-67185 Bosea minatitlanensis DSM-13099 700918 Bosea robinae NRRL B-67186 Caulobacter henricii DSM-4730 15253 Chitinophaga arvensicola DSM-3695 51264 Chitinophaga terrae NRRL B-67188 Chryseobacterium NRRL B-67172 DSM15235 daecheongense NRRL B-67291 Chryseobacterium NRRL B-67288 rhizophaerae NRRL B-67287 Delftia lacustris NRRL B-67190 NRRL B-67191 Frigidibacter albus or NRRL B-67285 Delfulviimonas dentrificans NRRL B-67283 (In Taxonomic Flux) NRRL B-67284 Duganella radicis NRRL B-67192 NRRL B-67166 Duganella violaceinigra NRRL B-67193 (Pseudoduganella NRRL B-67232 violaceinigra) NRRL B-67233 Dyadobacter soli NRRL B-67193 NRRL B-67194 Exiguobacterium NRRL B-67292 DSM14480 antarcticum NRRL B-67293 Exiguobacterium sibiricum NRRL B-67167 DSM17290 NRRL B-67294 Flavobacterium glaciei NRRL B-67196 Frateuria aurantia DSM-6220 Frateuria terrea DSM-26515 Herbaspirillum NRRL B-67197 chlorophenolicum NRRL B-67236 Janthinobacterium DSM-9628 agaricidamnosum Janthinobacterium lividum DSM-1522 Leifsonia lichenia NRRL B-67298 NRRL B-67299 Luteibacter yeojuensis DSM-17673 Massilia kyongggiensis NRRL B-67198 DSM101532 (previously Massilia albidiflava) Massilia niastensis NRRL B-67199 NRRL B-67235 Microbacterium sp. DSM-16050 31001 (OLIEVORANS DEPOSITED) Novosphingobium NRRL B-67201 DSM25409 lindaniclasticum NRRL B-67200 Novosphingobium NRRL B-67202 resinovorum NRRL B-67203 Novosphingobium rosa DSM-7285 51837 Novosphingobium NRRL B-67168 DSM27057 sediminicola Paenibacillus amylolyticus DSM-11730 9995 Paenibacillus chondroitinus DSM-5051 51184 Paenibacillus glycanilyticus NRRL B-67204 Pedobacter rhizosphaerae NRRL B-67205 (Pedobacter soli) Pedobacter terrae NRRL B-67206 NRRL B-67176 Polaromonas ginsengisoli NRRL B-67231 NRRL B-67234 Pseudomonas NRRL B-67295 DSM28442 helmanticensis NRRL B-67296 NRRL B-67297 Pseudomonas jinjuensis NRRL B-67207 Ramlibacter henchirensis NRRL B-67208 Rhizobium rhizoryzae NRRL B-67210 NRRL B-67211 Rhodoferax ferrireducens DSM-15236 BAA-621 Sinorhizobium NRRL B-67213 chiapanecum (Ensifer NRRL B-67169 adhaerens) Sphingobium quisquiliarum DSM-24952 Sphingopyxis alaskensis NRRL B-67214 NRRL B-67215 Stenotrophomonas terrae DSM-18941 Tumebacillus NRRL B-67302 DSM118773 permanentifrigoris NRRL B-67300 NRRL B-67303 NRRL B-67301 Variovorax ginsengisoli NRRL B-67216 NRRL B-67217

Example 8: Microbial Consortia Embodiments

[0659] In one experimental embodiment, the inventors utilized the following microbial consortia in applications of the present disclosure. Table 28 notes microbial consortia D12, D21, D27, D28, D30, D31, D32, D33, and D34 of the present disclosure. Underneath each of the consortia designations are the specific strain numbers that identify the microbes present in each of the consortia.

TABLE-US-00028 TABLE 28 Strain Strain Consortia* BCI# BDNZ# Microbe identity D12 D21 D27 D28 D30 D31 D32 D33 D34 31 Duganella radicis (31) 31 -- -- 116 Exiguobacterium 116 -- -- sibiricum (116) 130 Novosphingobium 130 -- -- sediminicola (130) 958 Agrobacterium 958 958 -- fabrum or Rhizobium pusense (initaxonomix flux) 616 -- Pseudomonas -- 616 helmanticensis (616) 615 Chryseobacterium 615 rhizosphaerae (615) 74542 Tumebacillus -- -- 74542 permanentifrigoris (74542) 72229 Tumebacillus -- -- 72229 permanentifrigoris (72229) 72243 Leifsonia lichenia -- -- 72243 72243 (72243) 597 -- Chryseobacterium -- -- 597 rhizosphaerae (597) 712 -- Frigidibacter albus -- -- 712 or Delfulviimonas dentrificans (In Taxonomic Flux) (712) 717 -- Arthrobacter -- -- 717 nicotinovorans (717) 71222 Novosphingobium 71222 lindaniclasticum (71222)

Example 9: Microbial Strain and Microbial Species Embodiments

[0660] In one experimental embodiment, the inventors utilized the following microbial species and/or strains in applications of the present disclosure. Table 29 notes specific microbial species and strains utilized in experimental studies which are novel to agriculture and have exhibited positive results in controlled environment screening experiments of the present disclosure.

TABLE-US-00029 TABLE 29 Individual species of note Strain Strain Species BDNZ# BCI# Duganella violaceinigra 66361 Bosea thiooxidans 54522 703 Massilia niastensis 55184 1217 Polaromonas ginsengisoli 66373 Novosphingobium resinovorum 557 Duganella violaceinigra 2204 Exiguobacterium 50 aurantiacum Exiguobacterium 116 sibiricum Variovorax ginsengisoli 3078 Pedobacter rhizosphaerae 598 Duganella radicis 31 Paenibacillus glycanilyticus 418 Bacillus niacin 1718 Stenotrophomonas maltophilia 54073 Rhodococcus erythropolis 54093 Pantoea vagans 55529 Pseudomonas oryzihabitans 55530 Achromobacter pulmonis 49 Agrobacterium fabrum 46 or Rhizobium pusense (In Taxonomic Flux) (previously Rhizobium sp.) Agrobacterium fabrum 958 or Rhizobium pusense (In Taxonomic Flux) (previously Rhizobium sp.) Arthrobacter nicotinovorans 717 Arthrobacter nicotinovorans 3189 Chryseobacterium daecheongense 45 Chryseobacterium daecheongense 191 Chryseobacterium rhizosphaerae 597 Chryseobacterium rhizosphaerae 615 Frigidibacter albus or 712 Delfulviimonas dentrificans (In Taxonomic Flux) Frigidibacter albus or 402 Delfulviimonas dentrificans (In Taxonomic Flux) Frigidibacter albus or 745 Delfulviimonas dentrificans (In Taxonomic Flux) Exiguobacterium antarcticum 63 Exiguobacterium antarcticum 225 Exiguobacterium sibiricum 116 Exiguobacterium sibiricum 718 Leifsonia lichenia 72243 Leifsonia lichenia 72289 Pedobacter terrae -- 53 Pseudomonas helmanticensis 616 Pseudomonas helmanticensis 2945 Pseudomonas helmanticensis 800 Tumebacillus permanentifrigoris 72229 Tumebacillus permanetifrigoris 74542 Tumebacillus permanentifrigoris 72366 Tumebacillus permanentifrigoris 72287

INCORPORATION BY REFERENCE

[0661] All references, articles, publications, patents, patent publications, and patent applications cited herein are incorporated by reference in their entireties for all purposes.

[0662] However, mention of any reference, article, publication, patent, patent publication, and patent application cited herein is not, and should not be taken as, an acknowledgment or any form of suggestion that they constitute valid prior art or form part of the common general knowledge in any country in the world.

REFERENCES

[0663] Ascend.RTM. plant growth regulator product sheet. EPA reg. No. 9776-335 [0664] Calvo, P., Nelson, L., Kloepper, J. W., 2014 Agricultural uses of plant biostimulants. Plant soil 383, 3-41. [0665] "Chemistry and Technology of Agrochemical Formulations," edited by D. A. Knowles, copyright 1998 by Kluwer Academic Publishers. [0666] Colby, R. S., "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations, 1967 Weeds, vol. 15, pp. 20-22. [0667] Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987). [0668] Crameri et al. (1997) Nature Biotech. 15:436-438. [0669] Crameri et al. (1998) Nature 391:288-291. [0670] De Almeida et al., (1989) Mol. Gen. Genetics 218:78-86). [0671] Dobereiner J, Marriel E and Nery M 1976 Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol. 22, 1464-1473. [0672] Fahraeus, G. (1957). J. Gen Microbiol. 16: 374-381. [0673] Gerhardt, P. (ed.) Methods for General and Molecular Microbiology. American Society for Microbiology, Washington, D.C. (1994). [0674] Gherna, R. L. and C. A. Reddy. 2007. Culture Preservation, p 1019-1033. In C. A. Reddy, T. J. Beveridge, J. A. Breznak, G. A. Marzluf, T. M. Schmidt, and L. R. Snyder, eds. American Society for Microbiology, Washington, D.C., 1033 pages. [0675] Goteti, P. K. et al., (2013). International Journal of Microbiology 2013: 1-7 Article ID 869697. [0676] Hartmann A., Baldani J. I. The genus Azospirillum//The Prokaryotes, V. 5: Proteobacteria Alpha and Beta Subclasses//Eds. M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt. --Springer Verlag, New York, USA, 2006. p. 115-140. [0677] Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York). [0678] Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York). [0679] In re Bergstrom, 427 F.2d 1394, (CCPA 1970). [0680] In re Bergy, 596 F.2d 952 (CCPA 1979). [0681] Islam, M. T., Deora, A., Hashidoko, Y., Rahman, A., Ito, T., and Tahara, S. (2007) Isolation and Identification of Potential Phosphate Solubilizing Bacteria from the Rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Zeitschrift fur Naturforschung C 62(1-2):103-10. [0682] Jones et al., (1985) EMBO J. 4:2411-2418. [0683] Lennette, E. H. (ed.) Manual of Clinical Microbiology, Third Edition. American Society for Microbiology, Washington, D.C. (1980). [0684] McCutcheon's Detergents and Emulsifiers Annual, MC Publishing Corp., Ridgewood, N.J., 1998, and in Encyclopedia of Surfactants, Vol. Chemical Publishing Co., New York, 1980-81.

[0685] McCutcheon's, vol. 1, "Emulsifiers and Detergents," MC Publishing Company, Glen Rock, N.J., U.S.A., 1996. [0686] Merck & Co. v. Olin Mathieson Chemical Corp., 253 F.2d 156 (4th Cir. 1958). [0687] Miche, L and Balandreau, J (2001). Effects of rice seed surface sterilisation with hypochlorite on inoculated Burkholderia vietamiensis. Appl. Environ. Microbiol. 67 (7): p 3046-3052. [0688] Moore et al. (1997) J. Mol. Biol. 272:336-347. [0689] Nautiyal, C. S. (1999), FEMS Microbiology Letters 170 (1999) 265-270. [0690] N-Large.TM. plant growth regulator product sheet. EPA Reg. No. 57538-18. [0691] Parke-Davis & Co. v. H. K. Mulford & Co., 189 F. 95 (S.D.N.Y. 1911). [0692] Parmar, P. and Sindhu, S. S. (2013) Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research, 3(1): 25-31. [0693] PCT/NZ2012/000041, published on Sep. 20, 2012, as International Publication No. WO 2012125050 A1. [0694] PCT/NZ2013/000171, published on Mar. 27, 2014, as International Publication No. WO 2014046553 A1. [0695] Perez-Miranda, S. et al., (2007). Journal of Microbiological Methods 70: 127-131. [0696] Pikovskaya R I (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologia 17:362-370. [0697] ProGibb.RTM. plant growth regulator product sheet. EPA Reg. No. 73049-15. [0698] Rana, A. et al. (2012) Enhancing Micronutrient Uptake and Yield of Wheat Through Bacterial PGPR Consortia, Soil Science and Plant Nutrition, 58:5, 573-582. [0699] Release.RTM. plant growth regulator product sheet. EPA Reg. No. 73049-6. [0700] Rodriguez, H. and Reynaldo, F. (1999). Phosphate Solubilizing Bacteria and their Role in Plant Growth Promotion. Biotechnology Advances. 17. 319-339. [0701] Ruth Eckford, R., Cook, F. D., Saul, D., Aislabie J., and J. Foght (2002) Free-living Heterotrophic Bacteria Isolated from Fuel-Contaminated Antarctic Soils. Appl. Environ. Microbiol 68(10):5181. RyzUp SmartGrass.RTM. plant growth regulator product sheet. EPA Reg. No. 73049-1. [0702] Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). [0703] Shanware, A. S. et al., 2014 Int. J. Curr. Microbiol. App. Sci 3(9) 622-629. [0704] Stemmer (1994) Nature 370:389-391. [0705] Stemmer (1994) PNAS 91:10747-10751. [0706] Strobel G and Daisy B (2003) Microbiology and Molecular Biology Reviews 67 (4): 491-502. [0707] U.S. Pat. No. 8,652,490 "Pasteuria Strain" issued Feb. 18, 2014. [0708] U.S. Pat. No. 8,383,097 "Bacteria Cultures and Compositions Comprising Bacteria Cultures" issued Feb. 26, 2013. [0709] Vandamme et al. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996, 60:407-438. [0710] Bergey's Manual of Systematic Bacteriology 2.sup.nd Edition Volume 1 (2001) The Archaea and the deeply branching and phototrophic Bacteria. Editor-in-Chief: George M. Garrity. Editors: David R. Boone and Richard W. Castenholz. ISBN 0-387-98771-1. [0711] Bergey's Manual of Systematic Bacteriology 2.sup.nd Edition Volume 2 (2005) The Proteobacteria. Editor-in-Chief: George M. Garrity. Editors: Don J. Brenner, Noel R. Krieg and James T. Staley. ISBN 0-387-95040-0. [0712] Bergey's Manual of Systematic Bacteriology 2.sup.nd Edition Volume 3 (2009) The Firmicutes. Editors: Paul De Vos, George Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, Karl-Heinz Schleifer and William B. Whitman. ISBN 0-387-95041-9. [0713] Bergey's Manual of Systematic Bacteriology 2.sup.nd Edition Volume 4 (2011) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Editors: Noel R. Krieg, James T. Staley, Daniel R. Brown, Brian P. Hedlund, Bruce J. Paster, Naomi L. Ward, Wolfgang Ludwig and William B. Whitman. ISBN 0-387-95042-6 [0714] Bergey's Manual of Systematic Bacteriology 2.sup.nd Edition Volume 5 (2012) The Actinobacteria. Editors: Michael Goodfellow, Peter Kampfer, Hans-Jurgen Busse, Martha E. Trujillo, Ken-ichiro Suzuki, Wolfgang Ludwig and William B. Whitman. ISBN 0-387-95042-7. [0715] Yemm and Willis (Biochem. J. 1954, 57: 508-514). [0716] X-CYTE.TM. plant growth regulator product sheet. EPA Reg. No. 57538-15. [0717] Zhang et al. (1997) PNAS 94:4504-4509. [0718] Zinniel D K et al. (2002) Applied and Environmental Microbiology 68 (5): 2198-2208). [0719] Pikovskaya R I (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologia 17:362-370.

Sequence CWU 1

1

3071848DNAChryseobacterium daecheongensemisc_feature(1)..(848)BCI 45 16S rDNAmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(695)..(695)n is a, c, g, or tmisc_feature(701)..(701)n is a, c, g, or tmisc_feature(789)..(789)n is a, c, g, or tmisc_feature(803)..(803)n is a, c, g, or tmisc_feature(807)..(807)n is a, c, g, or t 1cggtcaccga cttcaggtac cnccagactt ccatggcttg acgggcggtg tgtacaaggc 60ccgggaacgt attcaccgcg ccatggctga tgcgcgatta ctagcgattc cagcttcata 120gagtcgagtt gcagactcca atccgaactg agaccggctt tcgagatttg catcacatcg 180ctgtgtagct gccctctgta ccggccattg tattacgtgt gtggcccaag gcgtaagggc 240cgtgatgatt tgacgtcatc cccaccttcc tctctacttg cgtaggcagt ctcactagag 300tccccaactg aatgatggca actagtgaca ggggttgcgc tcgttgcagg acttaaccta 360acacctcacg gcacgagctg acgacaacca tgcagcacct tgaaaattgc ccgaaggaag 420gtctatttct aaaccgatca attcccattt aagccttggt aaggttcctc gcgtatcatc 480gaattaaacc acataatcca ccgcttgtgc gggcccccgt caattccttt gagtttcatt 540cttgcgaacg tactccccag gtggctaact tatcactttc gcttagtctc tgaacccgaa 600agcccaaaaa cgagttagca tcgtttacgg cgtggactac cagggtatct aatcctgttc 660gctccccacg ctttcgtcca tcagcgtcag ttaanacata ntaacctgcc ttcgcaattg 720gtgttctaag taatatctat gcatttcacc gctacactac ttattccagc tacttctacc 780ttactcaana cctgcagtat cantggnagt gtcacagtta aactgtgaga tttcgccact 840gacttaca 8482748DNAChryseobacterium daecheongensemisc_feature(1)..(748)BCI 191 16S rDNAmisc_feature(8)..(8)n is a, c, g, or tmisc_feature(16)..(17)n is a, c, g, or tmisc_feature(50)..(50)n is a, c, g, or tmisc_feature(621)..(621)n is a, c, g, or tmisc_feature(628)..(628)n is a, c, g, or tmisc_feature(664)..(664)n is a, c, g, or tmisc_feature(679)..(679)n is a, c, g, or tmisc_feature(698)..(698)n is a, c, g, or tmisc_feature(705)..(705)n is a, c, g, or tmisc_feature(715)..(715)n is a, c, g, or tmisc_feature(717)..(717)n is a, c, g, or tmisc_feature(720)..(720)n is a, c, g, or tmisc_feature(727)..(727)n is a, c, g, or tmisc_feature(731)..(731)n is a, c, g, or tmisc_feature(733)..(733)n is a, c, g, or tmisc_feature(738)..(738)n is a, c, g, or tmisc_feature(748)..(748)n is a, c, g, or t 2ggtacccnag acttcnntgg cttgacgggc ggtgtgtaca aggcccgggn acgtattcac 60cgcgccatgg ctgatgcgcg attactagcg attccagctt catagagtcg agttgcagac 120tccaatccga actgagaccg gctttcgaga tttgcatcac atcgctgtgt agctgccctc 180tgtaccggcc attgtattac gtgtgtggcc caaggcgtaa gggccgtgat gatttgacgt 240catccccacc ttcctctcta cttgcgtagg cagtctcact agagtcccca acttaatgat 300ggcaactagt gacaggggtt gcgctcgttg caggacttaa cctaacacct cacggcacga 360gctgacgaca accatgcagc accttgaaaa ttgcccgaag gaaggtctat ttctaaaccg 420atcaattccc atttaagcct tggtaaggtt cctcgcgtat catcgaatta aaccacataa 480tccaccgctt gtgcgggccc ccgtcaattc ctttgagttt caaacttgcg ttcgtactcc 540ccaggtggct aacttatcac tttcgcttag tctctgaatc cgaaaaccca aaaacgagtt 600agcatcgttt acagcgtgga ntaccagngt atctaatcct gttcgctccc cacgctttcg 660tccntcagcg tcagttaana catagtaacc tgccttcnca attgntgttc taagnantan 720ctatgcnttt nancgctnca ctacttan 7483681DNAChryseobacterium rhizosphaeraemisc_feature(1)..(681)BCI 597 16S rDNA 3cgacttcagg taccccagac ttccatggct tgacgggcgg tgtgtacaag gcccgggaac 60gtattcaccg cgccatggct gatgcgcgat tactagcgat tccagcttca tagagtcgag 120ttgcagactc caatccgaac tgagaccggc tttcgagatt tgcatcacat cgctgtgtag 180ctgccctctg taccggccat tgtattacgt gtgtggccca aggcgtaagg gccgtgatga 240tttgacgtca tccccacctt cctctctact tgcgtaggca gtctcactag agtccccaac 300ttaatgatgg caactagtga caggggttgc gctcgttgca ggacttaacc taacacctca 360cggcacgagc tgacgacaac catgcagcac cttgaaaaat gtccgaagaa aagtctattt 420ctaaacctgt catttcccat ttaagccttg gtaaggttcc tcgcgtatca tcgaattaaa 480ccacataatc caccgcttgt gcgggccccc gtcaattcct ttgagtttca ttcttgcgaa 540cgtactcccc aggtggctaa cttatcactt tcgcttagtc tctgaatccg aaaacccaaa 600aacgagttag catcgtttac ggcgtggact accagggtat ctaatcctgt tcgctcccca 660cgctttcgtc catcagcgtc a 6814799DNAChryseobacterium rhizosphaeraemisc_feature(1)..(799)BCI 615 16S rDNAmisc_feature(5)..(5)n is a, c, g, or t 4taggnggatc tgtaagtcag tggtgaaatc tcacagctta actgtgaaac tgccattgat 60actgcaggtc ttgagtgttg ttgaagtagc tggaataagt agtgtagcgg tgaaatgcat 120agatattact tagaacacca attgcgaagg caggttacta agcaacaact gacgctgatg 180gacgaaagcg tggggagcga acaggattag ataccctggt agtccacgcc gtaaacgatg 240ctaactcgtt tttgggtttt cggattcaga gactaagcga aagtgataag ttagccacct 300ggggagtacg ttcgcaagaa tgaaactcaa aggaattgac gggggcccgc acaagcggtg 360gattatgtgg tttaattcga tgatacgcga ggaaccttac caaggcttaa atgggaaatg 420acaggtttag aaatagactt ttcttcggac atttttcaag gtgctgcatg gttgtcgtca 480gctcgtgccg tgaggtgtta ggttaagtcc tgcaacgagc gcaacccctg tcactagttg 540ccatcattaa gttggggact ctagtgagac tgcctacgca agtagagagg aaggtgggga 600tgacgtcaaa tcatcacggc ccttacgcct tgggccacac acgtaataca atggccggta 660cagagggcag ctacacagcg atgtgatgca aatctcgaaa gccggtctca gttcggattg 720gagtctgcaa ctcgactcta tgaagctgga atcgctagta atcgcgcatc agccatggcg 780cggtgaatac gttcccggg 7995618DNAFrigidibacter albusmisc_feature(1)..(618)BCI 712 16S rDNA 5gcaggttggc gcaccgcctt cgggtaaacc caactcccat ggtgtgacgg gcggtgtgta 60caaggcccgg gaacgtattc accgcgtcat gctgttacgc gattactagc gattccgact 120tcatggggtc gagttgcaga ccccaatccg aactgagaca gctttttggg attaacccat 180tgtcactgcc attgtagcac gtgtgtagcc caacccgtaa gggccatgag gacttgacgt 240catccacacc ttcctccgac ttatcatcgg cagtttccct agagtgccca actgaatgct 300ggcaactaag gacgtgggtt gcgctcgttg ccggacttaa ccgaacatct cacgacacga 360gctgacgaca gccatgcagc acctgtgtgg tatccagccg aactgaaaga tccatctctg 420gatccgcgat acccatgtca agggttggta aggttctgcg cgttgcttcg aattaaacca 480catgctccac cgcttgtgcg ggcccccgtc aattcctttg agttttaatc ttgcgaccgt 540actccccagg cggaatgctt aatccgttag gtgtgacacc gacaagcatg cttgccgacg 600tctggcattc atcgttta 6186741DNAFrigidibacter albusmisc_feature(1)..(741)BCI 402 16S rDNAmisc_feature(3)..(3)n is a, c, g, or t 6ctnggaactg cctttgatac tgctagtcta gagttcgaga gaggtgagtg gaattccgag 60tgtagaggtg aaattcgtag atattcggag gaacaccagt ggcgaaggcg gctcactggc 120tcgatactga cgctgaggtg cgaaagcgtg gggagcaaac aggattagat accctggtag 180tccacgccgt aaacgatgaa tgccagacgt cggcaagcat gcttgtcggt gtcacaccta 240acggattaag cattccgcct ggggagtacg gtcgcaagat taaaactcaa aggaattgac 300gggggcccgc acaagcggtg gagcatgtgg tttaattcga agcaacgcgc agaaccttac 360caacccttga catgggtatc gcggatccag agatggatct ttcagttcgg ctggatacca 420cacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga tgttcggtta agtccggcaa 480cgagcgcaac ccacgtcctt agttgccagc attcagttgg gcactctagg gaaactgccg 540atgataagtc ggaggaaggt gtggatgacg tcaagtcctc atggccctta cgggttgggc 600tacacacgtg ctacaatggc agtgacaatg ggttaatccc aaaaagctgt ctcagttcgg 660attggggtct gcaactcgac cccatgaagt cggaatcgct agtaatcgcg taacagcatg 720acgcggtgaa tacgttcccg g 7417775DNAFrigidibacter albusmisc_feature(1)..(775)BCI 745 16S rDNAmisc_feature(21)..(22)n is a, c, g, or tmisc_feature(40)..(40)n is a, c, g, or tmisc_feature(45)..(45)n is a, c, g, or tmisc_feature(111)..(111)n is a, c, g, or t 7attagtcagt cagaggtgaa nncccagggc tcaaccttgn aactnccttt gatactgcta 60gtctagagtt cgagagaggt gagtggaatt ccgagtgtag aggtgaaatt ngtagatatt 120cggaggaaca ccagtggcga aggcggctca ctggctcgat actgacgctg aggtgcgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gccgtaaacg atgaatgcca 240gacgtcggca agcatgcttg tcggtgtcac acctaacgga ttaagcattc cgcctgggga 300gtacggtcgc aagattaaaa ctcaaaggaa ttgacggggg cccgcacaag cggtggagca 360tgtggtttaa ttcgaagcaa cgcgcagaac cttaccaacc cttgacatgg gtatcgcgga 420tccagagatg gatctttcag ttcggctgga taccacacag gtgctgcatg gctgtcgtca 480gctcgtgtcg tgagatgttc ggttaagtcc ggcaacgagc gcaacccacg tccttagttg 540ccagcattca gttgggcact ctagggaaac tgccgatgat aagtcggagg aaggtgtgga 600tgacgtcaag tcctcatggc ccttacgggt tgggctacac acgtgctaca atggcagtga 660caatgggtta atcccaaaaa gctgtctcag ttcggattgg ggtctgcaac tcgaccccat 720gaagtcggaa tcgctagtaa tcgcgtaaca gcatgacgcg gtgaatacgt tcccg 7758800DNAArthrobacter nicotinovoransmisc_feature(1)..(800)BCI 717 16S rDNAmisc_feature(10)..(10)n is a, c, g, or tmisc_feature(36)..(36)n is a, c, g, or t 8gtttgtcgcn tctgctgtga aagaccgggg ctcaantccg gttctgcagt gggtacgggc 60agactagagt gcagtagggg agactggaat tcctggtgta gcggtgaaat gcgcagatat 120caggaggaac accgatggcg aaggcaggtc tctgggctgt aactgacgct gaggagcgaa 180agcatgggga gcgaacagga ttagataccc tggtagtcca tgccgtaaac gttgggcact 240aggtgtgggg gacattccac gttttccgcg ccgtagctaa cgcattaagt gccccgcctg 300gggagtacgg ccgcaaggct aaaactcaaa ggaattgacg ggggcccgca caagcggcgg 360agcatgcgga ttaattcgat gcaacgcgaa gaaccttacc aaggcttgac atgaaccgga 420aagacctgga aacaggtgcc ccgcttgcgg tcggtttaca ggtggtgcat ggttgtcgtc 480agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctc gttctatgtt 540gccagcggtt cggccgggga ctcataggag actgccgggg tcaactcgga ggaaggtggg 600gacgacgtca aatcatcatg ccccttatgt cttgggcttc acgcatgcta caatggccgg 660tacaaagggt tgcgatactg tgaggtggag ctaatcccaa aaagccggtc tcagttcgga 720ttggggtctg caactcgacc ccatgaagtc ggagtcgcta gtaatcgcag atcagcaacg 780ctgcggtgaa tacgttcccg 8009898DNAArthrobacter nicotinovoransmisc_feature(1)..(898)BCI 3189 16S rDNA 9cacaagggtt aggccaccgg cttcgggtgt taccaacttt cgtgacttga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccgcag cgttgctgat ctgcgattac tagcgactcc 120gacttcatgg ggtcgagttg cagaccccaa tccgaactga gaccggcttt ttgggattag 180ctccacctca cagtatcgca accctttgta ccggccattg tagcatgcgt gaagcccaag 240acataagggg catgatgatt tgacgtcgtc cccaccttcc tccgagttga ccccggcagt 300ctcctatgag tccccggccg aaccgctggc aacatagaac gagggttgcg ctcgttgcgg 360gacttaaccc aacatctcac gacacgagct gacgacaacc atgcaccacc tgtaaaccga 420ccgcaagcgg ggcacctgtt tccaggtctt tccggttcat gtcaagcctt ggtaaggttc 480ttcgcgttgc atcgaattaa tccgcatgct ccgccgcttg tgcgggcccc cgtcaattcc 540tttgagtttt agccttgcgg ccgtactccc caggcggggc acttaatgcg ttagctacgg 600cgcggaaaac gtggaatgtc ccccacacct agtgcccaac gtttacggca tggactacca 660gggtatctaa tcctgttcgc tccccatgct ttcgctcctc agcgtcagtt acagcccaga 720gacctgcctt cgccatcggt gttcctcctg atatctgcgc atttcaccgc tacaccagga 780attccagtct cccctactgc actctagtct gcccgtaccc actgcagaac cggagttgag 840ccccggtctt tcacagcaga cgcgacaaac cgcctacgag ctctttacgc ccaataat 89810736DNAPseudomonas helmanticensismisc_feature(1)..(736)BCI 616 16S rDNA 10agactagcta cttctggtgc aacccactcc catggtgtga cgggcggtgt gtacaaggcc 60cgggaacgta ttcaccgtga cattctgatt cacgattact agcgattccg acttcacgca 120gtcgagttgc agactgcgat ccggactacg atcggtttta tgggattagc tccacctcgc 180ggcttggcaa ccctttgtac cgaccattgt agcacgtgtg tagcccaggc cgtaagggcc 240atgatgactt gacgtcatcc ccaccttcct ccggtttgtc accggcagtc tccttagagt 300gcccaccata acgtgctggt aactaaggac aagggttgcg ctcgttacgg gacttaaccc 360aacatctcac gacacgagct gacgacagcc atgcagcacc tgtctcaatg ttcccgaagg 420caccaatcca tctctggaaa gttcattgga tgtcaaggcc tggtaaggtt cttcgcgttg 480cttcgaatta aaccacatgc tccaccgctt gtgcgggccc ccgtcaattc atttgagttt 540taaccttgcg gccgtactcc ccaggcggtc aacttaatgc gttagctgcg ccactaagag 600ctcaaggctc ccaacggcta gttgacatcg tttacggcgt ggactaccag ggtatctaat 660cctgtttgct ccccacgctt tcgcacctca gtgtcagtat cagtccaggt ggtcgccttc 720gccactggtg ttcctt 73611930DNAPseudomonas helmanticensismisc_feature(1)..(930)BCI 2945 16S rDNAmisc_feature(771)..(771)n is a, c, g, or tmisc_feature(832)..(832)n is a, c, g, or tmisc_feature(844)..(844)n is a, c, g, or tmisc_feature(862)..(862)n is a, c, g, or tmisc_feature(896)..(896)n is a, c, g, or tmisc_feature(919)..(919)n is a, c, g, or tmisc_feature(926)..(926)n is a, c, g, or t 11aggttagact agctacttct ggtgcaaccc actcccatgg tgtgacgggc ggtgtgtaca 60aggcccggga acgtattcac cgtgacattc tgattcacga ttactagcga ttccgacttc 120acgcagtcga gttgcagact gcgatccgga ctacgatcgg ttttatggga ttagctccac 180ctcgcggctt ggcaaccctt tgtaccgacc attgtagcac gtgtgtagcc caggccgtaa 240gggccatgat gacttgacgt catccccacc ttcctccggt ttgtcaccgg cagtctcctt 300agagtgccca ccattacgtg ctggtaacta aggacaaggg ttgcgctcgt tacgggactt 360aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtct caatgttccc 420gaaggcacca atccatctct ggaaagttca ttggatgtca aggcctggta aggttcttcg 480cgttgcttcg aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcatttg 540agttttaacc ttgcggccgt actccccagg cggtcaactt aatgcgttag ctgcgccact 600aagagctcaa ggctcccaac ggctagttga catcgtttac ggcgtggact accagggtat 660ctaatcctgt ttgctcccca cgctttcgca cctcagtgtc agtatcagtc caggtggtcg 720ccttcgccac tggtgttcct tcctatatct acgcatttca ccgctacaca ngaaattcca 780ccaccctcta ccatactcta gctcgacagt tttgaatgca gtttccaagg tngagcccgg 840gganttcaca tccaacttaa cnaacaccta cgcgcgcttt acgaccagta attccnatta 900acgcttgcac cctctgtant accgcngctg 93012822DNAPseudomonas helmanticensismisc_feature(1)..(822)BCI 800 16S rDNAmisc_feature(32)..(33)n is a, c, g, or tmisc_feature(43)..(43)n is a, c, g, or t 12ggcgtaaagc gcgcgtaggt ggttcgttaa gnnggatgtg aantccccgg gctcaacctg 60ggaactgcat tcaaaactgt cgagctagag tatggtagag ggtggtggaa tttcctgtgt 120agcggtgaaa tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg 180atactgacac tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgtcaac tagccgttgg gagccttgag ctcttagtgg cgcagctaac 300gcattaagtt gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg 360gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca 420ggccttgaca tccaatgaac tttccagaga tggattggtg ccttcgggaa cattgagaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag 540cgcaaccctt gtccttagtt accagcacgt tatggtgggc actctaagga gactgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gcctgggcta 660cacacgtgct acaatggtcg gtacaaaggg ttgccaagcc gcgaggtgga gctaatccca 720taaaaccgat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt cggaatcgct 780agtaatcgtg aatcagaatg tcacggtgaa tacgttcccg gg 82213894DNAAgrobacterium fabrummisc_feature(1)..(894)BCI 46 16S rDNA 13ccttgcggtt agcgcactac cttcgggtaa aaccaactcc catggtgtga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccgcag catgctgatc tgcgattact agcgattcca 120acttcatgca ctcgagttgc agagtgcaat ccgaactgag atggcttttg gagattagct 180cgacatcgct gtctcgctgc ccactgtcac caccattgta gcacgtgtgt agcccagccc 240gtaagggcca tgaggacttg acgtcatccc caccttcctc tcggcttatc accggcagtc 300cccttagagt gcccaactaa atgctggcaa ctaagggcga gggttgcgct cgttgcggga 360cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg ttctggggcc 420agcctaactg aaggacatcg tctccaatgc ccataccccg aatgtcaaga gctggtaagg 480ttctgcgcgt tgcttcgaat taaaccacat gctccaccgc ttgtgcgggc ccccgtcaat 540tcctttgagt tttaatcttg cgaccgtact ccccaggcgg aatgtttaat gcgttagctg 600cgccaccgaa cagtatactg cccgacggct aacattcatc gtttacggcg tggactacca 660gggtatctaa tcctgtttgc tccccacgct ttcgcacctc agcgtcagta atggaccagt 720aagccgcctt cgccactggt gttcctccga atatctacga atttcacctc tacactcgga 780attccactta cctcttccat actcaagata cccagtatca aaggcagttc cgcagttgag 840ctgcgggatt tcacccctga cttaaatatc cgcctacgtg cgctttacgc ccag 89414602DNAAgrobacterium fabrummisc_feature(1)..(602)BCI 958 16S rDNA 14cttcgggtaa aaccaactcc catggtgtga cgggcggtgt gtacaaggcc cgggaacgta 60ttcaccgcag catgctgatc tgcgattact agcgattcca acttcatgca ctcgagttgc 120agagtgcaat ccgaactgag atggcttttg gagattagct cgacatcgct gtctcgctgc 180ccactgtcac caccattgta gcacgtgtgt agcccagccc gtaagggcca tgaggacttg 240acgtcatccc caccttcctc tcggcttatc accggcagtc cccttagagt gcccaactaa 300atgctggcaa ctaagggcga gggttgcgct cgttgcggga cttaacccaa catctcacga 360cacgagctga cgacagccat gcagcacctg ttctggggcc agcctaactg aaggacatcg 420tctccaatgc ccataccccg aatgtcaaga gctggtaagg ttctgcgcgt tgcttcgaat 480taaaccacat gctccaccgc ttgtgcgggc ccccgtcaat tcctttgagt tttaatcttg 540cgaccgtact ccccaggcgg aatgtttaat gcgttagctg cgccaccgaa cagtatactg 600cc 60215600DNAAchromobacter pulmonismisc_feature(1)..(600)BCI 49 16S rDNA 15taggctaact acttctggta aaacccactc ccatggtgtg acgggcggtg tgtacaagac 60ccgggaacgt attcaccgcg acatgctgat ccgcgattac tagcgattcc gacttcacgc 120agtcgagttg cagactgcga tccggactac gatcgggttt ctgggattgg ctccccctcg 180cgggttggcg accctctgtc ccgaccattg tatgacgtgt gaagccctac ccataagggc 240catgaggact tgacgtcatc cccaccttcc tccggtttgt caccggcagt ctcattagag 300tgccctttcg tagcaactaa tgacaagggt tgcgctcgtt gcgggactta acccaacatc 360tcacgacacg agctgacgac agccatgcag cacctgtgtt ccagttctct tgcgagcact 420gccaaatctc ttcggcattc cagacatgtc aagggtaggt aaggtttttc gcgttgcatc 480gaattaatcc acatcatcca ccgcttgtgc gggtccccgt caattccttt gagttttaat 540cttgcgaccg tactccccag gcggtcaact tcacgcgtta gctgcgctac caaggtccga 60016705DNAExiguobacterium sibiricummisc_feature(1)..(705)BCI 116 16S rDNA 16cctcaccggc ttcgggtgtt gcaaactctc gtggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgcagt atgctgacct gcgattacta gcgattccga cttcatgcag 120gcgagttgca gcctgcaatc cgaactggga acggctttct gggattggct ccacctcgcg 180gtctcgctgc cctttgtacc gtccattgta gcacgtgtgt agcccaactc ataaggggca 240tgatgatttg acgtcatccc caccttcctc cggtttgtca ccggcagtct ccctagagtg 300cccaactaaa tgctggcaac taaggatagg ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacaaccatg caccacctgt cacccttgtc cccgaaggga 420aaacttgatc tctcaagcgg

tcaaggggat gtcaagagtt ggtaaggttc ttcgcgttgc 480ttcgaattaa accacatgct ccaccgcttg tgcgggtccc cgtcaattcc tttgagtttc 540agccttgcgg ccgtactccc caggcggagt gcttaatgcg ttagcttcag cactgagggg 600cggaaacccc ccaacaccta gcactcatcg tttacggcgt ggactaccag ggtatctaat 660cctgtttgct ccccacgctt tcgcgcctca gcgtcagtta cagac 70517796DNAExiguobacterium sibiricummisc_feature(1)..(796)BCI 718 16S rDNAmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(30)..(30)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or tmisc_feature(87)..(87)n is a, c, g, or tmisc_feature(436)..(436)n is a, c, g, or t 17tttaagtctg atgngaaagc ccccggctcn accggggagg ntcattggaa actggaaggc 60ttgagtacag aagagaagag tggaatncca tgtgtagcgg tgaaatgcgt agagatgtgg 120aggaacacca gtggcgaagg cgactctttg gtctgtaact gacgctgagg cgcgaaagcg 180tggggagcaa acaggattag ataccctggt agtccacgcc gtaaacgatg agtgctaggt 240gttggggggt ttccgcccct cagtgctgaa gctaacgcat taagcactcc gcctggggag 300tacggccgca aggctgaaac tcaaaggaat tgacggggac ccgcacaagc ggtggagcat 360gtggtttaat tcgaagcaac gcgaagaacc ttaccaactc ttgacatccc cttgaccgct 420tgagagatca agtttnccct tcgggggcaa gggtgacagg tggtgcatgg ttgtcgtcag 480ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caacccctat ccttagttgc 540cagcatttag ttgggcactc tagggagact gccggtgaca aaccggagga aggtggggat 600gacgtcaaat catcatgccc cttatgagtt gggctacaca cgtgctacaa tggacggtac 660aaagggcagc gagaccgcga ggtggagcca atcccagaaa gccgttccca gttcggattg 720caggctgcaa ctcgcctgca tgaagtcgga atcgctagta atcgcaggtc agcatactgc 780ggtgaatacg ttcccg 79618777DNAExiguobacterium antarcticummisc_feature(1)..(777)BCI 63 16S rDNA 18acctcaccgg cttcgggtgt tgcaaactct cgtggtgtga cgggcggtgt gtacaagacc 60cgggaacgta ttcaccgcag tatgctgacc tgcgattact agcgattccg acttcatgca 120ggcgagttgc agcctgcaat ccgaactggg aacggctttc tgggattggc tccacctcgc 180ggtctcgctg ccctttgtac cgtccattgt agcacgtgtg tagcccaact cataaggggc 240atgatgattt gacgtcatcc ccaccttcct ccggtttgtc accggcagtc tccctagagt 300gcccaactaa atgctggcaa ctaaggatag gggttgcgct cgttgcggga cttaacccaa 360catctcacga cacgagctga cgacaaccat gcaccacctg tcacccttgt ccccgaaggg 420aaaacttgat ctctcaagcg gtcaagggga tgtcaagagt tggtaaggtt cttcgcgttg 480cttcgaatta aaccacatgc tccaccgctt gtgcgggtcc ccgtcaattc ctttgagttt 540cagccttgcg gccgtactcc ccaggcggag tgcttaatgc gttagcttca gcactgaggg 600gcggaaaccc cccaacacct agcactcatc gtttacggcg tggactacca gggtatctaa 660tcctgtttgc tccccacgct ttcgcgcctc agcgtcagtt acagaccaaa gagtcgcctt 720cgccactggt gttcctccac atctctacgc atttcaccgc tacacatgga attccac 77719820DNAExiguobacterium antarcticummisc_feature(1)..(820)BCI 225 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(17)..(17)n is a, c, g, or tmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(33)..(33)n is a, c, g, or tmisc_feature(52)..(52)n is a, c, g, or tmisc_feature(175)..(175)n is a, c, g, or t 19ggcgtnaagc gcgcgcnggc ggncttttaa gtntgatgtg aaagcccccg gntcaaccgg 60ggagggtcat tggaaactgg aaggcttgag tacagaagag aagagtggaa ttccatgtgt 120agcggtgaaa tgcgtagaga tgtggaggaa caccagtggc gaaggcgact ctttngtctg 180taactgacgc tgaggcgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgagtgc taggtgttgg ggggtttccg cccctcagtg ctgaagctaa 300cgcattaagc actccgcctg gggagtacgg ccgcaaggct gaaactcaaa ggaattgacg 360gggacccgca caagcggtgg agcatgtggt ttaattcgaa gcaacgcgaa gaaccttacc 420aactcttgac atccccttga ccgcttgaga gatcaagttt tcccttcggg gacaagggtg 480acaggtggtg catggttgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac 540gagcgcaacc cctatcctta gttgccagca tttagttggg cactctaggg agactgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caaatcatca tgccccttat gagttgggct 660acacacgtgc tacaatggac ggtacaaagg gcagcgagac cgcgaggtgg agccaatccc 720agaaagccgt tcccagttcg gattgcaggc tgcaactcgc ctgcatgaag tcggaatcgc 780tagtaatcgc aggtcagcat actgcggtga atacgttccc 82020724DNAPedobacter terraemisc_feature(1)..(724)BCI 53 16S rDNAmisc_feature(4)..(4)n is a, c, g, or tmisc_feature(16)..(16)n is a, c, g, or tmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(61)..(61)n is a, c, g, or tmisc_feature(70)..(70)n is a, c, g, or tmisc_feature(85)..(85)n is a, c, g, or tmisc_feature(101)..(101)n is a, c, g, or tmisc_feature(108)..(109)n is a, c, g, or tmisc_feature(120)..(120)n is a, c, g, or tmisc_feature(353)..(353)n is a, c, g, or tmisc_feature(431)..(431)n is a, c, g, or tmisc_feature(442)..(443)n is a, c, g, or tmisc_feature(452)..(452)n is a, c, g, or tmisc_feature(463)..(463)n is a, c, g, or tmisc_feature(533)..(533)n is a, c, g, or tmisc_feature(557)..(557)n is a, c, g, or tmisc_feature(577)..(577)n is a, c, g, or tmisc_feature(595)..(595)n is a, c, g, or tmisc_feature(599)..(599)n is a, c, g, or tmisc_feature(612)..(614)n is a, c, g, or tmisc_feature(617)..(617)n is a, c, g, or tmisc_feature(634)..(634)n is a, c, g, or tmisc_feature(645)..(645)n is a, c, g, or tmisc_feature(647)..(647)n is a, c, g, or tmisc_feature(655)..(655)n is a, c, g, or tmisc_feature(667)..(667)n is a, c, g, or tmisc_feature(673)..(673)n is a, c, g, or tmisc_feature(680)..(680)n is a, c, g, or tmisc_feature(704)..(704)n is a, c, g, or tmisc_feature(710)..(710)n is a, c, g, or tmisc_feature(714)..(714)n is a, c, g, or tmisc_feature(720)..(720)n is a, c, g, or t 20tggnttgacg ggcggngtgt acaaggnccg ggaacgtatt caccgcgtca ttgctgatac 60ncgattactn gcgaatccaa cttcntgggg tcgagttgca naccccannc cgaactgtgn 120acggctttgt gagattcgca tcatattgct atgtagctgc cctctgtacc gtccattgta 180gcacgtgtgt agccccggac gtaagggcca tgatgacttg acgtcgtccc ctccttcctc 240tctgtttgca caggcagtct gtttagagtc cccaccatta catgctggca actaaacata 300ggggttgcgc tcgttgcggg acttaaccca acacctcacg gcacgagctg acnacagcca 360tgcagcacct agtttcgtgt ccttgcggac tgatccatct ctggatcatt cactaacttt 420caagcccggg naaggttcct cnngtatcat cnaattaaac canatgctcc tccgcttgtg 480cgggcccccg tcaattcctt tgagtttcac ccttgcgggc gtactcccca ggnggaacac 540ttaacgcttt cgcttanccg ctgactgtgt atcgccnaca gcgagtgttc atcgnttang 600gcgtggacta cnnnggnatc taatcctgtt tganccccac gcttncntgc ctcancgtca 660ataagancat agnaagctgn cttcgcaatc ggtgttctga gacntatctn tgcntttcan 720cgct 72421682DNADuganella radicismisc_feature(1)..(682)BCI 31 16S rDNA 21agctacctac ttctggtaaa acccgctccc atggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgcgac atgctgatcc gcgattacta gcgattccaa cttcacgtag 120tcgagttgca gactacgatc cggactacga tgcactttct gggattagct ccccctcgcg 180ggttggcggc cctctgtatg caccattgta tgacgtgtga agccctaccc ataagggcca 240tgaggacttg acgtcatccc caccttcctc cggtttgtca ccggcagtct cattagagtg 300ccctttcgta gcaactaatg acaagggttg cgctcgttgc gggacttaac ccaacatctc 360acgacacgag ctgacgacag ccatgcagca cctgtgtatc ggttctcttt cgggcactcc 420ccaatctctc agggattcct tccatgtcaa gggtaggtaa ggtttttcgc gttgcatcga 480attaatccac atcatccacc gcttgtgcgg gtccccgtca attcctttga gttttaatct 540tgcgaccgta ctccccaggc ggtctacttc acgcgttagc tgcgttacca agtcaattaa 600gacccgacaa ctagtagaca tcgtttaggg cgtggactac cagggtatct aatcctgttt 660gctccccacg ctttcgtgca tg 68222799DNALeifsonia licheniamisc_feature(1)..(799)BDNZ 72243 16S rDNA 22tccacaaggg ttaggccacc ggcttcgggt gttaccgact ttcatgactt gacgggcggt 60gtgtacaagg cccgggaacg tattcaccgc agcgttgctg atctgcgatt actagcgact 120ccgacttcat gaggtcgagt tgcagacctc aatccgaact gagaccggct ttttgggatt 180cgctccacct tacggtattg cagccctttg taccggccat tgtagcatgc gtgaagccca 240agacataagg ggcatgatga tttgacgtca tccccacctt cctccgagtt gaccccggca 300gtctcctatg agttcccacc attacgtgct ggcaacatag aacgagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca accatgcacc acctgtttac 420gagtgtccaa agagttgacc atttctggcc cgttctcgta tatgtcaagc cttggtaagg 480ttcttcgcgt tgcatcgaat taatccgcat gctccgccgc ttgtgcgggc ccccgtcaat 540tcctttgagt tttagccttg cggccgtact ccccaggcgg ggcgcttaat gcgttagctg 600cgacacggaa accgtggaat ggtccccaca tctagcgccc aacgtttacg gcgtggacta 660ccagggtatc taatcctgtt cgctccccac gctttcgctc ctcagcgtca gttacggccc 720agagaactgc cttcgccatc ggggttcctc ctgatatctg cgcattccac cgctacacca 780ggaattccat tctccccta 799231008DNALeifsonia licheniamisc_feature(1)..(1008)BDNZ 72289 16S rDNA 23tccacaaggg ttaggccacc ggcttcgggt gttaccgact ttcatgactt gacgggcggt 60gtgtacaagg cccgggaacg tattcaccgc agcgttgctg atctgcgatt actagcgact 120ccgacttcat gaggtcgagt tgcagacctc aatccgaact gagaccggct ttttgggatt 180cgctccacct tacggtattg cagccctttg taccggccat tgtagcatgc gtgaagccca 240agacataagg ggcatgatga tttgacgtca tccccacctt cctccgagtt gaccccggca 300gtctcctatg agttcccacc attacgtgct ggcaacatag aacgagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca accatgcacc acctgtttac 420gagtgtccaa agagttgacc atttctggcc cgttctcgta tatgtcaagc cttggtaagg 480ttcttcgcgt tgcatcgaat taatccgcat gctccgccgc ttgtgcgggc ccccgtcaat 540tcctttgagt tttagccttg cggccgtact ccccaggcgg ggcgcttaat gcgttagctg 600cgacacggaa accgtggaat ggtccccaca tctagcgccc aacgtttacg gcgtggacta 660ccagggtatc taatcctgtt cgctccccac gctttcgctc ctcagcgtca gttacggccc 720agagaactgc cttcgccatc ggtgttcctc ctgatatctg cgcattccac cgctacacca 780ggaattccat tctcccctac cgcactctag tctgcccgta cccactgcag gcccgaggtt 840gagcctcggg ttttcacagc agacgcgaca aaccgcctac gagctcttta cgcccaataa 900ttccggacaa cgcttgcacc ctacgtatta ccgcggctgc tggcacgtag ttagccggtg 960ctttttctgc aggtaccgtc actttcgctt cttccctact aaaagagg 100824989DNATumebacillus permanentifrigorismisc_feature(1)..(989)BDNZ 72229 16S rDNA 24agcagttacc tcaccgactt cgggtgttac caactcccat ggtgtgacgg gcggtgtgta 60caaggcccgg gaacgaattc accgcggcat gctgatccgc gattactagc aattccggct 120tcatgcaggc gagttgcagc ctgcaatccg aactacgaac ggctttctgg gattggctcc 180acctcgcggc ttcgcaaccc tttgtaccgt ccattgtagc acgtgtgtag cccaagacat 240aaggggcatg atgatttgac gtcatccccg ccttcctccg gtttgtcacc ggcagtctgt 300tgtaagtgct caactaaatg gtagcaacac aacatagggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga caaccatgca ccacctgtca ccgctgcccc 420gaagggaagc tctatctcta gaacggtcag cgggatgtca agtcttggta aggttcttcg 480cgttgcttcg aattaaacca catgctccac tgcttgtgcg ggcccccgtc aattcctttg 540agtttcagtc ttgcgaccgt actccccagg cggagtgctt aatgcgttag cttcggcact 600aaggggtggg ccccctaaca cctagcactc atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcgc ctcagcgtca gaaatcggcc agcaaggcgc 720cttcgccaca ggtgttcctc cacatctcta cgcatttcac cgctacacgt ggaattcccc 780ttgcctctcc gatcctcaag tctccccgta tccaaggcaa tcccagagtt gagctctggg 840ctttcacccc ggacgtgaaa gaccgcctgc gcgcgcttta cgcccagtga ttccggacaa 900cgcttgcccc ctacgtatta ccgcggctgc tggcacgtag ttagccgggg cttcctcctc 960tgttaccgtc aggtcctgag ctttctctg 989251021DNATumebacillus permanentifrigorismisc_feature(1)..(1021)BDNZ 74542 16S rDNA 25agcagttacc tcaccgactt cgggtgttac caactcccat ggtgtgacgg gcggtgtgta 60caaggcccgg gaacgaattc accgcggcat gctgatccgc gattactagc aattccggct 120tcatgcaggc gagttgcagc ctgcaatccg aactacgaac ggctttctgg gattggctcc 180acctcgcggc ttcgcaaccc tttgtaccgt ccattgtagc acgtgtgtag cccaagacat 240aaggggcatg atgatttgac gtcatccccg ccttcctccg gtttgtcacc ggcagtctgt 300tgtaagtgct caactaaatg gtagcaacac aacatagggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga caaccatgca ccacctgtca ccgctgcccc 420gaagggaagc tctatctcta gaacggtcag cgggatgtca agtcttggta aggttcttcg 480cgttgcttcg aattaaacca catgctccac tgcttgtgcg ggcccccgtc aattcctttg 540agtttcagtc ttgcgaccgt actccccagg cggagtgctt aatgcgttag cttcggcact 600aaggggtggg ccccctaaca cctagcactc atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcgc ctcagcgtca gaaatcggcc agcaaggcgc 720cttcgccaca ggtgttcctc cacatctcta cgcatttcac cgctacacgt ggaattcccc 780ttgcctctcc gatcctcaag tctccccgta tccaaggcaa tcccagagtt gagctctggg 840ctttcacccc ggacgtgaaa gaccgcctgc gcgcgcttta cgcccagtga ttccggacaa 900cgcttgcccc ctacgtatta ccgcggctgc tggcacgtag ttagccgggg cttcctcctc 960tgttaccgtc aggtcctgag ctttctctgc acaggatggt tcttcacaga agacagagtt 1020t 102126989DNATumebacillus permanentifrigorismisc_feature(1)..(989)BDNZ 72366 16S rDNA 26agcagttacc tcaccgactt cgggtgttac caactcccat ggtgtgacgg gcggtgtgta 60caaggcccgg gaacgaattc accgcggcat gctgatccgc gattactagc aattccggct 120tcatgcaggc gagttgcagc ctgcaatccg aactacgaac ggctttctgg gattggctcc 180acctcgcggc ttcgcaaccc tttgtaccgt ccattgtagc acgtgtgtag cccaagacat 240aaggggcatg atgatttgac gtcatccccg ccttcctccg gtttgtcacc ggcagtctgt 300tgtaagtgct caactaaatg gtagcaacac aacatagggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga caaccatgca ccacctgtca ccgctgcccc 420gaagggaagc tctatctcta gaacggtcag cgggatgtca agtcttggta aggttcttcg 480cgttgcttcg aattaaacca catgctccac tgcttgtgcg ggcccccgtc aattcctttg 540agtttcagtc ttgcgaccgt actccccagg cggagtgctt aatgcgttag cttcggcact 600aaggggtggg ccccctaaca cctagcactc atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcgc ctcagcgtca gaaatcggcc agcaaggcgc 720cttcgccaca ggtgttcctc cacatctcta cgcatttcac cgctacacgt ggaattcccc 780ttgcctctcc gatcctcaag tctccccgta tccaaggcaa tcccagagtt gagctctggg 840ctttcacccc ggacgtgaaa gaccgcctgc gcgcgcttta cgcccagtga ttccggacaa 900cgcttgcccc ctacgtatta ccgcggctgc tggcacgtag ttagccgggg cttcctcctc 960tgttaccgtc aggtcctgag ctttctctg 98927799DNABacillus ashaiimisc_feature(1)..(799)BCI 928 16S rDNAmisc_feature(416)..(418)n is a, c, g, or t 27tcctttaagt ctgatgtgaa agcccacggc tcaaccgtgg agggtcattg gaaactgggg 60gacttgagtg cagaagagga gagtggaatt ccacgtgtag cggtgaaatg cgtagagatg 120tggaggaaca ccagtggcga aggcgactct ctggtctgta actgacgctg aggcgcgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gccgtaaacg atgagtgcta 240agtgttagag ggtttccgcc ctttagtgct gcagctaacg cattaagcac tccgcctggg 300gagtacggcc gcaaggctga aactcaaagg aattgacggg ggcccgcaca agcggtggag 360catgtggttt aattcgaagc aacgcgaaga accttaccag gtcttgacat cctctnnnaa 420ccctagagat agggcgttcc ccttcggggg acagagtgac aggtggtgca tggttgtcgt 480cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct tgatcttagt 540tgccagcatt cagttgggca ctctaaggtg actgccggtg acaaaccgga ggaaggtggg 600gatgacgtca aatcatcatg ccccttatga cctgggctac acacgtgcta caatggatgg 660tacaaagagc tgcgaacccg cgagggtaag cgaatctcat aaagccattc tcagttcgga 720ttgtaggctg caactcgcct acatgaagcc ggaatcgcta gtaatcgcgg atcagcatgc 780cgcggtgaat acgttcccg 79928763DNANovosphingobium sediminicolamisc_feature(1)..(763)BCI 130 16S rDNAmisc_feature(19)..(19)n is a, c, g, or tmisc_feature(531)..(531)n is a, c, g, or tmisc_feature(639)..(639)n is a, c, g, or tmisc_feature(668)..(668)n is a, c, g, or tmisc_feature(702)..(702)n is a, c, g, or tmisc_feature(716)..(716)n is a, c, g, or tmisc_feature(721)..(722)n is a, c, g, or tmisc_feature(724)..(724)n is a, c, g, or tmisc_feature(733)..(733)n is a, c, g, or tmisc_feature(743)..(745)n is a, c, g, or tmisc_feature(751)..(751)n is a, c, g, or tmisc_feature(756)..(756)n is a, c, g, or t 28acgccttcga gtgaatccna ctcccatggt gtgacgggcg gtgtgtacaa ggcctgggaa 60cgtattcacc gcggcatgct gatccgcgat tactagcgat tccgccttca tgctctcgag 120ttgcagagaa caatccgaac tgagacggct tttggagatt agctacccct cgcgaggtcg 180ctgcccactg tcaccgccat tgtagcacgt gtgtagccca gcgtgtaagg gccatgagga 240cttgacgtca tccccacctt cctccggctt atcaccggcg gtttccttag agtgcccaac 300ttaatgatgg caactaagga cgagggttgc gctcgttgcg ggacttaacc caacatctca 360cgacacgagc tgacgacagc catgcagcac ctgtcaccga tccagccaaa ctgaaggaaa 420acatctctgt aatccgcgat cgggatgtca aacgctggta aggttctgcg cgttgcttcg 480aattaaacca catgctccac cgcttgtgca ggcccccgtc aattcctttg ngttttaatc 540ttgcgaccgt actccccagg cggataactt aatgcgttag ctgcgccacc caaattccat 600gaacccggac agctagttat catcgtttac ggcgtggant accagggtat ctaatcctgt 660ttgctccnca cgctttcgca cctcagcgtc aatacctgtc cngtgagccg ccttcnccac 720nngngttctt ccnaatatct acnnntttca nctctncact cgg 76329882DNANovosphingobium sediminicolamisc_feature(1)..(882)BDNZ 71628 16S rDNA 29ctgcctccct tgcgggttag ctcaacgcct tcgagtgaat ccaactccca tggtgtgacg 60ggcggtgtgt acaaggcctg ggaacgtatt caccgcggca tgctgatccg cgattactag 120cgattccgcc ttcatgctct cgagttgcag agaacaatcc gaactgagac ggcttttgga 180gattagctac ccctcgcgag gtcgctgccc actgtcaccg ccattgtagc acgtgtgtag 240cccagcgtgt aagggccatg aggacttgac gtcatcccca ccttcctccg gcttatcacc 300ggcggtttcc ttagagtgcc caacttaatg atggcaacta aggacgaggg ttgcgctcgt 360tgcgggactt aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtca 420ccgcgtcccc gaagggaaca caccatctct ggtgttagcg cgggatgtca aacgctggta 480aggttctgcg cgttgcttcg aattaaacca catgctccac cgcttgtgca ggcccccgtc 540aattcctttg agttttaatc ttgcgaccgt actccccagg cggataactt aatgcgttag 600ctgcgccacc caaattccat gaacccggac agctagttat catcgtttac ggcgtggact 660accagggtat ctaatcctgt ttgctcccca cgctttcgca cctcagcgtc aatacctgtc 720cagtgagccg ccttcgccac tggtgttctt ccgaatatct acgaatttca cctctacact 780cggaattcca ctcacctctc caggattcta gttacctagt ttcaaaggca gttccggggt 840tgagccccgg gctttcacct ctgacttgag taaccgccta cg 88230823DNANovosphingobium lindaniclasticummisc_feature(1)..(823)BCI 608 16S rDNA 30ggcgtaaagc gcgcgtaggc ggttactcaa gtcagaggtg aaagcccggg gctcaacccc 60ggaactgcct ttgaaactag gtgactagaa tcttggagag gtcagtggaa ttccgagtgt 120agaggtgaaa ttcgtagata ttcggaagaa caccagtggc gaaggcgact gactggacaa 180gtattgacgc tgaggtgcga aagcgtgggg agcaaacagg attagatacc

ctggtagtcc 240acgccgtaaa cgatgataac tagctgtccg gggacttggt ctttgggtgg cgcagctaac 300gcattaagtt atccgcctgg ggagtacggt cgcaagatta aaactcaaag gaattgacgg 360gggcctgcac aagcggtgga gcatgtggtt taattcgaag caacgcgcag aaccttacca 420gcgtttgaca tcctcatcgc ggatttgaga gatcatttcc ttcagttcgg ctggatgagt 480gacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga tgttgggtta agtcccgcaa 540cgagcgcaac cctcgtcctt agttgccagc atttagttgg gcactctaag gaaactgccg 600gtgataagcc ggaggaaggt ggggatgacg tcaagtcctc atggccctta cacgctgggc 660tacacacgtg ctacaatggc ggtgacagtg ggcagcaagc aggcgactgc aagctaatct 720ccaaaagccg tctcagttcg gattgttctc tgcaactcga gagcatgaag gcggaatcgc 780tagtaatcgc ggatcagcat gccgcggtga atacgttccc agg 82331930DNANovosphingobium lindaniclasticummisc_feature(1)..(930)BDNZ 71222 16S rDNA 31cttgcgagtt agctcaacgc cttcgagtga atccaactcc catggtgtga cgggcggtgt 60gtacaaggcc tgggaacgta ttcaccgcgg catgctgatc cgcgattact agcgattccg 120ccttcatgct ctcgagttgc agagaacaat ccgaactgag acggcttttg gagattagct 180tgccctcgcg cgcttgctgc ccactgtcac cgccattgta gcacgtgtgt agcccagcgt 240gtaagggcca tgaggacttg acgtcatccc caccttcctc cggcttatca ccggcagttt 300ccttagagtg cccaactaaa tgctggcaac taaggacgag ggttgcgctc gttgcgggac 360ttaacccaac atctcacgac acgagctgac gacagccatg cagcacctgt cactcatcca 420gccgaactga aggaaaagat ctctctaatc cgcgatgagc atgtcaaacg ctggtaaggt 480tctgcgcgtt gcttcgaatt aaaccacatg ctccaccgct tgtgcaggcc cccgtcaatt 540cctttgagtt ttaatcttgc gaccgtactc cccaggcgga taacttaatg cgttagctcc 600gccacccaag caccaagtgc ccggacagct agttatcatc gtttacggcg tggactacca 660gggtatctaa tcctgtttgc tccccacgct ttcgcacctc agcgtcaata cttgtccagt 720cagtcgcctt cgccactggt gttcttccga atatctacga atttcacctc tacactcgga 780attccactga cctctccaag attctagcta cctagtttca aaggcagttc cggggttgag 840ccccgggctt tcacctctga cttgagcagc tgcatacgcg cgctttacgc ccaggaaatt 900ccgaacaacg ctagctccct ccgtattacc 93032506DNAMassilia kyonggiensismisc_feature(1)..(506)BCI 97 16S rDNA 32aagacccggg aacgtattca ccgcgacatg ctgatccgcg attactagcg attccaactt 60cacgcagtcg agttgcagac tgcgatccgg actacgatac actttctggg attagctccc 120cctcgcgggt tggcggccct ctgtatgtac cattgtatga cgtgtgaagc cctacccata 180agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg gcagtctcat 240tagagtgccc tttcgtagca actaatgaca agggttgcgc tcgttgcggg acttaaccca 300acatctcacg acacgagctg acgacagcca tgcagcacct gtgttcaggc tccctttcgg 360gcactcccag atctctccag gattcctgac atgtcaaggg taggtaaggt ttttcgcgtt 420gcatcgaatt aatccacatc atccaccgct tgtgcgggtc cccgtcaatt cctttgagtt 480ttaatcttgc gaccgtactc cccagg 50633351DNAMassilia kyonggiensismisc_feature(1)..(351)BCI 94 16S rDNAmisc_feature(101)..(101)n is a, c, g, or t 33gaaagggagc ctgaacacag gtgctgcatg gctgtcgtca gctcgtgtcg tgagatgttg 60ggttaagtcc cgcaacgagc gcaacccttg tcattagttg ntacgaaagg gcactctaat 120gagactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaagtcctc atggccctta 180tgggtagggc ttcacacgtc atacaatggt acatacagag ggccgccaac ccgcgagggg 240gagctaatcc cagaaagtgt atcgtagtcc ggatcgcagt ctgcaactcg actgcgtgaa 300gttggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc c 35134969DNAMassilia kyonggiensismisc_feature(1)..(969)BDNZ 73021 16S rDNA 34cggttaagct acctacttct ggtaaaaccc gctcccatgg tgtgacgggc ggtgtgtaca 60agacccggga acgtattcac cgcggcatgc tgatccgcga ttactagcga ttccaacttc 120acgcagtcga gttgcagact gcgatccgga ctacgataca ctttctggga ttagctcccc 180ctcgcgggtt ggcggccctc tgtatgtacc attgtatgac gtgtgaagcc ctacccataa 240gggccatgag gacttgacgt catccccacc ttcctccggt ttgtcaccgg cagtctcatt 300agagtgctct tgcgtagcaa ctaatgacaa gggttgcgct cgttgcggga cttaacccaa 360catctcacga cacgagctga cgacagccat gcagcacctg tgttcaggct ctctttcgag 420caccccccga tctctcgagg gttcctgaca tgtcaagggt aggtaaggtt tttcgcgttg 480catcgaatta atccacatca tccaccgctt gtgcgggtcc ccgtcaattc ctttgagttt 540taatcttgcg accgtactcc ccaggcggtc tacttcacgc gttagctgcg ttaccaagtc 600aattaagacc cgacaactag tagacatcgt ttagggcgtg gactaccagg gtatctaatc 660ctgtttgctc cccacgcttt cgtgcatgag cgtcaatctt gacccagggg gctgccttcg 720ccatcggtgt tcctccacat ctctacgcat ttcactgcta cacgtggaat tctacccccc 780tctgccagat tcaagccttg cagtctccaa cgcaattccc aggttaagcc cggggctttc 840acgtcagact tacaaaaccg cctgcgcacg ctttacgccc agtaattccg attaacgctt 900gcaccctacg tattaccgcg gctgctggca cgtagttagc cggtgcttat tcttcaggta 960ccgtcatta 96935820DNARhizobium rhizoryzaemisc_feature(1)..(820)BCI 661 16S rDNAmisc_feature(17)..(17)n is a, c, g, or tmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(60)..(60)n is a, c, g, or tmisc_feature(63)..(63)n is a, c, g, or tmisc_feature(70)..(70)n is a, c, g, or tmisc_feature(73)..(73)n is a, c, g, or tmisc_feature(84)..(84)n is a, c, g, or tmisc_feature(134)..(134)n is a, c, g, or t 35ggcgtaaagc gcacgtnggc ggacatttaa ntcaggggtg aaatcccggg gctcaacctn 60ggnactgccn ttngatactg ggtntcttga gtgtggaaga ggtcagtgga attgcgagtg 120tagaggtgaa attngtagat attcgcagga acaccagtgg cgaaggcggc tgactggtcc 180acaactgacg ctgaggtgcg aaagcgtggg gagcaaacag gattagatac cctggtagtc 240cacgccgtaa acgatgaatg ttagccgtcg gcaagtttac ttgtcggtgg cgcagctaac 300gcattaaaca ttccgcctgg ggagtacggt cgcaagatta aaactcaaag gaattgacgg 360gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgcag aaccttacca 420gcccttgaca tgcccggctc gccacagaga tgtggttttc ccttcgggga ccgggacaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 540cgcaaccctc gcccttagtt gccagcattt ggttgggcac tctaagggga ctgccggtga 600taagccgaga ggaaggtggg gatgacgtca agtcctcatg gcccttacgg gctgggctac 660acacgtgcta caatggtggt gacagtgggc agcgagcacg cgagtgtgag ctaatctcca 720aaagccatct cagttcggat tgcactctgc aactcgagtg catgaagttg gaatcgctag 780taatcgcgga tcagcacgcc gcggtgaata cgttcccggg 82036779DNABosea thiooxidansmisc_feature(1)..(779)BCI 985 16S rDNA 36tgcggttagc gcgacgcctt cgggtaaacc caactcccat ggtgtgacgg gcggtgtgta 60caaggcccgg gaacgtattc accgtggcat gctgatccac gattactagc gattccacct 120tcatgtactc gagttgcaga gtacaatctg aactgagacg gctttttggg attagctcca 180ggtcacccct tcgctgccca ttgtcaccgc cattgtagca cgtgtgtagc ccagcctgta 240agggccatga ggacttgacg tcatccccac cttcctcgcg gcttatcacc ggcagtcccc 300ctagagttcc caactgaatg atggcaacta ggggcgaggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtgt tccggccagc 420cgaactgaag aaaggcatct ctgccgatca aaccggacat gtcaaaagct ggtaaggttc 480tgcgcgttgc ttcgaattaa accacatgct ccaccgcttg tgcgggcccc cgtcaattcc 540tttgagtttt aatcttgcga ccgtactccc caggcggaat gcttaaagcg ttagctgcgc 600cactgaagag caagctcccc aacggctggc attcatcgtt tacggcgtgg actaccaggg 660tatctaatcc tgtttgctcc ccacgctttc gcgcctcagc gtcagtatcg gaccagttgg 720ccgccttcgc caccggtgtt cttgcgaata tctacgaatt tcacctctac actcgcagt 77937311DNAStenotrophomonas maltophiliamisc_feature(1)..(311)BCI 1032 16S rDNAmisc_feature(37)..(40)n is a, c, g, or tmisc_feature(43)..(43)n is a, c, g, or t 37tgagatgttg ggttaagtcc cgcaacgagc gcaaccnnnn tcnttagttg ccagcacgta 60atggtgggaa ctctaaggag accgccggtg acaaaccgga ggaaggtggg gatgacgtca 120agtcatcatg gcccttacgg ccagggctac acacgtacta caatggtagg gacagagggc 180tgcaagccgg cgacggtaag ccaatcccag aaaccctatc tcagtccgga ttggagtctg 240caactcgact ccatgaagtc ggaatcgcta gtaatcgcag atcagcattg ctgcggtgaa 300tacgttcccg g 31138832DNABosea robinaemisc_feature(1)..(832)BCI 1041 16S rDNAmisc_feature(13)..(13)n is a, c, g, or tmisc_feature(62)..(62)n is a, c, g, or t 38ggaatcactg ggngtaaagg gcgcgtaggc ggacttttaa gtcggaggtg aaagcccagg 60gntcaaccct ggaattgcct tcgatactgg gagtcttgag ttcggaagag gttggtggaa 120ctgcgagtgt agaggtgaaa ttcgtagata ttcgcaagaa caccggtggc gaaggcggcc 180aactggtccg aaactgacgc tgaggcgcga aagcgtgggg agcaaacagg attagatacc 240ctggtagtcc acgccgtaaa cgatgaatgc cagccgttgg ggagcttgct cttcagtggc 300gcagctaacg ctttaagcat tccgcctggg gagtacggtc gcaagattaa aactcaaagg 360aattgacggg ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgcaga 420accttaccag cttttgacat gtccggtttg atcggcagag atgcctttct tcagttcggc 480tggccggaac acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa 540gtcccgcaac gagcgcaacc ctcgccccta gttgccatca ttcagttggg aactctaggg 600ggactgccgg tgataagccg cgaggaaggt ggggatgacg tcaagtcctc atggccctta 660caggctgggc tacacacgtg ctacaatggc ggtgacaatg ggcagcgaaa gggcgacctc 720gagctaatcc caaaaagccg tctcagttca gattgtactc tgcaactcga gtacatgaag 780gtggaatcgc tagtaatcgt ggatcagcat gccacggtga atacgttccc gg 83239740DNADuganella radicismisc_feature(1)..(740)BCI 105 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(399)..(403)n is a, c, g, or tmisc_feature(405)..(409)n is a, c, g, or tmisc_feature(413)..(418)n is a, c, g, or tmisc_feature(440)..(446)n is a, c, g, or tmisc_feature(639)..(639)n is a, c, g, or tmisc_feature(668)..(669)n is a, c, g, or tmisc_feature(686)..(686)n is a, c, g, or tmisc_feature(699)..(699)n is a, c, g, or tmisc_feature(702)..(703)n is a, c, g, or tmisc_feature(724)..(724)n is a, c, g, or tmisc_feature(733)..(733)n is a, c, g, or t 39naagctacct acttctggta aaacccgctc ccatggtgtg acgggcggtg tgtacaagac 60ccgggaacgt attcaccgcg acatgctgat ccgcgattac tagcgattcc aacttcacgt 120agtcgagttg cagactacga tccggactac gatgcacttt ctgggattag ctccccctcg 180cgggttggcg gccctctgta tgcaccattg tatgacgtgt gaagccctac ccataagggc 240catgaggact tgacgtcatc cccaccttcc tccggtttgt caccggcagt ctcattagag 300tgccctttcg tagcaactaa tgacaagggt tgcgctcgtt gcgggactta acccaacatc 360tcacgacacg agctgacgac agccatgcag cacctgtgnn nnngnnnnnt ttnnnnnnct 420ccccaatctc tcagggattn nnnnnntgtc aagggtaggt aaggtttttc gcgttgcatc 480gaattaatcc acatcatcca ccgcttgtgc gggtccccgt caattccttt gagttttaat 540cttgcgaccg tactccccag gcggtctact tcacgcgtta gctgcgttac caagtcaatt 600aagacccgac aactagtaga catcgtttag ggcgtggant accagggtat ctaatcctgt 660ttgctccnna cgctttcgtg catgancgtc agttttganc cnnggggctg ccttcgccat 720cggngttcct ccncatatct 74040696DNAAgrobacterium fabrummisc_feature(1)..(696)BCI 106 16S rDNA 40ccttcgggta aaaccaactc ccatggtgtg acgggcggtg tgtacaaggc ccgggaacgt 60attcaccgca gcatgctgat ctgcgattac tagcgattcc aacttcatgc actcgagttg 120cagagtgcaa tccgaactga gatggctttt ggagattagc tcgacatcgc tgtctcgctg 180cccactgtca ccaccattgt agcacgtgtg tagcccagcc cgtaagggcc atgaggactt 240gacgtcatcc ccaccttcct ctcggcttat caccggcagt ccccttagag tgcccaacta 300aatgctggca actaagggcg agggttgcgc tcgttgcggg acttaaccca acatctcacg 360acacgagctg acgacagcca tgcagcacct gttctggggc cagcctaact gaaggacatc 420gtctccaatg cccatacccc gaatgtcaag agctggtaag gttctgcgcg ttgcttcgaa 480ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa ttcctttgag ttttaatctt 540gcgaccgtac tccccaggcg gaatgtttaa tgcgttagct gcgccaccga acagtatact 600gcccgacggc taacattcat cgtttacggc gtggactacc agggtatcta atcctgtttg 660ctccccacgc tttcgcacct cagcgtcagt aatgga 69641752DNAKosakonia radicincitansmisc_feature(1)..(752)BCI 107 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(18)..(19)n is a, c, g, or tmisc_feature(557)..(558)n is a, c, g, or tmisc_feature(641)..(641)n is a, c, g, or tmisc_feature(688)..(688)n is a, c, g, or tmisc_feature(704)..(704)n is a, c, g, or tmisc_feature(708)..(708)n is a, c, g, or tmisc_feature(724)..(724)n is a, c, g, or tmisc_feature(735)..(735)n is a, c, g, or tmisc_feature(744)..(744)n is a, c, g, or t 41nctacctact tcttttgnna cccactccca tggtgtgacg ggcggtgtgt acaaggcccg 60ggaacgtatt caccgtgaca ttctgattca cgattactag cgattccgac ttcatggagt 120cgagttgcag actccaatcc ggactacgac gcactttatg aggtccgctt gctctcgcga 180ggtcgcttct ctttgtatgc gccattgtag cacgtgtgta gccctggtcg taagggccat 240gatgacttga cgtcatcccc accttcctcc agtttatcac tggcagtctc ctttgagttc 300ccggcctaac cgctggcaac aaaggataag ggttgcgctc gttgcgggac ttaacccaac 360atttcacaac acgagctgac gacagccatg cagcacctgt ctcacagttc ccgaaggcac 420cccggcatct ctgccaggtt ctgtggatgt caagaccagg taaggttctt cgcgttgcat 480cgaattaaac cacatgctcc accgcttgtg cgggcccccg tcaattcatt tgagttttaa 540ccttgcggcc gtactcnnca ggcggtcgat ttaacgcgtt agctccggaa gccacgcctc 600aagggcacaa cctccaaatc gacatcgttt acggcgtgga ntaccagggt atctaatcct 660gtttgctccc cacgctttcg cacctgancg tcagtcttcg tccnggangc cgccttcgcc 720accngtattc ctccngatct ctangcattt ca 75242650DNABacillus oleroniusmisc_feature(1)..(650)BCI 1071 16S rDNA 42cttcgggtgt tacaaactct cgtggtgtga cgggcggtgt gtacaaggcc cgggaacgta 60ttcaccgcgg catgctgatc cgcgattact agcgattccg gcttcatgta ggcgagttgc 120agcctacaat ccgaactgag aatggtttta tgggattggc taaacctcgc ggtcttgcag 180ccctttgtac catccattgt agcacgtgtg tagcccaggt cataaggggc atgatgattt 240gacgtcatcc ccaccttcct ccggtttgtc accggcagtc accttagagt gcccaactga 300atgctggcaa ctaaggtcaa gggttgcgct cgttgcggga cttaacccaa catctcacga 360cacgagctga cgacaaccat gcaccacctg tcactcctgt ccccgaaggg aaatccctat 420ctctagggag gtcaagagga tgtcaagacc tggtaaggtt cttcgcgttg cttcgaatta 480aaccacatgc tccaccgctt gtgcgggccc ccgtcaattc ctttgagttt cagccttgcg 540gccgtactcc ccaggcggag tgcttaatgc gttagctgca gcactaaagg gcggaaaccc 600tctaacactt agcactcatc gtttacggcg tggactacca gggtatctaa 65043797DNABacillus subtilismisc_feature(1)..(797)BCI 1089 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(9)..(9)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(17)..(17)n is a, c, g, or tmisc_feature(21)..(22)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(103)..(103)n is a, c, g, or t 43tttctnaant ntgatgngaa nncccccggc tcaaccgggg agggtcattg gaaactgggg 60aactngagtg cagaagagga gagtggaatt ccacgtgtag cgntgaaatg cgtagagatg 120tggaggaaca ccagtggcga aggcgactct ctggtctgta actgacgctg aggagcgaaa 180gcgtggggag cgaacaggat tagataccct ggtagtccac gccgtaaacg atgagtgcta 240agtgttaggg ggtttccgcc ccttagtgct gcagctaacg cattaagcac tccgcctggg 300gagtacggtc gcaagactga aactcaaagg aattgacggg ggcccgcaca agcggtggag 360catgtggttt aattcgaagc aacgcgaaga accttaccag gtcttgacat cctctgacaa 420tcctagagat aggacgtccc cttcgggggc agagtgacag gtggtgcatg gttgtcgtca 480gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc gcaacccttg atcttagttg 540ccagcattca gttgggcact ctaaggtgac tgccggtgac aaaccggagg aaggtgggga 600tgacgtcaaa tcatcatgcc ccttatgacc tgggctacac acgtgctaca atggacagaa 660caaagggcag cgaaaccgcg aggttaagcc aatcccacaa atctgttctc agttcggatc 720gcagtctgca actcgactgc gtgaagctgg aatcgctagt aatcgcggat cagcatgccg 780cggtgaatac gttcccg 79744744DNAChitinophaga terraemisc_feature(1)..(744)BCI 109 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(16)..(17)n is a, c, g, or tmisc_feature(263)..(268)n is a, c, g, or tmisc_feature(291)..(294)n is a, c, g, or tmisc_feature(628)..(628)n is a, c, g, or tmisc_feature(680)..(680)n is a, c, g, or tmisc_feature(695)..(695)n is a, c, g, or tmisc_feature(705)..(705)n is a, c, g, or tmisc_feature(707)..(707)n is a, c, g, or tmisc_feature(713)..(713)n is a, c, g, or tmisc_feature(715)..(716)n is a, c, g, or tmisc_feature(730)..(730)n is a, c, g, or tmisc_feature(732)..(732)n is a, c, g, or tmisc_feature(734)..(734)n is a, c, g, or tmisc_feature(741)..(741)n is a, c, g, or t 44gntccccccg gctttnntgg cttgacgggc ggtgtgtaca aggtccggga acgtattcac 60cgtatcattg ctgatatacg attactagcg attccagctt catgaggtcg agttgcagac 120ctcaatccga actgagatag agtttttgag attagcagca tgttaccatg tagcagccct 180ttgtctctac cattgtagca cgtgtgtagc cctgggcata aaggccatga tgacttgaca 240tcatcccctc cttcctcacg tcnnnnnncg gcagtttcac tagagttccc nnnnttacgc 300gctggcaact agtgataggg gttgcgctcg ttgcgggact taacccaaca cctcacggca 360cgagctgacg acagccatgc agcaccttac aatctgtgta ttgctacaaa gtgaactttc 420atccacggtc agactgcatt ctagcccagg taaggttcct cgcgtatcat cgaattaaac 480cacatgctcc accgcttgtg cggacccccg tcaattcctt tgagtttcaa ccttgcggtc 540gtacttccca ggtgggatac ttaatgcttt cgctcagaca cttacaatat atcgcaaatg 600tcgagtatcc atcgtttagg gcgtgganta ccagggtatc taatcctgtt tgatccccac 660gctttcgtgc ctcagcgtcn atagttgtgt agccngctgc cttcncnatc ggngnnctat 720gtcatatctn ancntttcac ngct 74445689DNAStenotrophomonas maltophiliamisc_feature(1)..(689)BCI 1092 16S rDNAmisc_feature(5)..(5)n is a, c, g, or tmisc_feature(10)..(10)n is a, c, g, or tmisc_feature(19)..(19)n is a, c, g, or tmisc_feature(24)..(24)n is a, c, g, or tmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(30)..(30)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(40)..(41)n is a, c, g, or tmisc_feature(48)..(48)n is a, c, g, or tmisc_feature(50)..(52)n is a, c, g, or tmisc_feature(57)..(57)n is a, c, g, or tmisc_feature(62)..(62)n is a, c, g, or tmisc_feature(64)..(65)n is a, c, g, or tmisc_feature(85)..(86)n is a, c, g, or tmisc_feature(90)..(90)n is a, c, g, or tmisc_feature(98)..(98)n is a, c, g, or tmisc_feature(110)..(110)n is a, c, g, or tmisc_feature(127)..(128)n is a, c, g, or tmisc_feature(159)..(159)n is a, c, g, or t 45gtagngatcn ggaggaacnt ccanggngan ggcagctncn nggaccancn nngacantga 60gncnngaaag cgtggggagc aaacnngatn agataccntg gtagtccacn ccctaaacga 120tgcgaanngg atgttgggtg caatttggca cgcagtatng aagctaacgc gttaagttcg 180ccgcctgggg agtacggtcg caagactgaa actcaaagga attgacgggg gcccgcacaa 240gcggtggagt atgtggttta attcgatgca acgcgaagaa ccttacctgg ccttgacatg 300tcgagaactt tccagagatg

gattggtgcc ttcgggaact cgaacacagg tgctgcatgg 360ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caacccttgt 420ccttagttgc cagcacgtaa tggtgggaac tctaaggaga ccgccggtga caaaccggag 480gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc cagggctaca cacgtactac 540aatggtaggg acagagggct gcaagccggc gacggtaagc caatcccaga aaccctatct 600cagtccggat tggagtctgc aactcgactc catgaagtcg gaatcgctag taatcgcaga 660tcagcattgc tgcggtgaat acgttcccg 68946800DNAStenotrophomonas maltophiliamisc_feature(1)..(800)BCI 1096 16S rDNAmisc_feature(9)..(9)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(13)..(14)n is a, c, g, or tmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(29)..(29)n is a, c, g, or tmisc_feature(33)..(33)n is a, c, g, or tmisc_feature(36)..(37)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or tmisc_feature(88)..(88)n is a, c, g, or tmisc_feature(108)..(108)n is a, c, g, or tmisc_feature(135)..(135)n is a, c, g, or tmisc_feature(226)..(226)n is a, c, g, or tmisc_feature(239)..(239)n is a, c, g, or t 46ttatttaant ncnntgtgaa anccctggnc tcnacnnggg aactgcagtg gatacnggat 60gactagaatg tggtagaggg tagcggantt cctggtgtag cagtgaantg cgtagagatc 120aggaggaaca tccanggcga aggcagctac ctggaccaac attgacactg aggcacgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gccctnaacg atgcgaacng 240gatgttgggt gcaatttggc acgcagtatc gaagctaacg cgttaagttc gccgcctggg 300gagtacggtc gcaagactga aactcaaagg aattgacggg ggcccgcaca agcggtggag 360tatgtggttt aattcgatgc aacgcgaaga accttacctg gccttgacat gtcgagaact 420ttccagagat ggattggtgc cttcgggaac tcgaacacag gtgctgcatg gctgtcgtca 480gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc gcaacccttg tccttagttg 540ccagcacgta atggtgggaa ctctaaggag accgccggtg acaaaccgga ggaaggtggg 600gatgacgtca agtcatcatg gcccttacgg ccagggctac acacgtacta caatggtagg 660gacagagggc tgcaagccgg cgacggtaag ccaatcccag aaaccctatc tcagtccgga 720ttggagtctg caactcgact ccatgaagtc ggaatcgcta gtaatcgcag atcagcattg 780ctgcggtgaa tacgttcccg 80047800DNAAgrobacterium fabrummisc_feature(1)..(800)BCI 11 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(15)..(16)n is a, c, g, or tmisc_feature(20)..(20)n is a, c, g, or tmisc_feature(55)..(55)n is a, c, g, or tmisc_feature(534)..(535)n is a, c, g, or tmisc_feature(641)..(641)n is a, c, g, or tmisc_feature(721)..(721)n is a, c, g, or tmisc_feature(742)..(743)n is a, c, g, or tmisc_feature(748)..(748)n is a, c, g, or tmisc_feature(766)..(766)n is a, c, g, or tmisc_feature(785)..(785)n is a, c, g, or tmisc_feature(795)..(795)n is a, c, g, or t 47tgnctccttg cggtnngcgn actaccttcg ggtaaaacca actcccatgg tgtgncgggc 60ggtgtgtaca aggcccggga acgtattcac cgcagcatgc tgatctgcga ttactagcga 120ttccaacttc atgcactcga gttgcagagt gcaatccgaa ctgagatggc ttttggagat 180tagctcgaca tcgctgtctc gctgcccact gtcaccacca ttgtagcacg tgtgtagccc 240agcccgtaag ggccatgagg acttgacgtc atccccacct tcctctcggc ttatcaccgg 300cagtcccctt agagtgccca actaaatgct ggcaactaag ggcgagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca gccatgcagc acctgttctg 420gggccagcct aactgaagga catcgtctcc aatgcccata ccccgaatgt caagagctgg 480taaggttctg cgcgttgctt cgaattaaac cacatgctcc accgcttgtg cggnnccccg 540tcaattcctt tgagttttaa tcttgcgacc gtactcccca ggcggaatgt ttaatgcgtt 600agctgcgcca ccgaacagta tactgcccga cggctaacat ncatcgttta cggcgtggac 660taccagggta tctaatcctg tttgctcccc acgctttcgc acctcagcgt cagtaatgga 720ncagtaagcc gccttcgcca cnngtgtncc tccgaatatc tacgantttc acctctacac 780tcggnattcc acttncctct 80048740DNASinorhizobium chiapanecummisc_feature(1)..(740)BCI 111 16S rDNA 48ctccttgcgg ttagcgcact accttcgggt aaaaccaact cccatggtgt gacgggcggt 60gtgtacaagg cccgggaacg tattcaccgc ggcatgctga tccgcgatta ctagcgattc 120caacttcatg cactcgagtt gcagagtgca atccgaactg agatggcttt tggagattag 180ctcacactcg cgtgctcgct gcccactgtc accaccattg tagcacgtgt gtagcccagc 240ccgtaagggc catgaggact tgacgtcatc cccaccttcc tctcggctta tcaccggcag 300tccccttaga gtgcccaact gaatgctggc aactaagggc gagggttgcg ctcgttgcgg 360gacttaaccc aacatctcac gacacgagct gacgacagcc atgcagcacc tgtctccggt 420ccagccgaac tgaaggaaaa catctctgta atccgcgacc gggatgtcaa gggctggtaa 480ggttctgcgc gttgcttcga attaaaccac atgctccacc gcttgtgcgg gcccccgtca 540attcctttga gttttaatct tgcgaccgta ctccccaggc ggaatgttta atgcgttagc 600tgcgccaccg aacagtatac tgcccgacgg ctaacattca tcgtttacgg cgtggactac 660cagggtatct aatcctgttt gctccccacg ctttcgcacc tcagcgtcag taatggacca 720gtgagccgcc ttcgccactg 74049768DNABosea thiooxidansmisc_feature(1)..(768)BCI 1111 16S rDNA 49gcgcgacgcc ttcgggtaaa cccaactccc atggtgtgac gggcggtgtg tacaaggccc 60gggaacgtat tcaccgtggc atgctgatcc acgattacta gcgattccac cttcatgtac 120tcgagttgca gagtacaatc tgaactgaga cggctttttg ggattagctc caggtcaccc 180cttcgctgcc cattgtcacc gccattgtag cacgtgtgta gcccagcctg taagggccat 240gaggacttga cgtcatcccc accttcctcg cggcttatca ccggcagtcc ccctagagtt 300cccaactgaa tgatggcaac taggggcgag ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacagccatg cagcacctgt gttccggcca gccgaactga 420agaaaggcat ctctgccgat caaaccggac atgtcaaaag ctggtaaggt tctgcgcgtt 480gcttcgaatt aaaccacatg ctccaccgct tgtgcgggcc cccgtcaatt cctttgagtt 540ttaatcttgc gaccgtactc cccaggcgga atgcttaaag cgttagctgc gccactgaag 600agcaagctcc ccaacggctg gcattcatcg tttacggcgt ggactaccag ggtatctaat 660cctgtttgct ccccacgctt tcgcgcctca gcgtcagtat cggaccagtt ggccgccttc 720gccaccggtg ttcttgcgaa tatctacgaa tttcacctct acactcgc 76850708DNAStenotrophomonas maltophiliamisc_feature(1)..(708)BCI 1116 16S rDNAmisc_feature(15)..(15)n is a, c, g, or tmisc_feature(43)..(43)n is a, c, g, or tmisc_feature(54)..(54)n is a, c, g, or tmisc_feature(56)..(58)n is a, c, g, or tmisc_feature(62)..(67)n is a, c, g, or tmisc_feature(76)..(76)n is a, c, g, or tmisc_feature(117)..(117)n is a, c, g, or tmisc_feature(129)..(129)n is a, c, g, or tmisc_feature(134)..(134)n is a, c, g, or tmisc_feature(178)..(178)n is a, c, g, or tmisc_feature(204)..(204)n is a, c, g, or tmisc_feature(280)..(280)n is a, c, g, or t 50ggtgtagcag tgaantgcgt agagatcagg aggaacatcc atngcgaagg cagntnnntg 60gnnnnnncat tgacantgag gcacgaaagc gtggggagca aacaggatta gataccntgg 120tagtccacnc cctnaacgat gcgaactgga tgttgggtgc aatttggcac gcagtatnga 180agctaacgcg ttaagttcgc cgcntgggga gtacggtcgc aagactgaaa ctcaaaggaa 240ttgacggggg cccgcacaag cggtggagta tgtggtttan ttcgatgcaa cgcgaagaac 300cttacctggc cttgacatgt cgagaacttt ccagagatgg attggtgcct tcgggaactc 360gaacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 420caacgagcgc aacccttgtc cttagttgcc agcacgtaat ggtgggaact ctaaggagac 480cgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 540agggctacac acgtactaca atggtaggga cagagggctg caagccggcg acggtaagcc 600aatcccagaa accctatctc agtccggatt ggagtctgca actcgactcc atgaagtcgg 660aatcgctagt aatcgcagat cagcattgct gcggtgaata cgttcccg 70851827DNAPaenibacillus polymyxamisc_feature(1)..(827)BCI 1118 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(9)..(9)n is a, c, g, or tmisc_feature(14)..(15)n is a, c, g, or tmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(26)..(26)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(35)..(35)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(42)..(43)n is a, c, g, or tmisc_feature(49)..(50)n is a, c, g, or tmisc_feature(63)..(63)n is a, c, g, or tmisc_feature(115)..(115)n is a, c, g, or tmisc_feature(159)..(160)n is a, c, g, or tmisc_feature(171)..(171)n is a, c, g, or tmisc_feature(239)..(239)n is a, c, g, or tmisc_feature(312)..(312)n is a, c, g, or tmisc_feature(323)..(323)n is a, c, g, or tmisc_feature(402)..(402)n is a, c, g, or tmisc_feature(418)..(418)n is a, c, g, or tmisc_feature(460)..(462)n is a, c, g, or tmisc_feature(659)..(659)n is a, c, g, or tmisc_feature(700)..(700)n is a, c, g, or tmisc_feature(705)..(705)n is a, c, g, or tmisc_feature(707)..(707)n is a, c, g, or tmisc_feature(732)..(732)n is a, c, g, or t 51ttattnggng taanncgcgc gcnggngnct ctttnantnt gnngtttann cccgaggctc 60aanttcgggt cgcactggaa actggggagc ttgagtgcag aagaggagag tgganttcca 120cgtgtagcgg tgaaatgcgt agagatgtgg aggaacacnn gtggcgaagg ngactctctg 180ggctgtaact gacgctgagg cgcgaaagcg tggggagcaa acaggattag ataccctgnt 240agtccacgcc gtaaacgatg aatgctaggt gttaggggtt tcgataccct tggtgccgaa 300gttaacacat tnagcattcc gcntggggag tacggtcgca agactgaaac tcaaaggaat 360tgacggggac ccgcacaagc agtggagtat gtggtttaat tngaagcaac gcgaagancc 420ttaccaggtc ttgacatccc tctgaccgct gtagagatan nnctttcctt cgggacagag 480gagacaggtg gtgcatggtt gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc 540aacgagcgca acccttatgc ttagttgcca gcaggtcaag ctgggcactc taagcagact 600gccggtgaca aaccggagga aggtggggat gacgtcaaat catcatgccc cttatgacnt 660gggctacaca cgtactacaa tggccggtac aacgggaagn gaaancncga ggtggagcca 720atcctagaaa anccggtctc agttcggatt gtaggctgca actcgcctac atgaagtcgg 780aattgctagt aatcgcggat cagcatgccg cggtgaatac gttcccg 82752761DNAStenotrophomonas maltophiliamisc_feature(1)..(761)BCI 115 16S rDNAmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(627)..(627)n is a, c, g, or tmisc_feature(679)..(679)n is a, c, g, or tmisc_feature(687)..(687)n is a, c, g, or tmisc_feature(696)..(696)n is a, c, g, or tmisc_feature(699)..(700)n is a, c, g, or tmisc_feature(704)..(704)n is a, c, g, or tmisc_feature(720)..(720)n is a, c, g, or tmisc_feature(723)..(723)n is a, c, g, or tmisc_feature(725)..(725)n is a, c, g, or tmisc_feature(728)..(728)n is a, c, g, or tmisc_feature(734)..(737)n is a, c, g, or tmisc_feature(745)..(745)n is a, c, g, or tmisc_feature(750)..(750)n is a, c, g, or tmisc_feature(759)..(759)n is a, c, g, or t 52cctgcttctg gtgnaacaaa ctcccatggt gtgacgggcg gtgtgtacaa ggcccgggaa 60cgtattcacc gcagcaatgc tgatctgcga ttactagcga ttccgacttc atggagtcga 120gttgcagact ccaatccgga ctgagatagg gtttctggga ttggcttacc gtcgccggct 180tgcagccctc tgtccctacc attgtagtac gtgtgtagcc ctggccgtaa gggccatgat 240gacttgacgt catccccacc ttcctccggt ttgtcaccgg cggtctcctt agagttccca 300ccattacgtg ctggcaacta aggacaaggg ttgcgctcgt tgcgggactt aacccaacat 360ctcacgacac gagctgacga cagccatgca gcacctgtgt tcgagttccc gaaggcacca 420atccatctct ggaaagttct cgacatgtca aggccaggta aggttcttcg cgttgcatcg 480aattaaacca catactccac cgcttgtgcg ggcccccgtc aattcctttg agtttcagtc 540ttgcgaccgt actccccagg cggcgaactt aacgcgttag cttcgatact gcgtgccaaa 600ttgcacccaa catccagttc gcatcgntta gggcgtggac taccagggta tctaatcctg 660tttgctcccc acgctttcnt gcctcantgt cagtgntgnn ccangtagct gccttcgccn 720tgnangtncc tccnnnnctc tacgnatttn actgctacnc c 76153821DNAMucilaginibacter gossypiimisc_feature(1)..(821)BCI 1156 16S rDNA 53ttattgggtt taaagggtgc gtaggcggct ttttaagtca ggggtgaaag acggtagctc 60aactatcgca gtgcccttga tactgaagag cttgaatgta cttgaggtag gcggaatgtg 120acaagtagcg gtgaaatgca tagatatgtc acagaacacc aattgcgaag gcagcttact 180aaagtatgat tgacgctgag gcacgaaagc gtggggatca aacaggatta gataccctgg 240tagtccacgc cctaaacgat gaacactcga tgttggcgat atacggtcag cgtctaagcg 300aaagcgttaa gtgttccacc tggggagtac gcccgcaagg gtgaaactca aaggaattga 360cgggggcccg cacaagcgga ggagcatgtg gtttaattcg atgatacgcg aggaacctta 420cccgggcttg aaagttagtg aatgtgacag agacgtcaca gttcttcgga acacgaaact 480aggtgctgca tggctgtcgt cagctcgtgc cgtgaggtgt tgggttaagt cccgcaacga 540gcgcaacccc tatgtttagt tgccagcatt taaggtgggg actctaaaca gactgcctat 600gcaaatagag aggaaggagg ggacgacgtc aagtcatcat ggcccttacg tccggggcta 660cacacgtgct acaatggatg gtacagaggg cagctacctg gcaacaggat gccaatctct 720taaagccatt cacagttcgg atcggggtct gcaactcgac cccgtgaagt tggattcgct 780agtaatcgcg tatcagcaat gacgcggtga atacgttccc g 82154826DNARahnella aquatilismisc_feature(1)..(826)BCI 1158 16S rDNAmisc_feature(50)..(50)n is a, c, g, or t 54ttactgggcg taaagcgcac gcaggcggtt tgttaagtca gatgtgaaan ccccgcgctt 60aacgtgggaa ctgcatttga aactggcaag ctagagtctt gtagaggggg gtagaattcc 120aggtgtagcg gtgaaatgcg tagagatctg gaggaatacc ggtggcgaag gcggccccct 180ggacaaagac tgacgctcag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc tgtaaacgat gtcgacttgg aggttgtgcc cttgaggcgt ggcttccgga 300gctaacgcgt taagtcgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgatgcaac gcgaagaacc 420ttacctactc ttgacatcca cggaattcgc cagagatggc ttagtgcctt cgggaaccgt 480gagacaggtg ctgcatggct gtcgtcagct cgtgttgtga aatgttgggt taagtcccgc 540aacgagcgca acccttatcc tttgttgcca gcacgtaatg gtgggaactc aaaggagact 600gccggtgata aaccggagga aggtggggat gacgtcaagt catcatggcc cttacgagta 660gggctacaca cgtgctacaa tggcatatac aaagagaagc gaactcgcga gagcaagcgg 720acctcataaa gtatgtcgta gtccggattg gagtctgcaa ctcgactcca tgaagtcgga 780atcgctagta atcgtagatc agaatgctac ggtgaatacg ttcccg 82655705DNAExiguobacterium sibiricummisc_feature(1)..(705)BCI 116 16S rDNA 55cctcaccggc ttcgggtgtt gcaaactctc gtggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgcagt atgctgacct gcgattacta gcgattccga cttcatgcag 120gcgagttgca gcctgcaatc cgaactggga acggctttct gggattggct ccacctcgcg 180gtctcgctgc cctttgtacc gtccattgta gcacgtgtgt agcccaactc ataaggggca 240tgatgatttg acgtcatccc caccttcctc cggtttgtca ccggcagtct ccctagagtg 300cccaactaaa tgctggcaac taaggatagg ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacaaccatg caccacctgt cacccttgtc cccgaaggga 420aaacttgatc tctcaagcgg tcaaggggat gtcaagagtt ggtaaggttc ttcgcgttgc 480ttcgaattaa accacatgct ccaccgcttg tgcgggtccc cgtcaattcc tttgagtttc 540agccttgcgg ccgtactccc caggcggagt gcttaatgcg ttagcttcag cactgagggg 600cggaaacccc ccaacaccta gcactcatcg tttacggcgt ggactaccag ggtatctaat 660cctgtttgct ccccacgctt tcgcgcctca gcgtcagtta cagac 70556705DNAExiguobacterium sibiricummisc_feature(1)..(705)BCI 116 16S rDNA 56cctcaccggc ttcgggtgtt gcaaactctc gtggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgcagt atgctgacct gcgattacta gcgattccga cttcatgcag 120gcgagttgca gcctgcaatc cgaactggga acggctttct gggattggct ccacctcgcg 180gtctcgctgc cctttgtacc gtccattgta gcacgtgtgt agcccaactc ataaggggca 240tgatgatttg acgtcatccc caccttcctc cggtttgtca ccggcagtct ccctagagtg 300cccaactaaa tgctggcaac taaggatagg ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacaaccatg caccacctgt cacccttgtc cccgaaggga 420aaacttgatc tctcaagcgg tcaaggggat gtcaagagtt ggtaaggttc ttcgcgttgc 480ttcgaattaa accacatgct ccaccgcttg tgcgggtccc cgtcaattcc tttgagtttc 540agccttgcgg ccgtactccc caggcggagt gcttaatgcg ttagcttcag cactgagggg 600cggaaacccc ccaacaccta gcactcatcg tttacggcgt ggactaccag ggtatctaat 660cctgtttgct ccccacgctt tcgcgcctca gcgtcagtta cagac 70557743DNARhodococcus erythropolismisc_feature(1)..(743)BCI 1182 16S rDNA 57ccggcttcgg gtgttaccga ctttcatgac gtgacgggcg gtgtgtacaa ggcccgggaa 60cgtattcacc gcagcgttgc tgatctgcga ttactagcga ctccgacttc acggggtcga 120gttgcagacc ccgatccgaa ctgagaccag ctttaaggga ttcgctccac ctcacggtct 180cgcagccctc tgtactggcc attgtagcat gtgtgaagcc ctggacataa ggggcatgat 240gacttgacgt cgtccccacc ttcctccgag ttgaccccgg cagtctctta cgagtcccca 300ccataacgtg ctggcaacat aagatagggg ttgcgctcgt tgcgggactt aacccaacat 360ctcacgacac gagctgacga cagccatgca ccacctgtat accgaccaca aggggggcca 420catctctgca gctttccggt atatgtcaaa cccaggtaag gttcttcgcg ttgcatcgaa 480ttaatccaca tgctccgccg cttgtgcggg cccccgtcaa ttcctttgag ttttagcctt 540gcggccgtac tccccaggcg gggcgcttaa tgcgttagct acggcacgga ttccgtggaa 600ggaacccaca cctagcgccc accgtttacg gcgtggacta ccagggtatc taatcctgtt 660cgctacccac gctttcgttc ctcagcgtca gttactgccc agagacccgc cttcgccacc 720ggtgttcctc ctgatatctg cgc 74358826DNAPseudomonas oryzihabitansmisc_feature(1)..(826)BCI 1184 16S rDNAmisc_feature(40)..(40)n is a, c, g, or t 58ttactgggcg taaagcgcgc gtaggtggct tgataagttn gatgtgaaat ccccgggctc 60aacctgggaa ctgcatccaa aactgtctgg ctagagtgcg gtagagggta gtggaatttc 120cagtgtagcg gtgaaatgcg tagatattgg aaggaacacc agtggcgaag gcgactacct 180ggactgacac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttgggatc cttgagatct tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttacctggcc ttgacatgct gagaactttc cagagatgga ttggtgcctt cgggaactca 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcca 660gggctacaca cgtgctacaa tggtcggtac aaagggttgc caagccgcga ggtggagcta 720atcccataaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgtgaatc agaacgtcac ggtgaatacg ttcccg 82659713DNAPseudomonas oryzihabitansmisc_feature(1)..(713)BCI 1195 16S rDNA 59ggttagacta gctacttctg gagcaaccca ctcccatggt gtgacgggcg gtgtgtacaa 60ggcccgggaa cgtattcacc gtgacgttct gattcacgat tactagcgat tccgacttca 120cgcagtcgag ttgcagactg cgatccggac tacgatcggt tttatgggat tagctccacc 180tcgcggcttg gcaacccttt gtaccgacca ttgtagcacg tgtgtagccc tggccgtaag 240ggccatgatg acttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcctta 300gagtgcccac

cataacgtgc tggtaactaa ggacaagggt tgcgctcgtt acgggactta 360acccaacatc tcacgacacg agctgacgac agccatgcag cacctgtgtc tgagttcccg 420aaggcaccaa tccatctctg gaaagttctc agcatgtcaa ggccaggtaa ggttcttcgc 480gttgcttcga attaaaccac atgctccacc gcttgtgcgg gcccccgtca attcatttga 540gttttaacct tgcggccgta ctccccaggc ggtcaactta atgcgttagc tgcgccacta 600agatctcaag gatcccaacg gctagttgac atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcac ctcagtgtca gtgtcagtcc agg 71360826DNAPseudomonas oryzihabitansmisc_feature(1)..(826)BCI 1199 16S rDNAmisc_feature(2)..(3)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(85)..(85)n is a, c, g, or t 60tnnctgggcg taaagcgcgc gtaggtggct tgataagtng gatgtgaaat ccccgggctc 60aacctgggaa ctgcatccaa aactntctgg ctagagtgcg gtagagggta gtggaatttc 120cagtgtagcg gtgaaatgcg tagatattgg aaggaacacc agtggcgaag gcgactacct 180ggactgacac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttgggatc cttgagatct tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttacctggcc ttgacatgct gagaactttc cagagatgga ttggtgcctt cgggaactca 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcca 660gggctacaca cgtgctacaa tggtcggtac aaagggttgc caagccgcga ggtggagcta 720atcccataaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgtgaatc agaacgtcac ggtgaatacg ttcccg 82661741DNAStenotrophomonas maltophiliamisc_feature(1)..(741)BCI 120 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(15)..(15)n is a, c, g, or tmisc_feature(161)..(161)n is a, c, g, or tmisc_feature(523)..(524)n is a, c, g, or tmisc_feature(632)..(632)n is a, c, g, or tmisc_feature(641)..(641)n is a, c, g, or tmisc_feature(647)..(647)n is a, c, g, or tmisc_feature(688)..(688)n is a, c, g, or tmisc_feature(701)..(701)n is a, c, g, or tmisc_feature(704)..(705)n is a, c, g, or tmisc_feature(718)..(718)n is a, c, g, or tmisc_feature(721)..(721)n is a, c, g, or tmisc_feature(725)..(726)n is a, c, g, or tmisc_feature(729)..(729)n is a, c, g, or tmisc_feature(738)..(738)n is a, c, g, or t 61ncctgcttct ggtgnaacaa actcccatgg tgtgacgggc ggtgtgtaca aggcccggga 60acgtattcac cgcagcaatg ctgatctgcg attactagcg attccgactt catggagtcg 120agttgcagac tccaatccgg actgagatgg ggtttctggg nttggcttac cgtcgccggc 180ttgcagccct ctgtccccac cattgtagta cgtgtgtagc cctggccgta agggccatga 240tgacttgacg tcatccccac cttcctccgg tttgtcaccg gcggtctcct tagagttccc 300accattacgt gctggcaact aaggacaagg gttgcgctcg ttgcgggact taacccaaca 360tctcacgaca cgagctgacg acagccatgc agcacctgtg ttcgagttcc cgaaggcacc 420aatccatctc tggaaagttc tcgacatgtc aaggccaggt aaggttcttc gcgttgcatc 480gaattaaacc acatactcca ccgcttgtgc gggcccccgt canntccttt gagtttcagt 540cttgcgaccg tactccccag gcggcgaact taacgcgtta gcttcgatac tgcgtgccaa 600attgcaccca acatccagtt cgcatcgttt anggcgtgga ntaccanggt atctaatcct 660gtttgctccc cacgctttcg tgcctcantg tcagtgttgg nccnngtagc tgccttcncc 720ntggnngtnc ctcccganct c 74162830DNAPantoea agglomeransmisc_feature(1)..(830)BCI 1208 16S rDNAmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(68)..(68)n is a, c, g, or tmisc_feature(96)..(97)n is a, c, g, or tmisc_feature(110)..(110)n is a, c, g, or tmisc_feature(464)..(464)n is a, c, g, or t 62ggaattactg ggcgtaaagc gcacgcnggc ggtctgttaa gtcagatgtg aaatccccgg 60gcttaacntg ggaactgcat ttgaaactgg caggcnngag tcttgtagan gggggtagaa 120ttccaggtgt agcggtgaaa tgcgtagaga tctggaggaa taccggtggc gaaggcggcc 180ccctggacaa agactgacgc tcaggtgcga aagcgtgggg agcaaacagg attagatacc 240ctggtagtcc acgccgtaaa cgatgtcgac ttggaggttg ttcccttgag gagtggcttc 300cggagctaac gcgttaagtc gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat 360gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgatg caacgcgaag 420aaccttacct actcttgaca tccacggaat ttggcagaga tgcnttagtg ccttcgggaa 480ccgtgagaca ggtgctgcat ggctgtcgtc agctcgtgtt gtgaaatgtt gggttaagtc 540ccgcaacgag cgcaaccctt atcctttgtt gccagcgatt cggtcgggaa ctcaaaggag 600actgccggtg ataaaccgga ggaaggtggg gatgacgtca agtcatcatg gcccttacga 660gtagggctac acacgtgcta caatggcgca tacaaagaga agcgacctcg cgagagcaag 720cggacctcac aaagtgcgtc gtagtccgga tcggagtctg caactcgact ccgtgaagtc 780ggaatcgcta gtaatcgtgg atcagaatgc cacggtgaat acgttcccgg 83063825DNAMassilia niastensismisc_feature(1)..(825)BCI 1217 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or tmisc_feature(53)..(54)n is a, c, g, or tmisc_feature(75)..(75)n is a, c, g, or tmisc_feature(461)..(461)n is a, c, g, or tmisc_feature(463)..(463)n is a, c, g, or t 63gnaattactg ggcgtaaagc gtgcgcnggc ggttttgtaa ntctgacgtg aannccccgg 60gctcaacctg ggaantgcgt tggagactgc aaggctggag tctggcagag gggggtagaa 120ttccacgtgt agcagtgaaa tgcgtagaga tgtggaggaa caccgatggc gaaggcagcc 180ccctgggtca agactgacgc tcatgcacga aagcgtgggg agcaaacagg attagatacc 240ctggtagtcc acgccctaaa cgatgtctac tagttgtcgg gtcttaattg acttggtaac 300gcagctaacg cgtgaagtag accgcctggg gagtacggtc gcaagattaa aactcaaagg 360aattgacggg gacccgcaca agcggtggat gatgtggatt aattcgatgc aacgcgaaaa 420accttaccta cccttgacat gtcaggaatc ctcgagagat ngnggagtgc ccgaaaggga 480gcctgaacac aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt 540cccgcaacga gcgcaaccct tgtcattagt tgctacgaaa gggcactcta atgagactgc 600cggtgacaaa ccggaggaag gtggggatga cgtcaagtcc tcatggccct tatgggtagg 660gcttcacacg tcatacaatg gtacatacag agggccgcca acccgcgagg gggagctaat 720cccagaaagt gtatcgtagt ccggatcgca gtctgcaact cgactgcgtg aagttggaat 780cgctagtaat cgcggatcag catgccgcgg tgaatacgtt cccgg 82564369DNAStenotrophomonas maltophiliamisc_feature(1)..(369)BCI 1224 16S rDNAmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(20)..(20)n is a, c, g, or tmisc_feature(24)..(24)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or tmisc_feature(97)..(97)n is a, c, g, or tmisc_feature(107)..(108)n is a, c, g, or t 64attggtgcct tngggaactn gaanacaggt gctgcatggc ngtcgtcagc tcgtgtcntg 60agatgttggg ttaagtcccg caacgagcgc aaccctngtc cttagtnncc agcacgtaat 120ggtgggaact ctaaggagac cgccggtgac aaaccggagg aaggtgggga tgacgtcaag 180tcatcatggc ccttacggcc agggctacac acgtactaca atggtgggga cagagggctg 240caagccggcg acggtaagcc aatcccagaa accccatctc agtccggatt ggagtctgca 300actcgactcc atgaagtcgg aatcgctagt aatcgcagat cagcattgct gcggtgaata 360cgttcccgg 36965619DNADelftia lacustrismisc_feature(1)..(619)BCI 124 16S rDNA 65tggcgagacc cgctcccatg gtgtgacggg cggtgtgtac aagacccggg aacgtattca 60ccgcggcatg ctgatccgcg attactagcg attccgactt cacgcagtcg agttgcagac 120tgcgatccgg actacgactg gttttatggg attagctccc cctcgcgggt tggcaaccct 180ctgtaccagc cattgtatga cgtgtgtagc cccacctata agggccatga ggacttgacg 240tcatccccac cttcctccgg tttgtcaccg gcagtctcat tagagtgctc aactgaatgt 300agcaactaat gacaagggtt gcgctcgttg cgggacttaa cccaacatct cacgacacga 360gctgacgaca gccatgcagc acctgtgtgc aggttctctt tcgagcacga atccatctct 420ggaaacttcc tgccatgtca aaggtgggta aggtttttcg cgttgcatcg aattaaacca 480catcatccac cgcttgtgcg ggtccccgtc aattcctttg agtttcaacc ttgcggccgt 540actccccagg cggtcaactt cacgcgttag cttcgttact gagaaaacta attcccaaca 600accagttgac atcgtttag 61966697DNAExiguobacterium acetylicummisc_feature(1)..(697)BCI 125 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(303)..(305)n is a, c, g, or tmisc_feature(480)..(480)n is a, c, g, or tmisc_feature(602)..(602)n is a, c, g, or tmisc_feature(609)..(609)n is a, c, g, or tmisc_feature(644)..(644)n is a, c, g, or tmisc_feature(646)..(646)n is a, c, g, or tmisc_feature(667)..(668)n is a, c, g, or tmisc_feature(670)..(671)n is a, c, g, or tmisc_feature(681)..(681)n is a, c, g, or tmisc_feature(686)..(687)n is a, c, g, or tmisc_feature(692)..(692)n is a, c, g, or t 66nccggcttcg ggtgttgcaa actctcgtgg tgtgacgggc ggtgtgtaca agacccggga 60acgtattcac cgcagtatgc tgacctgcga ttactagcga ttccgacttc atgcaggcga 120gttgcagcct gcaatccgaa ctgggaacgg ctttatggga ttggctccac ctcgcggtct 180cgctgccctt tgtaccgtcc attgtagcac gtgtgtagcc caactcataa ggggcatgat 240gatttgacgt catccccacc ttcctccggt ttgtcaccgg cagtctccct agagtgccca 300acnnnatgct ggcaactaag gataggggtt gcgctcgttg cgggacttaa cccaacatct 360cacgacacga gctgacgaca accatgcacc acctgtcacc attgtccccg aagggaaaac 420ttgatctctc aagcggtcaa tgggatgtca agagttggta aggttcttcg cgttgcttcn 480aattaaacca catgctccac cgcttgtgcg ggtccccgtc aattcctttg agtttcagcc 540ttgcggccgt actccccagg cggagtgctt aatgcgttag cttcagcact gaggggcgga 600anccccccna cacctagcac tcatcgttta cggcgtggac tacnanggta tctaatcctg 660tttgctnncn ncgctttcgc ncctcnncgt cngttac 69767832DNABosea eneaemisc_feature(1)..(832)BCI 1267 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(4)..(4)n is a, c, g, or tmisc_feature(7)..(7)n is a, c, g, or tmisc_feature(97)..(97)n is a, c, g, or t 67gnantcnctg ggcgtaaagg gcgcgtaggc ggactcttaa gtcgggggtg aaagcccagg 60gctcaaccct ggaattgcct tcgatactga gagtctngag ttcggaagag gttggtggaa 120ctgcgagtgt agaggtgaaa ttcgtagata ttcgcaagaa caccagtggc gaaggcggcc 180aactggtccg atactgacgc tgaggcgcga aagcgtgggg agcaaacagg attagatacc 240ctggtagtcc acgccgtaaa cgatgaatgc cagccgttgg ggtgcatgca cttcagtggc 300gcagctaacg ctttaagcat tccgcctggg gagtacggtc gcaagattaa aactcaaagg 360aattgacggg ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgcaga 420accttaccag cttttgacat gtccggtttg atcgacagag atgtctttct tcagttcggc 480tggccggaac acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa 540gtcccgcaac gagcgcaacc ctcgccccta gttgccatca ttcagttggg aactctaggg 600ggactgccgg tgataagccg cgaggaaggt ggggatgacg tcaagtcctc atggccctta 660caggctgggc tacacacgtg ctacaatggc ggtgacaatg ggcagcgaaa gggcgacctg 720gagctaatcc caaaaagccg tctcagttca gattgtactc tgcaactcga gtacatgaag 780gtggaatcgc tagtaatcgt ggatcagcat gccacggtga atacgttccc gg 83268830DNAPantoea agglomeransmisc_feature(1)..(830)BCI 1274 16S rDNAmisc_feature(5)..(5)n is a, c, g, or tmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(68)..(68)n is a, c, g, or t 68ggaantactg ggcgtaaagc gcacgcnggc ggtctgttaa gtcagatgtg aaatccccgg 60gcttaacntg ggaactgcat ttgaaactgg caggcttgag tcttgtagag gggggtagaa 120ttccaggtgt agcggtgaaa tgcgtagaga tctggaggaa taccggtggc gaaggcggcc 180ccctggacaa agactgacgc tcaggtgcga aagcgtgggg agcaaacagg attagatacc 240ctggtagtcc acgccgtaaa cgatgtcgac ttggaggttg ttcccttgag gagtggcttc 300cggagctaac gcgttaagtc gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat 360gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgatg caacgcgaag 420aaccttacct actcttgaca tccacggaat ttggcagaga tgccttagtg ccttcgggaa 480ccgtgagaca ggtgctgcat ggctgtcgtc agctcgtgtt gtgaaatgtt gggttaagtc 540ccgcaacgag cgcaaccctt atcctttgtt gccagcgatt cggtcgggaa ctcaaaggag 600actgccggtg ataaaccgga ggaaggtggg gatgacgtca agtcatcatg gcccttacga 660gtagggctac acacgtgcta caatggcgca tacaaagaga agcgacctcg cgagagcaag 720cggacctcac aaagtgcgtc gtagtccgga tcggagtctg caactcgact ccgtgaagtc 780ggaatcgcta gtaatcgtgg atcagaatgc cacggtgaat acgttcccgg 83069818DNAStenotrophomonas maltophiliamisc_feature(1)..(818)BCI 1279 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(19)..(19)n is a, c, g, or tmisc_feature(26)..(26)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(47)..(47)n is a, c, g, or tmisc_feature(53)..(53)n is a, c, g, or tmisc_feature(66)..(66)n is a, c, g, or tmisc_feature(68)..(68)n is a, c, g, or tmisc_feature(74)..(74)n is a, c, g, or tmisc_feature(80)..(80)n is a, c, g, or tmisc_feature(90)..(90)n is a, c, g, or tmisc_feature(105)..(105)n is a, c, g, or tmisc_feature(168)..(169)n is a, c, g, or tmisc_feature(185)..(185)n is a, c, g, or tmisc_feature(205)..(205)n is a, c, g, or t 69aaagcntgcg taggtggtng tttaantntg ttgtgaaanc cctgggntca acntgggaac 60tgcagngnaa actngacaan tagagtgtgn tagagggtag cgganttccc ggtgtagcag 120tgaaatgcgt agagatcggg aggaacatcc atggcgaagg cagctacnng gaccaacact 180gacantgagg cacgaaagcg tgggnagcaa acaggattag ataccctggt agtccacgcc 240ctaaacgatg cgaactggat gttgggtgca atttggcacg cagtatcgaa gctaacgcgt 300taagttcgcc gcctggggag tacggtcgca agactgaaac tcaaaggaat tgacgggggc 360ccgcacaagc ggtggagtat gtggtttaat tcgatgcaac gcgaagaacc ttacctggcc 420ttgacatgtc gagaactttc cagagatgga ttggtgcctt cgggaactcg aacacaggtg 480ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca 540acccttgtcc ttagttgcca gcacgtaatg gtgggaactc taaggagacc gccggtgaca 600aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcca gggctacaca 660cgtactacaa tggtggggac agagggctgc aagccggcga cggtaagcca atcccagaaa 720ccccatctca gtccggattg gagtctgcaa ctcgactcca tgaagtcgga atcgctagta 780atcgcagatc agcattgctg cggtgaatac gttcccgg 81870783DNANovosphingobium sediminicolamisc_feature(1)..(783)BCI 130 16S rDNAmisc_feature(5)..(5)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(19)..(20)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(551)..(551)n is a, c, g, or tmisc_feature(659)..(659)n is a, c, g, or tmisc_feature(688)..(688)n is a, c, g, or tmisc_feature(722)..(722)n is a, c, g, or tmisc_feature(736)..(736)n is a, c, g, or tmisc_feature(741)..(742)n is a, c, g, or tmisc_feature(744)..(744)n is a, c, g, or tmisc_feature(753)..(753)n is a, c, g, or tmisc_feature(763)..(765)n is a, c, g, or tmisc_feature(771)..(771)n is a, c, g, or tmisc_feature(776)..(776)n is a, c, g, or t 70ctccnttgcg ggtnagctnn acgccttcga gtgaatccna ctcccatggt gtgacgggcg 60gtgtgtacaa ggcctgggaa cgtattcacc gcggcatgct gatccgcgat tactagcgat 120tccgccttca tgctctcgag ttgcagagaa caatccgaac tgagacggct tttggagatt 180agctacccct cgcgaggtcg ctgcccactg tcaccgccat tgtagcacgt gtgtagccca 240gcgtgtaagg gccatgagga cttgacgtca tccccacctt cctccggctt atcaccggcg 300gtttccttag agtgcccaac ttaatgatgg caactaagga cgagggttgc gctcgttgcg 360ggacttaacc caacatctca cgacacgagc tgacgacagc catgcagcac ctgtcaccga 420tccagccaaa ctgaaggaaa acatctctgt aatccgcgat cgggatgtca aacgctggta 480aggttctgcg cgttgcttcg aattaaacca catgctccac cgcttgtgca ggcccccgtc 540aattcctttg ngttttaatc ttgcgaccgt actccccagg cggataactt aatgcgttag 600ctgcgccacc caaattccat gaacccggac agctagttat catcgtttac ggcgtggant 660accagggtat ctaatcctgt ttgctccnca cgctttcgca cctcagcgtc aatacctgtc 720cngtgagccg ccttcnccac nngngttctt ccnaatatct acnnntttca nctctncact 780cgg 78371826DNAMucilaginibacter gossypiimisc_feature(1)..(826)BCI 1307 16S rDNA 71ggatttattg ggtttaaagg gtgcgtaggc ggctttttaa gtcaggggtg aaagacggta 60gctcaactat cgcagtgccc ttgatactga agagcttgaa tgtacttgag gtaggcggaa 120tgtgacaagt agcggtgaaa tgcatagata tgtcacagaa caccaattgc gaaggcagct 180tactaaagta tgattgacgc tgaggcacga aagcgtgggg atcaaacagg attagatacc 240ctggtagtcc acgccctaaa cgatgaacac tcgatgttgg cgatatacgg tcagcgtcta 300agcgaaagcg ttaagtgttc cacctgggga gtacgcccgc aagggtgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggaggagca tgtggtttaa ttcgatgata cgcgaggaac 420cttacccggg cttgaaagtt agtgaatgtg acagagacgt cacagttctt cggaacacga 480aactaggtgc tgcatggctg tcgtcagctc gtgccgtgag gtgttgggtt aagtcccgca 540acgagcgcaa cccctatgtt tagttgccag catttaaggt ggggactcta aacagactgc 600ctatgcaaat agagaggaag gaggggacga cgtcaagtca tcatggccct tacgtccggg 660gctacacacg tgctacaatg gatggtacag agggcagcta cctggcaaca ggatgccaat 720ctcataaagc cattcacagt tcggatcggg gtctgcaact cgaccccgtg aagttggatt 780cgctagtaat cgcgtatcag caatgacgcg gtgaatacgt tcccgg 82672953DNAEnsifer adhaerensmisc_feature(1)..(953)BCI 131 16S rDNAmisc_feature(841)..(841)n is a, c, g, or t 72tagctgcctc cttgcggtta gcgcactacc ttcgggtaaa accaactccc atggtgtgac 60gggcggtgtg tacaaggccc gggaacgtat tcaccgcggc atgctgatcc gcgattacta 120gcgattccaa cttcatgcac tcgagttgca gagtgcaatc cgaactgaga tggcttttgg 180agattagctc acactcgcgt gctcgctgcc cactgtcacc accattgtag cacgtgtgta 240gcccagcccg taagggccat gaggacttga cgtcatcccc accttcctct cggcttatca 300ccggcagtcc ccttagagtg cccaactgaa tgctggcaac taagggcgag ggttgcgctc 360gttgcgggac ttaacccaac atctcacgac acgagctgac gacagccatg cagcacctgt 420ctccggtcca gccgaactga aggaaaacat ctctgtaatc cgcgaccggg atgtcaaggg 480ctggtaaggt tctgcgcgtt gcttcgaatt aaaccacatg ctccaccgct tgtgcgggcc 540cccgtcaatt cctttgagtt ttaatcttgc gaccgtactc cccaggcgga atgtttaatg 600cgttagctgc gccaccgaac agtatactgc ccgacggcta acattcatcg tttacggcgt 660ggactaccag ggtatctaat cctgtttgct ccccacgctt tcgcacctca gcgtcagtaa 720tggaccagta agccgccttc gccactggtg ttcctccgaa tatctacgaa tttcacctct 780acactcggaa ttccacttac ctcttccata ctccagactt ccagtatcaa aggcagttcc 840naggttgagc cccgggattt cacccctgac ttaaaagtcc gcctacgtgc gctttacgcc 900cagtaattcc gaacaacgct agcccccttc gtattaccgc ggctgctggc acg 95373834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1312 16S rDNAmisc_feature(28)..(29)n is a, c, g, or t 73attactgggc gtaaagcgcg cgtaggtnnt ttgttaagtt ggatgtgaaa gccccgggct 60caacctggga actgcatcca

aaactggcaa gctagagtac ggtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggttg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83474834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1314 16S rDNAmisc_feature(41)..(42)n is a, c, g, or tmisc_feature(46)..(47)n is a, c, g, or t 74attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt nnatgnnaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac agtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggtcg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83475834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1315 16S rDNAmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(119)..(119)n is a, c, g, or t 75attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt ggatgtgaaa gccccgggct 60caacntggga actgcatcca aaactggcaa gctagagtac agtagagggt ggtggaatnt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggtcg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83476837DNAStenotrophomonas maltophiliamisc_feature(1)..(837)BCI 1316 16S rDNAmisc_feature(6)..(7)n is a, c, g, or tmisc_feature(11)..(12)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(55)..(55)n is a, c, g, or tmisc_feature(66)..(67)n is a, c, g, or tmisc_feature(86)..(86)n is a, c, g, or tmisc_feature(138)..(138)n is a, c, g, or tmisc_feature(198)..(198)n is a, c, g, or t 76attacnnggc nnaaagcgtg cgtaggtggt tgtttaantc tgttgtgaaa gcccngggct 60caaccnnggg aactgcagtg gaaacnggac aactagagtg tggtagaggg tagcggaatt 120cccggtgtag cagtgaantg cgtagagatc gggaggaaca tccatggcga aggcagctac 180ctggaccaac actgacantg aggcacgaaa gcgtggggag caaacaggat tagataccct 240ggtagtccac gccctaaacg atgcgaactg gatgttgggt gcaatttggc acgcagtatc 300gaagctaacg cgttaagttc gccgcctggg gagtacggtc gcaagactga aactcaaagg 360aattgacggg ggcccgcaca agcggtggag tatgtggttt aattcgatgc aacgcgaaga 420accttacctg gccttgacat gtcgagaact ttccagagat ggattggtgc cttcgggaac 480tcgaacacag gtgctgcatg gctgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaacccttg tccttagttg ccagcacgta atggtgggaa ctctaaggag 600accgccggtg acaaaccgga ggaaggtggg gatgacgtca agtcatcatg gcccttacgg 660ccagggctac acacgtacta caatggtagg gacagagggc tgcaagccgg cgacggtaag 720ccaatcccag aaaccctatc tcagtccgga ttggagtctg caactcgact ccatgaagtc 780ggaatcgcta gtaatcgcag atcagcattg ctgcggtgaa tacgttcccg ggccttg 83777834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1319 16S rDNAmisc_feature(10)..(11)n is a, c, g, or tmisc_feature(24)..(24)n is a, c, g, or tmisc_feature(40)..(40)n is a, c, g, or tmisc_feature(122)..(122)n is a, c, g, or t 77attactgggn ntaaagcgcg cgtnggtggt ttgttaagtn ggatgtgaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac ggtagagggt ggtggaattt 120cntgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgtaat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggttg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83478776DNAMicrobacterium oleivoransmisc_feature(1)..(776)BCI 132 16S rDNAmisc_feature(2)..(2)n is a, c, g, or t 78cnccggcttc aggtgttacc gactttcatg acttgacggg cggtgtgtac aagacccggg 60aacgtattca ccgcagcgtt gctgatctgc gattactagc gactccgact tcatgaggtc 120gagttgcaga cctcaatccg aactgggacc ggctttttgg gattcgctcc acctcgcggt 180attgcagccc tttgtaccgg ccattgtagc atgcgtgaag cccaagacat aaggggcatg 240atgatttgac gtcatcccca ccttcctccg agttgacccc ggcagtatcc catgagttcc 300caccattacg tgctggcaac atagaacgag ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacaaccatg caccacctgt ttacgagtgt ccaaagagtt 420gaccatttct ggcccgttct cgtatatgtc aagccttggt aaggttcttc gcgttgcatc 480gaattaatcc gcatgctccg ccgcttgtgc gggtccccgt caattccttt gagttttagc 540cttgcggccg tactccccag gcggggaact taatgcgtta gctgcgtcac ggaatccgtg 600gaatggaccc cacaactagt tcccaacgtt tacggggtgg actaccaggg tatctaagcc 660tgtttgctcc ccaccctttc gctcctcagc gtcagtaacg gcccagagat ctgccttcgc 720catcggtgtt cctcctgata tctgcgcatt ccaccgctac accaggaatt ccaatc 77679503DNAStenotrophomonas maltophiliamisc_feature(1)..(503)BCI 1320 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(19)..(19)n is a, c, g, or tmisc_feature(46)..(46)n is a, c, g, or tmisc_feature(52)..(52)n is a, c, g, or tmisc_feature(58)..(59)n is a, c, g, or tmisc_feature(71)..(71)n is a, c, g, or tmisc_feature(73)..(73)n is a, c, g, or tmisc_feature(81)..(81)n is a, c, g, or tmisc_feature(89)..(89)n is a, c, g, or tmisc_feature(94)..(94)n is a, c, g, or tmisc_feature(115)..(115)n is a, c, g, or tmisc_feature(122)..(122)n is a, c, g, or tmisc_feature(126)..(126)n is a, c, g, or tmisc_feature(160)..(160)n is a, c, g, or tmisc_feature(169)..(169)n is a, c, g, or tmisc_feature(172)..(172)n is a, c, g, or tmisc_feature(180)..(180)n is a, c, g, or tmisc_feature(182)..(182)n is a, c, g, or tmisc_feature(186)..(186)n is a, c, g, or t 79ncggtngcaa gactgaaant caaaggaatt gacgggggcc cgcacnagcg gnggagtnng 60tggtttaatt ngntgcaacg ngaagaacnt tacntggcct tgacatgtcg agaantttcc 120anaganggat tggtgccttc gggaactcga acacaggtgn tgcatggcng tngtcagctn 180gngtcntgag atgttgggtt aagtcccgca acgagcgcaa cccttgtcct tagttgccag 240cacgtaatgg tgggaactct aaggagaccg ccggtgacaa accggaggaa ggtggggatg 300acgtcaagtc atcatggccc ttacggccag ggctacacac gtactacaat ggtagggaca 360gagggctgca agccggcgac ggtaagccaa tcccagaaac cctatctcag tccggattgg 420agtctgcaac tcgactccat gaagtcggaa tcgctagtaa tcgcagatca gcattgctgc 480ggtgaatacg ttcccgggcc ttg 50380511DNAStenotrophomonas maltophiliamisc_feature(1)..(511)BCI 1322 16S rDNAmisc_feature(21)..(21)n is a, c, g, or tmisc_feature(76)..(76)n is a, c, g, or tmisc_feature(102)..(102)n is a, c, g, or tmisc_feature(145)..(145)n is a, c, g, or tmisc_feature(148)..(148)n is a, c, g, or tmisc_feature(156)..(156)n is a, c, g, or tmisc_feature(168)..(168)n is a, c, g, or t 80tggggagtac ggtcgcaaga ntgaaactca aaggaattga cgggggcccg cacaagcggt 60ggagtatgtg gtttanttcg atgcaacgcg aagaacctta cntggccttg acatgtcgag 120aactttccag agatggattg gtgcnttngg gaactngaac acaggtgntg catggctgtc 180gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc cttgtcctta 240gttgccagca cgtaatggtg ggaactctaa ggagaccgcc ggtgacaaac cggaggaagg 300tggggatgac gtcaagtcat catggccctt acggccaggg ctacacacgt actacaatgg 360tagggacaga gggctgcaag ccggcgacgg taagccaatc ccagaaaccc tatctcagtc 420cggattggag tctgcaactc gactccatga agtcggaatc gctagtaatc gcagatcagc 480attgctgcgg tgaatacgtt cccgggcctt g 51181835DNAStenotrophomonas maltophiliamisc_feature(1)..(835)BCI 1325 16S rDNAmisc_feature(21)..(21)n is a, c, g, or tmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(40)..(40)n is a, c, g, or tmisc_feature(59)..(59)n is a, c, g, or tmisc_feature(63)..(66)n is a, c, g, or tmisc_feature(71)..(71)n is a, c, g, or tmisc_feature(158)..(158)n is a, c, g, or tmisc_feature(196)..(196)n is a, c, g, or t 81attactgggc gtaaagcgtg ngtaggtggt ngtttaagtn tgttgtgaaa gccctgggnt 60cannnnggaa ntgcagtgga aactggacaa ctagagtgtg gtagagggta gcggaattcc 120cggtgtagca gtgaaatgcg tagagatcgg gaggaacntc catggcgaag gcagctacct 180ggaccaacac tgacantgag gcacgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cctaaacgat gcgaactgga tgttgggtgc aatttggcac gcagtatcga 300agctaacgcg ttaagttcgc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagta tgtggtttaa ttcgatgcaa cgcgaagaac 420cttacctggc cttgacatgt cgagaacttt ccagagatgg attggtgcct tcgggaactc 480gaacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540caacgagcgc aacccttgtc cttagttgcc agcacgtaat ggtgggaact ctaaggagac 600cgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660agggctacac acgtactaca atggtaggga cagagggctg caagccggcg acggtaagcc 720aatcccagaa accctatctc agtccggatt ggagtctgca actcgactcc atgaagtcgg 780aatcgctagt aatcgcagat cagcattgct gcggtgaata cgttcccggg ccttg 83582834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1330 16S rDNAmisc_feature(142)..(142)n is a, c, g, or t 82attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt ggatgtgaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac agtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gnagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggtcg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83483836DNAStenotrophomonas maltophiliamisc_feature(1)..(836)BCI 1331 16S rDNAmisc_feature(3)..(4)n is a, c, g, or tmisc_feature(65)..(66)n is a, c, g, or t 83atnnctgggc gtaaagcgtg cgtaggtggt tgtttaagtc tgttgtgaaa gccctgggct 60caacnnggga actgcagtgg aaactggaca actagagtgt ggtagagggt agcggaattc 120ccggtgtagc agtgaaatgc gtagagatcg ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ctgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtaggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccctatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccgg gccttg 83684834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1333 16S rDNA 84attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt ggatgtgaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac ggtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggttg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83485765DNAStenotrophomonas maltophiliamisc_feature(1)..(765)BCI 1344 16S rDNA 85ctacctgctt ctggtgcaac aaactcccat ggtgtgacgg gcggtgtgta caaggcccgg 60gaacgtattc accgcagcaa tgctgatctg cgattactag cgattccgac ttcatggagt 120cgagttgcag actccaatcc ggactgagat agggtttctg ggattggctc accgtcgccg 180gcttgcagcc ctctgtccct accattgtag tacgtgtgta gccctggccg taagggccat 240gatgacttga cgtcatcccc accttcctcc ggtttgtcac cggcggtctc cttagagttc 300ccaccattac gtgctggcaa ctaaggacaa gggttgcgct cgttgcggga cttaacccaa 360catctcacga cacgagctga cgacagccat gcagcacctg tgttcgagtt cccgaaggca 420ccaatccatc tctggaaagt tctcgacatg tcaaggccag gtaaggttct tcgcgttgca 480tcgaattaaa ccacatactc caccgcttgt gcgggccccc gtcaattcct ttgagtttca 540gtcttgcgac cgtactcccc aggcggcgaa cttaacgcgt tagcttcgat actgcgtgcc 600aaattgcacc caacatccag ttcgcatcgt ttagggcgtg gactaccagg gtatctaatc 660ctgtttgctc cccacgcttt cgtgcctcag tgtcaatgtt ggtccaggta gctgccttcg 720ccatggatgt tcctcctgat ctctacgcat ttcactgcta cacca 76586835DNAStenotrophomonas maltophiliamisc_feature(1)..(835)BCI 1350 16S rDNAmisc_feature(17)..(18)n is a, c, g, or tmisc_feature(27)..(28)n is a, c, g, or tmisc_feature(30)..(30)n is a, c, g, or tmisc_feature(32)..(32)n is a, c, g, or tmisc_feature(37)..(39)n is a, c, g, or tmisc_feature(43)..(43)n is a, c, g, or tmisc_feature(46)..(46)n is a, c, g, or tmisc_feature(50)..(50)n is a, c, g, or tmisc_feature(53)..(54)n is a, c, g, or tmisc_feature(57)..(58)n is a, c, g, or tmisc_feature(62)..(62)n is a, c, g, or tmisc_feature(71)..(73)n is a, c, g, or tmisc_feature(77)..(77)n is a, c, g, or tmisc_feature(82)..(82)n is a, c, g, or tmisc_feature(84)..(84)n is a, c, g, or tmisc_feature(95)..(100)n is a, c, g, or tmisc_feature(112)..(112)n is a, c, g, or tmisc_feature(136)..(136)n is a, c, g, or tmisc_feature(175)..(175)n is a, c, g, or tmisc_feature(196)..(196)n is a, c, g, or tmisc_feature(259)..(259)n is a, c, g, or tmisc_feature(261)..(263)n is a, c, g, or tmisc_feature(267)..(268)n is a, c, g, or t 86tactgggcgt aaagcgnncg taggtgnntn gnttaannnt gtngtnaaan ccnnggnntc 60ancctgggaa nnncagngga ancnggacaa ctagnnnnnn gtagagggta gnggaattcc 120cggtgtagca gtgaantgcg tagagatcgg gaggaacatc catggcgaag gcagntacct 180ggaccaacac tgacantgag gcacgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cctaaacgnt nnnaacnnga tgttgggtgc aatttggcac gcagtatcga 300agctaacgcg ttaagttcgc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagta tgtggtttaa ttcgatgcaa cgcgaagaac 420cttacctggc cttgacatgt cgagaacttt ccagagatgg attggtgcct tcgggaactc 480gaacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540caacgagcgc aacccttgtc cttagttgcc agcacgtaat ggtgggaact ctaaggagac 600cgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660agggctacac acgtactaca atggtgggga cagagggctg caagccggcg acggtaagcc 720aatcccagaa accccatctc agtccggatt ggagtctgca actcgactcc atgaagtcgg 780aatcgctagt aatcgcagat cagcattgct gcggtgaata cgttcccggg ccttg 83587581DNAPseudomonas putidamisc_feature(1)..(581)BCI 1351 16S rDNA 87tcccatggtg tgacgggcgg tgtgtacaag gcccgggaac gtattcaccg cgacattctg 60attcgcgatt actagcgatt ccgacttcac gcagtcgagt tgcagactgc gatccggact 120acgatcggtt ttgtgagatt agctccacct cgcggcttgg caaccctctg

taccgaccat 180tgtagcacgt gtgtagccca ggccgtaagg gccatgatga cttgacgtca tccccacctt 240cctccggttt gtcaccggca gtctccttag agtgcccacc ataacgtgct ggtaactaag 300gacaagggtt gcgctcgtta cgggacttaa cccaacatct cacgacacga gctgacgaca 360gccatgcagc acctgtgtca gagttcccga aggcaccaat ccatctctgg aaagttctct 420gcatgtcaag gcctggtaag gttcttcgcg ttgcttcgaa ttaaaccaca tgctccaccg 480cttgtgcggg cccccgtcaa ttcatttgag ttttaacctt gcggccgtac tccccaggcg 540gtcaacttaa tgcgttagct gcgccactaa aatctcaagg a 58188834DNAPseudomonas fluorescensmisc_feature(1)..(834)BCI 1352 16S rDNAmisc_feature(89)..(89)n is a, c, g, or t 88attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt ggatgtgaaa tccccgggct 60caacctggga actgcatcca aaactggcna gctagagtat ggtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttgggag ccttgagctc ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatcc aatgaacttt ccagagatgg attggtgcct tcgggagcat 480tgagacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgtaat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta caaagggttg ccaagccgcg aggtggagct 720aatcccataa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83489834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1353 16S rDNA 89attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt ggatgtgaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac ggtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggttg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83490833DNAPantoea agglomeransmisc_feature(1)..(833)BCI 1355 16S rDNAmisc_feature(29)..(29)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(51)..(51)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or tmisc_feature(442)..(443)n is a, c, g, or tmisc_feature(447)..(447)n is a, c, g, or tmisc_feature(450)..(450)n is a, c, g, or tmisc_feature(461)..(461)n is a, c, g, or tmisc_feature(464)..(464)n is a, c, g, or tmisc_feature(479)..(480)n is a, c, g, or t 90attactgggc gtaaagcgca cgcaggcgnt ctgttaantc agatgtgaaa nccccggnct 60taacctggga actgcatttg aaactggcag gcttgagtct tgtagagggg ggtagaattc 120caggtgtagc ggtgaaatgc gtagagatct ggaggaatac cggtggcgaa ggcggccccc 180tggacaaaga ctgacgctca ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcgacttg gaggttgttc ccttgaggag tggcttccgg 300agctaacgcg ttaagtcgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgatgcaa cgcgaagaac 420cttacctact cttgacatcc anngaanttn gcagagatgc nttngtgcct tcgggaacnn 480tgagacaggt gctgcatggc tgtcgtcagc tcgtgttgtg aaatgttggg ttaagtcccg 540caacgagcgc aacccttatc ctttgttgcc agcgattcgg tcgggaactc aaaggagact 600gccggtgata aaccggagga aggtggggat gacgtcaagt catcatggcc cttacgagta 660gggctacaca cgtgctacaa tggcgcatac aaagagaagc gacctcgcga gagcaagcgg 720acctcacaaa gtgcgtcgta gtccggatcg gagtctgcaa ctcgactccg tgaagtcgga 780atcgctagta atcgtggatc agaatgccac ggtgaatacg ttcccgggcc ttg 83391523DNAPseudomonas putidamisc_feature(1)..(523)BCI 1356 16S rDNAmisc_feature(8)..(8)n is a, c, g, or tmisc_feature(13)..(13)n is a, c, g, or tmisc_feature(21)..(22)n is a, c, g, or tmisc_feature(46)..(46)n is a, c, g, or tmisc_feature(92)..(92)n is a, c, g, or tmisc_feature(102)..(102)n is a, c, g, or tmisc_feature(108)..(108)n is a, c, g, or tmisc_feature(113)..(113)n is a, c, g, or tmisc_feature(118)..(118)n is a, c, g, or tmisc_feature(263)..(263)n is a, c, g, or t 91taagttgncc gcntggggag nncggccgca aggttaaaac tcaaangaat tgacgggggc 60ccgcacaagc ggtggagcat gtggtttaat tngaagcaac gngaagancc ttnccagncc 120ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct gacacaggtg 180ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt aacgagcgca 240acccttgtcc ttagttacca gcncgttatg gtgggcactc taaggagact gccggtgaca 300aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct gggctacaca 360cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta atctcacaaa 420accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga atcgctagta 480atcgcgaatc agaatgtcgc ggtgaatacg ttcccgggcc ttg 52392836DNAStenotrophomonas maltophiliamisc_feature(1)..(836)BCI 1357 16S rDNAmisc_feature(31)..(31)n is a, c, g, or t 92attactgggc gtaaagcgtg cgtaggtggt ngtttaagtc tgttgtgaaa gccctgggct 60caacctggga actgcagtgg aaactggacg actagagtgt ggtagagggt agcggaattc 120ccggtgtagc agtgaaatgc gtagagatcg ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ctgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtgggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccccatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccgg gccttg 83693833DNAPseudomonas putidamisc_feature(1)..(833)BCI 1358 16S rDNAmisc_feature(117)..(119)n is a, c, g, or t 93attactgggc gtaaagcgcg cgtaggtggt ttgttaagtt ggatgtgaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac ggtagagggt ggtggannnc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttcccgggcc ttg 83394782DNANovosphingobium sediminicolamisc_feature(1)..(782)BCI 136 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(12)..(13)n is a, c, g, or tmisc_feature(17)..(18)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(549)..(549)n is a, c, g, or tmisc_feature(657)..(657)n is a, c, g, or tmisc_feature(685)..(686)n is a, c, g, or tmisc_feature(709)..(709)n is a, c, g, or tmisc_feature(713)..(713)n is a, c, g, or tmisc_feature(720)..(720)n is a, c, g, or tmisc_feature(740)..(740)n is a, c, g, or tmisc_feature(751)..(751)n is a, c, g, or tmisc_feature(763)..(763)n is a, c, g, or tmisc_feature(767)..(767)n is a, c, g, or tmisc_feature(769)..(769)n is a, c, g, or tmisc_feature(781)..(781)n is a, c, g, or t 94ccnttgcggg tnngctnnac gccttcgagt gaatccnact cccatggtgt gacgggcggt 60gtgtacaagg cctgggaacg tattcaccgc ggcatgctga tccgcgatta ctagcgattc 120cgccttcatg ctctcgagtt gcagagaaca atccgaactg agacggcttt tggagattag 180ctacccctcg cgaggtcgct gcccactgtc accgccattg tagcacgtgt gtagcccagc 240gtgtaagggc catgaggact tgacgtcatc cccaccttcc tccggcttat caccggcggt 300ttccttagag tgcccaactt aatgatggca actaaggacg agggttgcgc tcgttgcggg 360acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct gtcaccgatc 420cagccaaact gaaggaaaac atctctgtaa tccgcgatcg ggatgtcaaa cgctggtaag 480gttctgcgcg ttgcttcgaa ttaaaccaca tgctccaccg cttgtgcagg cccccgtcaa 540ttcctttgng ttttaatctt gcgaccgtac tccccaggcg gataacttaa tgcgttagct 600gcgccaccca aattccatga acccggacag ctagttatca tcgtttacgg cgtggantac 660cagggtatct aatcctgttt gctcnncacg ctttcgcacc tcagcgtcna tanctgtccn 720gtgagccgcc ttcgccactn gtgttcttcc naatatctac gantttnanc tctacactcg 780na 78295836DNAStenotrophomonas maltophiliamisc_feature(1)..(836)BCI 1362 16S rDNAmisc_feature(4)..(4)n is a, c, g, or tmisc_feature(29)..(29)n is a, c, g, or tmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(63)..(63)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(87)..(87)n is a, c, g, or t 95attnctgggc gtaaagcgtg cgtaggtgnt ngtttangtc tgttgtgaaa gccctgggct 60cancntggga actgcagtgg aaactgnaca actagagtgt ggtagagggt agcggaattc 120ccggtgtagc agtgaaatgc gtagagatcg ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ctgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtaggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccctatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccgg gccttg 83696834DNAPseudomonas putidamisc_feature(1)..(834)BCI 1363 16S rDNAmisc_feature(40)..(40)n is a, c, g, or t 96attactgggc gtaaagcgcg cgtaggtggt ttgttaagtn ggatgtgaaa gccccgggct 60caacctggga actgcatcca aaactggcaa gctagagtac ggtagagggt ggtggaattt 120cctgtgtagc ggtgaaatgc gtagatatag gaaggaacac cagtggcgaa ggcgaccacc 180tggactgata ctgacactga ggtgcgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccgtaaacga tgtcaactag ccgttggaat ccttgagatt ttagtggcgc 300agctaacgca ttaagttgac cgcctgggga gtacggccgc aaggttaaaa ctcaaatgaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggc cttgacatgc agagaacttt ccagagatgg attggtgcct tcgggaactc 480tgacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540taacgagcgc aacccttgtc cttagttacc agcacgttat ggtgggcact ctaaggagac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660tgggctacac acgtgctaca atggtcggta cagagggttg ccaagccgcg aggtggagct 720aatctcacaa aaccgatcgt agtccggatc gcagtctgca actcgactgc gtgaagtcgg 780aatcgctagt aatcgcgaat cagaatgtcg cggtgaatac gttcccgggc cttg 83497746DNAVariovorax ginsengisolimisc_feature(1)..(746)BCI 137 16S rDNAmisc_feature(17)..(17)n is a, c, g, or tmisc_feature(701)..(701)n is a, c, g, or tmisc_feature(704)..(705)n is a, c, g, or tmisc_feature(709)..(710)n is a, c, g, or tmisc_feature(721)..(721)n is a, c, g, or tmisc_feature(724)..(724)n is a, c, g, or tmisc_feature(726)..(726)n is a, c, g, or tmisc_feature(735)..(735)n is a, c, g, or tmisc_feature(745)..(745)n is a, c, g, or t 97agctaactac ttctggnaga acccgctccc atggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgtgac attctgatcc acgattacta gcgattccga cttcacgcag 120tcgagttgca gactgcgatc cggactacga ctggttttat gggattagct ccccctcgcg 180ggttggcaac cctttgtacc agccattgta tgacgtgtgt agccccacct ataagggcca 240tgaggacttg acgtcatccc caccttcctc cggtttgtca ccggcagtct cattagagtg 300cccaactgaa tgtagcaact aatgacaagg gttgcgctcg ttgcgggact taacccaaca 360tctcacgaca cgagctgacg acagccatgc agcacctgtg ttacggttct ctttcgagca 420ctaagccatc tctggcaaat tccgtacatg tcaaaggtgg gtaaggtttt tcgcgttgca 480tcgaattaaa ccacatcatc caccgcttgt gcgggtcccc gtcaattcct ttgagtttca 540accttgcggc cgtactcccc aggcggtcaa cttcacgcgt tagcttcgtt actgagtcag 600tgaagaccca acaaccagtt gacatcgttt agggcgtgga ctaccagggt atctaatcct 660gtttgctccc cacgctttcg tgcatgagcg tcagtacagg nccnngggnn tgccttcgcc 720ntcngngttc ctccncatat ctacnc 74698859DNAMucilaginibacter gossypiimisc_feature(1)..(859)BCI 142 16S rDNA 98aggcacttcc agcttccatg gcttgacggg cggtgtgtac aaggcccggg aacgtattca 60ccgcgtcatt gctgatacgc gattactagc gaatccaact tcacggggtc gagttgcaga 120ccccgatccg aactgtgaat ggctttaaga gattggcatc ctgttgccag gtagctgccc 180tctgtaccat ccattgtagc acgtgtgtag ccccggacgt aagggccatg atgacttgac 240gtcgtcccct ccttcctctc tatttgcata ggcagtctgt ttagagtccc caccttaaat 300gctggcaact aaacataggg gttgcgctcg ttgcgggact taacccaaca cctcacggca 360cgagctgacg acagccatgc agcacctagt ttcgtgttcc gaagaactgt gacgtctctg 420tcacattcac taactttcaa gcccgggtaa ggttcctcgc gtatcatcga attaaaccac 480atgctcctcc gcttgtgcgg gcccccgtca attcctttga gtttcaccct tgcgggcgta 540ctccccaggt ggaacactta acgctttcgc ttagacgctg accgtatatc gccaacatcg 600agtgttcatc gtttagggcg tggactacca gggtatctaa tcctgtttga tccccacgct 660ttcgtgcctc agcgtcaatc atactttagt aagctgcctt cgcaattggt gttctgtgac 720atatctatgc atttcaccgc tacttgtcac attccgccta cctcaagtac attcaagctc 780ttcagtatca agggcactgc gatagttgag ctaccgtctt tcacccctga cttaaaaagc 840cgcctacgca ccctttaaa 85999859DNAMucilaginibacter gossypiimisc_feature(1)..(859)BCI 142 16S rDNA 99aggcacttcc agcttccatg gcttgacggg cggtgtgtac aaggcccggg aacgtattca 60ccgcgtcatt gctgatacgc gattactagc gaatccaact tcacggggtc gagttgcaga 120ccccgatccg aactgtgaat ggctttaaga gattggcatc ctgttgccag gtagctgccc 180tctgtaccat ccattgtagc acgtgtgtag ccccggacgt aagggccatg atgacttgac 240gtcgtcccct ccttcctctc tatttgcata ggcagtctgt ttagagtccc caccttaaat 300gctggcaact aaacataggg gttgcgctcg ttgcgggact taacccaaca cctcacggca 360cgagctgacg acagccatgc agcacctagt ttcgtgttcc gaagaactgt gacgtctctg 420tcacattcac taactttcaa gcccgggtaa ggttcctcgc gtatcatcga attaaaccac 480atgctcctcc gcttgtgcgg gcccccgtca attcctttga gtttcaccct tgcgggcgta 540ctccccaggt ggaacactta acgctttcgc ttagacgctg accgtatatc gccaacatcg 600agtgttcatc gtttagggcg tggactacca gggtatctaa tcctgtttga tccccacgct 660ttcgtgcctc agcgtcaatc atactttagt aagctgcctt cgcaattggt gttctgtgac 720atatctatgc atttcaccgc tacttgtcac attccgccta cctcaagtac attcaagctc 780ttcagtatca agggcactgc gatagttgag ctaccgtctt tcacccctga cttaaaaagc 840cgcctacgca ccctttaaa 859100773DNAPseudomonas putidamisc_feature(1)..(773)BCI 159 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(27)..(28)n is a, c, g, or tmisc_feature(640)..(640)n is a, c, g, or tmisc_feature(706)..(706)n is a, c, g, or tmisc_feature(723)..(723)n is a, c, g, or tmisc_feature(725)..(725)n is a, c, g, or tmisc_feature(728)..(728)n is a, c, g, or tmisc_feature(735)..(735)n is a, c, g, or tmisc_feature(744)..(744)n is a, c, g, or tmisc_feature(751)..(751)n is a, c, g, or tmisc_feature(753)..(753)n is a, c, g, or tmisc_feature(757)..(757)n is a, c, g, or tmisc_feature(759)..(759)n is a, c, g, or tmisc_feature(762)..(762)n is a, c, g, or tmisc_feature(771)..(771)n is a, c, g, or t 100tngctacttc tggtgcaacc cactccnntg gtgtgacggg cggtgtgtac aaggcccggg 60aacgtattca ccgcgacatt ctgattcgcg attactagcg attccgactt cacgcagtcg 120agttgcagac tgcgatccgg actacgatcg gttttgtgag attagctcca cctcgcggct 180tggcaaccct ctgtaccgac cattgtagca cgtgtgtagc ccaggccgta agggccatga 240tgacttgacg tcatccccac cttcctccgg tttgtcaccg gcagtctcct tagagtgccc 300accataacgt gctggtaact aaggacaagg gttgcgctcg ttacgggact taacccaaca 360tctcacgaca cgagctgacg acagccatgc agcacctgtg tcagagttcc cgaaggcacc 420aatccatctc tggaaagttc tctgcatgtc aaggcctggt aaggttcttc gcgttgcttc 480gaattaaacc acatgctcca ccgcttgtgc gggcccccgt caattcattt gagttttaac 540cttgcggccg tactccccag gcggtcaact taatgcgtta gctgcgccac taaaatctca 600aggattccaa cggctagttg acatcgttta cggcgtggan taccagggta tctaatcctg 660tttgctcccc acgctttcgc acctcagtgt cagtatcagt ccaggnggtc gccttcgcca 720ctngngtncc ttccnatatc tacncatttc ncngctncnc angaaattcc ncc 773101694DNAHerbaspirillum chlorophenolicummisc_feature(1)..(694)BCI 162 16S rDNA 101ccacttctgg taaaacccgc tcccatggtg tgacgggcgg tgtgtacaag acccgggaac 60gtattcaccg cgacatgctg atccgcgatt actagcgatt ccaacttcat ggagtcgagt 120tgcagactcc aatccggact acgatacact ttctgggatt agctccccct cgcgggttgg 180cggccctctg tatgtaccat tgtatgacgt gtgaagccct acccataagg gccatgagga 240cttgacgtca tccccacctt cctccggttt gtcaccggca gtctcattag

agtgcccttt 300cgtagcaact aatgacaagg gttgcgctcg ttgcgggact taacccaaca tctcacgaca 360cgagctgacg acagccatgc agcacctgtg tgatggttct ctttcgagca ctcccaaatc 420tcttcaggat tccatccatg tcaagggtag gtaaggtttt tcgcgttgca tcgaattaat 480ccacatcatc caccgcttgt gcgggtcccc gtcaattcct ttgagtttta atcttgcgac 540cgtactcccc aggcggtcta cttcacgcgt tagctgcgtt accaagtcaa ttaagacccg 600acaactagta gacatcgttt agggcgtgga ctaccagggt atctaatcct gtttgctccc 660cacgctttcg tgcatgagcg tcagtgttat ccca 694102726DNAStenotrophomonas maltophiliamisc_feature(1)..(726)BCI 164 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(526)..(526)n is a, c, g, or tmisc_feature(627)..(627)n is a, c, g, or tmisc_feature(636)..(636)n is a, c, g, or tmisc_feature(647)..(647)n is a, c, g, or tmisc_feature(653)..(653)n is a, c, g, or tmisc_feature(707)..(707)n is a, c, g, or tmisc_feature(710)..(710)n is a, c, g, or tmisc_feature(724)..(724)n is a, c, g, or t 102naagctacct gcttctggtg caacaaactc ccatggtgtg acgggcggtg tgtacaaggc 60ccgggaacgt attcaccgca gcaatgctga tctgcgatta ctagcgattc cgacttcatg 120gagtcgagtt gcagactcca atccggactg agatagggtt tctgggattg gcttaccgtc 180gccggcttgc agccctctgt ccctaccatt gtagtacgtg tgtagccctg gccgtaaggg 240ccatgatgac ttgacgtcat ccccaccttc ctccggtttg tcaccggcgg tctccttaga 300gttcccacca ttacgtgctg gcaactaagg acaagggttg cgctcgttgc gggacttaac 360ccaacatctc acgacacgag ctgacgacag ccatgcagca cctgtgttcg agttcccgaa 420ggcaccaatc catctctgga aagttctcga catgtcaagg ccaggtaagg ttcttcgcgt 480tgcatcgaat taaaccacat actccaccgc ttgtgcgggc ccccgncaat tcctttgagt 540ttcagtcttg cgaccgtact ccccaggcgg cgaacttaac gcgttagctt cgatactgcg 600tgccaaattg cacccaacat ccagttngca tcgttnaggg cgtggantac canggtatct 660aatcctgttt gctccccacg ctttcgtgcc tcagtgtcag tgttggnccn ggtagctgcc 720ttcncc 726103717DNAStenotrophomonas maltophiliamisc_feature(1)..(717)BCI 171 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(530)..(530)n is a, c, g, or tmisc_feature(621)..(621)n is a, c, g, or tmisc_feature(630)..(630)n is a, c, g, or tmisc_feature(632)..(632)n is a, c, g, or tmisc_feature(641)..(641)n is a, c, g, or tmisc_feature(688)..(689)n is a, c, g, or tmisc_feature(697)..(697)n is a, c, g, or tmisc_feature(704)..(704)n is a, c, g, or tmisc_feature(717)..(717)n is a, c, g, or t 103ncctgcttct ggtgcaacaa actcccatgg tgtgacgggc ggtgtgtaca aggcccggga 60acgtattcac cgcagcaatg ctgatctgcg attactagcg attccgactt catggagtcg 120agttgcagac tccaatccgg actgagatag ggtttctggg attggcttac cgtcgccggc 180ttgcagccct ctgtccctac cattgtagta cgtgtgtagc cctggccgta agggccatga 240tgacttgacg tcatccccac cttcctccgg tttgtcaccg gcggtctcct tagagttccc 300accattacgt gctggcaact aaggacaagg gttgcgctcg ttgcgggact taacccaaca 360tctcacgaca cgagctgacg acagccatgc agcacctgtg ttcgagttcc cgaaggcacc 420aatccatctc tggaaagttc tcgacatgtc aaggccaggt aaggttcttc gcgttgcatc 480gaattaaacc acatactcca ccgcttgtgc gggcccccgt caattccttn gagtttcagt 540cttgcgaccg tactccccag gcggcgaact taacgcgtta gcttcgatac tgcgtgccaa 600attgcaccca acatccagtt ngcatcgttn anggcgtgga ntaccagggt atctaatcct 660gtttgctccc cacgctttcg tgcctcanng tcaatgntgg tccnggtagc tgccttn 717104772DNAPseudomonas putidamisc_feature(1)..(772)BCI 178 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(16)..(16)n is a, c, g, or tmisc_feature(601)..(601)n is a, c, g, or tmisc_feature(645)..(645)n is a, c, g, or tmisc_feature(687)..(687)n is a, c, g, or tmisc_feature(701)..(702)n is a, c, g, or tmisc_feature(705)..(705)n is a, c, g, or tmisc_feature(722)..(722)n is a, c, g, or tmisc_feature(731)..(731)n is a, c, g, or tmisc_feature(734)..(735)n is a, c, g, or tmisc_feature(743)..(743)n is a, c, g, or tmisc_feature(750)..(750)n is a, c, g, or tmisc_feature(755)..(756)n is a, c, g, or tmisc_feature(758)..(758)n is a, c, g, or tmisc_feature(760)..(761)n is a, c, g, or tmisc_feature(770)..(770)n is a, c, g, or t 104ngctacttct ggtgcnaccc actcccatgg tgtgacgggc ggtgtgtaca aggcccggga 60acgtattcac cgcgacattc tgattcgcga ttactagcga ttccgacttc acgcagtcga 120gttgcagact gcgatccgga ctacgatcgg ttttgtgaga ttagctccac ctcgcggctt 180ggcaaccctc tgtaccgacc attgtagcac gtgtgtagcc caggccgtaa gggccatgat 240gacttgacgt catccccacc ttcctccggt ttgtcaccgg cagtctcctt agagtgccca 300ccataacgtg ctggtaacta aggacaaggg ttgcgctcgt tacgggactt aacccaacat 360ctcacgacac gagctgacga cagccatgca gcacctgtgt cagagttccc gaaggcacca 420atccatctct ggaaagttct ctgcatgtca aggcctggta aggttcttcg cgttgcttcg 480aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcatttg agttttaacc 540ttgcggccgt actccccagg cggtcaactt aatgcgttag ctgcgccact aaaatctcaa 600ngattccaac ggctagttga catcgtttac ggcgtggact accanggtat ctaatcctgt 660ttgctcccca cgctttcgca cctcagngtc agtatcagtc nnggnggtcg ccttcgccac 720tngtgttcct nccnntatct acncatttcn ccgcnncncn ngaaattccn cc 772105724DNAStenotrophomonas maltophiliamisc_feature(1)..(724)BCI 181 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(13)..(14)n is a, c, g, or tmisc_feature(16)..(18)n is a, c, g, or tmisc_feature(20)..(20)n is a, c, g, or tmisc_feature(33)..(33)n is a, c, g, or tmisc_feature(36)..(37)n is a, c, g, or tmisc_feature(41)..(43)n is a, c, g, or tmisc_feature(50)..(51)n is a, c, g, or tmisc_feature(63)..(63)n is a, c, g, or tmisc_feature(74)..(77)n is a, c, g, or tmisc_feature(81)..(81)n is a, c, g, or tmisc_feature(104)..(104)n is a, c, g, or tmisc_feature(134)..(134)n is a, c, g, or tmisc_feature(142)..(142)n is a, c, g, or tmisc_feature(146)..(146)n is a, c, g, or t 105ganggnagcg nanntnnngn tgtagcagtg aantgnntag nnntcaggan naacatccat 60ggngaaggca gctnnnngga ncaacattga cactgaggca cganagcgtg gggagcaaac 120aggattagat accntggtag tncacnccct aaacgatgcg aactggatgt tgggtgcaat 180ttggcacgca gtatcgaagc taacgcgtta agttcgccgc ctggggagta cggtcgcaag 240actgaaactc aaaggaattg acgggggccc gcacaagcgg tggagtatgt ggtttaattc 300gatgcaacgc gaagaacctt acctggcctt gacatgtcga gaactttcca gagatggatt 360ggtgccttcg ggaactcgaa cacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga 420tgttgggtta agtcccgcaa cgagcgcaac ccttgtcctt agttgccagc acgtaatggt 480gggaactcta aggagaccgc cggtgacaaa ccggaggaag gtggggatga cgtcaagtca 540tcatggccct tacggccagg gctacacacg tactacaatg gtagggacag agggctgcaa 600gccggcgacg gtaagccaat cccagaaacc ctatctcagt ccggattgga gtctgcaact 660cgactccatg aagtcggaat cgctagtaat cgcagatcag cattgctgcg gtgaatacgt 720tccc 724106774DNARamlibacter henchirensismisc_feature(1)..(774)BCI 1959 16S rDNA 106cttctggcag aacccgctcc catggtgtga cgggcggtgt gtacaagacc cgggaacgta 60ttcaccgcga cattctgatc cgcgattact agcgattccg acttcacgca gtcgagttgc 120agactgcgat ccggactacg actggtttta tgggattagc tccccctcgc gggttggcaa 180ccctctgtac cagccattgt atgacgtgtg tagccccacc tataagggcc atgaggactt 240gacgtcatcc ccaccttcct ccggtttgtc accggcagtc tcattagagt gccctttcgt 300agcaactaat gacaagggtt gcgctcgttg cgggacttaa cccaacatct cacgacacga 360gctgacgaca gccatgcagc acctgtgttc tggttctctt tcgagcactc ccacgtctct 420gcgggattcc agacatgtca aaggtgggta aggtttttcg cgttgcatcg aattaaacca 480catcatccac cgcttgtgcg ggtccccgtc aattcctttg agtttcaacc ttgcggccgt 540actccccagg cggtcaactt cacgcgttag cttcgttact gatccagtga aggaccaaca 600accagttgac atcgtttagg gcgtggacta ccagggtatc taatcctgtt tgctccccac 660gctttcgtgc atgagcgtca gtgcaggccc aggggattgc cttcgccatc ggtgttcctc 720cgcatatcta cgcatttcac tgctacacgc ggaattccat ccccctctgc cgca 7741071085DNADuganella violaceinigramisc_feature(1)..(1085)BCI 2204 16S rDNA 107agcgccctcc ttgcggttag ctacctactt ctggtaaaac ccgctcccat ggtgtgacgg 60gcggtgtgta caagacccgg gaacgtattc accgcgacat gctgatccgc gattactagc 120gattccaact tcatgtagtc gagttgcaga ctacaatccg gactacgata cactttctgg 180gattagctcc ccctcgcggg ttggcggccc tctgtatgta ccattgtatg acgtgtgaag 240ccctacccat aagggccatg aggacttgac gtcatcccca ccttcctccg gtttgtcacc 300ggcagtctca ttagagtgct cttgcgtagc aactaatgac aagggttgcg ctcgttgcgg 360gacttaaccc aacatctcac gacacgagct gacgacagcc atgcagcacc tgtgtgcagg 420ttctctttcg agcactccca gatctctcca ggattcctgc catgtcaagg gtaggtaagg 480tttttcgcgt tgcatcgaat taatccacat catccaccgc ttgtgcgggt ccccgtcaat 540tcctttgagt tttaatcttg cgaccgtact ccccaggcgg tctacttcac gcgttagctg 600cgttactaag tcaattaaga cccaacaact agtagacatc gtttagggcg tggactacca 660gggtatctaa tcctgtttgc tccccacgct ttcgtgcatg agcgtcagtt ttgacccagg 720gggctgcctt cgccatcggt gttcctccac atctctacgc atttcactgc tacacgtgga 780attctacccc cctctgccaa actctagcct cgcagtctcc atcgccattc ccaggttaag 840cccggggatt tcacgacaga cttacgaaac cgcctgcgca cgctttacgc ccagtaattc 900cgattaacgc ttgcacccta cgtattaccg cggctgctgg cacgtagtta gccggtgctt 960attcttcagg taccgtcagc agtcgtggat attagccacg accttttctt ccctgacaaa 1020agagctttac aacccgaagg ccttcttcac tcacgcggca ttgctggatc agggttgccc 1080ccatt 1085108687DNAExiguobacterium acetylicummisc_feature(1)..(687)BCI 23 16S rDNA 108ttcgggtgtt gcaaactctc gtggtgtgac gggcggtgtg tacaagaccc gggaacgtat 60tcaccgcagt atgctgacct gcgattacta gcgattccga cttcatgcag gcgagttgca 120gcctgcaatc cgaactggga acggctttat gggattggct ccacctcgcg gtctcgctgc 180cctttgtacc gtccattgta gcacgtgtgt agcccaactc ataaggggca tgatgatttg 240acgtcatccc caccttcctc cggtttgtca ccggcagtct ccctagagtg cccaactaaa 300tgctggcaac taaggatagg ggttgcgctc gttgcgggac ttaacccaac atctcacgac 360acgagctgac gacaaccatg caccacctgt caccattgtc cccgaaggga aaacttgatc 420tctcaagcgg tcaatgggat gtcaagagtt ggtaaggttc ttcgcgttgc ttcgaattaa 480accacatgct ccaccgcttg tgcgggtccc cgtcaattcc tttgagtttc agccttgcgg 540ccgtactccc caggcggagt gcttaatgcg ttagcttcag cactgagggg cggaaacccc 600ccaacaccta gcactcatcg tttacggcgt ggactaccag ggtatctaat cctgtttgct 660ccccacgctt tcgcgcctca gcgtcag 687109768DNAPseudomonas putidamisc_feature(1)..(768)BCI 234 16S rDNA 109ggttagacta gctacttctg gtgcaaccca ctcccatggt gtgacgggcg gtgtgtacaa 60ggcccgggaa cgtattcacc gcgacattct gattcgcgat tactagcgat tccgacttca 120cgcagtcgag ttgcagactg cgatccggac tacgatcggt tttgtgagat tagctccacc 180tcgcggcttg gcaaccctct gtaccgacca ttgtagcacg tgtgtagccc aggccgtaag 240ggccatgatg acttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcctta 300gagtgcccac cataacgtgc tggtaactaa ggacaagggt tgcgctcgtt acgggactta 360acccaacatc tcacgacacg agctgacgac agccatgcag cacctgtgtc agagttcccg 420aaggcaccaa tccatctctg gaaagttctc tgcatgtcaa ggcctggtaa ggttcttcgc 480gttgcttcga attaaaccac atgctccacc gcttgtgcgg gcccccgtca attcatttga 540gttttaacct tgcggccgta ctccccaggc ggtcaactta atgcgttagc tgcgccacta 600aaatctcaag gattccaacg gctagttgac atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcac ctcagtgtca gtatcagtcc aggtggtcgc 720cttcgccact ggtgttcctt cctatatcta cgcatttcac cgctacac 768110825DNAPseudomonas putidamisc_feature(1)..(825)BCI 235 16S rDNAmisc_feature(39)..(39)n is a, c, g, or t 110ttactgggcg taaagcgcgc gtaggtggtt tgttaagtng gatgtgaaag ccccgggctc 60aacctgggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825111897DNADelftia lacustrismisc_feature(1)..(897)BCI 2350 16S rDNA 111gctagctcct tacggttact ccaccgactt cgggtgttac aaactctcgt ggtgtgacgg 60gcggtgtgta caaggcccgg gaacgtattc accgcggcat gctgatccgc gattactagc 120gattccagct tcatgtaggc gagttgcagc ctacaatccg aactgagaat ggttttatgg 180gattggcttg acctcgcggt cttgcagccc tttgtaccat ccattgtagc acgtgtgtag 240cccaggtcat aaggggcatg atgatttgac gtcatcccca ccttcctccg gtttgtcacc 300ggcagtcacc ttagagtgcc caactaaatg ctggcaacta agatcaaggg ttgcgctcgt 360tgcgggactt aacccaacat ctcacgacac gagctgacga caaccatgca ccacctgtca 420ctctgtcccc cgaaggggaa cgctctatct ctagagttgt cagaggatgt caagacctgg 480taaggttctt cgcgttgctt cgaattaaac cacatgctcc accgcttgtg cgggcccccg 540tcaattcctt tgagtttcag tcttgcgacc gtactcccca ggcggagtgc ttaatgcgtt 600agctgcagca ctaaagggcg gaaaccctct aacacttagc actcatcgtt tacggcgtgg 660actaccaggg tatctaatcc tgtttgctcc ccacgctttc gcgcctcagc gtcagttaca 720gaccaaaaag ccgccttcgc cactggtgtt cctccacatc tctacgcatt tcaccgctac 780acgtggaatt ccgcttttct cttctgcact caagttcccc agtttccaat gaccctccac 840ggttgagccg tgggctttca catcagactt aagaaaccgc ctgcgcgcgc tttacgc 897112827DNAPseudomonas putidamisc_feature(1)..(827)BCI 244 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(32)..(32)n is a, c, g, or tmisc_feature(40)..(40)n is a, c, g, or tmisc_feature(42)..(42)n is a, c, g, or tmisc_feature(78)..(78)n is a, c, g, or tmisc_feature(80)..(80)n is a, c, g, or tmisc_feature(123)..(123)n is a, c, g, or t 112ntactgggcg taaagcgcgc gtaggtggtt tnttaagttn gnatgtgaaa gccccgggct 60caacctggga actgcatncn aaaactggca agctagagta cggtagaggg tggtggaatt 120tcntgtgtag cggtgaaatg cgtagatata ggaaggaaca ccagtggcga aggcgaccac 180ctggactgat actgacactg aggtgcgaaa gcgtggggag caaacaggat tagataccct 240ggtagtccac gccgtaaacg atgtcaacta gccgttggaa tccttgagat tttagtggcg 300cagctaacgc attaagttga ccgcctgggg agtacggccg caaggttaaa actcaaatga 360attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa 420ccttaccagg ccttgacatg cagagaactt tccagagatg gattggtgcc ttcgggaact 480ctgacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gtaacgagcg caacccttgt ccttagttac cagcacgtta tggtgggcac tctaaggaga 600ctgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660ctgggctaca cacgtgctac aatggtcggt acagagggtt gccaagccgc gaggtggagc 720taatctcaca aaaccgatcg tagtccggat cgcagtctgc aactcgactg cgtgaagtcg 780gaatcgctag taatcgcgaa tcagaatgtc gcggtgaata cgttccc 827113826DNABacillus megateriummisc_feature(1)..(826)BCI 251 16S rDNAmisc_feature(4)..(5)n is a, c, g, or tmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(54)..(54)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or tmisc_feature(579)..(579)n is a, c, g, or t 113ttanngggcg taaagcgcgc gcnggcggtt tcttaagtct gatgtgaaag cccncggntc 60aaccgtggag ggtcattgga aactggggaa cttgagtgca gaagagaaaa gcggaattcc 120acgtgtagcg gtgaaatgcg tagagatgtg gaggaacacc agtggcgaag gcggcttttt 180ggtctgtaac tgacgctgag gcgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gagtgctaag tgttagaggg tttccgccct ttagtgctgc 300agctaacgca ttaagcactc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggt cttgacatcc tctgacaact ctagagatag agcgttcccc ttcgggggac 480agagtgacag gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaacccttg atcttagttg ccagcattna gttgggcact ctaaggtgac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc 660tgggctacac acgtgctaca atggatggta caaagggctg caagaccgcg aggtcaagcc 720aatcccataa aaccattctc agttcggatt gtaggctgca actcgcctac atgaagctgg 780aatcgctagt aatcgcggat cagcatgccg cggtgaatac gttccc 826114826DNABacillus megateriummisc_feature(1)..(826)BCI 255 16S rDNAmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(54)..(54)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or tmisc_feature(61)..(61)n is a, c, g, or tmisc_feature(116)..(116)n is a, c, g, or t 114ttattgggcg taaagcgcgc gcnggcggtt tcttaantnt gatgtgaaag cccncggntc 60naccgtggag ggtcattgga aactggggaa cttgagtgca gaagagaaaa gcgganttcc 120acgtgtagcg gtgaaatgcg tagagatgtg gaggaacacc agtggcgaag gcggcttttt 180ggtctgtaac tgacgctgag gcgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gagtgctaag tgttagaggg tttccgccct ttagtgctgc 300agctaacgca ttaagcactc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggt cttgacatcc tctgacaact ctagagatag agcgttcccc ttcgggggac 480agagtgacag gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaacccttg atcttagttg ccagcattta gttgggcact ctaaggtgac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc 660tgggctacac acgtgctaca atggatggta caaagggctg caagaccgcg aggtcaagcc 720aatcccataa aaccattctc agttcggatt gtaggctgca actcgcctac atgaagctgg 780aatcgctagt aatcgcggat cagcatgccg cggtgaatac gttccc 826115826DNABacillus megateriummisc_feature(1)..(826)BCI 262 16S rDNAmisc_feature(5)..(5)n is a, c, g, or tmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(54)..(54)n is a, c, g, or tmisc_feature(61)..(61)n is a, c, g, or tmisc_feature(114)..(114)n is a, c, g, or t 115ttatngggcg

taaagcgcgc gcnggcgntt tcttaagtct gatgtgaaag cccncggctc 60naccgtggag ggtcattgga aactggggaa cttgagtgca gaagagaaaa gcgnaattcc 120acgtgtagcg gtgaaatgcg tagagatgtg gaggaacacc agtggcgaag gcggcttttt 180ggtctgtaac tgacgctgag gcgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gagtgctaag tgttagaggg tttccgccct ttagtgctgc 300agctaacgca ttaagcactc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggt cttgacatcc tctgacaact ctagagatag agcgttcccc ttcgggggac 480agagtgacag gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaacccttg atcttagttg ccagcattta gttgggcact ctaaggtgac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc 660tgggctacac acgtgctaca atggatggta caaagggctg caagaccgcg aggtcaagcc 720aatcccataa aaccattctc agttcggatt gtaggctgca actcgcctac atgaagctgg 780aatcgctagt aatcgcggat cagcatgccg cggtgaatac gttccc 826116826DNABacillus megateriummisc_feature(1)..(826)BCI 264 16S rDNAmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(54)..(54)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or t 116ttattgggcg taaagcgcgc gcnggcgntt tcttaagtnt gatgtgaaag cccncggntc 60aaccgtggag ggtcattgga aactggggaa cttgagtgca gaagagaaaa gcggaattcc 120acgtgtagcg gtgaaatgcg tagagatgtg gaggaacacc agtggcgaag gcggcttttt 180ggtctgtaac tgacgctgag gcgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gagtgctaag tgttagaggg tttccgccct ttagtgctgc 300agctaacgca ttaagcactc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagca tgtggtttaa ttcgaagcaa cgcgaagaac 420cttaccaggt cttgacatcc tctgacaact ctagagatag agcgttcccc ttcgggggac 480agagtgacag gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaacccttg atcttagttg ccagcattta gttgggcact ctaaggtgac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc 660tgggctacac acgtgctaca atggatggta caaagggctg caagaccgcg aggtcaagcc 720aatcccataa aaccattctc agttcggatt gtaggctgca actcgcctac atgaagctgg 780aatcgctagt aatcgcggat cagcatgccg cggtgaatac gttccc 826117382DNAStenotrophomonas maltophiliamisc_feature(1)..(382)BCI 271 16S rDNA 117agctacctgc ttctggtgca acaaactccc atggtgtgac gggcggtgtg tacaaggccc 60gggaacgtat tcaccgcagc aatgctgatc tgcgattact agcgattccg acttcatgga 120gtcgagttgc agactccaat ccggactgag atagggtttc tgggattggc ttaccgtcgc 180cggcttgcag ccctctgtcc ctaccattgt agtacgtgtg tagccctggc cgtaagggcc 240atgatgactt gacgtcatcc ccaccttcct ccggtttgtc accggcggtc tccttagagt 300tcccaccatt acgtgctggc aactaaggac aagggttgcg ctcgttgcgg gacttaaccc 360aacatctcac gacacgagct ga 382118782DNARahnella aquatilismisc_feature(1)..(782)BCI 29 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(21)..(22)n is a, c, g, or tmisc_feature(609)..(609)n is a, c, g, or tmisc_feature(692)..(692)n is a, c, g, or tmisc_feature(708)..(708)n is a, c, g, or tmisc_feature(728)..(728)n is a, c, g, or tmisc_feature(731)..(731)n is a, c, g, or tmisc_feature(739)..(739)n is a, c, g, or tmisc_feature(742)..(742)n is a, c, g, or tmisc_feature(747)..(747)n is a, c, g, or tmisc_feature(757)..(758)n is a, c, g, or tmisc_feature(762)..(762)n is a, c, g, or tmisc_feature(764)..(764)n is a, c, g, or tmisc_feature(767)..(767)n is a, c, g, or tmisc_feature(769)..(769)n is a, c, g, or tmisc_feature(772)..(772)n is a, c, g, or tmisc_feature(775)..(775)n is a, c, g, or t 118tangctacct acttcttttg nnacccactc ccatggtgtg acgggcggtg tgtacaaggc 60ccgggaacgt attcaccgta gcattctgat ctacgattac tagcgattcc gacttcatgg 120agtcgagttg cagactccaa tccggactac gacatacttt atgaggtccg cttgctctcg 180cgagttcgct tctctttgta tatgccattg tagcacgtgt gtagccctac tcgtaagggc 240catgatgact tgacgtcatc cccaccttcc tccggtttat caccggcagt ctcctttgag 300ttcccaccat tacgtgctgg caacaaagga taagggttgc gctcgttgcg ggacttaacc 360caacatttca caacacgagc tgacgacagc catgcagcac ctgtctcacg gttcccgaag 420gcactaagcc atctctggcg aattccgtgg atgtcaagag taggtaaggt tcttcgcgtt 480gcatcgaatt aaaccacatg ctccaccgct tgtgcgggcc cccgtcaatt catttgagtt 540ttaaccttgc ggccgtactc cccaggcggt cgacttaacg cgttagctcc ggaagccacg 600cctcaaggnc acaacctcca agtcgacatc gtttacagcg tggactacca gggtatctaa 660tcctgtttgc tccccacgct ttcgcacctg ancgtcagtc tttgtccngg gggccgcctt 720cgccaccngt nttcctccng anctctncgc atttcanngc tncnccngna antcnacccc 780cc 782119860DNAVariovorax ginsengisolimisc_feature(1)..(860)BCI 3078 16S rDNA 119tgcggttagg ctaactactt ctggcagaac ccgctcccat ggtgtgacgg gcggtgtgta 60caagacccgg gaacgtattc accgtgacat tctgatccac gattactagc gattccgact 120tcacgcagtc gagttgcaga ctgcgatccg gactacgact ggttttatgg gattagctcc 180ccctcgcggg ttggcaaccc tttgtaccag ccattgtatg acgtgtgtag ccccacctat 240aagggccatg aggacttgac gtcatcccca ccttcctccg gtttgtcacc ggcagtctca 300ttagagtgcc caactaaatg tagcaactaa tgacaagggt tgcgctcgtt gcgggactta 360acccaacatc tcacgacacg agctgacgac agccatgcag cacctgtgtt acggttctct 420ttcgagcact aaaccatctc tggtaaattc cgtacatgtc aaaggtgggt aaggtttttc 480gcgttgcatc gaattaaacc acatcatcca ccgcttgtgc gggtccccgt caattccttt 540gagtttcaac cttgcggccg tactccccag gcggtcaact tcacgcgtta gcttcgttac 600tgagtcagtg aagacccaac aaccagttga catcgtttag ggcgtggact accagggtat 660ctaatcctgt ttgctcccca cgctttcgtg catgagcgtc agtacaggtc caggggattg 720ccttcgccat cggtgttcct ccgcatatct acgcatttca ctgctacacg cggaattcca 780tccccctcta ccgtactcta gctatgcagt cacagatgca attcccaggt tgagcccggg 840ggatttcaca actgtcttac 860120682DNADuganella radicismisc_feature(1)..(682)BCI 31 16S rDNA 120agctacctac ttctggtaaa acccgctccc atggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgcgac atgctgatcc gcgattacta gcgattccaa cttcacgtag 120tcgagttgca gactacgatc cggactacga tgcactttct gggattagct ccccctcgcg 180ggttggcggc cctctgtatg caccattgta tgacgtgtga agccctaccc ataagggcca 240tgaggacttg acgtcatccc caccttcctc cggtttgtca ccggcagtct cattagagtg 300ccctttcgta gcaactaatg acaagggttg cgctcgttgc gggacttaac ccaacatctc 360acgacacgag ctgacgacag ccatgcagca cctgtgtatc ggttctcttt cgggcactcc 420ccaatctctc agggattcct tccatgtcaa gggtaggtaa ggtttttcgc gttgcatcga 480attaatccac atcatccacc gcttgtgcgg gtccccgtca attcctttga gttttaatct 540tgcgaccgta ctccccaggc ggtctacttc acgcgttagc tgcgttacca agtcaattaa 600gacccgacaa ctagtagaca tcgtttaggg cgtggactac cagggtatct aatcctgttt 660gctccccacg ctttcgtgca tg 682121687DNARhizobium lemnaemisc_feature(1)..(687)BCI 34 16S rDNA 121gccttcgggt aaaaccaact cccatggtgt gacgggcggt gtgtacaagg cccgggaacg 60tattcaccgc ggcgtgctga tccgcgatta ctagcgattc caacttcatg cactcgagtt 120gcagagtgca atccgaactg agatggcttt tggagattag ctcacactcg cgtgctcgct 180gcccactgtc accaccattg tagcacgtgt gtagcccagc ccgtaagggc catgaggact 240tgacgtcatc cccaccttcc tctcggctta tcaccggcag tccccttaga gtgcccaacc 300aaatgctggc aactaagggc gagggttgcg ctcgttgcgg gacttaaccc aacatctcac 360gacacgagct gacgacagcc atgcagcacc tgtgtcccgg tccccgaagg gaaaaccaca 420tctctgtggc gagccgggca tgtcaagggc tggtaaggtt ctgcgcgttg cttcgaatta 480aaccacatgc tccaccgctt gtgcgggccc ccgtcaattc ctttgagttt taatcttgcg 540accgtactcc ccaggcggaa tgtttaatgc gttagctgcg ccaccgacaa gtaaacttgc 600cgacggctaa cattcatcgt ttacggcgtg gactaccagg gtatctaatc ctgtttgctc 660cccacgcttt cgcacctcag cgtcagt 687122823DNAStenotrophomonas maltophiliamisc_feature(1)..(823)BCI 343 16S rDNAmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(49)..(49)n is a, c, g, or tmisc_feature(64)..(64)n is a, c, g, or t 122ttactgggcg taaagcgtgc gcnggcgntt atataagaca gatgtgaant ccccgggctc 60aacntgggaa ctgcatttgt gactgtatag ctagagtacg gtagaggggg atggaattcc 120gcgtgtagca gtgaaatgcg tagatatgcg gaggaacacc gatggcgaag gcaatcccct 180ggacctgtac tgacgctcat gcacgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cctaaacgat gtcaactggt tgttgggtct tcactgactc agtaacgaag 300ctaacgcgtg aagttgaccg cctggggagt acggccgcaa ggttgaaact caaaggaatt 360gacggggacc cgcacaagcg gtggatgatg tggtttaatt cgatgcaacg cgaaaaacct 420tacccacctt tgacatgtac ggaatccttt agagatagag gagtgctcga aagagaaccg 480taacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540caacgagcgc aacccttgtc attagttgct acatttagtt gggcactcta atgagactgc 600cggtgacaaa ccggaggaag gtggggatga cgtcaagtcc tcatggccct tataggtggg 660gctacacacg tcatacaatg gctggtacag agggttgcca acccgcgagg gggagccaat 720cccataaagc cagtcgtagt ccggatcgca gtctgcaact cgactgcgtg aagtcggaat 780cgctagtaat cgcggatcag aatgtcgcgg tgaatacgtt ccc 823123823DNAStenotrophomonas maltophiliamisc_feature(1)..(823)BCI 344 16S rDNAmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(49)..(49)n is a, c, g, or tmisc_feature(64)..(64)n is a, c, g, or t 123ttactgggcg taaagcgtgc gcnggcgntt atataagaca gatgtgaant ccccgggctc 60aacntgggaa ctgcatttgt gactgtatag ctagagtacg gtagaggggg atggaattcc 120gcgtgtagca gtgaaatgcg tagatatgcg gaggaacacc gatggcgaag gcaatcccct 180ggacctgtac tgacgctcat gcacgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cctaaacgat gtcaactggt tgttgggtct tcactgactc agtaacgaag 300ctaacgcgtg aagttgaccg cctggggagt acggccgcaa ggttgaaact caaaggaatt 360gacggggacc cgcacaagcg gtggatgatg tggtttaatt cgatgcaacg cgaaaaacct 420tacccacctt tgacatgtac ggaatccttt agagatagag gagtgctcga aagagaaccg 480taacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540caacgagcgc aacccttgtc attagttgct acatttagtt gggcactcta atgagactgc 600cggtgacaaa ccggaggaag gtggggatga cgtcaagtcc tcatggccct tataggtggg 660gctacacacg tcatacaatg gctggtacag agggttgcca acccgcgagg gggagccaat 720cccataaagc cagtcgtagt ccggatcgca gtctgcaact cgactgcgtg aagtcggaat 780cgctagtaat cgcggatcag aatgtcgcgg tgaatacgtt ccc 823124825DNAPseudomonas putidamisc_feature(1)..(825)BCI 357 16S rDNAmisc_feature(64)..(64)n is a, c, g, or tmisc_feature(86)..(86)n is a, c, g, or t 124ttactgggcg taaagcgcgc gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aacntgggaa ctgcatccaa aactgncaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825125819DNAMassilia kyonggiensismisc_feature(1)..(819)BCI 36 16S rDNAmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(49)..(49)n is a, c, g, or tmisc_feature(96)..(96)n is a, c, g, or tmisc_feature(179)..(179)n is a, c, g, or t 125ttactgggcg taaagcgtgc gcnggcggtt ttgtaantct gacgtgaant ccccgggctt 60aacctgggaa ttgcgttgga gactgcaagg ctggantctg gcagaggggg gtagaattcc 120acgtgtagca gtgaaatgcg tagagatgtg gaggaacacc gatggcgaag gcagccccnt 180gggtcaagac tgacgctcat gcacgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cctaaacgat gtctactagt tgtcgggtct taattgactt ggtaacgcag 300ctaacgcgtg aagtagaccg cctggggagt acggtcgcaa gattaaaact caaaggaatt 360gacggggacc cgcacaagcg gtggatgatg tggattaatt cgatgcaacg cgaaaaacct 420tacctaccct tgacatgtca ggaaccttgg agagatctga gggtgcccga aagggagcct 480gaacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540caacgagcgc aacccttgtc attagttgct acgaaagggc actctaatga gactgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcctcat ggcccttatg ggtagggctt 660cacacgtcat acaatggtac atacagaggg ccgccaaccc gcgaggggga gctaatccca 720gaaagtgtat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt tggaatcgct 780agtaatcgcg gatcagcatg tcgcggtgaa tacgttccc 819126825DNAPseudomonas putidamisc_feature(1)..(825)BCI 360 16S rDNA 126ttactgggcg taaagcgcgc gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aacctgggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825127825DNAPseudomonas putidamisc_feature(1)..(825)BCI 363 16S rDNAmisc_feature(20)..(20)n is a, c, g, or t 127ttactgggcg taaagcgcgn gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aacctgggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825128825DNAPseudomonas putidamisc_feature(1)..(825)BCI 365 16S rDNAmisc_feature(28)..(30)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(63)..(64)n is a, c, g, or tmisc_feature(85)..(85)n is a, c, g, or tmisc_feature(90)..(90)n is a, c, g, or tmisc_feature(97)..(97)n is a, c, g, or tmisc_feature(123)..(123)n is a, c, g, or tmisc_feature(157)..(157)n is a, c, g, or tmisc_feature(162)..(163)n is a, c, g, or t 128ttactgggcg taaagcgcgc gtaggtgnnn gttaagntgg atgtgaaagc cccgggctca 60acnngggaac tgcatccaaa actgncaagn tagagtncgg tagagggtgg tggaatttcc 120tgngtagcgg tgaaatgcgt agatatagga aggaacncca gnnggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825129825DNAPseudomonas putidamisc_feature(1)..(825)BCI 367 16S rDNA 129ttactgggcg taaagcgcgc gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aacctgggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825130825DNAPseudomonas putidamisc_feature(1)..(825)BCI 368 16S rDNAmisc_feature(88)..(88)n is a, c, g, or t 130ttactgggcg taaagcgcgc gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aacctgggaa ctgcatccaa aactggcnag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc

gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825131825DNAPseudomonas putidamisc_feature(1)..(825)BCI 369 16S rDNAmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(116)..(116)n is a, c, g, or t 131ttactgggcg taaagcgcgc gtaggtggtt tgttaagtng gatgtgaaag ccccgggctc 60aaccngggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggantttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825132825DNAPseudomonas putidamisc_feature(1)..(825)BCI 370 16S rDNAmisc_feature(65)..(65)n is a, c, g, or t 132ttactgggcg taaagcgcgc gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aaccngggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825133882DNANovosphingobium resinovorummisc_feature(1)..(882)BCI 3709 16S rDNA 133gggttagctc aacgccttcg agtgaatcca actcccatgg tgtgacgggc ggtgtgtaca 60aggcctggga acgtattcac cgcggcatgc tgatccgcga ttactagcga ttccgccttc 120atgctctcga gttgcagaga acaatccgaa ctgagacggc ttttggagat tagctcacac 180tcgcgtgctt gctgcccact gtcaccgcca ttgtagcacg tgtgtagccc agcgtgtaag 240ggccatgagg acttgacgtc atccccacct tcctccggct tatcaccggc agtttcctta 300gagtgcccaa ctaaatgctg gcaactaagg acgagggttg cgctcgttgc gggacttaac 360ccaacatctc acgacacgag ctgacgacag ccatgcagca cctgtgcacg gtccagccga 420actgaaggaa atggtctccc aaatccgcga ccggcatgtc aaacgctggt aaggttctgc 480gcgttgcttc gaattaaacc acatgctcca ccgcttgtgc aggcccccgt caattccttt 540gagttttaat cttgcgaccg tactccccag gcggataact taatgcgtta gctgcgccac 600ccaagtacca agtacccgga cagctagtta tcatcgttta cggcgtggac taccagggta 660tctaatcctg tttgctcccc acgctttcgc acctcagcgt caatacttgt ccagtcagtc 720gccttcgcca ctggtgttct tccgaatatc tacgaatttc acctctacac tcggaattcc 780actgacctct ccaagattct agtcacctag tttcaaaggc agttccgggg ttgagccccg 840ggctttcacc tctgacttga gtaaccgcct acgcgcgctt ta 882134825DNAPseudomonas putidamisc_feature(1)..(825)BCI 372 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(64)..(64)n is a, c, g, or tmisc_feature(77)..(77)n is a, c, g, or t 134ntnctgggcg taaagcgcgc gtaggtgntt tgttaagttg gatgtgaaag ccccgggctc 60aacntgggaa ctgcatncaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ctgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825135825DNAPseudomonas putidamisc_feature(1)..(825)BCI 375 16S rDNAmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(121)..(121)n is a, c, g, or t 135ttactgggcg taaagcgcgc gtaggtggtt tgttaagttg gatgtgaaag ccccgggctc 60aaccngggaa ctgcatccaa aactggcaag ctagagtacg gtagagggtg gtggaatttc 120ntgtgtagcg gtgaaatgcg tagatatagg aaggaacacc agtggcgaag gcgaccacct 180ggactgatac tgacactgag gtgcgaaagc gtggggagca aacaggatta gataccctgg 240tagtccacgc cgtaaacgat gtcaactagc cgttggaatc cttgagattt tagtggcgca 300gctaacgcat taagttgacc gcctggggag tacggccgca aggttaaaac tcaaatgaat 360tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac gcgaagaacc 420ttaccaggcc ttgacatgca gagaactttc cagagatgga ttggtgcctt cgggaactct 480gacacaggtg ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgt 540aacgagcgca acccttgtcc ttagttacca gcacgttatg gtgggcactc taaggagact 600gccggtgaca aaccggagga aggtggggat gacgtcaagt catcatggcc cttacggcct 660gggctacaca cgtgctacaa tggtcggtac agagggttgc caagccgcga ggtggagcta 720atctcacaaa accgatcgta gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga 780atcgctagta atcgcgaatc agaatgtcgc ggtgaatacg ttccc 825136827DNAStenotrophomonas maltophiliamisc_feature(1)..(827)BCI 380 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(9)..(9)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(40)..(41)n is a, c, g, or tmisc_feature(53)..(53)n is a, c, g, or tmisc_feature(62)..(62)n is a, c, g, or tmisc_feature(64)..(64)n is a, c, g, or tmisc_feature(214)..(214)n is a, c, g, or t 136ntactnggng taaagcgtgc gtaggtggtt atttaantcn nttgtgaaag ccntgggctc 60ancntgggaa ctgcagtgga tactggatga ctagaatgtg gtagagggta gcggaattcc 120tggtgtagca gtgaaatgcg tagagatcag gaggaacatc catggcgaag gcagctacct 180ggaccaacat tgacactgag gcacgaaagc gtgnggagca aacaggatta gataccctgg 240tagtccacgc cctaaacgat gcgaactgga tgttgggtgc aatttggcac gcagtatcga 300agctaacgcg ttaagttcgc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa 360ttgacggggg cccgcacaag cggtggagta tgtggtttaa ttcgatgcaa cgcgaagaac 420cttacctggc cttgacatgt cgagaacttt ccagagatgg atgggtgcct tcgggaactc 480gaacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 540caacgagcgc aacccttgtc cttagttgcc agcacgtaat ggtgggaact ctaaggagac 600cgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 660agggctacac acgtactaca atggtaggga cagagggctg caagccggcg acggtaagcc 720aatcccagaa accctatctc agtccggatt ggagtctgca actcgactcc atgaagtcgg 780aatcgctagt aatcgcagat cagcattgct gcggtgaata cgttccc 827137695DNAAchromobacter spaniusmisc_feature(1)..(695)BCI 385 16S rDNA 137acttctggta aaacccactc ccatggtgtg acgggcggtg tgtacaagac ccgggaacgt 60attcaccgcg acatgctgat ccgcgattac tagcgattcc gacttcacgc agtcgagttg 120cagactgcga tccggactac gatcgggttt ctgggattgg ctccccctcg cgggttggcg 180accctctgtc ccgaccattg tatgacgtgt gaagccctac ccataagggc catgaggact 240tgacgtcatc cccaccttcc tccggtttgt caccggcagt ctcattagag tgccctttcg 300tagcaactaa tgacaagggt tgcgctcgtt gcgggactta acccaacatc tcacgacacg 360agctgacgac agccatgcag cacctgtgtt ccggttctct tgcgagcact tccaaatctc 420ttcggaattc cagacatgtc aagggtaggt aaggtttttc gcgttgcatc gaattaatcc 480acatcatcca ccgcttgtgc gggtccccgt caattccttt gagttttaat cttgcgaccg 540tactccccag gcggtcaact tcacgcgtta gctgcgctac caaggcccga aggccccaac 600agctagttga catcgtttag ggcgtggact accagggtat ctaatcctgt ttgctcccca 660cgctttcgtg catgagcgtc agtgttatcc cagga 695138824DNABacillus subtilismisc_feature(1)..(824)BCI 395 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(34)..(34)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or t 138aantattggg cgtaaagggc tcgcaggcgg tttnttaagt ntgatgtgaa agcccccggc 60tcaaccgggg agggtcattg gaaactgggg aacttgagtg cagaagagga gagtggaatt 120ccacgtgtag cggtgaaatg cgtagagatg tggaggaaca ccagtggcga aggcgactct 180ctggtctgta actgacgctg aggagcgaaa gcgtggggag cgaacaggat tagataccct 240ggtagtccac gccgtaaacg atgagtgcta agtgttaggg ggtttccgcc ccttagtgct 300gcagctaacg cattaagcac tccgcctggg gagtacggtc gcaagactga aactcaaagg 360aattgacggg ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgaaga 420accttaccag gtcttgacat cctctgacaa tcctagagat aggacgtccc cttcgggggc 480agagtgacag gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaacccttg atcttagttg ccagcattca gttgggcact ctaaggtgac 600tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc 660tgggctacac acgtgctaca atggacagaa caaagggcag cgaaaccgcg aggttaagcc 720aatcccacaa atctgttctc agttcggatc gcagtctgca actcgactgc gtgaagctgg 780aatcgctagt aatcgcggat cagcatgccg cggtgaatac gttc 824139897DNAFlavobacterium glacieimisc_feature(1)..(897)BCI 4005 16S rDNA 139tgtacaaggc ccgggaacgt attcaccgca gcaatgctga tctgcgatta ctagcgattc 60cgacttcatg gagtcgagtt gcagactcca atccggactg agattaggtt tctgggattg 120gcttactctc gcgagtttgc agccctctgt cctaaccatt gtagtacgtg tgtagccctg 180gtcgtaaggg ccatgatgac ttgacgtcat ccccaccttc ctccggtttg tcaccggcgg 240tctccttaga gttcccacca ttacgtgctg gcaactaagg acaagggttg cgctcgttgc 300gggacttaac ccaacatctc acgacacgag ctgacgacag ccatgcagca cctgtctcac 360ggttcccgaa ggcaccaatc catctctgga aagttccgtg gatgtcaaga ccaggtaagg 420ttcttcgcgt tgcatcgaat taaaccacat actccaccgc ttgtgcgggc ccccgtcaat 480tcctttgagt ttcagtcttg cgaccgtact ccccaggcgg cgaacttaac gcgttagctt 540cgatactgcg tgccaagttg cacccaacat ccagttcgca tcgtttaggg cgtggactac 600cagggtatct aatcctgttt gctccccacg ctttcgtgcc tcagtgtcag tgttggtcca 660gatggccgcc ttcgccacag atgttcctcc cgatctctac gcatttcact gctacaccgg 720gaattccgcc atcctctacc acactctagt tgcccagtat ccactgcaat tcccaggttg 780agcccagggc tttcacaacg gacttaaaca accacctacg cacgctttac gcccagtaat 840tccgagtaac gcttgcaccc ttcgtattac cgcggctgct ggcacgaagt tagccgg 897140823DNASphingopyxis alaskensismisc_feature(1)..(823)BCI 412 16S rDNA 140ggcgtaaagc gcgcgtaggc ggttttttaa gtcagaggtg aaagcccagt gctcaacact 60ggaactgcct ttgaaactgg aaaacttgaa tcttggagag gtcagtggaa ttccgagtgt 120agaggtgaaa ttcgtagata ttcggaagaa caccagtggc gaaggcgact gactggacaa 180gtattgacgc tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgataac tagctgtccg ggttcataga acttgggtgg cgcagctaac 300gcattaagtt atccgcctgg ggagtacggt cgcaagatta aaactcaaag gaattgacgg 360gggcctgcac aagcggtgga gcatgtggtt taattcgaag caacgcgcag aaccttacca 420gcgtttgaca tcctgatcgc ggattagaga gatcttttcc ttcagttcgg ctggatcagt 480gacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga tgttgggtta agtcccgcaa 540cgagcgcaac cctcatccct agttgccatc attcagttgg gcactctaag gaaactgccg 600gtgataagcc ggaggaaggt ggggatgacg tcaagtcctc atggccctta cgcgctgggc 660tacacacgtg ctacaatggc aactacagtg ggcagcaacc tcgcgagggg tagctaatct 720ccaaaagttg tctcagttcg gattgttctc tgcaactcga gagcatgaag gcggaatcgc 780tagtaatcgc ggatcagcat gccgcggtga atacgttccc agg 823141649DNAPaenibacillus glycanilyticusmisc_feature(1)..(649)BCI 418 16S rDNA 141cttggtgccg aagttaacac attaagcatt ccgcctgggg agtacggtcg caagactgaa 60actcaaagga attgacgggg acccgcacaa gcagtggagt atgtggttta attcgaagca 120acgcgaagaa ccttaccagg tcttgacatc cctctgaatc cactagagat agtggcggcc 180ttcgggacag aggagacagg tggtgcatgg ttgtcgtcag ctcgtgtcgt gagatgttgg 240gttaagtccc gcaacgagcg caacccttga tcttagttgc cagcattttg gatgggcact 300ctaggatgac tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc 360ccttatgacc tgggctacac acgtactaca atggccgata caacgggaag cgaaaccgcg 420aggtggagcc aatcctatca aagtcggtct cagttcggat tgcaggctgc aactcgcctg 480catgaagtcg gaattgctag taatcgcgga tcagcatgcc gcggtgaata cgttcccggg 540tcttgtacac accgcccgtc acaccacgag agtttacaac acccgaagcc ggtggggtaa 600ccgcaaggag ccagccgtcg aaggtggggt agatgattgg ggtgaagtc 649142776DNAKosakonia radicincitansmisc_feature(1)..(776)BCI 44 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(26)..(26)n is a, c, g, or tmisc_feature(652)..(652)n is a, c, g, or tmisc_feature(673)..(673)n is a, c, g, or tmisc_feature(710)..(711)n is a, c, g, or tmisc_feature(716)..(716)n is a, c, g, or tmisc_feature(730)..(730)n is a, c, g, or tmisc_feature(736)..(736)n is a, c, g, or tmisc_feature(738)..(739)n is a, c, g, or tmisc_feature(741)..(741)n is a, c, g, or tmisc_feature(756)..(756)n is a, c, g, or tmisc_feature(761)..(761)n is a, c, g, or tmisc_feature(763)..(763)n is a, c, g, or tmisc_feature(771)..(771)n is a, c, g, or t 142tangctacct acttcttttg caaccnactc ccatggtgtg acgggcggtg tgtacaaggc 60ccgggaacgt attcaccgtg acattctgat tcacgattac tagcgattcc gacttcatgg 120agtcgagttg cagactccaa tccggactac gacgcacttt atgaggtccg cttgctctcg 180cgaggtcgct tctctttgta tgcgccattg tagcacgtgt gtagccctgg tcgtaagggc 240catgatgact tgacgtcatc cccaccttcc tccagtttat cactggcagt ctcctttgag 300ttcccggcct aaccgctggc aacaaaggat aagggttgcg ctcgttgcgg gacttaaccc 360aacatttcac aacacgagct gacgacagcc atgcagcacc tgtctcacag ttcccgaagg 420caccccggca tctctgccag gttctgtgga tgtcaagacc aggtaaggtt cttcgcgttg 480catcgaatta aaccacatgc tccaccgctt gtgcgggccc ccgtcaattc atttgagttt 540taaccttgcg gccgtactcc ccaggcggtc gatttaacgc gttagctccg gaagccacgc 600ctcaagggca caacctccaa atcgacatcg tttacggcgt ggactaccag gntatctaat 660cctgtttgct ccncacgctt tcgcacctga gcgtcagtct tcgtccaggn ngccgncttc 720gccaccggtn ttcctncnna nctctacgca tttcancgct ncncctggaa ntctac 776143689DNAChryseobacterium daecheongensemisc_feature(1)..(689)BCI 45 16S rDNAmisc_feature(3)..(4)n is a, c, g, or tmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(24)..(24)n is a, c, g, or tmisc_feature(36)..(36)n is a, c, g, or tmisc_feature(51)..(51)n is a, c, g, or tmisc_feature(57)..(57)n is a, c, g, or tmisc_feature(68)..(69)n is a, c, g, or tmisc_feature(76)..(76)n is a, c, g, or tmisc_feature(82)..(82)n is a, c, g, or tmisc_feature(90)..(90)n is a, c, g, or tmisc_feature(96)..(101)n is a, c, g, or tmisc_feature(109)..(109)n is a, c, g, or tmisc_feature(115)..(117)n is a, c, g, or tmisc_feature(121)..(121)n is a, c, g, or tmisc_feature(127)..(129)n is a, c, g, or tmisc_feature(140)..(140)n is a, c, g, or tmisc_feature(148)..(152)n is a, c, g, or tmisc_feature(154)..(154)n is a, c, g, or tmisc_feature(206)..(206)n is a, c, g, or t 143cgnngaaatg catagatatt antnagaaca ccaatngcga aggcaggtta ntatgtntta 60actgacgnng atggangaaa gngtggggan cgaacnnnnn nagataccnt ggtannncac 120nccgtannng atgctaactn gtttttgnnn nntngggttc agagactaag cgaaagtgat 180aagttagcca cctggggagt acgttngcaa gaatgaaact caaaggaatt gacgggggcc 240cgcacaagcg gtggattatg tggtttaatt cgatgatacg cgaggaacct taccaaggct 300taaatgggaa ttgatcggtt tagaaataga ccttccttcg ggcaattttc aaggtgctgc 360atggttgtcg tcagctcgtg ccgtgaggtg ttaggttaag tcctgcaacg agcgcaaccc 420ctgtcactag ttgccatcat tcagttgggg actctagtga gactgcctac gcaagtagag 480aggaaggtgg ggatgacgtc aaatcatcac ggcccttacg ccttgggcca cacacgtaat 540acaatggccg gtacagaggg cagctacaca gcgatgtgat gcaaatctcg aaagccggtc 600tcagttcgga ttggagtctg caactcgact ctatgaagct ggaatcgcta gtaatcgcgc 660atcagccatg gcgcggtgaa tacgttccc 689144825DNAPseudomonas putidamisc_feature(1)..(825)BCI 458 16S rDNAmisc_feature(116)..(116)n is a, c, g, or t 144aattactggg cgtaaagcgc gcgtaggtgg tttgttaagt tggatgtgaa agccccgggc 60tcaacctggg aactgcatcc aaaactggca agctagagta cggtagaggg tggtgnaatt 120tcctgtgtag cggtgaaatg cgtagatata ggaaggaaca ccagtggcga aggcgaccac 180ctggactgat actgacactg aggtgcgaaa gcgtggggag caaacaggat tagataccct 240ggtagtccac gccgtaaacg atgtcaacta gccgttggaa tccttgagat tttagtggcg 300cagctaacgc attaagttga ccgcctgggg agtacggccg caaggttaaa actcaaatga 360attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa 420ccttaccagg ccttgacatg cagagaactt tccagagatg gattggtgcc ttcgggaact 480ctgacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gtaacgagcg caacccttgt ccttagttac cagcacgtta tggtgggcac tctaaggaga 600ctgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660ctgggctaca cacgtgctac aatggtcggt acagagggtt gccaagccgc gaggtggagc 720taatctcaca aaaccgatcg tagtccggat cgcagtctgc aactcgactg cgtgaagtcg 780gaatcgctag taatcgcgaa tcagaatgtc gcggtgaata cgttc 825145825DNAPseudomonas putidamisc_feature(1)..(825)BCI 459

16S rDNA 145aattactggg cgtaaagcgc gcgtaggtgg tttgttaagt tggatgtgaa agccccgggc 60tcaacctggg aactgcatcc aaaactggca agctagagta cggtagaggg tggtggaatt 120tcctgtgtag cggtgaaatg cgtagatata ggaaggaaca ccagtggcga aggcgaccac 180ctggactgat actgacactg aggtgcgaaa gcgtggggag caaacaggat tagataccct 240ggtagtccac gccgtaaacg atgtcaacta gccgttggaa tccttgagat tttagtggcg 300cagctaacgc attaagttga ccgcctgggg agtacggccg caaggttaaa actcaaatga 360attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa 420ccttaccagg ccttgacatg cagagaactt tccagagatg gattggtgcc ttcgggaact 480ctgacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gtaacgagcg caacccttgt ccttagttac cagcacgtta tggtgggcac tctaaggaga 600ctgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660ctgggctaca cacgtgctac aatggtcggt acagagggtt gccaagccgc gaggtggagc 720taatctcaca aaaccgatcg tagtccggat cgcagtctgc aactcgactg cgtgaagtcg 780gaatcgctag taatcgcgaa tcagaatgtc gcggtgaata cgttc 825146894DNAAgrobacterium fabrummisc_feature(1)..(894)BCI 46 16S rDNA 146ccttgcggtt agcgcactac cttcgggtaa aaccaactcc catggtgtga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccgcag catgctgatc tgcgattact agcgattcca 120acttcatgca ctcgagttgc agagtgcaat ccgaactgag atggcttttg gagattagct 180cgacatcgct gtctcgctgc ccactgtcac caccattgta gcacgtgtgt agcccagccc 240gtaagggcca tgaggacttg acgtcatccc caccttcctc tcggcttatc accggcagtc 300cccttagagt gcccaactaa atgctggcaa ctaagggcga gggttgcgct cgttgcggga 360cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg ttctggggcc 420agcctaactg aaggacatcg tctccaatgc ccataccccg aatgtcaaga gctggtaagg 480ttctgcgcgt tgcttcgaat taaaccacat gctccaccgc ttgtgcgggc ccccgtcaat 540tcctttgagt tttaatcttg cgaccgtact ccccaggcgg aatgtttaat gcgttagctg 600cgccaccgaa cagtatactg cccgacggct aacattcatc gtttacggcg tggactacca 660gggtatctaa tcctgtttgc tccccacgct ttcgcacctc agcgtcagta atggaccagt 720aagccgcctt cgccactggt gttcctccga atatctacga atttcacctc tacactcgga 780attccactta cctcttccat actcaagata cccagtatca aaggcagttc cgcagttgag 840ctgcgggatt tcacccctga cttaaatatc cgcctacgtg cgctttacgc ccag 894147827DNAPseudomonas putidamisc_feature(1)..(827)BCI 460 16S rDNAmisc_feature(79)..(79)n is a, c, g, or tmisc_feature(91)..(91)n is a, c, g, or t 147aattactggg cgtaaagcgc gcgtaggtgg tttgttaagt tggatgtgaa agccccgggc 60tcaacctggg aactgcatnc caaaactggc nagctagagt acggtagagg ggtggtggaa 120tttcctgtgt agcggtgaaa tgcgtagata taggaaggaa caccagtggc gaaggcgacc 180acctggactg atactgacac tgaggtgcga aagcgtgggg agcaaacagg attagatacc 240ctggtagtcc acgccgtaaa cgatgtcaac tagccgttgg aatccttgag attttagtgg 300cgcagctaac gcattaagtt gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat 360gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag 420aaccttacca ggccttgaca tgcagagaac tttccagaga tggattggtg ccttcgggaa 480ctctgacaca ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc 540ccgtaacgag cgcaaccctt gtccttagtt accagcacgt tatggtgggc actctaagga 600gactgccggt gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg 660gcctgggcta cacacgtgct acaatggtcg gtacagaggg ttgccaagcc gcgaggtgga 720gctaatctca caaaaccgat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt 780cggaatcgct agtaatcgcg aatcagaatg tcgcggtgaa tacgttc 827148764DNAPseudomonas putidamisc_feature(1)..(764)BCI 461 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(76)..(76)n is a, c, g, or t 148ntgggaactg catccaaaac tggcaagcta gagtacggta gagggtggtg gaatttcctg 60tgtagcggtg aaatgngtag atataggaag gaacaccagt ggcgaaggcg accacctgga 120ctgatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat accctggtag 180tccacgccgt aaacgatgtc aactagccgt tggaatcctt gagattttag tggcgcagct 240aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca aatgaattga 300cgggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg aagaacctta 360ccaggccttg acatgcagag aactttccag agatggattg gtgccttcgg gaactctgac 420acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgtaac 480gagcgcaacc cttgtcctta gttaccagca cgttatggtg ggcactctaa ggagactgcc 540ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt acggcctggg 600ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt ggagctaatc 660tcacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga agtcggaatc 720gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgg 764149825DNAPseudomonas putidamisc_feature(1)..(825)BCI 462 16S rDNAmisc_feature(5)..(5)n is a, c, g, or tmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(66)..(66)n is a, c, g, or tmisc_feature(141)..(141)n is a, c, g, or t 149aattnctggg cgtaaagcgc gngtaggtgg tttgttnagt tggatgtgaa agccccgggc 60tcaacntggg aactgcatcc aaaactggca agctagagta cggtagaggg tggtggaatt 120tcctgtgtag cggtgaaatg ngtagatata ggaaggaaca ccagtggcga aggcgaccac 180ctggactgat actgacactg aggtgcgaaa gcgtggggag caaacaggat tagataccct 240ggtagtccac gccgtaaacg atgtcaacta gccgttggaa tccttgagat tttagtggcg 300cagctaacgc attaagttga ccgcctgggg agtacggccg caaggttaaa actcaaatga 360attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa 420ccttaccagg ccttgacatg cagagaactt tccagagatg gattggtgcc ttcgggaact 480ctgacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gtaacgagcg caacccttgt ccttagttac cagcacgtta tggtgggcac tctaaggaga 600ctgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660ctgggctaca cacgtgctac aatggtcggt acagagggtt gccaagccgc gaggtggagc 720taatctcaca aaaccgatcg tagtccggat cgcagtctgc aactcgactg cgtgaagtcg 780gaatcgctag taatcgcgaa tcagaatgtc gcggtgaata cgttc 825150764DNAPseudomonas putidamisc_feature(1)..(764)BCI 467 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(38)..(39)n is a, c, g, or tmisc_feature(105)..(105)n is a, c, g, or tmisc_feature(133)..(133)n is a, c, g, or tmisc_feature(339)..(339)n is a, c, g, or tmisc_feature(428)..(428)n is a, c, g, or tmisc_feature(527)..(527)n is a, c, g, or t 150ntgggaactg catccaaaac tggcaagcta gagtacgnna gagggtggtg gaatttcctg 60tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgnaggcg accacctgga 120ctgatactga cantgaggtg cgaaagcgtg gggagcaaac aggattagat accctggtag 180tccacgccgt aaacgatgtc aactagccgt tggaatcctt gagattttag tggcgcagct 240aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca aatgaattga 300cgggggcccg cacaagcggt ggagcatgtg gtttaattng aagcaacgcg aagaacctta 360ccaggccttg acatgcagag aactttccag agatggattg gtgccttcgg gaactctgac 420acaggtgntg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgtaac 480gagcgcaacc cttgtcctta gttaccagca cgttatggtg ggcactntaa ggagactgcc 540ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt acggcctggg 600ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt ggagctaatc 660tcacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga agtcggaatc 720gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgg 764151763DNAPseudomonas putidamisc_feature(1)..(763)BCI 469 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(48)..(48)n is a, c, g, or tmisc_feature(50)..(52)n is a, c, g, or tmisc_feature(69)..(69)n is a, c, g, or tmisc_feature(74)..(75)n is a, c, g, or tmisc_feature(94)..(94)n is a, c, g, or tmisc_feature(132)..(132)n is a, c, g, or tmisc_feature(181)..(181)n is a, c, g, or tmisc_feature(210)..(210)n is a, c, g, or tmisc_feature(526)..(526)n is a, c, g, or t 151ggnaactgca tncnaaaact ggcaagntag agtacggtag agggtggngn nntttcctgt 60gtagcggtna aatnngtaga tataggaagg aacnccagtg gcgaaggcga ccacctggac 120tgatactgac antgaggtgc gaaagcgtgg ggagcaaaca ggattagata ccctggtagt 180ncacgccgta aacgatgtca actagccgtn ggaatccttg agattttagt ggcgcagcta 240acgcattaag ttgaccgcct ggggagtacg gccgcaaggt taaaactcaa atgaattgac 300gggggcccgc acaagcggtg gagcatgtgg tttaattcga agcaacgcga agaaccttac 360caggccttga catgcagaga actttccaga gatggattgg tgccttcggg aactctgaca 420caggtgctgc atggctgtcg tcagctcgtg tcgtgagatg ttgggttaag tcccgtaacg 480agcgcaaccc ttgtccttag ttaccagcac gttatggtgg gcactntaag gagactgccg 540gtgacaaacc ggaggaaggt ggggatgacg tcaagtcatc atggccctta cggcctgggc 600tacacacgtg ctacaatggt cggtacagag ggttgccaag ccgcgaggtg gagctaatct 660cacaaaaccg atcgtagtcc ggatcgcagt ctgcaactcg actgcgtgaa gtcggaatcg 720ctagtaatcg cgaatcagaa tgtcgcggtg aatacgttcc cgg 763152764DNAPseudomonas putidamisc_feature(1)..(764)BCI 470 16S rDNAmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(21)..(21)n is a, c, g, or tmisc_feature(35)..(35)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(133)..(133)n is a, c, g, or tmisc_feature(511)..(511)n is a, c, g, or tmisc_feature(514)..(514)n is a, c, g, or t 152ctgggaactg cntccaaaac nggcaagcta gagtncngta gagggtggtg gaatttcctg 60tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg accacctgga 120ctgatactga cantgaggtg cgaaagcgtg gggagcaaac aggattagat accctggtag 180tccacgccgt aaacgatgtc aactagccgt tggaatcctt gagattttag tggcgcagct 240aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca aatgaattga 300cgggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg aagaacctta 360ccaggccttg acatgcagag aactttccag agatggattg gtgccttcgg gaactctgac 420acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgtaac 480gagcgcaacc cttgtcctta gttaccagca ngtnatggtg ggcactctaa ggagactgcc 540ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt acggcctggg 600ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt ggagctaatc 660tcacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga agtcggaatc 720gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgg 764153963DNABacillus niacinimisc_feature(1)..(963)BCI 4718 16S rDNA 153gtgttacaaa ctctcgtggt gtgacgggcg gtgtgtacaa ggcccgggaa cgtattcacc 60gcggcatgct gatccgcgat tactagcgat tccggcttca tgcaggcgag ttgcagcctg 120caatccgaac tgagaatggt tttatgggat tggctaaacc tcgcggtctt gcagcccttt 180gtaccatcca ttgtagcacg tgtgtagccc aggtcataag gggcatgatg atttgacgtc 240atccccacct tcctccggtt tgtcaccggc agtctcctta gagtgcccaa ctgaatgctg 300gcaactaaga acaagggttg cgctcgttgc gggacttaac ccaacatctc acgacacgag 360ctgacgacaa ccatgcacca cctgtcactc tgtcccccga aggggaacgt cctatctcta 420ggagtgtcag aggatgtcaa gacctggtaa ggttcttcgc gttgcttcga attaaaccac 480atgctccacc gcttgtgcgg gcccccgtca attcctttga gtttcagcct tgcggccgta 540ctccccaggc ggagtgctta atgcgttagc tgcagcacta aagggcggaa accctctaac 600acttagcact catcgtttac ggcgtggact accagggtat ctaatcctgt ttgctcccca 660cgctttcgcg cctcagcgtc agttacagac cagaaagccg ccttcgccac tggtgttcct 720ccacatctct acgcatttca ccgctacacg tggaattccg ctttcctctt ctgtactcaa 780gtcccccagt ttccaatgac cctccacggt tgagccgtgg gctttcacat cagacttaaa 840ggaccgcctg cgcgcgcttt acgcccaata attccggaca acgcttgcca cctacgtatt 900accgcggctg ctggcacgta gttagccgtg gctttctggt taggtaccgt caaggtaccg 960gca 963154600DNAAchromobacter pulmonismisc_feature(1)..(600)BCI 49 16S rDNA 154taggctaact acttctggta aaacccactc ccatggtgtg acgggcggtg tgtacaagac 60ccgggaacgt attcaccgcg acatgctgat ccgcgattac tagcgattcc gacttcacgc 120agtcgagttg cagactgcga tccggactac gatcgggttt ctgggattgg ctccccctcg 180cgggttggcg accctctgtc ccgaccattg tatgacgtgt gaagccctac ccataagggc 240catgaggact tgacgtcatc cccaccttcc tccggtttgt caccggcagt ctcattagag 300tgccctttcg tagcaactaa tgacaagggt tgcgctcgtt gcgggactta acccaacatc 360tcacgacacg agctgacgac agccatgcag cacctgtgtt ccagttctct tgcgagcact 420gccaaatctc ttcggcattc cagacatgtc aagggtaggt aaggtttttc gcgttgcatc 480gaattaatcc acatcatcca ccgcttgtgc gggtccccgt caattccttt gagttttaat 540cttgcgaccg tactccccag gcggtcaact tcacgcgtta gctgcgctac caaggtccga 600155609DNAExiguobacterium aurantiacummisc_feature(1)..(609)BCI 50 16S rDNA 155ggtgttacaa actctcgtgg tgtgacgggc ggtgtgtaca agacccggga acgtattcac 60cgcagtatgc tgacctgcga ttactagcga ttccgacttc atgcaggcga gttgcagcct 120gcaatccgaa ctgagaacgg ctttctggga ttggctccac ctcgcggctt cgctgccctt 180tgtaccgtcc attgtagcac gtgtgtagcc caactcataa ggggcatgat gatttgacgt 240catccccacc ttcctccggt ttgtcaccgg cagtctcctt agagtgccca acttaatgct 300ggcaactaag gacaagggtt gcgctcgttg cgggacttaa cccaacatct cacgacacga 360gctgacgaca accatgcacc acctgtcacc cctgcccccg aaggggaagg tacatctctg 420caccggtcag ggggatgtca agagttggta aggttcttcg cgttgcttcg aattaaacca 480catgctccac cgcttgtgcg ggtccccgtc aattcctttg agtttcagcc ttgcgaccgt 540actccccagg cggagtgctt aatgcgttag cttcagcact gaagggcgga aaccctccaa 600cacctagca 609156767DNAPedobacter terraemisc_feature(1)..(767)BCI 53 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(13)..(13)n is a, c, g, or tmisc_feature(15)..(18)n is a, c, g, or tmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(34)..(34)n is a, c, g, or tmisc_feature(45)..(45)n is a, c, g, or tmisc_feature(79)..(79)n is a, c, g, or tmisc_feature(88)..(88)n is a, c, g, or tmisc_feature(103)..(103)n is a, c, g, or tmisc_feature(119)..(119)n is a, c, g, or tmisc_feature(126)..(127)n is a, c, g, or tmisc_feature(138)..(138)n is a, c, g, or tmisc_feature(371)..(371)n is a, c, g, or tmisc_feature(449)..(449)n is a, c, g, or tmisc_feature(460)..(461)n is a, c, g, or tmisc_feature(470)..(470)n is a, c, g, or tmisc_feature(481)..(481)n is a, c, g, or tmisc_feature(551)..(551)n is a, c, g, or tmisc_feature(575)..(575)n is a, c, g, or tmisc_feature(595)..(595)n is a, c, g, or tmisc_feature(613)..(613)n is a, c, g, or tmisc_feature(617)..(617)n is a, c, g, or tmisc_feature(630)..(632)n is a, c, g, or tmisc_feature(635)..(635)n is a, c, g, or tmisc_feature(652)..(652)n is a, c, g, or tmisc_feature(663)..(663)n is a, c, g, or tmisc_feature(665)..(665)n is a, c, g, or tmisc_feature(673)..(673)n is a, c, g, or tmisc_feature(685)..(685)n is a, c, g, or tmisc_feature(691)..(691)n is a, c, g, or tmisc_feature(698)..(698)n is a, c, g, or tmisc_feature(722)..(722)n is a, c, g, or tmisc_feature(728)..(728)n is a, c, g, or tmisc_feature(732)..(732)n is a, c, g, or tmisc_feature(738)..(738)n is a, c, g, or tmisc_feature(743)..(744)n is a, c, g, or tmisc_feature(752)..(755)n is a, c, g, or tmisc_feature(757)..(757)n is a, c, g, or tmisc_feature(761)..(761)n is a, c, g, or t 156angtaccccc ngntnnnntg gnttgacggg cggngtgtac aaggnccggg aacgtattca 60ccgcgtcatt gctgatacnc gattactngc gaatccaact tcntggggtc gagttgcana 120ccccannccg aactgtgnac ggctttgtga gattcgcatc atattgctat gtagctgccc 180tctgtaccgt ccattgtagc acgtgtgtag ccccggacgt aagggccatg atgacttgac 240gtcgtcccct ccttcctctc tgtttgcaca ggcagtctgt ttagagtccc caccattaca 300tgctggcaac taaacatagg ggttgcgctc gttgcgggac ttaacccaac acctcacggc 360acgagctgac nacagccatg cagcacctag tttcgtgtcc ttgcggactg atccatctct 420ggatcattca ctaactttca agcccgggna aggttcctcn ngtatcatcn aattaaacca 480natgctcctc cgcttgtgcg ggcccccgtc aattcctttg agtttcaccc ttgcgggcgt 540actccccagg nggaacactt aacgctttcg cttanccgct gactgtgtat cgccnacagc 600gagtgttcat cgnttanggc gtggactacn nnggnatcta atcctgtttg anccccacgc 660ttncntgcct cancgtcaat aagancatag naagctgnct tcgcaatcgg tgttctgaga 720cntatctntg cntttcancg ctnnttgtct cnnnncncct ncctcta 767157824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 539 16S rDNAmisc_feature(34)..(34)n is a, c, g, or tmisc_feature(44)..(44)n is a, c, g, or tmisc_feature(47)..(49)n is a, c, g, or tmisc_feature(60)..(60)n is a, c, g, or tmisc_feature(95)..(95)n is a, c, g, or t 157ggcgtaaagc gtgcgtaggt ggttatttaa gtcngttgtg aaanccnnng gctcaacctn 60ggaactgcag tggatactgg atgactagaa tgtgntagag ggtagcggaa ttcctggtgt 120agcagtgaaa tgcgtagaga tcaggaggaa catccatggc gaaggcagct acctggacca 180acattgacac tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggta gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccta tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824158820DNAStenotrophomonas maltophiliamisc_feature(1)..(820)BCI 545 16S rDNAmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or tmisc_feature(43)..(44)n is a, c, g, or tmisc_feature(186)..(186)n is a, c, g, or t 158taaagcgtgc gtaggtggtt atttaantcc gttgtgaaag ncnngggctc aacctgggaa 60ctgcagtgga tactggatga ctagaatgtg gtagagggta gcggaattcc tggtgtagca 120gtgaaatgcg tagagatcag gaggaacatc catggcgaag gcagctacct ggaccaacat 180tgacantgag gcacgaaagc gtggggagca aacaggatta gataccctgg tagtccacgc 240cctaaacgat gcgaactgga tgttgggtgc aatttggcac gcagtatcga agctaacgcg 300ttaagttcgc cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa ttgacggggg 360cccgcacaag cggtggagta tgtggtttaa ttcgatgcaa cgcgaagaac cttacctggc 420cttgacatgt cgagaacttt ccagagatgg attggtgcct tcgggaactc gaacacaggt 480gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg caacgagcgc 540aacccttgtc cttagttgcc

agcacgtaat ggtgggaact ctaaggagac cgccggtgac 600aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc agggctacac 660acgtactaca atggtaggga cagagggctg caagccggcg acggtaagcc aatcccagaa 720accctatctc agtccggatt ggagtctgca actcgactcc atgaagtcgg aatcgctagt 780aatcgcagat cagcattgct gcggtgaata cgttcccggg 820159368DNAStenotrophomonas maltophiliamisc_feature(1)..(368)BCI 551 16S rDNAmisc_feature(7)..(7)n is a, c, g, or tmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(20)..(20)n is a, c, g, or tmisc_feature(30)..(30)n is a, c, g, or tmisc_feature(32)..(33)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or tmisc_feature(44)..(44)n is a, c, g, or tmisc_feature(57)..(58)n is a, c, g, or tmisc_feature(64)..(64)n is a, c, g, or tmisc_feature(88)..(88)n is a, c, g, or tmisc_feature(93)..(93)n is a, c, g, or tmisc_feature(119)..(119)n is a, c, g, or tmisc_feature(155)..(155)n is a, c, g, or tmisc_feature(249)..(249)n is a, c, g, or tmisc_feature(318)..(318)n is a, c, g, or tmisc_feature(349)..(349)n is a, c, g, or t 159attggtncct tngngaactn gaacacaggn gnngcanggc ngtngtcagc tcgtgtnntg 60agangttggg ttaagtcccg caacgagngc aanccttgtc cttagttgcc agcacgtant 120ggtgggaact ctaaggagac cgccggtgac aaacnggagg aaggtgggga tgacgtcaag 180tcatcatggc ccttacggcc agggctacac acgtactaca atggtaggga cagagggctg 240caagccggng acggtaagcc aatcccagaa accctatctc agtccggatt ggagtctgca 300actcgactcc atgaagtngg aatcgctagt aatcgcagat cagcattgnt gcggtgaata 360cgttcccg 368160659DNANovosphingobium resinovorummisc_feature(1)..(659)BCI 557 16S rDNA 160cgccttcgag tgaatccaac tcccatggtg tgacgggcgg tgtgtacaag gcctgggaac 60gtattcaccg cggcatgctg atccgcgatt actagcgatt ccgccttcat gctctcgagt 120tgcagagaac aatccgaact gagacggctt ttggagatta gctcacactc gcgtgcttgc 180tgcccactgt caccgccatt gtagcacgtg tgtagcccag cgtgtaaggg ccatgaggac 240ttgacgtcat ccccaccttc ctccggctta tcaccggcag tttccttaga gtgcccaact 300aaatgctggc aactaaggac gagggttgcg ctcgttgcgg gacttaaccc aacatctcac 360gacacgagct gacgacagcc atgcagcacc tgtgcacggt ccagccgaac tgaaggaaat 420ggtctcccaa atccgcgacc ggcatgtcaa acgctggtaa ggttctgcgc gttgcttcga 480attaaaccac atgctccacc gcttgtgcag gcccccgtca attcctttga gttttaatct 540tgcgaccgta ctccccaggc ggataactta atgcgttagc tgcgccaccc aagtaccaag 600tacccggaca gctagttatc atcgtttacg gcgtggacta ccagggtatc taatcctgt 659161751DNADuganella radicismisc_feature(1)..(751)BCI 57 16S rDNAmisc_feature(4)..(4)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(396)..(396)n is a, c, g, or tmisc_feature(398)..(400)n is a, c, g, or tmisc_feature(402)..(402)n is a, c, g, or tmisc_feature(411)..(411)n is a, c, g, or tmisc_feature(439)..(439)n is a, c, g, or tmisc_feature(683)..(683)n is a, c, g, or tmisc_feature(716)..(716)n is a, c, g, or tmisc_feature(721)..(721)n is a, c, g, or tmisc_feature(730)..(730)n is a, c, g, or tmisc_feature(740)..(740)n is a, c, g, or tmisc_feature(746)..(746)n is a, c, g, or t 161gctncctact tctggtaaaa cccgctccca tggtgtgncg ggcggtgtgt acaagacccg 60ggaacgtatt caccgcgaca tgctgatccg cgattactag cgattccaac ttcacgtagt 120cgagttgcag actacgatcc ggactacgat gcactttctg ggattagctc cccctcgcgg 180gttggcggcc ctctgtatgc accattgtat gacgtgtgaa gccctaccca taagggccat 240gaggacttga cgtcatcccc accttcctcc ggtttgtcac cggcagtctc attagagtgc 300cctttcgtag caactaatga caagggttgc gctcgttgcg ggacttaacc caacatctca 360cgacacgagc tgacgacagc catgcagcac ctgtgnannn gntctctttc nagcactccc 420caatctctca gggattccna ccatgtcaag ggtaggtaag gtttttcgcg ttgcatcgaa 480ttaatccaca tcatccaccg cttgtgcggg tccccgtcaa ttcctttgag ttttaatctt 540gcgaccgtac tccccaggcg gtctacttca cgcgttagct gcgttaccaa gtcaattaag 600acccgacaac tagtagacat cgtttagggc gtggactacc agggtatcta atcctgtttg 660ctccccacgc tttcgtgcat gancgtcagt tttgacccag ggggctgcct tcgccntcgg 720ngttcctccn catatctacn catttnactg c 751162822DNAPseudomonas putidamisc_feature(1)..(822)BCI 571 16S rDNAmisc_feature(2)..(2)n is a, c, g, or t 162gncgtaaagc gcgcgtaggt ggtttgttaa gttggatgtg aaagccccgg gctcaacctg 60ggaactgcat ccaaaactgg caagctagag tacggtagag ggtggtggaa tttcctgtgt 120agcggtgaaa tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg 180atactgacac tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgtcaac tagccgttgg aatccttgag attttagtgg cgcagctaac 300gcattaagtt gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg 360gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca 420ggccttgaca tgcagagaac tttccagaga tggattggtg ccttcgggaa ctctgacaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag 540cgcaaccctt gtccttagtt accagcacgt tatggtgggc actctaagga gactgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gcctgggcta 660cacacgtgct acaatggtcg gtacagaggg ttgccaagcc gcgaggtgga gctaatctca 720caaaaccgat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt cggaatcgct 780agtaatcgcg aatcagaatg tcgcggtgaa tacgttcccg gg 822163476DNAStenotrophomonas maltophiliamisc_feature(1)..(476)BCI 574 16S rDNAmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(59)..(59)n is a, c, g, or tmisc_feature(72)..(72)n is a, c, g, or tmisc_feature(75)..(75)n is a, c, g, or tmisc_feature(147)..(147)n is a, c, g, or t 163aaggaattga cgggggcccg cacaagcggt ggagtangtg gtttaattcg atgcaacgng 60aagaacctta cntgnccttg acatgtcgag aactttccag agatggattg gtgccttcgg 120gaactcgaac acaggtgctg catggcngtc gtcagctcgt gtcgtgagat gttgggttaa 180gtcccgcaac gagcgcaacc cttgtcctta gttgccagca cgtaatggtg ggaactctaa 240ggagaccgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt 300acggccaggg ctacacacgt actacaatgg tagggacaga gggctgcaag ccggcgacgg 360taagccaatc ccagaaaccc tatctcagtc cggattggag tctgcaactc gactccatga 420agtcggaatc gctagtaatc gcagatcagc attgctgcgg tgaatacgtt cccggg 476164773DNAHerbaspirillum chloropenolicummisc_feature(1)..(773)BCI 58 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(11)..(12)n is a, c, g, or tmisc_feature(15)..(15)n is a, c, g, or tmisc_feature(20)..(21)n is a, c, g, or tmisc_feature(43)..(43)n is a, c, g, or tmisc_feature(548)..(548)n is a, c, g, or tmisc_feature(579)..(579)n is a, c, g, or tmisc_feature(696)..(696)n is a, c, g, or tmisc_feature(713)..(713)n is a, c, g, or tmisc_feature(734)..(734)n is a, c, g, or tmisc_feature(762)..(762)n is a, c, g, or tmisc_feature(771)..(771)n is a, c, g, or t 164nccttgcggt nnggntaccn ncttctggta aaacccgctc ccntggtgtg acgggcggtg 60tgtacaagac ccgggaacgt attcaccgcg acatgctgat ccgcgattac tagcgattcc 120aacttcatgg agtcgagttg cagactccaa tccggactac gatacacttt ctgggattag 180ctccccctcg cgggttggcg gccctctgta tgtaccattg tatgacgtgt gaagccctac 240ccataagggc catgaggact tgacgtcatc cccaccttcc tccggtttgt caccggcagt 300ctcattagag tgccctttcg tagcaactaa tgacaagggt tgcgctcgtt gcgggactta 360acccaacatc tcacgacacg agctgacgac agccatgcag cacctgtgtg atggttctct 420ttcgagcact cccaaatctc ttcaggattc catccatgtc aagggtaggt aaggtttttc 480gcgttgcatc gaattaatcc acatcatcca ccgcttgtgc gggtccccgt caattccttt 540gagttttnat cttgcgaccg tactccccag gcggtctant tcacgcgtta gctgcgttac 600caagtcaatt aagacccgac aactagtaga catcgtttag ggcgtggact accagggtat 660ctaatcctgt ttgctcccca cgctttcgtg catgancgtc agtgttatcc canggggctg 720ccttcgccat cggnattcct ccacatatct acgcatttca cngctacacg ngg 773165763DNAStenotrophomonas maltophiliamisc_feature(1)..(763)BCI 588 16S rDNAmisc_feature(4)..(5)n is a, c, g, or tmisc_feature(25)..(25)n is a, c, g, or tmisc_feature(30)..(31)n is a, c, g, or tmisc_feature(42)..(42)n is a, c, g, or tmisc_feature(46)..(46)n is a, c, g, or tmisc_feature(50)..(50)n is a, c, g, or tmisc_feature(52)..(57)n is a, c, g, or tmisc_feature(66)..(66)n is a, c, g, or tmisc_feature(69)..(69)n is a, c, g, or tmisc_feature(75)..(78)n is a, c, g, or tmisc_feature(99)..(99)n is a, c, g, or tmisc_feature(112)..(113)n is a, c, g, or tmisc_feature(120)..(120)n is a, c, g, or tmisc_feature(129)..(129)n is a, c, g, or tmisc_feature(137)..(137)n is a, c, g, or t 165gganntgcag tggatactgg atgantagan ngtggtagag gntagnggan tnnnnnngta 60gcagtnaant gcgtnnnnat caggaggaac atccatggng aaggcagcta cnnggaccan 120cattgacant gaggcangaa agcgtgggga gcaaacagga ttagataccc tggtagtcca 180cgccctaaac gatgcgaact ggatgttggg tgcaatttgg cacgcagtat cgaagctaac 240gcgttaagtt cgccgcctgg ggagtacggt cgcaagactg aaactcaaag gaattgacgg 300gggcccgcac aagcggtgga gtatgtggtt taattcgatg caacgcgaag aaccttacct 360ggccttgaca tgtcgagaac tttccagaga tggattggtg ccttcgggaa ctcgaacaca 420ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 480cgcaaccctt gtccttagtt gccagcacgt aatggtggga actctaagga gaccgccggt 540gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gccagggcta 600cacacgtact acaatggtag ggacagaggg ctgcaagccg gcgacggtaa gccaatccca 660gaaaccctat ctcagtccgg attggagtct gcaactcgac tccatgaagt cggaatcgct 720agtaatcgca gatcagcatt gctgcggtga atacgttccc ggg 763166708DNAArthrobacter cupressimisc_feature(1)..(708)BCI 59 16S rDNA 166gttaggccac cggcttcggg tgttaccaac tttcgtgact tgacgggcgg tgtgtacaag 60gcccgggaac gtattcaccg cagcgttgct gatctgcgat tactagcgac tccgacttca 120tggggtcgag ttgcagaccc caatccgaac tgagaccggc tttttgggat tagctccacc 180tcacagtatc gcaacccttt gtaccggcca ttgtagcatg cgtgaagccc aagacataag 240gggcatgatg atttgacgtc gtccccacct tcctccgagt tgaccccggc agtctcccat 300gagtccccgg cactacccgc tggcaacatg gaacgagggt tgcgctcgtt gcgggactta 360acccaacatc tcacgacacg agctgacgac aaccatgcac cacctgtaaa ccaaccccaa 420aggggaagga ctgtttccag cccggtctgg ttcatgtcaa gccttggtaa ggttcttcgc 480gttgcatcga attaatccgc atgctccgcc gcttgtgcgg gcccccgtca attcctttga 540gttttagcct tgcggccgta ctccccaggc ggggcactta atgcgttagc tacggcgcgg 600aaaacgtgga atgtccccca cacctagtgc ccaacgttta cggcatggac taccagggta 660tctaatcctg ttcgctcccc atgctttcgc tcctcagcgt cagttaat 708167824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 590 16S rDNAmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(55)..(55)n is a, c, g, or tmisc_feature(58)..(60)n is a, c, g, or tmisc_feature(190)..(190)n is a, c, g, or t 167ggcgtaaagc gtgcgtaggt ggttatttaa ntccgttgtg aaagccctgg gctcnacnnn 60ggaactgcag tggatactgg atgactagaa tgtggtagag ggtagcggaa ttcctggtgt 120agcagtgaaa tgcgtagaga tcaggaggaa catccatggc gaaggcagct acctggacca 180acattgacan tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggta gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccta tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824168822DNAPseudomonas putidamisc_feature(1)..(822)BCI 593 16S rDNAmisc_feature(2)..(3)n is a, c, g, or t 168gnngtaaagc gcgcgtaggt ggtttgttaa gttggatgtg aaagccccgg gctcaacctg 60ggaactgcat ccaaaactgg caagctagag tacggtagag ggtggtggaa tttcctgtgt 120agcggtgaaa tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg 180atactgacac tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgtcaac tagccgttgg aatccttgag attttagtgg cgcagctaac 300gcattaagtt gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg 360gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca 420ggccttgaca tgcagagaac tttccagaga tggattggtg ccttcgggaa ctctgacaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag 540cgcaaccctt gtccttagtt accagcacgt tatggtgggc actctaagga gactgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gcctgggcta 660cacacgtgct acaatggtcg gtacagaggg ttgccaagcc gcgaggtgga gctaatctca 720caaaaccgat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt cggaatcgct 780agtaatcgcg aatcagaatg tcgcggtgaa tacgttcccg gg 822169664DNAPedobacter rhizosphaeraemisc_feature(1)..(664)BCI 598 16S rDNA 169tggcttgacg ggcggtgtgt acaaggcccg ggaacgtatt caccgcgtca ttgctgatac 60gcgattacta gcgaatccaa cttcaagagg tcgagttgca gacctctatc cgaactgtga 120tcggcttttt gagattggca ttccattgct ggatagctgc cctctgtacc gaccattgta 180gcacgtgtgt agccccggac gtaagggcca tgatgacttg acgtcgtccc ctccttcctc 240tctgtttgca caggcagtct gtctagagtc cccaccatta catgctggca actagacata 300ggggttgcgc tcgttgcggg acttaaccca acacctcacg gcacgagctg acgacagcca 360tgcagcacct agtttcgtgt gattgctcac tgtgccatct ctggcacatt cactaacttt 420caagcccggg taaggttcct cgcgtatcat cgaattaaac cacatgctcc tccgcttgtg 480cgggcccccg tcaattcctt tgagtttcac ccttgcgggc gtactcccca ggtggaacac 540ttaacgcttt cgcttagccg ctgactgtat atcgccaaca gcgagtgttc atcgtttagg 600gcgtggacta ccagggtatc taatcctgtt tgatccccac gctttcgtgc ctcagcgtca 660atat 664170824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 601 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(21)..(22)n is a, c, g, or tmisc_feature(24)..(25)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(30)..(31)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(44)..(44)n is a, c, g, or tmisc_feature(52)..(52)n is a, c, g, or tmisc_feature(55)..(55)n is a, c, g, or tmisc_feature(58)..(59)n is a, c, g, or tmisc_feature(110)..(111)n is a, c, g, or tmisc_feature(130)..(130)n is a, c, g, or tmisc_feature(190)..(190)n is a, c, g, or t 170ggngtnaagc gtgcgtaggt nntnnttnan ntctgtngtg aaanccctgg gntcnacnng 60ggaactgcag tggaaactgg acaactagag tgtggtagag ggtagcggan ntcccggtgt 120agcagtgaan tgcgtagaga tcgggaggaa catccatggc gaaggcagct acctggacca 180acactgacan tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggtg gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccca tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824171327DNAStenotrophomonas maltophiliamisc_feature(1)..(327)BCI 602 16S rDNAmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(37)..(38)n is a, c, g, or tmisc_feature(60)..(60)n is a, c, g, or tmisc_feature(74)..(74)n is a, c, g, or tmisc_feature(88)..(88)n is a, c, g, or tmisc_feature(90)..(90)n is a, c, g, or tmisc_feature(133)..(133)n is a, c, g, or tmisc_feature(148)..(148)n is a, c, g, or tmisc_feature(152)..(155)n is a, c, g, or tmisc_feature(157)..(157)n is a, c, g, or tmisc_feature(164)..(164)n is a, c, g, or tmisc_feature(197)..(197)n is a, c, g, or tmisc_feature(205)..(205)n is a, c, g, or tmisc_feature(207)..(208)n is a, c, g, or tmisc_feature(223)..(223)n is a, c, g, or tmisc_feature(233)..(233)n is a, c, g, or tmisc_feature(237)..(237)n is a, c, g, or tmisc_feature(244)..(244)n is a, c, g, or tmisc_feature(255)..(256)n is a, c, g, or tmisc_feature(263)..(263)n is a, c, g, or tmisc_feature(271)..(271)n is a, c, g, or tmisc_feature(277)..(277)n is a, c, g, or tmisc_feature(308)..(308)n is a, c, g, or t 171gtcgtcagct ngtgtcgtga gatgttgggt taagtcnngc aacgagcgca acccttgtcn 60ttagttgcca gcangtaatg gtgggaantn taaggagacc gccggtgaca aaccggagga 120aggtggggat gangtcaagt catcatgncc cnnnngncca gggntacaca cgtactacaa 180tggtagggac agagggntgc aagcngnnga cggtaagcca atnccagaaa ccntatntca 240gtcnggattg gagtnngcaa ctngactcca ngaagtngga atcgctagta atcgcagatc 300agcattgntg cggtgaatac gttcccg 327172816DNAStenotrophomonas maltophiliamisc_feature(1)..(816)BCI 606 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(9)..(9)n is a, c, g, or tmisc_feature(22)..(23)n is a, c, g, or tmisc_feature(25)..(26)n is a, c, g, or tmisc_feature(31)..(32)n is a, c, g, or tmisc_feature(36)..(36)n is a, c, g, or tmisc_feature(39)..(40)n is a, c, g, or tmisc_feature(47)..(48)n is a, c, g, or tmisc_feature(50)..(50)n is a, c, g, or tmisc_feature(56)..(57)n is a, c, g, or tmisc_feature(63)..(63)n is a, c, g, or tmisc_feature(69)..(71)n is a, c, g, or tmisc_feature(77)..(77)n is a, c, g, or tmisc_feature(105)..(107)n is a, c, g, or tmisc_feature(117)..(117)n is a, c, g, or tmisc_feature(122)..(122)n is a, c, g, or tmisc_feature(125)..(125)n is a, c, g, or tmisc_feature(152)..(152)n is a, c, g, or tmisc_feature(177)..(177)n is a, c, g, or tmisc_feature(182)..(182)n is

a, c, g, or tmisc_feature(193)..(193)n is a, c, g, or tmisc_feature(223)..(223)n is a, c, g, or tmisc_feature(240)..(240)n is a, c, g, or tmisc_feature(253)..(253)n is a, c, g, or tmisc_feature(284)..(284)n is a, c, g, or t 172gcgtgngtng gtggttattt anntnngttg nnaaanccnn gggctcnncn tggganntgc 60agnggatann ngatgantag aatgtggtag agggtagcgg aattnnnggt gtagcantga 120antgngtaga gatcaggagg aacatccatg gngaaggcag ctacctggac caacatngac 180antgaggcac ganagcgtgg ggagcaaaca ggattagata ccntggtagt ccacgccctn 240aacgatgcga acnggatgtt gggtgcaatt tggcacgcag tatngaagct aacgcgttaa 300gttcgccgcc tggggagtac ggtcgcaaga ctgaaactca aaggaattga cgggggcccg 360cacaagcggt ggagtatgtg gtttaattcg atgcaacgcg aagaacctta cctggccttg 420acatgtcgag aactttccag agatggattg gtgccttcgg gaactcgaac acaggtgctg 480catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc 540cttgtcctta gttgccagca cgtaatggtg ggaactctaa ggagaccgcc ggtgacaaac 600cggaggaagg tggggatgac gtcaagtcat catggccctt acggccaggg ctacacacgt 660actacaatgg tagggacaga gggctgcaag ccggcgacgg taagccaatc ccagaaaccc 720tatctcagtc cggattggag tctgcaactc gactccatga agtcggaatc gctagtaatc 780gcagatcagc attgctgcgg tgaatacgtt cccggg 816173824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 607 16S rDNA 173ggcgtaaagc gtgcgtaggt ggttatttaa gtccgttgtg aaagccctgg gctcaacctg 60ggaactgcag tggatactgg atgactagaa tgtggtagag ggtagcggaa ttcctggtgt 120agcagtgaaa tgcgtagaga tcaggaggaa catccatggc gaaggcagct acctggacca 180acattgacac tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggta gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccta tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824174823DNANovosphingobium lindaniclasticummisc_feature(1)..(823)BCI 608 16S rDNA 174ggcgtaaagc gcgcgtaggc ggttactcaa gtcagaggtg aaagcccggg gctcaacccc 60ggaactgcct ttgaaactag gtgactagaa tcttggagag gtcagtggaa ttccgagtgt 120agaggtgaaa ttcgtagata ttcggaagaa caccagtggc gaaggcgact gactggacaa 180gtattgacgc tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgataac tagctgtccg gggacttggt ctttgggtgg cgcagctaac 300gcattaagtt atccgcctgg ggagtacggt cgcaagatta aaactcaaag gaattgacgg 360gggcctgcac aagcggtgga gcatgtggtt taattcgaag caacgcgcag aaccttacca 420gcgtttgaca tcctcatcgc ggatttgaga gatcatttcc ttcagttcgg ctggatgagt 480gacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga tgttgggtta agtcccgcaa 540cgagcgcaac cctcgtcctt agttgccagc atttagttgg gcactctaag gaaactgccg 600gtgataagcc ggaggaaggt ggggatgacg tcaagtcctc atggccctta cacgctgggc 660tacacacgtg ctacaatggc ggtgacagtg ggcagcaagc aggcgactgc aagctaatct 720ccaaaagccg tctcagttcg gattgttctc tgcaactcga gagcatgaag gcggaatcgc 780tagtaatcgc ggatcagcat gccgcggtga atacgttccc agg 823175410DNAAgrobacterium fabrummisc_feature(1)..(410)BCI 609 16S rDNA 175aactgagatg gcttttggag attagctcga catcgctgtc tcgctgccca ctgtcaccac 60cattgtagca cgtgtgtagc ccagcccgta agggccatga ggacttgacg tcctccccac 120cttcctctcg gcttatcacc ggcagtcccc ttagagtgcc caactaaatg ctggcaacta 180agggcgaggg ttgcgctcgt tgcgggactt aacccaacat ctcacgacac gagctgacga 240cagccatgca gcacctgttc tggggccagc ctaactgaag gacatcgtct ccaatgccca 300taccccgaat gtcaagagct ggtaaggttc tgcgcgttgc ttcgaattaa accacatgct 360ccaccgcttg tgcgggcccc cgtcaattcc tttgagtttt aatcttgcga 410176824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 610 16S rDNAmisc_feature(20)..(23)n is a, c, g, or tmisc_feature(52)..(52)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or t 176ggcgtaaagc gtgcgtaggn nnntgtttaa gtctgttgtg aaagccctgg gntcaacntg 60ggaactgcag tggaaactgg acaactagag tgtggtagag ggtagcggaa ttcccggtgt 120agcagtgaaa tgcgtagaga tcgggaggaa catccatggc gaaggcagct acctggacca 180acactgacac tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggtg gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccca tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824177824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 617 16S rDNAmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or t 177ggcgtaaagc gtgcgtaggt ggttatttaa ntccgttgtg aaagccctgg gctcaacntg 60ggaactgcag tggatactgg atgactagaa tgtggtagag ggtagcggaa ttcctggtgt 120agcagtgaaa tgcgtagaga tcaggaggaa catccatggc gaaggcagct acctggacca 180acattgacac tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggatgggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggta gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccta tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824178824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 618 16S rDNA 178ggcgtaaagc gtgcgtaggt ggttgtttaa gtctgttgtg aaagccctgg gctcaacctg 60ggaactgcag tggaaactgg acaactagag tgtggtagag ggtagcggaa ttcccggtgt 120agcagtgaaa tgcgtagaga tcgggaggaa catccatggc gaaggcagct acctggacca 180acactgacac tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggtg gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccca tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824179805DNAStenotrophomonas maltophiliamisc_feature(1)..(805)BCI 619 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(15)..(16)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(59)..(59)n is a, c, g, or tmisc_feature(66)..(66)n is a, c, g, or tmisc_feature(75)..(76)n is a, c, g, or tmisc_feature(89)..(89)n is a, c, g, or tmisc_feature(109)..(109)n is a, c, g, or tmisc_feature(112)..(112)n is a, c, g, or tmisc_feature(114)..(114)n is a, c, g, or tmisc_feature(130)..(130)n is a, c, g, or tmisc_feature(133)..(133)n is a, c, g, or tmisc_feature(171)..(171)n is a, c, g, or t 179tgnttgttta antcnnttgt gaaagccctg ggctcancnt gggaactgca gtggaaacng 60gacaantaga gtgtnntaga gggtagcgna attcccggtg tagcagtgna angngtagag 120atcgggaggn acntccatgg cgaaggcagc tacctggacc aacactgaca ntgaggcacg 180aaagcgtggg gagcaaacag gattagatac cctggtagtc cacgccctaa acgatgcgaa 240ctggatgttg ggtgcaattt ggcacgcagt atcgaagcta acgcgttaag ttcgccgcct 300ggggagtacg gtcgcaagac tgaaactcaa aggaattgac gggggcccgc acaagcggtg 360gagtatgtgg tttaattcga tgcaacgcga agaaccttac ctggccttga catgtcgaga 420actttccaga gatggattgg tgccttcggg aactcgaaca caggtgctgc atggctgtcg 480tcagctcgtg tcgtgagatg ttgggttaag tcccgcaacg agcgcaaccc ttgtccttag 540ttgccagcac gtaatggtgg gaactctaag gagaccgccg gtgacaaacc ggaggaaggt 600ggggatgacg tcaagtcatc atggccctta cggccagggc tacacacgta ctacaatggt 660ggggacagag ggctgcaagc cggcgacggt aagccaatcc cagaaacccc atctcagtcc 720ggattggagt ctgcaactcg actccatgaa gtcggaatcg ctagtaatcg cagatcagca 780ttgctgcggt gaatacgttc ccggg 805180829DNAArthrobacter cupressimisc_feature(1)..(829)BCI 62 16S rDNAmisc_feature(18)..(18)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(63)..(63)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(67)..(67)n is a, c, g, or tmisc_feature(69)..(69)n is a, c, g, or tmisc_feature(72)..(72)n is a, c, g, or tmisc_feature(115)..(115)n is a, c, g, or t 180ttattgggcg taaagagntc gtaggcggtt tgtcgcntct gccgtgaaag tccggggctc 60aantncngna tntgcggtgg gtacgggcag actagagtga tgtaggggag actgnaattc 120ctggtgtagc ggtgaaatgc gcagatatca ggaggaacac cgatggcgaa ggcaggtctc 180tgggcattaa ctgacgctga ggagcgaaag catggggagc gaacaggatt agataccctg 240gtagtccatg ccgtaaacgt tgggcactag gtgtggggga cattccacgt tttccgcgcc 300gtagctaacg cattaagtgc cccgcctggg gagtacggcc gcaaggctaa aactcaaagg 360aattgacggg ggcccgcaca agcggcggag catgcggatt aattcgatgc aacgcgaaga 420accttaccaa ggcttgacat gaaccagacc gggctggaaa cagtccttcc cctttggggt 480tggtttacag gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc 540cgcaacgagc gcaaccctcg ttccatgttg ccagcgggta gtgccgggga ctcatgggag 600actgccgggg tcaactcgga ggaaggtggg gacgacgtca aatcatcatg ccccttatgt 660cttgggcttc acgcatgcta caatggccgg tacaaagggt tgcgatactg tgaggtggag 720ctaatcccaa aaagccggtc tcagttcgga ttggggtctg caactcgacc ccatgaagtc 780ggagtcgcta gtaatcgcag atcagcaacg ctgcggtgaa tacgttccc 829181784DNAStenotrophomonas maltophiliamisc_feature(1)..(784)BCI 620 16S rDNAmisc_feature(11)..(12)n is a, c, g, or tmisc_feature(14)..(15)n is a, c, g, or tmisc_feature(18)..(18)n is a, c, g, or tmisc_feature(20)..(20)n is a, c, g, or tmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(25)..(25)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(68)..(68)n is a, c, g, or tmisc_feature(91)..(91)n is a, c, g, or tmisc_feature(117)..(117)n is a, c, g, or tmisc_feature(129)..(129)n is a, c, g, or tmisc_feature(150)..(150)n is a, c, g, or tmisc_feature(208)..(208)n is a, c, g, or tmisc_feature(221)..(221)n is a, c, g, or t 181aaagccctgg nntnnacntn gnaantgcag tggaaacngg acaactagag tgtggtagag 60ggtagcgnaa ttcccggtgt agcagtgaaa ngcgtagaga tcgggaggaa catccanggc 120gaaggcagnt acctggacca acactgacan tgaggcacga aagcgtgggg agcaaacagg 180attagatacc ctggtagtcc acgccctnaa cgatgcgaac nggatgttgg gtgcaatttg 240gcacgcagta tcgaagctaa cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact 300gaaactcaaa ggaattgacg ggggcccgca caagcggtgg agtatgtggt ttaattcgat 360gcaacgcgaa gaaccttacc tggccttgac atgtcgagaa ctttccagag atggattggt 420gccttcggga actcgaacac aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt 480tgggttaagt cccgcaacga gcgcaaccct tgtccttagt tgccagcacg taatggtggg 540aactctaagg agaccgccgg tgacaaaccg gaggaaggtg gggatgacgt caagtcatca 600tggcccttac ggccagggct acacacgtac tacaatggtg gggacagagg gctgcaagcc 660ggcgacggta agccaatccc agaaacccca tctcagtccg gattggagtc tgcaactcga 720ctccatgaag tcggaatcgc tagtaatcgc agatcagcat tgctgcggtg aatacgttcc 780cggg 784182823DNAStenotrophomonas maltophiliamisc_feature(1)..(823)BCI 623 16S rDNAmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(33)..(33)n is a, c, g, or tmisc_feature(44)..(44)n is a, c, g, or tmisc_feature(49)..(49)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or tmisc_feature(62)..(62)n is a, c, g, or tmisc_feature(129)..(130)n is a, c, g, or tmisc_feature(189)..(189)n is a, c, g, or tmisc_feature(260)..(260)n is a, c, g, or t 182ggcgtaaagc ntgngtaggt ggttgttnaa gtntgttgtg aaanccctng gctcaacntg 60gnaactgcag tggaaactgg acaactagag tgtggtagag ggtagcggaa ttcccggtgt 120agcagtgann gcgtagagat cgggaggaac atccatggcg aaggcagcta cctggaccaa 180cactgacant gaggcacgaa agcgtgggga gcaaacagga ttagataccc tggtagtcca 240cgccctaaac gatgcgaacn ggatgttggg tgcaatttgg cacgcagtat cgaagctaac 300gcgttaagtt cgccgcctgg ggagtacggt cgcaagactg aaactcaaag gaattgacgg 360gggcccgcac aagcggtgga gtatgtggtt taattcgatg caacgcgaag aaccttacct 420ggccttgaca tgtcgagaac tttccagaga tggattggtg ccttcgggaa ctcgaacaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 540cgcaaccctt gtccttagtt gccagcacgt aatggtggga actctaagga gaccgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gccagggcta 660cacacgtact acaatggtgg ggacagaggg ctgcaagccg gcgacggtaa gccaatccca 720gaaaccccat ctcagtccgg attggagtct gcaactcgac tccatgaagt cggaatcgct 780agtaatcgca gatcagcatt gctgcggtga atacgttccc ggg 823183720DNAStenotrophomonas maltophiliamisc_feature(1)..(720)BCI 64 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(16)..(16)n is a, c, g, or tmisc_feature(425)..(425)n is a, c, g, or tmisc_feature(586)..(586)n is a, c, g, or tmisc_feature(632)..(632)n is a, c, g, or tmisc_feature(663)..(663)n is a, c, g, or tmisc_feature(693)..(693)n is a, c, g, or tmisc_feature(701)..(701)n is a, c, g, or tmisc_feature(704)..(705)n is a, c, g, or tmisc_feature(707)..(707)n is a, c, g, or tmisc_feature(717)..(717)n is a, c, g, or t 183ncctgcttct ggtgcnacaa actcccatgg tgtgacgggc ggtgtgtaca aggcccggga 60acgtattcac cgcagcaatg ctgatctgcg attactagcg attccgactt catggagtcg 120agttgcagac tccaatccgg actgagatag ggtttctggg attggcttac cgtcgccggc 180ttgcagccct ctgtccctac cattgtagta cgtgtgtagc cctggccgta agggccatga 240tgacttgacg tcatccccac cttcctccgg tttgtcaccg gcggtctcct tagagttccc 300accattacgt gctggcaact aaggacaagg gttgcgctcg ttgcgggact taacccaaca 360tctcacgaca cgagctgacg acagccatgc agcacctgtg ttcgagttcc cgaaggcacc 420aatcnatctc tggaaagttc tcgacatgtc aaggccaggt aaggttcttc gcgttgcatc 480gaattaaacc acatactcca ccgcttgtgc gggcccccgt caattccttt gagtttcagt 540cttgcgaccg tactccccag gcggcgaact taacgcgtta gcttcnatac tgcgtgccaa 600attgcaccca acatccagtt cgcatcgttt anggcgtgga ctaccagggt atctaatcct 660gtntgctccc cacgctttcg tgcctcagtg tcngtgttgg nccnngnagc tgccttngcc 720184816DNAAcidovorax solimisc_feature(1)..(816)BCI 648 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(17)..(18)n is a, c, g, or tmisc_feature(43)..(44)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or tmisc_feature(58)..(59)n is a, c, g, or tmisc_feature(77)..(77)n is a, c, g, or tmisc_feature(92)..(93)n is a, c, g, or tmisc_feature(168)..(168)n is a, c, g, or t 184ggcgtnaagc gtgcgcnngc ggttatataa gacagatgtg aannccccgg gctcancnng 60ggaactgcat ttgtgantgt atagctagag tnnggcagag ggggatggaa ttccgcgtgt 120agcagtgaaa tgcgtagata tgcggaggaa caccgatggc gaaggcantc ccctgggcct 180gtactgacgc tcatgcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgtcaac tggttgttgg gtcttcactg actcagtaac gaagctaacg 300cgtgaagttg accgcctggg gagtacggcc gcaaggttga aactcaaagg aattgacggg 360gacccgcaca agcggtggat gatgtggttt aattcgatgc aacgcgaaaa accttaccca 420cctttgacat gtatggaatc ctttagagat agaggagtgc tcgaaagaga gccataacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgccattagt tgctacgaaa gggcactcta atgggactgc cggtgacaaa 600ccggaggaag gtggggatga cgtcaagtcc tcatggccct tataggtggg gctacacacg 660tcatacaatg gctggtacag agggttgcca acccgcgagg gggagccaat cccataaagc 720cagtcgtagt ccggatcgca gtctgcaact cgactgcgtg aagtcggaat cgctagtaat 780cgcggatcag aatgtcgcgg tgaatacgtt cccggg 816185836DNAStenotrophomonas maltophiliamisc_feature(1)..(836)BCI 665 16S rDNA 185attactgggc gtaaagcgtg cgtaggtggt tatttaagtc cgttgtgaaa gccctgggct 60caacctggga actgcagtgg atactggatg actagaatgt ggtagagggt agcggaattc 120ctggtgtagc agtgaaatgc gtagagatca ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ttgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtaggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccctatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccgg gccttg

836186730DNADyadobacter solimisc_feature(1)..(730)BCI 68 16S rDNA 186gtctccccga ctcccatggc ttgacgggcg gtgtgtacaa ggtccgggaa cgtattcacc 60gcgtcatagc tgatacgcga ttactagcga ttccagcttc atagagtcga gttgcagact 120ccaatccgaa ctgagaacgg ctttttggga ttggcatcac atcgctgtgt agcaaccctc 180tgtaccgccc attgtagcac gtgtgttgcc ctggacgtaa gggccatgat gacttgacgt 240cgtcccctcc ttcctctctg tttgcacagg cagtctggct agagtcccca ccattacgtg 300ctggcaacta accatagggg ttgcgctcgt tgcgggactt aacccaacat ctcacgacac 360gagctgacga cagccatgca gcaccttcaa acaggccatt gctggcttac acatttctgc 420ataattcctg tctgatttag cccaggtaag gttcctcgcg tatcatcgaa ttaaaccaca 480tgctccaccg cttgtgcgga cccccgtcaa ttcctttgag tttcaccgtt gccggcgtac 540tccccaggtg gaggacttaa cggtttccct aagtcgctca gcattgctgc caaacaacga 600gtcctcatcg tttacagcat ggactaccag ggtatctaat cctgtttgct ccccatgctt 660tcgtgcctca gtgtcaaaca aatcgtagcc acctgccttc gcaatcggtg ttctggatga 720tatctatgca 730187690DNAArthrobacter pascensmisc_feature(1)..(690)BCI 682 16S rDNA 187tcgggtgtta ccaactttcg tgacttgacg ggcggtgtgt acaaggcccg ggaacgtatt 60caccgcagcg ttgctgatct gcgattacta gcgactccga cttcatgggg tcgagttgca 120gaccccaatc cgaactgaga ccggcttttt gggattagct ccacctcaca gtatcgcaac 180cctttgtacc ggccattgta gcatgcgtga agcccaagac ataaggggca tgatgatttg 240acgtcgtccc caccttcctc cgagttgacc ccggcagtct cctatgagtc cccgccataa 300cgcgctggca acatagaacg agggttgcgc tcgttgcggg acttaaccca acatctcacg 360acacgagctg acgacaacca tgcaccacct gtgaaccagc cccaaagggg aaaccacatt 420tctgcagcga tccagtccat gtcaagcctt ggtaaggttc ttcgcgttgc atcgaattaa 480tccgcatgct ccgccgcttg tgcgggcccc cgtcaattcc tttgagtttt agccttgcgg 540ccgtactccc caggcggggc acttaatgcg ttagctacgg cgcggaaaac gtggaatgtc 600ccccacacct agtgcccaac gtttacggca tggactacca gggtatctaa tcctgttcgc 660tccccatgct ttcgctcctc agcgtcagtt 690188719DNANovosphingobium lindaniclasticummisc_feature(1)..(719)BCI 684 16S rDNA 188gccttcgggt gaaaccaact cccatggtgt gacgggcggt gtgtacaagg cctgggaacg 60tattcaccgc ggcatgctga tccgcgatta ctagcgattc cgccttcatg ctctcgagtt 120gcagagaaca atccgaactg agacggcttt tggagattag cttgcagtcg cctgcttgct 180gcccactgtc accgccattg tagcacgtgt gtagcccagc gtgtaagggc catgaggact 240tgacgtcatc cccaccttcc tccggcttat caccggcagt ttccttagag tgcccaacta 300aatgctggca actaaggacg agggttgcgc tcgttgcggg acttaaccca acatctcacg 360acacgagctg acgacagcca tgcagcacct gtcactcatc cagccgaact gaaggaaatc 420atctctgaaa tccgcgatga ggatgtcaaa cgctggtaag gttctgcgcg ttgcttcgaa 480ttaaaccaca tgctccaccg cttgtgcagg cccccgtcaa ttcctttgag ttttaatctt 540gcgaccgtac tccccaggcg gataacttaa tgcgttagct gcgccaccca aagaccaagt 600ccccggacag ctagttatca tcgtttacgg cgtggactac cagggtatct aatcctgttt 660gctccccacg ctttcgcacc tcagcgtcaa tacttgtcca gtcagtcgcc ttcgccact 719189824DNAMicrobacterium sp.misc_feature(1)..(824)BCI 688 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(36)..(36)n is a, c, g, or tmisc_feature(39)..(39)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or t 189ggcgtnaaga gctngtaggc ggtttgtcgc gtctgntgng aaatccggag gctcaacntc 60cggcctgcag tgggtacggg cagactagag tgcggtaggg gagattggaa ttcctggtgt 120agcggtggaa tgcgcagata tcaggaggaa caccgatggc gaaggcagat ctctgggccg 180taactgacgc tgaggagcga aagggtgggg agcaaacagg cttagatacc ctggtagtcc 240accccgtaaa cgttgggaac tagttgtggg gtccattcca cggattccgt gacgcagcta 300acgcattaag ttccccgcct ggggagtacg gccgcaaggc taaaactcaa aggaattgac 360ggggacccgc acaagcggcg gagcatgcgg attaattcga tgcaacgcga agaaccttac 420caaggcttga catatacgag aacgggccag aaatggtcaa ctctttggac actcgtaaac 480aggtggtgca tggttgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct cgttctatgt tgccagcacg taatggtggg aactcatggg atactgccgg 600ggtcaactcg gaggaaggtg gggatgacgt caaatcatca tgccccttat gtcttgggct 660tcacgcatgc tacaatggcc ggtacaaagg gctgcaatac cgcgaggtgg agcgaatccc 720aaaaagccgg tcccagttcg gattgaggtc tgcaactcga cctcatgaag tcggagtcgc 780tagtaatcgc agatcagcaa cgctgcggtg aatacgttcc cggg 824190699DNABosea robiniaemisc_feature(1)..(699)BCI 689 16S rDNA 190gacgccttcg ggtaaaccca actcccatgg tgtgacgggc ggtgtgtaca aggcccggga 60acgtattcac cgtggcatgc tgatccacga ttactagcga ttccaccttc atgcactcga 120gttgcagagt gcaatctgaa ctgagacggc tttttgggat tagctcgagg tcgccctttc 180gctgcccatt gtcaccgcca ttgtagcacg tgtgtagccc agcctgtaag ggccatgagg 240acttgacgtc atccccacct tcctcgcggc ttatcaccgg cagtccccct agagttccca 300acttaatgat ggcaactagg ggcgagggtt gcgctcgttg cgggacttaa cccaacatct 360cacgacacga gctgacgaca gccatgcagc acctgtgttc cggccagccg aactgaagaa 420aggcatctct gccgatcaaa ccggacatgt caaaagctgg taaggttctg cgcgttgctt 480cgaattaaac cacatgctcc accgcttgtg cgggcccccg tcaattcctt tgagttttaa 540tcttgcgacc gtactcccca ggcggaatgc ttaaagcgtt agctgcgcca ctgaagagca 600agctccccaa cggctggcat tcatcgttta cggcgtggac taccagggta tctaatcctg 660tttgctcccc acgctttcgc gcctcagcgt cagtttcgg 699191816DNAAcidovorax solimisc_feature(1)..(816)BCI 690 16S rDNA 191ggcgtaaagc gtgcgcaggc ggttatataa gacagatgtg aaatccccgg gctcaacctg 60ggaactgcat ttgtgactgt atagctagag tacggcagag ggggatggaa ttccgcgtgt 120agcagtgaaa tgcgtagata tgcggaggaa caccgatggc gaaggcaatc ccctgggcct 180gtactgacgc tcatgcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctaaa cgatgtcaac tggttgttgg gtcttcactg actcagtaac gaagctaacg 300cgtgaagttg accgcctggg gagtacggcc gcaaggttga aactcaaagg aattgacggg 360gacccgcaca agcggtggat gatgtggttt aattcgatgc aacgcgaaaa accttaccca 420cctttgacat gtatggaatc ctttagagat agaggagtgc tcgaaagaga gccataacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgccattagt tgctacgaaa gggcactcta atgggactgc cggtgacaaa 600ccggaggaag gtggggatga cgtcaagtcc tcatggccct tataggtggg gctacacacg 660tcatacaatg gctggtacag agggttgcca acccgcgagg gggagccaat cccataaagc 720cagtcgtagt ccggatcgca gtctgcaact cgactgcgtg aagtcggaat cgctagtaat 780cgcggatcag aatgtcgcgg tgaatacgtt cccggg 816192715DNARhizobium grahamiimisc_feature(1)..(715)BCI 691 16S rDNA 192ctaccttcgg gtaaaaccaa ctcccatggt gtgacgggcg gtgtgtacaa ggcccgggaa 60cgtattcacc gcggcatgct gatccgcgat tactagcgat tccaacttca tgcactcgag 120ttgcagagtg caatccgaac tgagatggct tttggagatt agctcgacat cgctgtctcg 180ctgcccactg tcaccaccat tgtagcacgt gtgtagccca gcccgtaagg gccatgagga 240cttgacgtca tccccacctt cctctcggct tatcaccggc agtcccctta gagtgcccaa 300ccaaatgctg gcaactaagg gcgagggttg cgctcgttgc gggacttaac ccaacatctc 360acgacacgag ctgacgacag ccatgcagca cctgtgttcc ggtccccgaa gggaaccttg 420catctctgca agtagccgga catgtcaagg gctggtaagg ttctgcgcgt tgcttcgaat 480taaaccacat gctccaccgc ttgtgcgggc ccccgtcaat tcctttgagt tttaatcttg 540cgaccgtact ccccaggcgg aatgtttaat gcgttagctg cgccaccgaa cagtatactg 600cccgacggct aacattcatc gtttacggcg tggactacca gggtatctaa tcctgtttgc 660tccccacgct ttcgcacctc agcgtcagta atggaccagt gagccgcctt cgcca 715193824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 693 16S rDNAmisc_feature(48)..(48)n is a, c, g, or tmisc_feature(62)..(62)n is a, c, g, or tmisc_feature(248)..(248)n is a, c, g, or t 193ggcgtaaagc gtgcgtaggt ggttgtttaa gtctgttgtg aaagcccngg gctcaacctg 60gnaactgcag tggaaactgg acaactagag tgtggtagag ggtagcggaa ttcccggtgt 120agcagtgaaa tgcgtagaga tcgggaggaa catccatggc gaaggcagct acctggacca 180acactgacac tgaggcacga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccctnaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggtg gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccca tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824194735DNAStenotrophomonas maltophiliamisc_feature(1)..(735)BCI 7 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(29)..(30)n is a, c, g, or tmisc_feature(610)..(610)n is a, c, g, or tmisc_feature(705)..(705)n is a, c, g, or tmisc_feature(707)..(707)n is a, c, g, or tmisc_feature(721)..(721)n is a, c, g, or tmisc_feature(723)..(723)n is a, c, g, or tmisc_feature(728)..(728)n is a, c, g, or t 194ncctgcttct ggtgcaacaa actcccatnn tgtgacgggc ggtgtgtaca aggcccggga 60acgtattcac cgcagcaatg ctgatctgcg attactagcg attccgactt catggagtcg 120agttgcagac tccaatccgg actgagatgg ggtttctggg attggcttac cgtcgccggc 180ttgcagccct ctgtccccac cattgtagta cgtgtgtagc cctggccgta agggccatga 240tgacttgacg tcatccccac cttcctccgg tttgtcaccg gcggtctcct tagagttccc 300accattacgt gctggcaact aaggacaagg gttgcgctcg ttgcgggact taacccaaca 360tctcacgaca cgagctgacg acagccatgc agcacctgtg ttcgagttcc cgaaggcacc 420aatccatctc tggaaagttc tcgacatgtc aaggccaggt aaggttcttc gcgttgcatc 480gaattaaacc acatactcca ccgcttgtgc gggcccccgt caattccttt gagtttcagt 540cttgcgaccg tactccccag gcggcgaact taacgcgtta gcttcgatac tgcgtgccaa 600attgcacccn acatccagtt cgcatcgttt agggcgtgga ctaccagggt atctaatcct 660gtttgctccc cacgctttcg tgcctcagtg tcagtgttgg tccangnagc tgccttcgcc 720ntngatgntc ctccc 735195824DNAArthrobacter mysorensmisc_feature(1)..(824)BCI 700 16S rDNAmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(44)..(44)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or tmisc_feature(60)..(60)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or t 195ggcgtaaaga gntngtaggc ggtttgtcgc ntctgccgtg aaantccgag gctcaacntn 60ggatntgcgg tgggtacggg cagactagag tgatgtaggg gagactggaa ttcctggtgt 120agcggtgaaa tgcgcagata tcaggaggaa caccgatggc gaaggcaggt ctctgggcat 180ttactgacgc tgaggagcga aagcatgggg agcgaacagg attagatacc ctggtagtcc 240atgccgtaaa cgttgggcac taggtgtggg ggacattcca cgttttccgc gccgtagcta 300acgcattaag tgccccgcct ggggagtacg gccgcaaggc taaaactcaa aggaattgac 360gggggcccgc acaagcggcg gagcatgcgg attaattcga tgcaacgcga agaaccttac 420caaggcttga catgtgccag accgctccag agatggggtt tcccttcggg gctggttcac 480aggtggtgca tggttgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct cgttccatgt tgccagcacg tagtggtggg gactcatggg agactgccgg 600ggtcaactcg gaggaaggtg gggatgacgt caaatcatca tgccccttat gtcttgggct 660tcacgcatgc tacaatggcc ggtacaatgg gttgcgatac tgtgaggtgg agctaatccc 720taaaagccgg tctcagttcg gattggggtc tgcaactcga ccccatgaag tcggagtcgc 780tagtaatcgc agatcagcaa cgctgcggtg aatacgttcc cggg 824196720DNABosea thiooxidansmisc_feature(1)..(720)BCI 703 16S rDNA 196tgtacaaggc ccgggaacgt attcaccgtg gcatgctgat ccacgattac tagcgattcc 60accttcatgt actcgagttg cagagtacaa tctgaactga gacggctttt tgggattagc 120tccaggtcac cccttcgctg cccattgtca ccgccattgt agcacgtgtg tagcccagcc 180tgtaagggcc atgaggactt gacgtcatcc ccaccttcct cgcggcttat caccggcagt 240ccccctagag ttcccaactg aatgatggca actaggggcg agggttgcgc tcgttgcggg 300acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct gtgttccggc 360cagccgaact gaagaaaggc atctctgccg atcaaaccgg acatgtcaaa agctggtaag 420gttctgcgcg ttgcttcgaa ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa 480ttcctttgag ttttaatctt gcgaccgtac tccccaggcg gaatgcttaa agcgttagct 540gcgccactga agagcaagct ccccaacggc tggcattcat cgtttacggc gtggactacc 600agggtatcta atcctgtttg ctccccacgc tttcgcgcct cagcgtcagt atcggaccag 660ttggccgcct tcgccaccgg tgttcttgcg aatatctacg aatttcacct ctacactcgc 720197650DNABacillus sp.misc_feature(1)..(650)BCI 715 16S rDNA 197gttaccccac cgacttcggg tgttacaaac tctcgtggtg tgacgggcgg tgtgtacaag 60gcccgggaac gtattcaccg cggcatgctg atccgcgatt actagcgatt ccagcttcat 120gtaggcgagt tgcagcctac aatccgaact gagaacggtt ttatgagatt agctccacct 180cgcggtcttg cagctctttg taccgtccat tgtagcacgt gtgtagccca ggtcataagg 240ggcatgatga tttgacgtca tccccacctt cctccggttt gtcaccggca gtcaccttag 300agtgcccaac ttaatgatgg caactaagat caagggttgc gctcgttgcg ggacttaacc 360caacatctca cgacacgagc tgacgacaac catgcaccac ctgtcactct gctcccgaag 420gagaagccct atctctaggg ttttcagagg atgtcaagac ctggtaaggt tcttcgcgtt 480gcttcgaatt aaaccacatg ctccaccgct tgtgcgggcc cccgtcaatt cctttgagtt 540tcagccttgc ggccgtactc cccaggcgga gtgcttaatg cgttaacttc agcactaaag 600ggcggaaacc ctctaacact tagcactcat cgtttacggc gtggactacc 650198798DNAPseudomonas putidamisc_feature(1)..(798)BCI 731 16S rDNAmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(27)..(27)n is a, c, g, or tmisc_feature(37)..(38)n is a, c, g, or tmisc_feature(111)..(111)n is a, c, g, or t 198tttgttaagt nggatgtgaa agccccnggc tcaaccnngg aactgcatcc aaaactggca 60agctagagta cggtagaggg tggtggaatt tcctgtgtag cggtgaaatg ngtagatata 120ggaaggaaca ccagtggcga aggcgaccac ctggactgat actgacactg aggtgcgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gccgtaaacg atgtcaacta 240gccgttggaa tccttgagat tttagtggcg cagctaacgc attaagttga ccgcctgggg 300agtacggccg caaggttaaa actcaaatga attgacgggg gcccgcacaa gcggtggagc 360atgtggttta attcgaagca acgcgaagaa ccttaccagg ccttgacatg cagagaactt 420tccagagatg gattggtgcc ttcgggaact ctgacacagg tgctgcatgg ctgtcgtcag 480ctcgtgtcgt gagatgttgg gttaagtccc gtaacgagcg caacccttgt ccttagttac 540cagcacgtta tggtgggcac tctaaggaga ctgccggtga caaaccggag gaaggtgggg 600atgacgtcaa gtcatcatgg cccttacggc ctgggctaca cacgtgctac aatggtcggt 660acagagggtt gccaagccgc gaggtggagc taatctcaca aaaccgatcg tagtccggat 720cgcagtctgc aactcgactg cgtgaagtcg gaatcgctag taatcgcgaa tcagaatgtc 780gcggtgaata cgttcccg 798199791DNARamlibacter henchirensismisc_feature(1)..(791)BCI 739 16S rDNAmisc_feature(8)..(8)n is a, c, g, or tmisc_feature(12)..(13)n is a, c, g, or tmisc_feature(20)..(21)n is a, c, g, or tmisc_feature(26)..(28)n is a, c, g, or tmisc_feature(32)..(32)n is a, c, g, or tmisc_feature(35)..(35)n is a, c, g, or tmisc_feature(145)..(145)n is a, c, g, or t 199tttgtaanac anntgtgaan nccccnnnct tnacntggga actgcatttg tgactgcaag 60gctggagtgc ggcagagggg gatggaattc cgcgtgtagc agtgaaatgc gtagatatgc 120ggaggaacac cgatggcgaa ggcantcccc tgggcctgca ctgacgctca tgcacgaaag 180cgtggggagc aaacaggatt agataccctg gtagtccacg ccctaaacga tgtcaactgg 240ttgttggtcc ttcactggat cagtaacgaa gctaacgcgt gaagttgacc gcctggggag 300tacggccgca aggttgaaac tcaaaggaat tgacggggac ccgcacaagc ggtggatgat 360gtggtttaat tcgatgcaac gcgaaaaacc ttacctaccc ttgacatgtc tggaattgcg 420cagagatgtg caagtgcccg aaagggagcc agaacacagg tgctgcatgg ctgtcgtcag 480ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caacccttgc cattagttgc 540tacgaaaggg cactctaatg ggactgccgg tgacaaaccg gaggaaggtg gggatgacgt 600caagtcctca tggcccttat gggtagggct acacacgtca tacaatggct ggtacagagg 660gttgccaacc cgcgaggggg agctaatccc ataaaaccag tcgtagtccg gatcgtagtc 720tgcaactcga ctgcgtgaag tcggaatcgc tagtaatcgc ggatcagcat gtcgcggtga 780atacgttccc g 791200799DNABosea robiniaemisc_feature(1)..(799)BCI 765 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(17)..(17)n is a, c, g, or tmisc_feature(29)..(30)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(47)..(47)n is a, c, g, or tmisc_feature(81)..(81)n is a, c, g, or tmisc_feature(84)..(84)n is a, c, g, or tmisc_feature(111)..(111)n is a, c, g, or tmisc_feature(132)..(132)n is a, c, g, or tmisc_feature(138)..(138)n is a, c, g, or tmisc_feature(146)..(146)n is a, c, g, or tmisc_feature(223)..(223)n is a, c, g, or t 200actttnaagt nggaggngaa agcccaggnn tcaacccngg aattgcnttc gatactggga 60gtcttgagtt cggaagaggt nggnggaact gcgagtgtag aggtgaaatt ngtagatatt 120cgcaagaaca cnggtggnga aggcgnccaa ctggtccgaa actgacgctg aggcgcgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gcngtaaacg atgaatgcca 240gccgttgggg agcttgctct tcagtggcgc agctaacgct ttaagcattc cgcctgggga 300gtacggtcgc aagattaaaa ctcaaaggaa ttgacggggg cccgcacaag cggtggagca 360tgtggtttaa ttcgaagcaa cgcgcagaac cttaccagct tttgacatgt ccggtttgat 420cggcagagat gcctttcttc agttcggctg gccggaacac aggtgctgca tggctgtcgt 480cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct cgcccctagt 540tgccatcatt aagttgggaa ctctaggggg actgccggtg ataagccgcg aggaaggtgg 600ggatgacgtc aagtcctcat ggcccttaca ggctgggcta cacacgtgct acaatggcgg 660tgacaatggg cagcgaaagg gcgacctcga gctaatccca aaaagccgtc tcagttcaga 720ttgcactctg caactcgagt gcatgaaggt ggaatcgcta gtaatcgtgg atcagcatgc 780cacggtgaat acgttcccg 799201796DNAStenotrophomonas maltophiliamisc_feature(1)..(796)BCI 77 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(645)..(645)n is a, c, g, or tmisc_feature(730)..(730)n is a, c, g, or tmisc_feature(749)..(749)n is a, c, g, or tmisc_feature(762)..(762)n is a, c, g, or tmisc_feature(767)..(768)n is a, c, g, or tmisc_feature(772)..(772)n is a, c, g, or tmisc_feature(779)..(779)n is a, c, g, or tmisc_feature(782)..(783)n is a, c, g, or tmisc_feature(785)..(786)n is a, c, g, or tmisc_feature(795)..(795)n is a, c, g, or t 201anctacctgc ttctggtgca acaaactccc atggtgtgac gggcggtgtg tacaaggccc 60gggaacgtat tcaccgcagc aatgctgatc tgcgattact agcgattccg acttcatgga 120gtcgagttgc agactccaat ccggactgag atggggtttc tgggattggc ttaccgtcgc 180cggcttgcag

ccctctgtcc ccaccattgt agtacgtgtg tagccctggc cgtaagggcc 240atgatgactt gacgtcatcc ccaccttcct ccggtttgtc accggcggtc tccttagagt 300tcccaccatt acgtgctggc aactaaggac aagggttgcg ctcgttgcgg gacttaaccc 360aacatctcac gacacgagct gacgacagcc atgcagcacc tgtgttcgag ttcccgaagg 420caccaatcca tctctggaaa gttctcgaca tgtcaaggcc aggtaaggtt cttcgcgttg 480catcgaatta aaccacatac tccaccgctt gtgcgggccc ccgtcaattc ctttgagttt 540cagtcttgcg accgtactcc ccaggcggcg aacttaacgc gttagcttcg atactgcgtg 600ccaaattgca cccaacatcc agttcgcatc gtttagggcg tggantacca gggtatctaa 660tcctgtttgc tccccacgct ttcgtgcctc agtgtcagtg ttggtccagg tagctgcctt 720cgccatggan gttcctcccg atctctacnc atttcactgc tncaccnnga antccgctnc 780cnncnnccac actcna 796202824DNAStenotrophomonas maltophiliamisc_feature(1)..(824)BCI 787 16S rDNAmisc_feature(2)..(2)n is a, c, g, or tmisc_feature(11)..(12)n is a, c, g, or tmisc_feature(14)..(15)n is a, c, g, or tmisc_feature(18)..(18)n is a, c, g, or tmisc_feature(21)..(22)n is a, c, g, or tmisc_feature(24)..(25)n is a, c, g, or tmisc_feature(30)..(31)n is a, c, g, or tmisc_feature(35)..(35)n is a, c, g, or tmisc_feature(47)..(48)n is a, c, g, or tmisc_feature(55)..(55)n is a, c, g, or tmisc_feature(58)..(59)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(102)..(102)n is a, c, g, or tmisc_feature(115)..(116)n is a, c, g, or tmisc_feature(130)..(131)n is a, c, g, or tmisc_feature(145)..(145)n is a, c, g, or tmisc_feature(173)..(173)n is a, c, g, or tmisc_feature(190)..(190)n is a, c, g, or tmisc_feature(231)..(231)n is a, c, g, or t 202gncgtaaagc nngnntangt nntnntttan ntctnttgtg aaagccnngg gctcnacnng 60ggaantgcag tggaaactgg acaactagag tgtggtagag gntagcggaa ttccnngtgt 120agcagtgaan ngcgtagaga tcggnaggaa catccatggc gaaggcagct acntggacca 180acactgacan tgaggcacga aagcgtgggg agcaaacagg attagatacc ntggtagtcc 240acgccctaaa cgatgcgaac tggatgttgg gtgcaatttg gcacgcagta tcgaagctaa 300cgcgttaagt tcgccgcctg gggagtacgg tcgcaagact gaaactcaaa ggaattgacg 360ggggcccgca caagcggtgg agtatgtggt ttaattcgat gcaacgcgaa gaaccttacc 420tggccttgac atgtcgagaa ctttccagag atggattggt gccttcggga actcgaacac 480aggtgctgca tggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 540gcgcaaccct tgtccttagt tgccagcacg taatggtggg aactctaagg agaccgccgg 600tgacaaaccg gaggaaggtg gggatgacgt caagtcatca tggcccttac ggccagggct 660acacacgtac tacaatggtg gggacagagg gctgcaagcc ggcgacggta agccaatccc 720agaaacccca tctcagtccg gattggagtc tgcaactcga ctccatgaag tcggaatcgc 780tagtaatcgc agatcagcat tgctgcggtg aatacgttcc cggg 824203647DNAChitinophaga terraemisc_feature(1)..(647)BCI 79 16S rDNA 203gtccccccgg ctttcatggc ttgacgggcg gtgtgtacaa ggtccgggaa cgtattcacc 60gtatcattgc tgatatacga ttactagcga ttccagcttc atgaggtcga gttgcagacc 120tcaatccgaa ctgagataga gtttttgaga ttagcagcat gttaccatgt agcagccctt 180tgtctctacc attgtagcac gtgtgtagcc ctgggcataa aggccatgat gacttgacat 240catcccctcc ttcctcgcgt cttacgacgg cagtttcact agagttccca ccattacgcg 300ctggcaacta gtgatagggg ttgcgctcgt tgcgggactt aacccaacac ctcacggcac 360gagctgacga cagccatgca gcaccttaca atctgtgtat tgctacaaag tgaactttca 420tccacggtca gactgcattc tagcccaggt aaggttcctc gcgtatcatc gaattaaacc 480acatgctcca ccgcttgtgc ggacccccgt caattccttt gagtttcaac cttgcggtcg 540tacttcccag gtgggatact taatgctttc gctcagacac ttacaatata tcgcaaatgt 600cgagtatcca tcgtttaggg cgtggactac cagggtatct aatcctg 647204590DNAStenotrophomonas maltophiliamisc_feature(1)..(590)BCI 790 16S rDNAmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(13)..(13)n is a, c, g, or tmisc_feature(15)..(15)n is a, c, g, or tmisc_feature(17)..(18)n is a, c, g, or tmisc_feature(23)..(23)n is a, c, g, or tmisc_feature(27)..(28)n is a, c, g, or tmisc_feature(33)..(35)n is a, c, g, or tmisc_feature(48)..(48)n is a, c, g, or tmisc_feature(50)..(51)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or tmisc_feature(59)..(60)n is a, c, g, or tmisc_feature(76)..(76)n is a, c, g, or tmisc_feature(82)..(82)n is a, c, g, or tmisc_feature(85)..(85)n is a, c, g, or tmisc_feature(94)..(94)n is a, c, g, or tmisc_feature(106)..(106)n is a, c, g, or tmisc_feature(161)..(161)n is a, c, g, or tmisc_feature(164)..(164)n is a, c, g, or tmisc_feature(166)..(166)n is a, c, g, or tmisc_feature(261)..(262)n is a, c, g, or t 204gtngtncacg ccntnannga tgngaanngg atnnngggtg caatttgncn ngcagnatnn 60aagctaacgc gttaanttcg cngcntgggg agtncggtcg caagantgaa actcaaagga 120attgacgggg gcccgcacaa gcggtggagt atgtggttta nttngntgca acgcgaagaa 180ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 240cgaacacagg tgctgcatgg nntcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg 300caacgagcgc aacccttgtc cttagttgcc agcacgtaat ggtgggaact ctaaggagac 360cgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc ccttacggcc 420agggctacac acgtactaca atggtgggga cagagggctg caagccggcg acggtaagcc 480aatcccagaa accccatctc agtccggatt ggagtctgca actcgactcc atgaagtcgg 540aatcgctagt aatcgcagat cagcattgct gcggtgaata cgttcccggg 590205822DNAPseudomonas putidamisc_feature(1)..(822)BCI 791 16S rDNAmisc_feature(33)..(33)n is a, c, g, or tmisc_feature(59)..(59)n is a, c, g, or t 205ggcgtaaagc gcgcgtaggt ggtttgttaa gtnggatgtg aaagccccgg gctcaaccng 60ggaactgcat ccaaaactgg caagctagag tacggtagag ggtggtggaa tttcctgtgt 120agcggtgaaa tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg 180atactgacac tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgtcaac tagccgttgg aatccttgag attttagtgg cgcagctaac 300gcattaagtt gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg 360gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca 420ggccttgaca tgcagagaac tttccagaga tggattggtg ccttcgggaa ctctgacaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag 540cgcaaccctt gtccttagtt accagcacgt tatggtgggc actctaagga gactgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gcctgggcta 660cacacgtgct acaatggtcg gtacagaggg ttgccaagcc gcgaggtgga gctaatctca 720caaaaccgat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt cggaatcgct 780agtaatcgcg aatcagaatg tcgcggtgaa tacgttcccg gg 822206836DNAStenotrophomonas maltophiliamisc_feature(1)..(836)BCI 793 16S rDNAmisc_feature(18)..(18)n is a, c, g, or t 206attactgggc gtaaagcntg cgtaggtggt tgtttaagtc tgttgtgaaa gccctgggct 60caacctggga actgcagtgg aaactggaca actagagtgt ggtagagggt agcggaattc 120ccggtgtagc agtgaaatgc gtagagatcg ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ctgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtgggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccccatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccgg gccttg 836207836DNAStenotrophomonas maltophiliamisc_feature(1)..(836)BCI 795 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(31)..(31)n is a, c, g, or tmisc_feature(65)..(65)n is a, c, g, or tmisc_feature(137)..(137)n is a, c, g, or t 207nttactgggc gtaaagcgtg cgtaggtngt ngtttaagtc tgttgtgaaa gccctgggct 60caacntggga actgcagtgg aaactggaca actagagtgt ggtagagggt agcggaattc 120ccggtgtagc agtgaantgc gtagagatcg ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ctgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtgggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccccatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccgg gccttg 836208822DNAPseudomonas putidamisc_feature(1)..(822)BCI 802 16S rDNAmisc_feature(32)..(34)n is a, c, g, or tmisc_feature(58)..(58)n is a, c, g, or t 208ggcgtaaagc gcgcgtaggt ggtttgttaa gnnngatgtg aaagccccgg gctcaacntg 60ggaactgcat ccaaaactgg caagctagag tacggtagag ggtggtggaa tttcctgtgt 120agcggtgaaa tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg 180atactgacac tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc 240acgccgtaaa cgatgtcaac tagccgttgg aatccttgag attttagtgg cgcagctaac 300gcattaagtt gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg 360gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca 420ggccttgaca tgcagagaac tttccagaga tggattggtg ccttcgggaa ctctgacaca 480ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag 540cgcaaccctt gtccttagtt accagcacgt tatggtgggc actctaagga gactgccggt 600gacaaaccgg aggaaggtgg ggatgacgtc aagtcatcat ggcccttacg gcctgggcta 660cacacgtgct acaatggtcg gtacagaggg ttgccaagcc gcgaggtgga gctaatctca 720caaaaccgat cgtagtccgg atcgcagtct gcaactcgac tgcgtgaagt cggaatcgct 780agtaatcgcg aatcagaatg tcgcggtgaa tacgttcccg gg 822209656DNAPseudomonas jinjuensismisc_feature(1)..(656)BCI 804 16S rDNA 209ggagcaaccc actcccatgg tgtgacgggc ggtgtgtaca aggcccggga acgtattcac 60cgtgacattc tgattcacga ttactagcga ttccgacttc acgcagtcga gttgcagact 120gcgatccgga ctacgatcgg ttttctggga ttagctccac ctcgcggctt ggcaaccctc 180tgtaccgacc attgtagcac gtgtgtagcc ctggccgtaa gggccatgat gacttgacgt 240catccccacc ttcctccggt ttgtcaccgg cagtctcctt agagtgccca ccttaacgtg 300ctggtaacta aggacaaggg ttgcgctcgt tacgggactt aacccaacat ctcacgacac 360gagctgacga cagccatgca gcacctgtgt tccgattccc gaaggcactc ccgcatctct 420gcaggattcc ggacatgtca aggccaggta aggttcttcg cgttgcttcg aattaaacca 480catgctccac cgcttgtgcg ggcccccgtc aattcatttg agttttaacc ttgcggccgt 540actccccagg cggtcgactt atcgcgttag ctgcgccact aagatctcaa ggatcccaac 600ggctagtcga catcgtttac ggcgtggact accagggtat ctaatcctgt ttgctc 656210798DNAPseudomonas putidamisc_feature(1)..(798)BCI 805 16S rDNAmisc_feature(4)..(4)n is a, c, g, or tmisc_feature(9)..(9)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(33)..(37)n is a, c, g, or tmisc_feature(44)..(44)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or tmisc_feature(60)..(60)n is a, c, g, or tmisc_feature(96)..(96)n is a, c, g, or tmisc_feature(104)..(105)n is a, c, g, or tmisc_feature(152)..(152)n is a, c, g, or tmisc_feature(186)..(186)n is a, c, g, or tmisc_feature(223)..(223)n is a, c, g, or tmisc_feature(246)..(246)n is a, c, g, or t 210tttnttaant nggatgtgaa agccccgggc tcnnnnnggg aacngcatcc aaaacnggcn 60agctagagta cggtagaggg tggtggaatt tcctgngtag cggnnaaatg cgtagatata 120ggaaggaaca ccagtggcga aggcgaccac cnggactgat actgacactg aggtgcgaaa 180gcgtgnggag caaacaggat tagataccct ggtagtccac gcngtaaacg atgtcaacta 240gccgtnggaa tccttgagat tttagtggcg cagctaacgc attaagttga ccgcctgggg 300agtacggccg caaggttaaa actcaaatga attgacgggg gcccgcacaa gcggtggagc 360atgtggttta attcgaagca acgcgaagaa ccttaccagg ccttgacatg cagagaactt 420tccagagatg gattggtgcc ttcgggaact ctgacacagg tgctgcatgg ctgtcgtcag 480ctcgtgtcgt gagatgttgg gttaagtccc gtaacgagcg caacccttgt ccttagttac 540cagcacgtta tggtgggcac tctaaggaga ctgccggtga caaaccggag gaaggtgggg 600atgacgtcaa gtcatcatgg cccttacggc ctgggctaca cacgtgctac aatggtcggt 660acagagggtt gccaagccgc gaggtggagc taatctcaca aaaccgatcg tagtccggat 720cgcagtctgc aactcgactg cgtgaagtcg gaatcgctag taatcgcgaa tcagaatgtc 780gcggtgaata cgttcccg 798211798DNAPseudomonas putidamisc_feature(1)..(798)BCI 806 16S rDNAmisc_feature(11)..(12)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or t 211tttgttaagt nngatgtgaa agccccgggc tcaacctggg aactgcatcc aaaacnggca 60agctagagta cggtagaggg tggtggaatt tcctgtgtag cggtgaaatg cgtagatata 120ggaaggaaca ccagtggcga aggcgaccac ctggactgat actgacactg aggtgcgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gccgtaaacg atgtcaacta 240gccgttggaa tccttgagat tttagtggcg cagctaacgc attaagttga ccgcctgggg 300agtacggccg caaggttaaa actcaaatga attgacgggg gcccgcacaa gcggtggagc 360atgtggttta attcgaagca acgcgaagaa ccttaccagg ccttgacatg cagagaactt 420tccagagatg gattggtgcc ttcgggaact ctgacacagg tgctgcatgg ctgtcgtcag 480ctcgtgtcgt gagatgttgg gttaagtccc gtaacgagcg caacccttgt ccttagttac 540cagcacgtta tggtgggcac tctaaggaga ctgccggtga caaaccggag gaaggtgggg 600atgacgtcaa gtcatcatgg cccttacggc ctgggctaca cacgtgctac aatggtcggt 660acagagggtt gccaagccgc gaggtggagc taatctcaca aaaccgatcg tagtccggat 720cgcagtctgc aactcgactg cgtgaagtcg gaatcgctag taatcgcgaa tcagaatgtc 780gcggtgaata cgttcccg 798212524DNAStenotrophomonas maltophiliamisc_feature(1)..(524)BCI 808 16S rDNAmisc_feature(6)..(6)n is a, c, g, or tmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(17)..(17)n is a, c, g, or tmisc_feature(20)..(22)n is a, c, g, or tmisc_feature(27)..(29)n is a, c, g, or tmisc_feature(34)..(34)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(40)..(41)n is a, c, g, or tmisc_feature(47)..(47)n is a, c, g, or tmisc_feature(58)..(61)n is a, c, g, or tmisc_feature(74)..(74)n is a, c, g, or tmisc_feature(150)..(150)n is a, c, g, or tmisc_feature(197)..(197)n is a, c, g, or tmisc_feature(200)..(200)n is a, c, g, or t 212aacgcnttaa nttngcngcn nngggannnc ggtngcangn ntgaaantca aaggaatnnn 60ngggggcccg cacnagcggt ggagtatgtg gtttaattcg atgcaacgcg aagaacctta 120cctggccttg acatgtcgag aactttccan agatggattg gtgccttcgg gaactcgaac 180acaggtgctg catggcngtn gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac 240gagcgcaacc cttgtcctta gttgccagca cgtaatggtg ggaactctaa ggagaccgcc 300ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt acggccaggg 360ctacacacgt actacaatgg tggggacaga gggctgcaag ccggcgacgg taagccaatc 420ccagaaaccc catctcagtc cggattggag tctgcaactc gactccatga agtcggaatc 480gctagtaatc gcagatcagc attgctgcgg tgaatacgtt cccg 524213798DNAPseudomonas putidamisc_feature(1)..(798)BCI 809 16S rDNAmisc_feature(11)..(11)n is a, c, g, or tmisc_feature(36)..(36)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or t 213tttgttaagt nggatgtgaa agccccgggc tcaacntggg aactgcatcc aaaacnggca 60agctagagta cggtagaggg tggtggaatt tcctgtgtag cggtgaaatg cgtagatata 120ggaaggaaca ccagtggcga aggcgaccac ctggactgat actgacactg aggtgcgaaa 180gcgtggggag caaacaggat tagataccct ggtagtccac gccgtaaacg atgtcaacta 240gccgttggaa tccttgagat tttagtggcg cagctaacgc attaagttga ccgcctgggg 300agtacggccg caaggttaaa actcaaatga attgacgggg gcccgcacaa gcggtggagc 360atgtggttta attcgaagca acgcgaagaa ccttaccagg ccttgacatg cagagaactt 420tccagagatg gattggtgcc ttcgggaact ctgacacagg tgctgcatgg ctgtcgtcag 480ctcgtgtcgt gagatgttgg gttaagtccc gtaacgagcg caacccttgt ccttagttac 540cagcacgtta tggtgggcac tctaaggaga ctgccggtga caaaccggag gaaggtgggg 600atgacgtcaa gtcatcatgg cccttacggc ctgggctaca cacgtgctac aatggtcggt 660acagagggtt gccaagccgc gaggtggagc taatctcaca aaaccgatcg tagtccggat 720cgcagtctgc aactcgactg cgtgaagtcg gaatcgctag taatcgcgaa tcagaatgtc 780gcggtgaata cgttcccg 798214644DNAExiguobacterium sp.misc_feature(1)..(644)BCI 81 16S rDNA 214ccgacttcgg gtgttgcaaa ctctcgtggt gtgacgggcg gtgtgtacaa gacccgggaa 60cgtattcacc gcagtatgct gacctgcgat tactagcgat tccgacttca tgcaggcgag 120ttgcagcctg caatccgaac tgagaacggc tttctgggat tggctccacc tcgcggcttc 180gctgcccttt gtaccgtcca ttgtagcacg tgtgtagccc aactcataag gggcatgatg 240atttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcccta gagtgcccaa 300ccaaatgctg gcaactaagg acaagggttg cgctcgttgc gggacttaac ccaacatctc 360acgacacgag ctgacgacaa ccatgcacca cctgtcaccc ctgcccccga aggggaaggt 420acatctctgt accggtcagg gggatgtcaa gagttggtaa ggttcttcgc gttgcttcga 480attaaaccac atgctccacc gcttgtgcgg gtccccgtca attcctttga gtttcagcct 540tgcgaccgta ctccccaggc ggagtgctta atgcgttagc ttcagcactg aagggcggaa 600accctccaac acctagcact catcgtttac ggcgtggact acca 644215766DNANovosphingobium sediminicolamisc_feature(1)..(766)BCI 82 16S rDNA 215cgccttcgag tgaatccaac tcccatggtg tgacgggcgg tgtgtacaag gcctgggaac 60gtattcaccg cggcatgctg atccgcgatt actagcgatt ccgccttcat gctctcgagt 120tgcagagaac aatccgaact gagacggctt ttggagatta gctacccctc gcgaggtcgc 180tgcccactgt caccgccatt gtagcacgtg tgtagcccag cgtgtaaggg ccatgaggac 240ttgacgtcat ccccaccttc ctccggctta tcaccggcgg tttccttaga gtgcccaact 300taatgatggc aactaaggac gagggttgcg ctcgttgcgg gacttaaccc aacatctcac 360gacacgagct gacgacagcc atgcagcacc tgtcaccgat ccagccaaac tgaaggaaaa 420catctctgta atccgcgatc gggatgtcaa acgctggtaa ggttctgcgc gttgcttcga 480attaaaccac atgctccacc gcttgtgcag gcccccgtca attcctttga gttttaatct

540tgcgaccgta ctccccaggc ggataactta atgcgttagc tgcgccaccc aaattccatg 600aacccggaca gctagttatc atcgtttacg gcgtggacta ccagggtatc taatcctgtt 660tgctccccac gctttcgcac ctcagcgtca atacctgtcc agtgagccgc cttcgccact 720ggtgttcttc cgaatatcta cgaatttcac ctctacactc ggaatt 766216761DNAExiguobacterium acetylicummisc_feature(1)..(761)BCI 83 16S rDNA 216ccggcttcgg gtgttgcaaa ctctcgtggt gtgacgggcg gtgtgtacaa gacccgggaa 60cgtattcacc gcagtatgct gacctgcgat tactagcgat tccgacttca tgcaggcgag 120ttgcagcctg caatccgaac tgggaacggc tttatgggat tggctccacc tcgcggtctc 180gctgcccttt gtaccgtcca ttgtagcacg tgtgtagccc aactcataag gggcatgatg 240atttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcccta gagtgcccaa 300ctcaatgctg gcaactaagg ataggggttg cgctcgttgc gggacttaac ccaacatctc 360acgacacgag ctgacgacaa ccatgcacca cctgtcacca ttgtccccga agggaaaact 420tgatctctca agcggtcaat gggatgtcaa gagttggtaa ggttcttcgc gttgcttcga 480attaaaccac atgctccacc gcttgtgcgg gtccccgtca attcctttga gtttcagcct 540tgcggccgta ctccccaggc ggagtgctta atgcgttagc ttcagcactg aggggcggaa 600accccccaac acctagcact catcgtttac ggcgtggact accagggtat ctaatcctgt 660ttgctcccca cgctttcgcg cctcagcgtc agttacagac caaagagtcg ccttcgccac 720tggtgttcct ccacatctct acgcatttca ccgctacacg t 761217760DNAHerbaspirillum huttinesemisc_feature(1)..(760)BCI 9 16S rDNAmisc_feature(671)..(671)n is a, c, g, or t 217acttctggta aaacccgctc ccatggtgtg acgggcggtg tgtacaagac ccgggaacgt 60attcaccgcg acatgctgat ccgcgattac tagcgattcc aacttcatgg agtcgagttg 120cagactccaa tccggactac gatacacttt ctgggattag ctccccctcg cgggttggcg 180gccctctgta tgtaccattg tatgacgtgt gaagccctac ccataagggc catgaggact 240tgacgtcatc cccaccttcc tccggtttgt caccggcagt ctcattagag tgccctttcg 300tagcaactaa tgacaagggt tgcgctcgtt gcgggactta acccaacatc tcacgacacg 360agctgacgac agccatgcag cacctgtgtg atggttctct ttcgagcact cccaaatctc 420ttcgggattc catccatgtc aagggtaggt aaggtttttc gcgttgcatc gaattaatcc 480acatcatcca ccgcttgtgc gggtccccgt caattccttt gagttttaat cttgcgaccg 540tactccccag gcggtctact tcacgcgtta gctgcgttac caagtcaatt aagacccgac 600aactagtaga catcgtttag ggcgtggact accagggtat ctaatcctgt ttgctcccca 660cgctttcgtg natgagcgtc agtgttatcc cagggggctg ccttcgccat cggtattcct 720ccacatatct acgcatttca ctgctacacg tggaattcta 760218829DNAStenotrophomonas maltophiliamisc_feature(1)..(829)BCI 903 16S rDNAmisc_feature(7)..(7)n is a, c, g, or tmisc_feature(18)..(18)n is a, c, g, or tmisc_feature(38)..(38)n is a, c, g, or tmisc_feature(51)..(51)n is a, c, g, or tmisc_feature(54)..(55)n is a, c, g, or tmisc_feature(69)..(69)n is a, c, g, or tmisc_feature(85)..(85)n is a, c, g, or tmisc_feature(121)..(121)n is a, c, g, or tmisc_feature(137)..(137)n is a, c, g, or tmisc_feature(502)..(502)n is a, c, g, or t 218attactnggc gtaaagcntg cgtaggtggt tatttaantc cgttgtgaaa nccnngggct 60caacctggna actgcagtgg atacnggatg actagaatgt ggtagagggt agcggaattc 120ntggtgtagc agtgaantgc gtagagatca ggaggaacat ccatggcgaa ggcagctacc 180tggaccaaca ttgacactga ggcacgaaag cgtggggagc aaacaggatt agataccctg 240gtagtccacg ccctaaacga tgcgaactgg atgttgggtg caatttggca cgcagtatcg 300aagctaacgc gttaagttcg ccgcctgggg agtacggtcg caagactgaa actcaaagga 360attgacgggg gcccgcacaa gcggtggagt atgtggttta attcgatgca acgcgaagaa 420ccttacctgg ccttgacatg tcgagaactt tccagagatg gattggtgcc ttcgggaact 480cgaacacagg tgctgcatgg cngtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 540gcaacgagcg caacccttgt ccttagttgc cagcacgtaa tggtgggaac tctaaggaga 600ccgccggtga caaaccggag gaaggtgggg atgacgtcaa gtcatcatgg cccttacggc 660cagggctaca cacgtactac aatggtaggg acagagggct gcaagccggc gacggtaagc 720caatcccaga aaccctatct cagtccggat tggagtctgc aactcgactc catgaagtcg 780gaatcgctag taatcgcaga tcagcattgc tgcggtgaat acgttcccg 829219628DNAStenotrophomonas maltophiliamisc_feature(1)..(628)BCI 908 16S rDNA 219tacctgcttc tggtgcaaca aactcccatg gtgtgacggg cggtgtgtac aaggcccggg 60aacgtattca ccgcagcaat gctgatctgc gattactagc gattccgact tcatggagtc 120gagttgcaga ctccaatccg gactgagata gggtttctgg gattggctta ccgtcgccgg 180cttgcagccc tctgtcccta ccattgtagt acgtgtgtag ccctggccgt aagggccatg 240atgacttgac gtcatcccca ccttcctccg gtttgtcacc ggcggtctcc ttagagttcc 300caccattacg tgctggcaac taaggacaag ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacagccatg cagcacctgt gttcgagttc ccgaaggcac 420caatccatct ctggaaagtt ctcgacatgt caaggccagg taaggttctt cgcgttgcat 480cgaattaaac cacatactcc accgcttgtg cgggcccccg tcaattcctt tgagtttcag 540tcttgcgacc gtactcccca ggcggcgaac ttaacgcgtt agcttcgata ctgcgtgcca 600aattgcaccc aacatccagt tcgcatcg 628220744DNAPedobacter terraemisc_feature(1)..(744)BCI 91 16S rDNA 220acccccagct tccatggctt gacgggcggt gtgtacaagg cccgggaacg tattcaccgc 60gtcattgctg atacgcgatt actagcgaat ccaacttcat ggggtcgagt tgcagacccc 120aatccgaact gtgaacggct ttgtgagatt cgcatcatat tgctatgtag ctgccctctg 180taccgtccat tgtagcacgt gtgtagcccc ggacgtaagg gccatgatga cttgacgtcg 240tcccctcctt cctctctgtt tgcacaggca gtctgtttag agtccccacc attacatgct 300ggcaactaaa cataggggtt gcgctcgttg cgggacttaa cccaacacct cacggcacga 360gctgacgaca gccatgcagc acctagtttc gtgtccttgc ggactgatcc atctctggat 420cattcactaa ctttcaagcc cgggtaaggt tcctcgcgta tcatcgaatt aaaccacatg 480ctcctccgct tgtgcgggcc cccgtcaatt cctttgagtt tcacccttgc gggcgtactc 540cccaggtgga acacttaacg ctttcgctta gccgctgact gtgtatcgcc aacagcgagt 600gttcatcgtt tagggcgtgg actaccaggg tatctaatcc tgtttgatcc ccacgctttc 660gtgcctcagc gtcaataaga ccatagtaag ctgccttcgc aatcggtgtt ctgagacata 720tctatgcatt tcaccgctac ttgt 744221783DNASphingopyxis alaskensismisc_feature(1)..(783)BCI 914 16S rDNAmisc_feature(5)..(5)n is a, c, g, or tmisc_feature(8)..(8)n is a, c, g, or tmisc_feature(22)..(22)n is a, c, g, or tmisc_feature(24)..(24)n is a, c, g, or tmisc_feature(40)..(40)n is a, c, g, or tmisc_feature(47)..(47)n is a, c, g, or tmisc_feature(49)..(49)n is a, c, g, or tmisc_feature(52)..(52)n is a, c, g, or tmisc_feature(56)..(56)n is a, c, g, or tmisc_feature(68)..(68)n is a, c, g, or tmisc_feature(95)..(95)n is a, c, g, or tmisc_feature(119)..(119)n is a, c, g, or tmisc_feature(122)..(122)n is a, c, g, or tmisc_feature(137)..(137)n is a, c, g, or tmisc_feature(147)..(147)n is a, c, g, or t 221gaaanccngg ggctcaaccc cngnaattgc ctttgaaacn ggaaaantng antctnggag 60aggtcagngg aattccgagt gtagaggtga aattngtaga tattcggaag aacaccagng 120gngaaggcga ctgactngac aagtatngac gctgaggtgc gaaagcgtgg ggagcaaaca 180ggattagata ccctggtagt ccacgccgta aacgatgata actagctgtc cgggttcatg 240gaacttgggt ggcgcagcta acgcattaag ttatccgcct ggggagtacg gtcgcaagat 300taaaactcaa aggaattgac gggggcctgc acaagcggtg gagcatgtgg tttaattcga 360agcaacgcgc agaaccttac cagcgtttga catcctgatc gcggattaga gagatctttt 420ccttcagttc ggctggatca gtgacaggtg ctgcatggct gtcgtcagct cgtgtcgtga 480gatgttgggt taagtcccgc aacgagcgca accctcatcc ctagttgcca tcattcagtt 540gggcactcta aggaaactgc cggtgataag ccggaggaag gtggggatga cgtcaagtcc 600tcatggccct tacgcgctgg gctacacacg tgctacaatg gcaactacag tgggcagcaa 660cctcgcgagg ggtagctaat ctccaaaagt tgtctcagtt cggattgttc tctgcaactc 720gagagcatga aggcggaatc gctagtaatc gcggatcagc atgccgcggt gaatacgttc 780cca 783222764DNADyadobacter solimisc_feature(1)..(764)BCI 96 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(711)..(711)n is a, c, g, or tmisc_feature(720)..(720)n is a, c, g, or tmisc_feature(738)..(738)n is a, c, g, or tmisc_feature(743)..(743)n is a, c, g, or tmisc_feature(745)..(745)n is a, c, g, or tmisc_feature(747)..(748)n is a, c, g, or tmisc_feature(751)..(753)n is a, c, g, or tmisc_feature(760)..(760)n is a, c, g, or t 222nggtctcccc gactcccatg gcttgacggg cggtgtgtac aaggtccggg aacgtattca 60ccgcgtcata gctgatacgc gattactagc gattccagct tcatagagtc gagttgcaga 120ctccaatccg aactgagaat ggctttttgg gattggcatc acctcgcagt gtagctaccc 180tctgtaccat ccattgtagc acgtgtgttg ccctggacgt aagggccatg atgacttgac 240gtcgtcccct ccttcctctc tgtttgcaca ggcagtctgg ctagagtccc caccattacg 300tgctggcaac taaccatagg ggttgcgctc gttgcgggac ttaacccaac atctcacgac 360acgagctgac gacagccatg cagcaccttc aaacaggcca ttgctggctt acacatttct 420gcataattcc tgtctgattt agcccaggta aggttcctcg cgtatcatcg aattaaacca 480catgctccac cgcttgtgcg gacccccgtc aattcctttg agtttcaccg ttgccggcgt 540actccccagg tggaggactt aacggtttcc ctaagtcgct cagctctgca gccaaacaac 600gagtcctcat cgtttacagc atggactacc agggtatcta atcctgtttg ctccccatgc 660tttcgtgcct cagtgtcaaa caaatcgtag ccacctgcct tcgcaatcgg ngttctggan 720gatatctatg catttcancg ctncncnntc nnntccggcn gcct 764223506DNAMassilia kyonggiensismisc_feature(1)..(506)BCI 97 16S rDNA 223aagacccggg aacgtattca ccgcgacatg ctgatccgcg attactagcg attccaactt 60cacgcagtcg agttgcagac tgcgatccgg actacgatac actttctggg attagctccc 120cctcgcgggt tggcggccct ctgtatgtac cattgtatga cgtgtgaagc cctacccata 180agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg gcagtctcat 240tagagtgccc tttcgtagca actaatgaca agggttgcgc tcgttgcggg acttaaccca 300acatctcacg acacgagctg acgacagcca tgcagcacct gtgttcaggc tccctttcgg 360gcactcccag atctctccag gattcctgac atgtcaaggg taggtaaggt ttttcgcgtt 420gcatcgaatt aatccacatc atccaccgct tgtgcgggtc cccgtcaatt cctttgagtt 480ttaatcttgc gaccgtactc cccagg 506224808DNAStenotrophomonas maltophiliamisc_feature(1)..(808)BCI 970 16S rDNAmisc_feature(1)..(1)n is a, c, g, or tmisc_feature(3)..(3)n is a, c, g, or tmisc_feature(14)..(14)n is a, c, g, or tmisc_feature(16)..(17)n is a, c, g, or tmisc_feature(20)..(20)n is a, c, g, or tmisc_feature(26)..(26)n is a, c, g, or tmisc_feature(28)..(28)n is a, c, g, or tmisc_feature(35)..(35)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(41)..(41)n is a, c, g, or tmisc_feature(46)..(46)n is a, c, g, or tmisc_feature(51)..(51)n is a, c, g, or tmisc_feature(62)..(65)n is a, c, g, or tmisc_feature(68)..(68)n is a, c, g, or tmisc_feature(71)..(71)n is a, c, g, or tmisc_feature(73)..(73)n is a, c, g, or tmisc_feature(81)..(81)n is a, c, g, or tmisc_feature(83)..(83)n is a, c, g, or tmisc_feature(99)..(100)n is a, c, g, or tmisc_feature(111)..(111)n is a, c, g, or tmisc_feature(119)..(119)n is a, c, g, or tmisc_feature(131)..(131)n is a, c, g, or tmisc_feature(146)..(146)n is a, c, g, or tmisc_feature(176)..(177)n is a, c, g, or tmisc_feature(217)..(219)n is a, c, g, or t 224ntnggtggtt attnanntcn gttgtnanag ccctngnctc nacctnggaa ntgcagtgga 60tnnnnganga ntngaatgtg ntngagggta gcggaattnn tggtgtagca ntgaaatgng 120tagagatcag naggaacatc catggngaag gcagctacct ggaccaacat tgacanngag 180gcacgaaagc gtggggagca aacaggatta gataccnnng tagtccacgc cctaaacgat 240gcgaactgga tgttgggtgc aatttggcac gcagtatcga agctaacgcg ttaagttcgc 300cgcctgggga gtacggtcgc aagactgaaa ctcaaaggaa ttgacggggg cccgcacaag 360cggtggagta tgtggtttaa ttcgatgcaa cgcgaagaac cttacctggc cttgacatgt 420cgagaacttt ccagagatgg attggtgcct tcgggaactc gaacacaggt gctgcatggc 480tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg caacgagcgc aacccttgtc 540cttagttgcc agcacgtaat ggtgggaact ctaaggagac cgccggtgac aaaccggagg 600aaggtgggga tgacgtcaag tcatcatggc ccttacggcc agggctacac acgtactaca 660atggtaggga cagagggctg caagccggcg acggtaagcc aatcccagaa accctatctc 720agtccggatt ggagtctgca actcgactcc atgaagtcgg aatcgctagt aatcgcagat 780cagcattgct gcggtgaata cgttcccg 808225787DNABacillus subtilismisc_feature(1)..(787)BCI 989 16S rDNAmisc_feature(49)..(50)n is a, c, g, or tmisc_feature(77)..(78)n is a, c, g, or tmisc_feature(80)..(80)n is a, c, g, or tmisc_feature(82)..(82)n is a, c, g, or tmisc_feature(111)..(111)n is a, c, g, or t 225tgatgtgaaa gcccccggct caaccgggga gggtcattgg aaactgggnn acttgagtgc 60agaagaggag agtgganntn cnacgtgtag cggtgaaatg cgtagagatg nggaggaaca 120ccagtggcga aggcgactct ctggtctgta actgacgctg aggagcgaaa gcgtggggag 180cgaacaggat tagataccct ggtagtccac gccgtaaacg atgagtgcta agtgttaggg 240ggtttccgcc ccttagtgct gcagctaacg cattaagcac tccgcctggg gagtacggtc 300gcaagactga aactcaaagg aattgacggg ggcccgcaca agcggtggag catgtggttt 360aattcgaagc aacgcgaaga accttaccag gtcttgacat cctctgacaa tcctagagat 420aggacgtccc cttcgggggc agagtgacag gtggtgcatg gttgtcgtca gctcgtgtcg 480tgagatgttg ggttaagtcc cgcaacgagc gcaacccttg atcttagttg ccagcattca 540gttgggcact ctaaggtgac tgccggtgac aaaccggagg aaggtgggga tgacgtcaaa 600tcatcatgcc ccttatgacc tgggctacac acgtgctaca atggacagaa caaagggcag 660cgaaaccgcg aggttaagcc aatcccacaa atctgttctc agttcggatc gcagtctgca 720actcgactgc gtgaagctgg aatcgctagt aatcgcggat cagcatgccg cggtgaatac 780gttcccg 787226327DNAStenotrophomonas maltophiliamisc_feature(1)..(327)BCI 996 16S rDNAmisc_feature(1)..(2)n is a, c, g, or tmisc_feature(16)..(16)n is a, c, g, or tmisc_feature(37)..(37)n is a, c, g, or tmisc_feature(70)..(70)n is a, c, g, or tmisc_feature(73)..(73)n is a, c, g, or tmisc_feature(87)..(87)n is a, c, g, or tmisc_feature(89)..(89)n is a, c, g, or t 226nngtcagctc gtgtcntgag atgttgggtt aagtccngca acgagcgcaa cccttgtcct 60tagttgccan cangtaatgg tgggaantnt aaggagaccg ccggtgacaa accggaggaa 120ggtggggatg acgtcaagtc atcatggccc ttacggccag ggctacacac gtactacaat 180ggtagggaca gagggctgca agccggcgac ggtaagccaa tcccagaaac cctatctcag 240tccggattgg agtctgcaac tcgactccat gaagtcggaa tcgctagtaa tcgcagatca 300gcattgctgc ggtgaatacg ttcccgg 327227719DNAStenotrophomonas maltophiliamisc_feature(1)..(719)BCI 997 16S rDNAmisc_feature(8)..(9)n is a, c, g, or tmisc_feature(12)..(12)n is a, c, g, or tmisc_feature(23)..(27)n is a, c, g, or tmisc_feature(29)..(29)n is a, c, g, or tmisc_feature(39)..(40)n is a, c, g, or tmisc_feature(48)..(48)n is a, c, g, or tmisc_feature(51)..(51)n is a, c, g, or tmisc_feature(66)..(66)n is a, c, g, or tmisc_feature(68)..(69)n is a, c, g, or tmisc_feature(73)..(73)n is a, c, g, or tmisc_feature(76)..(76)n is a, c, g, or tmisc_feature(80)..(80)n is a, c, g, or tmisc_feature(85)..(85)n is a, c, g, or tmisc_feature(87)..(88)n is a, c, g, or tmisc_feature(93)..(93)n is a, c, g, or tmisc_feature(98)..(100)n is a, c, g, or tmisc_feature(102)..(102)n is a, c, g, or tmisc_feature(134)..(134)n is a, c, g, or tmisc_feature(145)..(145)n is a, c, g, or tmisc_feature(154)..(156)n is a, c, g, or tmisc_feature(158)..(158)n is a, c, g, or tmisc_feature(162)..(164)n is a, c, g, or tmisc_feature(173)..(174)n is a, c, g, or tmisc_feature(198)..(198)n is a, c, g, or tmisc_feature(210)..(211)n is a, c, g, or tmisc_feature(213)..(213)n is a, c, g, or tmisc_feature(229)..(229)n is a, c, g, or tmisc_feature(235)..(235)n is a, c, g, or tmisc_feature(239)..(239)n is a, c, g, or tmisc_feature(241)..(241)n is a, c, g, or tmisc_feature(316)..(316)n is a, c, g, or tmisc_feature(362)..(362)n is a, c, g, or t 227gaatttcnng gngtagcagt gannnnngna gagatcagnn ggaacatncc ntggcgaagg 60cagctncnng gancancatn gacantnngg cangaaannn tngggagcaa acaggattag 120ataccctggt agtncacgcc ctaancgatg cgannngnat gnnnggtgca atnnggcacg 180cagtatcgaa gctaacgngt taagttcgcn ncntggggag tacggtcgnc aagantgana 240ntcaaaggaa ttgacggggg cccgcacaag cggtggagta tgtggtttaa ttcgatgcaa 300cgcgaagaac cttacntggc cttgacatgt cgagaacttt ccagagatgg attggtgcct 360tngggaactc gaacacaggt gctgcatggc tgtcgtcagc tcgtgtcgtg agatgttggg 420ttaagtcccg caacgagcgc aacccttgtc cttagttgcc agcacgtaat ggtgggaact 480ctaaggagac cgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcatcatggc 540ccttacggcc agggctacac acgtactaca atggtaggga cagagggctg caagccggcg 600acggtaagcc aatcccagaa accctatctc agtccggatt ggagtctgca actcgactcc 660atgaagtcgg aatcgctagt aatcgcagat cagcattgct gcggtgaata cgttcccgg 719228500DNAStenotrophomonas rhizophilamisc_feature(1)..(500)BDNZ 45125 16S rDNA 228cggcagcaca gtaagagctt gctcttatgg gtggcgagtg gaggacgggt gaggaataca 60tcggaatcta ccttttcgtg ggggattacg tagggaaact tacgctaata ccgcatacga 120ccttcgggtg aaagcagggg accttcgggc cttgcctctt gtgaaaagag ccgatgtcgg 180attagctagt tggcggggta aaggcccacc aaggcgacga tccgtagctg gtctgagagg 240atgatcagcc acactggaac tgagacacgg tccagactcc tacgggaggc agcagtgggg 300aatattggac aatgggcgca agcctgatcc agccataccg cgtgggtgaa gaaggccttc 360gggttgtaaa gcccttttgt tgggaaagaa aagcagtcga ttaatactcg gttgttctga 420cggtacccaa agaataagca ccggctaact tcgtgccagc agccgcggta atacgaaggg 480tgcaagcgtt actcggaatt 500229500DNAStenotrophomonas rhizophilamisc_feature(1)..(500)BDNZ 46012 16S rDNA 229cacagtaaga gcttgctctt atgggtggcg agtggggacg ggtgaggaat acatcggaat 60ctaccttttc gtgggggata acgtagggaa acttacgcta ataccgcata cgaccttcgg 120gtgaaagcag gggaccttcg ggccttgcgc cctattcaag agccgatgtc ggattagcta 180gttggcgggg taaaggccca ccaaggcgac gatccgtagc tggtctgaga ggatgatcag 240ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg ggaatattgg 300acaatgggcg caagcctgat ccagccatac cgcgtgggtg aagaaggcct tcgggttgta 360aagccctttt gttgggaaag aaaagcagtc gattaatact cggttgttct gacggtaccc 420aaagaataag caccggctaa cttcgtgcca gcagccgcgg taatacgaag ggtgcaagcg 480ttactcggaa ttactgggcg 500230876DNAStenotrophomonas rhizophilamisc_feature(1)..(876)BDNZ 46120 16S rDNA 230ctcggtgata

gtgggtcata gctaaatgca gtcgacggag cacagtacga gcttgctctt 60atgggtggcg agtgttggat gggtgaggaa tacatcggaa tctacctttt cgtgggggat 120aacgtaggga aacttacgct aataccgcat acgaccttcg ggtgaaagca ggggaccttc 180gggccttgcg cggtttaaag agacgatgtc ggattagcta gttggcgggg taaaggccca 240ccaaggcgac gatccgtagc tggtctgaga ggatgatcag ccacactgga actgagacac 300ggtccagact cctacgggag gcagcagtgg ggaatattgg acaatgggcg caagcctgat 360ccagccatac cgcgtgggtg aagaaggcct tcgggttgta aagccctttt gttgggaaag 420aaaagcagtc gattaatact cggttgttct gacggtaccc aaagaataag caccggctaa 480cttcgtgcca gcagccgcgg taatacgaag ggtgcaagcg ttactcggaa ttactgggcg 540taaagcgtgc gtaggtggtt gtttaagtct gttgtgaaag ccctgggctc aacctgggaa 600ttgcagtgga tactgggcga ctagagtgtg gtagagggta gtggaattcc cggtgtagca 660gtgaaatgcg tagagatcgg gaggaacatc catggcgaaa gcagctacct ggaccaacac 720tgacactgag gcacgaaagc gtggggagca aacaggatta gataccctgg tagtccacgc 780cctaaacgat gcgaactgga tgttgggtgc aatttggcac gcagtatcga agctaacgcg 840ttaagttccg ccgcctgggg agtacgtccc aaaact 876231500DNAStenotrophomonas rhizophilamisc_feature(1)..(500)BDNZ 46856 16S rDNA 231ccatgcagtc gaacggcagc acaggagagc ttgctctctg ggtggcgagt ggcggacggg 60tgaggaatac atcggaatct accttttcgt gggggataac gtagggaaac ttacgctaat 120accgcatacg accttcgggt gaaagcaggg gaccttcggg ccttgcgcgg atagatgagc 180cgatgtcgga ttagctagtt ggcggggtaa aggcccacca aggcgacgat ccgtagctgg 240tctgagagga tgatcagcca cactggaact gagacacggt ccagactcct acgggaggca 300gcagtgggga atattggaca atgggcgcaa gcctgatcca gccataccgc gtgggtgaag 360aaggccttcg ggttgtaaag cccttttgtt gggaaagaaa agcagccgat taatactcgg 420ttgttctgac ggtacccaaa gaataagcac cggctaactt cgtgccagca gccgcggtaa 480tacgaagggt gcaagcgtta 500232500DNAStenotrophomonas chelatiphagamisc_feature(1)..(500)BDNZ 47207 16S rDNA 232tgcagtcgaa cggcagcaca gtaagagctt gctcttatgg gtggcgagtg gcggacgggt 60gaggaataca tcggaatcta ctttttcgtg ggggataacg tagggaaact tacgctaata 120ccgcatacga ccttcgggtg aaagcagggg accttcgggc cttgcgcgat tgaatgagcc 180gatgtcggat tagctagttg gcggggtaaa ggcccaccaa ggcgacgatc cgtagctggt 240ctgagaggat gatcagccac actggaactg agacacggtc cagactccta cgggaggcag 300cagtggggaa tattggacaa tgggcgcaag cctgatccag ccataccgcg tgggtgaaga 360aggccttcgg gttgtaaagc ccttttgttg ggaaagaaaa gcagcgggct aataccttgc 420tgttctgacg gtacccaaag aataagcacc ggctaacttc gtgccagcag ccgcggtaat 480acgaagggtg caagcgttac 500233500DNAStenotrophomonas rhizophilamisc_feature(1)..(500)BDNZ 48183 16S rDNA 233gcagtcgacg gcagcacagt aagagcttgc tcttatgggt ggcgagtggc ggacgggtga 60ggaatacatc ggaatctacc ttttcgtggg ggataacgta gggaaactta cgctaatacc 120gcatacgacc ttcgggtgaa agcaggggac cttcgggcct tgcgcggata gatgagccga 180tgtcggatta gctagttggc ggggtaaagg cccaccaagg cgacgatccg tagctggtct 240gagaggatga tcagccacac tggaactgag acacggtcca gactcctacg ggaggcagca 300gtggggaata ttggacaatg ggcgcaagcc tgatccagcc ataccgcgtg ggtgaagaag 360gccttcgggt tgtaaagccc ttttgttggg aaagaaaagc agtcgattaa tactcggttg 420ttctgacggt acccaaagaa taagcaccgg ctaacttcgt gccagcagcc gcggtaatac 480gaagggtgca agcgttactc 500234500DNAHerbaspirillum frisingensemisc_feature(1)..(500)BDNZ 50525 16S rDNA 234gcagtcgacg gcagcatagg agcttgctcc tgatggcgag tggcgaacgg gtgagtaata 60tatcggaacg tgccctagag tgggggataa ctagtcgaaa gattagctaa taccgcatac 120gatctaagga tgaaagtggg ggatcgcaag acctcatgct cctggagcgg ccgatatctg 180attagctagt tggtgaggta aaagctcacc aaggcgacga tcagtagctg gtctgagagg 240acgaccagcc acactgggac tgagacacgg cccagactcc tacgggaggc agcagtgggg 300aattttggac aatgggggca accctgatcc agcaatgccg cgtgagtgaa gaaggccttc 360gggttgtaaa gctcttttgt cagggaagaa acggttctgg ataataccta gagctaatga 420cggtacctga agaataagca ccggctaact acgtgccagc agccgcggta atacgtaggg 480tgcaagcgtt aatcggaatt 5002351046DNALuteibacter yeojuensismisc_feature(1)..(1046)BDNZ 57549 16S rDNA 235cccttgcggt tagactaacg gcttctggag cagctcactc ccatggtgtg acgggcggtg 60tgtacaaggc ccgggaacgt attcaccgca gcatagctga tctgcgatta ctagcgattc 120cgacttcatg gagtcgagtt gcagactcca atccggactg ggatcggctt tctgggatta 180gctccacctc gcggtcttgc aaccctctgt accgaccatt gtagtacgtg tgtagccctg 240gccgtaaggg ccatgatgac ttgacgtcat ccccaccttc ctccggtttg tcaccggcag 300tctccttaga gttcccgact ttactcgctg gcaactaagg acaagggttg cgctcgttgc 360gggacttaac ccaacatctc acgacacgag ctgacgacag ccatgcagca cctgtgttcc 420gattcccgaa ggcactcccg catctctgca ggattccgga catgtcaagg ccaggtaagg 480ttcttcgcgt tgcatcgaat taaaccacat actccaccgc ttgtgcgggc ccccgtcaat 540tcctttgagt ttcagtcttg cgaccgtact ccccaggcgg cgaacttaac gcgttagctt 600cgacactgat ctccgagttg agaccaacat ccagttcgca tcgtttaggg cgtggactac 660cagggtatct aatcctgttt gctccccacg ctttcgtgcc tcagcgtcag tgttgatcca 720gatggccgcc ttcgccactg atgttcctcc cgatctctac gcatttcacc gctacaccgg 780gaattccacc atcctctatc acactctagc tcgccagtat ccactgccat tcccaggttg 840agcccggggc tttcacagca gacttaacga accgcctacg cacgctttac gcccagtaat 900tccgattaac gcttgcaccc tccgtattac cgcggctgct ggcacggagt tagccggtgc 960ttattcctca ggtaccgtca gactgcatgg gtattagccc tgcagatttc gctcctgata 1020aaagtgcttt acaacccgaa ggcctt 1046236500DNAStenotrophomonas rhizophilamisc_feature(1)..(500)BDNZ 50839 16S rDNA 236gcagtcgacg gcagcacagt aagagcttgc tcttatgggt ggcgagtggc ggacgggtga 60ggaatacatc ggaatctacc ttttcgtggg ggataacgta gggaaactta cgctaatacc 120gcatacgacc ttcgggtgaa agcaggggac cttcgggcct tgcgcggata gatgagccga 180tgtcggatta gctagttggc ggggtaaagg cccaccaagg cgacgatccg tagctggtct 240gagaggatga tcagccacac tggaactgag acacggtcca gactcctacg ggaggcagca 300gtggggaata ttggacaatg ggcgcaagcc tgatccagcc ataccgcgtg ggtgaagaag 360gccttcgggt tgtaaagccc ttttgttggg aaagaaaagc agtcgattaa tactcggttg 420ttctgacggt acccaaagaa taagcaccgg ctaacttcgt gccagcagcc gcggtaatac 480gaagggtgca agcgttactc 500237650DNAStenotrophomonas rhizophilamisc_feature(1)..(650)BDNZ 51718 16S rDNA 237acggcagcac agtaagagct tgctcttatg ggtggcgagt ggcggacggg tgaggaatac 60atcggaatct accttttcgt gggggataac gtagggaaac ttacgctaat accgcatacg 120accttcgggt gaaagcaggg gaccttcggg ccttgcgcgg atagatgagc cgatgtcgga 180ttagctagtt ggcggggtaa aggcccacca aggcgacgat ccgtagctgg tctgagagga 240tgatcagcca cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga 300atattggaca atgggcgcaa gcctgatcca gccataccgc gtgggtgaag aaggccttcg 360ggttgtaaag cccttttgtt gggaaagaaa agcagtcgat taatactcgg ttgttctgac 420ggtacccaaa gaataagcac cggctaactt cgtgccagca gccgcggtaa tacgaagggt 480gcaagcgtta ctcggaatta ctgggcgtaa agcgtgcgta ggtggttgtt taagtctgtt 540gtgaaagccc tgggctcaac ctgggaattg cagtggatac tgggcgacta gagtgtggta 600gagggtagtg gaattcccgg tgtagcagtg aaatgcgtag agatcgggag 650238499DNAFrateuria sp.misc_feature(1)..(499)BDNZ 52707 16S rDNA 238acggcagcac agcagagctt gctctgtggg tggcgagtgg cggacgggtg agtaatgcat 60cgggacctac ctagacgtgg gggataacgt agggaaactt acgctaatac cgcacacatc 120ctacgggaga aagcagggga ccttcgggcc ttgcgcggtt agacggaccg atgttcgatt 180agcttgttgg tgaggtaatg gctcaccaag gcgacgatcg atagctggtc tgagaggatg 240atcagccaca ctggaactga gacacggtcc agactcctac gggaggcagc agtggggaat 300attggacaat gggcgcaagc ctgatccagc aatgccgcgt gtgtgaagaa ggccttcggg 360ttgtaaagca cttttatcag gagcgaaata ctaccggcta atatccggtg gggctgacgg 420tacctgagga ataagcaccg gctaacttcg tgccagcagc cgcggtaata cgaagggtgc 480aagcgttaat cggaattac 4992391237DNAJanthinobacterium sp.misc_feature(1)..(1237)BDNZ 54456 16S rDNA 239tcagattgaa cgctggcggc atgctttaca catgcaagtc gaacggcagc gcggggcaac 60ctggcggcga gtggcgaacg ggtgagtaat acatcggaac gtacccagaa gtgggggata 120acgtagcgaa agttacgcta ataccgcata cgttctacgg aagaaagtgg gggaccttcg 180ggcctcatgc ttttggagcg gccgatgtct gattagctag ttggtgaggt aaaggctcac 240caaggcgacg atcagtagct ggtctgagag gacgaccagc cacactggga ctgagacacg 300gcccagactc ctacgggagg cagcagtggg gaattttgga caatgggcgc aagcctgatc 360cagcaatgcc gcgtgagtga agaaggcctt cgggttgtaa agctcttttg tcagggaaga 420aacggctgag gataatacct tcggctaatg acggtacctg aagaataagc accggctaac 480tacgtgccag cagccgcggt aatacgtagg gtgcaagcgt taatcggaat tactgggcgt 540aaagcgtgcg caggcggttt tgtaagtctg acgtgaaatc cccgggctca acctgggaat 600tgcgttggag actgcaaggc tggagtctgg cagagggggg tagaattcca cgtgtagcag 660tgaaatgcgt agagatgtgg aggaacaccg atggcgaagg cagccccctg ggtcaagact 720gacgctcatg cacgaaagcg tggggagcaa acaggattag ataccctggt agtccacgcc 780ctaaacgatg tctactagtt gtcgggtctt aattgacttg gtaacgcagc taacgcgtga 840agtagaccgc ctggggagta cggtcgcaag attaaaactc aaaggaattg acggggaccc 900gcacaagcgg tggatgatgt ggattaattc gatgcaacgc gaaaaacctt acctaccctt 960gacatgtcag gaatcctgga gagatctagg agtgcccgaa agggagcctg aacacaggtg 1020ctgcatggct gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca 1080acccttgtca ttagttgcta cgaaagggca ctctaatgag actgccggtg acaaaccgga 1140ggaaggtggg gatgacgtca agtcctcatg gcccttatgg gtagggcttc acacgtcata 1200caatggtaca tacagagggc cgccaacccg cgagggg 12372401346DNABosea thiooxidansmisc_feature(1)..(1346)BDNZ 54522 16S rDNA 240gtcgaacggg cacttcggtg ctagtggcag acgggtgagt aacgcgtggg aacgtgcctt 60tcggttcgga ataatccagg gaaacttgga ctaataccgg atacgccctt cgggggaaag 120atttatcgcc gaaagatcgg cccgcgtctg attagctagt tggtgaggta aaggctcacc 180aaggcgacga tcagtagctg gtctgagagg atgatcagcc acattgggac tgagacacgg 240cccaaactcc tacgggaggc agcagtgggg aatattggac aatgggcgaa agcctgatcc 300agccatgccg cgtgagtgat gaaggcctta gggttgtaaa gctcttttgt ccgggaagat 360aatgactgta ccggaagaat aagccccggc taacttcgtg ccagcagccg cggtaatacg 420aagggggcta gcgttgctcg gaatcactgg gcgtaaaggg cgcgtaggcg gacttttaag 480tcggaggtga aagcccaggg ctcaaccctg gaattgcctt cgatactggg agtcttgagt 540tcggaagagg ttggtggaac tgcgagtgta gaggtgaaat tcgtagatat tcgcaagaac 600accggtggcg aaggcggcca actggtccga aactgacgct gaggcgcgaa agcgtgggga 660gcaaacagga ttagataccc tggtagtcca cgccgtaaac gatgaatgcc agccgttggg 720gagcttgctc ttcagtggcg cagctaacgc tttaagcatt ccgcctgggg agtacggtcg 780caagattaaa actcaaagga attgacgggg gcccgcacaa gcggtggagc atgtggttta 840attcgaagca acgcgcagaa ccttaccagc ttttgacatg tccggtttga tcggcagaga 900tgcctttctt cagttcggct ggccggaaca caggtgctgc atggctgtcg tcagctcgtg 960tcgtgagatg ttgggttaag tcccgcaacg agcgcaaccc tcgcccctag ttgccatcat 1020tcagttggga actctagggg gactgccggt gataagccgc gaggaaggtg gggatgacgt 1080caagtcctca tggcccttac aggctgggct acacacgtgc tacaatggcg gtgacaatgg 1140gcagcgaaag ggcgacctcg agctaatccc aaaaagccgt ctcagttcag attgtactct 1200gcaactcgag tacatgaagg tggaatcgct agtaatcgtg gatcagcatg ccacggtgaa 1260tacgttcccg ggccttgtac acaccgcccg tcacaccatg ggagttgggt ttacccgaag 1320gcgtcgcgct aaccgcaagg aggcag 13462411012DNAStenotrophomonas rhizophilamisc_feature(1)..(1012)BDNZ 54841 16S rDNA 241tactccggtt acgggcggca cgtgcagcgc ctccgaggtt agctacctgc ttctggtgca 60acaaactccc atggtgtgac gggcggtgtg tacaaggccc gggaacgtat tcaccgcagc 120aatgctgatc tgcgattact agcgattccg acttcatgga gtcgagttgc agactccaat 180ccggactgag atagggtttc tgggattggc ttgccctcgc gggtttgcag ccctctgtcc 240ctaccattgt agtacgtgtg tagccctggt cgtaagggcc atgatgactt gacgtcatcc 300ccaccttcct ccggtttgtc accggcggtc tccttagagt tcccaccatt acgtgctggc 360aactaaggac aagggttgcg ctcgttgcgg gacttaaccc aacatctcac gacacgagct 420gacgacagcc atgcagcacc tgtgttcgag ttcccgaagg caccaatcca tctctggaaa 480gttctcgaca tgtcaagacc aggtaaggtt cttcgcgttg catcgaatta aaccacatac 540tccaccgctt gtgcgggccc ccgtcaattc ctttgagttt cagtcttgcg accgtactcc 600ccaggcggcg aacttaacgc gttagcttcg atactgcgtg ccaaattgca cccaacatcc 660agttcgcatc gtttagggcg tgcactacca cggtatctaa tcctgtttgc tccccacgct 720ttcgtgcctc agtgtcagtg ttggtccagg tagctgcctt cgccatggat gttcctcccg 780atctctacgc attcactgct acaccgggaa ttccactacc ctctaccaca ctctagtcgc 840cagtatccac tgcattccca ggttgagcca gggcttcaca cagacttaaa caaccaccta 900cgcagcttac gccagtatcc gagtaacgct gcacccttcg tattaccggc gctgctgcac 960gagttagcgg gcttatctta gatacggtcc gaacaacccg gatataagtt ca 10122421016DNAStenotrophomonas rhizophilamisc_feature(1)..(1016)BDNZ 54850 16S rDNA 242ttgtttgggg ttcggggatg gacgtgcagc gcctccgaag gttagctacc tgcttctggt 60gcaacaaact cccatggtgt gacgggcggt gtgtacaagg cccgggaacg tattcaccgc 120agcaatgctg atctgcgatt actagcgatt ccgacttcat ggagtcgagt tgcagactcc 180aatccggact gagatagggt ttctgggatt ggcttgccct cgcgggtttg cagccctctg 240tccctaccat tgtagtacgt gtgtagccct ggtcgtaagg gccatgatga cttgacgtca 300tccccacctt cctccggttt gtcaccggcg gtctccttag agttcccacc attacgtgct 360ggcaactaag gacaagggtt gcgctcgttg cgggacttaa cccaacatct cacgacacga 420gctgacgaca gccatgcagc acctgtgttc gagttcccga aggcaccaat ccatctctgg 480aaagttctcg acatgtcaag accaggtaag gttcttcgcg ttgcatcgaa ttaaaccaca 540tactccaccg cttgtgcggg cccccgtcaa ttcctttgag tttcagtctt gcgaccgtac 600tccccaggcg gcgaacttaa cgcgttagct tcgatactgc gtgccaaatt gcacccaaca 660tccagttcgc atcgtttagg gcgtgactac caggtatcta atcctgtttg ctccccacgc 720tttcgtgcct cagtgtcagt gttggtccag gtagctgcct tcgccatgat gttcctcccg 780atctctacgc atttcactgc tacaccggga attccactac cctctaccac aactctagtc 840gccagtatca ctgcaattcc aaggttgagc cagggctttc acacagactt aacaccacct 900acgccacgct tacgccaagt aatcgagtac ctgcacgtcg tatacccgcg cctgctgcac 960gagtagccgg agcttattct ttggtaccgt ccgaacaacc cgagatatta tatctc 10162431019DNAStenotrophomonas chelatiphagamisc_feature(1)..(1019)BDNZ 54952 16S rDNA 243tccctttgca agcaggcacg tacagcgcct ccgaggttaa gctacctgct tctggtgcaa 60caaactccca tggtgtgacg ggcggtgtgt acaaggcccg ggaacgtatt caccgcagca 120atgctgatct gcgattacta gcgattccga cttcatggag tcgagttgca gactccaatc 180cggactgaga tagggtttct gggattggct taccgtcgcc ggcttgcagc cctctgtccc 240taccattgta gtacgtgtgt agccctggcc gtaagggcca tgatgacttg acgtcatccc 300caccttcctc cggtttgtca ccggcggtct ccttagagtt cccaccatta cgtgctggca 360actaaggaca agggttgcgc tcgttgcggg acttaaccca acatctcacg acacgagctg 420acgacagcca tgcagcacct gtgttcgagt tcccgaaggc accaatccat ctctggaaag 480ttctcgacat gtcaaggcca ggtaaggttc ttcgcgttgc atcgaattaa accacatact 540ccaccgcttg tgcgggcccc cgtcaattcc tttgagtttc agtcttgcga ccgtactccc 600caggcggcga acttaacgcg ttagcttcga tactgcgtgc caaagtgcac ccaacatcca 660gttcgcatcg tttagggcgt ggactaccag ggtatctaat cctgtttgct ccccacgctt 720tcgtgcctca gtgtcagtgt tggtccaggt agctgccttc gccatggatg ttcctcccga 780tctctacgca tttcactgct acacgggaat tccgctaccc tctacacact tctagtcgtc 840cagtttccac tgcagttcca aggttgagcc cagggctttt acaaacagac ttaaacgacc 900acctacgcac gcttttacgc tcagttattt cgagatacgc ttgcaccctt tcgattaccg 960cggctgctgt ccgaagatta gcgggtgcta atctttgcta cccgttctaa cagcaggat 1019244985DNAStenotrophomonas rhizophilamisc_feature(1)..(985)BDNZ 54999 16S rDNA 244tagcgcgagg agggggcgca cgtacagcgc ctccgaggtt aagctacctg cttctggtgc 60aacaaactcc catggtgtga cgggcggtgt gtacaaggcc cgggaacgta ttcaccgcag 120caatgctgat ctgcgattac tagcgattcc gacttcatgg agtcgagttg cagactccaa 180tccggactga gatagggttt ctgggattgg cttgccctcg cgggtttgca gccctctgtc 240cctaccattg tagtacgtgt gtagccctgg tcgtaagggc catgatgact tgacgtcatc 300cccaccttcc tccggtttgt caccggcggt ctccttagag ttcccaccat tacgtgctgg 360caactaagga caagggttgc gctcgttgcg ggacttaacc caacatctca cgacacgagc 420tgacgacagc catgcagcac ctgtgttcga gttcccgaag gcaccaatcc atctctggaa 480agttctcgac atgtcaagac caggtaaggt tcttcgcgtt gcatcgaatt aaaccacata 540ctccaccgct tgtgcgggcc cccgtcaatt cctttgagtt tcagtcttgc gaccgtactc 600cccaggcggc gaacttaacg cgttagcttc gatactgcgt gccaaattgc acccaacatc 660cagttcgcat cgtttagggc gtgcactacc agggtatcta atcctgtttg ctccccacgc 720tttcgtgcct cagtgtcagt gttggtccag gtagctgcct tcgccatgga tgttcctccc 780gatctctacg catttcactg ctacaccggg gaattccact accctctacc acactctagt 840cgcccagtat ccactgcaat tcccaggtga gccaggcttt ccacacagac taaacaacca 900cctaccgcac gcttacgccc agtattcgag taacgctgca cccatcgatt accgcgctgc 960tgcacgaagt tagccggtgc taatc 9852451400DNAStenotrophomonas rhizophiliamisc_feature(1)..(1400)BDNZ 56181 16S rDNA 245gcagtcgacg gcagcacagt aagagcttgc tcttatgggt ggcgagtggc ggacgggtga 60ggaatacatc ggaatctacc ttttcgtggg ggataacgta gggaaactta cgctaatacc 120gcatacgacc ttcgggtgaa agcaggggac cttcgggcct tgcgcggata gatgagccga 180tgtcggatta gctagttggc ggggtaaagg cccaccaagg cgacgatccg tagctggtct 240gagaggatga tcagccacac tggaactgag acacggtcca gactcctacg ggaggcagca 300gtggggaata ttggacaatg ggcgcaagcc tgatccagcc ataccgcgtg ggtgaagaag 360gccttcgggt tgtaaagccc ttttgttggg aaagaaaagc agtcgattaa tactcggttg 420ttctgacggt acccaaagaa taagcaccgg ctaacttcgt gccagcagcc gcggtaatac 480gaagggtgca agcgttactc ggaattactg ggcgtaaagc gtgcgtaggt ggttgtttaa 540gtctgttgtg aaagccctgg gctcaacctg ggaattgcag tggatactgg gcgactagag 600tgtggtagag ggtagtggaa ttcccggtgt agcagtgaaa tgcgtagaga tcgggaggaa 660catccatggc gaaggcagct acctggacca acactgacac tgaggcacga aagcgtgggg 720agcaaacagg attagatacc tggtagtcca cgccctaaac gatgcgaact ggatgttggg 780tgcaatttgg cacgcagtat cgaagctaac gcgttaagtt cgccgcctgg ggagtacggt 840cgcaagactg aaactcaaag gaattgacgg gggcccgcac aagcggtgga gtatgtggtt 900taattcgatg caacgcgaag aaccttacct ggtcttgaca tgtcgagaac tttccagaga 960tggattggtg ccttcgggaa ctcgaacaca ggtgctgcat ggctgtcgtc agctcgtgtc 1020gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctt gtccttagtt gccagcacgt 1080aatggtggga actctaagga gaccgccggt gacaaaccgg aggaaggtgg ggatgacgtc 1140aagtcatcat ggcccttacg accagggcta cacacgtact acaatggtag ggacagaggg 1200ctgcaaaccc gcgagggcaa gccaatccca gaaaccytat ctcagtccgg

attggagtct 1260gcaactcgac tccatgaagt cggaatcgct agtaatcgca gatcagcatt gctgcggtga 1320atacgttccc gggccttgta cacaccgccc gtcacaccat gggagtttgt tgcaccagaa 1380gcaggtagct taacctcgga 1400246985DNAChitinophaga arvensicolamisc_feature(1)..(985)BDNZ 56343 16S rDNA 246gcggttcctt gcggttgccg acttcaggtc cccccggctt tcatggcttg acgggcggtg 60tgtacaaggt ccgggaacgt attcaccgta tcattgctga tatacgatta ctagcgattc 120cagcttcatg aggtcgagtt gcagacctca atccgaactg agatgggatt tttgagatta 180gcagcctgtt accagggagc agccctttgt tcccaccatt gtagcacgtg tgtagccctg 240ggcataaagg ccatgatgac ttgacatcat cccctccttc ctcgcgtctt acgacggcag 300tttcactaga gttcccacct tgacgtgctg gcaactagtg ataggggttg cgctcgttgc 360gggacttaac ccaacacctc acggcacgag ctgacgacag ccatgcagca ccttacaatc 420tgtgtattgc tacaaagaca cctttcagca tcggtcagac tgcattctag cccaggtaag 480gttcctcgcg tatcatcgaa ttaaaccaca tgctccaccg cttgtgcgga cccccgtcaa 540ttcctttgag tttcaacctt gcggtcgtac ttcccaggtg gattacttaa tgctttcgct 600cagacacaca ctgtgtatcg cgtatgtcga gtaatcatcg tttagggcgt ggactaccag 660ggtatctaat cctgtttgat ccccacgctt tcgtgcctca gcgtcaatat ttgtgtagcc 720agctgccttc gcaattggtg ttctatgtca tatctatgca tttcaccgct acatgacata 780ttccgctaac ctccacaaca ttcaagacat atagtatcca tggcagtttc cgagttaagc 840tcggagattt caccacggac ttacacgtcc gcctacgcac cctttaaacc cagtgaatcc 900ggataacgct tgcaccctcc gtattaccgc ggctgctggc acggagttag ccggtgctta 960ttcacctggt accgtcaagc tcctt 9852471044DNAStenotrophomonas chelatiphagamisc_feature(1)..(1044)BDNZ 58264 16S rDNA 247gccctcccga aggttaagct acctgcttct ggtgcaacaa actcccatgg tgtgacgggc 60ggtgtgtaca aggcccggga acgtattcac cgcagcaatg ctgatctgcg attactagcg 120attccgactt catggagtcg agttgcagac tccaatccgg actgagatag ggtttctggg 180attggcttac cgtcgccggc ttgcagccct ctgtccctac cattgtagta cgtgtgtagc 240cctggccgta agggccatga tgacttgacg tcatccccac cttcctccgg tttgtcaccg 300gcggtctcct tagagttccc accattacgt gctggcaact aaggacaagg gttgcgctcg 360ttgcgggact taacccaaca tctcacgaca cgagctgacg acagccatgc agcacctgtg 420ttcgagttcc cgaaggcacc aatccatctc tggaaagttc tcgacatgtc aaggccaggt 480aaggttcttc gcgttgcatc gaattaaacc acatactcca ccgcttgtgc gggcccccgt 540caattccttt gagtttcagt cttgcgaccg tactccccag gcggcgaact taacgcgtta 600gcttcgatac tgcgtgccaa attgcaccca acatccagtt cgcatcgttt agggcgtgga 660ctaccagggt atctaatcct gtttgctccc cacgctttcg tgcctcagtg tcagtgttgg 720tccaggtagc tgccttcgcc atggatgttc ctcccgatct ctacgcattt cactgctaca 780ccgggaattc cgctaccctc taccacactc tagtcatcca gtttccactg cagttcccag 840gttgagccca gggctttcac aacagactta aacaaccacc tacgcacgct ttacgcccag 900taattccgag taacgcttgc acccttcgta ttaccgcggc tgctggcacg aagttagccg 960gtgcttattc tttgggtacc gtcagaacag ctgggtatta gcccgctgct tttctttccc 1020aacaaaaggg ctttacaacc cgaa 1044248853DNADuganella violaceinigramisc_feature(1)..(853)BDNZ 58291 16S rDNA 248agcgccctcc ttgcggttaa gctacctact tctggtaaaa cccgctccca tggtgtgacg 60ggcggtgtgt acaagacccg ggaacgtatt caccgcgaca tgctgatccg cgattactag 120cgattccaac ttcatgtagt cgagttgcag actacaatcc ggactacgat acactttctg 180ggattagctc cccctcgcgg gttggcggcc ctctgtatgt accattgtat gacgtgtgaa 240gccctaccca taagggccat gaggacttga cgtcatcccc accttcctcc ggtttgtcac 300cggcagtctc attagagtgc tcttgcgtag caactaatga caagggttgc gctcgttgcg 360ggacttaacc caacatctca cgacacgagc tgacgacagc catgcagcac ctgtgtgatg 420gttctctttc gagcactccc aaatctctcc gggattccat ccatgtcaag ggtaggtaag 480gtttttcgcg ttgcatcgaa ttaatccaca tcatccaccg cttgtgcggg tccccgtcaa 540ttcctttgag ttttaatctt gcgaccgtac tccccaggcg gtctacttca cgcgttagct 600gcgttactaa gtcaattaag acccaacaac tagtagacat cgtttagggc gtggactacc 660agggtatcta atcctgtttg ctccccacgc tttcgtgcat gagcgtcagt tttgacccag 720ggggctgcct tcgccatcgg tgttcctcca catctctacg catttcactg ctacacgtgg 780aattctaccc ccctctggca aactctagcc tcgcagtctc catcgccatt cccaggttaa 840gcccggggaa ttt 8532491056DNAFrateuria sp.misc_feature(1)..(1056)BDNZ 60517 16S rDNA 249cgtcgtcccc ttgcggttag actaacggct tctggagcaa ctcactccca tggtgtgacg 60ggcggtgtgt acaaggcccg ggaacgtatt caccgcagca tagctgatct gcgattacta 120gcgattccga cttcacgaag tcgagttgca gacttcgatc cggactggga tcggctttct 180gggattggct ccacctcgcg gtattgcaac cctctgtacc gaccattgta gtacgtgtgt 240agccctggcc gtaagggcca tgatgacttg acgtcatccc caccttcctc cggtttgtca 300ccggcagtct ccttagagtt cccaccatta cgtgctggca actaaggaca agggttgcgc 360tcgttgcggg acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct 420gtgttccgat tcccgaaggc actcccgcat ctctgcagga ttccggacat gtcaaggcca 480ggtaaggttc ttcgcgttgc atcgaattaa accacatact ccaccgcttg tgcgggcccc 540cgtcaattcc tttgagtttc agtcttgcga ccgtactccc caggcggcga acttaacgcg 600ttagcttcga cactgatctc cgagttgaga ccaacatcca gttcgcatcg tttagggcgt 660ggactaccag ggtatctaat cctgtttgct ccccacgctt tcgtgcctca gcgtcagtgt 720tgtcccagat ggccgccttc gccactgatg ttcctcccga tctctacgca tttcaccgct 780acaccgggaa ttccaccatc ctctgacaca ctctagcttg ccagtatcca ctgccattcc 840caggttgagc ccggggattt cacagcagac ttaacaaacc gcctacgcac gctttacgcc 900cagtaattcc gattaacgct tgcacccttc gtattaccgc ggctgctggc acgaagttag 960ccggtgctta ttcctcaggt accgtcagcc ccaccggata ttagccggta gtatttcgct 1020cctgataaaa gtgctttaca acccgaaggc cttctt 10562501025DNALeifsonia shinshuensismisc_feature(1)..(1025)BDNZ 61433 16S rDNA 250ccaagggttg ggccaccggc ttcgggtgtt accgactttc atgacttgac gggcggtgtg 60tacaaggccc gggaacgtat tcaccgcagc gttgctgatc tgcgattact agcgactccg 120acttcatgag gtcgagttgc agacctcaat ccgaactgag accggctttt tgggattcgc 180tccaccttac ggtattgcag ccctttgtac cggccattgt agcatgcgtg aagcccaaga 240cataaggggc atgatgattt gacgtcatcc ccaccttcct ccgagttgac cccggcagtc 300tcctatgagt tcccaccatt acgtgctggc aacatagaac gagggttgcg ctcgttgcgg 360gacttaaccc aacatctcac gacacgagct gacgacaacc atgcaccacc tgtttacgag 420tgtccaaaga gttgaccatt tctggcccgt tctcgtatat gtcaagcctt ggtaaggttc 480ttcgcgttgc atcgaattaa tccgcatgct ccgccgcttg tgcgggcccc cgtcaattcc 540tttgagtttt agccttgcgg ccgtactccc caggcggggc gcttaatgcg ttagctgcga 600cacggaaacc gtggaatggt ccccacatct agcgcccaac gtttacggcg tggactacca 660gggtatctaa tcctgttcgc tccccacgct ttcgctcctc agcgtcagtt acggcccaga 720gaactgcctt cgccatcggt gttcctcctg atatctgcgc attccaccgc tacaccagga 780attccattct cccctaccgc actctagtct gcccgtaccc actgcaggcc cgaggttgag 840cctcgggttt tcacagcaga cgcgacagac cgcctacgag ctctttacgc ccaataattc 900cggacaacgc tcgcacccta cgtattaccg cggctgctgg cacgtagtta gccggtgctt 960tttctgcagg taccgtcact ttcgcttctt ccctactaaa agaggtttac aacccgaagg 1020ccgtc 1025251696DNASphingobium chlorophenolicummisc_feature(1)..(696)BDNZ 61473 16S rDNA 251ctcttgcggt tagcgcacag ccttcgggtg aaaccaactc ccatggtgtg acgggcggtg 60tgtacaaggc ctgggaacgt attcaccgcg gcatgctgat ccgcgattac tagcgattcc 120gccttcatgc tctcgagttg cagagaacaa tccgaactga gacgactttt ggagattagc 180ttccactcgc atggtcgctg cccactgtag tcgccattgt agcacgtgtg tagcccaacg 240cgtaagggcc atgaggactt gacgtcatcc ccaccttcct ccggcttatc accggcggtt 300cctttagagt acccaactaa atgatggcaa ctaaaggcga gggttgcgct cgttgcggga 360cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg tcacctatcc 420agccgaactg aaggaaagtg tctccacgat ccgcgatagg gatgtcaaac gttggtaagg 480ttctgcgcgt tgcttcgaat taaaccacat gctccaccgc ttgtgcaggc ccccgtcaat 540tcctttgagt tttaatcttg cgaccgtact ccccaggcgg ataacttaat gcgttagctg 600cgccactgaa atgccatgca ccccagcagc tagttatcat cgtttacggc gtgactacca 660gggtatctaa tcctgtttgc tccccacgct ttcgca 6962521041DNAJanthinobacterium sp.misc_feature(1)..(1041)BDNZ 63491 16S rDNA 252agcgccctcc ttgcggttaa gctacctact tctggtaaaa cccgctccca tggtgtgacg 60ggcggtgtgt acaagacccg ggaacgtatt caccgcggca tgctgatccg cgattactag 120cgattccaac ttcacgcagt cgagttgcag actgcgatcc ggactacgat gcactttctg 180ggattagctc cccctcgcgg gttggcggcc ctctgtatgc accattgtat gacgtgtgaa 240gccctaccca taagggccat gaggacttga cgtcatcccc accttcctcc ggtttgtcac 300cggcagtctc attagagtgc cctttcgtag caactaatga caagggttgc gctcgttgcg 360ggacttaacc caacatctca cgacacgagc tgacgacagc catgcagcac ctgtgttcag 420gctccctttc gggcacccyy caatctctcg arggttcctg acatgtcaag ggtaggtaag 480gtttttcgcg ttgcatcgaa ttaatccaca tcatccaccg cttgtgcggg tccccgtcaa 540ttcctttgag ttttaatctt gcgaccgtac tccccaggcg gtctacttca cgcgttagct 600gcgttaccaa gtcaattaag acccgacaac tagtagacat cgtttagggc gtggactacc 660agggtatcta atcctgtttg ctccccacgc tttcgtgcat gagcgtcagt cttgacccag 720ggggctgcct tcgccatcgg tgttcctcca catctctacg catttcactg ctacacgtgg 780aattctaccc ccctctgcca gactccagcc ttgcagtctc caatgcaatt cccaggttaa 840gcccggggat ttcacatcag acttacaaaa ccgcctgcgc acgctttacg cccagtaatt 900ccgattaacg cttgcaccct acgtattacc gcggctgctg gcacgtagtt agccggtgct 960tattcttcag gtaccgtcat taggcccagg tattaaccwg ggccgtttct tccctgacaa 1020aararcttta caacccgaag g 1041253824DNAStenotrophomonas chelatiphagamisc_feature(1)..(824)BDNZ 64212 16S rDNA 253cgtggcagcg ccctcccgaa ggttaagcta cctgcttctg gtgcaacaaa ctcccatggt 60gtgacgggcg gtgtgtacaa ggcccgggaa cgtattcacc gcagcaatgc tgatctgcga 120ttactagcga ttccgacttc atggagtcga gttgcagact ccaatccgga ctgagatagg 180gtttctggga ttggcttacc gtcgccggct tgcagccctc tgtccctacc attgtagtac 240gtgtgtagcc ctggccgtaa gggccatgat gacttgacgt catccccacc ttcctccggt 300ttgtcaccgg cggtctcctt agagttccca ccattacgtg ctggcaacta aggacaaggg 360ttgcgctcgt tgcgggactt aacccaacat ctcacgacac gagctgacga cagccatgca 420gcacctgtgt tcgagttccc gaaggcacca atccatctct ggaaagttct cgacatgtca 480aggccaggta aggttcttcg cgttgcatcg aattaaacca catactccac cgcttgtgcg 540ggcccccgtc aattcctttg agtttcagtc ttgcgaccgt actccccagg cggcgaactt 600aacgcgttag cttcgatact gcgtgccaaa gtgcacccaa catccagttc gcatcgttta 660gggcgtggac taccagggta tctaatcctg tttgctcccc acgctttcgt gcctcagtgt 720cagtgttggt ccaggwagct gccttcgcca tggatgttcc tcccgatctc tacgcatttc 780actgctacac cggggaattc cgctaccctc taccacactc tagt 824254930DNALysinibacillus fusiformismisc_feature(1)..(930)BDNZ 63466 16S rDNA 254gttacctcac cgacttcggg tgttacaaac tctcgtggtg tgacgggcgg tgtgtacaag 60gcccgggaac gtattcaccg cggcatgctg atccgcgatt actagcgatt ccggcttcat 120gtaggcgagt tgcagcctac aatccgaact gagaacgact ttatcggatt agctccctct 180cgcgagttgg caaccgtttg tatcgtccat tgtagcacgt gtgtagccca ggtcataagg 240ggcatgatga tttgacgtca tccccacctt cctccggttt gtcaccggca gtcaccttag 300agtgcccaac taaatgatgg caactaagat caagggttgc gctcgttgcg ggacttaacc 360caacatctca cgacacgagc tgacgacaac catgcaccac ctgtcaccgt tgcccccgaa 420ggggaaacta tatctctaca gtggtcaacg ggatgtcaag acctggtaag gttcttcgcg 480ttgcttcgaa ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa ttcctttgag 540tttcagtctt gcgaccgtac tccccaggcg gagtgcttaa tgcgttagct gcagcactaa 600ggggcggaaa ccccctaaca cttagcactc atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcgc ctcagtgtca gttacagacc agatagtcgc 720cttcgccact ggtgttcctc caaatctcta cgcatttcac cgctacactt ggaattccac 780tatcctcttc tgcactcaag tctcccagtt tccaatgacc ctccacggtt gagccgtggg 840ctttcacatc agacttaaga aaccacctgc gcgcgcttta cgcccaataa ttccggacaa 900cgcttgccac ctacgtatta ccgcggctgc 930255881DNALuteibacter rhizovicinusmisc_feature(1)..(881)BDNZ 65069 16S rDNA 255caaggcccgg gaacgtattc accgcagcat agctgatctg cgattactag cgattccgac 60ttcatggagt cgagttgcag actccaatcc ggactgggat cggctttctg ggattagctc 120cacctcgcgg tcttgcaacc ctctgtaccg accattgtag tacgtgtgta gccctggccg 180taagggccat gatgacttga cgtcatcccc accttcctcc ggtttgtcac cggcagtctc 240cttagagttc ccaccattac gtgctggcaa ctaaggacaa gggttgcgct cgttgcggga 300cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg tgttccgatt 360cccgaaggca ctcctgcatc tctgctggat tccggacatg tcaaggccag gtaaggttct 420tcgcgttgca tcgaattaaa ccacatactc caccgcttgt gcgggccccc gtcaattcct 480ttgagtttca gtcttgcgac cgtactcccc aggcggcgaa cttaacgcgt tagcttcgac 540actgatctcc gagttgagac caacatccag ttcgcatcgt ttagggcgtg gactaccagg 600gtatctaatc ctgtttgctc cccacgcttt cgtgcctcag cgtcagtgtt gatccagatg 660gccgccttcg ccactgatgt tcctcccgat ctctacgcat ttcaccgcta caccgggaat 720tccaccatcc tctatcacac tctagctcgc cagtatccat tgccattccc aggttgagcc 780cggggctttc acaacagact taacgaaccg cctacgcacg ctttacgccc agtaattccg 840attaacgctt gcaccctccg tattaccgcg gctgctggca c 881256925DNARhizobium miluonensemisc_feature(1)..(925)BDNZ 65070 16S rDNA 256ctaccttcgg gtaaaaccaa ctcccatggt gtgacgggcg gtgtgtacaa ggcccgggaa 60cgtattcacc gcggcatgct gatccgcgat tactagcgat tccaacttca tgcactcgag 120ttgcagagtg caatccgaac tgagatggct tttggagatt agctcacact cgcgtgctcg 180ctgcccactg tcaccaccat tgtagcacgt gtgtagccca gcccgtaagg gccatgagga 240cttgacgtca tccccacctt cctctcggct tatcaccggc agtcccctta gagtgcccaa 300ctaaatgctg gcaactaagg gcgagggttg cgctcgttgc gggacttaac ccaacatctc 360acgacacgag ctgacgacag ccatgcagca cctgtctctg cgccaccgaa gtggacccca 420tatctctacg ggtaacacag gatgtcaagg gctggtaagg ttctgcgcgt tgcttcgaat 480taaaccacat gctccaccgc ttgtgcgggc ccccgtcaat tcctttgagt tttaatcttg 540cgaccgtact ccccaggcgg aatgtttaat gcgttagctg cgccaccgaa cagtatactg 600cccgacggct aacattcatc gtttacggcg tggactacca gggtatctaa tcctgtttgc 660tccccacgct ttcgcacctc agcgtcagta atggaccagt gagccgcctt cgccactggt 720gttcctccga atatctacga atttcacctc tacactcgga attccactca cctcttccat 780actccagatc gacagtatca aaggcagttc cagggttgag ccctgggatt tcacccctga 840ctgatcgatc cgcctacgtg cgctttacgc ccagtaattc cgaacaacgc tagccccctt 900cgtattaccg cggctgctgg cacga 9252571048DNAStenotrophomonas rhizophilamisc_feature(1)..(1048)BDNZ 65303 16S rDNA 257ggcagcgccc tcccgaaggt taagctacct gcttctggtg caacaaactc ccatggtgtg 60acgggcggtg tgtacaaggc ccgggaacgt attcaccgca gcaatgctga tctgcgatta 120ctagcgattc cgacttcatg gagtcgagtt gcagactcca atccggactg agatagggtt 180tctgggattg gcttgccctc gcgggtttgc agccctctgt ccctaccatt gtagtacgtg 240tgtagccctg gtcgtaaggg ccatgatgac ttgacgtcat ccccaccttc ctccggtttg 300tcaccggcgg tctccttaga gttcccacca ttacgtgctg gcaactaagg acaagggttg 360cgctcgttgc gggacttaac ccaacatctc acgacacgag ctgacgacag ccatgcagca 420cctgtgttcg agttcccgaa ggcaccaatc catctctgga aagttctcga catgtcaaga 480ccaggtaagg ttcttcgcgt tgcatcgaat taaaccacat actccaccgc ttgtgcgggc 540ccccgtcaat tcctttgagt ttcagtcttg cgaccgtact ccccaggcgg cgaacttaac 600gcgttagctt cgatactgcg tgccaaattg cacccaacat ccagttcgca tcgtttaggg 660cgtggactac cagggtatct aatcctgttt gctccccacg ctttcgtgcc tcagtgtcag 720tgttggtcca ggtagctgcc ttcgccatgg atgttcctcc cgatctctac gcatttcact 780gctacaccgg gaattccact accctctacc acactctagt cgcccagtat ccactgcaat 840tcccaggttg agcccagggc tttcacaaca gacttaaaca accacctacg cacgctttac 900gcccagtaat tccgagtaac gcttgcaccc ttcgtattac cgcggctgct ggcacgaagt 960tagccggtgc ttattctttg ggtaccgtca gaacaaccga gtattaatcg actgcttttc 1020tttcccaaca aaagggcttt acaacccg 1048258707DNANovosphingobium rosamisc_feature(1)..(707)BDNZ 65589 16S rDNA 258gtcgcctgcc tcccttgcgg gttagctcaa cgccttcgag tgaatccaac tcccatggct 60gtgacgggcg gtgtgtacaa ggcctgggaa cgtattcacc gcggcatgct gatccgcgat 120tactagcgat tccgccttca tgctctcgag ttgcagagaa caatccgaac tgagacggct 180tttggagatt agctcacact cgcgtgcttg ctgcccactg tcaccgccat tgtagcacgt 240gtgtagccca gcgtgtaagg gccatgagga cttgacgtca tccccacctt cctccggctt 300atcaccggcg gtttccttag agtgcccaac ttaatgatgg caactaagga cgagggttgc 360gctcgttgcg ggacttaacc caacatctca cgacacgagc tgacgacagc catgcagcac 420ctgtcactca tccagccgaa ctgaagaaat ccatctctgg aaatcgcgat gaggatgtca 480aacgctggta aggttctgcg cgttgcttcg aattaaacca catgctccac cgcttgtgca 540ggcccccgtc aattcctttg agttttaatc ttgcgaccgt actccccagg cggataactt 600aatgcgttag ctgcgccacc ccagcaccat gtgcccggac agctagttat catcgtttta 660cggcgtggac taccagggta tctaatcctg tttgctcccc acgcttt 707259834DNANovosphingobium rosamisc_feature(1)..(834)BDNZ 65619 16S rDNA 259ccttgcgggt tagctcaacg ccttcgagtg aatccaactc ccatggtgtg acgggcggtg 60tgtacaaggc ctgggaacgt attcaccgcg gcatgctgat ccgcgattac tagcgattcc 120gccttcatgc tctcgagttg cagagaacaa tccgaactga gacggctttt ggagattagc 180tcacactcgc gtgcttgctg cccactgtca ccgccattgt agcacgtgtg tagcccagcg 240tgtaagggcc atgaggactt gacgtcatcc ccaccttcct ccggcttatc accggcggtt 300tccttagagt gcccaactta atgatggcaa ctaaggacga gggttgcgct cgttgcggga 360cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg tcactcatcc 420agccgaactg aagaaatcca tctctggaaa tcgcgatgag gatgtcaaac gctggtaagg 480ttctgcgcgt tgcttcgaat taaaccacat gctccaccgc ttgtgcaggc ccccgtcaat 540tcctttgagt tttaatcttg cgaccgtact ccccaggcgg ataacttaat gcgttagctg 600cgccacccaa gcaccatgtg cccggacagc tagttatcat cgtttacggc gtggactacc 660agggtatcta atcctgtttg ctccccacgc tttcgcacct cagcgtcaat acttgtccag 720cgggccgcct tcgccactgg tgttcttccg aatatctacg aatttcacct ctacactcgg 780aattccaccc gcctctccaa gattctagta cactagtttc aagggcagtt ccgg 8342601380DNARhizobium pisimisc_feature(1)..(1380)BDNZ 66326 16S rDNA 260gctgcctcct tgcggttagc gcactacctt cgggtaaaac caactcccat ggtgtgacgg 60gcggtgtgta caaggcccgg gaacgtattc accgcggcat gctgatccgc gattactagc 120gattccaact tcatgcactc gagttgcaga gtgcaatccg aactgagatg gcttttggag 180attagctcac actcgcgtgc tcgctgccca ctgtcaccac cattgtagca cgtgtgtagc 240ccagcccgta agggccatga ggacttgacg tcatccccac cttcctctcg gcttatcacc 300ggcagtcccc ttagagtgcc caactgaatg ctggcaacta agggcgaggg ttgcgctcgt 360tgcgggactt aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtgt 420cccggtcccc gaagggaacc ttgcatctct gcaagtagcc gggcatgtca agggctggta 480aggttctgcg cgttgcttcg aattaaacca catgctccac cgcttgtgcg

ggcccccgtc 540aattcctttg agttttaatc ttgcgaccgt actccccagg cggaatgttt aatgcgttag 600ctgcgccacc gaacagtata ctgcccgacg gctaacattc atcgtttacg gcgtggacta 660ccagggtatc taatcctgtt tgctccccac gctttcgcac ctcagcgtca gtaatggacc 720agtgagccgc cttcgccact ggtgttcctc cgaatatcta cgaatttcac ctctacactc 780ggaattccac tcacctcttc catactccag atcgacagta tcaaaggcag ttccagggtt 840gagccctggg atttcacccc tgactgatcg atccgcctac gtgcgcttta cgcccagtaa 900ttccgaacaa cgctagcccc cttcgtatta ccgcggctgc tggcacgaag ttagccgggg 960cttcttctcc ggataccgtc attatcttct ccggtgaaag agctttacaa ccctagggcc 1020ttcatcactc acgcggcatg gctggatcag gcttgcgccc attgtccaat attccccact 1080gctgcctccc gtaggagttt gggccgtgtc tcagtcccaa tgtggctgat catcctctca 1140gaccagctat ggatcgtcgc cttggtaggc ctttacccca ccaactagct aatccaacgc 1200gggccgatcc tttaccgata aatctttccc ccaaagggca catacggtat tagcacaagt 1260ttccctgcgt tattccgtag taaagggtac gttcccacgc gttactcacc cgtctgccgc 1320tccccttgcg gggcgctcga cttgcatgtg ttaagcctgc cgccagcgtt cgttctgagc 13802611429DNARamlibacter henchirensismisc_feature(1)..(1429)BDNZ 66331 16S rDNA 261atcgccctcc ttgcggttag gctaactact tctggcagaa cccgctccca tggtgtgacg 60ggcggtgtgt acaagacccg ggaacgtatt caccgcgaca tgctgatccg cgattactag 120cgattccgac ttcacgcagt cgagttgcag actgcgatcc ggactacgac tggttttatg 180ggattagctc cccctcgcgg gttggcaacc ctctgtacca gccattgtat gacgtgtgta 240gccctaccca taagggccat gaggacttga cgtcatcccc accttcctcc ggtttgtcac 300cggcagtctc attagagtgc cctttcgtag caactaatga caagggttgc gctcgttgcg 360ggacttaacc caacatctca cgacacgagc tgacgacagc catgcagcac ctgtgttctg 420gctctctttc gagcactccc acatctctgc gggattccag acatgtcaag ggtaggtaag 480gtttttcgcg ttgcatcgaa ttaaaccaca tcatccaccg cttgtgcggg tccccgtcaa 540ttcctttgag tttcaacctt gcggccgtac tccccaggcg gtcaacttca cgcgttagct 600tcgttactga gtcagtgaag acccaacaac cagttgacat cgtttagggc gtggactacc 660agggtatcta atcctgtttg ctccccacgc tttcgtgcat gagcgtcagt gcaggcccag 720gggattgcct tcgccatcgg tgttcctccg catatctacg catttcactg ctacacgcgg 780aattccatcc ccctctgccg cactccagcg atgcagtcac aaatgcagtt cccaggttaa 840gcccggggat ttcacacctg tcttacatca ccgcctgcgc acgctttacg cccagtaatt 900ccgattaacg cttgcaccct acgtattacc gcggctgctg gcacgtagtt agccggtgct 960tattcttacg gtaccgtcat gagccctctg tattagagaa agccttttcg ttccgtacaa 1020aagcagttta caacccgagg gccttcatcc tgcacgcgga atggctggat caggcttgcg 1080cccattgtcc aaaattcccc actgctgcct cccgtaggag tctgggccgt gtctcagtcc 1140cagtgtggct ggtcgtcctc tcagaccagc tacagatcgt cggcttggtg agcctttacc 1200ccaccaacta cctaatctgc catcggccgc tccaattgcg cgaggtcttg cgatcccccg 1260ctttcaacct cagttcgtat gcggtattag cgtagctttc gctacgttat cccccacaac 1320tgggcacgtt ccgatgtatt actcacccgt tcgccactcg ccaccagggt tgcccccgtg 1380ctgccgttcg acttgcatgt gtaaagcatt ccgccagcgt tcaatctga 14292621098DNACaulobacter henriciimisc_feature(1)..(1098)BDNZ 66341 16S rDNA 262cctgcctctc ttgcgagtta gcgcagcgcc ttcgggtaaa gccaactccc atggtgtgac 60gggcggtgtg tacaaggccc gggaacgtat tcaccgcggc atgctgatcc gcgattacta 120gcgattccaa cttcatgcac tcgagttgca gagtgcaatc cgaactgaga cgacttttag 180ggattggctc cccctcgcgg gattgcagcc ctctgtagtc gccattgtag cacgtgtgta 240gcccaccttg taagggccat gaggacttga cgtcatcccc accttcctcc gaattaactt 300cggcagtact attagagtgc ccagccaaac ctgatggcaa ctaatagcga gggttgcgct 360cgttgcggga cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg 420tgtcccagtc cccgaaggga aagccgcatc tctgcggcgg tccgggcatg tcaaaaggtg 480gtaaggttct gcgcgttgct tcgaattaaa ccacatgctc caccgcttgt gcgggccccc 540gtcaattcct ttgagtttta atcttgcgac cgtactcccc aggcggagtg cttaatgcgt 600tagctgcgtc accgacaggc atgcctgccg acaactagca ctcatcgttt acagcgtgga 660ctaccagggt atctaatcct gtttgctccc cacgctttcg agcctcagcg tcagtaacgg 720accagtatgt cgccttcgcc actggtgttc ttccgaatat ctacgaattt cacctctaca 780ctcggagttc cacatacctc ttccgtactc aagatagcca gtatcaaagg caattccaag 840gttgagccct gggctttcac ctctgactaa actatccgcc tacgctccct ttacgcccag 900taattccgag caacgctagc ccccttcgta ttaccgcggc tgctggcacg aagttagccg 960gggcttcttc tccgggtacc gtcattatcg tccccggtga aagaatttta caatcctaag 1020accttcatca ttcacgcggc atggctgcgt caggctttcg cccattgcgc aagattcccc 1080actgctgcct cccgtagg 10982631450DNABacillus subtilismisc_feature(1)..(1450)BDNZ 66347 16S rDNA 263cggcggctgg ctcctaaagg ttacctcacc gacttcgggt gttacaaact ctcgtggtgt 60gacgggcggt gtgtacaagg cccgggaacg tattcaccgc ggcatgctga tccgcgatta 120ctagcgattc cagcttcacg cagtcgagtt gcagactgcg atccgaactg agaacagatt 180tgtgggattg gcttaacctc gcggtttcgc tgccctttgt tctgtccatt gtagcacgtg 240tgtagcccag gtcataaggg gcatgatgat ttgacgtcat ccccaccttc ctccggtttg 300tcaccggcag tcaccttaga gtgcccaact gaatgctggc aactaagatc aagggttgcg 360ctcgttgcgg gacttaaccc aacatctcac gacacgagct gacgacaacc atgcaccacc 420tgtcactctg cccccgaagg ggacgtccta tctctaggat tgtcagagga tgtcaagacc 480tggtaaggtt cttcgcgttg cttcgaatta aaccacatgc tccaccgctt gtgcgggccc 540ccgtcaattc ctttgagttt cagtcttgcg accgtactcc ccaggcggag tgcttaatgc 600gttagctgca gcactaaggg gcggaaaccc cctaacactt agcactcatc gtttacggcg 660tggactacca gggtatctaa tcctgttcgc tccccacgct ttcgctcctc agcgtcagtt 720acagaccaga gagtcgcctt cgccactggt gttcctccac atctctacgc atttcaccgc 780tacacgtgga attccactct cctcttctgc actcaagttc cccagtttcc aatgaccctc 840cccggttgag ccgggggctt tcacatcaga cttaagaaac cgcctgcgag ccctttacgc 900ccaataattc cggacaacgc ttgccaccta cgtattaccg cggctgctgg cacgtagtta 960gccgtggctt tctggttagg taccgtcaag gtaccgccct attcgaacgg tacttgttct 1020tccctaacaa cagagcttta cgatccgaaa accttcatca ctcacgcggc gttgctccgt 1080cagactttcg tccattgcgg aagattccct actgctgcct cccgtaggag tctgggccgt 1140gtctcagtcc cagtgtggcc gatcaccctc tcaggtcggc tacgcatcgt tgccttggtg 1200agccgttacc tcaccaacta gctaatgcgc cgcgggtcca tctgtaagtg gtagccraag 1260ccacctttta tgtttgaacc atgcggttca aacaaccatc cggtattagc cccggtttcc 1320cggagttatc ccagtcttac aggcaggtta cccacgtgtt actcacccgt ccgccgctaa 1380catcagggag caagctccca tctgtccgct cgacttgcat gtattaggca cgccgccagc 1440gttcgtcctg 1450264933DNABosea minatitlanensismisc_feature(1)..(933)BDNZ 66354 16S rDNA 264cgcctgcctc cttgcggtta gcgcgacgcc ttcgggtaaa cccaactccc atggtgtgac 60gggcggtgtg tacaaggccc gggaacgtat tcaccgtggc atgctgatcc acgattacta 120gcgattccac cttcatgcac tcgagttgca gagtgcaatc tgaactgaga cggctttttg 180ggattagctc gaggtcgccc tttcgctgcc cattgtcacc gccattgtag cacgtgtgta 240gcccagcctg taagggccat gaggacttga cgtcatcccc accttcctcg cggcttatca 300ccggcagtcc ccctagagtt cccaacttaa tgatggcaac taggggcgag ggttgcgctc 360gttgcgggac ttaacccaac atctcacgac acgagctgac gacagccatg cagcacctgt 420gttccggcca gccgaactga agaaaggcat ctctgccgat caaaccggac atgtcaaaag 480ctggtaaggt tctgcgcgtt gcttcgaatt aaaccacatg ctccaccgct tgtgcgggcc 540cccgtcaatt cctttgagtt ttaatcttgc gaccgtactc cccaggcgga atgcttaaag 600cgttagctgc gccactgaag agcaagctcc ccaacggctg gcattcatcg tttacggcgt 660ggactaccag ggtatctaat cctgtttgct ccccacgctt tcgcgcctca gcgtcagttt 720cggaccagtt ggccgccttc gccaccggtg ttcttgcgaa tatctacgaa tttcacctct 780acactcgcag ttccaccaac ctctttccga actcaagact ccccagtatc gaaaggcaat 840ttccaggggt tgagcccctg gggcttttcc cctcccgact ttaaaagtcc cccctacgcc 900gcccttttac gccccagttg atttccgagc aac 933265640DNADuganella violaceinigramisc_feature(1)..(640)BDNZ 66361 16S rDNA 265gcgccctcct tgcggttaag ctacctactt ctggtaaacc cgctcccatg gtgtgacggg 60cggtgtgtac aagacccggg aacgtattca ccgcgacatg ctgatccgcg attactagcg 120attccaactt catgtagtcg agttgcagac tacaatccgg actacgatac actttctggg 180attagctccc cctcgcgggt tggcggccct ctgtatgtac cattgtatga cgtgtgaagc 240cctacccata agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg 300gcagtctcat tagagtgctc ttgcgtagca actaatgaca agggttgcgc tcgttgcggg 360acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct gtgtgatggt 420tctctttcga gcactcccaa atctctccgg gattccatcc atgtcaaggg taggtaaggt 480ttttcgcgtt gcatcgaatt aatccacatc atccaccgct tgtgcgggtc cccgtcaatt 540cctttgagtt ttaatcttgc gaccgtactc cccaggcggt ctacttcacg cgttagctgc 600gttactaagt caattaagac ccaacaacta gtagacatcg 6402661064DNAPolaromonas ginsengisolimisc_feature(1)..(1064)BDNZ 66373 16S rDNA 266cgccctcctt gcggttaggc taactacttc tggcagaacc cgctcccatg gtgtgacggg 60cggtgtgtac aagacccggg aacgtattca ccgcgacatt ctgatccgcg attactagcg 120attccgactt cacgtagtcg agttgcagac tacgatccgg actacgactg gttttatggg 180attagctccc cctcgcgggt tggcaaccct ctgtaccagc cattgtatga cgtgtgtagc 240cctacctata agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg 300gcagtctcat tagagtgccc aactaaatgt agcaactaat gacaagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca gccatgcagc acctgtgtta 420cggttctctt tcgagcacta agccatctct ggcgaattcc gtacatgtca aaggtaggta 480aggtttttcg cgttgcatcg aattaaacca catcatccac cgcttgtgcg ggtccccgtc 540aattcctttg agtttcaacc ttgcggccgt actccccagg cggtcaactt cacgcgttag 600cttcgttact gagtactaat gcacccaaca accagttgac atcgtttagg gcgtggacta 660ccagggtatc taatcctgtt tgctccccac gctttcgtgc atgagcgtca gtacaggtcc 720aggggattgc cttcgccatc ggtgttcctc cgcatatcta cgcatttcac tgctacacgc 780ggaattccat ccccctctac cgtactctag ctatacagtc acagatgcaa ttcccaggtt 840gagcccgggg atttcacaac tgtcttatat aaccgcctgc gcacgcttta cgcccagtaa 900ttccgattaa cgctcgcacc ctacgtatta ccgcggctgc tggcacgtag ttagccggtg 960cttattctta cggtaccgtc attagccctc tttattagaa agagccgttt cgttccgtac 1020aaaagcagtt tacaacccga aggccttctt cctgcacgcg gcat 10642671060DNARhodoferax ferrireducensmisc_feature(1)..(1060)BDNZ 66374 16S rDNA 267cgccctcctt gcggttaggc taactacttc tggcagaacc cgctcccatg gtgtgacggg 60cggtgtgtac aagacccggg aacgtattca ccgtgacatt ctgatccacg attactagcg 120attccgactt cacgcagtcg agttgcagac tgcgatccgg actacgactg gttttatggg 180attagctccc cctcgcgggt tggcaaccct ttgtaccagc cattgtatga cgtgtgtagc 240cccacctata agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg 300gcagtctcac tagagtgccc aactaaatgt agcaactaat gacaagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca gccatgcagc acctgtgtta 420cggctctctt tcgagcacga agctatctct agcgacttcc gtacatgtca aaggtgggta 480aggtttttcg cgttgcatcg aattaaacca catcatccac cgcttgtgcg ggtccccgtc 540aattcctttg agtttcaacc ttgcggccgt actccccagg cggtcaactt cacgcgttag 600cttcgttact gagtcagtga agacccaaca accagttgac atcgtttagg gcgtggacta 660ccagggtatc taatcctgtt tgctccccac gctttcgtgc atgagcgtca gtacaggtcc 720aggggattgc cttcgccatc ggtgttcctc cgcatatcta cgcatttcac tgctacacgc 780ggaattccat ccccctctac cgtactctag ctatgcagtc acaaatgcag gtcccaggtt 840gagcccgggg atttcacatc tgtcttacat aaccgcctgc gcacgcttta cgcccagtaa 900ttccgattaa cgctcgcacc ctacgtatta ccgcggctgc tggcacgtag ttagccggtg 960cttattctta cggtaccgtc attagcccac cgtattaggg cagaccgttt cgttccgtac 1020aaaagcagtt tacaaccccg aaggccttca tcctgcacgc 1060268924DNAStenotrophomonas rhizophilamisc_feature(1)..(924)BDNZ 66478 16S rDNA 268cctgcttctg gtgcacaaac tcccatggtg tgacgggcgg tgtgtacaag gcccgggaac 60gtattcaccg cagcaatgct gatctgcgat tactagcgat tccgacttca tggagtcgag 120ttgcagactc caatccggac tgagataggg tttctgggat tggcttgccc tcgcgggttt 180gcagccctct gtccctacca ttgtagtacg tgtgtagccc tggccgtaag ggccatgatg 240acttgacgtc atccccacct tcctccggtt tgtcaccggc ggtctcctta gagttcccac 300cattacgtgc tggcaactaa ggacaagggt tgcgctcgtt gcgggactta acccaacatc 360tcacgacacg agctgacgac agccatgcag cacctgtgtt cgagttcccg aaggcaccaa 420tccatctctg gaaagttctc gacatgtcaa ggccaggtaa ggttcttcgc gttgcatcga 480attaaaccac atactccacc gcttgtgcgg gcccccgtca attcctttga gtttcagtct 540tgcgaccgta ctccccaggc ggcgaactta acgcgttagc ttcgatactg cgtgccaaat 600tgcacccaac atccagttcg catcgtttag ggcgtggact accagggtat ctaatcctgt 660ttgctcccca cgctttcgtg cctcagtgtc agtgttggtc caggtagctg ccttcgccat 720ggatgttcct cctgatctct acgcatttca ctgctacacc aggaattcca ctaccctcta 780ccacactcta gtcgtccagt atccactgca attcccaggt tgagcccagg gctttcacaa 840cagacttaaa caaccaccta cgcacgcttt acgcccagta attccgagta acgcttgcac 900ccttcgtatt accgcggctg ctgg 9242691057DNASphingobium quisquiliarummisc_feature(1)..(1057)BDNZ 66576 16S rDNA 269ctgcctccct tgcgggttag ctcaacgcct tcgagtgaat ccaactccca tggtgtgacg 60ggcggtgtgt acaaggcctg ggaacgtatt caccgcggca tgctgatccg cgattactag 120cgattccgcc ttcatgctct cgagttgcag agaacaatcc gaactgagac gacttttgga 180gattagcttc cactcgcatg gtcgctgccc actgtagtcg ccattgtagc acgtgtgtag 240cccaacgcgt aagggccatg aggacttgac gtcatcccca ccttcctccg gcttatcacc 300ggcggttcct ttagagtacc caactaaatg atggcaacta aaggcgaggg ttgcgctcgt 360tgcgggactt aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtca 420cctatccagc cgaactgaag gaaagtgtct ccacgatccg cgatagggat gtcaaacgtt 480ggtaaggttc tgcgcgttgc ttcgaattaa accacatgct ccaccgcttg tgcaggcccc 540cgtcaattcc tttgagtttt aatcttgcga ccgtactccc caggcggata acttaatgcg 600ttagctgcgc cactgaaatg ccatgcaccc cagcagctag ttatcatcgt ttacggcgtg 660gactaccagg gtatctaatc ctgtttgctc cccacgcttt cgcacctcag cgtcaacaat 720cgtccagtga gccgccttcg ccactggtgt tcttccgaat atctacgaat ttcacctcta 780cactcggaat tccactcacc tctccgatgt tcaagcaatc cagtctcaaa ggcagttccg 840gggttgagcc ccgggctttc acctctgact taaatcgccg cctacgtgcg ctttacgccc 900agtaattccg aacaacgcta gccccctccg tattaccgcg gctgctggca cggagttagc 960cggggcttat tctcccggta ctgtcattat catcccgggg taaaagagct ttacaaccct 1020aaggccttca tcactcacgc ggcattgctg gatcagg 10572701066DNAPolaromonas ginsengisolimisc_feature(1)..(1066)BDNZ 66821 16S rDNA 270cgccctcctt gcggttaggc taactacttc tggcagaacc cgctcccatg gtgtgacggg 60cggtgtgtac aagacccggg aacgtattca ccgcgacatt ctgatccgcg attactagcg 120attccgactt cacgtagtcg agttgcagac tacgatccgg actacgactg gttttatggg 180attagctccc cctcgcgggt tggcaaccct ctgtaccagc cattgtatga cgtgtgtagc 240cctacctata agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg 300gcagtctcat tagagtgccc aactaaatgt agcaactaat gacaagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca gccatgcagc acctgtgtta 420cggttctctt tcgagcacta agccatctct ggcgaattcc gtacatgtca aaggtaggta 480aggtttttcg cgttgcatcg aattaaacca catcatccac cgcttgtgcg ggtccccgtc 540aattcctttg agtttcaacc ttgcggccgt actccccagg cggtcaactt cacgcgttag 600cttcgttact gagtactaat gcacccaaca accagttgac atcgtttagg gcgtggacta 660ccagggtatc taatcctgtt tgctccccac gctttcgtgc atgagcgtca gtacaggtcc 720aggggattgc cttcgccatc ggtgttcctc cgcatatcta cgcatttcac tgctacacgc 780ggaattccat ccccctctac cgtactctag ctatacagtc acagatgcaa ttcccaggtt 840gagcccgggg atttcacaac tgtcttatat aaccgcctgc gcacgcttta cgcccagtaa 900ttccgattaa cgctcgcacc ctacgtatta ccgcggctgc tggcacgtag ttagccggtg 960cttattctta cggtaccgtc attagccctc tttattagaa aagagccgtt tcgttccgta 1020caaaagcagt ttacaacccg gaaggccttc ttcctgcacg cggcat 1066271979DNAStenotrophomonas terraemisc_feature(1)..(979)BDNZ 68599 16S rDNA 271ggttaagcta cctgcttctg gtgcaacaaa ctcccatggt gtgacgggcg gtgtgtacaa 60ggcccgggaa cgtattcacc gcagcaatgc tgatctgcga ttactagcga ttccgacttc 120atggagtcga gttgcagact ccaatccgga ctgagatagg gtttctggga ttggcttacc 180gtcgccggct tgcagccctc tgtccccacc attgtagtac gtgtgtagcc ctggccgtaa 240gggccatgat gacttgacgt catccccacc ttcctccggt ttgtcaccgg cggtctcctt 300agagttccca ccattacgtg ctggcaacta aggacaaggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtgt tcgcgttccc 420gaaggcacca atccatctct ggaaagttcg cgacatgtca aggccaggta aggttcttcg 480cgttgcatcg aattaaacca catactccac cgcttgtgcg ggcccccgtc aattcctttg 540agtttcagtc ttgcgaccgt actccccagg cggcgaactt aacgcgttag cttcgatact 600gcgtgccaaa ttgcacccaa catccagttc gcatcgttta gggcgtggac taccagggta 660tctaatcctg tttgctcccc acgctttcgt gcctcagtgt cagtgttggc ccagacagtc 720gccttcgcca cggatgttcc tcctgatctc tacgcatttc actgctacac caggaattcc 780actatcctct gccacactct agtcgcccag tttccatcgc aattcccagg ttgagcccag 840ggctttcacg acagacttaa acaaccacct acgcacgctt tacgcccagt aattccgagt 900aacgcttgca cccttcgtat taccgcggct gctggcacga agttagccgg tgcttattct 960ttgggtaccg tcagaacaa 9792721086DNAStenotrophomonas terraemisc_feature(1)..(1086)BDNZ 68741 16S rDNA 272gcagcgccct cccgaaggtt aagctacctg cttctggtgc aacaaactcc catggtgtga 60cgggcggtgt gtacaaggcc cgggaacgta ttcaccgcag caatgctgat ctgcgattac 120tagcgattcc gacttcatgg agtcgagttg cagactccaa tccggactga gatagggttt 180ctgggattgg cttaccgtcg ccggcttgca gccctctgtc cccaccattg tagtacgtgt 240gtagccctgg ccgtaagggc catgatgact tgacgtcatc cccaccttcc tccggtttgt 300caccggcggt ctccttagag ttcccaccat tacgtgctgg caactaagga caagggttgc 360gctcgttgcg ggacttaacc caacatctca cgacacgagc tgacgacagc catgcagcac 420ctgtgttcgc gttcccgaag gcaccaatcc atctctggaa agttcgcgac atgtcaaggc 480caggtaaggt tcttcgcgtt gcatcgaatt aaaccacata ctccaccgct tgtgcgggcc 540cccgtcaatt cctttgagtt tcagtcttgc gaccgtactc cccaggcggc gaacttaacg 600cgttagcttc gatactgcgt gccaaattgc acccaacatc cagttcgcat cgtttagggc 660gtggactacc agggtatcta atcctgtttg ctccccacgc tttcgtgcct cagtgtcagt 720gttggcccag acagtcgcct tcgccacgga tgttcctcct gatctctacg catttcactg 780ctacaccagg aattccacta tcctctgcca cactctagtc gcccagtttc catcgcaatt 840cccaggttga gcccagggct ttcacgacag acttaaacaa ccacctacgc acgctttacg 900cccagtaatt ccgagtaacg cttgcaccct tcgtattacc gcggctgctg gcacgaagtt 960agccggtgct tattctttgg gtaccgtcag aacaaccggg tattaaccag ctgcttttct 1020ttcccaacaa aagggcttta caacccgaag gccttcttca cccacgcggt atggctggat 1080caggct 10862731393DNAStenotrophomonas maltophiliamisc_feature(1)..(1393)BDNZ54073 16S rDNA 273ccgaaggtta

agctacctgc ttctggtgca acaaactccc atggtgtgac gggcggtgtg 60tacaaggccc gggaacgtat tcaccgcagc aatgctgatc tgcgattact agcgattccg 120acttcatgga gtcgagttgc agactccaat ccggactgag atagggtttc tgggattggc 180ttaccgtcgc cggcttgcag ccctctgtcc ctaccattgt agtacgtgtg tagccctggc 240cgtaagggcc atgatgactt gacgtcatcc ccaccttcct ccggtttgtc accggcggtc 300tccttagagt tcccaccatt acgtgctggc aactaaggac aagggttgcg ctcgttgcgg 360gacttaaccc aacatctcac gacacgagct gacgacagcc atgcagcacc tgtgttcgag 420ttcccgaagg caccaatcca tctctggaaa gttctcgaca tgtcaaggcc aggtaaggtt 480cttcgcgttg catcgaatta aaccacatac tccaccgctt gtgcgggccc ccgtcaattc 540ctttgagttt cagtcttgcg accgtactcc ccaggcggcg aacttaacgc gttagcttcg 600atactgcgtg ccaaattgca cccaacatcc agttcgcatc gtttagggcg tggactacca 660gggtatctaa tcctgtttgc tccccacgct ttcgtgcctc agtgtcagtg ttggtccagg 720tagctgcctt cgccatggat gttcctcccg atctctacgc atttcactgc tacaccggga 780attccgctac cctctaccac actctagttg tccagtttcc actgcagttc ccaggttgag 840cccagggctt tcacaacaga cttaaacaac cacctacgca cgctttacgc ccagtaattc 900cgagtaacgc ttgcaccctt cgtattaccg cggctgctgg cacgaagtta gccggtgctt 960attctttggg taccgtcatc ccaaccaggt attagccggc tggatttctt tcccaacaaa 1020agggctttac aacccgaagg ccttcttcac ccacgcggta tggctggatc aggcttgcgc 1080ccattgtcca atattcccca ctgctgcctc ccgtaggagt ctggaccgtg tctcagttcc 1140agtgtggctg atcatcctct cagaccagct acggatcgtc gccttggtgg gcctttaccc 1200cgccaactag ctaatccgac atcggctcat tcaatcgcgc aaggtccgaa gatcccctgc 1260tttcacccgt aggtcgtatg cggtattagc gtaagtttcc ctacgttatc ccccacgaaa 1320aagtagattc cgatgtattc ctcacccgtc cgccactcgc cacccataag agcaagctct 1380tactgtgctg ccg 13932741415DNARhodococcus erythropolismisc_feature(1)..(1415)BDNZ54093 16S rDNA 274tccctcccac aaggggttaa gccaccggct tcgggtgtta ccgactttca tgacgtgacg 60ggcggtgtgt acaaggcccg ggaacgtatt caccgcagcg ttgctgatct gcgattacta 120gcgactccga cttcacgggg tcgagttgca gaccccgatc cgaactgaga ccagctttaa 180gggattcgct ccacctcacg gtctcgcagc cctctgtact ggccattgta gcatgtgtga 240agccctggac ataaggggca tgatgacttg acgtcgtccc caccttcctc cgagttgacc 300ccggcagtct cttacgagtc cccaccataa cgtgctggca acataagata ggggttgcgc 360tcgttgcggg acttaaccca acatctcacg acacgagctg acgacagcca tgcaccacct 420gtataccgac cacaaggggg gccacatctc tgcagctttc cggtatatgt caaacccagg 480taaggttctt cgcgttgcat cgaattaatc cacatgctcc gccgcttgtg cgggcccccg 540tcaattcctt tgagttttag ccttgcggcc gtactcccca ggcggggcgc ttaatgcgtt 600agctacggca cggattccgt ggaaggaacc cacacctagc gcccaccgtt tacggcgtgg 660actaccaggg tatctaatcc tgttcgctac ccacgctttc gttcctcagc gtcagttact 720gcccagagac ccgccttcgc caccggtgtt cctcctgata tctgcgcatt tcaccgctac 780accaggaatt ccagtctccc ctgcagtact caagtctgcc cgtatcgcct gcaagccagc 840agttgagctg ctggttttca caaacgacgc gacaaaccgc ctacgaactc tttacgccca 900gtaattccgg acaacgcttg caccctacgt attaccgcgg ctgctggcac gtagttagcc 960ggtgcttctt ctgcaggtac cgtcacttgc gcttcgtccc tgctgaaaga ggtttacaac 1020ccgaaggccg tcatccctca cgcggcgtcg ctgcatcagg ctttcgccca ttgtgcaata 1080ttccccactg ctgcctcccg taggagtctg ggccgtgtct cagtcccagt gtggccggtc 1140accctctcag gtcggctacc cgtcgtcgcc ttggtaggcc attaccccac caacaagctg 1200ataggccgcg ggcccatcct gcaccgataa atctttccac cacccaccat gcgataggag 1260gtcatatccg gtattagacc cagtttccca ggcttatccc gaagtgcagg gcagatcacc 1320cacgtgttac tcacccgttc gccgctcgtg taccccgaaa ggccttaccg ctcgacttgc 1380atgtgttaag cacgccgcca gcgttcgtcc tgagc 14152751406DNARhodococcus erythropolismisc_feature(1)..(1406)BDNZ54299 16S rDNA 275caaggggtta agccaccggc ttcgggtgtt accgactttc atgacgtgac gggcggtgtg 60tacaaggccc gggaacgtat tcaccgcagc gttgctgatc tgcgattact agcgactccg 120acttcacggg gtcgagttgc agaccccgat ccgaactgag accagcttta agggattcgc 180tccacctcac ggtctcgcag ccctctgtac tggccattgt agcatgtgtg aagccctgga 240cataaggggc atgatgactt gacgtcgtcc ccaccttcct ccgagttgac cccggcagtc 300tcttacgagt ccccaccata acgtgctggc aacataagat aggggttgcg ctcgttgcgg 360gacttaaccc aacatctcac gacacgagct gacgacagcc atgcaccacc tgtataccga 420ccacaagggg ggccacatct ctgcagcttt ccggtatatg tcaaacccag gtaaggttct 480tcgcgttgca tcgaattaat ccacatgctc cgccgcttgt gcgggccccc gtcaattcct 540ttgagtttta gccttgcggc cgtactcccc aggcggggcg cttaatgcgt tagctacggc 600acggattccg tggaaggaac ccacacctag cgcccaccgt ttacggcgtg gactaccagg 660gtatctaatc ctgttcgcta cccacgcttt cgttcctcag cgtcagttac tgcccagaga 720cccgccttcg ccaccggtgt tcctcctgat atctgcgcat ttcaccgcta caccaggaat 780tccagtctcc cctgcagtac tcaagtctgc ccgtatcgcc tgcaagccag cagttgagct 840gctggttttc acaaacgacg cgacaaaccg cctacgaact ctttacgccc agtaattccg 900gacaacgctt gcaccctacg tattaccgcg gctgctggca cgtagttagc cggtgcttct 960tctgcaggta ccgtcacttg cgcttcgtcc ctgctgaaag aggtttacaa cccgaaggcc 1020gtcatccctc acgcggcgtc gctgcatcag gctttcgccc attgtgcaat attccccact 1080gctgcctccc gtaggagtct gggccgtgtc tcagtcccag tgtggccggt caccctctca 1140ggtcggctac ccgtcgtcgc cttggtaggc cattacccca ccaacaagct gataggccgc 1200gggcccatcc tgcaccgata aatctttcca ccacccacca tgcgatagga ggtcatatcc 1260ggtattagac ccagtttccc aggcttatcc cgaagtgcag ggcagatcac ccacgtgtta 1320ctcacccgtt cgccgctcgt gtaccccgaa aggccttacc gctcgacttg catgtgttaa 1380gcacgccgcc agcgttcgtc ctgagc 14062761426DNAPseudomonas fluorescensmisc_feature(1)..(1426)BDNZ54480 16S rDNA 276aggttagact agctacttct ggtgcaaccc actcccatgg tgtgacgggc ggtgtgtaca 60aggcccggga acgtattcac cgcgacattc tgattcgcga ttactagcga ttccgacttc 120acgcagtcga gttgcagact gcgatccgga ctacgatcgg ttttatggga ttagctccac 180ctcgcggctt ggcaaccctt tgtaccgacc attgtagcac gtgtgtagcc caggccgtaa 240gggccatgat gacttgacgt catccccacc ttcctccggt ttgtcaccgg cagtctcctt 300agagtgccca ccattacgtg ctggtaacta aggacaaggg ttgcgctcgt tacgggactt 360aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtct caatgttccc 420gaaggcacca atccatctct ggaaagttca ttggatgtca aggcctggta aggttcttcg 480cgttgcttcg aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcatttg 540agttttaacc ttgcggccgt actccccagg cggtcaactt aatgcgttag ctgcgccact 600aagagctcaa ggctcccaac ggctagttga catcgtttac ggcgtggact accagggtat 660ctaatcctgt ttgctcccca cgctttcgca cctcagtgtc agtatcagtc caggtggtcg 720ccttcgccac tggtgttcct tcctatatct acgcatttca ccgctacaca ggaaattcca 780ccaccctcta ccatactcta gctcgccagt tttggatgca gttcccaggt tgagcccggg 840gatttcacat ccaacttaac gaaccaccta cgcgcgcttt acgcccagta attccgatta 900acgcttgcac cctctgtatt accgcggctg ctggcacaga gttagccggt gcttattctg 960tcggtaacgt caaaattgca gagtattaat ctacaaccct tcctcccaac ttaaagtgct 1020ttacaatccg aagaccttct tcacacacgc ggcatggctg gatcaggctt tcgcccattg 1080tccaatattc cccactgctg cctcccgtag gagtctggac cgtgtctcag ttccagtgtg 1140actgatcatc ctctcagacc agttacggat cgtcgccttg gtgagccatt acctcaccaa 1200ctagctaatc cgacctaggc tcatctgata gcgcaaggcc cgaaggtccc ctgctttctc 1260ccgtaggacg tatgcggtat tagcgttcct ttcgaaacgt tgtcccccac taccaggcag 1320attcctaggc attactcacc cgtccgccgc tgaatccggg agcaagctcc cttcatccgc 1380tcgacttgca tgtgttaggc ctgccgccag cgttcaatct gagcga 14262771183DNAHerbaspirillum huttiensemisc_feature(1)..(1183)BDNZ54487 16S rDNA 277tcagattgaa cgctggcggc atgccttaca catgcaagtc gaacggcagc ataggagctt 60gctcctgatg gcgagtggcg aacgggtgag taatatatcg gaacgtgccc tagagtgggg 120gataactagt cgaaagacta gctaataccg catacgatct acggatgaaa gtgggggatc 180gcaagacctc atgctcctgg agcggccgat atctgattag ctagttggtg gggtaaaagc 240ctaccaaggc aacgatcagt agctggtctg agaggacgac cagccacact gggactgaga 300cacggcccag actcctacgg gaggcagcag tggggaattt tggacaatgg gggcaaccct 360gatccagcaa tgccgcgtga gtgaagaagg ccttcgggtt gtaaagctct tttgtcaggg 420aagaaacggt agtagcgaat aactattact aatgacggta cctgaagaat aagcaccggc 480taactacgtg ccagcagccg cggtaatacg tagggtgcaa gcgttaatcg gaattactgg 540gcgtaaagcg tgcgcaggcg gttgtgtaag tcagatgtga aatccccggg ctcaacctgg 600gaattgcatt tgagactgca cggctagagt gtgtcagagg ggggtagaat tccacgtgta 660gcagtgaaat gcgtagatat gtggaggaat accgatggcg aaggcagccc cctgggataa 720cactgacgct catgcacgaa agcgtgggga gcaaacagga ttagataccc tggtagtcca 780cgccctaaac gatgtctact agttgtcggg tcttaattga cttggtaacg cagctaacgc 840gtgaagtaga ccgcctgggg agtacggtcg caagattaaa actcaaagga attgacgggg 900acccgcacaa gcggtggatg atgtggatta attcgatgca acgcgaaaaa ccttacctac 960ccttgacatg gatggaatcc cgaagagatt tgggagtgct cgaaagagaa ccatcacaca 1020ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 1080cgcaaccctt gtcattagtt gctacgaaag ggcactctaa tgagactgcc gggtgacaaa 1140ccgggaggaa ggtgggggat gacgtcaagt cctcatggcc ctt 11832781302DNAPantoea agglomeransmisc_feature(1)..(1302)BDNZ54499 16S rDNA 278gggggataac cactggaaaa cggtggctaa taccgcataa cgtcgcaaga ccaaagaggg 60ggaccttcgg gcctctcact atcggatgaa cccagatggg attagctagt aggcggggta 120atggcccacc taggcgacga tccctagctg gtctgagagg atgaccagcc acactggaac 180tgagacacgg tccagactcc tacgggaggc agcagtgggg aatattgcac aatgggcgca 240agcctgatgc agccatgccg cgtgtatgaa gaaggccttc gggttgtaaa gtactttcag 300cggggaggaa ggcgacgggg ttaataaccg ygtcgattga cgttacccgc agaagaagca 360ccggctaact ccgtgccagc agccgcggta atacggaggg tgcaagcgtt aatcggaatt 420actgggcgta aagcgcacgc aggcggtctg ttaagtcaga tgtgaaatcc ccgggcttaa 480cctgggaact gcatttgaaa ctggcaggct tgagtcttgt agaggggggt agaattccag 540gtgtagcggt gaaatgcgta gagatctgga ggaataccgg tggcgaaggc ggccccctgg 600acaaagactg acgctcaggt gcgaaagcgt ggggagcaaa caggattaga taccctggta 660gtccacgccg taaacgatgt cgacttggag gttgttccct tgaggagtgg cttccggagc 720taacgcgtta agtcgaccgc ctggggagta cggccgcaag gttaaaactc aaatgaattg 780acgggggccc gcacaagcgg tggagcatgt ggtttaattc gatgcaacgc gaagaacctt 840acctactctt gacatccacg gaatttggca gagatgcctt agtgccttcg ggaaccgtga 900gacaggtgct gcatggctgt cgtcagctcg tgttgtgaaa tgttgggtta agtcccgcaa 960cgagcgcaac ccttatcctt tgttgccagc gattcggtcg ggaactcaaa ggagactgcc 1020ggtgataaac cggaggaagg tggggatgac gtcaagtcat catggccctt acgagtaggg 1080ctacacacgt gctacaatgg cgcatacaaa gagaagcgac ctcgcgagag caagcggacc 1140tcacaaagtg cgtcgtagtc cggatcggag tctgcaactc gactccgtga agtcggaatc 1200gctagtaatc gtggatcaga atgccacggt gaatacgttc ccgggccttg tacacaccgc 1260ccgtcacacc atgggagtgg gttgcaaaag aagtaggtag ct 13022791452DNABacillus megateriummisc_feature(1)..(1452)BDNZ55076 16S rDNA 279gcggctagct ccttacggtt actccaccga cttcgggtgt tacaaactct cgtggtgtga 60cgggcggtgt gtacaaggcc cgggaacgta ttcaccgcgg catgctgatc cgcgattact 120agcgattcca gcttcatgta ggcgagttgc agcctacaat ccgaactgag aatggtttta 180tgggattggc ttgacctcgc ggtcttgcag ccctttgtac catccattgt agcacgtgtg 240tagcccaggt cataaggggc atgatgattt gacgtcatcc ccaccttcct ccggtttgtc 300accggcagtc accttagagt gcccaactra atgctggcaa ctaagatcaa gggttgcgct 360cgttgcggga cttaacccaa catctcacga cacgagctga cgacaaccat gcaccacctg 420tcactctgtc ccccgaaggg gaacgctcta tctctagagt tgtcagagga tgtcaagacc 480tggtaaggtt cttcgcgttg cttcgaatta aaccacatgc tccaccgctt gtgcgggccc 540ccgtcaattc ctttgagttt cagtcttgcg accgtactcc ccaggcggag tgcttaatgc 600gttagctgca gcactaaagg gcggaaaccc tctaacactt agcactcatc gtttacggcg 660tggactacca gggtatctaa tcctgtttgc tccccacgct ttcgcgcctc agcgtcagtt 720acagaccaaa aagccgcctt cgccactggt gttcctccac atctctacgc atttcaccgc 780tacacgtgga attccgcttt tctcttctgc actcaagttc cccagtttcc aatgaccctc 840cacggttgag ccgtgggctt tcacatcaga cttaagaaac cgcctgcgcg cgctttacgc 900ccaataattc cggataacgc ttgccaccta cgtattaccg cggctgctgg cacgtagtta 960gccgtggctt tctggttagg taccgtcaag gtacgagcag ttactctcgt acttgttctt 1020ccctaacaac agagttttac gacccgaaag ccttcatcac tcacgcggcg ttgctccgtc 1080agactttcgt ccattgcgga agattcccta ctgctgcctc ccgtaggagt ctgggccgtg 1140tctcagtccc agtgtggccg atcaccctct caggtcggct atgcatcgtt gccttggtga 1200gccgttacct caccaactag ctaatgcacc gcgggcccat ctgtaagtga tagccgaaac 1260catctttcaa tcatctccca tgaaggagaa gatcctatcc ggtattagct tcggtttccc 1320gaagttatcc cagtcttaca ggcaggttgc ccacgtgtta ctcacccgtc cgccgctaac 1380gtcatagaag caagcttcta atcagttcgc tcgacttgca tgtattaggc acgccgccag 1440cgttcatcct ga 14522801448DNAPaenibacillus polymyxamisc_feature(1)..(1448)BDNZ55146 16S rDNA 280ccttgcgggt tccccaccga cttcgggtgt tgtaaactct cgtggtgtga cgggcggtgt 60gtacaagacc cgggaacgta ttcaccgcgg catgctgatc cgcgattact agcaattccg 120acttcatgta ggcgagttgc agcctacaat ccgaactgag accggctttt ctaggattgg 180ctccacctcg cggcttcgct tcccgttgta ccggccattg tagtacgtgt gtagcccagg 240tcataagggg catgatgatt tgacgtcatc cccaccttcc tccggtttgt caccggcagt 300ctgcttagag tgcccagctt gacctgctgg caactaagca taagggttgc gctcgttgcg 360ggacttaacc caacatctca cgacacgagc tgacgacaac catgcaccac ctgtctcctc 420tgtcccgaag gaaagccata tctctacagc ggtcagaggg atgtcaagac ctggtaaggt 480tcttcgcgtt gcttcgaatt aaaccacata ctccactgct tgtgcgggtc cccgtcaatt 540cctttgagtt tcagtcttgc gaccgtactc cccaggcgga atgcttaatg tgttaacttc 600ggcaccaagg gtatcgaaac ccctaacacc tagcattcat cgtttacggc gtggactacc 660agggtatcta atcctgtttg ctccccacgc tttcgcgcct cagcgtcagt tacagcccag 720agagtcgcct tcgccactgg tgttcctcca catctctacg catttcaccg ctacacgtgg 780aattccactc tcctcttctg cactcaagct ccccagtttc cagtgcgacc cgaagttgag 840cctcgggatt aaacaccaga cttaaagagc cgcctgcgcg cgctttacgc ccaataattc 900cggacaacgc ttgcccccta cgtattaccg cggctgctgg cacgtagtta gccggggctt 960tcttctcagg taccgtcact cttgtagcag ttactctaca agacgttctt ccctggcaac 1020agagctttac gatccgaaaa ccttcatcac tcacgcggcg ttgctccgtc aggctttcgc 1080ccattgcgga agattcccta ctgctgcctc ccgtaggagt ctgggccgtg tctcagtccc 1140agtgtggccg atcaccctct caggtcggct acgcatcgtc gccttggtag gcctttaccc 1200caccaactag ctaatgcgcc gcaggcccat ccacaagtga cagattgctc cgtctttcct 1260ccttcgccca tgcaggaaaa ggatgtatcg ggtattagct accgtttccg gtagttatcc 1320ctgtcttgtg ggcaggttgc ctacgtgtta ctcacccgtc cgccgctagg ttatttagaa 1380gcaagcttct aaataacccc gctcgacttg catgtattag gcacgccgcc agcgttcgtc 1440ctgagcga 14482811424DNAMassilia niastensismisc_feature(1)..(1424)BDNZ55184 16S rDNA 281cctccttgcg gttagctacc tacttctggt aaaacccgct cccatggtgt gacgggcggt 60gtgtacaaga cccgggaacg tattcaccgc gacatgctga tccgcgatta ctagcgattc 120caacttcacg cagtcgagtt gcagactgcg atccggacta cgatacactt tctgggatta 180gctccccctc gcgggttggc ggccctctgt atgtaccatt gtatgacgtg tgaagcccta 240cccataaggg ccatgaggac ttgacgtcat ccccaccttc ctccggtttg tcaccggcag 300tctcattaga gtgccctttc gtagcaacta atgacaaggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtgt tcaggctccc 420tttcgggcac tcyccgatct ctcgaagatt cctgacatgt caagggtagg taaggttttt 480cgcgttgcat cgaattaatc cacatcatcc accgcttgtg cgggtccccg tcaattcctt 540tgagttttaa tcttgcgacc gtactcccca ggcggtctac ttcacgcgtt agctgcgtta 600ccaagtcaat taagacccga caactagtag acatcgttta gggcgtggac taccagggta 660tctaatcctg tttgctcccc acgctttcgt gcatgagcgt cagtcttgac ccagggggct 720gccttcgcca tcggtgttcc tccacatctc tacgcatttc actgctacac gtggaattct 780acccccctct gccagactcc agccttgcag tctccaacgc aattcccagg ttgagcccgg 840ggatttcacg tcagacttac aaaaccgcct gcgcacgctt tacgcccagt aattccgatt 900aacgcttgca ccctacgtat taccgcggct gctggcacgt agttagccgg tgcttattct 960tcaggtaccg tcattagccg aggatattag ccccaaccgt ttcttccctg acaaaagagc 1020tttacaaccc gaaggccttc ttcactcacg cggcattgct ggatcaggct tgcgcccatt 1080gtccaaaatt ccccactgct gcctcccgta ggagtctggg ccgtgtctca gtcccagtgt 1140ggctggtcgt cctctcagac cagctactga tcgtcgcctt ggtgagcctt tacctcacca 1200actagctaat cagacatcgg ccgctccaaa agcatgaggt cttgcgatcc cccactttct 1260tccgtagaac gtatgcggta ttagcgtaac tttcgctacg ttatccccca cttctgggta 1320cgttccgatg tattactcac ccgttcgcca ctcgccgcca ggttgccccg cgctgccgtt 1380cgacttgcat gtgtaaagca tgccgccagc gttcaatctg agcg 14242821357DNAPantoea vagansmisc_feature(1)..(1357)BDNZ55529 16S rDNA 282ggttaagcta cctacttctt ttgcaaccca ctcccatggt gtgacgggcg gtgtgtacaa 60ggcccgggaa cgtattcacc gtggcattct gatccacgat tactagcgat tccgacttca 120cggagtcgag ttgcagactc cgatccggac tacgacgcac tttgtgaggt ccgcttgctc 180tcgcgaggtc gcttctcttt gtatgcgcca ttgtagcacg tgtgtagccc tactcgtaag 240ggccatgatg acttgacgtc atccccacct tcctccggtt tatcaccggc agtctccttt 300gagttcccga ccgaatcgct ggcaacaaag gataagggtt gcgctcgttg cgggacttaa 360cccaacattt cacaacacga gctgacgaca gccatgcagc acctgtctca gcgttcccga 420aggcaccaaa gcatctctgc taagttcgct ggatgtcaag agtaggtaag gttcttcgcg 480ttgcatcgaa ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa ttcatttgag 540ttttaacctt gcggccgtac tccccaggcg gtcgacttaa cgcgttagct ccggaagcca 600ctcctcaagg gaacaacctc caagtcgaca tcgtttacgg cgtggactac cagggtatct 660aatcctgttt gctccccacg ctttcgcacc tgagcgtcag tctttgtcca gggggccgcc 720ttcgccaccg gtattcctcc agatctctac gcatttcacc gctacacctg gaattctacc 780cccctctaca agactcaagc ctgccagttt caaatgcagt tcccaggtta agcccgggga 840tttcacatct gacttaacag accgcctgcg tgcgctttac gcccagtaat tccgattaac 900gcttgcaccc tccgtattac cgcggctgct ggcacggagt tagccggtgc ttcttctgcg 960ggtaacgtca atcgacaggg ttattaaccc cgtcgccttc ctccccgctg aaagtacttt 1020acaacccgaa ggccttcttc atacacgcgg catggctgca tcaggcttgc gcccattgtg 1080caatattccc cactgctgcc tcccgtagga gtctggaccg tgtctcagtt ccagtgtggc 1140tggtcatcct ctcagaccag ctagggatcg tcgcctaggt gggccattac cccgcctact 1200agctaatccc atctgggttc atccgatagt gagaggcccg aaggtccccc tctttggtct 1260tgcgacgtta tgcggtatta gccaccgttt ccagtggtta tccccctcta tcgggcagat 1320ccccagacat tactcacccg tccgccactc gtcaccc 13572831400DNAPseudomonas oryzihabitansmisc_feature(1)..(1400)BDNZ55530 16S rDNA 283cgagggttag actagctact tctggagcaa cccactccca tggtgtgacg ggcggtgtgt 60acaaggcccg ggaacgtatt caccgtgacg ttctgattca cgattactag cgattccgac 120ttcacgcagt cgagttgcag actgcgatcc ggactacgat cggttttatg ggattagctc 180cacctcgcgg cttggcaacc ctttgtaccg accattgtag cacgtgtgta

gccctggccg 240taagggccat gatgacttga cgtcatcccc accttcctcc ggtttgtcac cggcagtctc 300cttagagtgc ccaccataac gtgctggtaa ctaaggacaa gggttgcgct cgttacggga 360cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg tgtctgagtt 420cccgaaggca ccaatccatc tctggaaagt tctcagcatg tcaaggccag gtaaggttct 480tcgcgttgct tcgaattaaa ccacatgctc caccgcttgt gcgggccccc gtcaattcat 540ttgagtttta accttgcggc cgtactcccc aggcggtcaa cttaatgcgt tagctgcgcc 600actaagatct caaggatccc aacggctagt tgacatcgtt tacggcgtgg actaccaggg 660tatctaatcc tgtttgctcc ccacgctttc gcacctcagt gtcagtgtca gtccaggtag 720tcgccttcgc cactggtgtt ccttccaata tctacgcatt tcaccgctac actggaaatt 780ccactaccct ctaccgcact ctagccagac agttttggat gcagttccca ggttgagccc 840ggggatttca catccaactt atcaagccac ctacgcgcgc tttacgccca gtaattccga 900ttaacgcttg cacccttcgt attaccgcgg ctgctggcac gaagttagcc ggtgcttatt 960ctgttggtaa cgtcaaaact cacaggtatt cgctatgagc ccttcctccc aacttaaagt 1020gctttacgac ccgaaggcct tcttcacaca cgcggcatgg ctggatcagg ctttcgccca 1080ttgtccaata ttccccactg ctgcctcccg taggagtctg gaccgtgtct cagttccagt 1140gtgactgatc atcctctcag accagttacg gatcgtcgcc ttggtaggcc tttaccctac 1200caactagcta atccgaccta ggctcatcta atagcgtgag gtccgaagat cccccacttt 1260ctcccgtagg acgtatgcgg tattagcgtt cctttcgaaa cgttgtcccc cactactagg 1320cagattccta ggcattactc acccgtccgc cgctgaatcg aagagcaagc tcctctcatc 1380cgctcgactt gcatgtgtta 1400284974DNAPseudomonas fluorescensmisc_feature(1)..(974)BDNZ56249 16S rDNA 284ggttagacta gctacttctg gtgcaaccca ctcccatggt gtgacgggcg gtgtgtacaa 60ggcccgggaa cgtattcacc gcgacattct gattcgcgat tactagcgat tccgacttca 120cgcagtcgag ttgcagactg cgatccggac tacgatcggt tttatgggat tagctccacc 180tcgcggcttg gcaacccttt gtaccgacca ttgtagcacg tgtgtagccc aggccgtaag 240ggccatgatg acttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcctta 300gagtgcccac cattacgtgc tggtaactaa ggacaagggt tgcgctcgtt acgggactta 360acccaacatc tcacgacacg agctgacgac agccatgcag cacctgtctc aatgttcccg 420aaggcaccaa tccatctctg gaaagttcat tggatgtcaa ggcctggtaa ggttcttcgc 480gttgcttcga attaaaccac atgctccacc gcttgtgcgg gcccccgtca attcatttga 540gttttaacct tgcggccgta ctccccaggc ggtcaactta atgcgttagc tgcgccacta 600agagctcaag gctcccaacg gctagttgac atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcac ctcagtgtca gtatcagtcc aggtggtcgc 720cttcgccact ggtgttcctt cctatatcta cgcatttcac cgctacacag gaaattccac 780caccctctac catactctag ctcgccagtt ttggatgcag ttcccaggtt gagcccgggg 840atttcacatc caacttaacg aaccacctac gcgcgcttta cgcccagtaa ttccgattaa 900cgcttgcacc ctctgtatta ccgcggctgc tggcacagag ttagccggtg cttattctgt 960cggtaacgtc aaaa 974285974DNAPseudomonas fluorescensmisc_feature(1)..(974)BDNZ56530 16S rDNA 285ggttagacta gctacttctg gtgcacccca ctcccatggt gtgacgggcg gtgtgtacaa 60ggcccgggaa cgtattcacc gcgacattct gattcgcgat tactagcgat tccgacttca 120cgcagtcgag ttgcagactg cgatccggac tacgatcggt tttatgggat tagctccacc 180tcgcggcttg gcaaccctct gtaccgacca ttgtagcacg tgtgtagccc aggccgtaag 240ggccatgatg acttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcctta 300gagtgcccac cataacgtgc tggtaactaa ggacaagggt tgcgctcgtt acgggactta 360acccaacatc tcacgacacg agctgacgac agccatgcag cacctgtctc aatgttcccg 420aaggcaccaa tctatctcta gaaagttcat tggatgtcaa ggcctggtaa ggttcttcgc 480gttgcttcga attaaaccac atgctccacc gcttgtgcgg gcccccgtca attcatttga 540gttttaacct tgcggccgta ctccccaggc ggtcaactta atgcgttagc tgcgccacta 600aaagctcaag gcttccaacg gctagttgac atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcac ctcagtgtca gtattagtcc aggtggtcgc 720cttcgccact ggtgttcctt cctatatcta cgcatttcac cgctacacag gaaattccac 780caccctctac catactctag tcagtcagtt ttgaatgcag ttcccaggtt gagcccgggg 840atttcacatc caacttaaca aaccacctac gcgcgcttta cgcccagtaa ttccgattaa 900cgcttgcacc ctctgtatta ccgcggctgc tggcacagag ttagccggtg cttattctgt 960cggtaacgtc aaaa 974286968DNARahnella aquatilismisc_feature(1)..(968)BDNZ56532 16S rDNA 286gctacctact tcttttgcaa cccactccca tggtgtgacg ggcggtgtgt acaaggcccg 60ggaacgtatt caccgtagca ttctgatcta cgattactag cgattccgac ttcatggagt 120cgagttgcag actccaatcc ggactacgac atactttatg aggtccgctt gctctcgcga 180gttcgcttct ctttgtatat gccattgtag cacgtgtgta gccctactcg taagggccat 240gatgacttga cgtcatcccc accttcctcc ggtttatcac cggcagtctc ctttgagttc 300ccaccattac gtgctggcaa caaaggataa gggttgcgct cgttgcggga cttaacccaa 360catttcacaa cacgagctga cgacagccat gcagcacctg tctcacggtt cccgaaggca 420ctaagccatc tctggcgaat tccgtggatg tcaagagtag gtaaggttct tcgcgttgca 480tcgaattaaa ccacatgctc caccgcttgt gcgggccccc gtcaattcat ttgagtttta 540accttgcggc cgtactcccc aggcggtcga cttaacgcgt tagctccgga agccacgcct 600caagggcaca acctccaagt cgacatcgtt tacagcgtgg actaccaggg tatctaatcc 660tgtttgctcc ccacgctttc gcacctgagc gtcagtcttt gtccaggggg ccgccttcgc 720caccggtatt cctccagatc tctacgcatt tcaccgctac acctggaatt ctacccccct 780ctacaagact ctagcttgcc agtttcaaat gcagttccca cgttaagcgc ggggatttca 840catctgactt aacaaaccgc ctgcgtgcgc tttacgccca gtaattccga ttaacgcttg 900caccctccgt attaccgcgg ctgctggcac ggagttagcc ggtgcttctt ctgcgagtaa 960cgtcaatc 968287986DNARahnella aquatilismisc_feature(1)..(986)BDNZ57157 16S rDNA 287gcgccctccc gaaggttaag ctacctactt cttttgcaac ccactcccat ggtgtgacgg 60gcggtgtgta caaggcccgg gaacgtattc accgtagcat tctgatctac gattactagc 120gattccgact tcatggagtc gagttgcaga ctccaatccg gactacgaca tactttatga 180ggtccgcttg ctctcgcgag ttcgcttctc tttgtatatg ccattgtagc acgtgtgtag 240ccctactcgt aagggccatg atgacttgac gtcatcccca ccttcctccg gtttatcacc 300ggcagtctcc tttgagttcc caccattacg tgctggcaac aaaggataag ggttgcgctc 360gttgcgggac ttaacccaac atttcacaac acgagctgac gacagccatg cagcacctgt 420ctcacggttc ccgaaggcac taagccatct ctggcgaatt ccgtggatgt caagagtagg 480taaggttctt cgcgttgcat cgaattaaac cacatgctcc accgcttgtg cgggcccccg 540tcaattcatt tgagttttaa ccttgcggcc gtactcccca ggcggtcgac ttaacgcgtt 600agctccggaa gccacgcctc aagggcacaa cctccaagtc gacatcgttt acagcgtgga 660ctaccagggt atctaatcct gtttgctccc cacgctttcg cacctgagcg tcagtctttg 720tccagggggc cgccttcgcc accggtattc ctccagatct ctacgcattt caccgctaca 780cctggaattc tacccccctc tacaagactc tagcttgcca gtttcaaatg cagttcccac 840gttaagcgcg gggatttcac atctgactta acaaaccgcc tgcgtgcgct ttacgcccag 900taattccgat taacgcttgc accctccgta ttaccgcggc tgctggcacg gagttagccg 960gtgcttcttc tgcgagtaac gtcaat 986288987DNAPantoea agglomeransmisc_feature(1)..(987)BDNZ57547 16S rDNA 288agcgccctcc cgaaggttaa gctacctact tcttttgcaa cccactccca tggtgtgacg 60ggcggtgtgt acaaggcccg ggaacgtatt caccgtggca ttctgatcca cgattactag 120cgattccgac ttcatggagt cgagttgcag actccaatcc ggactacgac atactttatg 180aggtccgctt gctctcgcga ggtcgcttct ctttgtatat gccattgtag cacgtgtgta 240gccctggtcg taagggccat gatgacttga cgtcatcccc accttcctcc agtttatcac 300tggcagtctc ctttgagttc ccggccggac cgctggcaac aaaggataag ggttgcgctc 360gttgcgggac ttaacccaac atttcacaac acgagctgac gacagccatg cagcacctgt 420ctcacggttc ccgaaggcac taaggcatct ctgccaaatt ccgtggatgt caagaccagg 480taaggttctt cgcgttgcat cgaattaaac cacatgctcc accgcttgtg cgggcccccg 540tcaattcatt tgagttttaa ccttgcggcc gtactcccca ggcggtcgac ttaacgcgtt 600agctccggaa gccacgcctc aagggcacaa cctccaagtc gacatcgttt acggcgtgga 660ctaccagggt atctaatcct gtttgctccc cacgctttcg cacctgagcg tcagtctttg 720tccagggggc cgccttcgcc accggtattc ctccagatct ctacgcattt caccgctaca 780cctggaattc tacccccctc tacaagactc aagcctgcca gtttcgaatg cagttcccag 840gttgagcccg gggatttcac atccgacttg acagaccgcc tgcgtgcgct ttacgcccag 900taattccgat taacgcttgc accctccgta ttaccgcggc tgctggcacg gagttagccg 960gtgcttcttc tgcgggtaac gtcaatc 9872891103DNAAzotobacter chroococcummisc_feature(1)..(1103)BDNZ57597 16S rDNA 289cccgaaggtt agactagcta cttctggagc aacccactcc catggtgtga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccgcga cattctgatt cgcgattact agcgattccg 120acttcacgca gtcgagttgc agactgcgat ccggactacg atcggttttc tgggattggc 180tccgcctcgc gacttggcaa ccctctgtac cgaccattgt agcacgtgtg tagccctggc 240cgtaagggcc atgatgactt gacgtcatcc ccaccttcct ccggtttgtc accggcagtc 300tccttagagt gcccacccga ggtgctggta actaaggaca agggttgcgc tcgttacggg 360acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct gtgtctgagt 420tcccgaaggc accaatccat ctctggaaag ttctcagcat gtcaaggcca ggtaaggttc 480ttcgcgttgc ttcgaattaa accacatgct ccaccgcttg tgcgggcccc cgtcaattca 540tttgagtttt aaccttgcgg ccgtactccc caggcggtcg acttaatgcg ttagctgcgc 600cactaagctc tcaaggagcc caacggctag tcgacatcgt ttacggcgtg gactaccagg 660gtatctaatc ctgtttgctc cccacgcttt cgcacctcag tgtcagtatc agtccaggtg 720gtcgccttcg ccactggtgt tccttcctat atctacgcat ttcaccgcta cacaggaaat 780tccaccaccc tctaccgtac tctagtcagg cagttttgga tgcagttccc aggttgagcc 840cggggctttc acatccaact taccaaacca cctacgcgcg ctttacgccc agtaattccg 900attaacgctt gcacccttcg tattaccgcg gctgctggca cgaagttagc cggtgcttat 960tctgtcggta acgtcaaaac tgcaaggtat tcgcttacag cccttcctcc caacttaaag 1020tgctttacaa tccgaagacc ttcttcacac acgcggcatg gctggatcag gctttcgccc 1080attgtccaat attccccact gct 11032901018DNAPaenibacillus chondroitinusmisc_feature(1)..(1018)BDNZ57634 16S rDNA 290cccgaaggtt agactagcta cttctggtgc aacccactcc catggtgtga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccgcga cattctgatt cgcgattact agcgattccg 120acttcacgca gtcgagttgc agactgcgat ccggactacg atcggttttg tgggattagc 180tccacctcgc ggcttggcaa ccctctgtac cgaccattgt agcacgtgtg tagcccaggc 240cgtaagggcc atgatgactt gacgtcatcc ccaccttcct ccggtttgtc accggcagtc 300tccttagagt gcccaccatg acgtgctggt aactaaggac aagggttgcg ctcgttacgg 360gacttaaccc aacatctcac gacacgagct gacgacagcc atgcagcacc tgtctcaatg 420ttcccgaagg caccaatcca tctctggaaa gttcattgga tgtcaaggcc tggtaaggtt 480cttcgcgttg cttcgaatta aaccacatgc tccaccgctt gtgcgggccc ccgtcaattc 540atttgagttt taaccttgcg gccgtactcc ccaggcggtc aacttaatgc gttagctgcg 600ccactaagag ctcaaggctc ccaacggcta gttgacatcg tttacggcgt ggactaccag 660ggtatctaat cctgtttgct ccccacgctt tcgcacctca gtgtcagtat cagtccaggt 720ggtcgccttc gccactggtg ttccttccta tatctacgca tttcaccgct acacaggaaa 780ttccaccacc ctctaccata ctctagcttg gcagttttga atgcagttcc caggttgagc 840ccggggcttt cacatccaac ttaacaaacc acctacgcgc gctttacgcc cagtaattcc 900gattaacgct tgcaccctct gtattaccgc ggctgctggc acagagttag ccggtgctta 960ttctgtcggt acgtcaaaca ctaacgtatt agggtaatgc cctcctccca acttaaag 10182911055DNAAzospirillum lipoferummisc_feature(1)..(1055)BDNZ57661 16S rDNA 291agtcgaacga aggcttcggc cttagtggcg cacgggtgag taacacgtgg gaacctgcct 60ttcggttcgg aataacgttt ggaaacgaac gctaacaccg gatacgccct tcgggggaaa 120gttcacgccg agagaggggc ccgcgtcgga ttaggtagtt ggtgaggtaa tggctcacca 180agccttcgat ccgtagctgg tctgagagga tgatcagcca cactgggact gagacacggc 240ccagactcct acgggaggca gcagtgggga atattggaca atgggcgcaa gcctgatcca 300gcaatgccgc gtgagtgatg aaggccttag ggttgtaaag ctctttcgca cgcgacgatg 360atgacggtag cgtgagaaga agccccggct aacttcgtgc cagcagccgc ggtaatacga 420agggggctag cgttgttcgg aattactggg cgtaaagggc gcgtaggcgg cctgtttagt 480cagaagtgaa agccccgggc tcaacctggg aatagctttt gatactggca ggcttgagtt 540ccggagagga tggtggaatt cccagtgtag aggtgaaatt cgtagatatt gggaagaaca 600ccggtggcga aggcggccat ctggacggac actgacgctg aggcgcgaaa gcgtggggag 660caaacaggat tagataccct ggtagtccac gccgtaaacg atgaatgcta gacgtcgggg 720tgcatgcact tcggtgtcgc cgctaacgca ttaagcattc cgcctgggga gtacggccgc 780aaggttaaaa ctcaaaggaa ttgacggggg cccgcacaag cggtggagca tgtggtttaa 840ttcgaagcaa cgcgcagaac cttaccaacc cttgacatgt ccattatggg ctcgagagat 900caggtccttc agttcggctg ggtggaacac aggtgctgca tggctgtcgt cagctcgtgt 960cgtgagatgt tggggttaag tcccgcaacg agcgcaaccc ctaccgtcag ttgccatcat 1020tcagttgggc actctggtgg aaccgccggt gacaa 10552921087DNASphingomonas yanoikuyaemisc_feature(1)..(1087)BDNZ57662 16S rDNA 292ctgcctcctt acggttagct caacgccttc gagtgaatcc aactcccatg gtgcgatggg 60cggtgtgtac aaggcctggg aacgtattca ccgcggcatg ctgatccgcg attactagcg 120attccgcctt cacgctctcg agttgcagag aacgatccga actgagacga cttttggaga 180ttagctccct ctcgcgaggt ggctgcccac tgtagtcgcc attgtagcac gtgtgtagcc 240caacgcgtaa gggccatgag gacttgacgt catccccacc ttcctccggc ttatcaccgg 300cggttccttt agagtaccca actaaatgct ggcaactaaa ggcgagggtt gcgctcgttg 360cgggacttaa cccaacatct cacgacacga gctgacgaca gccatgcagc acctgtcacc 420tatccagccg aactgaagga aagtgtctcc acgatccgcg atagggatgt caaacgttgg 480taaggttctg cgcgttgctt cgaattaaac cacatgctcc accgcttgtg caggcccccg 540tcaattcctt tgagttttaa tcttgcgacc gtactcccca ggcggataac ttaatgcgtt 600agctgcgcca ccaaaacacc atgtgccctg acagctagtt atcatcgttt acggcgtgga 660ctaccagggt atctaatcct gtttgctccc cacgctttcg cacctcagcg tcaataccag 720tccagtgagc cgccttcgcc actggtgttc ttccgaatat ctacgaattt cacctctaca 780ctcggaattc cactcacctc tcctggattc aagctatcta gtttcaaagg cagttccggg 840gttgagcccc gggctttcac ctctgacttg aatagccgcc tacgtgcgct ttacgcccag 900taattccgaa caacgctagc tccctccgta ttaccgcggc tgctggcacg gagttagccg 960gagcttattc tcccggtact gtcattatca tcccggggta aaagagcttt acaaccctaa 1020aggccttcat cactcacgcg gcattgctgg gatcaggctt tcgcccattg gccaatattc 1080cctactg 10872931000DNARahnella aquatilismisc_feature(1)..(1000)BDNZ58013 16S rDNA 293agcgccctcc cgaaggttaa gctacctact tcttttgcaa cccactccca tggtgtgacg 60ggcggtgtgt acaaggcccg ggaacgtatt caccgtagca ttctgatcta cgattactag 120cgattccgac ttcatggagt cgagttgcag actccaatcc ggactacgac atactttatg 180aggtccgctt gctctcgcga gttcgcttct ctttgtatat gccattgtag cacgtgtgta 240gccctactcg taagggccat gatgacttga cgtcatcccc accttcctcc ggtttatcac 300cggcagtctc ctttgagttc ccaccattac gtgctggcaa caaaggataa gggttgcgct 360cgttgcggga cttaacccaa catttcacaa cacgagctga cgacagccat gcagcacctg 420tctcacggtt cccgaaggca ctaagccatc tctggcgaat tccgtggatg tcaagagtag 480gtaaggttct tcgcgttgca tcgaattaaa ccacatgctc caccgcttgt gcgggccccc 540gtcaattcat ttgagtttta accttgcggc cgtactcccc aggcggtcga cttaacgcgt 600tagctccgga agccacgcct caagggcaca acctccaagt cgacatcgtt tacagcgtgg 660actaccaggg tatctaatcc tgtttgctcc ccacgctttc gcacctgagc gtcagtcttt 720gtccaggggg ccgccttcgc caccggtatt cctccagatc tctacgcatt tcaccgctac 780acctggaatt ctacccccct ctacaagact ctagcttgcc agtttcaaat gcagttccca 840cgttaagcgc ggggatttca catctgactt aacaaaccgc ctgcgtgcgc tttacgccca 900gtaattccga ttaacgcttg caccctccgt attaccgcgg ctgctggcac ggagttagcc 960ggtgcttctt ctgcgagtaa cgtcaatcac cacacgtatt 10002941052DNAPseudomonas putidamisc_feature(1)..(1052)BDNZ60303 16S rDNA 294gtcctcccga aggttagact agctacttct ggtgcaaccc actcccatgg tgtgacgggc 60ggtgtgtaca aggcccggga acgtattcac cgcgacattc tgattcgcga ttactagcga 120ttccgacttc acgcagtcga gttgcagact gcgatccgga ctacgatcgg ttttgtgaga 180ttagctccac ctcgcggctt ggcaaccctc tgtaccgacc attgtagcac gtgtgtagcc 240caggccgtaa gggccatgat gacttgacgt catccccacc ttcctccggt ttgtcaccgg 300cagtctcctt agagtgccca ccattacgtg ctggtaacta aggacaaggg ttgcgctcgt 360tacgggactt aacccaacat ctcacgacac gagctgacga cagccatgca gcacctgtgt 420cagagttccc gaaggcacca atccatctct ggaaagttct ctgcatgtca aggcctggta 480aggttcttcg cgttgcttcg aattaaacca catgctccac cgcttgtgcg ggcccccgtc 540aattcatttg agttttaacc ttgcggccgt actccccagg cggtcaactt aatgcgttag 600ctgcgccact aaaatctcaa ggattccaac ggctagttga catcgtttac ggcgtggact 660accagggtat ctaatcctgt ttgctcccca cgctttcgca cctcagtgtc agtatcagtc 720caggtggtcg ccttcgccac tggtgttcct tcctatatct acgcatttca ccgctacaca 780ggaaattcca ccaccctcta ccgtactcta gcttgccagt tttggatgca gttcccaggt 840tgagcccggg gctttcacat ccaacttaac aaaccaccta cgcgcgcttt acgcccagta 900attccgatta acgcttgcac cctctgtatt accgcggctg ctggcacaga gttagccggt 960gcttattctg tcggtaacgt caaaacagca agggattaac ttactggcct tcctcccaac 1020ttaaagggct ttacaatccg aaaaacttct tt 10522951389DNARhizobium etlimisc_feature(1)..(1389)BDNZ60473 16S rDNA 295gtggttagct gcctccttgc ggttagcgca ctaccttcgg gtaaaaccaa ctcccatggt 60gtgacgggcg gtgtgtacaa ggcccgggaa cgtattcacc gcggcatgct gatccgcgat 120tactagcgat tccaacttca tgcactcgag ttgcagagtg caatccgaac tgagatggct 180tttggagatt agctcgacat cgctgtctcg ctgcccactg tcaccaccat tgtagcacgt 240gtgtagccca gcccgtaagg gccatgagga cttgacgtca tccccacctt cctctcggct 300tatcaccggc agtcccctta gagtgcccaa ctaaatgctg gcaactaagg gcgagggttg 360cgctcgttgc gggacttaac ccaacatctc acgacacgag ctgacgacag ccatgcagca 420cctgtgttcc ggtccccgaa gggaacacta catctctgta gctggccgga catgtcaagg 480gctggtaagg ttctgcgcgt tgcttcgaat taaaccacat gctccaccgc ttgtgcgggc 540ccccgtcaat tcctttgagt tttaatcttg cgaccgtact ccccaggcgg aatgtttaat 600gcgttagctg cgccaccgaa cagtatactg cccgacggct aacattcatc gtttacggcg 660tggactacca gggtatctaa tcctgtttgc tccccacgct ttcgcacctc agcgtcagta 720atggaccagt gagccgcctt cgccactggt gttcctccga atatctacga atttcacctc 780tacactcgga attccactca cctcttccat actccagatc gacagtatca aaggcagttc 840cagggttgag ccctgggatt tcacccctga ctgatcgatc cgcctacgtg cgctttacgc 900ccagtaaatc cgaacaacgc tagccccctt cgtattaccg cggctgctgg cacgaagtta 960gccggggctt cttctccggt taccgtcatt atcttcaccg gtgaaagagc tttacaaccc 1020taaggccttc atcactcacg cggcatggct ggatcaggct tgcgcccatt gtccaatatt 1080ccccactgct gcctcccgta ggagtttggg ccgtgtctca gtcccaatgt ggctgatcat 1140cctctcagac cagctatgga tcgtcgcctt ggtaggcctt taccccacca actagctaat 1200ccaacgcggg ctcatccttt gccgataaat ctttccccca aagggcacat acggtattag 1260cacacgtttc catgcgttat tccgtagcaa aaggtagatt cccacgcgtt actcacccgt 1320ctgccgctcc ccttgcgggg cgctcgactt gcatgtgtta agcctgccgc cagcgttcgt 1380tctgagcga

13892961073DNAPaenibacillus amylolyticusmisc_feature(1)..(1073)BDNZ66316 16S rDNA 296ctccttgcgg ttaccccacc gacttcgggt gttataaact ctcgtggtgt gacgggcggt 60gtgtacaaga cccgggaacg tattcaccgc ggcatgctga tccgcgatta ctagcaattc 120cgacttcatg caggcgagtt gcagcctgca atccgaactg agaccggctt tgttgggatt 180ggctccatct cgcgatttcg cagcccgttg taccggccat tgtagtacgt gtgtagccca 240ggtcataagg ggcatgatga tttgacgtca tccccacctt cctccggttt gtcaccggca 300gtctatctag agtgcccacc cgaagtgctg gcaactaaat ataagggttg cgctcgttgc 360gggacttaac ccaacatctc acgacacgag ctgacgacaa ccatgcacca cctgtcttga 420atgttccgaa gaaaaggtac atctctgtac cggtcattca gatgtcaaga cctggtaagg 480ttcttcgcgt tgcttcgaat taaaccacat actccactgc ttgtgcgggt ccccgtcaat 540tcctttgagt ttcagtcttg cgaccgtact ccccaggcgg agtgcttaat gtgttaactt 600cggcaccaag ggtatcgaaa cccctaacac ctagcactca tcgtttacgg cgtggactac 660cagggtatct aatcctgttt gctccccacg ctttcgcgcc tcagcgtcag ttacagccca 720gagagtcgcc ttcgccactg gtgttcctcc acatatctac gcatttcacc gctacacgtg 780gaattccact ctcctcttct gcactcaagt cacccagttt ccagtgcgat ccggggttga 840gccccgggat taaacaccag acttaaatga ccgcctgcgc gcgctttacg cccaataatt 900ccggacaacg cttgccccct acgtattacc gcggctgctg gcacgtagtt agccggggct 960ttcttctcag gtaccgtcac cttgagagca gttactctcc caagcgttct tccctggcaa 1020cagagcttta cgatccgaaa accttcatca ctcacgcggc attgctccgt cag 10732971420DNAMucilaginibacter gossypiimisc_feature(1)..(1420)BDNZ66321 16S rDNA 297acgctccttg cggttacgca cttcaggcac ttccagcttc catggcttga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccgcgt cattgctgat acgcgattac tagcgaatcc 120aacttcacgg ggtcgagttg cagaccccga tccgaactgt gaatggcttt gagagattgg 180catcctgttg ccaggtagct gccctctgta ccatccattg tagcacgtgt gtagccccgg 240acgtaagggc catgatgact tgacgtcgtc ccctccttcc tctctatttg cataggcagt 300ctgtttagag tccccacctt aaatgctggc aactaaacat aggggttgcg ctcgttgcgg 360gacttaaccc aacacctcac ggcacgagct gacgacagcc atgcagcacc tagtttcgtg 420ttccgaagaa ctgtgacgtc tctgtcacat tcactaactt tcaagcccgg gtaaggttcc 480tcgcgtatca tcgaattaaa ccacatgctc ctccgcttgt gcgggccccc gtcaattcct 540ttgagtttca cccttgcggg cgtactcccc aggtggaaca cttaacgctt tcgcttagac 600gctgaccgta tatcgccaac atcgagtgtt catcgtttag ggcgtggact accagggtat 660ctaatcctgt ttgatcccca cgctttcgtg cctcagcgtc aatcatactt tagtaagctg 720ccttcgcaat tggtgttctg tgacatatct atgcatttca ccgctacttg tcacattccg 780cctacctcaa gtacattcaa gctcttcagt atcaagggca ctgcgatagt tgagctaccg 840tctttcaccc ctgacttaaa aagccgccta cgcacccttt aaacccaata aatccggata 900acgcttggat cctccgtatt accgcggctg ctggcacgga gttagccgat ccttattctt 960accgtacatt caacccgatt cacgaatcgg ggtttattcc ggtacaaaag cagtttacaa 1020cccgtagggc cgtcttcctg cacgcggcat ggctggttca gacttccgtc cattgaccaa 1080tattccttac tgctgcctcc cgtaggagtc tggtccgtgt ctcagtacca gtgtgggggg 1140tcatcctctc agatccccta aacatcgtag ccttggtatg ccgttaccac accaactagc 1200taatgttgcg catgcccatc ttagtcctat aaatatttga ttatcctgcg atgccacaaa 1260ataatgttat gcggtcttaa tctctctttc gagaggctat ccccctgact aaggtaggtt 1320acatacgtgt tacgcacccg tgcgccactc tcaagaaaag caagctcttc tatcccgtcc 1380gacttgcatg tattaggcct gccgctagcg ttcatcctga 14202981098DNACaulobacter henriciimisc_feature(1)..(1098)BDNZ66341 16S rDNA 298cctgcctctc ttgcgagtta gcgcagcgcc ttcgggtaaa gccaactccc atggtgtgac 60gggcggtgtg tacaaggccc gggaacgtat tcaccgcggc atgctgatcc gcgattacta 120gcgattccaa cttcatgcac tcgagttgca gagtgcaatc cgaactgaga cgacttttag 180ggattggctc cccctcgcgg gattgcagcc ctctgtagtc gccattgtag cacgtgtgta 240gcccaccttg taagggccat gaggacttga cgtcatcccc accttcctcc gaattaactt 300cggcagtact attagagtgc ccagccaaac ctgatggcaa ctaatagcga gggttgcgct 360cgttgcggga cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg 420tgtcccagtc cccgaaggga aagccgcatc tctgcggcgg tccgggcatg tcaaaaggtg 480gtaaggttct gcgcgttgct tcgaattaaa ccacatgctc caccgcttgt gcgggccccc 540gtcaattcct ttgagtttta atcttgcgac cgtactcccc aggcggagtg cttaatgcgt 600tagctgcgtc accgacaggc atgcctgccg acaactagca ctcatcgttt acagcgtgga 660ctaccagggt atctaatcct gtttgctccc cacgctttcg agcctcagcg tcagtaacgg 720accagtatgt cgccttcgcc actggtgttc ttccgaatat ctacgaattt cacctctaca 780ctcggagttc cacatacctc ttccgtactc aagatagcca gtatcaaagg caattccaag 840gttgagccct gggctttcac ctctgactaa actatccgcc tacgctccct ttacgcccag 900taattccgag caacgctagc ccccttcgta ttaccgcggc tgctggcacg aagttagccg 960gggcttcttc tccgggtacc gtcattatcg tccccggtga aagaatttta caatcctaag 1020accttcatca ttcacgcggc atggctgcgt caggctttcg cccattgcgc aagattcccc 1080actgctgcct cccgtagg 1098299640DNADuganella violaceinigramisc_feature(1)..(640)BDNZ66361 16S rDNA 299gcgccctcct tgcggttaag ctacctactt ctggtaaacc cgctcccatg gtgtgacggg 60cggtgtgtac aagacccggg aacgtattca ccgcgacatg ctgatccgcg attactagcg 120attccaactt catgtagtcg agttgcagac tacaatccgg actacgatac actttctggg 180attagctccc cctcgcgggt tggcggccct ctgtatgtac cattgtatga cgtgtgaagc 240cctacccata agggccatga ggacttgacg tcatccccac cttcctccgg tttgtcaccg 300gcagtctcat tagagtgctc ttgcgtagca actaatgaca agggttgcgc tcgttgcggg 360acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct gtgtgatggt 420tctctttcga gcactcccaa atctctccgg gattccatcc atgtcaaggg taggtaaggt 480ttttcgcgtt gcatcgaatt aatccacatc atccaccgct tgtgcgggtc cccgtcaatt 540cctttgagtt ttaatcttgc gaccgtactc cccaggcggt ctacttcacg cgttagctgc 600gttactaagt caattaagac ccaacaacta gtagacatcg 6403001385DNAAzospirillum lipoferummisc_feature(1)..(1385)BDNZ66460 16S rDNA 300gctgcctccc gttgccgggt tagcgcacca ccttcgggta aaaccaactc ccatggtgtg 60acgggcggtg tgtacaaggc ccgggaacgt attcaccgcg gcgtgctgat ccgcgattac 120tagcgattcc aacttcacgc actcgagttg cagagtgcga tccgaactga gacggctttt 180ggggatttgc tccatctcgc gacttcgctt cccactgtca ccgccattgt agcacgtgtg 240tagcccaacc cataagggcc atgaggactt gacgtcatcc ccgccttcct ccggcttgtc 300accggcggtt ccaccagagt gcccaactga atgatggcaa ctgacggtag gggttgcgct 360cgttgcggga cttaacccaa catctcacga cacgagctga cgacagccat gcagcacctg 420tgttccaccc agccgaactg aaggacctga tctctsaagc ccaaagtgga catgtcaagg 480gttggtaagg ttctgcgcgt tgcttcgaat taaaccacat gctccaccgc ttgtgcgggc 540ccccgtcaat tcctttgagt tttaaccttg cggccgtact ccccaggcgg aatgcttaat 600gcgttagcgg cgacaccgaa gtgcatgcac cccgacgtct agcattcatc gtttacggcg 660tggactacca gggtatctaa tcctgtttgc tccccacgct ttcgcgcctc agcgtcagtg 720tccgtccaga tggccgcctt cgccaccggt gttcttccca atatctacga atttcacctc 780tacactggga attccaccat cctctccgga actcaagcct gccagtatca aaagctattc 840ccaggttgag cccggggctt tcacttctga ctaaacaggc cgcctacgcg ccctttacgc 900ccagtaattc cgaacaacgc tagccccctt cgtattaccg cggctgctgg cacgaagtta 960gccggggctt cttctcacgc taccgtcatc atcgtcgcgt gcgaaagagc tttacaaccc 1020taaggccttc atcactcacg cggcattgct ggatcaggct tgcgcccatt gtccaatatt 1080ccccactgct gcctcccgta ggagtctggg ccgtgtctca gtcccagtgt ggctgatcat 1140cctctcagac cagctacgga tcgaaggctt ggtgagccat tacctcacca actacctaat 1200ccgacgcggg cccctctctc ggcgtaaact ttcccccaaa gggcgtatcc ggtgttagcg 1260ttcgtttcca aacgttattc cgaaccgaaa ggcaggttcc cacgtgttac tcacccgtgc 1320gccactaagg ccgaagcctt cgttcgactt gcatgtgtta ggcatgccgc cagcgttcgt 1380tctga 13853011415DNAFlavobacterium glacieimisc_feature(1)..(1415)BDNZ66487 16S rDNA 301gcagctcctt gcggtcccga cttcaggcac ccccagcttc catggcttga cgggcggtgt 60gtacaaggcc cgggaacgta ttcaccggat catggctgat atccgattac tagcgattcc 120agcttcacgg agtcgagttg cagactccga tccgaactgt gaccggtttt atagattcgc 180tcctggtcgc ccagtggctg ctctctgtac cggccattgt agcacgtgtg tagcccaagg 240cgtaagggcc gtgatgattt gacgtcatcc ccaccttcct cacagtttgc actggcagtc 300ttgttagagt tcccgacttg actcgctggc aactaacaac aggggttgcg ctcgttatag 360gacttaacct gacacctcac ggcacgagct gacgacaacc atgcagcacc ttgtaaattg 420tcttgcgaaa gttctgtttc caaaacggtc aatctacatt taagccttgg taaggttcct 480cgcgtatcat cgaattaaac cacatgctcc accgcttgtg cgggcccccg tcaattcctt 540tgagtttcat tcttgcgaac gtactcccca ggtgggatac ttatcacttt cgcttagcca 600ctgaaattgc ttccaacagc tagtatccat cgtttacggc gtggactacc agggtatcta 660atcctgttcg ctacccacgc tttcgtccat cagcgtcaat ccattagtag taacctgcct 720tcgcaattgg tattccatgt aatctctaag catttcaccg ctacactaca tattctagtt 780acttcctaat aattcaagtc ctgcagtatc aatggccgtt ccatcgttga gcgatgggct 840ttcaccactg acttacaaga ccgcctacgg accctttaaa cccaatgatt ccggataacg 900cttggatcct ccgtattacc gcggctgctg gcacggagtt agccgatcct tattctcaca 960gtaccgtcaa gctcggacac gtccgagtgt ttcttcctgt gcaaaagcag tttacaatcc 1020ataggaccgt catcctgcac gcggcatggc tggatcaggc ttgcgcccat tgtccaatat 1080tcctcactgc tgcctcccgt aggagtctgg tccgtgtctc agtaccagtg tgggggatct 1140ccctctcagg acccctaccc atcgtagcct tggtaagccg ttaccttacc aacaagctaa 1200tgggacgcat gctcatcttt caccgttgtg actttaatta taaagtgatg ccactccata 1260atactatgag gtattaatcc aaatttctct gggctatccc tctgtgaaag gcagattgca 1320tacgcgttac gcacccgtgc gccggtctct atatccgaag acatataccc ctcgacttgc 1380atgtgttaag cctgccgcta gcgttcatcc tgagc 14153021415DNADuganella zoogloeoidesmisc_feature(1)..(1415)BDNZ66500 16S rDNA 302ggttaagcta cctacttctg gtaaaacccg ctcccatggt gtgacgggcg gtgtgtacaa 60gacccgggaa cgtattcacc gcgacatgct gatccgcgat tactagcgat tccaacttca 120tgcagtcgag ttgcagacta caatccggac tacgatacac tttctgggat tagctccccc 180tcgcgggttg gcggccctct gtatgtacca ttgtatgacg tgtgaagccc tacccataag 240ggccatgagg acttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcatta 300gagtgccctt tcgtagcaac taatgacaag ggttgcgctc gttgcgggac ttaacccaac 360atctcacgac acgagctgac gacagccatg cagcacctgt gtaatggttc tctttcgagc 420actccccaat ctctcaggga ttccatccat gtcaagggta ggtaaggttt ttcgcgttgc 480atcgaattaa tccacatcat ccaccgcttg tgcgggtccc cgtcaattcc tttgagtttt 540aatcttgcga ccgtactccc caggcggtct acttcacgcg ttagctgcgt taccaagtca 600attaagaccc gacaactagt agacatcgtt tagggcgtgg actaccaggg tatctaatcc 660tgtttgctcc ccacgctttc gtgcatgagc gtcagttttg acccaggggg ctgccttcgc 720catcggtgtt cctccacata tctacgcatt tcactgctac acgtggaatt ctacccccct 780ctgccaaact ctagccttgc agtcaccatc gccattccca ggttgagccc ggggatttca 840cgacagtctt acaaaaccgc ctgcgcacgc tttacgccca gtaattccga ttaacgcttg 900caccctacgt attaccgcgg ctgctggcac gtagttagcc ggtgcttatt cttcaggtac 960cgtcattagc araggatatt agcctycacc gtttcttccc tgacaaaaga gctttacaac 1020ccgaaggcct tcttcactca cgcggcattg ctggatcagg cttgcgccca ttgtccaaaa 1080ttccccactg ctgcctcccg taggagtctg gaccgtgtct cagttccagt gtggctggtc 1140gtcctctcag accagctact gatcgatgcc ttggtgggcc tttaccccac caactagcta 1200atcagatatc ggccgctcca ggagcacaag gccttgcggt cccctgcttt catccttgga 1260tcgtatgcgg tattagcgta actttcgcta cgttatcccc cactccaggg tacgttccga 1320tatattactc acccgttcgc cactcgccgc caggttgccc cgcgctgccg ttcgacttgc 1380atgtgtaagg catgccgcca gcgttcaatc tgagc 14153031443DNABacillus psychrosaccharolyticusmisc_feature(1)..(1443)BDNZ66518 16S rDNA 303ggctccttgc ggttacctca ccgacttcgg gtgttacaaa ctctcgtggt gtgacgggcg 60gtgtgtacaa ggcccgggaa cgtattcacc gcggcatgct gatccgcgat tactagcgat 120tccggcttca tgcaggcgag ttgcagcctg caatccgaac tgagaatggc tttatgagat 180tcgcttaccc tcgcgagttt gcagctcttt gtaccatcca ttgtagcacg tgtgtagccc 240aggtcataag gggcatgatg atttgacgtc atccccacct tcctccggtt tatcaccggc 300agtcacctta gagtgcccaa ctgaatgctg gcaactaaga tcaagggttg cgctcgttgc 360gggacttaac ccaacatctc acgacacgag ctgacgacaa ccatgcacca cctgtcactc 420tgtcccccga aggggaacgt cctatctcta ggagtgtcag aggatgtcaa gacctggtaa 480ggttcttcgc gttgcttcga attaaaccac atgctccacc gcttgtgcgg gcccccgtca 540attcctttga gtttcagcct tgcggccgta ctccccaggc ggagtgctta atgcgttagc 600tgcagcacta aagggcggaa accctctaac acttagcact catcgtttac ggcgtggact 660accagggtat ctaatcctgt ttgctcccca cgctttcgcg cctcagtgtc agttatagac 720cagaaagtcg ccttcgccac tggtgttcct ccacatctct acgcatttca ccgctacacg 780tggaattcca ctttcctctt ctacactcaa gttccccagt ttccaatgac cctccccggt 840tgagccgggg gctttcacat cagacttaag gaaccacctg cgcgcgcttt acgcccaata 900attccggata acgcttgcca cctacgtatt accgcggctg ctggcacgta gttagccgtg 960gctttctggt taggtaccgt caaggtacca gcagttactc tggtacttgt tcttccctaa 1020caacagaact ttacgacccg aaagccttca tcgttcacgc ggcgttgctc cgtcagactt 1080tcgtccattg cggaagattc cctactgctg cctcccgtag gagtctgggc cgtgtctcag 1140tcccagtgtg gccgatcacc ctctcaggtc ggctacgcat cgttgccttg gtgagccatt 1200acctcaccaa ctagctaatg cgccgcgggc ccatctataa gtgacagcga gacgccgtct 1260ttccatcttt tctcatgcaa aaaaagaaca tatccggtat tagctccggt ttcccgaagt 1320tatcccagtc ttataggcag gttgcccact tgttactcac ccgtccgccg ctaattgttg 1380agtaaactca acaattcgct caacttgcat gtattaggca cgccgccagc gttcatcctg 1440agc 14433041439DNAPaenibacillus polymyxamisc_feature(1)..(1439)BDNZ66545 16S rDNA 304ccccaccgac ttcgggtgtt gtaaactctc gtggtgtgac gggcggtgtg tacaagaccc 60gggaacgtat tcaccgcggc atgctgatcc gcgattacta gcaattccga cttcatgtag 120gcgagttgca gcctacaatc cgaactgaga ccggcttttc taggattggc tccacctcgc 180ggcttcgctt cccgttgtac cggccattgt agtacgtgtg tagcccaggt cataaggggc 240atgatgattt gacgtcatcc ccaccttcct ccggtttgtc accggcagtc tgcttagagt 300gcccagcttg acctgctggc aactaagcat aagggttgcg ctcgttgcgg gacttaaccc 360aacatctcac gacacgagct gacgacaacc atgcaccacc tgtctcctct gtcccgaagg 420aaagccatat ctctacagcg gtcagaggga tgtcaagacc tggtaaggtt cttcgcgttg 480cttcgaatta aaccacatac tccactgctt gtgcgggtcc ccgtcaattc ctttgagttt 540cagtcttgcg accgtactcc ccaggcggaa tgcttaatgt gttaacttcg gcaccaaggg 600tatcgaaacc cctaacacct agcattcatc gtttacggcg tggactacca gggtatctaa 660tcctgtttgc tccccacgct ttcgcgcctc agcgtcagtt acagcccaga gagtcgcctt 720cgccactggt gttcctccac atctctacgc atttcaccgc tacacgtgga attccactct 780cctcttctgc actcaagctc cccagtttcc agtgcgaccc gaagttgagc ctcgggatta 840aacaccagac ttaaagagcc gcctgcgcgc gctttacgcc caataattcc ggacaacgct 900tgccccctac gtattaccgc ggctgctggc acgtagttag ccggggcttt cttctcaggt 960accgtcactc ttgtagcagt tactctacaa gacgttcttc cctggcaaca gagctttacg 1020atccgaaaac cttcatcact cacgcggcgt tgctccgtca ggctttcgcc cattgcggaa 1080gattccctac tgctgcctcc cgtaggagtc tgggccgtgt ctcagtccca gtgtggccga 1140tcaccctctc aggtcggcta cgcatcgtcg ccttggtagg cctttacccc accaactagc 1200taatgcgccg caggcccatc cacaagtgac agattgctcc gtctttcctc cttcgcccat 1260gcaggaaaag gatgtatcgg gtattagcta ccgtttccgg tagttatccc tgtcttgtgg 1320gcaggttgcc tacgtgttac tcacccgtcc gccgctaggt tatttagaag caagcttcta 1380aataaccccg ctcgacttgc atgtattagg cacgccgcca gcgttcgtcc tgagcgaga 14393051060DNAStenotrophomonas chelatiphagamisc_feature(1)..(1060)BNDZ 64208 16S rDNA 305agcgccctcc cgaaggttaa gctacctgct tctggtgcaa caaactccca tggtgtgacg 60ggcggtgtgt acaaggcccg ggaacgtatt caccgcagca atgctgatct gcgattacta 120gcgattccga cttcatggag tcgagttgca gactccaatc cggactgaga tagggtttct 180gggattggct taccgtcgcc ggcttgcagc cctctgtccc taccattgta gtacgtgtgt 240agccctggcc gtaagggcca tgatgacttg acgtcatccc caccttcctc cggtttgtca 300ccggcggtct ccttagagtt cccaccatta cgtgctggca actaaggaca agggttgcgc 360tcgttgcggg acttaaccca acatctcacg acacgagctg acgacagcca tgcagcacct 420gtgttcgagt tcccgaaggc accaatccat ctctggaaag ttctcgacat gtcaaggcca 480ggtaaggttc ttcgcgttgc atcgaattaa accacatact ccaccgcttg tgcgggcccc 540cgtcaattcc tttgagtttc agtcttgcga ccgtactccc caggcggcga acttaacgcg 600ttagcttcga tactgcgtgc caaagtgcac ccaacatcca gttcgcatcg tttagggcgt 660ggactaccag ggtatctaat cctgtttgct ccccacgctt tcgtgcctca gtgtcagtgt 720tggtccaggt agctgccttc gccatggatg ttcctcccga tctctacgca tttcactgct 780acaccgggaa ttccgctacc ctctaccaca ctctagtcat ccagtttcca ctgcagttcc 840caggttgagc ccagggcttt cacaacagac ttaaacaacc acctacgcac gctttacgcc 900cagtaattcc gagtaacgct tgcacccttc gtattaccgc ggctgctggc acgaagttag 960ccggtgctta ttctttgggt accgtcagaa cagcaaggta ttagcccgct gcttttcttt 1020cccaacaaaa gggctttaca acccgaaggc cttcttcacc 10603061243DNABacillus psychrosaccharolyticusmisc_feature(1)..(1243)BDNZ66544 16S rDNA 306ggctccttgc ggttcctcac cgacttcggg tgttacaaac tctcgtggtg tgacgggcgg 60tgtgtacaag gcccgggaac gtattcaccg cggcatgctg atccgcgatt actagcgatt 120ccggcttcat gcaggcgagt tgcagcctgc aatccgaact gagaatggct ttatgagatt 180cgcttaccct cgcgagtttg cagctctttg taccatccat tgtagcacgt gtgtagccca 240ggtcataagg ggcatgatga tttgacgtca tccccacctt cctccggttt atcaccggca 300gtcaccttag agtgcccaac tgaatgctgg caactaagat caagggttgc gctcgttgcg 360ggacttaacc caacatctca cgacacgagc tgacgacaac catgcaccac ctgtcactct 420gtcccccgaa ggggaacgtc ctatctctag gagtgtcaga ggatgtcaag acctggtaag 480gttcttcgcg ttgcttcgaa ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa 540ttcctttgag tttcagcctt gcggccgtac tccccaggcg gagtgcttaa tgcgttagct 600gcagcactaa agggcggaaa ccctctaaca cttagcactc atcgtttacg gcgtggacta 660ccagggtatc taatcctgtt tgctccccac gctttcgcgc ctcagtgtca gttatagacc 720agaaagtcgc cttcgccact ggtgttcctc cacatctcta cgcatttcac cgctacacgt 780ggaattccac tttcctcttc tacactcaag ttccccagtt tccaatgacc ctccccggtt 840gagccggggg ctttcacatc agacttaagg aaccacctgc gcgcgcttta cgcccaataa 900ttccggataa cgcttgccac ctacgtatta ccgcggctgc tggcacgtag ttagccgtgg 960ctttctggtt aggtaccgtc aaggtaccag cagttactct ggtacttgtt cttccctaac 1020aacagaactt tacgacccga aagccttcat cgttcacgcg gcgttgctcc gtcagacttt 1080cgtccattgc ggaagattcc ctactgctgc ctcccgtagg agtctgggcc gtgtctcagt 1140cccagtgtgg ccgatcaccc tctcaggtcg gctacgcatc gttgccttgg tgagccatta 1200cctcaccaac tagctaatgc gccgcgggcc catctataag tga 1243307989DNATumebacillus permanentifrigorismisc_feature(1)..(989)BDNZ 72287 16S rDNA 307agcagttacc tcaccgactt cgggtgttac caactcccat ggtgtgacgg gcggtgtgta 60caaggcccgg gaacgaattc accgcggcat gctgatccgc gattactagc aattccggct 120tcatgcaggc gagttgcagc ctgcaatccg aactacgaac ggctttctgg gattggctcc 180acctcgcggc ttcgcaaccc tttgtaccgt ccattgtagc acgtgtgtag

cccaagacat 240aaggggcatg atgatttgac gtcatccccg ccttcctccg gtttgtcacc ggcagtctgt 300tgtaagtgct caactaaatg gtagcaacac aacatagggg ttgcgctcgt tgcgggactt 360aacccaacat ctcacgacac gagctgacga caaccatgca ccacctgtca ccgctgcccc 420gaagggaagc tctatctcta gaacggtcag cgggatgtca agtcttggta aggttcttcg 480cgttgcttcg aattaaacca catgctccac tgcttgtgcg ggcccccgtc aattcctttg 540agtttcagtc ttgcgaccgt actccccagg cggagtgctt aatgcgttag cttcggcact 600aaggggtggg ccccctaaca cctagcactc atcgtttacg gcgtggacta ccagggtatc 660taatcctgtt tgctccccac gctttcgcgc ctcagcgtca gaaatcggcc agcaaggcgc 720cttcgccaca ggtgttcctc cacatctcta cgcatttcac cgctacacgt ggaattcccc 780ttgcctctcc gatcctcaag tctccccgta tccaaggcaa tcccagagtt gagctctggg 840ctttcacccc ggacgtgaaa gaccgcctgc gcgcgcttta cgcccagtga ttccggacaa 900cgcttgcccc ctacgtatta ccgcggctgc tggcacgtag ttagccgggg cttcctcctc 960tgttaccgtc aggtcctgag ctttctctg 989

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed