Reversible Manganese Dioxide Electrode, Method For The Production Thereof, The Use Thereof, And Rechargeable Alkaline-manganese Battery Containing Said Electrode

JORISSEN; Ludwig ;   et al.

Patent Application Summary

U.S. patent application number 17/411244 was filed with the patent office on 2021-12-09 for reversible manganese dioxide electrode, method for the production thereof, the use thereof, and rechargeable alkaline-manganese battery containing said electrode. The applicant listed for this patent is ZENTRUM FUR SONNENENERGIE- UNC WASSERSTOFF-FORSCHUNG BADEN-WURTTEMBERG. Invention is credited to Jerry Bamfo ASANTE, Olaf BOSE, Ludwig JORISSEN.

Application Number20210384501 17/411244
Document ID /
Family ID1000005798848
Filed Date2021-12-09

United States Patent Application 20210384501
Kind Code A1
JORISSEN; Ludwig ;   et al. December 9, 2021

REVERSIBLE MANGANESE DIOXIDE ELECTRODE, METHOD FOR THE PRODUCTION THEREOF, THE USE THEREOF, AND RECHARGEABLE ALKALINE-MANGANESE BATTERY CONTAINING SAID ELECTRODE

Abstract

The invention relates to a reversible manganese dioxide electrode, comprising an electrically conductive carrier material having a nickel surface, a nickel layer made of spherical nickel particles adhering to each other and having an inner pore structure applied to the carrier material, and a manganese dioxide layer applied to the nickel particles, wherein the manganese dioxide layer is also present in the inner pore structure of the nickel particle. The invention also relates to a method for producing such a manganese dioxide electrode, the use thereof in rechargeable alkaline-manganese batteries, and a rechargeable alkaline-manganese battery containing a manganese dioxide electrode according to the invention.


Inventors: JORISSEN; Ludwig; (Neu-Ulm, DE) ; ASANTE; Jerry Bamfo; (Ulm, DE) ; BOSE; Olaf; (Neu-Ulm, DE)
Applicant:
Name City State Country Type

ZENTRUM FUR SONNENENERGIE- UNC WASSERSTOFF-FORSCHUNG BADEN-WURTTEMBERG

Stuttgart

DE
Family ID: 1000005798848
Appl. No.: 17/411244
Filed: August 25, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
16770463 Jun 5, 2020 11133500
PCT/EP2019/082056 Nov 21, 2019
17411244

Current U.S. Class: 1/1
Current CPC Class: H01M 4/366 20130101; H01M 4/29 20130101; H01M 4/0452 20130101; H01M 4/502 20130101; H01M 10/26 20130101; H01M 10/44 20130101
International Class: H01M 4/50 20060101 H01M004/50; H01M 4/04 20060101 H01M004/04; H01M 4/29 20060101 H01M004/29; H01M 4/36 20060101 H01M004/36; H01M 10/26 20060101 H01M010/26; H01M 10/44 20060101 H01M010/44

Foreign Application Data

Date Code Application Number
Dec 6, 2018 DE 10 2018 131 168.0

Claims



1-14. (canceled)

15. A reversible manganese dioxide electrode, comprising: an electrically conductive carrier material; a nickel layer formed on the electrically conductive carrier material, the nickel layer comprising spherical nickel particles adhered to one another, the nickel layer having an inner pore structure; and a manganese dioxide layer formed on the nickel layer and at least partially filling the inner pore structure thereof.

16. The reversible manganese dioxide electrode according to claim 15, wherein the nickel layer has a thickness between 10 .mu.m and 1000 .mu.m.

17. The reversible manganese dioxide electrode according to claim 16, wherein the thickness of the nickel layer is between 20 .mu.m and 500 .mu.m.

18. The reversible manganese dioxide electrode according to claim 17, wherein the thickness of the nickel layer is between 50 .mu.m and 200 .mu.m.

19. The reversible manganese dioxide electrode according to claim 18, wherein the thickness of the nickel layer is about 100 .mu.m.

20. The reversible manganese dioxide electrode according to claim 15, wherein each of the spherical nickel particles has an average particle size of between 0.1 .mu.m and 25 .mu.m.

21. The reversible manganese dioxide electrode according to claim 20, wherein the average particle size is between 1 .mu.m and 10 .mu.m.

22. The reversible manganese dioxide electrode according to claim 21, wherein the average particle size is between 2 .mu.m and 6 .mu.m.

23. The reversible manganese dioxide electrode according to claim 22, wherein the average particle size is between 3 .mu.m and 4 .mu.m.

24. The reversible manganese dioxide electrode according to claim 15, wherein the electrically conductive carrier material is selected from the group consisting of a nickel sheet, a nickel foil, and a nickel-coated carrier material.

25. The reversible manganese dioxide electrode according to claim 15, wherein the electrically conductive carrier material comprises a nickel sheet.

26. The reversible manganese dioxide electrode according to claim 15, wherein the manganese dioxide layer has a thickness between 1 .mu.m and 50 .mu.m.

27. The reversible manganese dioxide electrode according to claim 26, wherein the thickness of the manganese dioxide layer is between 2 .mu.m and 30 .mu.m.

28. The reversible manganese dioxide electrode according to claim 27, wherein the thickness of the manganese dioxide layer is between 5 .mu.m and 20 .mu.m.

29. The reversible manganese dioxide electrode according to claim 28, wherein the thickness of the manganese dioxide layer is between 5 .mu.m and 10 .mu.m.

30. A rechargeable alkaline-manganese battery, comprising: a current collector; a reversible manganese dioxide electrode surrounding the current collector, wherein the reversible manganese dioxide electrode comprises: an electrically conductive carrier material; a nickel layer formed on the electrically conductive carrier material, the nickel layer comprising spherical nickel particles adhered to one another, the nickel layer having an inner pore structure; and a manganese dioxide layer formed on the nickel layer and at least partially filling the inner pore structure thereof; a separator layer; and a negative electrode, wherein the separator layer is sandwiched between the negative electrode and the reversible manganese dioxide electrode.

31. The rechargeable alkaline-manganese battery according to claim 30, wherein the nickel layer has a thickness between 10 .mu.m and 1000 .mu.m.

32. The rechargeable alkaline-manganese battery according to claim 30, wherein each of the spherical nickel particles has an average particle size of between 0.1 .mu.m and 25 .mu.m.

33. The rechargeable alkaline-manganese battery according to claim 30, wherein the electrically conductive carrier material is selected from the group consisting of a nickel sheet, a nickel foil, and a nickel-coated carrier material.

34. The rechargeable alkaline-manganese battery according to claim 30, wherein the manganese dioxide layer has a thickness between 1 .mu.m and 50 .mu.m.
Description



FIELD OF THE INVENTION

[0001] The invention relates to a reversible manganese dioxide electrode made of an electrically conductive carrier material having a nickel surface, a nickel layer made of spherical nickel particles having an internal pore structure applied to the carrier material and a manganese dioxide layer applied to the nickel particles, a method for the production of such a manganese dioxide electrode, the use thereof in rechargeable alkaline battery systems, in particular alkaline-manganese batteries, and a rechargeable alkaline-manganese battery containing such a reversible manganese dioxide electrode, in particular an alkaline-manganese battery also designated as alkali-mangenese battery.

TECHNICAL BACKGROUND AND PRIOR ART

[0002] The alkaline-manganese battery or the alkaline-manganese cell is an important electrochemical energy store from the family of zinc manganese dioxide cells. The alkaline-manganese cell is one of the primary elements, i.e. the non-rechargeable batteries, although it is generally rechargeable to an extent. Versions intended for recharging are referred to as "RAM cells" (Rechargeable Alkaline Manganese), which count as secondary elements (accumulators).

[0003] In the alkaline-manganese cell, also referred to as zinc manganese oxide cell, manganese dioxide is used for the positive electrode, wherein an aqueous solution of potassium hydroxide is usually used as the alkaline electrolyte. The cathode (positive electrode) is on the outside and is a metal cup coated on the inside with manganese dioxide. The anode (negative electrode) in the middle of the cell usually consists of zinc powder.

[0004] The cyclization of manganese dioxide electrodes was limited under these conditions to a few cycles with poor performance. The interest in manganese dioxide as a positive electrode material for alkaline electrolytes is due to the high specific capacity, the low price, and the low toxicity thereof. However, the low cyclability due to the high irreversible losses during charging has hitherto prevented the use of manganese dioxide as a positive electrode material in rechargeable batteries having alkaline electrolytes.

[0005] RAM cells can deliver approximately 10-20 full cycles (at 100% depth of discharge) or approximately 200 cycles at a low depth of discharge of 10-20%. After 10 full cycles (100% depth of discharge) using a discharge current rate of 0.08 C, only 60% of the initial capacity is available. In addition, they can only be used for very low discharge current rates between 0.03 and 0.6 C. RAM cells are therefore only suitable for low-current applications, such as clocks or remote controls. They are not suitable for high-current applications such as digital cameras, cordless tools, or as drive batteries in model vehicles and can be damaged in the process. Furthermore, an increase in the discharge current rate from 0.03 C to 0.5 C already halves the available capacity. RAM cells must not be over-discharged in order not to lose their recharge ability. If RAM cells are discharged up to a final discharge voltage of 1.42 V per cell, the achievable number of cycles is a few 100 s. With a discharge of up to 1.32 V, the number of cycles is reduced to a few 10 s. In the event of a further discharge, RAM cells can no longer be charged or can only be charged with a significantly reduced capacity.

OBJECT OF THE INVENTION

[0006] The invention has for its object to provide a reversible manganese dioxide electrode and a method for its production, while avoiding the disadvantages of the prior art, which can be used as a working electrode in rechargeable alkaline battery systems, in particular alkaline-manganese cells. Likewise, a rechargeable alkaline-manganese battery, in particular an alkaline-manganese battery, is to be provided, which allows high discharge current rates and has good cycle stability without suffering significant capacity losses.

SUMMARY OF THE INVENTION

[0007] The aforementioned objects are achieved according to the invention by a reversible manganese dioxide electrode according to claim 1, a process for the production thereof according to claim 7, the use thereof according to claim 13, and a rechargeable alkaline-manganese battery according to claim 14.

[0008] Preferred or particularly expedient embodiments of the subject matter of the application are specified in the subclaims.

[0009] The invention thus relates to a reversible manganese dioxide electrode, comprising an electrically conductive carrier material having a nickel surface, a nickel layer made of spherical nickel particles adhering to each other and having an inner pore structure applied to the carrier material and a manganese dioxide layer applied to the nickel particles, wherein the manganese dioxide layer is also present in the inner pore structure of the nickel particle.

[0010] The invention also relates to a method for producing such a reversible manganese dioxide electrode, comprising the following steps: [0011] a) Providing an electrode structure made of an electrically conductive carrier material having a nickel surface and a nickel layer made of spherical, porous nickel particles adhering to each other and having an inner pore structure applied to the carrier material, [0012] b) Depositing a manganese(II)-hydroxide layer onto the nickel particles of the nickel layer from a manganese(II)-salt solution, [0013] c) Oxidizing the manganese(II)-hydroxide layer to a manganese dioxide layer.

[0014] The invention also relates to the use of the reversible manganese dioxide electrode according to the invention as a working electrode in rechargeable alkaline battery systems, in particular alkaline-manganese batteries or secondary alkaline-manganese cells.

[0015] The invention finally relates to a rechargeable alkaline-manganese battery, in particular an alkaline-manganese battery or a secondary alkaline-manganese cell, containing a reversible manganese dioxide electrode according to the invention as the working electrode.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The manganese dioxide electrode according to the invention, which is intended in particular for alkaline aqueous electrolytes, is characterized in that when used as a working electrode in an alkali-manganese cell with an alkaline electrolyte, discharge current rates of up to 150 C are possible, wherein the cell itself has no discernible loss of capacity after 100 cycles.

[0017] The electrodes according to the invention show an initial formation reaction, in which approximately 30 cycles are required to develop the full capacity. The manganese dioxide electrodes according to the invention are therefore suitable as positive electrodes for use in rechargeable alkaline battery systems, in particular alkaline-manganese batteries.

[0018] The manganese dioxide electrode according to the invention is constructed in such a way that a nickel layer made of spherical nickel particles adhering to one another and having an inner pore structure is provided on an electrically conductive carrier material having a nickel surface, preferably a nickel plate. A manganese dioxide layer is then applied to the nickel particles of the nickel layer, wherein the manganese dioxide layer is also present in the inner pore structure of the nickel particles. The manganese dioxide layer can partially or completely fill the inner pore structure, so that the inner surface of the pores is partially or completely covered with manganese dioxide. While the nickel particles of the nickel layer have an inner pore structure, the nickel layer also has an outer pore structure, which is defined by the voids between the individual nickel particles. This outer pore structure can also be partially covered with manganese dioxide, in particular in surface areas which lie opposite the carrier material.

[0019] The electrically conductive carrier material having a nickel surface can be not only a nickel sheet, but also a nickel foil or nickel-coated carrier material, including nickel-coated metal or plastic foils, such as steel foils, or nickel-coated non-woven or fabric textiles. Such electrically conductive fabrics based on nickel-coated nonwoven and fabric textiles are commercially available and consist, for example, of polyester, which are made electrically conductive by a nickel coating. This means that these fabrics have electrical properties that are just as good as those of metal having great material flexibility and light weight.

[0020] According to the invention, it has been shown that by using such a nanostructured nickel electrode as the basic electrode structure and applying a manganese dioxide layer to such a nanostructured nickel electrode, reversible manganese dioxide electrodes having the aforementioned advantageous properties can be obtained. Nanostructured nickel electrodes are understood to mean nickel electrodes which have a nickel layer composed of spherical, porous nickel particles adhering to one another, wherein the nickel particles have an inner pore structure with a high inner surface. The pores have a diameter of a few 100 nm, preferably up to 100 nm.

[0021] Such nickel electrodes and methods for their production are described in WO 2017/085173 A1. The method for producing such nickel electrodes comprises the following steps: [0022] a) providing spherical nickel hydroxide particles, [0023] b) partially reducing the spherical nickel hydroxide particles in a reducing atmosphere at elevated temperatures in order to achieve partially reduced, spherical Ni/NiO particles, [0024] c) producing a paste from the Ni/NiO particles obtained and an organic and/or inorganic binder and, if appropriate, further auxiliaries, [0025] d) applying the paste as a coat on one or both sides of an electrically conductive carrier material having a nickel surface, in particular a nickel sheet, and [0026] e) tempering the coated carrier material in a reducing atmosphere at elevated temperatures.

[0027] In the manganese dioxide electrode according to the invention, the nickel layer preferably has a thickness in the range from 10-1000 .mu.m, more preferably 20-500 .mu.m, even more preferably 50-200 .mu.m, and particularly preferably about 100 .mu.m, before the manganese dioxide layer is applied.

[0028] The spherical nickel particles of the nickel layer preferably have an average particle size of 0.1-25 .mu.m, more preferably of 1-10 .mu.m, even more preferably of 2-6 .mu.m, and particularly preferably of 3-4 .mu.m.

[0029] In the method for producing a manganese dioxide electrode according to the invention, a nickel electrode as described above is initially provided as the basic electrode structure. A manganese(II)-hydroxide layer from a manganese(II)-salt solution is then deposited on the nickel particles of the nickel layer. The manganese(II)-hydroxide layer is preferably deposited electrochemically in a manner known per se, wherein a manganese nitrate solution is preferably used as the manganese(II)-salt solution. For example, potentiostatic deposition takes place against an Ag/AgCl reference electrode from an aqueous manganese nitrate solution. The amount of electricity required for the deposition can be calculated according to Faraday's law in a manner known per se. This process reduces the nitrate ion to nitrite ion, forming hydroxide ions. The hydroxide ions formed precipitate the manganese(II)-hydroxide on the nickel particles.

[0030] A manganese dioxide layer can of course also be deposited from other manganese compounds, for example from potassium permanganate.

[0031] In a further step, the manganese(II)-hydroxide layer is then oxidized to a manganese dioxide layer. Known oxidizing agents can be used here, such as selected from the group consisting of hydrogen peroxide, potassium peroxodisulfate, potassium permanganate, sodium hypochlorite, dichloroxide, oxygen, such as atmospheric oxygen and ozone. In the process according to the invention, the oxidation is preferably carried out by means of an alkaline solution of hydrogen peroxide, particularly preferably an aqueous solution of potassium hydroxide and hydrogen peroxide. A 1:1 solution of 0.1 M KOH and 0.1 M H.sub.2O.sub.2 is particularly suitable, for example.

[0032] The manganese dioxide layer of the manganese dioxide electrode according to the invention preferably has a thickness in the range from 1 to 50 .mu.m, more preferably from 2 to 30 .mu.m, even more preferably from 5 to 20 .mu.m, and particularly preferably from 5 to 10 .mu.m. These thicknesses refer to the so-called equivalent layer thickness, which is to be understood as the layer thickness that would result on a completely planar carrier material. In the case of electrochemical deposition of the manganese(II)-hydroxide layer as an intermediate stage, a corresponding amount of manganese(II)-hydroxide per 1 cm.sup.2 of electrode area is required to achieve a desired equivalent layer thickness of manganese dioxide. The amount of electricity required for the deposition of the corresponding basis weight of manganese(II)-hydroxide can be calculated in a manner known per se according to Faraday's law. For example, loading the electrode carrier material with 2.54 mg/cm.sup.2 Mn(OH).sub.2 arithmetically results in an equivalent layer thickness of rounded 5 .mu.m MnO.sub.2. A loading of the electrode carrier material with 5.08 mg/cm.sup.2 Mn(OH).sub.2 corresponds to an equivalent layer thickness of rounded 10 .mu.m MnO.sub.2.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1 shows a SEM image of the surface of a nickel electrode used as the basic electrode structure for producing a manganese dioxide electrode according to the invention at a magnification of five hundred times;

[0034] FIG. 2 shows an SEM image of the nickel electrode shown in FIG. 1 at a magnification of ten thousand times;

[0035] FIG. 3 shows an SEM image of the surface of a manganese dioxide electrode according to the invention having a 5 .mu.m-thick manganese dioxide layer at a magnification of five hundred times;

[0036] FIG. 4 shows an SEM image of the manganese dioxide electrode shown in FIG. 3 at a magnification of three thousand times;

[0037] FIG. 5 shows a SEM image of the surface of a manganese dioxide electrode according to the invention having a 10 .mu.m-thick manganese dioxide layer at a magnification of five hundred times;

[0038] FIG. 6 shows an SEM image of the manganese dioxide electrode shown in FIG. 5 at a magnification of three thousand times;

[0039] FIG. 7 shows discharge diagrams of manganese dioxide electrodes according to the invention having a manganese dioxide layer thickness of approximately 5 .mu.m;

[0040] FIG. 8 shows discharge diagrams of manganese dioxide electrodes according to the invention having a manganese dioxide layer thickness of approximately 10 .mu.m.

PREFERRED EMBODIMENTS AND EXEMPLARY EMBODIMENTS

Example 1

Production of a Manganese Dioxide Electrode having a MnO.sub.2 Layer Thickness of Approximately 5 .mu.m

[0041] In the first step, an approximately 5 .mu.m Mn(OH).sub.2 layer is electrochemically deposited on nanostructured nickel electrodes by potentiostatic deposition at -1.1 V against the Ag/AgCl reference electrode from a freshly prepared, aqueous 1M Mn(NO.sub.3).sub.2 solution. The amount of current for the deposition of 2.54 mg Mn(OH).sub.2 per 1 cm.sup.2 electrode area results according to Faraday's law in 1.567 mAh. After the Mn(OH).sub.2 layer has been produced, the electrode is rinsed thoroughly with deionized water.

[0042] In the second step, the electrode thus produced is oxidized to MnO.sub.2 with a 1:1 solution of 0.1 M KOH and 0.1 MH.sub.2O.sub.2 for 10 to 12 hours at room temperature. Mathematically, this results in 2.48 mg MnO.sub.2 per 1 cm.sup.2. With a density of 5.03 g/cm.sup.3 for MnO.sub.2, this results in an equivalent layer thickness of 4.93 .mu.m MnO.sub.2 and approximately 5 .mu.m rounded. After the MnO.sub.2 layer has been produced, the electrode is rinsed thoroughly with deionized water and then dried at 40.degree. C. for 5 hours.

Example 2

Production of a Manganese Dioxide Electrode with MnO.sub.2 Layer Thickness of about 10 .mu.m

[0043] In the first step, an approximately 10 .mu.m Mn(OH).sub.2 layer is electrochemically deposited on nanostructured nickel electrodes by potentiostatic deposition at -1.1 V against the Ag/AgCl reference electrode from a freshly prepared, aqueous 1M Mn(NO.sub.3).sub.2 solution. The amount of current for the deposition of 5.08 mg Mn(OH).sub.2 per 1 cm.sup.2 electrode area results according to Faraday's law in 3.134 mAh. After the Mn(OH).sub.2 layer has been produced, the electrode is rinsed thoroughly with deionized water.

[0044] In the second step, the electrode thus produced is oxidized to MnO.sub.2 with a 1:1 solution of 0.1 M KOH and 0.1 MH.sub.2O.sub.2 for 10 to 12 hours at room temperature. Mathematically, this results in 4.96 mg MnO.sub.2 per 1 cm.sup.2. This results in an equivalent layer thickness of 9.86 .mu.m MnO.sub.2 and approximately 10 .mu.m rounded. After the MnO.sub.2 layer has been produced, the electrode is rinsed thoroughly with deionized water and then dried at 40.degree. C. for 5 hours.

Example 3

Cyclization and Discharge of the Electrodes According to the Invention

[0045] Three samples each of the electrodes produced in Example 1 (layer thickness approximately 5 .mu.m) and Example 2 (layer thickness approximately 10 .mu.m) were discharged with different current densities up to 400 mA/cm.sup.2. The discharge diagrams obtained in this way are shown in FIGS. 7 and 8.

[0046] It can be seen that the electrodes produced undergo an initial formation reaction of approximately 30 cycles before they reach their full capacity.

[0047] The MnO.sub.2 electrodes with a coating thickness of 5 .mu.m (example 1 and FIG. 7) have a maximum capacity of 1.27 mAh/cm.sup.2 and can be discharged up to 200 mA/cm.sup.2 or 157 C without significant loss of capacity (FIG. 7).

[0048] The MnO.sub.2 electrodes with a coating thickness of 10 .mu.m (example 2 and FIG. 8) have a maximum capacity of 1.92 mAh/cm.sup.2 and can be discharged up to 50 mA/cm.sup.2 or 26 C without significant loss of capacity (FIG. 8).

[0049] The fact that doubling the MnO.sub.2 layer thickness does not lead to doubling the surface capacity is due to the fact that the nickel electrodes used as the base electrode structure already have their own capacity of approximately 0.55 mAh/cm.sup.2. Taking this capacity of the nickel electrode into account results in a rounded capacity for the manganese dioxide layer of approximately 1.4 mAh per 10 .mu.m layer thickness.

[0050] The discharges were each carried out on a 1 cm.sup.2 electrode in 6.0 M KOH.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed