Dual Function Proteins Comprising Fgf21 Mutant Protein And Pharmaceutical Composition Comprising Same

KIM; Jun Hwan ;   et al.

Patent Application Summary

U.S. patent application number 17/478628 was filed with the patent office on 2022-01-06 for dual function proteins comprising fgf21 mutant protein and pharmaceutical composition comprising same. This patent application is currently assigned to YUHAN CORPORATION. The applicant listed for this patent is YUHAN CORPORATION. Invention is credited to Hyun Ho CHOI, Mi Kyeong JU, Dohoon KIM, Jong Gyun KIM, Jun Hwan KIM, Seul Gi KIM, Sangmyoun LIM, Seyoung LIM, Su Youn NAM, Ju-Young PARK, Minji SEO.

Application Number20220002368 17/478628
Document ID /
Family ID1000005839593
Filed Date2022-01-06

United States Patent Application 20220002368
Kind Code A1
KIM; Jun Hwan ;   et al. January 6, 2022

DUAL FUNCTION PROTEINS COMPRISING FGF21 MUTANT PROTEIN AND PHARMACEUTICAL COMPOSITION COMPRISING SAME

Abstract

A dual function protein is disclosed. The dual function protein may be prepared by linking a biologically active protein and an FGF mutant protein to an Fc region of an immunoglobulin. The dual function protein has improved pharmacological efficacy, in vivo duration and protein stability. The dual function protein exhibits improved pharmacological efficacy, in vivo duration and protein stability. A pharmaceutical composition containing the dual function protein as an active ingredient may be effectively used as a therapeutic agent for diabetes, obesity, dyslipidemia, metabolic syndrome, non-alcoholic fatty liver diseases, non-alcoholic steatohepatitis or cardiovascular diseases.


Inventors: KIM; Jun Hwan; (Seoul, KR) ; LIM; Seyoung; (Yongin-si, KR) ; SEO; Minji; (Seoul, KR) ; CHOI; Hyun Ho; (Suwon-si, KR) ; KIM; Dohoon; (Yongin-si, KR) ; JU; Mi Kyeong; (Suwon-si, KR) ; PARK; Ju-Young; (Seoul, KR) ; KIM; Seul Gi; (Suwon-si, KR) ; LIM; Sangmyoun; (Seoul, KR) ; KIM; Jong Gyun; (Anyang-si, KR) ; NAM; Su Youn; (Seoul, KR)
Applicant:
Name City State Country Type

YUHAN CORPORATION

Seoul

KR
Assignee: YUHAN CORPORATION
Seoul
KR

Family ID: 1000005839593
Appl. No.: 17/478628
Filed: September 17, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15768865 Apr 17, 2018 11136364
PCT/KR2016/012300 Oct 28, 2016
17478628

Current U.S. Class: 1/1
Current CPC Class: C07K 14/575 20130101; C07K 14/605 20130101; C07K 2319/30 20130101; C07K 14/50 20130101
International Class: C07K 14/50 20060101 C07K014/50; C07K 14/575 20060101 C07K014/575; C07K 14/605 20060101 C07K014/605

Foreign Application Data

Date Code Application Number
Oct 28, 2015 KR 10-2015-0150576

Claims



1. A dual function protein comprising a fibroblast growth factor 21 (FGF21) mutant protein; a biologically active protein, or a mutant or fragment thereof; and an Fc region of an immunoglobulin, wherein the FGF21 mutant protein comprises the following mutation: (i) a substitution of the amino acid at position 180 from the N-terminus of a wild-type FGF21 protein with the amino acid E.

2. The dual function protein of claim 1, wherein the FGF21 mutant protein further comprises the following mutation: (ii) a substitution of the amino acids at positions 170 to 174 from the N-terminus of a wild-type FGF21 protein with the amino acid sequence of TGLEAN (SEQ ID NO: 44).

3. The dual function protein of claim 1, wherein the FGF21 mutant protein further comprises the following mutation: (iii) a substitution of the amino acid at position 170 from the N-terminus of a wild-type FGF21 protein with the amino acid N.

4. The dual function protein of claim 1, wherein the FGF21 mutant protein further comprises the following mutation: (iv) a substitution of the amino acids at positions 98 to 101 from the N-terminus of a wild-type FGF21 protein with the amino acid sequence of EIRP (SEQ ID NO: 42); (v) a substitution of the amino acids at positions 170 to 174 from the N-terminus of a wild-type FGF21 protein with the amino acid sequence of TGLEAV (SEQ ID NO: 43); (vi) a substitution of the amino acid at position 174 from the N-terminus of a wild-type FGF21 protein with the amino acid N; or (vii) a combination of the substitution (iv) and the substitution (v), or a combination of the substitution (iv) and the substitution (v).

5. The dual function protein of claim 1, wherein the amino acid residue N of the FGF21 mutant protein introduced by a mutation is glycosylated.

6. The dual function protein of claim 1, wherein the biologically active protein is one selected from the group consisting of insulin, C-peptide, leptin, glucagon, gastrin, gastric inhibitory polypeptide (GIP), amylin, calcitonin, cholecystokinin, peptide YY, neuropeptide Y, bone morphogenetic protein-6 (BMP-6), bone morphogenetic protein-9 (BMP-9), oxyntomodulin, oxytocin, glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), irisin, fibronectin type III domain-containing protein 5 (FNDC5), apelin, adiponectin, C1q and tumor necrosis factor related protein (CTRP family), resistin, visfatin, omentin, retinol binding protein-4 (RBP-4), glicentin, angiopoietin, interleukin-22 (IL-22), exendin-4, growth hormone, and a combination thereof.

7. The dual function protein of claim 6, wherein the biologically active protein is one selected from GLP-1, a mutant thereof, and exendin-4.

8. The dual function protein of claim 7, wherein the mutant of GLP-1 comprises an amino acid sequence selected from the group consisting SEQ ID NOs: 43 to 46.

9. The dual function protein of claim 1, wherein the wild-type FGF21 protein comprises the amino acid sequence represented by SEQ ID NO: 1.

10. The dual function protein of claim 1, wherein the FGF21 mutant protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 6 to 23.

11. The dual function protein of claim 1, wherein the dual function protein further comprises a linker.

12. The dual function protein of claim 11, wherein the linker connects the FGF21 mutant protein to the Fc region of the immunoglobulin.

13. The dual function protein of claim 12, wherein the linker is connected to the C-terminus of the Fc region of the immunoglobulin and the N-terminus of the FGF21 mutant protein.

14. The dual function protein of claim 12, wherein the linker is a peptide consisting of 10 to 30 amino acid residues.

13. The dual function protein of claim 14, wherein the linker comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 to 5.

14. The dual function protein of claim 1, wherein the Fc region of the immunoglobulin is any one of the Fc region of IgG1, IgG2, IgG3, IgG4 and IgD, or a hybrid Fc containing a combination thereof.

15. The dual function protein of claim 14, wherein the hybrid Fc comprises an IgG4 region and an IgD region.

16. The dual function protein of claim 1, wherein the dual function protein comprises the biologically active protein, the Fc region of the immunoglobulin and the FGF21 mutant protein, connected in this order from the N-terminus to the C-terminus.

17. The dual function protein of claim 16, wherein a linker is additionally connected between the Fc region of the immunoglobulin and the FGF21 mutant protein.

18. The dual function protein of claim 17, wherein the linker is connected to the C-terminus of the Fc region of the immunoglobulin and the N-terminus of the FGF21 mutant protein.

19. The dual function protein of claim 17, wherein the linker is a peptide consisting of 10 to 30 amino acid residues.

20. The dual function protein of claim 17, wherein the linker comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 2 to 5.

21. The dual function protein of claim 1, wherein the dual function protein comprise the amino acid sequence of SEQ ID NO: 65.

22. The dual function protein of claim 1, wherein the dual function protein comprises the amino acid sequence of SEQ ID NO: 66.

23. The dual function protein of claim 1, wherein the dual function protein has an amino acid sequence represented by SEQ ID NO: 67.

24. A pharmaceutical composition comprising the dual function protein according to claim 1 and a pharmaceutically acceptable carrier.

25. An isolated nucleic acid molecule encoding the fusion protein according to claim 1.

26. An expression vector comprising the nucleic acid molecule of claim 25.

27. A host cell comprising the nucleic acid molecule of claim 25.

28. A method for treating diabetes, obesity, dyslipidemia, metabolic syndrome, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis or cardiovascular diseases in a subject in need thereof, comprising administering the pharmaceutical composition of claim 24 to the subject.

29. A method selected from the group consisting of: reducing blood glucose level in a subject; reducing body weight in a subject; reducing triglyceride or low-density lipoprotein levels in a subject; and improving insulin sensitivity in a subject wherein the method comprising administering the pharmaceutical composition of claim 24 to the subject.

30. The method of claim 29, wherein the subject is obese.

31. The method of claim 30, wherein the subject has diabetes.

32. A method for inhibiting cAMP production in a subject in need thereof, comprising administering the composition of claim 24 to the subject.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is Divisional of U.S. application Ser. No. 15/768,865 filed Apr. 17, 2018, which is a National Stage of International Application No. PCT/KR2016/012300 filed Oct. 28, 2016, claiming priority based on Korean Patent Application No. 10-2015-0150576 filed Oct. 28, 2015.

SEQUENCE LISTING

[0002] The content of the electronically submitted sequence listing, file name: Sequence Listing.txt; size: 173,688 bytes; and date of creation: Aug. 6, 2020, filed herewith, is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0003] The present invention relates to a dual function protein including a biologically active protein and a fibroblast growth factor 21 (FGF21) mutant protein, and a pharmaceutical composition containing same.

BACKGROUND ART

[0004] Glucagon-like peptide-1 (GLP-1) is an incretin hormone consisting of 31 amino acids, which is secreted by L cells in the intestinal tract when stimulated by food, etc. Its biological effects arise via intracellular signaling through the GLP-1 receptor, a G protein-coupled receptor which is expressed in target tissues such as .beta.-cells in the pancreas, brain, etc. GLP-1 secreted in the blood has a very short half-life of less than 2 minutes, which is caused by a loss of activity due to the cleavage of amino acids at the N-terminus by the enzyme dipeptidyl peptidase-4 (DPP-4). Since GLP-1 stimulates the secretion of insulin in .beta.-cells in the pancreas based on blood glucose level, it has a strong effect on lowering blood glucose without inducing hypoglycemia. Further, the administration of GLP-1 results in loss of body weight in various animal models and humans, which is known to be caused by reduced food intake due to its effect on appetite suppression. GLP-1 induces proliferation of .beta.-cells and enhances the viability of .beta.-cells by inhibiting cell death caused by glycolipid toxicity through GLP-1 receptor expressed in .beta.-cells in the pancreas. Excessive secretion of glucagon increases blood glucose, which is known to be one of the causes of hyperglycemia in diabetics. In addition, it is known that GLP-1 acts on .alpha.-cells in the pancreas to inhibit fasting blood glucose elevation by inhibiting secretion of protein kinase A (PKA) protein-specific glucagon.

[0005] Exendin-4 is a clinically important GLP-1 receptor agonist. Exendin-4 is a polypeptide with 39 amino acid residues, and is normally produced in the salivary glands of the Gila Monster lizard. It is known that exendin-4 an amino acid sequence homology of 52% with GLP-1, and interacts with the GLP-1 receptor in mammals (Thorens et al. (1993) Diabetes 42:1678-1682). Exendin-4 has been shown to stimulate the secretion of insulin by insulin-producing cells in vitro, and the induction of insulin release by insulin-producing cells is stronger than GLP-1 under equimolar conditions. While exendin-4 strongly stimulates the secretion of insulin to decrease blood glucose levels in both rodents and humans with a duration of action longer than that of GLP-1, exendin-4 has exhibits antigenicity in mammals devoid of GLP-1 as it has unfamiliar epitopes in such animals.

[0006] The ability of GLP-1 and exendin-4 analogs (e.g., liraglutide and byetta) to improve glucose control in humans has been clinically confirmed. It has been reported that GLP-1 increases .beta.-cell mass through the inhibition of apoptosis and induced proliferation. Furthermore, it has been also reported that GLP-1 acts as an intestinal hormone inhibiting gastric acid secretion and gastric emptying while enhancing satiety signals, thereby reducing appetite. Such effects of GLP-1 can explain the weight loss observed when GLP-1 analogs are administered to patients with type 2 diabetes. In addition, GLP-1 exhibits cardioprotective effects following ischemia in rodents.

[0007] Various attempts have been made to develop long-acting GLP-1 analogs. Clinically confirmed long-acting GLP-1 analogs include dulaglutide (WO 2005/000892) and albiglutide (WO 2003/059934). Dulaglutide is an Fc-fused GLP-1 analog, and albiglutide is an albumin-fused GLP-1 analog, both of which have pharmacokinetic profiles allowing for once weekly administration. Both drugs have excellent effects on lowering blood glucose and reducing body weight with once weekly administration, and also provide greatly improved convenience in terms of treatment when compared to byetta and liraglutide.

[0008] Meanwhile, fibroblast growth factor 21 (FGF21), synthesized in the liver, is a hormone known to play an important role in glucose and lipid homeostasis. FGF21 exhibits pharmacological actions in the liver, adipocytes, .beta. cells of the pancreas, hypothalamus in the brain, and muscle tissues, where both an FGF21-specific receptor, i.e., FGF receptor, and .beta.-klotho complex are expressed. It has been reported that in non-human primate and murine models of various diabetic and metabolic diseases, FGF21 can lower blood glucose levels in an insulin-independent manner, reduce body weight, and lower triglyceride and low-density lipoprotein (LDL) concentrations in the blood. Additionally, due to its effect of improving insulin sensitivity, FGF21 has potential for development as a novel therapeutic agent for diabetes and obesity (see WO2003/011213).

[0009] Accordingly, in order to develop a novel anti-diabetic drug based on FGF21, attempts have been made to improve its biological activity and in vivo stability by constructing FGF21 mutants based on the wild-type FGF21 sequence via substitution, insertion, and deletion of some amino acids (see WO2010/065439). However, as FGF21 has a very short half-life, it has proven problematic if used directly as a biotherapeutic agent (Kharitonenkov, A. et al. (2005) Journal of Clinical Investigation 115:1627-1635). The in vivo half-life of FGF21 is 1 to 2 hours in mice, and 2.5 to 3 hours in monkeys. Therefore, for FGF21 to be used in its current form as a therapeutic agent for diabetes, daily administration is required.

[0010] Various approaches have been reported in attempting to increase the in vivo half-life of FGF21 recombinant proteins. One such example is to link polyethylene glycol (PEG), i.e., a polymer material, to FGF21 to increase its molecular weight, thereby inhibiting renal excretion and increasing in vivo retention time (see WO2012/066075). Another approach attempts to improve the half-life by fusing it with a fatty acid, which binds to human albumin (see WO2012/010553). An additional example attempts to increase the half-life while maintaining pharmacological activity equivalent to that of wild-type FGF21 through the generation of an agonist antibody, which specifically binds to the human FGF receptor alone or as a complex with .beta.-klotho (see WO2012/170438). In another example, the half-life was improved by preparing long-acting fusion proteins, in which an Fc region of IgG binds to an FGF21 molecule (see WO2013/188181).

[0011] Among the various technologies available to create long-acting drugs, Fc fusion technology is widely used because it has less of the disadvantages seen with other approaches, such as inducing an immune response or toxicity while increasing in vivo half-life. For the development of an Fc-fused FGF21 protein as a long-acting therapeutic drug, the following conditions should be satisfied.

[0012] First, the decrease of in vitro activity caused by fusion should be minimized. Both the N-terminus and C-terminus of FGF21 are involved in FGF21's activity. In this regard, it is known that the activities of FGF21 fusion proteins greatly vary depending on the location of the fusion. Accordingly, the activities of Fc-fused FGF21 fusion proteins, in which mutations are introduced into FGF21, may be altered depending on the presence/absence or location of the fusion. Second, a pharmacokinetic profile enabling administration at an interval of once per week in humans should be realized by the increase of in vivo half-life by the fusion. Third, considering that immunogenicity may be expected in most patients after administration of biopharmaceuticals, the immunogenicity risk due to a fusion linker or mutation should be minimized. Fourth, there should be no stability issues arising from the position of the fusion or the introduction of the mutation. Fifth, since undesired immune responses may occur depending on the isotypes of fused immunoglobulin, a solution to prevent such responses is necessary.

[0013] An attempt to develop a long-acting fusion protein by linking the Fc region of an immunoglobulin G (IgG) to an FGF21 molecule has already been reported (see WO 2013/188181). In the case of one Fc-FGF21 structure, where the Fc is fused to the N-terminus of the wild-type FGF21, while there is no distinct difference in in vitro activity as compared to that of the wild-type FGF21, the half-life is known to be very short due to in vivo degradation of the protein. To address this issue, there has been an attempt to improve the in vivo half-life by introducing several mutations at specific site locations of FGF21 to resist protein degradation. However, immunogenicity risk may increase with the introduction of multiple mutations. In contrast, in the case of an FGF21-Fc structure, where the Fc is fused to the C-terminus of the FGF21 molecule, it is known that there is a significant decrease in activity caused by fusion at this site when compared to the Fc-FGF21 structure.

[0014] Combined administration of GLP-1 and FGF21 may have a synergistic effect as compared with single administration depending on the action mechanisms and target tissues in the body, and potentially outstanding anti-diabetic efficacy and additional advantages are expected. The effects of combined administration of GLP-1 and FGF21 or a GLP-1/FGF21 dual function protein have been already investigated and reported (see WO 2010/142665 and WO 2011/020319).

[0015] Various problems must be solved in order to develop a dual function protein comprising GLP-1 and FGF21. Since wild-type GLP-1 and wild-type FGF21 have a very short in vivo half-life, they are required to be administered at least once daily, even if developed as therapeutic agents. Accordingly, long-acting technologies such as an Fc fusion are required in order to develop a long-acting dual function protein to improve convenience for patients. In a dual function drug for the two targets of GLP-1 and FGF21, the introduction of mutation(s) is essential to maintain the activity and in vivo stability of each drug, and problems associated with changes in activity, structure or stability caused by each mutation should be addressed. Medicinal effects for the two targets of GLP-1 and FGF21 should be well-balanced, and drug designs considering in vitro activities, pharmacokinetic profiles, pharmacological efficacy in animal models as well as clinical evaluation of efficacy in humans are required for this purpose. A dual function protein has a structure that cannot exist in a human body, and is structurally complex as compared with a fusion protein for a single target. In addition, since mutation or linker engineering is required to balance the two targets, the possibility of forming aggregate complexes may increase, and further protein engineering to prevent this may be required. Furthermore, potential immunogenicity may increase due to novel mutation sequences or complex structures, which should be addressed or avoided.

[0016] The present inventors have endeavored to improve the stability, pharmacokinetic profiles and pharmacological efficacy of dual function proteins including GLP-1 mutant proteins and FGF21 mutant proteins, and discovered that the stability, pharmacokinetic profiles and pharmacological efficacy of dual function proteins may be improved when a GLP-1 mutant protein is fused to an Fc region of an immunoglobulin and a novel FGF21 mutant protein is fused thereto, thereby accomplishing the present invention.

DISCLOSURE OF INVENTION

Technical Problem

[0017] An object of the present invention is to provide a dual function protein including a biologically active protein and an FGF21 mutant protein with improved pharmacokinetic parameters, high stability, low possibility of forming aggregation complexes, and reduced potential immunogenicity.

[0018] Another object of the present invention is to provide a pharmaceutical composition including the dual function protein for preventing or treating FGF21-associated disorders.

[0019] A further object of the present invention is to provide an isolated nucleic acid molecule encoding the dual function protein, an expression vector including the nucleic acid molecule, and a host cell including the expression vector.

Solution to Problem

[0020] The present invention provides a dual function protein comprising an FGF21 mutant protein; a biologically active protein, or a mutant or fragment thereof; and an Fc region of an immunoglobulin, wherein the FGF21 mutant protein comprises at least one mutation selected from the group consisting of the following mutations (1) to (7):

[0021] (1) a substitution of amino acids at positions 98 to 101 from the N-terminus of a wild-type FGF21 protein with an amino acid sequence of EIRP (SEQ ID NO: 68);

[0022] (2) a substitution of amino acids at positions 170 to 174 from the N-terminus of a wild-type FGF21 protein with an amino acid sequence of TGLEAV (SEQ ID NO: 69);

[0023] (3) a substitution of amino acids at positions 170 to 174 from the N-terminus of a wild-type FGF21 protein with an amino acid sequence of TGLEAN (SEQ ID NO: 70);

[0024] (4) a substitution of an amino acid at position 170 from the N-terminus of a wild-type FGF21 protein with an amino acid N;

[0025] (5) a substitution of an amino acid at position 174 from the N-terminus of a wild-type FGF21 protein with an amino acid N;

[0026] (6) a substitution of an amino acid at position 180 from the N-terminus of a wild-type FGF21 protein with an amino acid E, along with one or more mutations (1) to (5) above; and

[0027] (7) a mutation of 1 to 10 amino acids for reducing immunogenicity of a wild-type FGF21 protein.

[0028] In addition, the present invention provides a pharmaceutical composition comprising the dual function protein for treating diabetes, obesity, dyslipidemia, metabolic syndrome, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis or cardiovascular diseases.

[0029] Further, the present invention provides an isolated nucleic acid molecule encoding the dual function protein, an expression vector comprising the nucleic acid molecule, and a host cell comprising the expression vector.

Advantageous Effects of Invention

[0030] A dual function protein of the present invention, prepared by linking a biologically active protein and an FGF mutant protein to an Fc region of an immunoglobulin, has improved pharmacological efficacy, in vivo duration and protein stability. In addition, a pharmaceutical composition including the dual function protein as an active ingredient can be used as a therapeutic agent for diabetes, obesity, dyslipidemia, metabolic syndrome, non-alcoholic fatty liver diseases, non-alcoholic steatohepatitis or cardiovascular diseases.

BRIEF DESCRIPTION OF DRAWINGS

[0031] FIGS. 1A to 1C are graphs showing the in vitro activities of fusion proteins including FGF21 mutant proteins (hereinafter, "FGF21 mutant fusion protein") using a HEK293 cell line in which human .beta.-klotho is overexpressed. No FGF21 mutant fusion proteins exhibited a significant decrease in activity due to the introduction of a mutation.

[0032] FIGS. 2A and 2B are graphs showing the in vitro activities of FGF21 mutant fusion proteins with various linkers connecting the N-terminus of FGF21 to an Fc region, using a HEK293 cell line in which human .beta.-klotho is overexpressed. No FGF21 mutant 23 fusion protein exhibited a significant decrease in activity, although a slight difference was shown in activity depending on the linker sequence.

[0033] FIG. 3 is a graph showing the in vitro activities of RGE (Amgen), Fc-FGF21 (Lilly) and DFD1 using a HEK293 cell line in which human .beta.-klotho is overexpressed. DFD1 and RGE (Amgen) had similar activities, while Fc-FGF21 (Lilly) had in vitro activity two times higher than the other proteins.

[0034] FIG. 4 shows the stability of DFD4 and that of DFD13 in order to confirm the effect of the EIRP (SEQ ID NO: 68) mutation of FGF21 on the stability of fusion protein. It was confirmed that DFD13 was associated with a lower rate of high molecular weight aggregates (HMW %) at the initial stage and at a time-point of more than 2 weeks later as compared with DFD4, indicating that the introduction of the EIRP (SEQ ID NO: 68) mutation improves the stability of the FGF21 mutant fusion protein, thereby reducing HMW % significantly.

[0035] FIG. 5 shows the concentration of each protein in the blood over time for % hours after subcutaneous administration of FGF21 mutant fusion proteins. Data are indicated as mean values and standard deviation.

[0036] FIG. 6 shows blood glucose levels in an ob/ob mouse model after single subcutaneous injection of DFD18, DFD72, DFD74 or Fc-FGF21 (Lilly). DFD18, DFD72 and DFD74 all had an effect of lowering blood glucose level continuously. Data are indicated as mean values and standard error of the mean (S.E.M.).

[0037] FIG. 7 shows graphs indicating the changes in body weights in the ob/ob mouse model from the day of administration to the 14.sup.th day after single subcutaneous injection of DFD18, DFD72, DFD74 or Fc-FGF21 (Lilly). DFD18, DFD72 and DFD74 all had an effect of reducing body weight as compared with the PBS-treated group. Data are indicated as mean values and standard error of the mean.

[0038] FIG. 8 shows graphs indicating the changes in glycated hemoglobin levels in the ob/ob mouse model at the day of administration (1.sup.st day) and the 16.sup.th day after single subcutaneous injection of DFD18, DFD72, DFD74 or Fc-FGF21 (Lilly). DFD18, DFD72 and DFD74 all reduced glycated hemoglobin levels at the 16.sup.th day as compared with those at the day of administration. Data are indicated as mean values and standard error of the mean.

[0039] FIG. 9 shows blood glucose levels in an HFD/STZ mouse model after single subcutaneous injection of DFD72 or DFD74. Both DFD72 and DFD74 had the effect of lowering blood glucose level continuously. Data are indicated as mean values and standard error of the mean.

[0040] FIG. 10 shows the changes in animal body weights in the HFD/STZ mouse model from the day of administration to the 14.sup.th day after single subcutaneous injection of DFD72 or DFD74. Both DFD72 and DFD74 had the effect of reducing body weight as compared with the PBS-treated group. Data are indicated as mean values and standard error of the mean.

[0041] FIG. 11 shows graphs indicating the changes in glycated hemoglobin levels in the HFD/STZ mouse model at the 1.sup.st day and the 13.sup.th day after single subcutaneous injection of DFD72 or DFD74. It was observed that both DFD72 and DFD74 resulted in greater reduction of glycated hemoglobin levels as compared with the PBS-treated group. Data are indicated as mean values and standard error of the mean.

[0042] FIG. 12 shows the changes in body weights measured in the diet-induced obesity mouse model from the day of administration to the 14.sup.th day after single administration of DFD18. DFD18 had a significant effect on body weight reduction. Data are indicated as mean values and standard error of the mean.

[0043] FIG. 13 is a graph showing the in vitro GLP-1 activities of dual function proteins depending on the hinges which link the C-terminus of GLP-1 mutants and GLP-1 to the Fc region using a CHO cell line in which human GLP-1 receptor is overexpressed. Generally, the dual function protein including a GLP-1 (A2G) sequence (DFD23) exhibited 2 to 3 times lower activity than those of other dual function proteins including other GLP-1 mutant sequences. No significant difference in GLP-1 activities was shown between the dual function proteins including mutant sequences except the GLP-1 (A2G) sequence.

[0044] FIG. 14 shows graphs indicating the GLP-1 activities of DFD59, DFD69, DFD112 and DFD114 and the FGF21 activities of DFD69, DFD112 and DFD114. In vitro GLP-1 activities of three dual function proteins (DFD69, DFD112 and DFD114) and Fc-fused GLP-1 mutant including no FGF21 (DFD59) were measured using a CHO cell line in which human GLP-1 receptor is overexpressed. The three dual function proteins showed similar EC.sub.50 values, and the Fc-fused GLP-1 mutant (DFD59) showed about 2 times higher activity than those of dual function proteins. In vitro activities of dual function proteins depending on FGF21 mutants were measured using a HEK293 cell line in which human pi-klotho is overexpressed. It was confirmed that the in vitro activities of the FGF21 portion were similar in the three dual function proteins.

[0045] FIG. 15 shows the concentrations of proteins in the blood versus time for 240 hours after subcutaneous administration of dual function proteins. Data are indicated as mean values and standard deviation.

[0046] FIG. 16 shows the blood glucose levels in a db/db mouse model after single subcutaneous injection of DFD114 or DFD59 and single subcutaneous injection of combination of DFD59 and DFD74. The groups treated with dual function proteins showed stronger effects on lowering blood glucose levels than those treated with single function proteins. Data are indicated as mean values and standard error of the mean (S.E.M.).

[0047] FIG. 17 shows graphs indicating the changes in body weights in db/db mouse model from the day of administration to the 14.sup.th day after single subcutaneous injection of DFD114 or DFD59 and single subcutaneous injection of combination of DFD59 and DFD74. The groups treated with dual function proteins showed stronger effects on reducing body weight than those treated with single function proteins. Data are indicated as mean values and standard error of the mean (S.E.M.).

[0048] FIG. 18 shows graphs indicating the changes in glycated hemoglobin levels in a db/db mouse model at the day of administration (1.sup.st day) and the 16.sup.th day after single subcutaneous injection of DFD114 or DFD59 and single subcutaneous injection of a combination of DFD59 and DFD74. The groups treated with dual function proteins showed stronger effects on reducing glycated hemoglobin levels than those treated with single function proteins or a combination thereof. Data are indicated as mean values and standard error of the mean.

[0049] FIG. 19 shows the blood glucose levels in an HFD/STZ mouse model after single subcutaneous injection of DFD114, DFD59, DFD74 or DFD72 and single subcutaneous injection of combination of DFD59 and DFD74. The groups treated with dual function proteins showed stronger effects on lowering blood glucose levels than those treated with single function proteins. Data are indicated as mean values and standard error of the mean (S.E.M.).

[0050] FIG. 20 shows the changes in body weights in the HFD/STZ mouse model from the day of administration to the 14.sup.th day after single subcutaneous injection of DFD59, DFD72, DFD74 or DFD114 and single subcutaneous injection of combination of DFD59 and DFD74. The groups treated with dual function proteins showed stronger effects on reducing body weight than those treated with single function proteins. Data are indicated as mean values and standard error of the mean (S.E.M.).

[0051] FIG. 21 shows the changes in glycated hemoglobin levels in the HFD/STZ mouse model at the day of administration (1.sup.st day) and the 16.sup.th day after single subcutaneous injection of DFD59, DFD72, DFD74 or DFD114 and single subcutaneous injection of combination of DFD59 and DFD74. The groups treated with dual function proteins showed stronger effects on reducing glycated hemoglobin levels than those treated with single function proteins or a combination thereof. Data are indicated as mean values and standard error of the mean.

BEST MODE FOR CARRYING OUT THE INVENTION

[0052] Hereinafter, the present invention will be described in more detail.

[0053] In an aspect, the present invention provides a dual function protein comprising a fibroblast growth factor 21 (FGF21) mutant protein; a biologically active protein, or a mutant or fragment thereof; and an Fc region of an immunoglobulin, wherein the FGF21 mutant protein comprises at least one mutation selected from the group consisting of the following mutations (1) to (7).

[0054] (1) a substitution of amino acids at positions 98 to 101 from the N-terminus of a wild-type FGF21 protein with an amino acid sequence of EIRP (SEQ ID NO: 68) (hereinafter, "EIRP");

[0055] (2) a substitution of amino acids at positions 170 to 174 from the N-terminus of a wild-type FGF21 protein with an amino acid sequence of TGLEAV (SEQ ID NO: 69) (hereinafter, "TGLEAV");

[0056] (3) a substitution of amino acids at positions 170 to 174 from the N-terminus of a wild-type FGF21 protein with an amino acid sequence of TGLEAN (SEQ ID NO: 70) (hereinafter, "TGLEAN");

[0057] (4) a substitution of an amino acid at position 170 from the N-terminus of a wild-type FGF21 protein with an amino acid N;

[0058] (5) a substitution of an amino acid at position 174 from the N-terminus of a wild-type FGF21 protein with an amino acid N;

[0059] (6) a substitution of an amino acid at position 180 from the N-terminus of a wild-type FGF21 protein with an amino acid E, along with one or more mutations (1) to (5) above; and

[0060] (7) a mutation of 1 to 10 amino acids for reducing immunogenicity of a wild-type FGF21 protein.

[0061] The wild-type FGF21 protein, a hormone known to play an important role in glucose and lipid homeostasis, may be one derived from mammals such as humans, mice, pigs, monkeys, etc., preferably from humans. More preferably, the wild-type FGF21 protein may be the wild-type human FGF21 protein having an amino acid sequence represented by SEQ ID NO: 1.

[0062] The mutation included in the FGF21 mutant proteins may be, preferably, any one of the mutations of EIRP (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69), TGLEAN (SEQ ID NO: 70), G170N and G174N; a combination of any one of the mutations of TGLEAV (SEQ ID NO: 69), TGLEAN (SEQ ID NO: 70), G170N and G174N and the mutation of EIRP (SEQ ID NO: 68); a combination of any one of the mutations of EIRP (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69), TGLEAN (SEQ ID NO: 70), G170N and G174N and the mutation of A180E; or a combination of any one of the mutations of TGLEAV (SEQ ID NO: 69), TGLEAN (SEQ ID NO: 70), G170N and G174N, the mutation of EIRP (SEQ ID NO: 68) and the mutation of A180E. Furthermore, the FGF21 mutant proteins may have a conformation, in which 1 to 10 amino acids at the N-terminus or C-terminus is (are) deleted as compared to the wild-type FGF21 protein. More preferably, the FGF21 mutant proteins may include an amino acid sequence represented by any one of SEQ ID NO: 6 to 23. Still more preferably, the FGF21 mutant proteins may include an amino acid sequence represented by any one of SEQ ID NO. 6 to 23 and further have a conformation, in which 1 to 10 amino acids at the N-terminus or C-terminus is (are) deleted as compared to the wild-type FGF21 protein.

[0063] In the dual function protein, an amino acid residue N of FGF21 mutant protein introduced by a mutation may be glycosylated.

[0064] The biologically active protein may be one selected from the group consisting of insulin, C-peptide, leptin, glucagon, gastrin, gastric inhibitory polypeptide (GIP), amylin, calcitonin, cholecystokinin, peptide YY, neuropeptide Y, bone morphogenetic protein-6 (BMP-6), bone morphogenetic protein-9 (BMP-9), oxyntomodulin, oxytocin, glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), irisin, fibronectin type III domain-containing protein 5 (FNDC5), apelin, adiponectin, C1q and tumor necrosis factor related protein (CTRP family), resistin, visfatin, omentin, retinol binding protein-4 (RBP-4), glicentin, angiopoietin, interleukin-22 (IL-22), exendin-4 and growth hormone. Preferably, the biologically active protein may be one selected from GLP-1, a mutant thereof and exendin-4.

[0065] The GLP-1 protein is an incretin hormone consisting of 31 amino acids, which is secreted by L cells in the intestinal tract stimulated by food, etc. For example, the GLP-1 protein may be represented by the amino acid sequence of SEQ ID NO: 42.

[0066] A mutant of GLP-1 may be represented, for example, by the amino acid sequence of any one of SEQ ID NO: 43 to 46.

[0067] As used herein, the term "Fc region," "Fc fragment," or "Fc" refers to a protein, which includes a heavy chain constant region 1 (CH1), a heavy chain constant region 2 (CH2) and a heavy chain constant region 3 (CH3) of an immunoglobulin, but does not include variable regions of the heavy and light chains and a light chain constant region 1 (CL1) of an immunoglobulin. Additionally, as used herein, the term "Fc region mutant" refers to one prepared by substituting part of amino acid(s) of an Fc region or by combining Fc regions of different types.

[0068] The Fc region of immunoglobulin may be an entire Fc region constituting an antibody, a fragment thereof, or an Fc region mutant. Additionally, the Fc region includes a molecule in the form of a monomer or multimer, and may further include a hinge region of the heavy chain constant region. The Fc region mutant may be modified to prevent cleavage at the hinge region. Furthermore, the hinge sequence of the Fc may have a substitution in some amino acid sequences to reduce antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). In addition, part of the amino acid sequence of the Fc hinge sequence may be substituted to inhibit the rearrangement of the Fab region. A lysine residue at the C-terminus of the Fc may be removed.

[0069] Preferably, the Fc region of immunoglobulin may be any one of IgG1, IgG2, IgG3, IgG4 and IgD Fc regions; or a hybrid Fc, which is a combination thereof. Further, the hybrid Fc may include an IgG4 region and an IgD region. Further, the hybrid Fc region may include part of the hinge sequence and CH2 of an IgD Fc, and CH2 and CH3 sequences of IgG4 Fc.

[0070] In addition, the Fc fragment of the present invention may be in the form of wild-type glycosylated chain, more glycosylated chain than the wild-type, less glycosylated chain than the wild-type, or deglycosylated chain. The increase, decrease, or removal of glycosylated chain may be performed by a conventional method known in the art, such as a chemical method, an enzymatic method, and a genetic engineering method using microorganisms.

[0071] Preferably, the immunoglobulin Fc region may be represented by an amino acid sequence selected from SEQ ID NO: 24 to 26, 47 and 48.

[0072] The dual function protein may include a biologically active protein, an Fc region of an immunoglobulin and an FGF21 mutant protein, linked in this order from the N-terminus to the C-terminus. Further, the dual function protein may include an FGF21 mutant protein, an Fc region of an immunoglobulin and a biologically active protein, linked in this order from the N-terminus to the C-terminus. Preferably, the dual function protein may include a biologically active protein, an Fc region of an immunoglobulin and an FGF21 mutant protein, linked in this order from the N-terminus to the C-terminus.

[0073] Furthermore, the dual function protein may include a GLP-1 mutant protein, an Fc region of an immunoglobulin and an FGF21 mutant protein, linked in this order from the N-terminus to the C-terminus. Further, the dual function protein may include an FGF21 mutant protein, an Fc region of an immunoglobulin and a GLP-1 mutant protein, linked in this order from the N-terminus to the C-terminus. Preferably, the dual function protein may include a GLP-1 mutant protein, an Fc region of an immunoglobulin and an FGF21 mutant protein, linked in this order from the N-terminus to the C-terminus.

[0074] Additionally, the dual function protein may further include a linker. The dual function protein may be in the form, in which the FGF21 mutant protein is directly connected to the N-terminus or C-terminus of the immunoglobulin Fc region, or the FGF21 mutant protein is connected to the immunoglobulin Fc region via a linker.

[0075] In such case, the linker may be connected to the N-terminus, C-terminus, or a free radical of the Fc fragment, and also, may be connected to the N-terminus, C-terminus, or a free radical of the FGF21 mutant protein. When the linker is a peptide linker, the connection may occur in any region. For example, the linker may be connected to the C-terminus of the immunoglobulin Fc region and the N-terminus of the FGF21 mutant protein to form a fusion protein of the immunoglobulin Fc region and the FGF21 mutant protein.

[0076] Furthermore, the dual function protein of the present invention may be in the form, in which a biologically active protein is linked to the N-terminus of the Fc region of immunoglobulin of the fusion protein.

[0077] When the linker and Fc are separately expressed and then connected, the linker may be a crosslinking agent known in the art. Examples of the crosslinking agent may include 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, imidoesters including N-hydroxysuccinimide ester such as 4-azidosalicylic acid and disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane, but are not limited thereto.

[0078] Further, the linker may be a peptide. Preferably, the linker may be a peptide consisting of 10 to 30 amino acid residues.

[0079] Furthermore, alanine may additionally be attached to the end of linker. Preferably, the linker may be a peptide having an amino acid sequence represented by any one of SEQ ID NO: 2 to 5.

[0080] The dual function protein may be in a form in which a dimer or multimer of FGF21 mutant proteins, in which one or more FGF21 mutant proteins linked together, is connected to an immunoglobulin Fc region. Additionally, the dual function protein may be in a form of a dimer or multimer in which two or more immunoglobulin Fc regions are linked, wherein the immunoglobulin Fc regions have the FGF21 mutant protein connected thereto.

[0081] Additionally, the dual function protein may be a peptide which preferably has an amino acid sequence represented by any one of SEQ ID NO: 58 to 67. More preferably, the dual function protein may be a peptide which has an amino acid sequence represented by SEQ ID NO: 65, 66 or 67.

[0082] The FGF21 mutant protein may further include a mutation of 1 to 10 amino acids for reducing immunogenicity of the wild-type FGF21 protein. The immunogenicity may be predicted by a conventional method known in the art. For example, the potential immunogenicity of a protein may be screened by using, e.g., ITOPE.TM. and TCED.TM. methods.

[0083] Further, the mutation for minimizing the immunogenicity may be designed by a conventional method known in the art. For example, when immunogenicity is observed by performing an EPISCREEN.TM. analysis to evaluate potential immunogenicity, the amino acid sequences inducing the immunogenicity may be identified through T-cell epitope mapping, and the mutants with minimized immunogenicity may be designed via in silico prediction.

[0084] In another aspect, the present invention provides a pharmaceutical composition containing the dual function protein for treating FGF21-associated disorders.

[0085] As used herein, the term "FGF21-associated disorder" may include obesity, type I- and type II diabetes, pancreatitis, dyslipidemia, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), insulin resistance, hyperinsulinemia, glucose intolerance, hyperglycemia, metabolic syndrome, acute myocardial infarction, hypertension, cardiovascular diseases, atherosclerosis, peripheral arterial disease, apoplexy, heart failure, coronary artery heart disease, renal disease, diabetic complications, neuropathy, gastroparesis, disorder associated with a serious inactivation mutation in insulin receptor, and other metabolic disorders. Preferably, the FGF21-associated disorder may be diabetes, obesity, dyslipidemia, metabolic syndrome, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis or cardiovascular diseases.

[0086] Further, the pharmaceutical composition may further include a pharmaceutical carrier. The pharmaceutical carrier may be any carrier as long as it is a non-toxic material suitable for delivering antibodies to patients. For example, distilled water, alcohol, fats, waxes and inactive solids may be included as a carrier. Pharmaceutically acceptable adjuvants (buffering agents, dispersants) may also be included in the pharmaceutical composition. In these formulations, the concentration of the dual function protein may vary greatly.

[0087] Specifically, the pharmaceutical composition may contain a formulation material for altering, maintaining, or conserving the pH, osmolarity, viscosity, transparency, color, isotonicity, odor, sterility, stability, dissolution or release rate, adsorption, or permeability of the composition. Examples of the suitable formulating material may include amino acids (e.g., glycine, glutamine, asparagine, arginine or lysine), anti-microorganism agents, anti-oxidants (e.g., ascorbic acid, sodium sulfite or sodium bisulfite), buffering agents (e.g., borate, bicarbonates, Tris-HCl, citrate, phosphate or other organic acids), bulking agents (e.g., mannitol or glycine), chelating agents (e.g., ethyelenediaminetetraacetic acid (EDTA)), complexing agents (e.g., caffeine, polyvinylpyrrolidione, .beta.-cyclodextrin or hydroxypropyl-.beta.-cyclodextrin), fillers, monosaccharides, disaccharides and other carbohydrates (e.g., glucose, mannose or dextrin), proteins (e.g., serum albumin, gelatin or immunoglobulin), coloring agents, flavoring agents, diluents, emulsifiers, hydrophilic polymers (e.g., polyvinylpyrrolidione), low molecular weight polypeptides, salt-forming counterions (e.g., sodium), preservatives (e.g., benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide), solvents (e.g., glycerin, propylene glycol or polyethylene glycol), sugar alcohols (e.g., mannitol or sorbitol), suspending agents, surfactants or humectants (e.g., pluronics; PEG; sorbitan ester; polysorbate, e.g., polysorbate 20 or polysorbate 80; triton; tromethamine; lecithin; cholesterol or tyloxapol), stability improvers (e.g., sucrose or sorbitol), growth improvers (e.g., alkali metal halides, preferably, sodium chloride or potassium chloride; or mannitol, sorbitol), delivery vehicles, diluents, excipients and/or pharmaceutical adjuvants, but are not limited thereto.

[0088] In another aspect, the present invention provides a method for preventing or treating FGF21-associated disorders including administering the dual function protein to a subject in need of such prevention or treatment. This method includes, in particular, administering an effective amount of the dual function protein of the present invention to a mammal having a symptom of diabetes, obesity, dyslipidemia, metabolic syndrome, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis or cardiovascular diseases which are FGF21-associated disorders.

[0089] The pharmaceutical composition of the present invention may be administered via any route. The composition of the present invention may be provided to an animal directly (e.g., topically, by administering into tissue areas by injection, transplantation, or by topical administration) or systemically (e.g., by oral- or parenteral administration) via any appropriate means. When the composition of the present invention is parenterally provided via intravenous-, subcutaneous-, ophthalmic-, intraperitoneal-, intramuscular-, oral-, rectal-, intraorbital-, intracerebral-, intracranial-, intraspinal-, intraventricular-, intrathecal-, intracistenal-, intracapsular-, intranasal-, or aerosol administration, the composition is preferably aqueous or may include a portion of a physiologically applicable body liquid suspension or solution. Accordingly, the carrier or vehicle may be added to the composition and be delivered to a patient since it is physiologically applicable. Therefore, a physiologically-appropriate saline solution may generally be included as a carrier like a body fluid for formulations.

[0090] Further, the administration frequency may vary depending on the pharmacokinetic parameters of the dual function protein in the formulations to be used. Typically, physicians would administer the composition until an administration dose to achieve a desired effect is reached. Accordingly, the composition may be administered as a unit dose, at least two doses with time intervals (may or may not contain the same amount of a target dual function protein) or administered by a continuous injection via a transplantation device or catheter. The precision of addition of an appropriate administration dose may be routinely performed by those skilled in the art, and corresponds to the scope of work being routinely performed by them.

[0091] Additionally, the preferable unit dose of the dual function protein in humans may be in a range from 0.01 .mu.g/kg to 100 mg/kg of body weight, and more preferably from 1 .mu.g/kg to 10 mg/kg of body weight. Although this is the optimal amount, the unit dose may vary depending on the disease to be treated or the presence/absence of adverse effects. Nevertheless, the optimal administration dose may be determined by performing a conventional experiment. The administration of the dual function protein may be performed by a periodic bolus injection, an external reservoir (e.g., an intravenous bag), or a continuous intravenous-, subcutaneous-, or intraperitoneal administration from the internal source (e.g., a bioerodible implant).

[0092] In addition, the dual function protein of the present invention may be administered to a subject recipient along with other biologically active molecules. The optimal combination of the dual function protein and other molecule(s), dosage forms, and optimal doses may be determined by a conventional experiment well known in the art.

[0093] In still another aspect, the present invention provides an isolated nucleic acid molecule encoding the dual function protein.

[0094] As used herein, the term "isolated nucleic acid molecule" refers to a nucleic acid molecule of the present invention, which is isolated from about at least 50% of proteins, lipids, carbohydrates, or other materials, discovered in nature when total nucleic acids are isolated from a source cell; which is operatively linked to a polynucleotide which is not linked in nature; or which is a part of a larger polynucleotide sequence and does not occur in nature. Preferably, in the isolated nucleic acid molecules of the present invention, there are not substantially present any other contaminated nucleic acids, or other contaminants which are discovered in the natural environment and inhibit uses of the nucleic acids in the production of polypeptides, or treatment, diagnosis, prevention, or research.

[0095] In such case, the isolated nucleic acid molecules encoding the dual function protein may have different sequences with each other due to codon redundancy. Furthermore, as long as the isolated nucleic acid can produce the dual function protein, the isolated nucleic acid may be appropriately modified, or a nucleotide may be added to the N-terminus or C-terminus of the isolated nucleic acid according to desired purposes.

[0096] The isolated nucleic acid may include, for example, a nucleotide sequence represented by any one of SEQ ID NO: 71 to 80.

[0097] In still another aspect, the present invention provides an expression vector comprising the isolated nucleic acid molecule.

[0098] As used herein, the term "expression vector" refers to a vector containing a nucleic acid sequence, which is suitable for the transformation of a host cell and directs or controls the expression of an inserted heterogenous nucleic acid sequence. The expression vector includes a linear nucleic acid, a plasmid, a phagemid, a cosmid, an RNA vector, a viral vector, and analogs thereof. Examples of the viral vector include a retrovirus, an adenovirus and an adeno-associated virus, but are not limited thereto.

[0099] As used herein, the term "expression of a heterogeneous nucleic acid sequence" or "expression" of a target protein refers to transcription of an inserted DNA sequence, translation of an mRNA transcript, and production of an Fc fusion protein product, an antibody or an antibody fragment.

[0100] A useful expression vector may be RcCMV (Invitrogen, Carlsbad) or a mutant thereof. The useful expression vector may include a human cytomegalovirus (CMV) promoter for promoting a continuous transcription of a target gene in a mammalian cell, and a bovine growth hormone polyadenylation signal sequence for enhancing the level of post-transcriptional RNA stability. In an exemplary embodiment of the present invention, the expression vector is pAD15, which is a modified vector of RcCMV.

[0101] In still another aspect, the present invention provides a host cell comprising the expression vector.

[0102] As used herein, the term "host cell" refers to a prokaryotic cell or eukaryotic cell into which a recombinant expression vector may be introduced. As used herein, the term "transformed" or "transfected" refers to introduction of a nucleic acid (e.g., a vector) into a cell by various technologies known in the art.

[0103] An appropriate host cell may be transformed or transfected with a DNA sequence of the present invention and may be used for the expression and/or secretion of the target protein. Examples of the appropriate host cell that may be used in the present invention include immortal hybridoma cells, NS/0 myeloma cells, 293 cells, Chinese hamster ovary (CHO) cells, HeLa cells, CAP cells (human amniotic fluid-derived cells), and COS cells.

[0104] Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the examples. However, these examples according to the present invention can be modified in many different forms and the scope of the present invention should not be construed as limited to the examples set forth herein.

MODE FOR THE INVENTION

Preparation Example 1. Preparation and Purification of Fusion Protein Containing FGF21 Mutant Protein

Preparation Example 1-1. Preparation of Expression Vectors for Expression of FGF21 Mutant Proteins

[0105] In order to improve the stability, activity and pharmacokinetic profiles of the FGF21 in an Fc-FGF21 structure, mutation studies of FGF21 were performed.

[0106] Specifically, mutant proteins were designed for the LLLE (SEQ ID NO: 81) region (the amino acids at positions 98 to 101 from the N-terminus of the FGF21 protein) and GPSQG (SEQ ID NO: 82) region (the amino acids at positions 170 to 174 from the N-terminus of the FGF21 protein), and A180 site, which were expected to significantly affect protein activities based on 3-dimensional structure analysis of the FGF21 proteins.

[0107] The position, sequence information, target and expected effect of each mutation introduced into the FGF21 protein are listed in Table 1 below (in Table 1, N refers to glycosylated asparagine (N)). Further, FGF21 mutant proteins including the mutations described in Table 1 are listed in Table 2 below.

TABLE-US-00001 [TABLE 1] Se- Posi- Original Mutated quence tion sequence sequence Target Expected effect EIRP 98-101 LLLE EIRP Substitution Improvement of (SEQ ID (SEQ ID (SEQ ID with FGF19 stability and NO: 68) NO: 81) NO: 68) sequence pharmacokinetics TGLEAV 170-174 GPSQG TGLEAV Substitution Improvement of (SEQ ID (SEQ ID (SEQ ID with FGF19 pharmacokinetics NO: 69) NO: 82) NO: 69) sequence TGLEAN 170-174 GPSQG TGLEAN Substitution Improvement of (SEQ ID (SEQ ID (SEQ ID with FGF19 pharmacokinetics NO: 70) NO: 82) NO: 70) sequence, and addition of N-glycosylation G170N 170 G N Point Improvement of mutation, pharmacokinetics and addition of N-glycosylation G174N 174 G N Point mutation, Improvement of and addition pharmacokinetics of N-glycosylation A180E 180 A E Point mutation Improvement of pharmacokinetics

TABLE-US-00002 SEQ ID NO Sequence of FGF21 mutant protein 6 FGF21 (EIRP (SEQ ID NO: 68)) 7 FGF21 (TGLEAV (SEQ ID NO: 69)) 8 FGF21 (TGLEAN (SEQ ID NO: 70)) 9 FGF21 (G170N) 10 FGF21 (G174N) 11 FGF21 (EIRP (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) 12 FGF21 (EIRP (SEQ ID NO: 68), TGLEAN (SEQ ID NO: 70)) 13 FGF21 (EIRP (SEQ ID NO: 68), G170N) 14 FGF21 (EIRP (SEQ ID NO: 68), G174N) 15 FGF21 (EIRP (SEQ ID NO: 68), A180E) 16 FGF21 (TGLEAV (SEQ ID NO: 69), A180E) 17 FGF21 (TGLEAN (SEQ ID NO: 70), A180E) 18 FGF21 (G170N, A180E) 19 FGF21 (G174N, A180E) 20 FGF21 (EIRP (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69), A180E) 21 FGF21 (EIRP (SEQ ID NO: 68), TGLEAN (SEQ ID NO: 70), A180E) 22 FGF21 (EIRP (SEQ ID NO: 68), G170N, A180E) 23 FGF21 (EIRP (SEQ ID NO: 68), G174N, A180E)

[0108] Expression vectors were prepared to express the amino acids of the three components: fusion carrier, linker and FGF21 mutant in this order from the N-terminus to C-terminus. The material code of each FGF21 mutant fusion protein, sequence of mutation introduced into FGF21, sequence of fusion carrier and linker sequence are listed in Table 3 below (in Table 3, N refers to glycosylated asparagine (N)).

TABLE-US-00003 [TABLE 3] Sequence SEQ of ID Material FGF21 Fusion Linker NO code mutation carrier sequence 27 DFD1 EIRP hyFc C (SEQ ID (SEQ ID (SEQ ID NO: 68), NO: 26) NO: 2) TGLEAV (SEQ ID NO: 69) 28 DFD3 TGLEAV hyFc AKA (SEQ ID (SEQ ID (SEQ ID NO: 69) NO: 26) NO: 3) 29 DFD4 TGLEAV hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 69) NO: 26) NO: 4) 30 DFD5 TGLEAN hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 70) NO: 26) NO: 4) 31 DFD6 G170N hyFc GS3 (SEQ ID (SEQ ID NO: 26) NO: 4) 32 DFD6 G170N hyFc GS3 (E. coli) (SEQ ID (SEQ ID NO: 26) NO: 4) 33 DFD7 G174N hyFc GS3 (SEQ ID (SEQ ID NO: 26) NO: 4) 34 DFD9 none hyFc GS3 (SEQ ID (SEQ ID NO: 26) NO: 4) 35 DFD13 EIRP hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 68), NO: 26) NO: 4) TGLEAV (SEQ ID NO: 69) 36 DFD18 EIRP hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 68), NO: 26) NO: 4) TGLEAV (SEQ ID NO: 69), A180E 37 DFD72 EIRP hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 68), NO: 26) NO: 4) TGLEAN (SEQ ID NO: 70), A180E 38 DFD73 EIRP hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 68), NO: 26) NO: 4) G170N 39 DFD74 EIRP hyFc GS3 (SEQ ID (SEQ ID (SEQ ID NO: 68), NO: 26) NO: 4) G170N, A180E 40 RGE L98R, IgG1Fc GS3 (Amgen) P171G, mutant (SEQ ID A180E NO: 4) 41 Fc-FGF21 X IgG4Fc GS3A (Lilly) mutant (SEQ ID (SEQ ID NO: 5) NO: 25)

[0109] In order to produce the FGF21 mutant fusion proteins, the nucleotide sequences encoding each of the FGF21 mutant proteins were synthesized by consulting with Bioneer Corporation (Korea) based on the amino acid sequence of each protein. NheI and NotI restriction enzyme sequences were added to the 5' terminus and 3' terminus of the nucleotide sequences encoding each of the FGF21 mutant proteins and an initiation codon for protein translation and a leader sequence (MDAMLRGLCCVLLLCGAVFVSPSHA) (SEQ ID NO: 83) capable of secreting the expressed protein to the outside of a cell were inserted next to the restriction enzyme sequence at the 5' terminus. A termination codon was inserted next to the nucleotide sequence, which encodes each of the FGF21 mutant fusion proteins. The nucleotide sequence encoding each of the FGF21 mutant fusion proteins was cloned into a pTrans-empty expression vector by using the two restriction enzymes of NheI and NotI. The pTrans-empty expression vector, which has a simple structure including a CMV promoter, a pUC-derived replication origin, an SV40-derived replication origin and an ampicillin-resistant gene, was purchased from CEVEC Pharmaceuticals (Germany).

[0110] In the case of the fusion proteins of DFD6 (E. coli) and RGE (Amgen), the nucleotide sequence encoding each fusion protein was inserted into a pET30a expression vector for expression in E. coli.

Preparation Example 1-2. Construction of Plasmid DNA for Expression of FGF21 Mutant Fusion Proteins

[0111] E. coli was transformed with each of the expression vectors constructed in Preparation Example 1-1 to obtain a large amount of plasmid DNA to be used for expression. E. coli cells, whose cell walls were weakened, were transformed with each expression vector through heat shock, and the transformants were plated out on LB plates to obtain colonies. The colonies thus obtained were inoculated into LB media, cultured at 37.degree. C. for 16 hours, and each E. coli culture containing each expression vector was obtained in a volume of 100 mL. The E. coli thus obtained was centrifuged to remove the culture medium, and then P1, P2, P3 solutions (QIAGEN, Cat No.:12963) were added to break the cell walls, thereby obtaining a DNA suspension in which proteins and DNAs were separated. Plasmid DNA was purified from the DNA suspension thus obtained by using a Qiagen DNA purification column. The eluted plasmid DNA was identified through an agarose gel electrophoresis, and concentrations and purities were measured by using a NANODROP.TM. device (Thermo scientific, NANODROP.TM. Lite). The DNA thus obtained was used for expression.

Preparation Example 1-3. Expression of Fusion Proteins in CAP-T Cells

[0112] Human cell lines were transfected with each plasmid DNA type obtained in Preparation Example 1-2. Each plasmid DNA type was transduced into CAP-T cells (CEVEC), which had been cultured in PEM medium (Life technologies), by using PEI solution (Polyplus, Cat. No.:101-10N). The mixed solution of DNA and the PEI solution was mixed with the cell suspension by using a FREESTYLE.TM. 293 expression medium (Invitrogen), cultured at 37.degree. C. for 5 hours, and PEM medium was added. After culturing at 37.degree. C. for 5-7 days, the culture was centrifuged to remove cells and a supernatant including FGF21 mutant fusion proteins was obtained.

Preparation Example 1-4. Expression and Purification of FGF21 Mutant Fusion Proteins in E. coli

[0113] E. coli strain BL21 (DE3) was transformed with each plasmid DNA expressing DFD6 (E. coli) and RGE (Amgen) fusion proteins. The transformed E. coli expressing each fusion protein was inoculated into 20 mL of LB media, cultured at 37.degree. C. for 15 hours with shaking, and then a portion of the culture media was inoculated into 100 mL of LB media, and cultured at 37.degree. C. for 16 hours with shaking. Upon completion of culturing, the culture was centrifuged to obtain E. coli pellets, and then cells were disrupted using a high pressure cell disruptor to obtain inclusion bodies.

[0114] The obtained inclusion bodies were purified by washing and elution, followed by a protein refolding process. Specifically, the obtained inclusion bodies were washed 2-3 times with a buffer solution (pH 8.0) containing 0.5% Triton X-100, 50 mM Tris, 1 mM EDTA and 0.1 M NaCl to remove bacterial protein, and then resuspended in 8 M urea buffer containing 8 M urea, 50 mM Tris and 1 mM DTT. Since the proteins in 8 M urea buffer were completely denatured, a protein refolding process was performed as follows.

[0115] To begin, 8 M urea buffer was gradually diluted with 20 mM glycine buffer solution (pH 9.0) to remove urea, and from the concentration of 2 M, CuSO.sub.4 was added to the concentration of 80 .mu.M to induce stable protein folding. The protein completing the refolding process was suspended in PBS buffer solution (pH 7.4), and the suspension was filtered with a 0.22 .mu.m filter to remove impurities, and then loaded into a Protein A affinity chromatography column. The column was washed with 1.times.PBS buffer solution (pH 7.4) and then the proteins were eluted using 100 mM glycine buffer solution (pH 3.0) to prepare DFD6 (E. coli) fusion protein.

[0116] In the case of RGE (Amgen) fusion protein, the protein completing the refolding process was suspended in 50 mM Tris buffer solution (pH 8.0), the suspension was filtered with a 0.22 .mu.m filter to remove impurities, and then loaded into an anion exchange resin column (POROS.RTM. HQ 50 m, Thermo Fisher Scientific). The column was washed with 50 mM Tris buffer solution (pH 8.0), and then 50 mM Tris buffer solution (pH 8.0) was administered along the concentration gradient to elute RGE (Amgen) fusion protein. The RGE (Amgen) fusion protein obtained by the anion exchange resin was mixed with ammonium sulfate to the concentration of 1 M, and then purified using a hydrophobic interaction chromatography column (Phenyl sepharose FF, GE Healthcare). Specifically, the column was washed with 50 mM Tris buffer solution (pH 8.0) containing 1 M ammonium sulfate, 50 mM Tris buffer solution (pH 8.0) was administered along the concentration gradient, and the eluted fractions were analyzed through 10% Tris-glycine gel electrophoresis. The gel was dyed with coomassie brilliant blue R with mild shaking, and the fractions containing FGF21 mutant fusion protein with high purity were collected and then dialyzed overnight at 4.degree. C. using a final buffer solution (1.times.PBS, 1 mM EDTA, pH 7.4). Upon completion of the dialysis, the obtained protein stock solution was concentrated at 3,000 rpm by using a 30,000 MW cut-off centrifugation filter at 4.degree. C. The concentration of FGF21 mutant fusion protein was measured via BCA quantitative analysis.

Preparation Example 1-5. Purification of FGF21 Mutant Fusion Proteins

[0117] Protein A affinity chromatography column (GE Healthcare) was equilibrated with 1.times.PBS buffer solution (pH 7.4). The culture supernatant including each FGF21 mutant fusion protein obtained in Preparation Example 1-3 was filtered with a 0.2 .mu.m filter, and then loaded into a Protein A affinity chromatography column. The column was washed with 1.times.PBS buffer solution (pH 7.4) and then proteins were eluted using 100 mM glycine buffer solution (pH 3.0). The fusion proteins obtained by affinity chromatography were purified using an anion exchange resin column (POROS.RTM. HQ 50 .mu.m, Thermo Fisher Scientific). The anion exchange resin column was equilibrated with 50 mM Tris buffer solution (pH 8.0), before the FGF21 mutant fusion proteins were eluted from the column. Specifically, after washing the column with 50 mM Tris buffer solution (pH 8.0), 50 mM Tris buffer solution (pH 8.0) was dispensed along the concentration gradient and the eluted fractions were analyzed. Each eluted fraction was analyzed using size exclusion chromatography (SEC-HPLC), and the fractions including FGF21 mutant fusion proteins with high purity were collected. The concentration and quantitative analysis were performed in accordance with the methods described in Preparation Example 1-4.

Experimental Example 1. In Vitro Activities of Fusion Proteins

Experimental Example 1-1. Effect of FGF21 Mutations on Protein Activity

[0118] The in vitro activities of fusion proteins DFD4, DFD5, DFD6, DFD6 (E. coli), DFD7, DFD9, DFD13, DFD18, DFD72, DFD73 and DFD74 prepared in Preparation Example 1 were measured.

[0119] Specifically, the in vitro FGF21 activities of the fusion proteins were evaluated using a HEK293 cell line (Yuhan Corporation, Korea) which was modified to overexpress human .beta.-klotho, a coreceptor of FGF21. For the evaluation of activity, the concentrates containing the fusion proteins prepared in Preparation Examples 1-4 and 1-were subjected to a 3-fold serial dilution at a concentration of 3 .mu.M. After having been cultured in a serum-deficient state for 5 hours, the cell line overexpressing human .beta.-klotho was treated with the diluted fusion proteins for 20 minutes, and then was lysed by adding cytolysis buffer (Cisbio/Cat #64ERKPEG) with stirring at 60 rpm for 30 minutes at room temperature. The cell lysate solution was mixed with antibodies (Cisbio/Cat #64ERKPEG), which can detect extracellular signal-regulated kinase (ERK) and phosphorylated ERK, and the mixture was maintained at room temperature for 2 hours. Fluorescence was detected using a fluorometric detector (TECAN/GENiosPro). The activities of the fusion proteins were measured by comparing their EC.sub.50 values.

[0120] As shown in FIGS. 1A to 1C, it was confirmed that the in vitro activities of the fusion proteins prepared by introducing mutation sequences into the wild-type FGF21 protein were not inhibited, and the activities of each fusion protein were similar to each other. It was also confirmed that through the DFD6 (E. coli) sample expressed in E. coli and the DFD6 sample expressed in animal cells, the in vitro activities of the fusion proteins prepared by introducing N-glycosylation mutation into the wild-type FGF21 protein were not inhibited.

Experimental Example 1-2. Effect of Linker Sequence on Protein Activity

[0121] The in vitro activities of fusion proteins DFD1, DFD3, DFD4 and DFD13 prepared in Preparation Example 1 were measured.

[0122] Specifically, the FGF21 activities of the fusion proteins were measured by using the concentrates containing the fusion proteins prepared in Preparation Example 1-5 in accordance with the methods described in Experimental Example 1-1. The results are shown in FIGS. 2A and 2B.

[0123] It was confirmed that no FGF21 mutant fusion protein showed a significant decrease in the activity, although a slight difference was shown in the activity depending on the linker sequence, as shown in FIGS. 2A and 2B.

Experimental Example 1-3. Experimental Results for DFD1, RGE (Amgen) and Fc-FGF21 (Lilly)

[0124] The in vitro activities of fusion protein DFD1 prepared in Preparation Example 1 and control proteins RGE (Amgen) and Fc-FGF21 (Lilly) were measured.

[0125] Specifically, the FGF21 activities of the fusion proteins were measured by using the concentrates containing the fusion proteins prepared in Preparation Example 1-5 and the control proteins in accordance with the methods described in Experimental Example 1-1. The results are shown in FIG. 3.

[0126] It was confirmed that DFD1 and RGE (Amgen) had similar in vitro activity, while Fc-FGF21 (Lilly) had in vitro activity two times higher than those of the other proteins, as shown in FIG. 3.

Experimental Example 2. Evaluation of Stability of Fusion Proteins

Experimental Example 2-1. Experimental Method for Evaluating Stability

[0127] In order to measure the quantity of protein aggregates at the initial stage of the sample preparation, high molecular weight aggregates (% HMW) were quantified using a size-exclusion chromatography (SEC-HPLC) method. The results are shown in FIG. 4.

[0128] Specifically, a TOSOHAAS.TM. model TSK-GEL.RTM. G3000SW.sub.XL column was used for the SEC-HPLC method. The column was equilibrated by flowing a buffer solution (1.times.PBS, 1 mM EDTA, pH 7.4) at a flow rate of 1 mL/min. The DFD4 and DFD13 protein stock solutions prepared in Preparation Examples 1-5 were concentrated to a target concentration of 20 mg/mL or higher at 3,000 rpm using a 30,000 MW cut-off centrifugation filter at 4.degree. C. After the measurement of the concentration of each sample by BCA quantitative analysis, the samples were diluted with a buffer solution (1.times.PBS, 1 mM EDTA, pH 7.4) to a final concentration of 20 mg/mL. In order to measure the initial % HMW of DFD4 and DFD13, 20 mg/mL of the samples were diluted with the buffer solution (1.times.PBS, 1 mM EDTA, pH 7.4) to a final concentration of 1 mg/mL, and each sample in a volume of 100 .mu.L was analyzed by SEC-HPLC column.

[0129] For the stability evaluation of each sample, % HMW of the samples was measured using the SEC-HPLC method on the 4.sup.th, the 8.sup.th and the 14.sup.th days while storing them at 5.degree. C., 25.degree. C. and 37.degree. C. for two weeks.

[0130] As shown in FIG. 4, it was confirmed that DFD13 had a lower quantity of high molecular weight aggregates (HMW %) at the initial stage and up to the point of 2 weeks as compared with DFD4, indicating that the introduction of the EIRP (SEQ ID NO: 68) mutation improves the stability of the FGF21 mutant fusion protein, thereby reducing HMW % significantly.

Experimental Example 2-2. Stability Results

[0131] In order to investigate the effects of the EIRP (SEQ ID NO: 68) mutation introduced into the original sequence LLLE (SEQ ID NO: 81) (amino acid residues at 98-101 of SEQ ID NO: 1) of FGF21 on stability, the stability of DFD4 (SEQ ID NO: 29) and DFD13 (SEQ ID NO: 35) was measured in accordance with the methods described in Experimental Example 2-1. The analysis results for the zero-hour sample (initial stage; Day 0) and 4-, 8-, and 14 day-stored samples of DFD4 and DFD13 are summarized in Table 4 below (in Table 4, N.D. means "not detected").

TABLE-US-00004 TABLE 4 Stability of DFD4 and DFD13 for 2 weeks at a concentration of 20 mg/mL (% HMW) DFD4 DFD13 Day 5.degree. C. 25.degree. C. 37.degree. C. 5.degree. C. 25.degree. C. 37.degree. C. 0 0.91 0.56 4 4.25 11.64 5.12 0.36 0.34 0.84 8 6.16 9.99 4.87 N.D. N.D. N.D. 14 8.15 8.83 4.71 N.D. N.D. 0.32

[0132] As shown in Table 4, the quantity of % HMW at the initial stage (Day 0) was 0.91% for DFD4, and 0.56% for DFD13. After 2 weeks, the amount of % HMW increased to 8.83% for DFD4, but it was not observed in DFD13, under the condition of storage at 25.degree. C. DFD13 was shown to have a lower % HMW rate at the initial stage and 2 weeks, as compared with DFD4, which indicates that the % HMW rate of FGF21 mutant fusion protein decreased significantly due to the introduction of the EIRP (SEQ ID NO: 68) mutation.

Experimental Example 3. Pharmacokinetic Assessment of Fusion Proteins

Experimental Example 3-1. Experimental Method for Pharmacokinetic Assessment

[0133] Six-week old male ICR mice purchased from Orient BIO (Korea) were partitioned into groups (n=3/blood sampling time) in order to have similar mean values for body weight one day before drug treatment, and subcutaneously administered once with a respective sample at 1 mg/kg (2 mg/kg for RGE). Blood samples were then collected at 1, 4, 8, 12, 24, 48, 72, and 96 hours after the injection, respectively. The concentration of intact full length FGF21 protein in the blood was measured using a intact human FGF21 ELISA Kit (F1231-K01, Eagle Biosciences, USA), which has immunoreactivity to the N-terminus and C-terminus of FGF21 protein. The concentrations of the samples in the blood collected until 96 hours after the subcutaneous injection of each fusion protein into the mice were measured, and pharmacokinetic parameters of each sample were calculated.

Experimental Example 3-2. Assessment of Pharmacokinetic Activity

[0134] Based on the graph showing the concentrations of each protein in the blood versus time after the subcutaneous administration of fusion proteins in mice (FIG. 5), the pharmacokinetic parameters were calculated. The data are shown in Table 5 below.

TABLE-US-00005 TABLE 5 DFD6 Parameters DFD4 DFD5 DFD6 DFD7 DFD9 DFD13 DFD18 DFD72 DFD73 DFD74 (E.coli) RGE* T.sub.max (hour) 12 12 12 4 4 12 12 8 8 8 8 12 C.sub.max (ng/mL) 1288 1732 2868 696 384 1070 3428 2962 3296 3996 1399 9921 AUC.sub.last 25856 40706 100107 14118 4656 28785 104230 115977 123511 206634 37269 325747 (ng hr/mL) Half-life (hour) 5.5 8.0 14.9 19.7 17.4 7.1 11.0 14.4 16.6 26.0 9.1 12.9

[0135] The pharmacokinetic profile of each fusion protein was compared and evaluated based on the value of the area under the curve (AUC) indicating the degree of drug exposure.

[0136] As shown in Table 5, upon comparing DFD4 with DFD13, and DFD6 with DFD73, it was determined that the introduction of the EIRP (SEQ ID NO: 68) sequence resulted in an approximate 10 to 20% increase in AUC value. Comparing DFD9 with DFD4, the introduction of TGLEAV (SEQ ID NO: 69) resulted in an approximate 6-fold increase in AUC value.

[0137] Furthermore, the mutations of TGLEAN (SEQ ID NO: 70), G170N and G174N are designed to extend the half-life by introducing N-glycosylation into the C-terminus of FGF21, which is known to be proteolyzed in vivo. The increase in AUC due to the introduction of N-glycosylation was confirmed by comparing the mutants with each control material. In order to confirm the effect of improvement in AUC due to the introduction of N-glycosylation, the AUC value for DFD6 (E. coli) produced by E. coli which has no glycosylation was compared with that in DFD6 produced by a human cell line. DFD6 produced by the human cell line showed a 3-fold or higher increase in the AUC value as compared with DFD6 (E. coli) produced by E. coli, which demonstrated an improvement of pharmacokinetic profile due to glycosylation.

[0138] The A180E is a mutation disclosed in WO 2009/149171 owned by Amgen Inc. When the mutation of A180E was further introduced into the mutant DFD13 or DFD73 including the mutation of TGLEAV (SEQ ID NO: 69) or G170N, respectively, the resulting mutant DFD18 or DFD74, respectively, showed an approximate 2- to 3-fold additional increase in AUC value.

[0139] In summary, it was confirmed that the pharmacokinetic parameters were improved by the introduction of various mutations and combinations thereof, as compared with DFD9, the wild-type FGF21 fusion protein. The fusion protein showing the most improved AUC value was DFD74 containing the mutations of EIRP (SEQ ID NO: 68), G170N and A180E, which showed an approximate 45-fold improvement in AUC value as compared with DFD9. Furthermore, considering RGE (Amgen) at the dose of 2 mg/kg of body weight, DFD74 may have a higher degree of drug exposure as compared with RGE. The overall effects of improvement in pharmacokinetics due to the mutations are summarized in Table 6 below.

TABLE-US-00006 [TABLE 6] Control Material Position vs Assessment of Mutation of improved pharmacokinetic sequence mutation material parameters EIRP 98-101 DFD4 vs Improvement (SEQ ID DFD13 of AUC NO: 68) DFD6 vs DFD73 TGLEAV 170-174 DFD9 vs Improvement (SEQ ID DFD4 of AUC NO: 69) TGLEAN 170-174 DFD9 vs Improvement (SEQ ID DFD5 of AUC NO: 70) G170N 170 DFD9 vs Improvement DFD6 of AUC DFD6 Improvement (E. coli) of AUC vs DFD6 G174N 174 DFD9 vs Improvement DFD7 of AUC AI80E 180 DFD13 vs Improvement DFD18 of AUC DFD73 vs Improvement DFD74 of AUC

Experimental Example 4. Activity Evaluation of Fusion Proteins in Ob/Ob Mice

Experimental Example 4-1. Experimental Method for Evaluating Activity in Ob/Ob Mice

[0140] The ob/ob mice, characterized as exhibiting hyperglycemia, insulin resistance, hyperphagia, fatty liver and obesity due to a genetic deficiency in leptin, are widely used for the study of type 2 diabetes. Male ob/ob mice (Harlan, USA) were purchased from Raonbio (Korea). These mice were 5 to 6 weeks old at the time of arrival, and 8 to 9 weeks old at the time of drug treatment after 3 weeks of adaptation. The mice were partitioned into groups (n=8/group) in order to have similar mean values for body weight and caudal blood glucose levels one day before the drug treatment (Day 0), and the samples were subcutaneously administered once according to each of their respective dosages. Dulbecco's phosphate buffered saline (DPBS, Gibco, USA) was administered as the vehicle treatment, and the glucose concentration in the blood was measured using a glucose meter, GLUCODR.TM. (All Medicus, Korea). The non-fasting glucose levels and body weights were measured every day until the 14.sup.th day after administration. Glycated hemoglobin levels were also measured in each group before the administration and after the test. The glycated hemoglobin levels were calculated using a DCA.TM. 2000 HbA1c kit (Siemens, 5035C).

Experimental Example 4-2. Evaluation of Activity in Ob/Ob Mice

[0141] The changes in non-fasting blood glucose levels and body weights in male ob/ob mice were observed after single subcutaneous injection of 30 or 100 nmol/kg of DFD18 and DFD72, or 10, 30 or 100 nmol/kg of DFD74.

[0142] It was confirmed that DFD18, DFD72 and DFD74 all had the effect of lowering blood glucose level in a dose-dependent manner. Comparing the three agents at the high dose of 100 nmol/kg, DFD72 and DFD74 showed an improved effect on lowering blood glucose level than DFD18 (FIG. 6). In addition, Fc-FGF21 (Lilly) which was used as a control material in the test, was less effective in lowing blood glucose level as compared with DFD18, DFD72 and DFD74 at the same dose level (30 nmol/kg).

[0143] As for the effect on body weight reduction, comparing the three agents at the high dose of 100 nmol/kg, DFD72 was the most effective in ob/ob mice resulting in an approximate 6% reduction in body weight, and DFD18 was the next most effective, followed by DFD74 (FIG. 7).

[0144] After the termination of the test, the glycated hemoglobin levels indicative of the mean values of blood glucose were measured and the changes in mean blood glucose were analyzed in each test group. All of the treated groups except the control group treated with control protein Fc-FGF21 (Lilly) showed negative values in the differences between before administration and after the test, which confirmed the effectiveness of the test proteins as compared with the control material in lowering blood glucose (FIG. 8).

Experimental Example 5. Activity Evaluation of Fusion Proteins in HFD/STZ Mice

Experimental Example 5-1. Experimental Method for Evaluating Activity in HFD/STZ Mice

[0145] The effects of the FGF21 mutant fusion proteins on lowering blood glucose and body weight were compared and evaluated in another diabetic model, the HFD/STZ mouse model. Conventional dietary-induced obesity mouse models (induced by feeding 60 kcal % high fat diet to C57BL/6 mice for eight weeks or longer) have weak hyperglycemic and diabetic features, although they invoke insulin resistance. The HFD/STZ mice, which may compensate for defects in the conventional dietary-induced obesity mouse models, are capable of producing dysfunctional .beta. cells in the pancreas and decreased secretion of insulin as a result of a high fat diet (HFD) and administration of low level streptozotocin (STZ), and are therefore useful for pharmacological studies of type 2 diabetes.

[0146] Specifically, in order to induce the HFD/STZ mouse model, C57BL/6 mice (Japan SLC) were fed on a 60 kcal % high fat diet for four weeks, and then 50 mg/kg of STZ (Sigma, 85882) was administered intraperitoneally every day for 3 days to induce dysfunction in the 0 cells of the pancreas. After feeding on the high fat diet for an additional 2 weeks, the mice with non-fasting blood glucose levels of 200 mg/dL or higher were used for the test. The mice were partitioned into groups (n=6/group) in order to have similar mean values of body weight and caudal blood glucose levels one day before the drug treatment (Day 0), and the samples were subcutaneously administered once according to each of their respective dosages. Dulbecco's phosphate buffered saline (DPBS, Gibco, USA) was administered as the vehicle treatment, and the glucose concentration in the blood was measured using a glucose meter, GLUCODR.TM. (All Medicus, Korea). The non-fasting glucose levels and body weights were measured every day until the 14.sup.th day after administration. Glycated hemoglobin levels were also measured in each group before the administration and after the test. The glycated hemoglobin levels were calculated using a DCA.TM. 2000 HbA1c kit (Siemens, 5035C).

Experimental Example 5-2. Activity Evaluation in HFD/STZ Mice

[0147] The changes in non-fasting blood glucose levels and body weights over time in male HFD/STZ mice were observed after single subcutaneous injection of 10 nmol/kg of DFD72 or DFD74.

[0148] Regarding the changes in non-fasting blood glucose levels, it was confirmed that DFD72 and DFD74 had similar effects on lowering blood glucose levels, and the blood glucose lowering effect was maintained until the 10.sup.th day after administration and then lost with metabolism of the drugs after the 10.sup.th day (FIG. 9). DFD72 showed a more prolonged effect than DFD74 in terms of changes in non-fasting blood glucose levels after the 10.sup.th day after administration.

[0149] In terms of the effect on body weight reduction due to the administration of FGF21 mutant proteins, it was confirmed that both DFD72 and DFD74 had similar effects on reducing body weight by approximately 5%, and the effect disappeared after the 10.sup.th day after administration (FIG. 10).

[0150] After the termination of the test, the glycated hemoglobin levels indicative of the mean value of blood glucose were measured and the changes in mean blood glucose were analyzed in each test group. While the vehicle group had an increase of 0.25 in glycated hemoglobin levels, the group treated with DFD74 had an increase of 0.1 and the group treated with DFD72 had an decrease of 0.27 (FIG. 11).

Experimental Example 6. Activity of Fusion Proteins in Diet-Induced Obese Mice

Experimental Example 6-1. Experimental Method for Evaluating Activities in Diet-Induced Obese Mice

[0151] The body weight-reduction effect of DFD18, an FGF21 mutant fusion protein, was evaluated in diet-induced obese mice. For the diet-induced obesity model, C57BL/6J mice were purchased from Central Lab. Animal Inc. and fed on a high-fat diet containing 60 kcal % fat (Research diet) for 8 to 12 weeks. The mice were partitioned into groups (n=8/group) in order to have a similar mean value of body weight one day before the drug treatment (Day 0), and then 30 nmol/kg of samples were subcutaneously administered once. The changes in body weights were compared with the group treated with vehicle (PBS).

Experimental Example 6-2. Protein Activity in Diet-Induced Obese Mice

[0152] For changes in body weight over time in the diet-induced obesity mouse model following single administration of 30 nmol/kg DFD18, it was confirmed that the weight-reducing effect was continuing by the 10.sup.th day after the administration, and the maximum weight reduction (about 18%) was at the 1.sup.th day after the administration, which was maintained by the 14.sup.th day (FIG. 12).

Preparation Example 2. Preparation and Purification of Dual Function Proteins

Preparation Example 2-1. Preparation of Expression Vectors for Expression of Dual Function Proteins

[0153] In order to identify the effects of the sequence of the GLP-1 mutant protein and the sequence of the Fc hinge fused thereto on the in vitro activity, pharmacokinetic profiles and pharmacological efficacy, various sequences for the Fc-fused GLP-1 mutant proteins were designed. The sequences of the GLP-1 mutant proteins are listed in Table 7 below, and the sequences of Fc-fused GLP-1 mutants are listed in Table 8.

TABLE-US-00007 TABLE 7 SEQ ID NO: Sequence of GLP-1 mutant protein 43 GLP-1(A2G) 44 GLP-1(GE) 45 GLP-1(GG) 46 GLP-1(GEG)

TABLE-US-00008 TABLE 8 SEQ ID NO: Fc-fused GLP-1 mutant protein 49 DFD52: GLP1(A2G)-HyFc5 50 DFD53: GLP1(A2G)-HyFc40 51 DFD54: GLP1(GE)-HyFc5 52 DFD55: GLP1(GE)-HyFc40 53 DFD56: GLP1(GG)-HyFc5 54 DFD57: GLP1(GG)-HyFc40 55 DFD58: GLP1(GEG)-HyFc5 56 DFD59: GLP1(GEG)-HyFc40

[0154] In Table 8, HyFc5 refers to SEQ ID NO: 47, and HyFc40 refers to SEQ ID NO: 48.

[0155] In order to investigate the effects of the sequences of the GLP-1 mutant proteins and FGF21 mutant proteins, the sequence of the Fc hinge fused to the GLP-1 mutants, the sequence of the linker connected between the FGF21 mutant proteins and Fc on the in vitro activity, pharmacokinetic profiles and pharmacological efficacy, various sequences for the dual function proteins were designed. The sequences of the dual function proteins including the GLP-1 mutant proteins and FGF21 mutant proteins are listed in Table 9 below. Each dual function protein contains a GLP-1 mutant protein, an Fc region of an immunoglobulin, a linker and an FGF21 mutant protein connected in this order from the N-terminus to C-terminus.

TABLE-US-00009 [TABLE 9] Sequence of Changes SEQ GLP-1 In ID Material mutant Fusion Linker FGF21 NO: code protein carrier sequence sequence 58 DFD23 GLP-1 hyFc40 GS3 FGF21 (A2G) (SEQ ID (SEQ ID (EIRP NO: NO: 4) (SEQ ID 48) NO: 68), TGLEAV (SEQ ID NO: 69)) 59 DFD24 GLP-1 hyFc5 GS3 FGF21 (GE) (SEQ ID (SEQ ID (EIRP NO: 47) NO: 4) (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) 60 DFD25 GLP-1 hyFc40 GS3 FGF21 (GE) (SEQ ID (SEQ ID (EIRP NO: 48) NO: 4) (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) 61 DFD26 GLP-1 hyFc5 GS3 FGF21 (GG) (SEQ ID (SEQ ID (EIRP NO: 47) NO: 4) (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) 62 DFD27 GLP-1 hyFc40 GS3 FGF21 (GG) (SEQ ID (SEQ ID (EIRP NO: 48) NO: 4) (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) 63 DFD28 GLP-1 hyFc5 GS3 FGF21 (GEG) (SEQ ID (SEQ ID (EIRP NO: 47) NO: 4) (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) 64 DFD29 GLP-1 hyFc40 GS3 FGF21 (GEG) (SEQ ID (SEQ ID (EIRP, NO: 48) NO: 4) TGLEAV) 65 DFD69 GLP-1 hyFc40 GS3 FGF21 (GEG) (SEQ ID (SEQ ID (EIRP NO: 48) NO: 4) (SEQ ID NO: 68), TGLEAV (SEQ ID NO: 69)) AI80E) 66 DFD112 GLP-1 HyFc40 GS3 FGF21 (GEG) (SEQ ID (SEQ ID (EIRP NO: 48) NO: 4) (SEQ ID NO: 68, TGLEAN (SEQ ID NO: 70), A180E) 67 DFD114 GLP-1 hyFc40 GS3 FGF2I (GEG) (SEQ ID (SEQ ID (EIRP NO: 48) NO: 4) (SEQ ID NO: 68), G170N, A180E)

[0156] Specifically, the nucleotide sequences encoding each of the dual function proteins were synthesized after consulting with Bioneer Corporation (Korea) based on the amino acid sequence of each protein. NheI and NotI restriction enzyme sequences were added to the 5' terminus and 3' terminus of the nucleotide sequences encoding each of the dual function proteins and an initiation codon for protein translation and a leader sequence (MDANLRGLCCVLLLCGAVFVSPSHA) (SEQ ID NO: 83) enabling secretion of the expressed protein to the outside of a cell were inserted next to the restriction enzyme sequence at the 5' terminus. A termination codon was inserted next to the nucleotide sequence, which encodes each of the dual function proteins. The nucleotide sequence encoding each of the dual function proteins was cloned into a pTrans-empty expression vector by using the two restriction enzymes NheI and Noll. The pTrans-empty expression vector, which has a simple structure including a CMV promoter, a pUC-derived replication origin, an SV40-derived replication origin and an ampicillin-resistance gene, was purchased from CEVEC Pharmaceuticals (Germany).

Preparation Example 2-2. Construction of Plasmid DNA for Expression of Fc-Fused GLP-1 Mutant and Dual Function Proteins

[0157] E. coli was transformed with each of the expression vectors constructed in Preparation Example 2-1 to obtain a large quantity of plasmid DNA to be used for expression. E. coli cells, with cell walls weakened through heat shock, were transformed with each expression vector, and the transformants were plated out on an LB plate to obtain colonies. The colonies thus obtained were inoculated into LB media, cultured at 37.degree. C. for 16 hours, and each E. coli culture containing each expression vector was obtained in a volume of 100 mL. The E. coli thereafter obtained was centrifuged to remove the culture medium, and then P1, P2, P3 solutions (QIAGEN, Cat No.:12963) were added to break the cell walls, thereby obtaining a DNA suspension in which proteins and DNA were separated. Plasmid DNA was purified from the DNA suspension thus obtained by using a QIAGEN.TM. DNA purification column. The eluted plasmid DNA was identified by agarose gel electrophoresis, and the concentrations and purities were measured using a NANODROP.TM. device (Thermo Scientific, NANODROP.TM. Lite). The DNA thus obtained was used for expression.

Preparation Example 2-3. Expression of Fc-Fused GLP-1 Mutants and Dual Function Proteins in CAP-T Cells

[0158] Human cell lines were transformed with each plasmid DNA obtained in Preparation Example 2-2. Each plasmid DNA type was transduced into CAP-T cells (CEVEC), which had been cultured in PEM medium (Life Technologies), by using a PEI solution (Polyplus, Cat. No.:101-10N). The mixed solution of DNA and the PEI solution was mixed with the cell suspension using FREESTYLE.TM. 293 expression medium (Invitrogen), cultured at 37.degree. C. for 5 hours, and PEM medium was added. After culturing at 37.degree. C. for 5-7 days, the culture was centrifuged to remove cells and supernatant containing each protein was obtained.

Preparation Example 2-4. Purification of Fc-Fused GLP-1 Mutants and Dual Function Proteins

[0159] Protein A affinity chromatography column (GE Healthcare) was equilibrated with 1.times.PBS buffer solution (pH 7.4). The culture supernatant including each of the Fc-fused GLP-1 mutants and dual function proteins obtained in Preparation Example 2-3 was filtered with a 0.2 .mu.m filter, and then loaded into a Protein A affinity chromatography column. The column was washed with 1.times.PBS buffer solution (pH 7.4) and then the proteins were eluted using 100 mM glycine buffer solution (pH 3.0). The proteins obtained by affinity chromatography were purified using an anion exchange resin column (POROS.RTM. HQ 50 .mu.m, Thermo Fisher Scientific). The anion exchange resin column was equilibrated with 50 mM Tris buffer solution (pH 8.0), before the proteins eluted from the affinity chromatography were loaded thereto.

[0160] After washing the column with 50 mM Tris buffer solution (pH 8.0), 50 mM Tris buffer solution (pH 8.0) was dispensed along the concentration gradient and the eluted fractions were analyzed. Each eluted fraction was analyzed by using size exclusion chromatography (SEC-HPLC), and the fractions including the Fc-fused GLP-1 mutants and dual function proteins with high purity were collected and dialyzed overnight at 4.degree. C. using a final buffer solution (1.times.PBS, 1 mM EDTA, pH 7.4). Upon completion of the dialysis, the obtained protein stock solution was concentrated at 3,000 rpm using a 30,000 MW cut-off centrifugation filter at 4.degree. C. The concentration of each protein was measured via BCA quantitative analysis.

Experimental Example 7. In Vitro Activity of Dual Function Proteins

Experimental Example 7-1. Activity of DFD23, DFD24, DFD25, DFD26, DFD27, DFD28 and DFD29

[0161] The in vitro GLP-1 activities of the dual function proteins DFD23, DFD24, DFD25, DFD26, DFD27, DFD28 and DFD29 were measured. Specifically, a CHO cell line (Eurofins, HTS163C2), overexpressing the human GLP-1 receptor was purchased and used to evaluate the GLP-1 activities of the dual function proteins. For the evaluation of activity, samples containing the fusion proteins (protein stock solutions prepared in Preparation Example 2-4, hereinafter, "sample") were subjected to a 4-fold serial dilution at a concentration of 25 nM. After the human GLP-1 receptor-overexpressing CHO cell line was treated for 30 minutes, the intracellular cAMP produced was measured (Cisbio, 62AM4PEB). The activity of each protein was evaluated by comparing the EC.sub.50 values.

[0162] As shown in FIG. 13, the dual function protein containing the GLP-1 (A2G) sequence showed activity approximately 2-3 times lower than that for the dual function proteins containing other GLP-1 mutant sequences. No significant difference in GLP-1 activities was observed between the dual function proteins containing the mutation sequences except the GLP-1 (A2G) sequence.

Experimental Example 7-2. Activities of DFD59, DFD69, DFD112 and DFD114

[0163] The in vitro GLP-1 activities of the dual function proteins DFD69, DFD112 and DFD114 prepared in Preparation Example 2 and DFD59 (an Fc-fused GLP-1 mutant) were measured. Specifically, a CHO cell line (Eurofins, HTS163C2) overexpressing the human GLP-1 receptor was purchased and used to evaluate the GLP-1 activities of the dual function proteins. For the evaluation of activity, the sample containing each of the fusion proteins was subjected to a 4-fold serial dilution at a concentration of 25 nM. After the human GLP-1 receptor-overexpressing CHO cell line was treated for 30 minutes, the intracellular cAMP produced was measured (Cisbio, 62AM4PEB).

[0164] As shown in FIG. 14, the activity of each protein was evaluated by comparing the EC.sub.50 value. The three dual function proteins showed similar EC.sub.50 values, and DFD59 (containing no FGF21 mutant) showed activity approximately 2 times higher than that of the dual function proteins.

[0165] Next, the in vitro activities of the FGF21 portion in DFD69, DFD112 and DFD114 were measured. Specifically, the in vitro activities of the FGF21 portion in the dual function proteins were evaluated using a HEK293 cell line overexpressing human .beta.-klotho (a co-receptor of FGF21). For the evaluation of activity, samples containing each of the dual function proteins were subjected to a 3-fold serial dilution at a concentration of 3 .mu.M. After having been cultured in a serum-deficient state for 5 hours, the human .beta.-klotho-overexpressing HEK293 cell line was treated for 20 minutes, before the cells were lysed by adding cytolysis buffer (Cisbio/Cat #64ERKPEG) with stirring at 60 rpm for 30 minutes at room temperature. The cell lysate solution was mixed with antibodies which can detect ERK and phosphorylated ERK, and the mixture was maintained at room temperature for 2 hours. Fluorescence was detected using a fluorometric detector (TECAN/GENiosPro). The activities were measured by comparing their EC.sub.50 values.

[0166] It was confirmed that the in vitro activities of the FGF21 portion of the dual function proteins DFD69, DFD112 and DFD114 were similar, as shown in FIG. 14.

Experimental Example 8. Pharmacokinetic Assessment of Dual Function Proteins

Experimental Example 8-1. Experimental Method for Pharmacokinetic Assessment

[0167] Six-week old male ICR mice purchased from Orient BIO (Korea) were partitioned into groups (n=3/blood sampling time) in order to have a similar mean value of body weight one day before drug treatment, and subcutaneously administered once with a respective sample in a volume of 1 mg/kg. The blood samples were collected at 1, 4, 8, 12, 24, 48, 72, 96, 144, 192 and 240 hours after the injection, respectively. The concentration of each dual function protein in the blood was measured based on the FGF21 portion and the GLP-1-Fc portion separately. The concentration of the intact full length FGF21 portion of the dual function protein in the blood was measured using an Intact human FGF21 ELISA Kit (F1231-K01, Eagle Biosciences, USA), which has immunoreactivity to the N-terminus and C-terminus of FGF21 protein. Further, the concentration of the active GLP-1-Fc portion of the dual function protein in the blood was measured using an antibody, which has immunoreactivity to the N-terminus of GLP-1 and Fc, as determined through ELISA analysis. The concentrations of the FGF21 and GLP-1-Fc portions of each protein in the blood samples collected until 240 hours after single subcutaneous injection of each protein into the mice were measured, and the pharmacokinetic parameters of each protein was calculated.

Experimental Example 8-2. Pharmacokinetic Activity Results

[0168] Based on the concentration of each active substance in the blood over time after single subcutaneous administration of each protein in mice (FIG. 15), pharmacokinetic parameters for the FGF21 and GLP-1-Fc portions of the dual function proteins were calculated. The data are shown in Table 10 below.

TABLE-US-00010 TABLE 10 FGF21 detection GLP-1-Fc detection Parameter DFD69 DFD112 DFD114 DFD59 DFD69 DFD112 DFD114 T.sub.max (hour) 8 8 24 4 4 8 4 C.sub.max (ng/mL) 2715 3619 3711 5202.1 3234 4454 3616 AUC.sub.last 100907 144395 222504 182852 149083 189338 171687 (ng hr/mL) Half-life (hour) 13.4 14.2 39.9 20.7 23.3 24.7 27.2

[0169] The pharmacokinetic profiles of each dual function protein were compared and evaluated based on the value of the area under the curve (AUC), indicating the degree of drug exposure.

[0170] As shown in Table 10, for the pharmacokinetic parameters of the FGF21 portion, DFD114 showed the highest degree of drug exposure (AUC) and half-life, and DFD112 showed the next highest AUC value, followed by DFD69. DFD114 exhibited an approximate 2-fold or higher increase in AUC value as compared with DFD69. For the pharmacokinetics of the GLP-1-Fc portion, the four proteins (DFD59, DFD69, DFD112 and DFD114) containing the same GLP-1 mutant sequence showed similar AUC values.

Experimental Example 9. Activity Evaluation in Db/Db Mice

Experimental Example 9-1. Method for Evaluating Activities in Db/Db Mice

[0171] The db/db mice, characterized as having hyperglycemia, insulin resistance, hyperphagia, fatty liver and obesity due to a genetic deficiency for the leptin receptor and exhibiting more serious hyperglycemia and obesity than ob/ob mice, are widely used for the study of type 2 diabetes. Male db/db mice (Harlan, USA) were purchased from Raonbio (Korea). These mice were 5 to 6 weeks old at the time of arrival, and 8 to 9 weeks old at the time of drug treatment, after 3 weeks of adaptation. The mice were partitioned into groups (n=6/group) in order to have a similar mean value of body weight and caudal blood glucose levels one day before the drug treatment (Day 0), and the samples were subcutaneously administered once according to each of their respective dosages. Dulbecco's phosphate buffered saline (DPBS, Gibco, USA) was administered as the vehicle treatment, and the glucose concentration in the blood was measured using a glucose meter, GLUCODR.TM. (All Medicus, Korea). The non-fasting glucose levels and body weights were measured every day until the 14.sup.th day after administration. Glycated hemoglobin levels were also measured in each group before the administration and after the test. The glycated hemoglobin levels were calculated using a DCA.TM. 2000 HbA1c kit (Siemens, 5035C).

Experimental Example 9-2. Evaluation of Activity in Db/Db Mice

[0172] The changes in non-fasting blood glucose levels and body weights in male db/db mice were observed after single subcutaneous injection of 10 or 30 nmol/kg of dual function protein DFD114, single subcutaneous injection of 30 nmol/kg of long-acting GLP-1-Fc single function protein DFD59, and combined administration of 30 nmol/kg of DFD59 and DFD74 (which are GLP-1-Fc and Fc-FGF21 single function proteins, respectively) to compare the effect of the dual function protein DFD114 with combined administration of Fc-FGF21 and GLP-1-Fc single function proteins.

[0173] The long-acting GLP-1-Fc protein DFD59 caused a sharp reduction in blood glucose levels by the 1.sup.st day after administration, but the reduction in blood glucose decreased after the 2.sup.nd day and the blood glucose level was similar to that of the vehicle-treated group after the 4.sup.th day. Meanwhile, the group treated with DFD114 showed excellent effects on blood glucose reduction by the 3.sup.rd day after administration, and the effects on lowering blood glucose level disappeared more rapidly after the 40 day from the administration at the dose of 10 nmol/kg than for 30 nmol/kg, indicating dose-dependent differences in the duration of the blood glucose lowering effect. The groups treated with combined administration of each protein showed the most sustained effects for lowering blood glucose levels as compared with those of the other groups, indicating that the combination of GLP-1 and FGF21 had an excellent effect on controlling blood glucose level (FIG. 16).

[0174] As for the effect on body weight reduction, the groups treated with a combination of DFD59 and DFD74 showed the greatest effects on reducing body weight, and the group treated with 30 nmol/kg of DFD114 also showed an outstanding effect on reducing body weight (FIG. 17).

[0175] After the termination of the tests, the glycated hemoglobin levels indicative of the mean value of blood glucose were measured and the changes in mean blood glucose were analyzed in each test group. As shown in FIG. 18, the group treated with vehicle showed increased glycated hemoglobin levels after the termination of the tests as compared with the group before the administration, and the group treated with DFD59 showed a similar increase. The group treated with 30 nmol/kg of DFD114 showed the greatest decrease in glycated hemoglobin levels, and the group receiving combined administration showed the next highest effectiveness, followed by the group treated with 10 nmol/kg of DFD114. When evaluating the proteins by comparing them based on the decrease in glycated hemoglobin levels in each group treated, it was confirmed that the dual function protein DFD114 showed a stronger effect on lowering blood glucose level than GLP-1-Fc or Fc-FGF21 single function protein alone.

Experimental Example 10. Activity of Fusion Proteins in HFD/STZ Mice

Experimental Example 10-1. Experimental Method for Evaluating Activities in HFD/STZ Mice

[0176] The effects of the dual function proteins on lowering blood glucose and body weight were compared and evaluated in another diabetic model, the HFD/STZ mouse model.

[0177] The conventional dietary-induced obesity mouse model (induced by feeding 60 kcal % high fat diet to C57BL/6 mice for eight weeks or longer) has weak hyperglycemic and diabetic features, although invokes insulin resistance. The HFD/STZ mice, which may compensate for the deficiencies of the conventional dietary-induced obesity mouse model, are capable of generating dysfunctional .beta. cells of the pancreas and decreased secretion of insulin following a high fat diet (HFD) and administration of low level streptozotocin (STZ), and are used for pharmacological studies of type 2 diabetes. In order to induce the HFD/STZ mouse model, C57BL/6 mice were fed on a 60 kcal % high fat diet for four weeks, and then 50 mg/kg of STZ (Sigma, 85882) was administered intraperitoneally every day for 3 days to induce dysfunction of the .beta. cells of the pancreas. After feeding on the high fat diet for an additional 2 weeks, the mice with non-fasting blood glucose levels of 200 mg/dL or higher were selected for the test. The mice were partitioned into groups (n=6/group) in order to have a similar mean value of body weight and caudal blood glucose levels one day before the drug treatment (Day 0), and the samples were subcutaneously administered once according to each of their respective dosages. Dulbecco's phosphate buffered saline (DPBS, Gibco, USA) was administered as the vehicle treatment, and the glucose concentration in the blood was measured using a glucose meter, GLUCODR.TM. (All Medicus, Korea). The non-fasting glucose levels and body weights were measured every day until the 14.sup.th day after administration. Glycated hemoglobin levels were also measured in each group before the administration and after the test. The glycated hemoglobin levels were calculated using a DCA.TM. 2000 HbA1c kit (Siemens, 5035C).

Experimental Example 10-2. Activity in HFD/STZ Mice

[0178] The changes in non-fasting blood glucose levels and body weights over time in male HFD/STZ mice were observed after single subcutaneous injection of 3 nmol/kg or nmol/kg of dual function protein DFD114, 10 nmol/kg of Fc-fused GLP-1 mutant DFD59, or 10 nmol/kg of each of the Fc-fused FGF21 mutants DFD72 and DFD74. DFD59 and DFD74 were also subcutaneously injected once at 10 nmol/kg each in order to compare the effect of combined administration of the single function proteins with that of the dual function protein.

[0179] As shown in FIG. 19, regarding the changes in blood glucose levels until the 4.sup.th day, DFD72 and DFD74 (long-acting FGF21 single function proteins) administration resulted in slower reductions of blood glucose, while DFD114 (long-acting protein including GLP-1), DFD59 and combined administration of DFD59 and DFD74 showed a more rapid reduction of blood glucose from the 1a day of administration. Similar to the results in db/db mice, DFD59 showed a sharp reduction in blood glucose at an early stage, but the reduction of blood glucose disappeared slowly after the 4.sup.th day. DFD114 showed a similar pattern at the low dose of 3 nmol/kg. In the groups treated with 10 nmol/kg of DFD114, DFD72, DFD74 and combined administration, similar non-fasting blood glucose profiles were observed.

[0180] As for the effect on body weight reduction, the group treated with combined administration of DFD59 and DFD74 showed the greatest effect on body weight reduction (7 to 8%), and the group treated with 10 nmol/kg of DFD114 also showed an outstanding effect on reducing body weight (approximately 6%) (FIG. 20). The group treated with DFD59 exhibited a reduction in body weight by 5% at the 1.sup.st day after administration, but the effect disappeared after the 2.sup.nd day and became similar to that of the vehicle group after the 7.sup.th day. The group treated with each of the long-acting FGF21 single function proteins DFD72 and DFD74 showed a slower reduction in body weight by 4 to 5% until the 7.sup.th day after the administration, and the effect disappeared after the 10.sup.th day.

[0181] After the termination of the tests, the glycated hemoglobin levels indicative of the mean value of blood glucose were measured and the changes in mean blood glucose were analyzed in each test group (FIG. 21). The vehicle group had an increase in glycated hemoglobin levels after the termination of the test as compared with before administration, and the group treated with DFD59 showed a similar increase. In contrast, the group treated with DFD114 showed reductions in glycated hemoglobin levels in a dose-dependent manner, and the group treated with 10 nmol/kg of DFD114 had the greatest effect in terms of reduced glycated hemoglobin levels (-0.42%). The group treated with combined administration of DFD59 and DFD74 showed reduced glycated hemoglobin levels (-0.38%) similar to that of DFD114. For the long-acting FGF21 single function proteins, it was observed that DFD72 was superior to DFD74. Comparing the proteins based on the reduced levels of glycated hemoglobin in each group, it was confirmed that the dual function protein DFD114 was superior to both GLP-1-Fc and Fc-FGF21 single function proteins.

Experimental Example 11. Prediction and Evaluation of Immunogenicity

Experimental Example 11-1. Prediction Method for Immunogenicity and Results

[0182] In order to predict the potential immunogenicity of dual function proteins, in silico analysis of immunogenicity was performed for each protein.

[0183] Specifically, the potential immunogenicity of dual function proteins was rapidly screened by using ITOPE.TM. and TCED.TM. methods (Prediction of immunogenicity of therapeutic proteins: validity of computational tools, BioDrugs, 2010). According to the two methods, the T-cell epitope may be more accurately predicted as compared with the in silico analytical method which depends on MHC class II binding analysis only.

Experimental Example 11-2. Ex Vivo Evaluation Method for Immunogenicity and Results

[0184] In order to evaluate the potential immunogenicity of dual function proteins, EPISCREEN.TM. analysis (Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF, Exp Neurol, 2015) was performed. When immunogenicity is detected, the amino acid sequences inducing immunogenicity may be identified through T-cell epitope mapping, and deimmunized mutants with minimized immunogenicity may be designed and prepared via in silico prediction to reevaluate immunogenicity.

Sequence CWU 1

1

831181PRTHomo sapienshuman FGF21 1His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Ala Ser 180230PRTArtificial Sequencelinker 2Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr Gly Arg Gly1 5 10 15Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln Glu 20 25 30317PRTArtificial Sequencelinker 3Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr Gly Arg Gly1 5 10 15Gly415PRTArtificial Sequencelinker 4Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser1 5 10 15516PRTArtificial Sequencelinker 5Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala1 5 10 156181PRTArtificial SequenceFGF21 variant 6His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Ala Ser 1807182PRTArtificial SequenceFGF21 variant 7His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg 165 170 175Ser Pro Ser Tyr Ala Ser 1808182PRTArtificial SequenceFGF21 variant 8His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Asn Arg 165 170 175Ser Pro Ser Tyr Ala Ser 1809181PRTArtificial SequenceFGF21 variant 9His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Ala Ser 18010181PRTArtificial SequenceFGF21 variant 10His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Asn Arg Ser 165 170 175Pro Ser Tyr Ala Ser 18011182PRTArtificial SequenceFGF21 variant 11His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg 165 170 175Ser Pro Ser Tyr Ala Ser 18012182PRTArtificial SequenceFGF21 variant 12His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Asn Arg 165 170 175Ser Pro Ser Tyr Ala Ser 18013181PRTArtificial SequenceFGF21 variant 13His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Ala Ser 18014181PRTArtificial SequenceFGF21 variant 14His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Asn Arg Ser 165 170 175Pro Ser Tyr Ala Ser 18015181PRTArtificial SequenceFGF21 variant 15His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Glu Ser 18016182PRTArtificial SequenceFGF21 variant 16His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg 165 170 175Ser Pro Ser Tyr Glu Ser 18017182PRTArtificial SequenceFGF21 variant 17His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115

120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Asn Arg 165 170 175Ser Pro Ser Tyr Glu Ser 18018181PRTArtificial SequenceFGF21 variant 18His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Glu Ser 18019181PRTArtificial SequenceFGF21 variant 19His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Asn Arg Ser 165 170 175Pro Ser Tyr Glu Ser 18020182PRTArtificial SequenceFGF21 variant 20His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg 165 170 175Ser Pro Ser Tyr Glu Ser 18021182PRTArtificial SequenceFGF21 variant 21His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Asn Arg 165 170 175Ser Pro Ser Tyr Glu Ser 18022181PRTArtificial SequenceFGF21 variant 22His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser 165 170 175Pro Ser Tyr Glu Ser 18023181PRTArtificial SequenceFGF21 variant 23His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val1 5 10 15Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 20 25 30Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 35 40 45Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 50 55 60Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly65 70 75 80Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 85 90 95Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 100 105 110Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 115 120 125Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 130 135 140Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val145 150 155 160Gly Ser Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Asn Arg Ser 165 170 175Pro Ser Tyr Glu Ser 18024229PRTArtificial SequenceHuman IgG4 Fc 24Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe1 5 10 15Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 55 60Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser65 70 75 80Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 85 90 95Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100 105 110Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 130 135 140Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala145 150 155 160Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 165 170 175Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 180 185 190Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 195 200 205Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 215 220Leu Ser Leu Gly Lys22525228PRTArtificial SequenceHuman IgG4 Fc variant 25Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Ala1 5 10 15Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 55 60Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser65 70 75 80Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 85 90 95Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100 105 110Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 130 135 140Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala145 150 155 160Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 165 170 175Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 180 185 190Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 195 200 205Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 215 220Leu Ser Leu Gly22526223PRTArtificial SequenceHybrid Fc variant 26Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 210 215 22027435PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 27Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Ala 210 215 220Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr Gly Arg Gly Gly225 230 235 240Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln Glu His Pro Ile 245 250 255Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln Arg 260 265 270Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu Ile 275 280 285Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser 290 295 300Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu Gly305 310 315 320Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr 325 330 335Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile 340 345 350Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu Pro 355 360 365Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro Arg 370 375 380Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro385 390 395 400Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser Ser 405 410 415Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg Ser Pro Ser 420 425 430Tyr Ala Ser 43528422PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 28Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Ala 210 215 220Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr Gly Arg Gly Gly225 230 235 240His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val 245 250 255Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His 260 265 270Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser 275 280 285Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln 290 295 300Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly305 310 315 320Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg 325 330 335Glu Leu Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His 340 345 350Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro 355 360 365Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro 370 375 380Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val385 390 395 400Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg 405 410 415Ser Pro Ser Tyr Ala Ser 42029420PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 29Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu 325 330 335Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg Ser Pro 405 410 415Ser Tyr Ala Ser 42030420PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 30Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu 325 330 335Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Asn Arg Ser Pro 405 410 415Ser Tyr Ala Ser 42031419PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 31Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu 325 330 335Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser Pro Ser 405 410 415Tyr Ala Ser32419PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 32Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu 325 330 335Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser Pro Ser 405 410 415Tyr Ala Ser33419PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 33Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu 325 330 335Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Asn Arg Ser Pro Ser 405 410 415Tyr Ala Ser34419PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 34Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu

35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Leu 325 330 335Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Gly Pro Ser Gln Gly Arg Ser Pro Ser 405 410 415Tyr Ala Ser35420PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 35Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Glu 325 330 335Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg Ser Pro 405 410 415Ser Tyr Ala Ser 42036420PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 36Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Glu 325 330 335Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Val Arg Ser Pro 405 410 415Ser Tyr Glu Ser 42037420PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 37Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Glu 325 330 335Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu Ala Asn Arg Ser Pro 405 410 415Ser Tyr Glu Ser 42038419PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 38Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Glu 325 330 335Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser Pro Ser 405 410 415Tyr Ala Ser39419PRTArtificial Sequencemodified FGF21 variant connected to hybrid Fc 39Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly Val1 5 10 15Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 20 25 30Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 35 40 45Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 50 55 60Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser65 70 75 80Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 85 90 95Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 100 105 110Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 115 120 125Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 130 135 140Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn145 150 155 160Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 165 170 175Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg 180 185 190Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 195 200 205His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Gly 210 215 220Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser His Pro225 230 235 240Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly Gln Val Arg Gln 245 250 255Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu Ala His Leu Glu 260 265 270Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp Gln Ser Pro Glu 275 280 285Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val Ile Gln Ile Leu 290 295 300Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro Asp Gly Ala Leu305 310 315 320Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser Phe Arg Glu Glu 325 330 335Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser Glu Ala His Gly Leu 340 345 350Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg Asp Pro Ala Pro 355 360 365Arg Gly Pro Ala Arg Phe Leu

Pro Leu Pro Gly Leu Pro Pro Ala Leu 370 375 380Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro Asp Val Gly Ser385 390 395 400Ser Asp Pro Leu Ser Met Val Asn Pro Ser Gln Gly Arg Ser Pro Ser 405 410 415Tyr Glu Ser40423PRTArtificial SequenceREG(Amgen) 40Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly1 5 10 15Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 20 25 30Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 35 40 45Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr65 70 75 80Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135 140Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu145 150 155 160Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220Pro Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly225 230 235 240Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly Gly 245 250 255Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr Glu 260 265 270Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala Asp 275 280 285Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly Val 290 295 300Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg Pro305 310 315 320Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys Ser 325 330 335Phe Arg Glu Arg Leu Leu Glu Asp Gly Tyr Asn Val Tyr Gln Ser Glu 340 345 350Ala His Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His Arg 355 360 365Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly Leu 370 375 380Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro Pro385 390 395 400Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val Gly Gly Ser Gln Gly 405 410 415Arg Ser Pro Ser Tyr Glu Ser 42041424PRTArtificial SequenceFGF21 connected to Fc(lilly) 41Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Ala1 5 10 15Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 55 60Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser65 70 75 80Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 85 90 95Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100 105 110Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 130 135 140Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala145 150 155 160Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 165 170 175Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 180 185 190Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 195 200 205Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 215 220Leu Ser Leu Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly225 230 235 240Gly Gly Ser Ala His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe 245 250 255Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln 260 265 270Thr Glu Cys His Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Cys Ala 275 280 285Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro 290 295 300Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln305 310 315 320Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala 325 330 335Cys Ser Phe Arg Glu Asp Leu Lys Glu Asp Gly Tyr Asn Val Tyr Gln 340 345 350Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asp Lys Ser Pro 355 360 365His Arg Lys Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro 370 375 380Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln385 390 395 400Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Arg Leu Val Glu Pro Ser 405 410 415Gln Leu Arg Ser Pro Ser Phe Glu 4204231PRTArtificial SequenceGLP-1 42His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 20 25 304331PRTArtificial SequenceGLP-1 variant 43His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 20 25 304431PRTArtificial SequenceGLP-1 variant 44His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 20 25 304531PRTArtificial SequenceGLP-1 variant 45His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly 20 25 304631PRTArtificial SequenceGLP-1 variant 46His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly 20 25 3047245PRTArtificial Sequencehybrid Fc5 47Arg Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys1 5 10 15Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His 20 25 30Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 35 40 45Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 50 55 60Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val65 70 75 80Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 85 90 95Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 100 105 110Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 115 120 125Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 130 135 140Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln145 150 155 160Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 165 170 175Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 180 185 190Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 195 200 205Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 210 215 220Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser225 230 235 240Leu Ser Leu Gly Lys 24548233PRTArtificial Sequencehybrid Fc40 48Glu Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu1 5 10 15Cys Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys 20 25 30Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 35 40 45Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr 50 55 60Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu65 70 75 80Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 85 90 95Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 100 105 110Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 115 120 125Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met 130 135 140Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro145 150 155 160Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 165 170 175Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 180 185 190Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val 195 200 205Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 210 215 220Lys Ser Leu Ser Leu Ser Leu Gly Lys225 23049276PRTArtificial SequenceGLP-1 variant connected to hybrid Fc5 49His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys 27550264PRTArtificial SequenceGLP-1 variant connected to hybrid Fc40 50His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys 26051276PRTArtificial SequenceGLP-1 variant connected to hybrid Fc5 51His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys 27552264PRTArtificial SequenceGLP-1 variant connected to hybrid Fc40 52His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40

45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys 26053276PRTArtificial SequenceGLP-1 variant connected to hybrid Fc5 53His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys 27554264PRTArtificial SequenceGLP-1 variant connected to hybrid Fc40 54His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys 26055276PRTArtificial SequenceGLP-1 variant connected to hybrid Fc5 55His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys 27556264PRTArtificial SequenceGLP-1 variant connected to hybrid Fc40 56His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys 26057275PRTArtificial SequenceDulaglutide 57His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Gly 20 25 30Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Glu 35 40 45Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Ala Ala 50 55 60Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly 27558461PRTArtificial SequenceGLP1(A2G)-HyFc40-GS3-FGF21(EIRP, TGLEAV) 58His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Thr Gly Leu Glu Ala Val Arg Ser Pro Ser Tyr Ala Ser 450 455 46059473PRTArtificial SequenceGLP1(GE)-HyFc5-GS3-FGF21(EIRP, TGLEAV) 59His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 275 280 285Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly 290 295 300Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr305 310 315 320Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala 325 330 335Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly 340 345 350Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg 355 360 365Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys 370

375 380Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser385 390 395 400Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His 405 410 415Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly 420 425 430Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro 435 440 445Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu 450 455 460Ala Val Arg Ser Pro Ser Tyr Ala Ser465 47060461PRTArtificial SequenceGLP1(GE)-HyFc40-GS3-FGF21(EIRP, TGLEAV) 60His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Thr Gly Leu Glu Ala Val Arg Ser Pro Ser Tyr Ala Ser 450 455 46061473PRTArtificial SequenceGLP1(GG)-HyFc5-GS3-FGF21(EIRP, TGLEAV) 61His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 275 280 285Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly 290 295 300Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr305 310 315 320Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala 325 330 335Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly 340 345 350Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg 355 360 365Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys 370 375 380Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser385 390 395 400Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His 405 410 415Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly 420 425 430Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro 435 440 445Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu 450 455 460Ala Val Arg Ser Pro Ser Tyr Ala Ser465 47062461PRTArtificial SequenceGLP1(GG)-HyFc40-GS3-FGF21(EIRP, TGLEAV) 62His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Thr Gly Leu Glu Ala Val Arg Ser Pro Ser Tyr Ala Ser 450 455 46063473PRTArtificial SequenceGLP1(GEG)-HyFc5-GS3-FGF21(EIRP, TGLEAV) 63His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Arg 20 25 30Asn Thr Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu 35 40 45Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr 50 55 60Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu65 70 75 80Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 85 90 95Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 100 105 110Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 115 120 125Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 130 135 140Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser145 150 155 160Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 165 170 175Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 180 185 190Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 195 200 205Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 210 215 220Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr225 230 235 240Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 245 250 255Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 260 265 270Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 275 280 285Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu Leu Gln Phe Gly 290 295 300Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp Ala Gln Gln Thr305 310 315 320Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val Gly Gly Ala Ala 325 330 335Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala Leu Lys Pro Gly 340 345 350Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe Leu Cys Gln Arg 355 360 365Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp Pro Glu Ala Cys 370 375 380Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Gln Ser385 390 395 400Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn Lys Ser Pro His 405 410 415Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu Pro Leu Pro Gly 420 425 430Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu Ala Pro Gln Pro 435 440 445Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val Thr Gly Leu Glu 450 455 460Ala Val Arg Ser Pro Ser Tyr Ala Ser465 47064461PRTArtificial SequenceGLP1(GEG)-HyFc40-GS3-FGF21(EIRP, TGLEAV) 64His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Thr Gly Leu Glu Ala Val Arg Ser Pro Ser Tyr Ala Ser 450

455 46065461PRTArtificial SequenceGLP1(GEG)-HyFc40-GS3-FGF21(EIRP, TGLEAV, A180E) 65His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Thr Gly Leu Glu Ala Val Arg Ser Pro Ser Tyr Glu Ser 450 455 46066461PRTArtificial SequenceGLP1(GEG)-HyFc40-GS3-FGF21(EIRP, TGLEAN, A180E) 66His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Thr Gly Leu Glu Ala Asn Arg Ser Pro Ser Tyr Glu Ser 450 455 46067460PRTArtificial SequenceGLP1(GEG)-HyFc40-GS3-FGF21(EIRP, G170N, A180E) 67His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu1 5 10 15Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Gly Gly Glu 20 25 30Lys Glu Lys Glu Glu Gln Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys 35 40 45Pro Ser His Thr Gln Pro Leu Gly Val Phe Leu Phe Pro Pro Lys Pro 50 55 60Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val65 70 75 80Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 85 90 95Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 100 105 110Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 115 120 125Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 130 135 140Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro145 150 155 160Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr 165 170 175Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 180 185 190Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 195 200 205Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 210 215 220Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe225 230 235 240Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 245 250 255Ser Leu Ser Leu Ser Leu Gly Lys Gly Gly Gly Gly Ser Gly Gly Gly 260 265 270Gly Ser Gly Gly Gly Gly Ser His Pro Ile Pro Asp Ser Ser Pro Leu 275 280 285Leu Gln Phe Gly Gly Gln Val Arg Gln Arg Tyr Leu Tyr Thr Asp Asp 290 295 300Ala Gln Gln Thr Glu Ala His Leu Glu Ile Arg Glu Asp Gly Thr Val305 310 315 320Gly Gly Ala Ala Asp Gln Ser Pro Glu Ser Leu Leu Gln Leu Lys Ala 325 330 335Leu Lys Pro Gly Val Ile Gln Ile Leu Gly Val Lys Thr Ser Arg Phe 340 345 350Leu Cys Gln Arg Pro Asp Gly Ala Leu Tyr Gly Ser Leu His Phe Asp 355 360 365Pro Glu Ala Cys Ser Phe Arg Glu Glu Ile Arg Pro Asp Gly Tyr Asn 370 375 380Val Tyr Gln Ser Glu Ala His Gly Leu Pro Leu His Leu Pro Gly Asn385 390 395 400Lys Ser Pro His Arg Asp Pro Ala Pro Arg Gly Pro Ala Arg Phe Leu 405 410 415Pro Leu Pro Gly Leu Pro Pro Ala Leu Pro Glu Pro Pro Gly Ile Leu 420 425 430Ala Pro Gln Pro Pro Asp Val Gly Ser Ser Asp Pro Leu Ser Met Val 435 440 445Asn Pro Ser Gln Gly Arg Ser Pro Ser Tyr Glu Ser 450 455 460684PRTArtificial SequenceFGF21 variant 68Glu Ile Arg Pro1696PRTArtificial SequenceFGF21 variant 69Thr Gly Leu Glu Ala Val1 5706PRTArtificial SequenceFGF21 variant 70Thr Gly Leu Glu Ala Asn1 5711383DNAArtificial Sequencenucleic acid molecule coding for DFD23 71cacggcgagg ggaccttcac aagcgacgtg tcctcttatc tggaaggaca ggccgctaag 60gagtttatcg catggctcgt caaaggcaga ggcgaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgacaggc ctggaggccg tgagaagccc cagctacgct 1380tcc 1383721419DNAArtificial Sequencenucleic acid molecule coding for DFD24 72cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaaga gggaggaaca ccggacgggg cggggaagag 120aagaagaaag aaaaggagaa ggaagagcag gaggagagag aaaccaaaac acccgagtgt 180cccagtcaca ctcagcctct gggagtgttt ctcttcccac ctaagcccaa ggataccctt 240atgatttcta ggacacctga ggtgacctgc gtcgttgtgg acgtgagtca agaggaccca 300gaggtccagt ttaactggta tgttgacggc gtggaagtgc ataatgcaaa aactaaaccc 360cgcgaggaac aattcaattc aacctaccgg gtcgtttctg tgttgacagt gctgcatcaa 420gattggctga acgggaagga gtataagtgt aaagtcagta ataagggact cccctctagt 480atcgaaaaaa ctatttcaaa ggccaaaggc cagcctagag agccacaggt gtacaccctt 540cctccatccc aagaggagat gacaaagaac caggtgtctc tgacttgtct cgtgaagggg 600ttctacccta gtgacatcgc tgtcgaatgg gagtcaaacg gacagccaga gaataattat 660aagacaactc ctcccgttct ggattctgac ggcagcttct ttctgtactc taggcttact 720gtggacaaaa gtcgctggca agaagggaac gtcttttcat gttctgttat gcacgaggcc 780ttgcacaatc attatacaca gaagtctctg agtctctcac tgggcaaagg cgggggaggc 840agcgggggag gcgggtccgg aggcggggga tctcatccca tccctgactc cagtcctctc 900ctgcaattcg ggggccaagt ccggcagcgg tacctctaca cagatgatgc tcagcagaca 960gaagcccacc tggagatcag ggaggatggg accgtggggg gcgctgctga ccagagcccc 1020gaaagtctcc tgcagctgaa agccttgaag cctggagtta ttcaaatctt gggagtcaag 1080actagtaggt tcctgtgcca gcggccagat ggggccctgt atggatctct ccattttgac 1140cctgaggcct gcagcttccg ggaggagatc agacccgacg gatacaatgt ttaccagtcc 1200gaagcccacg gcctccctct gcatctgccc gggaacaagt ctcctcaccg ggaccctgcc 1260cccagaggac ctgctcgctt cctgccactc ccaggcctgc cccccgcatt gcctgagcca 1320cccggaatcc tggcccccca gccccctgat gtgggatcct ctgaccctct gagcatggtg 1380acaggcctgg aggccgtgag aagccccagc tacgcttcc 1419731383DNAArtificial Sequencenucleic acid molecule coding for DFD25 73cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaaga ggggaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgacaggc ctggaggccg tgagaagccc cagctacgct 1380tcc 1383741419DNAArtificial Sequencenucleic acid molecule coding for DFD26 74cacggcgagg ggaccttcac aagcgacgtg tcctcttatc tggaaggaca ggccgctaag 60gagtttatcg catggctcgt caaaggcggc ggcaggaaca ccggacgggg cggggaagag 120aagaagaaag aaaaggagaa ggaagagcag gaggagagag aaaccaaaac acccgagtgt 180cccagtcaca ctcagcctct gggagtgttt ctcttcccac ctaagcccaa ggataccctt 240atgatttcta ggacacctga ggtgacctgc gtcgttgtgg acgtgagtca agaggaccca 300gaggtccagt ttaactggta tgttgacggc gtggaagtgc ataatgcaaa aactaaaccc 360cgcgaggaac aattcaattc aacctaccgg gtcgtttctg tgttgacagt gctgcatcaa 420gattggctga acgggaagga gtataagtgt aaagtcagta ataagggact cccctctagt 480atcgaaaaaa ctatttcaaa ggccaaaggc cagcctagag agccacaggt gtacaccctt 540cctccatccc aagaggagat gacaaagaac caggtgtctc tgacttgtct cgtgaagggg 600ttctacccta gtgacatcgc tgtcgaatgg gagtcaaacg gacagccaga gaataattat 660aagacaactc ctcccgttct ggattctgac ggcagcttct ttctgtactc taggcttact 720gtggacaaaa gtcgctggca agaagggaac gtcttttcat gttctgttat gcacgaggcc 780ttgcacaatc attatacaca gaagtctctg agtctctcac tgggcaaagg cgggggaggc 840agcgggggag gcgggtccgg aggcggggga tctcatccca tccctgactc cagtcctctc 900ctgcaattcg ggggccaagt ccggcagcgg tacctctaca cagatgatgc tcagcagaca 960gaagcccacc tggagatcag ggaggatggg accgtggggg gcgctgctga ccagagcccc 1020gaaagtctcc tgcagctgaa agccttgaag cctggagtta ttcaaatctt gggagtcaag 1080actagtaggt tcctgtgcca gcggccagat ggggccctgt atggatctct ccattttgac 1140cctgaggcct gcagcttccg ggaggagatc agacccgacg gatacaatgt ttaccagtcc 1200gaagcccacg gcctccctct gcatctgccc gggaacaagt ctcctcaccg ggaccctgcc 1260cccagaggac ctgctcgctt cctgccactc ccaggcctgc cccccgcatt gcctgagcca 1320cccggaatcc tggcccccca gccccctgat gtgggatcct ctgaccctct gagcatggtg 1380acaggcctgg aggccgtgag aagccccagc tacgcttcc 1419751383DNAArtificial Sequencenucleic acid molecule coding for DFD27 75cacggcgagg ggaccttcac aagcgacgtg tcctcttatc tggaaggaca ggccgctaag 60gagtttatcg catggctcgt caaaggcggc ggcgaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt

gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgacaggc ctggaggccg tgagaagccc cagctacgct 1380tcc 1383761419DNAArtificial Sequencenucleic acid molecule coding for DFD28 76cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaggc gggaggaaca ccggacgggg cggggaagag 120aagaagaaag aaaaggagaa ggaagagcag gaggagagag aaaccaaaac acccgagtgt 180cccagtcaca ctcagcctct gggagtgttt ctcttcccac ctaagcccaa ggataccctt 240atgatttcta ggacacctga ggtgacctgc gtcgttgtgg acgtgagtca agaggaccca 300gaggtccagt ttaactggta tgttgacggc gtggaagtgc ataatgcaaa aactaaaccc 360cgcgaggaac aattcaattc aacctaccgg gtcgtttctg tgttgacagt gctgcatcaa 420gattggctga acgggaagga gtataagtgt aaagtcagta ataagggact cccctctagt 480atcgaaaaaa ctatttcaaa ggccaaaggc cagcctagag agccacaggt gtacaccctt 540cctccatccc aagaggagat gacaaagaac caggtgtctc tgacttgtct cgtgaagggg 600ttctacccta gtgacatcgc tgtcgaatgg gagtcaaacg gacagccaga gaataattat 660aagacaactc ctcccgttct ggattctgac ggcagcttct ttctgtactc taggcttact 720gtggacaaaa gtcgctggca agaagggaac gtcttttcat gttctgttat gcacgaggcc 780ttgcacaatc attatacaca gaagtctctg agtctctcac tgggcaaagg cgggggaggc 840agcgggggag gcgggtccgg aggcggggga tctcatccca tccctgactc cagtcctctc 900ctgcaattcg ggggccaagt ccggcagcgg tacctctaca cagatgatgc tcagcagaca 960gaagcccacc tggagatcag ggaggatggg accgtggggg gcgctgctga ccagagcccc 1020gaaagtctcc tgcagctgaa agccttgaag cctggagtta ttcaaatctt gggagtcaag 1080actagtaggt tcctgtgcca gcggccagat ggggccctgt atggatctct ccattttgac 1140cctgaggcct gcagcttccg ggaggagatc agacccgacg gatacaatgt ttaccagtcc 1200gaagcccacg gcctccctct gcatctgccc gggaacaagt ctcctcaccg ggaccctgcc 1260cccagaggac ctgctcgctt cctgccactc ccaggcctgc cccccgcatt gcctgagcca 1320cccggaatcc tggcccccca gccccctgat gtgggatcct ctgaccctct gagcatggtg 1380acaggcctgg aggccgtgag aagccccagc tacgcttcc 1419771383DNAArtificial Sequencenucleic acid molecule coding for DFD29 77cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaggc ggggaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgacaggc ctggaggccg tgagaagccc cagctacgct 1380tcc 1383781383DNAArtificial Sequencenucleic acid molecule coding for DFD69 78cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaggc ggggaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgacaggc ctggaggccg tgagaagccc cagctacgag 1380tcc 1383791383DNAArtificial Sequencenucleic acid molecule coding for DFD112 79cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaggc ggggaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgacaggc ctggaggcca acagaagccc cagctacgag 1380tcc 1383801380DNAArtificial Sequencenucleic acid molecule coding for DFD114 80cacggcgagg ggaccttcac aagcgacgtg tcctcttacc tggaagagca ggccgctaag 60gaatttatcg catggctcgt caaaggaggc ggggaaaagg agaaggaaga gcaggaggag 120agagaaacca aaacacccga gtgtcccagt cacactcagc ctctgggagt gtttctcttc 180ccacctaagc ccaaggatac ccttatgatt tctaggacac ctgaggtgac ctgcgtcgtt 240gtggacgtga gtcaagagga cccagaggtc cagtttaact ggtatgttga cggcgtggaa 300gtgcataatg caaaaactaa accccgcgag gaacaattca attcaaccta ccgggtcgtt 360tctgtgttga cagtgctgca tcaagattgg ctgaacggga aggagtataa gtgtaaagtc 420agtaataagg gactcccctc tagtatcgaa aaaactattt caaaggccaa aggccagcct 480agagagccac aggtgtacac ccttcctcca tcccaagagg agatgacaaa gaaccaggtg 540tctctgactt gtctcgtgaa ggggttctac cctagtgaca tcgctgtcga atgggagtca 600aacggacagc cagagaataa ttataagaca actcctcccg ttctggattc tgacggcagc 660ttctttctgt actctaggct tactgtggac aaaagtcgct ggcaagaagg gaacgtcttt 720tcatgttctg ttatgcacga ggccttgcac aatcattata cacagaagtc tctgagtctc 780tcactgggca aaggcggggg aggcagcggg ggaggcgggt ccggaggcgg gggatctcat 840cccatccctg actccagtcc tctcctgcaa ttcgggggcc aagtccggca gcggtacctc 900tacacagatg atgctcagca gacagaagcc cacctggaga tcagggagga tgggaccgtg 960gggggcgctg ctgaccagag ccccgaaagt ctcctgcagc tgaaagcctt gaagcctgga 1020gttattcaaa tcttgggagt caagactagt aggttcctgt gccagcggcc agatggggcc 1080ctgtatggat ctctccattt tgaccctgag gcctgcagct tccgggagga gatcagaccc 1140gacggataca atgtttacca gtccgaagcc cacggcctcc ctctgcatct gcccgggaac 1200aagtctcctc accgggaccc tgcccccaga ggacctgctc gcttcctgcc actcccaggc 1260ctgccccccg cattgcctga gccacccgga atcctggccc cccagccccc tgatgtggga 1320tcctctgacc ctctgagcat ggtgaaccct tcccagggca gaagccccag ctacgagtcc 1380814PRTArtificial SequencePosition 98-101 of FGF21 81Leu Leu Leu Glu1825PRTArtificial SequencePosition 170-174 of FGF21 82Gly Pro Ser Gln Gly1 58325PRTArtificial SequenceLeader sequence 83Met Asp Ala Met Leu Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly1 5 10 15Ala Val Phe Val Ser Pro Ser His Ala 20 25

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed