Anti-pd-1/vegfa Bifunctional Antibody, Pharmaceutical Composition Thereof And Use Thereof

LI; Baiyong ;   et al.

Patent Application Summary

U.S. patent application number 17/272121 was filed with the patent office on 2021-11-04 for anti-pd-1/vegfa bifunctional antibody, pharmaceutical composition thereof and use thereof. The applicant listed for this patent is AKESO BIOPHARMA, INC.. Invention is credited to Baiyong LI, Zhongmin Maxwell WANG, Yu XIA, Peng ZHANG.

Application Number20210340239 17/272121
Document ID /
Family ID1000005770211
Filed Date2021-11-04

United States Patent Application 20210340239
Kind Code A1
LI; Baiyong ;   et al. November 4, 2021

ANTI-PD-1/VEGFA BIFUNCTIONAL ANTIBODY, PHARMACEUTICAL COMPOSITION THEREOF AND USE THEREOF

Abstract

The present application relates to the fields of tumor treatment and molecular immunology, and specifically, to an anti-VEGFA/PD-1 bifunctional antibody, a pharmaceutical composition thereof and use thereof. Specifically, the anti-VEGFA/PD-1 bifunctional antibody comprises a first protein functional region targeting VEGFA and a second protein functional region targeting PD-1. The bifunctional antibody can specifically bind to VEGFA and PD-1, specifically relieve immunosuppression of VEGFA and PD-1 in an organism, and inhibit tumor-induced angiogenesis, thus having good application prospect.


Inventors: LI; Baiyong; (Zhongshan, CN) ; XIA; Yu; (Zhongshan, CN) ; WANG; Zhongmin Maxwell; (Zhongshan, CN) ; ZHANG; Peng; (Zhongshan, CN)
Applicant:
Name City State Country Type

AKESO BIOPHARMA, INC.

Zhongshan, Guangdong

CN
Family ID: 1000005770211
Appl. No.: 17/272121
Filed: August 30, 2019
PCT Filed: August 30, 2019
PCT NO: PCT/CN2019/103618
371 Date: February 26, 2021

Current U.S. Class: 1/1
Current CPC Class: A61P 35/00 20180101; C07K 16/2818 20130101; C07K 16/22 20130101; A61K 2039/505 20130101; A61K 47/6849 20170801
International Class: C07K 16/22 20060101 C07K016/22; C07K 16/28 20060101 C07K016/28; A61P 35/00 20060101 A61P035/00; A61K 47/68 20060101 A61K047/68

Foreign Application Data

Date Code Application Number
Aug 30, 2018 CN 201811002548.4

Claims



1. A bispecific antibody, comprising: a first protein functional region targeting VEGFA, and a second protein functional region targeting PD-1; wherein: the first protein functional region is an anti-VEGFA antibody or an antigen-binding fragment thereof, a heavy chain variable region of the anti-VEGFA antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the anti-VEGFA antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively; and the second protein functional region is an anti-PD-1 antibody or an antigen-binding fragment thereof, a heavy chain variable region of the anti-PD-1 antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the anti-PD-1 antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively.

2. The bispecific antibody according to claim 1, wherein, the anti-VEGFA antibody or the antigen-binding fragment thereof is selected from Fab, Fab', F(ab').sub.2, Fd, Fv, dAb, a complementarity determining region fragment, a single chain antibody, a humanized antibody, a chimeric antibody, and a diabody; and/or, the anti-PD-1 antibody or the antigen-binding fragment thereof is selected from Fab, Fab', F(ab').sub.2, Fd, Fv, dAb, a complementarity determining region fragment, a single chain antibody, a humanized antibody, a chimeric antibody, and a diabody.

3. The bispecific antibody according to claim 1, wherein, the first protein functional region is an immunoglobulin, a heavy chain variable region of the immunoglobulin comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the immunoglobulin comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively; and the second protein functional region is a single chain antibody, a heavy chain variable region of the single chain antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the single chain antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively; or, the first protein functional region is a single chain antibody, a heavy chain variable region of the single chain antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the single chain antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively; and the second protein functional region is an immunoglobulin, a heavy chain variable region of the immunoglobulin comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the immunoglobulin comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively.

4. The bispecific antibody according to claim 3, wherein, the amino acid sequence of the heavy chain variable region of the immunoglobulin is set forth in SEQ ID NO: 5, and the amino acid sequence of the light chain variable region of the immunoglobulin is set forth in SEQ ID NO: 7; and the amino acid sequence of the heavy chain variable region of the single chain antibody is set forth in SEQ ID NO: 9, and the amino acid sequence of the light chain variable region of the single chain antibody is set forth in SEQ ID NO: 11; or, the amino acid sequence of the heavy chain variable region of the single chain antibody is set forth in SEQ ID NO: 9, and the amino acid sequence of the light chain variable region of the single chain antibody is set forth in SEQ ID NO: 11; and the amino acid sequence of the heavy chain variable region of the immunoglobulin is set forth in SEQ ID NO: 5, and the amino acid sequence of the light chain variable region of the immunoglobulin is set forth in SEQ ID NO: 7.

5. The bispecific antibody according to claim 3, wherein the immunoglobulin is an IgG, IgA, IgD, IgE, or IgM.

6. The bispecific antibody according to claim 3, wherein two single chain antibodies are present, and one terminus of each single chain antibody is linked to the C-terminus or the N-terminus of one of the two heavy chains of the immunoglobulin.

7. The bispecific antibody according to claim 3, wherein, the immunoglobulin comprises a non-CDR region derived from a human antibody.

8. The bispecific antibody according to claim 3, wherein, the immunoglobulin comprises constant regions derived from a human antibody.

9. The bispecific antibody according to claim 3, wherein, the heavy chain constant region of the immunoglobulin is human Ig gamma-1 chain C region or human Ig gamma-4 chain C region, and its light chain constant region is human Ig kappa chain C region.

10. The bispecific antibody according to claim 1, wherein the first and second protein functional regions are linked directly or via a linker fragment.

11. The bispecific antibody according to claim 1, wherein the numbers of the first and second protein functional regions are each independently 1, 2 or more.

12. The bispecific antibody according to claim 1, wherein, the bispecific antibody binds to the VEGFA protein with an EC.sub.50 of less than 1 nM, less than 0.5 nM, less than 0.2 nM, less than 0.15 nM, or less than 0.14 nM; and/or, the bispecific antibody binds to the PD-1 protein with an EC.sub.50 of less than 1 nM, less than 0.5 nM, less than 0.2 nM, less than 0.17 nM, less than 0.16 nM, or less than 0.15 nM.

13. An isolated nucleic acid molecule, encoding the bispecific antibody according to claim 1.

14. A vector, comprising the isolated nucleic acid molecule according to claim 13.

15. A host cell, comprising the isolated nucleic acid molecule according to claim 13.

16. A method for preparing the bispecific antibody according to claim 1, comprising: culturing a host cell in a suitable condition, and isolating the bispecific antibody from the cell cultures, wherein the host cell comprises an isolated nucleic acid molecule, and wherein the isolated nucleic acid molecule encodes the bispecific antibody according to claim 1.

17. A conjugate, comprising a bispecific antibody and a conjugated moiety, wherein the bispecific antibody is the bispecific antibody according to claim 1, and the conjugated moiety is a detectable label.

18. A kit, comprising the bispecific antibody according to claim 1.

19. (canceled)

20. A pharmaceutical composition, comprising the bispecific antibody according to claim 1.

21-22. (canceled)

23. An in vivo or in vitro method, comprising administering to a cell an effective amount of the bispecific antibody according to claim 1, wherein the method is selected from: (1) a method for detecting the level of VEGFA in a sample, a method for blocking the binding of VEGFA to VEGFR2, a method for down-regulating the activity or level of VEGFA, a method for relieving the stimulation of VEGFA on vascular endothelial cell proliferation, a method for inhibiting vascular endothelial cell proliferation, or a method for blocking tumor angiogenesis; and/or (2) a method for blocking the binding of PD-1 to PD-L1, a method for down-regulating the activity or level of PD-1, a method for relieving the immunosuppression of PD-1 in an organism, a method for promoting IFN-.gamma. secretion in T lymphocytes, or a method for promoting IL-2 secretion in T lymphocytes.

24. A method for preventing and/or treating a malignant tumor, comprising administering to a subject in need an effective amount of the bispecific antibody according to claim 1.

25.-26. (canceled)

27. The bispecific antibody according to claim 8, wherein the constant regions of the immunoglobulin are selected from constant regions of human IgG1, IgG2, IgG3, and IgG4.

28. The bispecific antibody according to claim 10, wherein the linker fragment is (GGGGS)m, wherein m is 1, 2, 3, 4, 5, or 6.

29. The bispecific antibody according to claim 12, wherein the EC.sub.50 with which the bispecific antibody binds to the VEGFA protein is detected by indirect ELISA; and/or wherein the EC.sub.50 with which the bispecific antibody binds to the PD-1 protein is detected by indirect ELISA.

30. The conjugate according to claim 17, wherein the conjugated moiety is a radioisotope, a fluorescent substance, a luminescent substance, a colored substance, or an enzyme.

31. The kit according to claim 30, wherein the kit further comprises a second antibody capable of specifically binding to the bispecific antibody.

32. The kit according to claim 31, wherein the second antibody further comprises a detectable label.

33. The kit according to claim 32, wherein the detectable label is a radioisotope, a fluorescent substance, a luminescent substance, a colored substance, or an enzyme.

34. The pharmaceutical composition according to claim 20, wherein the pharmaceutical composition further comprises a pharmaceutically acceptable excipient.

35. The method according to claim 24, wherein the malignant tumor is selected from colon cancer, rectal cancer, lung cancer, liver cancer, ovarian cancer, skin cancer, glioma, melanoma, renal tumor, prostate cancer, bladder cancer, gastrointestinal cancer, breast cancer, brain cancer and leukemia.

36. The method according to claim 35, wherein the lung cancer is non-small cell lung cancer.
Description



TECHNICAL FIELD

[0001] The present application relates to the fields of tumor treatment and immunobiology, particularly to an anti-PD-1/VEGFA bifunctional antibody, a pharmaceutical composition thereof and use thereof. Specifically, the present application relates to an anti-human PD-1/human VEGFA bifunctional antibody, a pharmaceutical composition thereof and use thereof.

BACKGROUND

[0002] Tumor, especially a malignant tumor, is a serious health-threatening disease in the world today, and it is the second leading cause of death among various diseases. In recent years, the incidence of the disease has been increasing remarkably. Malignant tumor is characterized by poor treatment response, high late metastasis rate and poor prognosis. Although conventional treatment methods (such as radiotherapy, chemotherapy and surgical treatment) adopted clinically at present alleviate the pain to a great extent and prolong the survival time, the methods have great limitations, and it is difficult to further improve their efficacy.

[0003] There are two distinct stages of tumor growth, namely, from a slow growth stage without blood vessels to a rapid proliferation stage with blood vessels. The angiogenesis enables the tumor to acquire enough nutrition to complete the blood vessel switching stage, and if there is no angiogenesis, the primary tumor will be no more than 1-2 mm, and thus the metastasis cannot be realized.

[0004] Vascular Endothelial Growth Factor (VEGF) is a growth factor which can promote division and proliferation of endothelial cells, promote formation of new blood vessels and improve blood vessel permeability, and it binds to vascular endothelial growth factor receptors on the cell surface and plays a role by activating tyrosine kinase signal transduction pathways. In tumor tissues, tumor cells, and macrophages and mast cells invading into tumors can secrete high-level VEGF, stimulate tumor vascular endothelial cells in a paracrine form, promote proliferation and migration of endothelial cells, induce angiogenesis, promote continuous growth of tumor, improve vascular permeability, cause fibrin deposition in surrounding tissues, and promote infiltration of mononuclear cells, fibroblast and endothelial cells, which facilitates formation of tumor stroma and entry of tumor cells into new blood vessels, and promote tumor metastasis. Therefore, inhibiting tumor angiogenesis is considered to be one of the most promising tumor treatment methods at present. The VEGF family includes: VEGFA, VEGFB, VEGFC, VEGFD and PIGF. Vascular Endothelial Growth Factor Receptors (VEGFRs) include VEGFR1 (also known as Flt1), VEGFR2 (also known as KDR or Flk1), VEGFR3 (also known as Flt4), and Neuropilin-1 (NRP-1). The first three receptors are similar in structure, belong to a tyrosine kinase superfamily, and are composed of an extramembrane region, a transmembrane segment and an intramembrane region, where the extramembrane region is composed of an immunoglobulin-like domain, and the intramembrane region is a tyrosine kinase region. VEGFR1 and VEGFR2 are located primarily on the surface of vascular endothelial cells, and VEGFR3 is located primarily on the surface of lymphatic endothelial cells.

[0005] Molecules of the VEGF family have different affinities for these receptors. VEGFA mainly acts in combination with VEGFR1, VEGFR2 and NRP-1. VEGFR1 is the earliest found receptor and has a higher affinity for VEGFA than VEGFR2 under normal physiological conditions, but it has a lower tyrosinase activity in intracellular segment than VEGFR2 (Ma Li, J. Chinese Journal of Birth Health and Heredity, 24 (5): 146-148 (2016)).

[0006] VEGFR2 is the primary regulator of angiogenesis and vascular engineering, and has a much higher tyrosine kinase activity than VEGFR1. VEGFR2, after binding to ligand VEGFA, mediates the proliferation, differentiation and the like of vascular endothelial cells, as well as the formation process of blood vessels and the permeability of blood vessels (Roskoski R Jr. et al., Crit Rev Oncol Hematol, 62(3): 179-213 (2007)). VEGFA, after binding to VEGFR2, mediates the transcriptional expression of intracellular related protein genes through the downstream PLC-.gamma.-PKC-Raf-MEK-MAPK signaling pathway, and thus promotes the proliferation of vascular endothelial cells (Takahashi T et al., Oncogene, 18(13): 2221-2230 (1999)).

[0007] VEGFR3 is one of the tyrosine kinase family members, and mainly expresses embryonic vascular endothelial cell and adult lymphatic endothelial cells, and VEGFC and VEGFD bind to VEGFR3 to stimulate proliferation and migration of lymphatic endothelial cells and promote neogenesis of lymphatic vessels; NRP-1 is a non-tyrosine kinase transmembrane protein and is incapable of independently transducing biological signals, and it is able to mediate signaling only after forming a complex with a VEGF tyrosine kinase receptor. (Ma Li, Chinese Journal of Birth Health and Heredity, 24(5): 146-148 (2016)).

[0008] VEGFA and VEGFR2 are mainly involved in regulation of angiogenesis, where before and after the binding of VEGFA to VEGFR2, a cascade reaction of numerous intermediate signals in upstream and downstream pathways is formed, and finally the physiological functions are changed by proliferation, survival, migration, permeability increase and infiltration to peripheral tissues, etc. of endothelial cells (Dong Hongchao et al., Sep. 2014, Journal of Modern Oncology, 22(9): 2231-3).

[0009] Currently, there are several humanized monoclonal antibodies targeting human VEGF, particularly VEGFA, such as bevacizumab, which has been approved by the U.S. Food and Drug

[0010] Administration for the treatment of various tumors such as non-small cell lung cancer, renal cell carcinoma, cervical cancer, and metastatic colorectal cancer in succession during 2004.

[0011] The programmed cell death receptor-1 (PD-1), also known as CD279, is a type I transmembrane glycoprotein membrane surface receptor, belongs to the CD28 immunoglobulin superfamily, and is commonly expressed in T cells, B cells, and myeloid cells. PD-1 has two natural ligands, PD-L1 and PD-L2. Both PD-L1 and PD-L2 belong to the B7 superfamily and are expressed constitutively or inducibly on the membrane surface a variety of cells, including nonhematopoietic cells and a variety of tumor cells. PD-L1 is mainly expressed on T cells, B cells, DC and microvascular endothelial cells and a variety of tumor cells, while PD-L2 is expressed only on antigen presenting cells such as dendritic cells and macrophages. The interaction between PD-1 and its ligands can inhibit the activation of lymph, the proliferation of T cells, and the secretion of cytokines such as IL-2 and IFN-.gamma..

[0012] A large number of research shows that a tumor microenvironment can protect tumor cells from being damaged by immune cells, expression of PD-1 in lymphocytes infiltrated in the tumor microenvironment is up-regulated, and various primary tumor tissues are PD-L1 positive in immunohistochemical analysis, such as lung cancer, liver cancer, ovarian cancer, skin cancer, colon cancer and glioma. Meanwhile, the expression of PD-L1 in the tumor is significantly correlated with poor prognosis of cancer patients. Blocking the interaction between PD-1 and its ligands can promote the tumor-specific T cell immunity and enhance the immune elimination efficiency of tumor cells. A large number of clinical trials show that antibodies targeting PD-1 or PD-L1 can promote infiltration of CD8.sup.+ T cells into tumor tissues and up-regulate anti-tumor immune effector factors such as IL-2, IFN-.gamma., granzyme B and perforin, thereby effectively inhibiting the growth of tumors.

[0013] In addition, anti-PD-1 antibodies may also be used in the treatment of viral chronic infections. Viral chronic infections are often accompanied by a loss of function of virus-specific effector T cells and a reduction in its number. The interaction between PD-1 and PD-L1 can be blocked by injecting a PD-1 antibody, thereby effectively inhibiting the exhaustion of effector T cells in viral chronic infection.

[0014] Due to the broad anti-tumor prospect and surprising efficacy of PD-1 antibodies, it is widely accepted in the industry that antibodies targeting the PD-1 pathway will bring about breakthroughs in the treatment of a variety of tumors: for the treatment of non-small cell lung cancer, renal cell carcinoma, ovarian cancer and melanoma (Homet M. B., Parisi G., et al., Anti-PD-1 therapy in melanoma. Semin Oncol. 2015 June; 42(3): 466-473), and lymphoma and anemia (Held S A, Heine A, et al., Advances in immunotherapy of chronic myeloid leukemia CML. Curr Cancer Drug Targets 2013 September; 13(7): 768-74).

[0015] The bifunctional antibody, also known as bispecific antibody, is a specific medicament that targets two different antigens simultaneously, and can be produced by immunoselection purification. In addition, the bispecific antibody can also be produced by genetic engineering, which has certain advantages due to corresponding flexibility in aspects such as the optimization of binding sites, consideration of synthetic form, and yield. Currently, the bispecific antibody has been demonstrated to exist in over 45 forms (Muller D, Kontermann R E. Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs 2010; 24: 89-98). A number of bispecific antibodies have been developed in the form of IgG-ScFv, namely the Morrison form (Coloma M. J., Morrison S. L. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol., 1997; 15: 159-163), which has been demonstrated to be one of the ideal forms of the bispecific antibodies because of its similarity to the naturally existing IgG form and advantages in antibody engineering, expression and purification (Miller B. R., Demarest S. J., et al., Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel 2010; 23: 549-57; Fitzgerald J, Lugovskoy A. Rational engineering of antibody therapeutics targeting multiple oncogene pathways. MAbs 2011; 3: 299-309).

[0016] Currently, there is a need to develop a bifunctional antibody medicament targeting both PD-1 and VEGF (e.g., VEGFA).

SUMMARY

[0017] Through in-depth research and creative efforts, and based on commercially available VEGFA monoclonal antibody Avastin (bevacizumab) and 14C12H1L1 acquired before (see Chinese patent publication No. CN106977602A), the inventors have acquired a humanized bifunctional antibody named VP101, which is capable of simultaneously binding to VEGFA and PD-1, and blocking the binding of VEGFA to VEGFR2 and that of PD-1 to PD-L1.

[0018] The inventors have surprisingly found that VP101 is capable of:

[0019] effectively binding to PD-1 on the surface of human immune cells, relieving immunosuppression mediated by PD-L1 and PD-1, and promoting secretion of IFN-.gamma. and IL-2 by human immune cells;

[0020] effectively inhibiting VEGFA-induced proliferation of vascular endothelial cells, and thereby inhibiting tumor-induced angiogenesis; and/or

[0021] having the potential of being used for preparing medicaments for preventing and treating malignant tumors such as liver cancer, lung cancer, melanoma, renal tumor, ovarian cancer and lymphoma.

[0022] The subject matter of the present application is detailed below.

[0023] One aspect of the present application relates to a bispecific antibody, which comprises:

[0024] a first protein functional region targeting VEGFA, and

[0025] a second protein functional region targeting PD-1;

[0026] preferably,

[0027] the first protein functional region is an anti-VEGFA antibody or an antigen-binding fragment thereof, a heavy chain variable region of the anti-VEGFA antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the anti-VEGFA antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively; and the second protein functional region is an anti-PD-1 antibody or an antigen-binding fragment thereof, a heavy chain variable region of the anti-PD-1 antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the anti-PD-1 antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively.

[0028] In some embodiments of the present application, the bispecific antibody is provided, wherein, the anti-VEGFA antibody or the antigen-binding fragment thereof is selected from Fab, Fab', F(ab').sub.2, Fd, Fv, dAb, a complementarity determining region fragment, a single chain antibody, a humanized antibody, a chimeric antibody, and a diabody;

[0029] and/or,

[0030] the anti-PD-1 antibody or the antigen-binding fragment thereof is selected from Fab, Fab', F(ab').sub.2, Fd, Fv, dAb, a complementarity determining region fragment, a single chain antibody, a humanized antibody, a chimeric antibody, and a diabody.

[0031] In some embodiments of the present application, the bispecific antibody is in IgG-scFv form.

[0032] In some embodiments of the present application, the first protein functional region is an immunoglobulin, a heavy chain variable region of the immunoglobulin comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the immunoglobulin comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively; and the second protein functional region is a single chain antibody, a heavy chain variable region of the single chain antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the single chain antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively;

[0033] or,

[0034] the first protein functional region is a single chain antibody, a heavy chain variable region of the single chain antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the single chain antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively; and the second protein functional region is an immunoglobulin, a heavy chain variable region of the immunoglobulin comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the immunoglobulin comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively.

[0035] In a specific embodiment of the present application, a bispecific antibody is provided, which comprises:

[0036] a first protein functional region targeting VEGFA, and

[0037] a second protein functional region targeting PD-1;

[0038] wherein,

[0039] the first protein functional region is an immunoglobulin, a heavy chain variable region of the immunoglobulin comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the immunoglobulin comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively; and the second protein functional region is a single chain antibody, a heavy chain variable region of the single chain antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the single chain antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively;

[0040] or,

[0041] the first protein functional region is a single chain antibody, a heavy chain variable region of the single chain antibody comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 21-23 respectively, and a light chain variable region of the single chain antibody comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 24-26 respectively; and the second protein functional region is an immunoglobulin, a heavy chain variable region of the immunoglobulin comprising HCDR1-HCDR3 with amino acid sequences set forth in SEQ ID NOs: 15-17 respectively, and a light chain variable region of the immunoglobulin comprising LCDR1-LCDR3 with amino acid sequences set forth in SEQ ID NOs: 18-20 respectively.

[0042] In some embodiments of the present application, the bispecific antibody is provided, wherein, the amino acid sequence of the heavy chain variable region of the immunoglobulin is set forth in SEQ ID NO: 5, and the amino acid sequence of the light chain variable region of the immunoglobulin is set forth in SEQ ID NO: 7; and the amino acid sequence of the heavy chain variable region of the single chain antibody is set forth in SEQ ID NO: 9, and the amino acid sequence of the light chain variable region of the single chain antibody is set forth in SEQ ID NO: 11;

[0043] or,

[0044] the amino acid sequence of the heavy chain variable region of the single chain antibody is set forth in SEQ ID NO: 9, and the amino acid sequence of the light chain variable region of the single chain antibody is set forth in SEQ ID NO: 11; and the amino acid sequence of the heavy chain variable region of the immunoglobulin is set forth in SEQ ID NO: 5, and the amino acid sequence of the light chain variable region of the immunoglobulin is set forth in SEQ ID NO: 7.

[0045] In some embodiments of the present application, the bispecific antibody is provided, wherein, the immunoglobulin comprises a non-CDR region derived from a species other than murine, such as from a human antibody.

[0046] In some embodiments of the present application, the bispecific antibody is provided, wherein, the immunoglobulin comprises constant regions derived from a human antibody;

[0047] preferably, the constant regions of the immunoglobulin are selected from constant regions of human IgG1, IgG2, IgG3, and IgG4.

[0048] In some embodiments of the present application, the bispecific antibody is provided, wherein, the heavy chain constant region of the immunoglobulin is human Ig gamma-1 chain C region or human Ig gamma-4 chain C region, and its light chain constant region is human Ig kappa chain C region.

[0049] In some embodiments of the present application, the constant regions of the immunoglobulin are humanized. For example, each heavy chain constant region is Ig gamma-1 chain C region, ACCESSION: P01857, and each light chain constant region is Ig kappa chain C region, ACCESSION: P01834.

[0050] In some embodiments of the present application, the bispecific antibody is provided, wherein the first protein functional region and the second protein functional region are linked directly or via a linker fragment;

[0051] preferably, the linker fragment is (GGGGS)m, wherein m is a positive integer such as 1, 2, 3, 4, 5, or 6, and GGGGS (SEQ ID NO: 14) is a constituent unit of the linker.

[0052] In some embodiments of the present application, the bispecific antibody is provided, wherein the numbers of the first protein functional region and the second protein functional region are each independently 1, 2 or more.

[0053] In some embodiments of the present application, the bispecific antibody is provided, wherein 1 immunoglobulin and 2 single chain antibodies, preferably two identical single chain antibodies, are present.

[0054] In some embodiments of the present application, the bispecific antibody is provided, wherein the immunoglobulin is an IgG, IgA, IgD, IgE, or IgM, preferably an IgG, such as an IgG1, IgG2, IgG3 or IgG4.

[0055] In some embodiments of the present application, the bispecific antibody is provided, wherein the single chain antibody is linked to the C-terminus of the heavy chain of the immunoglobulin. Since an immunoglobulin has two heavy chains, two single chain antibody molecules are linked to one immunoglobulin molecule. Preferably, the two single chain antibody molecules are identical.

[0056] In some embodiments of the present application, the bispecific antibody is provided, wherein two single chain antibodies are present, and one terminus of each single chain antibody is linked to the C-terminus or the N-terminus of one of the two heavy chains of the immunoglobulin.

[0057] In some embodiments of the present application, a disulfide bond is present between the V.sub.H and the V.sub.L of the single chain antibody. Methods for introducing a disulfide bond between the VH and VL of an antibody are well known in the art, see, for example, U.S. Pat. No. 5,747,654; Rajagopal et al., Prot. Engin. 10(1997)1453-1459; Reiter et al., Nat. Biotechnol. 14(1996)1239-1245; Reiter et al., Protein Engineering 8(1995)1323-1331; Webber et al., Molecular Immunology 32(1995)249-258; Reiter et al., Immunity 2(1995)281-287; Reiter et al., JBC 269(1994)18327-18331; Reiter et al., Inter. J. of Cancer 58(1994)142-149; or Reiter et al., Cancer Res. 54(1994)2714-2718, which are incorporated herein by reference.

[0058] In some embodiments of the present application, the bispecific antibody is provided, wherein the bispecific antibody binds to a VEGFA protein and/or a PD-1 protein with a K.sub.D of less than 10.sup.-5 M, such as less than 10.sup.-6 M, 10.sup.-7 M, 10.sup.-8 M, 10.sup.-9 M or 10.sup.-10 M or less; preferably, the K.sub.D is measured by a Fortebio molecular interaction instrument.

[0059] In some embodiments of the present application, the bispecific antibody is provided, wherein, the bispecific antibody binds to the VEGFA protein with an EC.sub.50 of less than 1 nM, less than 0.5 nM, less than 0.2 nM, less than 0.15 nM, or less than 0.14 nM; preferably, the EC.sub.50 is detected by indirect ELISA;

[0060] and/or,

[0061] the bispecific antibody binds to the PD-1 protein with an EC.sub.50 of less than 1 nM, less than 0.5 nM, less than 0.2 nM, less than 0.17 nM, less than 0.16 nM, or less than 0.15 nM; preferably, the EC.sub.50 is detected by indirect ELISA.

[0062] Another aspect of the present application relates to an isolated nucleic acid molecule encoding the bispecific antibody according to any embodiment of the present application.

[0063] The present application also relates to a vector comprising the isolated nucleic acid molecule of the present application.

[0064] The present application also relates to a host cell comprising the isolated nucleic acid molecule of the present application or comprising the vector of the present application.

[0065] Another aspect of the present application relates to a method for preparing the bispecific antibody according to any embodiment of the present application, which comprises culturing the host cell of the present application in a suitable condition and isolating the bispecific antibody from the cell cultures.

[0066] Another aspect of the present application relates to a conjugate, comprising a bispecific antibody and a conjugated moiety, wherein the bispecific antibody is the bispecific antibody according to any embodiment of the present application, and the conjugated moiety is a detectable label; preferably, the conjugated moiety is a radioisotope, a fluorescent substance, a luminescent substance, a colored substance, or an enzyme.

[0067] Another aspect of the present application relates to a kit comprising the bispecific antibody according to any embodiment of the present application or comprising the conjugate of the present application;

[0068] preferably, the kit further comprises a second antibody capable of specifically binding to the bispecific antibody; optionally, the second antibody further comprises a detectable label, such as a radioisotope, a fluorescent substance, a luminescent substance, a colored substance, or an enzyme.

[0069] Another aspect of the present application relates to use of the bispecific antibody according to any embodiment of the present application in preparing a kit for detecting the presence or level of VEGFA and/or PD-1 in a sample.

[0070] Another aspect of the present application relates to a pharmaceutical composition comprising the bispecific antibody according to any embodiment of the present application or comprising the conjugate of the present application; optionally, it further comprises a pharmaceutically acceptable excipient.

[0071] The bispecific antibody of the present application or the pharmaceutical composition of the present application may be formulated into any dosage form known in the pharmaceutical field, such as tablet, pill, suspension, emulsion, solution, gel, capsule, powder, granule, elixir, troche, suppository, injection (including injection solution, sterile powder for injection and concentrated solution for injection), inhalant, and spray. The preferred dosage form depends on the intended mode of administration and therapeutic use. The pharmaceutical composition of the present application should be sterile and stable under the conditions of manufacture and storage. One preferred dosage form is an injection. Such injections may be sterile injection solutions. For example, sterile injection solutions can be prepared by the following method: a necessary amount of the bispecific antibody of the present application is added in an appropriate solvent, and optionally, other desired ingredients (including, but not limited to, pH regulators, surfactants, adjuvants, ionic strength enhancers, isotonic agents, preservatives, diluents, or any combination thereof) are added at the same time, followed by filtration and sterilization. In addition, sterile injection solutions can be prepared as sterile lyophilized powders (e.g., by vacuum drying or lyophilizing) for convenient storage and use. Such sterile lyophilized powders may be dispersed in a suitable carrier (e.g., sterile pyrogen-free water) prior to use.

[0072] In addition, the bispecific antibody of the present application may be present in a pharmaceutical composition in unit dose form for ease of administration. In some embodiments, the unit dose is at least 1 mg, at least 5 mg, at least 10 mg, at least 15 mg, at least 20 mg, at least 25 mg, at least 30 mg, at least 45 mg, at least 50 mg, at least 75 mg, or at least 100 mg. Where the pharmaceutical composition is in a liquid (e.g., injection) dosage form, it may comprise the bispecific antibody of the present application at a concentration of at least 0.1 mg/mL, such as at least 0.25 mg/mL, at least 0.5 mg/mL, at least 1 mg/mL, at least 2.5 mg/mL, at least 5 mg/mL, at least 8 mg/mL, at least 10 mg/mL, at least 15 mg/mL, at least 25 mg/mL, at least 50 mg/mL, at least 75 mg/mL, or at least 100 mg/mL.

[0073] The bispecific antibody or the pharmaceutical composition of the present application may be administered by any suitable method known in the art, including, but not limited to, oral, buccal, sublingual, ocular, topical, parenteral, rectal, intrathecal, intracisternal, inguinal, intravesical, topical (e.g., powder, ointment, or drop), or nasal route. However, for many therapeutic uses, the preferred route/mode of administration is parenteral (such as intravenous injection, subcutaneous injection, intraperitoneal injection, and intramuscular injection). Those skilled in the art will appreciate that the route and/or mode of administration will vary depending on the intended purpose. In a preferred embodiment, the bispecific antibody or the pharmaceutical composition of the present application is administered by intravenous infusion or injection.

[0074] The bispecific antibody or the pharmaceutical composition provided herein can be used alone or in combination, or used in combination with additional pharmaceutically active agents (e.g., a tumor chemotherapeutic drug). Such an additional pharmaceutically active agent may be administered prior to, concurrently with, or subsequent to the administration of the bispecific antibody of the present application or the pharmaceutical composition of the present application.

[0075] In the present application, the administration regimen may be adjusted to achieve the optimal desired response (e.g., a therapeutic or prophylactic response). For example, it may be a single administration, may be multiple administrations over a period of time, or may be characterized by reducing or increasing the dose proportionally with the emergency degree of the treatment.

[0076] Another aspect of the present application relates to use of the bispecific antibody according to any embodiment of the present application or the conjugate of the present application in preparing a medicament for preventing and/or treating a malignant tumor, wherein preferably, the malignant tumor is selected from colon cancer, rectal cancer, lung cancer such as non-small cell lung cancer, liver cancer, ovarian cancer, skin cancer, glioma, melanoma, renal tumor, prostate cancer, bladder cancer, gastrointestinal cancer, breast cancer, brain cancer and leukemia.

[0077] Another aspect of the present application relates to use of the bispecific antibody according to any embodiment of the present application or the conjugate of the present application in preparing:

[0078] (1)

[0079] a medicament or an agent for detecting the level of VEGFA in a sample,

[0080] a medicament or an agent for blocking binding of VEGFA to VEGFR2,

[0081] a medicament or an agent for down-regulating the activity or level of VEGFA,

[0082] a medicament or an agent for relieving the stimulation of VEGFA on vascular endothelial cell proliferation,

[0083] a medicament or an agent for inhibiting vascular endothelial cell proliferation, or

[0084] a medicament or an agent for blocking tumor angiogenesis;

[0085] and/or

[0086] (2)

[0087] a medicament or an agent for blocking the binding of PD-1 to PD-L1,

[0088] a medicament or an agent for down-regulating the activity or level of PD-1,

[0089] a medicament or an agent for relieving the immunosuppression of PD-1 in an organism,

[0090] a medicament or an agent for promoting IFN-.gamma.secretion in T lymphocytes, or

[0091] a medicament or an agent for promoting IL-2 secretion in T lymphocytes.

[0092] In one embodiment of the present application, the use is non-therapeutic and/or non-diagnostic.

[0093] Another aspect of the present application relates to an in vivo or in vitro method comprising administering to a cell an effective amount of the bispecific antibody according to any embodiment of the present application or the conjugate of the present application, and the method is selected from:

[0094] (1)

[0095] a method for detecting the level of VEGFA in a sample,

[0096] a method for blocking the binding of VEGFA to VEGFR2,

[0097] a method for down-regulating the activity or level of VEGFA,

[0098] a method for relieving the stimulation of VEGFA on vascular endothelial cell proliferation,

[0099] a method for inhibiting vascular endothelial cell proliferation, or

[0100] a method for blocking tumor angiogenesis;

[0101] and/or

[0102] (2)

[0103] a method for blocking the binding of PD-1 to PD-L1,

[0104] a method for down-regulating the activity or level of PD-1,

[0105] a method for relieving the immunosuppression of PD-1 in an organism,

[0106] a method for promoting IFN-.gamma. secretion in T lymphocytes, or

[0107] a method for promoting IL-2 secretion in T lymphocytes.

[0108] In one embodiment of the present application, the in vitro method is non-therapeutic and/or non-diagnostic.

[0109] In the in vitro experiment of the present application, the anti-VEGFA antibody and the anti-VEGFA/PD-1 bifunctional antibody both can inhibit HUVEC cell proliferation, and the anti-PD-1 antibody and the anti-VEGFA/PD-1 bifunctional antibody both can promote the secretion of IFN-.gamma. and/or IL-2 and activate immune reaction.

[0110] Another aspect of the present application relates to a method for preventing and/or treating a malignant tumor, comprising administering to a subject in need an effective amount of the bispecific antibody according to any embodiment of the present application or the conjugate of the present application, wherein preferably, the malignant tumor is selected from colon cancer, rectal cancer, lung cancer such as non-small cell lung cancer, liver cancer, ovarian cancer, skin cancer, glioma, melanoma, renal tumor, prostate cancer, bladder cancer, gastrointestinal cancer, breast cancer, brain cancer and leukemia.

[0111] A typical non-limiting range of a therapeutically or prophylactically effective amount of the bispecific antibody of the present application is 0.02-50 mg/kg, such as 0.1-50 mg/kg, 0.1-25 mg/kg, or 1-10 mg/kg. It should be noted that the dose may vary with the type and severity of the symptom to be treated. Furthermore, those skilled in the art will appreciate that for any particular patient, the particular administration regimen will be adjusted over time according to the needs of the patient and the professional judgment of the physician; the dose ranges given herein are for illustrative purpose only and do not limit the use or scope of the pharmaceutical composition of the present application.

[0112] In the present application, the subject may be a mammal, such as a human.

[0113] Provided is the bispecific antibody or the conjugate according to any embodiment of the present application for use in preventing and/or treating a malignant tumor, wherein preferably, the malignant tumor is selected from colon cancer, rectal cancer, lung cancer such as non-small cell lung cancer, liver cancer, ovarian cancer, skin cancer, glioma, melanoma, renal tumor, prostate cancer, bladder cancer, gastrointestinal cancer, breast cancer, brain cancer and leukemia.

[0114] Provided is the bispecific antibody or conjugate according to any embodiment of the present application for use in:

[0115] (1)

[0116] detecting the level of VEGFA in a sample,

[0117] blocking the binding of VEGFA to VEGFR2,

[0118] down-regulating the activity or level of VEGFA,

[0119] relieving the stimulation of VEGFA on vascular endothelial cell proliferation,

[0120] inhibiting vascular endothelial cell proliferation, or

[0121] blocking tumor angiogenesis;

[0122] and/or

[0123] (2)

[0124] blocking the binding of PD-1 to PD-L1,

[0125] down-regulating the activity or level of PD-1,

[0126] relieving the immunosuppression of PD-1 in an organism,

[0127] promoting IFN-.gamma. secretion in T lymphocytes, or

[0128] promoting IL-2 secretion in T lymphocytes.

[0129] Antibody drugs, especially monoclonal antibodies, have achieved good efficacy in the treatment of various diseases. Traditional experimental methods for acquiring these therapeutic antibodies are to immunize animals with the antigen and acquire antibodies targeting the antigen in the immunized animals, or to improve those antibodies with lower affinity for the antigen by affinity maturation.

[0130] The variable regions of the light chain and the heavy chain determine the binding of the antigen; the variable region of each chain contains three hypervariable regions called Complementarity Determining Regions (CDRs) (CDRs of the heavy chain (H Chain) comprise HCDR1, HCDR2, and HCDR3, and CDRs of the light chain (L Chain) comprise LCDR1, LCDR2, and LCDR3, which are named by Kabat et al., see Bethesda M.d., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication (1-3) 1991: 91-3242).

[0131] Preferably, CDRs may also be defined by the IMGT numbering system, see Ehrenmann, Francois, Quentin Kaas, and Marie-Paule Lefranc. "IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF." Nucleic acids research 38.suppl_1 (2009): D301-D307.

[0132] The amino acid sequences of the CDR regions of the monoclonal antibody sequences in (1) to (13) below were analyzed by technical means well known to those skilled in the art, for example by VBASE2 database and according to the IMGT definition, and the results are as follows:

[0133] (1) Bevacizumab

[0134] The amino acid sequence of the heavy chain variable region is set forth in SEQ ID NO: 5, and the amino acid sequence of the light chain variable region is set forth in SEQ ID NO: 7.

[0135] The amino acid sequences of the 3 CDR regions of its heavy chain variable region are as follows:

TABLE-US-00001 (SEQ ID NO: 15) HCDR1: GYTFTNYG (SEQ ID NO: 16) HCDR2: INTYTGEP (SEQ ID NO: 17) HCDR3: AKYPHYYGSSHWYFDV

[0136] The amino acid sequences of the 3 CDR regions of its light chain variable region are as follows:

TABLE-US-00002 (SEQ ID NO: 18) LCDR1: QDISNY (SEQ ID NO: 19) LCDR2: FTS (SEQ ID NO: 20) LCDR3: QQYSTVPWT

[0137] (2) 14C12H1L1

[0138] The amino acid sequence of the heavy chain variable region is set forth in SEQ ID NO: 9, and the amino acid sequence of the light chain variable region is set forth in SEQ ID NO: 11.

[0139] The amino acid sequences of the 3 CDR regions of its heavy chain variable region are as follows:

TABLE-US-00003 (SEQ ID NO: 21) HCDR1: GFAFSSYD (SEQ ID NO: 22) HCDR2: ISGGGRYT (SEQ ID NO: 23) HCDR3: ANRYGEAWFAY

[0140] The amino acid sequences of the 3 CDR regions of its light chain variable region are as follows:

TABLE-US-00004 (SEQ ID NO: 24) LCDR1: QDINTY (SEQ ID NO: 25) LCDR2: RAN (SEQ ID NO: 26) LCDR3: LQYDEFPLT

[0141] (3) VP101

[0142] The amino acid sequences of the 9 CDR regions of its heavy chains are as follows:

TABLE-US-00005 (SEQ ID NO: 15) HCDR1: GYTFTNYG (SEQ ID NO: 16) HCDR2: INTYTGEP (SEQ ID NO: 17) HCDR3: AKYPHYYGSSHWYFDV (SEQ ID NO: 21) HCDR4: GFAFSSYD (SEQ ID NO: 22) HCDR5: ISGGGRYT (SEQ ID NO: 23) HCDR6: ANRYGEAWFAY (SEQ ID NO: 24) HCDR7: QDINTY (SEQ ID NO: 25) HCDR8: RAN (SEQ ID NO: 26) HCDR9: LQYDEFPLT

[0143] The amino acid sequences of the 3 CDR regions of its light chain variable region are as follows:

TABLE-US-00006 (SEQ ID NO: 18) LCDR1: QDISNY (SEQ ID NO: 19) LCDR2: FTS (SEQ ID NO: 20) LCDR3: QQYSTVPWT

[0144] In the present application, unless otherwise defined, the scientific and technical terms used herein have the meanings generally understood by those skilled in the art. In addition, the laboratory operations of cell culture, molecular genetics, nucleic acid chemistry and immunology used herein are the routine procedures widely used in the corresponding fields. Meanwhile, in order to better understand the present application, the definitions and explanations of the relevant terms are provided below.

[0145] As used herein, when referring to the amino acid sequence of VEGFA protein (GenBank ID: NP_001165097.1), it includes the full length of the VEGFA protein, as well as a fusion protein of VEGFA, such as a fragment fused to an Fc protein fragment of mouse or human IgG (mFc or hFc). However, those skilled in the art will appreciate that in the amino acid sequence of the VEGFA protein, mutations or variations (including but not limited to, substitutions, deletions and/or additions) can be naturally generated or artificially introduced without affecting biological functions thereof. Therefore, in the present application, the term "VEGFA protein" should include all such sequences, including their natural or artificial variants. In addition, when describing the sequence fragment of the VEGFA protein, it also includes the corresponding sequence fragments in its natural or artificial variants. In one embodiment of the present application, the amino acid sequence of the VEGFA protein is shown as the underlined part of SEQ ID NO: 1 (without the last 6 His, a total of 302 amino acids).

[0146] As used herein, when referring to the amino acid sequence of VEGFR2 protein (also known as KDR, GenBank ID: NP_002244), it includes the full length of the VEGFR2 protein, or the extracellular fragment VEGFR2-ECD of VEGFR2, or a fragment comprising VEGFR2-ECD, and it also includes a fusion protein of VEGFR2-ECD, such as a fragment fused to an Fc protein fragment of mouse or human IgG (mFc or hFc). However, those skilled in the art will appreciate that in the amino acid sequence of the VEGFR2 protein, mutations or variations (including but not limited to, substitutions, deletions and/or additions) can be naturally generated or artificially introduced without affecting biological functions thereof. Therefore, in the present application, the term "VEGFR2 protein" should include all such sequences, including their natural or artificial variants. In addition, when describing the sequence fragment of the VEGFR2 protein, it also includes the corresponding sequence fragments in its natural or artificial variants. In one embodiment of the present application, the amino acid sequence of the extracellular fragment VEGFR2-ECD of VEGFR2 is shown as the wavy-underlined part of SEQ ID NO: 4 (766 amino acids).

[0147] As used herein, unless otherwise specified, the VEGFR is VEGFR1 and/or VEGFR2; specific protein sequence thereof is a sequence known in the prior art, and reference may be made to the sequence disclosed in the existing literature or GenBank. For example, VEGFR1 (VEGFR1, NCBI Gene ID: 2321); VEGFR2 (VEGFR2, NCBI Gene ID: 3791).

[0148] As used herein, when referring to the amino acid sequence of PD-1 protein (Programmed cell death protein 1, NCBI GenBank: NM_005018), it includes the full length of the PD-1 protein, or the extracellular fragment PD-1ECD of PD-1 or a fragment comprising PD-1ECD, and it also includes a fusion protein of PD-1ECD, such as a fragment fused to an Fc protein fragment of a mouse or human IgG (mFc or hFc). However, it will be appreciated by those skilled in the art that in the amino acid sequence of PD-1 protein, mutations or variations (including but not limited to substitutions, deletions and/or additions) can be naturally generated or artificially introduced without affecting biological functions thereof. Therefore, in the present application, the term "PD-1 protein" should include all such sequences, including their natural or artificial variants. In addition, when describing the sequence fragment of the PD-1 protein, it also includes the corresponding sequence fragments in its natural or artificial variants.

[0149] As used herein, the term EC.sub.50 refers to the concentration for 50% of maximal effect, i.e. the concentration that can cause 50% of the maximal effect.

[0150] As used herein, the term "antibody" refers to an immunoglobulin molecule that generally consists of two pairs of polypeptide chains (each pair with one "light" (L) chain and one "heavy" (H) chain). In a general sense, the heavy chain can be interpreted as a polypeptide chain with a larger molecular weight in an antibody, and the light chain refers to a polypeptide chain with a smaller molecular weight in an antibody. Light chains are classified as .kappa. and .lamda. light chains. Heavy chains are generally classified as .mu., .delta., .gamma., .alpha., or .epsilon., and isotypes of antibodies are defined as IgM, IgD, IgG, IgA, and IgE, respectively. In light chains and heavy chains, the variable region and constant region are linked by a "J" region of about 12 or more amino acids, and the heavy chain also comprises a "D" region of about 3 or more amino acids. Each heavy chain consists of a heavy chain variable region (V.sub.H) and a heavy chain constant region (C.sub.H). The heavy chain constant region consists of 3 domains (C.sub.H1, C.sub.H2, and C.sub.H3). Each light chain consists of a light chain variable region (V.sub.L) and a light chain constant region (C.sub.L). The light chain constant region consists of one domain C.sub.L. The constant region of the antibody can mediate the binding of immunoglobulins to host tissues or factors, including the binding of various cells of the immune system (e.g., effector cells) to the first component (C1q) of classical complement system. The V.sub.H and V.sub.L regions can be further subdivided into highly variable regions (called Complementarity Determining Regions (CDRs)), between which conservative regions called framework regions (FRs) are distributed. Each V.sub.H and V.sub.L consists of 3 CDRs and 4 FRs arranged from amino terminus to carboxyl terminus in the following order: FRE CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions (V.sub.H and V.sub.L) of each heavy chain/light chain pair form antibody binding sites, respectively. The assignment of amino acids to the regions or domains may be based on Kabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), or Chothia & Lesk J. Mol. Biol. 196(1987): 901-917; Chothia et al. Nature 342(1989): 878-883 or the definition of IMGT numbering system, see Ehrenmann, Francois, Quentin Kaas, and Marie-Paule Lefranc. "IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF." Nucleic acids research 38.suppl_1 (2009): D301-D307. In particular, the heavy chain may also comprise more than 3 CDRs, such as 6, 9, or 12. For example, in the bispecific antibody of the present application, the heavy chain may be a ScFv with the C-terminus of the heavy chain of IgG antibody linked to another antibody, and in this case, the heavy chain comprises 9 CDRs. The term "antibody" is not limited by any specific method for producing antibody. For example, the antibody includes, in particular, a recombinant antibody, a monoclonal antibody, and a polyclonal antibody. Antibodies can be different isotypes, such as antibody IgG (e.g., subtype IgG1, IgG2, IgG3 or IgG4), IgA1, IgA2, IgD, IgE or IgM.

[0151] As used herein, the term "antigen binding fragment", also known as the "antigen binding portion", refers to a polypeptide comprising the fragment of a full-length antibody, which maintains the ability to specifically bind to the same antigen to which the full-length antibody binds, and/or competes with the full-length antibody for the specific binding to an antigen. See generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd edition, Raven Press, N.Y. (1989), which is incorporated by reference herein in its entirety for all purposes. An antigen-binding fragment of an antibody can be produced by recombinant DNA technique or by enzymatic or chemical cleavage of an intact antibody. In some cases, the antigen binding fragment includes Fab, Fab', F (ab').sub.2, Fd, Fv, dAb, and complementarity determining region (CDR) fragment, single chain antibody fragment (e.g., scFv), chimeric antibody, diabody and polypeptide that comprises at least a portion of an antibody sufficient to impart specific antigen binding ability to a polypeptide.

[0152] As used herein, the term "Fd fragment" refers to an antibody fragment consisting of V.sub.H and C.sub.H1 domains; the term "Fv fragment" refers to an antibody fragment consisting of the V.sub.L and V.sub.H domains of a single arm of an antibody; the term "dAb fragment" refers to an antibody fragment consisting of a V.sub.H domain (Ward et al., Nature 341 (1989):544-546); the term "Fab fragment" refers to an antibody fragment consisting of V.sub.L, V.sub.H, C.sub.L and C.sub.H1 domains; and the term "F(ab').sub.2 fragment" refers to an antibody fragment comprising two Fab fragments linked by the disulfide bridge on a hinge region.

[0153] In some cases, the antigen binding fragment of the antibody is a single chain antibody (e.g., scFv) in which the V.sub.L and V.sub.H domains are paired to form a monovalent molecule via a linker that enables them to produce a single polypeptide chain (see, e.g., Bird et al., Science 242 (1988):423-426 and Huston et al., Proc. Natl. Acad. Sci. USA 85 (1988):5879-5883). Such scFv molecules may have a general structure: NH.sub.2-V.sub.L-linker-V.sub.H-COOH or NH.sub.2-V.sub.H-linker-V.sub.L-COOH. An appropriate linker in prior art consists of a repeating GGGGS amino acid sequence or a variant thereof. For example, a linker having the amino acid sequence (GGGGS).sub.4 can be used, and variants thereof can also be used (Holliger et al., Proc. Natl. Acad. Sci. USA 90 (1993): 6444-6448). Other linkers useful in the present application are described by Alfthan et al., Protein Eng. 8 (1995): 725-731, Choi et al., Eur. J. Immunol. 31 (2001): 94-106, Hu et al., Cancer Res. 56 (1996): 3055-3061, Kipriyanov et al., J. Mol. Biol. 293 (1999): 41-56, and Roovers et al., Cancer Immunol. (2001).

[0154] In some cases, the antigen binding fragment of the antibody is a diabody, that is, a bivalent antibody, in which the V.sub.H and V.sub.L domains are expressed on a single polypeptide chain. However, the linker used is too short to allow the pairing of the two domains on the same chain, thereby the domains are forced to pair with the complementary domains on the other chain and two antigen binding sites are generated (see, e.g., Holliger P. et al., Proc. Natl. Acad. Sci. USA 90 (1993):6444-6448, and Poljak R J et al., Structure 2 (1994):1121-1123).

[0155] Antigen binding fragments (e.g., the above mentioned antibody fragments) of antibodies can be obtained from given antibodies by using conventional techniques known to those skilled in the art (e.g., recombinant DNA technique or enzymatic or chemical cleavage), and the antigen binding fragments of the antibodies are screened for specificity in the same way as for intact antibodies.

[0156] As used herein, unless otherwise clearly defined in the context, when referring to the term "antibody", it includes not only intact antibodies but also antigen binding fragments of antibodies.

[0157] As used herein, the terms "mAb" and "monoclonal antibody" refer to an antibody or a fragment thereof that is derived from a group of highly homologous antibodies, i.e. from a group of identical antibody molecules, except for natural mutations that may occur spontaneously. The monoclonal antibody has a high specificity for a single epitope on an antigen. The polyclonal antibody, relative to the monoclonal antibody, generally comprises at least two or more different antibodies which generally recognize different epitopes on an antigen. Monoclonal antibodies can generally be obtained by hybridoma technique first reported by Kohler et al. (Nature, 256:495, 1975), and can also be obtained by recombinant DNA technique (for example, see U.S. Pat. No. 4,816,567).

[0158] As used herein, the term "chimeric antibody" refers to an antibody of which a part of the light or/and heavy chains is derived from an antibody (which may be derived from a specific species or belong to a specific antibody class or subclass), and the other part of the light or/and heavy chains are derived from another antibody (which may be derived from the same or different species or belong to the same or different antibody class or subclass). But in any case, it retains the binding activity for the target antigen (U.S. Pat. No. 4,816,567 to Cabilly et al.; Morrison et al., Proc. Natl. Acad. Sci. USA, 81 (1984):6851-6855).

[0159] As used herein, the term "humanized antibody" refers to an antibody or antibody fragment obtained when all or a part of CDR regions of a human immunoglobulin (receptor antibody) are replaced by the CDR regions of a non-human antibody (donor antibody), wherein the donor antibody may be a non-human (e.g., mouse, rat or rabbit) antibody having expected specificity, affinity or reactivity. In addition, some amino acid residues in the framework regions (FRs) of the receptor antibody can also be replaced by the amino acid residues of corresponding non-human antibodies or by the amino acid residues of other antibodies to further improve or optimize the performance of the antibody. For more details on humanized antibodies, see, e.g., Jones et al., Nature, 321 (1986): 522-525; Reichmann et al., Nature, 332:323 329 (1988); Presta, Curr. Op. Struct. Biol., 2 (1992): 593-596, and Clark, Immunol. Today 21 (2000): 397-402.

[0160] As used herein, the term "epitope" refers to a site on the antigen that an immunoglobulin or antibody specifically binds to. "Epitope" is also called in the art as an "antigenic determinant". The epitope or antigenic determinant generally consists of chemically active surface groups of a molecule such as amino acids or carbohydrates or sugar side chains, and usually has specific three-dimensional structural characteristics and specific charge characteristics. For example, the epitope generally includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 consecutive or non-consecutive amino acids in a unique spatial conformation, which can be "linear" or "conformational". See, for example, Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, G. E. Morris, Ed. (1996). In a linear epitope, all interacting sites between a protein and an interacting molecule (e.g., an antibody) exist linearly along the primary amino acid sequence of the protein. In a conformational epitope, the interacting sites exist across the protein amino acid residues that are separated from each other.

[0161] As used herein, the term "isolated" refers to obtained by artificial means from natural state. If a certain "isolated" substance or component appears in nature, it may be that change occurs in its natural environment, or that it is isolated from the natural environment, or both. For example, a certain non-isolated polynucleotide or polypeptide naturally exists in a certain living animal, and the same polynucleotide or polypeptide with a high purity isolated from such a natural state is called isolated polynucleotide or polypeptide. The term "isolated" does not exclude the existence of artificial or synthetic substances or other impurities that do not affect the activity of the substance.

[0162] As used herein, the term "vector" refers to a nucleic acid vehicle into which a polynucleotide can be inserted. When a vector allows for the expression of the protein encoded by the inserted polynucleotide, the vector is called an expression vector. A vector can be introduced into a host cell by transformation, transduction, or transfection so that the genetic substance elements carried by the vector can be expressed in the host cell. Vectors are well known to those skilled in the art, including but not limited to: plasmids; phagemids; cosmids; artificial chromosomes, such as yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC), or P1-derived artificial chromosome (PAC); phages such as lambda phages or M13 phages, and animal viruses. Animal viruses that can be used as vectors include, but are not limited to, retroviruses (including lentiviruses), adenoviruses, adeno-associated viruses, herpes viruses (such as herpes simplex virus), poxviruses, baculoviruses, papillomaviruses, and papovaviruses (such as SV40). A vector can contain a variety of elements that control expression, including, but not limited to, promoter sequences, transcription initiation sequences, enhancer sequences, selection elements, and reporter genes. In addition, the vector may further contain a replication initiation site.

[0163] As used herein, the term "host cell" refers to cells to which the vector can be introduced, including but not limited to prokaryotic cells such as E. coli or bacillus subtilis, fungal cells such as yeast cells or aspergillus, insect cells such as S2 drosophila cells or Sf9, or animal cells such as fibroblast, CHO cells, COS cells, NSO cells, HeLa cells, BHK cells, HEK 293 cells, or human cells.

[0164] As used herein, the term "specifically bind" refers to a non-random binding reaction between two molecules, such as a reaction between an antibody and an antigen it targets. In some embodiments, an antibody that specifically binds to an antigen (or an antibody that is specific for an antigen) means that the antibody binds to the antigen with an affinity (K.sub.D) of less than about 10.sup.-5 M, such as less than about 10.sup.-6 M, 10.sup.-7 M, 10.sup.-8 M, 10.sup.-9 M or 10.sup.-10 M or less. In some embodiments of the present application, the term "target" refers to specific binding.

[0165] As used herein, the term "K.sub.D" refers to a dissociation equilibrium constant for a specific antibody-antigen interaction, which is used to describe the binding affinity between the antibody and the antigen. The smaller the equilibrium dissociation constant, the tighter the antibody-antigen binding, and the higher the affinity between the antibody and the antigen. Generally, antibodies bind to antigens with a dissociation equilibrium constant (K.sub.D) of less than about 10.sup.-5 M, such as less than about 10.sup.-6 M, 10.sup.-7 M, 10.sup.-8 M, 10.sup.-9 M or 10.sup.-10 M or less, for example, as determined in a BIACORE instrument using Surface Plasmon Resonance (SPR).

[0166] As used herein, the terms "monoclonal antibody" and "mAb" have the same meaning and can be used interchangeably; the terms "polyclonal antibody" and "PcAb" have the same meaning and can be used interchangeably; the terms "polypeptide" and "protein" have the same meaning and can be used interchangeably. Besides, in the present application, amino acids are generally represented by single-letter and three-letter abbreviations known in the art. For example, alanine can be represented by A or Ala.

[0167] As used herein, the term "pharmaceutically acceptable excipient" refers to a carrier and/or vehicle that is pharmacologically and/or physiologically compatible with the subject and the active ingredient, which is well known in the art (see, e.g., Remington's Pharmaceutical Sciences. Edited by Gennaro A R, 19th ed. Pennsylvania: Mack Publishing Company, 1995) and includes, but is not limited to, pH regulators, surfactants, adjuvants, and ionic strength enhancers. For example, the pH regulators include, but are not limited to, phosphate buffer; the surfactants include, but are not limited to, cationic, anionic, or non-ionic surfactants, such as Tween-80; the ionic strength enhancers include, but are not limited to, sodium chloride.

[0168] As used herein, the term "adjuvant" refers to a non-specific immune enhancer, which can enhance the immune response of an organism to antigens or change the type of immune response when delivered into the organism together with the antigens or delivered into the organism in advance. There are various adjuvants, including but not limited to aluminum adjuvant (such as aluminum hydroxide), Freund's adjuvant (such as complete Freund's adjuvant and incomplete

[0169] Freund's adjuvant), corynebacterium parvum, lipopolysaccharide, cytokine, etc. The Freund's adjuvant is the most commonly used adjuvant in animal experiments. The aluminum hydroxide adjuvant is used more in clinical trials.

[0170] As used herein, the term "effective amount" refers to an amount sufficient to obtain or at least partially obtain desired effect. For example, a prophylactically effective amount (e.g., for a disease associated with PD-1 binding to PD-L1 or overexpression of VEGF, such as a tumor) is an amount sufficient to prevent, stop, or delay the onset of the disease (e.g., a disease associated with PD-L1 binding to PD-L1 or overexpression of VEGF, such as a tumor); a therapeutically effective amount is an amount sufficient to cure or at least partially stop the disease and its complications in a patient suffering from the disease. It is undoubtedly within the ability of those skilled in the art to determine such an effective amount. For example, the amount effective for therapeutic use will depend on the severity of the disease to be treated, the overall state of the immune system of the patient, the general condition of the patient such as age, weight and sex, the mode of drug administration, and other treatments administered concurrently, etc.

[0171] Advantages of the Present Application:

[0172] The bispecific antibody VP101 can specifically bind to VEGFA well, effectively block the binding of VEGFA to VEGFR2, and specifically relieve the immunosuppression of VEGFA in an organism and the promoting effect of VEGFA on angiogenesis; VP101 can specifically bind to PD-1 well, effectively block the binding of PD-1 to PD-L1, and specifically relieve the immunosuppression of PD-1 in an organism, and activate the immune response.

BRIEF DESCRIPTION OF THE DRAWINGS

[0173] FIG. 1 shows the SDS-PAGE detection results of bifunctional antibody VP101. The samples of the four lanes from left to right and their respective loading amounts are: antibody in non-reduced protein electrophoresis loading buffer, 1 .mu.g; antibody in reduced protein electrophoresis loading buffer, 1 .mu.g; Marker, 5 .mu.L; BSA, 1 .mu.g.

[0174] FIG. 2 shows the detection results of kinetic characteristic parameters of the binding of antibody VP101 to PD-1.

[0175] FIG. 3 shows the detection results of kinetic characteristic parameters of the binding of antibody BsAbB7 to PD-1.

[0176] FIG. 4 shows the detection results of kinetic characteristic parameters of the binding of antibody BsAbB8 to PD-1.

[0177] FIG. 5 shows the detection results of kinetic characteristic parameters of the binding of antibody 14C12H1L1 to PD-1.

[0178] FIG. 6 shows the detection results of kinetic characteristic parameters of the binding of antibody nivolumab to PD-1.

[0179] FIG. 7 shows the detection results of kinetic characteristic parameters of the binding of antibody VP101 to VEGF.

[0180] FIG. 8 shows the detection results of kinetic characteristic parameters of the binding of antibody BsAbB7 to VEGF.

[0181] FIG. 9 shows the detection results of kinetic characteristic parameters of the binding of antibody BsAbB8 to VEGF.

[0182] FIG. 10 shows the detection results of kinetic characteristic parameters of the binding of antibody bevacizumab to VEGF.

[0183] FIG. 11 shows the binding activity of antibody VP101 to VEGFA detected by indirect ELISA.

[0184] FIG. 12 shows the respective binding activities of antibodies VP101, BsAbB7, BsAbB8 and bevacizumab to VEGFA-his detected by indirect ELISA.

[0185] FIG. 13 shows the binding activity of antibody VP101 to PD-1 detected by indirect ELISA.

[0186] FIG. 14 shows the respective binding activities of antibodies VP101, BsAbB7, BsAbB8, 14C12H1L1 and nivolumab to PD-1 detected by indirect ELISA.

[0187] FIG. 15 shows the activity of antibody VP 101 in competing with VEGFR2 for binding to VEGFA detected by competitive ELISA.

[0188] FIG. 16 shows the activity of antibody VP101 in competing with PD-L1 for binding to PD-1 detected by competitive ELISA.

[0189] FIG. 17 shows the binding EC.sub.50 of antibodies 14C12H1L1 and VP101 to 293T-PD-1 cell surface protein PD-1 detected by FACS.

[0190] FIG. 18 shows the binding EC.sub.50 of antibodies VP101, BsAbB7 and BsAbB8 to 293T-PD-1 cell surface protein PD-1 detected by FACS.

[0191] FIG. 19 shows the activity of antibodies VP101 and 14C12H1L1 in competing with PD-L1 for binding to 293T-PD-1 cell surface protein PD-1 detected by FACS.

[0192] FIG. 20 shows the activity of antibodies 14C12H1L1, VP101, BsAbB7, BsAbB8, 14C12H1L and nivolumab in competing with PD-L1 for binding to 293T-PD-1 cell surface protein PD-1 detected by FACS.

[0193] FIG. 21 shows the neutralization bioactivity of antibodies VP101, BsAbB7 and BsAbB8 in blocking VEGF to activate NFAT signaling pathway.

[0194] FIG. 22 shows the effect of bevacizumab and VP101 on HUVEC cell proliferation.

[0195] FIG. 23 shows the effect of VP101 on secretion of IFN-.gamma. in mixed culture system of DC and PBMC cells.

[0196] FIG. 24 shows the effect of VP101, BsAbB7 and BsAbB8 on secretion of IFN-.gamma. in mixed culture system of DC and PBMC cells.

[0197] FIG. 25 shows the effect of VP101, BsAbB7 and BsAbB8 on secretion of IL-2 in mixed culture system of DC and PBMC cells.

[0198] FIG. 26 shows the effect of antibodies 14C12H1L1 and VP101 on secretion of the cytokine IL-2 induced by mixed culture of PBMC and Raji-PD-L1 cells detected by ELISA.

[0199] FIG. 27 shows effect of antibodies 14C12H1L1 and VP101 on secretion of the cytokine IFN-.gamma. induced by mixed culture of PBMC and Raji-PD-L1 cells detected by ELISA.

[0200] FIG. 28 shows effect of antibodies 14C12H1L1, VP101, BsAbB7 and BsAbB8 on secretion of the cytokine IFN-.gamma. induced by mixed culture of PBMC and Raji-PD-L1 cells detected by ELISA.

[0201] FIG. 29 shows effect of antibodies 14C12H1L1, VP101, BsAbB7 and BsAbB8 on secretion of the cytokine IL-2 induced by mixed culture of PBMC and Raji-PD-L1 cells detected by ELISA.

[0202] FIG. 30 shows the inhibition of tumor growth by VP101 at different concentrations.

[0203] FIG. 31 shows effect of VP101 at different concentrations on body weight of mouse.

DETAILED DESCRIPTION

[0204] The embodiments of the present application will be described in detail below with reference to the examples. Those skilled in the art will understand that the following examples are only used for illustrative purposes, and should not be regarded as limiting the scope of the present invention. The cases without the specific descriptions of techniques or conditions were carried out according to the technologies or conditions described in the literature in the art (e.g., see, Guide to Molecular Cloning Experiments, authored by J. Sambrook et al., and translated by Huang Peitang et al., third edition, Science Press) or according to the product manual. Reagents or instruments used are all commercially available conventional products if the manufacturers thereof are not specified.

[0205] In the following examples, the marketed antibody bevacizumab (trade name Avastin.RTM.) for the same target was purchased from Roche as a control antibody, or was prepared according to Preparation Example 4.

[0206] In the following examples, the marketed antibody nivolumab for the same target (trade name Opdivo.RTM.) was purchased from BMS as a control antibody.

[0207] In the following examples, the amino acid sequences of the control antibodies BsAbB7 and BsAbB8 were identical to the amino acid sequences of BsAbB7 and BsAbB8 respectively in Chinese Patent Publication CN105175545A.

PREPARATION EXAMPLE 1

Preparation of Fusion Proteins PD-1-mFc, PD-1-hFc and PD-L1-hFc

[0208] The preparation of fusion proteins PD-1-mFc, PD-1-hFc and PD-L1-hFc and the SDS-PAGE electrophoresis detection are carried out by fully referring to Preparation Example 1 of Chinese Patent Publication CN106632674A.

[0209] The amino acid sequences and the encoding nucleotide sequences of the fusion proteins PD-1-mFc, PD-1-hFc and PD-L1-hFc in this preparation example are the same as those of PD-1-mFc, PD-1-hFc and PDL-1-hFc respectively in the Preparation Example 1 of Chinese Patent Publication CN106632674A.

[0210] Fusion proteins PD-1-mFc, PD-1-hFc and PD-L1-hFc were thus obtained.

PREPARATION EXAMPLE 2

Expression and Purification of Fusion Protein VEGFA-His

[0211] 1. Construction of Plasmid VEGFA-His

[0212] PCR amplification was performed using VEGFA human cDNA (purchased from Origene) as a template and the hVEGFA-His fragment was purified and isolated using an ordinary DNA product purification kit. The isolated hVEGFA-His fragment and an expression vector pcDNA3.1 were enzyme-digested with XbaI&HindIII-HF, and a target gene fragment was isolated by gel extraction and ligated with a linear expression vector by T4 ligase. Then all the ligation products were transformed into DH5a chemically competent cells and coated on an Agar plate with Amp. Well separated single colonies were selected for colony PCR identification, PCR positive clones were inoculated to an LB culture medium for culture, and a bacteria solution was taken and sent to Guangzhou Invitrogen Biotechnology for sequencing verification. The alignment of the sequencing results showed that the insertion sequence of the positive recon was completely correct.

[0213] 2. Expression and Purification of Fusion Protein VEGFA-His

[0214] After the recombinant plasmid VEGFA-his was transfected into 293F cells (purchased from Invitrogen) for 7 days according to the manual in lipofectamin transfection kit (purchased from Invitrogen), the culture medium was subjected to high-speed centrifugation, supernatant concentration and buffer exchange into Binding Buffer A, and then loaded onto a HisTrap column, and proteins were linearly eluted with Elution Buffer A. The primary pure sample was subjected to buffer exchange into Binding Buffer B with a HiTrap Desalting column and loaded onto a HiTrap Q column, proteins were linearly eluted with Elution Buffer B, and the target sample was isolated and buffer exchanged into PBS. The purified sample was added to a reduced protein electrophoresis loading buffer for SDS-PAGE electrophoresis detection.

[0215] The fusion protein VEGFA-His was thus obtained.

[0216] The amino acid sequence of VEGFA-His is as follows (171 aa):

TABLE-US-00007 (SEQ ID NO: 1) APMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPS CVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHN KCECRPKKDRARQENPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKARQ LELNERTCRCDKPRRHHHHHH

[0217] wherein, the underlined part is the amino acid sequence of VEGFA.

[0218] Nucleotide sequence encoding VEGFA-His (513 bp)

TABLE-US-00008 (SEQ ID NO: 2) GCACCCATGGCCGAGGGCGGCGGCCAGAACCACCACGAGGTGGTGAAGTT CATGGACGTGTACCAGAGAAGCTACTGCCACCCCATCGAGACCCTGGTGG ACATCTTCCAGGAGTACCCCGACGAGATCGAGTACATCTTCAAGCCCAGC TGCGTGCCCCTGATGAGATGCGGCGGCTGCTGCAACGACGAGGGCCTGGA GTGCGTGCCCACCGAGGAGAGCAACATCACCATGCAGATCATGAGAATCA AGCCCCACCAGGGCCAGCACATCGGCGAGATGAGCTTCCTGCAGCACAAC AAGTGCGAGTGCAGACCCAAGAAGGACAGAGCCAGACAGGAGAACCCCTG CGGCCCCTGCAGCGAGAGAAGAAAGCACCTGTTCGTGCAGGACCCCCAGA CCTGCAAGTGCAGCTGCAAGAACACCGACAGCAGATGCAAGGCCAGACAG CTGGAGCTGAACGAGAGAACCTGCAGATGCGACAAGCCCAGAAGACATCA TCACCATCACCAC

PREPARATION EXAMPLE 3

Expression and Purification of Fusion Protein VEGFR2-hFc

[0219] 1. Synthesis of Gene VEGFR2-hFc:

[0220] The amino acids corresponding to the extracellular fragment VEGFR2 ECD of gene VEGFR2 (Vascular Endothelial Growth Factor Receptor 2, NCBI GenBank: NP_002244) were fused with TEV and the Fc protein fragment of human IgG (hFc) respectively (SEQ ID NO: 3). Genscript was entrusted to synthesize corresponding encoding nucleotide sequence (SEQ ID NO: 4).

[0221] VEGFR2, Vascular Endothelial Growth Factor Receptor 2, NCBI GenBank NP_002244; hFc: Ig gamma-1 chain C region, ACCESSION: P01857, 106-330;

[0222] Amino acid sequence of fusion protein VEGFR2-hFc: (998 aa)

TABLE-US-00009 (SEQ ID NO: 3) ##STR00001## ##STR00002## ##STR00003## ##STR00004## ##STR00005## ##STR00006## ##STR00007## ##STR00008## ##STR00009## ##STR00010## ##STR00011## ##STR00012## ##STR00013## HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

[0223] wherein, the wavy-underlined part is the ECD part of VEGFR2, the framed part is TEV enzyme digestion site, and the solid-underlined part is hFc part.

[0224] Nucleotide sequence encoding fusion protein VEGFR2-hFc: (2997 bp)

TABLE-US-00010 (SEQ ID NO: 4) ##STR00014## ##STR00015## ##STR00016## ##STR00017## ##STR00018## ##STR00019## ##STR00020## ##STR00021## ##STR00022## ##STR00023## ##STR00024## ##STR00025## ##STR00026## ##STR00027## ##STR00028## ##STR00029## ##STR00030## ##STR00031## ##STR00032## ##STR00033## ##STR00034## ##STR00035## ##STR00036## ##STR00037## ##STR00038## ##STR00039## ##STR00040## ##STR00041## ##STR00042## ##STR00043## ##STR00044## ##STR00045## ##STR00046## ##STR00047## ##STR00048## ##STR00049## ##STR00050## ##STR00051## ##STR00052## ##STR00053## ##STR00054## CACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGC ACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCC GGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACA AGACCACGCCTCCCGTGTTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCA CCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCCGGGAAATG A

[0225] wherein, the wavy-underlined part is the ECD part of VEGFR2, the framed part is TEV enzyme digestion site, and the solid-underlined part is hFc part.

[0226] 2. Construction of Plasmid pUC57Simple-VEGFR2-hFc:

[0227] The VEGFR2-hFc encoding gene synthesized by Genscript was cloned into an expression vector pUC57simple (provided by Genscript), and a pUC57simple-VEGFR2-hFc plasmid was obtained.

[0228] 3. Construction of Recombinant Plasmid pcDNA3.1-VEGFR2-hFc:

[0229] The plasmid pUC57simple-VEGFR2-hFc was enzyme-digested (Xba I and BamH I), and the fusion gene fragment VEGFR2-hFc isolated by electrophoresis was ligated with expression vector pcDNA3.1 (purchased from Invitrogen) to give pcDNA3.1-VEGFR2-hFc, which was transfected into competent E. coli cell DH5a (purchased from TIANGEN); the transfection and culture were performed according to the manual. The positive pcDNA3.1-VEGFR2-hFc colonies were screened, E. coli was amplified according to a conventional method, and a kit (purchased from Tiangen Biotech (Beijing) Co., Ltd., DP103-03) was then used and a recombinant plasmid pcDNA3.1-VEGFR2-hFc was extracted according to the manual of the kit.

[0230] 4. Transfection of Recombinant Plasmid pcDNA3.1-VEGFR2-hFc into 293F Cells

[0231] The recombinant plasmid pcDNA3.1-VEGFR2-hFc was transfected into 293F cells (purchased from Invitrogen) according to the lipofectamin transfection kit (purchased from Invitrogen).

[0232] 5. SDS-PAGE Electrophoresis Detection of VEGFR2-hFc Protein

[0233] After transfecting the recombinant plasmid pcDNA3.1-VEGFR2-hFc into 293F cells for 7 days, the culture medium was subjected to high-speed centrifugation, microporous membrane vacuum filtration and purification in a Mabselect SuRe column to obtain a VEGFR2-hFc fusion protein sample, and a part of the sample was added into a reduced protein electrophoresis loading buffer for SDS-PAGE electrophoresis detection.

[0234] The fusion protein VEGFR2-hFc was thus obtained.

PREPARATION EXAMPLE 4

Preparation of Anti-VEGFA Antibody Bevacizumab

[0235] Chinese Patent Publication CN1259962A is referred to for the amino acid sequences of the heavy chain variable region and the light chain variable region of the marketed VEGFA monoclonal antibody Avastin (bevacizumab). Genscript was entrusted to synthesize nucleotide sequences encoding the heavy chain variable region and the light chain variable region.

[0236] Amino acid sequence of the heavy chain variable region of bevacizumab: (123 aa)

TABLE-US-00011 (SEQ ID NO: 5) EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQAPGKGLEWVGW INTYTGEPTYAADFKRRFTFSLDTSKSTAYLQMNSLRAEDTAVYYCAKYP HYYGSSHWYFDVWGQGTLVTVSS

[0237] Nucleotide sequence encoding the heavy chain variable region of bevacizumab: (369 bp)

TABLE-US-00012 (SEQ ID NO: 6) GAGGTGCAGCTGGTCGAGTCCGGGGGGGGGCTGGTGCAGCCAGGCGGGTC TCTGAGGCTGAGTTGCGCCGCTTCAGGGTACACCTTCACAAACTATGGAA TGAATTGGGTGCGCCAGGCACCAGGAAAGGGACTGGAGTGGGTCGGCTGG ATCAACACTTACACCGGGGAACCTACCTATGCAGCCGACTTTAAGCGGCG GTTCACCTTCAGCCTGGATACAAGCAAATCCACTGCCTACCTGCAGATGA ACAGCCTGCGAGCTGAGGACACCGCAGTCTACTATTGTGCTAAATATCCC CACTACTATGGGAGCAGCCATTGGTATTTTGACGTGTGGGGGCAGGGGAC TCTGGTGACAGTGAGCAGC

[0238] Amino acid sequence of the light chain variable region of bevacizumab: (107 aa)

TABLE-US-00013 (SEQ ID NO: 7) DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYF TSSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYSTVPWTFGQ GTKVEIK

[0239] Nucleotide sequence encoding the light chain variable region of bevacizumab: (321 bp)

TABLE-US-00014 (SEQ ID NO: 8) GATATTCAGATGACTCAGAGCCCCTCCTCCCTGTCCGCCTCTGTGGGCGA CAGGGTCACCATCACATGCAGTGCTTCACAGGATATTTCCAACTACCTGA ATTGGTATCAGCAGAAGCCAGGAAAAGCACCCAAGGTGCTGATCTACTTC ACTAGCTCCCTGCACTCAGGAGTGCCAAGCCGGTTCAGCGGATCCGGATC TGGAACCGACTTTACTCTGACCATTTCTAGTCTGCAGCCTGAGGATTTCG CTACATACTATTGCCAGCAGTATTCTACCGTGCCATGGACATTTGGCCAG GGGACTAAAGTCGAGATCAAG

[0240] The heavy chain constant regions were all Ig gamma-1 chain C region, ACCESSION: P01857; the light chain constant regions were all Ig kappa chain C region, ACCESSION: P01834.

[0241] The heavy chain cDNA and the light chain cDNA of bevacizumab were cloned into vector pcDNA3.1, and the recombinant expression plasmid of the antibody bevacizumab was obtained. The recombinant plasmid was transfected into 293F cells. The 293F cell culture medium was purified and then detected.

[0242] The anti-VEGFA monoclonal antibody Avastin (bevacizumab) was thus obtained.

PREPARATION EXAMPLE 5

Preparation and Detection of Anti-PD-1 Humanized Antibody 14C12H1L1

[0243] The preparation was carried out according to the Examples 3-4 described in Chinese Patent Publication CN106977602A.

[0244] The amino acid sequences of the heavy chain variable region and the light chain variable region of humanized antibody 14C12H1L1, and the nucleotide sequence encoding the same are also the same as those described in Examples 3-4 of Chinese Patent Publication CN106977602A, and are also provided herein as follows:

[0245] Amino acid sequence of the heavy chain variable region of humanized antibody 14C12H1L1: (118 aa)

TABLE-US-00015 (SEQ ID NO: 9) EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYDMSWVRQAPGKGLDWVAT ISGGGRYTYYPDSVKGRFTISRDNSKNNLYLQMNSLRAEDTALYYCANRY GEAWFAYWGQGTLVTVSS

[0246] Nucleotide sequence encoding the heavy chain variable region of humanized antibody 14C12H1L1: (354 bp)

TABLE-US-00016 (SEQ ID NO: 10) GAAGTGCAGCTGGTCGAGTCTGGGGGAGGGCTGGTGCAGCCCGGCGGGTC ACTGCGACTGAGCTGCGCAGCTTCCGGATTCGCCTTTAGCTCCTACGACA TGTCCTGGGTGCGACAGGCACCAGGAAAGGGACTGGATTGGGTCGCTACT ATCTCAGGAGGCGGGAGATACACCTACTATCCTGACAGCGTCAAGGGCCG GTTCACAATCTCTAGAGATAACAGTAAGAACAATCTGTATCTGCAGATGA ACAGCCTGAGGGCTGAGGACACCGCACTGTACTATTGTGCCAACCGCTAC GGGGAAGCATGGTTTGCCTATTGGGGGCAGGGAACCCTGGTGACAGTCTC TAGT

[0247] Amino acid sequence of the light chain variable region of humanized antibody 14C12H1L1: (107 aa)

TABLE-US-00017 (SEQ ID NO: 11) DIQMTQSPSSMSASVGDRVTFTCRASQDINTYLSWFQQKPGKSPKTLIYR ANRLVSGVPSRFSGSGSGQDYTLTISSLQPEDMATYYCLQYDEFPLTFGA GTKLELK

[0248] Nucleotide sequence encoding the light chain variable region of humanized antibody 14C12H1L1: (321 bp)

TABLE-US-00018 (SEQ ID NO: 12) GACATTCAGATGACTCAGAGCCCCTCCTCCATGTCCGCCTCTGTGGGCGA CAGGGTCACCTTCACATGCCGCGCTAGTCAGGATATCAACACCTACCTGA GCTGGTTTCAGCAGAAGCCAGGGAAAAGCCCCAAGACACTGATCTACCGG GCTAATAGACTGGTGTCTGGAGTCCCAAGTCGGTTCAGTGGCTCAGGGAG CGGACAGGACTACACTCTGACCATCAGCTCCCTGCAGCCTGAGGACATGG CAACCTACTATTGCCTGCAGTATGATGAGTTCCCACTGACCTTTGGCGCC GGGACAAAACTGGAGCTGAAG

[0249] The anti-PD-1 humanized antibody 14C12H1L1 was thus obtained.

PREPARATION EXAMPLE 6

Preparation and Identification of hIgG

[0250] The sequence of Human Anti-Hen Egg Lysozyme IgG (anti-HEL, i e , human IgG, abbreviated as hIgG) is derived from a variable region sequence of the Fab F10.6.6 sequence in the research published by Acierno et al., which is entitled "Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies" (Acierno et al., J Mot Biol. 2007; 374(1): 130-46). The preparation method is as follows:

[0251] Nanjing Genscript Biology was entrusted to carry out codon optimization of amino acids and gene synthesis on heavy and light chain (complete sequence or variable region) genes of human IgG antibody, and by referring to the standard technologies introduced in the "Guide to Molecular Cloning Experiments (Third Edition)" and using standard molecular cloning technologies such as PCR, enzyme digestion, DNA gel extraction, ligation transformation, colony PCR or enzyme digestion identification, the heavy and light chain genes were respectively subcloned into the antibody heavy chain expression vector and antibody light chain expression vector of the mammalian expression system, and the heavy and light chain genes of the recombinant expression vector were further sequenced and analyzed. After the sequence was verified to be correct, endotoxin-free expression plasmids were prepared in a large scale, and the heavy and light chain plasmids were transiently co-transfected into HEK293 cells for expression of recombinant antibody. After 7 days of culture, the cell culture medium was collected and affinity purified using an rProtein A column (GE), and the quality of the resulting antibody sample was determined using SDS-PAGE and SEC-HPLC standard analysis techniques.

[0252] The hIgG was thus obtained, and used in Examples 8-9 below.

EXAMPLE 1

Sequence Design, Preparation and Detection of Heavy and Light Chains of Bifunctional Antibody VP101

[0253] 1. Sequence Design

[0254] The structure of the bifunctional antibody VP101 of the present application is in the Morrison form (IgG-scFv), i.e. C-termini of two heavy chains of an IgG antibody are each linked to a scFv fragment of another antibody, and the main composition design of the heavy and light chains is as shown in Table 1 below.

TABLE-US-00019 TABLE 1 Composition design of the heavy and light chains of VP101 Heavy chain Bifunctional IgG Linker scFv Light antibody No. part fragment part chain VP101 Bevacizum Linker1 14C12H1.sub.v- Bevacizumab-L ab-H Linker1-14C12L1.sub.v

[0255] In the Table 1 above:

[0256] (1) Those with "V" labeled at lower right corner refer to the variable region of corresponding heavy chain or the variable region of corresponding light chain. For those without "V" label, the corresponding heavy or light chain is the full length comprising the constant region. The corresponding sequences described in the above preparation examples are referred to for the amino acid sequences of these variable regions or the full length and the nucleotide sequences encoding them.

[0257] (2) The amino acid sequence of Linker1 is GGGGSGGGGSGG GGSGGGGS (SEQ ID NO: 13)

[0258] 2. Expression and purification of antibody VP101

[0259] The heavy chain cDNA sequence and the light chain cDNA sequence of VP101 were each cloned into vector pUC57simple (provided by Genscript) to obtain plasmids pUC57simple-VP101H and pUC57simple-VP101L, respectively.

[0260] Plasmids pUC57simple-VP101H and pUC57simple-VP101L were enzyme-digested (HindIII&EcoRI), and heavy and light chains isolated by electrophoresis were subcloned into vector pcDNA3.1, and recombinant plasmids were extracted to co-transfect 293F cells. After 7 days of cell culture, the culture medium was centrifuged at high speed, and the supernatant was concentrated and loaded onto a HiTrap MabSelect SuRe column. The protein was further eluted in one step with Elution Buffer, and the target sample antibody VP101 was isolated and buffer exchanged into PBS.

[0261] 3. Detection of Antibody VP101

[0262] The purified sample was added to both a reduced protein electrophoresis loading buffer and a non-reduced protein electrophoresis loading buffer, and then boiled for SDS-PAGE electrophoresis detection. The electropherogram of VP101 is shown in FIG. 1. The target protein of the reduced protein sample is at 75 kD and 25 kD, and the target protein of the non-reduced protein sample (single antibody) is at 200 kD.

[0263] Unless otherwise specified, the humanized antibody VP101 used in the following experiments was prepared by the method of this example.

EXAMPLE 2

Detection of Kinetic Parameters of Humanized Antibody VP101

[0264] 1. Detection of kinetic parameters of the binding of humanized antibody VP101 to PD-1-mFc

[0265] The sample dilution buffer was PBS (0.02% Tween-20, 0.1% BSA, pH7.4). 5 .mu.g/mL antibody was immobilized to an AHC sensor with the immobilization height being about 0.4 nM. The sensor was equilibrated in a buffer for 60 s, and the antibody immobilized to the sensor bound to PD-1-mFc at a concentration of 0.62-50 nM (three-fold gradient dilution) for 120 s, and then the antigen and antibody dissociated in the buffer for 300 s. The data were analyzed by 1:1 model fitting to obtain affinity constants. The data acquisition software was Fortebio Data Acquisition 7.0, and the data analysis software was Fortebio Data Analysis 7.0. Kinetic parameters of the binding of antibodies VP101, BsAbB7, BsAbB8, 14C12H1L1 and the control antibody nivolumab to PD-1-mFc are shown in Table 2, and the detection results of the kinetic characteristic parameters are shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6, respectively.

TABLE-US-00020 TABLE 2 Kinetic parameters of the binding of humanized antibody VP101, BsAbB7, BsAbB8, 14C12H1L1 and the control antibody nivolumab to PD-1-mFc Sample ID K.sub.D (M) Kon (1/Ms) S E (kon) Kdis (1/s) S E (kdis) Rmax (nm) VP101 1.68E-10 3.22E+05 1.44E+04 5.40E-05 3.16E-05 0.14-0.28 BsAbB7 1.62E-10 3.27E+05 2.60E+04 5.30E-05 6.24E-05 0.01-0.11 BsAbB8 4.06E-10 3.39E+05 2.04E+04 1.37E-04 4.61E-05 0.01-0.13 14C12H1L1 1.64E-10 4.55E+05 1.61E+04 7.47E-05 2.98E-05 0.24-0.28 Nivolumab 2.32E-10 5.85E+05 2.03E+04 1.36E-04 3.47E-05 0.02-0.14

[0266] K.sub.D is affinity constant; kon is binding rate of antigen and antibody; kdis is dissociation rate of antigen and antibody; K.sub.D=kdis/kon.

[0267] The results show that the antibodies VP101 and BsAbB7 are equivalent in terms of affinity for PD-1-mFc; the affinity constant of VP101 for PD-1-mFc is significantly smaller than that of BsAbB8, suggesting that VP101 has better binding activity; the dissociation rate constant for VP101 and PD-1-mFc was significantly smaller than BsAbB8 and 14C12H1L1, suggesting that VP101 binds to antigen more stably with a dissociation rate slower than that of 14C12H1L1 and BsAbB8.

[0268] 2. Detection of Kinetic Parameters of the Binding of Humanized Antibody VP101 to VEGF-His

[0269] The sample dilution buffer was PBS (0.02% Tween-20, 0.1% BSA, pH7.4). 1 .mu.g/mL VEGF-His was immobilized to the HIS1K sensor for 20 s, then the sensor was equilibrated in a buffer for 60 s, and the VEGF immobilized on the sensor bound to the antibody at a concentration of 12.34-1000 nM (three-fold gradient dilution) for 120 s, and then the antigen and antibody dissociated in the buffer for 300 s. The data were analyzed by 1:1 model fitting to obtain affinity constants. The data acquisition software was Fortebio Data Acquisition 7.0, and the data analysis software was Fortebio Data Analysis 7.0.

[0270] Kinetic parameters of the binding of antibodies VP101, BsAbB7, BsAbB8 and the control antibody bevacizumab to VEGF-His are shown in Table 3, and the detection results of kinetic characteristic parameters are shown in FIG. 7, FIG. 8, FIG. 9 and FIG. 10 respectively.

TABLE-US-00021 TABLE 3 Kinetic parameters of the binding of antibodies VP101, BsAbB7, BsAbB8 and the control antibody bevacizumab to VEGF-His Sample ID K.sub.D (M) Kon (1/Ms) S E (kon) Kdis (1/s) S E (kdis) Rmax (nm) VP101 5.21E-10 1.55E+05 9.67E+03 8.05E-05 4.66E-05 0.39-0.60 BsAbB7 5.14E-10 1.57E+05 9.67E+03 8.05E-05 4.83E-05 0.36-0.53 BsAbB8 6.33E-10 1.71E+05 1.07E+04 1.08E-04 4.64E-05 0.39-0.56 Bevacizumab 7.24E-10 1.23E+05 7.09E+03 8.90E-05 4.53E-05 0.29-0.41

[0271] The results show that the antibodies VP101 and BsAbB7 are equivalent in terms of affinity for the antigen, and the affinity constant of VP101 is significantly smaller than that of BsAbB8 and the control antibody bevacizumab, suggesting that VP101 has better binding activity; the dissociation rate constant of VP101 for VEGF-His is significantly smaller than that of BsAbB8, suggesting that VP101 binds to antigen more stably with a slower dissociation rate than that of BsAbB8.

EXAMPLE 3

Detection of Binding Activity of Antibody VP101 to Antigen by ELISA

[0272] 1. Detection of Binding Activity of Antibody VP101 to Antigen VEGFA-his by Indirect ELISA

[0273] The method is specified as follows:

[0274] The microplate was coated with VEGFA-His and incubated at 37.degree. C. for 2 hours. After being washed, the microplate was blocked with 1% BSA for 2 hours. After being washed, the microplate was added with the gradiently diluted antibody and incubated at 37.degree. C. for 30 minutes. After being washed, the microplate was added with the enzyme-labeled goat anti-human IgG secondary antibody working solution and incubated for 30 minutes at 37.degree. C. After being washed, the microplate was added with TMB chromogenic solution for color developing for 5 minutes in the absence of light, and then stop solution was added to terminate the chromogenic reaction. Then the microplate was put into a microplate reader immediately, and the OD value of each well in the microplate was read at 450 nm. SoftMax Pro 6.2.1 was used to analyze and process the data.

[0275] The detection result of the binding of antibody VP101 to antigen VEGFA-His is shown in FIG. 11. The absorbance intensities at each dose are shown in Table 4. The binding EC.sub.50 of antibody was calculated by curve fitting using antibody concentration as the abscissa and absorbance value as the ordinate, and the results are shown in Table 4 below.

TABLE-US-00022 TABLE 4 Binding of bifunctional antibody to VEGFA-his (Indirect ELISA) Antibody Coating: VEGFA-His concentration (1 .mu.g/mL) (.mu.g/mL) VP101 Bevacizumab 1.0000 3.045 2.943 2.798 2.974 0.3333 3.037 2.861 2.816 2.993 0.1111 2.901 2.689 2.653 2.700 0.0370 2.597 2.460 2.445 2.555 0.0123 2.013 1.914 1.998 2.074 0.0041 1.115 1.086 1.446 1.363 0.0014 0.524 0.496 0.640 0.729 0.0000 0.099 0.091 0.094 0.083 Secondary antibody Goat anti-human IgG (H + L), HRP (1:5000) EC.sub.50 (nM) 0.036 0.035

[0276] The results show that antibody VP101 is able to bind to VEGFA protein efficiently and its binding efficiency is dose-dependent, and the two antibodies are equivalent in terms of binding activity to human VEGFA.

[0277] 2. Detection of Respective Binding Activities of Antibodies VP101, BsAbB7 and BsAbB8 to Antigen VEGFA-His by Indirect ELISA

[0278] The method is specified as follows:

[0279] The microplate was coated with VEGFA-His and incubated overnight at 4.degree. C. After being washed, the microplate was blocked with 1% BSA (dissolved in PBS) for 2 hours. After being washed, the microplate was added with the gradiently diluted antibody and incubated at 37.degree. C. for 30 minutes. After being washed, the microplate was added with the horseradish peroxidase-labeled goat anti-human IgG Fc (Jackson, 109-035-098) working solution and incubated for 30 minutes at 37.degree. C. After being washed, the microplate was added with TMB (Neogen, 308177) for color developing for 5 minutes in the absence of light, and then stop solution was added to terminate the chromogenic reaction. Then the microplate was put into a microplate reader immediately, and the OD value of each well in the microplate was read at 450 nm. SoftMax Pro 6.2.1 was used to analyze and process the data.

[0280] The result of the binding of antibody VP101 to antigen VEGFA-His is shown in FIG. 12. The absorbance intensities at each dose are shown in Table 5. The binding EC.sub.50 of antibody was calculated by curve fitting using antibody concentration as the abscissa and absorbance value as the ordinate, and the results are shown in Table 5 below.

TABLE-US-00023 TABLE 5 Respective binding activities of VP101, BsAbB7, BsAbB8 and bevacizumab to VEGFA-His (Indirect ELISA) Antibody concentration Antibody coating: VEGFA-His 1 .mu.g/mL (.mu.g/mL) VP101 BsAbB7 BsAbB8 Bevacizumab 1.000 3.112 3.090 3.074 3.081 3.070 3.093 3.137 3.138 0.333 3.026 2.961 2.954 2.941 2.946 2.968 3.075 3.086 0.111 2.802 2.684 2.575 2.621 2.631 2.618 2.965 2.999 0.037 1.972 1.876 1.656 1.668 1.756 1.709 2.504 2.503 0.012 0.994 0.915 0.754 0.764 0.809 0.814 1.476 1.454 0.004 0.436 0.391 0.317 0.332 0.347 0.339 0.711 0.700 0.001 0.197 0.177 0.151 0.155 0.159 0.155 0.318 0.311 0 0.083 0.063 0.086 0.076 0.095 0.072 0.066 0.064 Secondary Horseradish peroxidase-labeled goat antibody anti-human IgG Fc, HRP (1:5000) EC.sub.50(nM) 0.130 0.171 0.159 0.092

[0281] The results show that the antibodies VP101, BsAbB7, BsAbB8 and bevacizumab all can bind to the VEGF protein efficiently and their binding efficiency is dose-dependent, and antibody VP101 has a higher binding activity to human VEGF than BsAbB7 and BsAbB8.

[0282] 3. Detection of Binding Activity of Antibody VP101 to Antigen PD-1 by Indirect ELISA

[0283] The method is specified as follows:

[0284] The microplate was coated with human PD-1-mFc and incubated overnight at 4.degree. C. After being blocked with 1% BSA at 37.degree. C. for 2 hours, the microplate was added with antibody, and then incubated at 37.degree. C. for 30 minutes. After the microplate was washed and patted dry, the HRP-labeled goat anti-human IgG (H+L) secondary antibody (Jackson, 109-035-088) was added, and the microplate was incubated at 37.degree. C. for 30 minutes. After the microplate was washed and patted dry, TMB (Neogen, 308177) was added for color developing for 5 minutes, and then stop solution was added to terminate the color development. Then the microplate was put into a microplate reader immediately, and the OD value of each well in the microplate was read at 450 nm. SoftMax Pro 6.2.1 was used to analyze and process the data.

[0285] The detection result of the binding of antibody VP101 to antigen PD-1 is shown in FIG. 13. The absorbance intensities at each dose are shown in Table 6. By quantitative analysis of the bound antibody VP101, the curve simulation was performed to obtain the binding efficiency EC.sub.50 of the antibody, which is shown in Table 6 below.

TABLE-US-00024 TABLE 6 Binding of bifunctional antibody to PD-1 (Indirect ELISA) Antibody dilution Antibody coating: PD-1-mFc 0.5 .mu.g/mL gradient VP101 Nivolumab 14C12H1L1 0.333 .mu.g/ml 3.109 3.063 3.137 3.130 3.298 3.278 1:3 3.016 2.926 3.139 3.140 3.245 3.352 1:9 2.461 2.513 2.802 2.758 3.104 3.155 1:27 1.638 1.675 1.949 1.810 2.352 2.549 1:81 0.787 0.791 0.933 0.990 1.382 1.421 1:243 0.301 0.656 0.348 0.375 0.612 0.596 1:729 0.136 0.145 0.159 0.162 0.253 0.247 0 0.068 0.056 0.053 0.053 0.053 0.053 EC.sub.50(nM) 0.06 0.061 0.037

[0286] The results show that antibody VP101 is able to bind to PD-1 protein efficiently and its binding efficiency is dose-dependent.

[0287] 4. Detection of Respective Binding Activities of Antibodies VP101, BsAbB7 and BsAbB8 to Antigen PD-1 by Indirect ELISA

[0288] The method is specified as follows:

[0289] The microplate was coated with human PD-1-mFc and incubated overnight at 4.degree. C. After being blocked with 1% BSA at 37.degree. C. for 2 hours, the microplate was added with antibody, and then incubated at 37.degree. C. for 30 minutes. After the microplate was washed and patted dry, the horseradish peroxidase-labeled goat anti-human IgG Fc (Jackson, 109-035-098) was added, and the microplate was incubated at 37.degree. C. for 30 minutes. After the microplate was washed and patted dry, TMB (Neogen, 308177) was added for color developing for 5 minutes, and then stop solution was added to terminate the color development. Then the microplate was put into a microplate reader immediately, and the OD value of each well in the microplate was read at 450 nm. SoftMax Pro 6.2.1 was used to analyze and process the data.

[0290] The detection result of the binding of antibody VP101 to antigen PD-1 is shown in FIG. 14. The absorbance intensities at each dose are shown in Table 7. By quantitative analysis of the bound antibody VP101, the curve simulation was performed to give the binding efficiency EC.sub.50 of the antibody, which is shown in Table 7 below.

TABLE-US-00025 TABLE 7 Respective binding activities of antibodies VP101, BsAbB7, BsAbB8, 14C12H1L1 and nivolumab to PD-1 (Indirect ELISA) Antibody concentration Antigen coating: PD-1-mFc 0.5 .mu.g/mL (.mu.g/mL) VP101 BsAbB7 BsAbB8 14C12 H1L1 Nivolumab 0.333 2.717 2.709 2.732 2.755 2.716 2.715 2.947 2.966 2.823 2.824 0.111 2.507 2.381 2.318 2.321 2.377 2.409 2.923 2.967 2.747 2.758 0.037 1.709 1.616 1.491 1.457 1.522 1.549 2.656 2.694 2.208 2.293 0.012 0.916 0.822 0.732 0.711 0.797 0.775 2.049 2.060 1.348 1.389 0.004 0.413 0.394 0.333 0.321 0.368 0.351 1.139 1.132 0.629 0.638 0.001 0.195 0.191 0.167 0.174 0.181 0.174 0.552 0.541 0.295 0.295 0.000 0.140 0.123 0.110 0.103 0.117 0.118 0.254 0.248 0.152 0.157 0.000 0.099 0.095 0.089 0.074 0.100 0.081 0.083 0.075 0.078 0.084 Secondary Horseradish peroxidase-labeled goat antibody anti-human IgG Fc, HRP (1:5000) EC.sub.50(nM) 0.146 0.199 0.173 0.045 0.095

[0291] The results show that the antibody VP101 can bind to the PD-1 protein efficiently and its binding efficiency is dose-dependent, and antibody VP101 has a higher binding activity to human PD-1 than BsAbB7 and BsAbB8.

[0292] 5. Detection of Activity of Antibody VP101 in Competing with VEGFR2 for Binding to Antigen VEGFA by Competitive ELISA

[0293] The method is specifically as follows:

[0294] The microplate was coated with VEGF-His and incubated at 37.degree. C. for 2 hours. After being washed, the microplate was blocked with 1% BSA for 1 hour at 37.degree. C. After being washed, the microplate was added with the gradiently diluted antibodies and human VEGFR2 ECD-mFc-bio (final concentration: 0.02 .mu.g/mL) and incubated at room temperature for 2 hours. After being washed, the microplate was added with HRP-labeled streptavidin SA-HRP (1:4000) working solution and incubated at 37.degree. C. for 30 minutes. After being washed, the microplate was added with TMB chromogenic solution for color developing for 5 minutes in the absence of light, and then stop solution was added to terminate the chromogenic reaction. Then the microplate was put into a microplate reader immediately, and the OD value of each well in the microplate was read at 450 nm. SoftMax Pro 6.2.1 was used to analyze and process the data.

[0295] The detection results are shown in FIG. 15. The absorbance intensities at each dose are shown in Table 8. By quantitative analysis of the absorbance intensities of the bound antibodies, the curve simulation was performed to give the binding efficiency EC.sub.50 of the antibodies (Table 8).

TABLE-US-00026 TABLE 8 Detection of antibody in competing with VEGFR2-mFc for binding to the antigen VEGFA-His by competitive ELISA Coating: VEGF-His (2 .mu.g/mL) Antibody concentration (.mu.g/mL) VP101 Bevacizumab 10.000 0.133 0.133 0.103 0.104 3.333 0.161 0.149 0.114 0.109 1.111 0.624 0.563 0.374 0.351 0.370 1.055 1.051 0.905 0.982 0.123 1.059 1.075 0.964 1.049 0.041 1.137 1.068 1.062 1.141 0.014 1.106 1.138 1.010 1.169 0.000 1.155 1.131 1.173 1.153 Receptor VEGFR2 ECD-mFc-bio, 0.02 .mu.g/ml Secondary antibody SA-HRP (1:4000) EC.sub.50 (nM) 5.324 5.086

[0296] The results show that the antibody VP101 can effectively bind to the antigen VEGFA and inhibit the binding of VEGFR2 to VEGFA, and its efficiency in inhibiting the binding of VEGFR2 to VEGFA is dose-dependent.

[0297] 6. Detection of Antibody VP101 in Competing with PD-L1 for Binding to Antigen PD-1 by Competitive ELISA

[0298] The method is specifically as follows:

[0299] The microplate was coated with PD-1-hFc and incubated overnight at 4.degree. C. After the microplate was blocked with 1% BSA for 2 hours, antibodies at different concentrations were each mixed with PD-L1-hFc for 10 minutes (see Table 10 for the dilution concentrations). After incubation at 37.degree. C. for 30 minutes, the microplate was washed and patted dry. Then enzyme-labeled secondary antibody was added, and the microplate was incubated at 37.degree. C. for 30 minutes. After the microplate was washed and patted dry, TMB was added for color developing for 5 minutes, and then stop solution was added to terminate the color development. Then the microplate was put into a microplate reader immediately, and the OD value of each well in the microplate was read at 450 nm (see Table 10). SoftMax Pro 6.2.1 was used to analyze and process the data.

[0300] The detection results are shown in FIG. 16. The absorbance intensities at each dose are shown in Table 9. By quantitative analysis of the bound antibody VP101, the curve simulation was performed to give the binding efficiency EC.sub.50 of the antibody (Table 9).

TABLE-US-00027 TABLE 9 Detection of bifunctional antibody competing with PD-L1 for binding to PD-1 by competitive ELISA Antibody dilution Antigen coating: PD-1-hFc 0.5 .mu.g/mL gradient VP101 Nivolumab 14C12H1L1 5 .mu.g/ml 0.096 0.063 0.058 0.058 0.062 0.063 1:3 0.064 0.077 0.059 0.059 0.061 0.064 1:9 0.166 0.160 0.061 0.062 0.066 0.071 1:27 0.867 0.848 0.284 0.335 0.262 0.193 1:81 1.217 1.149 0.973 1.007 0.968 0.882 1:243 1.196 1.949 1.139 1.144 1.122 1.051 1:729 1.183 1.250 1.127 1.185 1.052 1.059 0 1.153 1.276 0.960 1.071 1.027 1.024 Receptor PD-L1-mFc 0.3 .mu.g/ml Secondary Goat anti-mouse IgG (H + L), antibody HRP conjugated (1:5000) EC.sub.50(nM) 1.216 0.842 0.745

[0301] The results show that antibody VP101 can effectively bind to antigen PD-1 and inhibit the binding of ligand PD-L1 to PD-1, and its efficiency in inhibiting the binding of PD-L1 to PD-1 is dose-dependent.

EXAMPLE 4

Binding of Antibody VP101 to Cell Membrane Surface Antigen

[0302] Firstly, 293T cells expressing PD-1 antigen was constructed, and then the specific binding capacity of the antibody to the cell membrane surface antigen was analyzed and verified by flow cytometry.

[0303] 1. Construction of 293T Cells Expressing PD-1 Antigen

[0304] The vector pLenti6.3-PD-1 of PD-1 (the vector pLenti6.3 was purchased from Invitrogen) was transfected into 293T cells, and clone group 293T-PD-1 cells which stably express PD-1 were obtained by screening.

[0305] 2. Detection of Binding of Antibody to Cell Surface Antigen

[0306] The 293T-PD-1 expressing antigen obtained in the previous step was digested with pancreatin by a conventional pancreatin digestion method, and the number of cells in each collection tube was made to be 2.times.10.sup.5. Antibody diluting solutions with concentration gradiently diluted with PBSA (1% BSA) were each incubated with 293T-PD-1 cells on ice for 2 hours, and then each tube was added with 100 .mu.L of FITC goat anti-human IgG (1:500) and incubated on ice for 1 hour. Then PBS was used for washing, and 300 .mu.L of PBSA was used to resuspend the cells, and fluorescence signals (MFI) were detected with FITC channel on a flow cytometer.

[0307] The results are shown in FIG. 17, and the MFI values at each concentration are shown in Table 10. By fluorescence quantification analysis and curve fitting of the bound 14C12H1L1 antibody, the binding EC.sub.50 of the VP101 antibody was calculated to be 3.5 nM.

TABLE-US-00028 TABLE 10 Analysis of fluorescence intensity of the binding of VP101 to 293T-PD-1 surface antigen detected by FACS Antibody (nM) 0.14 0.41 1.23 3.70 11.11 33.33 100 EC.sub.50 Bevacizumab 3.2 2.2 2.0 2.3 2.7 3.8 5.7 -- Nivolumab 33.3 74.9 171.9 357.9 481.9 498.3 478.4 2.1 14C12H1L1 48.1 99.7 201.5 409.0 600.2 655.4 670.8 2.9 VP101 30.8 61.8 135.7 286.9 487.7 534.0 528.6 3.5

[0308] The results show that the VP101 antibody can effectively bind to the PD-1 antigen on the 293T-PD-1 host cell surface, and its binding efficiency is dose-dependent, and bevacizumab has no binding activity to 293T-PD-1, which indicates that the binding of VP101 to 293T-PD-1 is specific.

[0309] 3. The binding of antibodies VP101, BsAbB7 and BsAbB8 to the cell surface antigen was detected by referring to the experimental procedure described in step 2 of this example.

[0310] The results are shown in FIG. 18, and the MFI values at each concentration are shown in Table 11. By fluorescence quantification analysis and curve fitting of the bound antibody, the binding EC.sub.50 values of nivolumab, 14C12H1L1, VP101, BsAbB7 and BsAbB8 were calculated to be 7.853 nM, 3.607 nM, 7.896 nM, 9.943 nM and 10.610 nM, respectively.

TABLE-US-00029 TABLE 11 Analysis of fluorescence intensities of the binding of VP101, BsAbB7 and BsAbB8 to 293T-PD-1 surface antigen detected by FACS Antibody (nM) 0.014 0.14 0.41 1.23 3.7 11 30 100 EC50(nM) Bevacizumab 1.89 1.90 2.20 1.92 2.04 2.48 2.80 2.43 -- Nivolumab 3.91 15.30 34.69 94.04 234.34 533.63 640.15 804.69 7.853 14C12H1L1 7.40 29.55 69.16 175.54 422.53 868.45 831.27 813.58 3.607 VP101 3.47 16.16 38.75 93.08 216.76 509.23 810.37 783.58 7.896 BsAbB7 3.85 14.86 37.45 83.78 202.40 465.10 837.61 846.80 9.943 BsAbB8 4.41 16.77 36.86 89.89 210.40 457.91 804.43 863.35 10.610

[0311] The results show that the VP101 antibody can bind to the membrane surface PD-1 of 293T-PD1 in a dose-dependent manner. Bevacizumab has no binding activity to 293T-PD-1, which indicates that the binding of VP101 to 293T-PD-1 is specific.

EXAMPLE 5

Competitive Binding of Antibody VP101 to Cell Membrane Surface Antigen

[0312] 1. A competitive flow cytometry method was adopted to detect the EC.sub.50 of the VP101 in competing with PD-L1 for binding to the cell membrane surface antigen PD-1, and the method is specified as follows:

[0313] The 293T-PD-1 cells was digested in a conventional way, and divided into several samples with 300,000 cells for each, which were then subjected to centrifugation and washing. Then each tube was added with 100 .mu.L of corresponding gradiently diluted antibody and incubated on ice for 30 minutes; 100 .mu.L of PD-L1-mFc was then added to each tube, and the mixture was mixed well to reach a final concentration of 20 nM, and then incubated on ice for 1 hour. Then 500 .mu.L of 1% PBSA was added, and the mixture was centrifuged at 5600 rpm for 5 minutes to remove the supernatant. 100 .mu.L of FITC coat anti mouse antibody diluted at a ratio of 1:500 was then added into each tube, and the mixture was incubated on ice for 40 minutes in the absence of light after being mixed well. Then the mixture was centrifuged, washed and resuspended, and then transferred to a loading tube for testing.

[0314] The results are shown in FIG. 19, and the MFI values at each concentration are shown in Table 12. By fluorescence quantification analysis and curve fitting, the binding EC.sub.50 values of the antibodies VP101 and 14C12H1L1 were calculated to be 8.33 nM and 4.37 nM, respectively.

TABLE-US-00030 TABLE 12 Analysis of fluorescence intensities of 14C12H1L1 and VP101 in competing for binding to 293T-PD-1 surface antigen detected by FACS Antibody (nM) 0.05 0.14 0.41 1.23 3.70 11.11 33.33 100.00 EC.sub.50 R.sup.2 14C12H1L1 288.17 287.29 277.09 237.22 177.80 12.04 10.32 9.87 4.37 0.988 VP101 272.66 264.39 279.11 272.26 239.18 99.29 17.05 14.91 8.33 0.999

[0315] The results show that the VP101 antibody can effectively block the binding of PDL-1 to PD-1 on the surface of 293T-PD-1 host cells in a dose-dependent manner.

[0316] 2. EC.sub.50 values of VP101, BsAbB7, BsAbB8, 14C12H1L1 and nivolumab in competing with PD-L1 for binding to the cell membrane surface antigen PD-1 were detected by using competitive flow cytometry and referring to the experimental procedure described in step 1 of this example.

[0317] The results are shown in FIG. 20, and the MFI values at each concentration are shown in Table 13. By fluorescence quantification analysis and curve fitting, the competitive binding EC50 values of antibodies VP101, BsAbB7, BsAbB8, 14C12H1L1 and nivolumab were calculated to be 15.04 nM, 22.25 nM, 19.25 nM, 9.21 nM and 9.72 nM, respectively.

TABLE-US-00031 TABLE 13 Analysis of fluorescence intensities of VP101, BsAbB7, BsAbB8, 14C12H1L1 and nivolumab in competing for binding to 293T-PD-1 surface antigen detected by FACS Antibody (nM) 0.14 0.41 1.23 3.7 11.11 33.33 100 300 EC.sub.50 R.sup.2 VP101 1441.94 1380.62 1368.15 1288.34 982.69 112.90 8.49 8.21 15.04 0.9971 BsAbB7 1412.62 1377.27 1339.60 1341.27 1094.35 417.70 9.23 9.18 22.25 0.9985 BsAbB8 1578.36 1521.50 1427.20 1429.85 1137.74 359.69 9.73 9.68 19.25 0.9962 14C12H1L1 1384.08 1551.05 1462.85 1296.64 580.45 12.93 13.37 14.99 9.21 0.9950 Nivolumab 1539.58 1552.37 1483.84 1300.81 713.56 70.92 60.77 56.92 9.72 0.9969

[0318] The results show that the activity of the antibody 14C12H1L1 is equivalent to that of the marketed antibody nivolumab targeting PD-1, and is superior to that of the bifunctional antibody VP101. The activity of the antibody VP101 is superior that of to BsAbB7 and BsAbB8.

EXAMPLE 6

Detection of Neutralization Bioactivity of Antibodies VP101, BsAbB7 and BsAbB8 in Blocking VEGF to Activate NFAT Signaling Pathway

[0319] 1. Construction of 293T-NFAT-(opv)KDR(C7) cells

[0320] KDR (VEGFR2) vector pCDH-KDRFL(OPV)-GFP-Puro (Vector pCDH-GFP-Puro is purchased from Youbio) and NFAT vector pNFAT-luc-hygro (vector pGL4-luc2P-hygro is purchased from Promega) were transfected into 293T cells, and a clone group 293T-NFAT-(opv) KDR(C7) cells stably expressing KDR and NFAT luciferase reporter genes were obtained by screening.

[0321] 2. 293T-NFAT-(opv)KDR(C7) cells were collected and centrifuged for 5 minutes to remove the supernatant; DMEM+10%FBS medium was used to resuspend the cells, and the cell number was counted and the cell viability was detected; then the cell concentration was adjusted to be in a proper range, and 50000 cells/50 .mu.L cell suspension was added into each well of a black 96-well plate;

[0322] Corresponding antibodies (final concentrations being 300, 100, 10, 2, 0.2, 0.02, 0.002 nM) and VEGF (final concentration being 30 ng/mL) were diluted according to the experimental design, and the antibodies targeting VEGF were preincubated with VEGF for 1 hour at room temperature before being added into the cells. Blank and isotype controls (final volume of each well being 100 .mu.L) were designed and incubated in a carbon dioxide incubator at 37.degree. C., 5% CO.sub.2 for 4 hours; 50 .mu.L of Luciferase Assay System was added to each well, and Relative Fluorescence Units (RLUs) were detected by a multi-label microplate tester within 5 minutes.

[0323] The experimental results are shown in FIG. 21, and the EC.sub.50 values for each antibody are shown in Table 14.

TABLE-US-00032 TABLE 14 Detection of neutralization bioactivity of antibodies VP101, BsAbB7 and BsAbB8 inblocking VEGF to activate NFAT signaling pathway by reporter assay Sample VP101 BsAbB7 BsAbB8 Bevacizumab EC.sub.50 (nM) 1.2400 1.2170 1.7280 0.7730

[0324] The results show that the EC.sub.50 of VP101 is 1.240 nM, the EC.sub.50 of BsAbB7 is 1.217 nM, the EC.sub.50 of BsAbB8 is 1.728 nM, and the EC.sub.50 of bevacizumab is 0.773 nM, and the experimental results show that the activity of VP101 and BsAbB7 in blocking VEGF to activate NFAT signaling pathway is better than that of BsAbB8.

EXAMPLE 7

Experiment of VP101 Antibody Inhibiting VEGFA-Induced HUVEC Cell Proliferation

[0325] HUVEC cells (purchased from Allcell) in a good growth state, after the cell concentration was adjusted to be 1.5.times.10.sup.4/mL, were inoculated into a 96-well plate at 200 .mu.L/well, and then incubated in an incubator at 37.degree. C., 5% CO.sub.2 for 24 hours. Then it was observed that the cells adhered well, and then culture medium was discarded. 20 nM VEGFA prepared by using 1640 containing 2% FBS was then added into the 96-well plate at 200 .mu.L/well, and antibodies at different concentrations were added, followed by incubation for 72 hours. 72 hours later, the culture medium was discarded and MTT was added. 4 hours later, the MTT was discarded and DMSO was added, and then a microplate reader was used to measure the OD value at 490 nm.

[0326] The results are shown in FIG. 22. The results show that the humanized antibodies VP101 and bevacizumab both can effectively inhibit VEGFA-induced HUVEC cell proliferation in a dose-dependent manner, and the pharmacological activity of VP101 in inhibiting VEGFA-induced HUVEC cell proliferation is higher than that of bevacizumab at the same dose.

EXAMPLE 8

Promotion of Secretion of Cytokines IFN-.gamma. and IL-2 in Mixed Lymphocyte Reaction

[0327] 1. Promotion of secretion of IFN-.gamma. by VP101, 14C12H1L1 and nivolumab in mixed culture system of DC and PBMC cells

[0328] PBMCs were isolated by Ficoll-Paque Plus (GE Healthcare) and added to IL-4 (Peprotech 200-04, 1000 U/mL) and GM-CSF (Peprotech 300-03, 1000 U/mL) for 6 days of induction, and then TNF-.alpha. (Peprotech 300-01A, 200 U/mL) was additionally added for 3 days of induction to obtain mature DC cells.

[0329] On the day of co-culture, fresh PBMCs were isolated from peripheral blood of another donor, and the obtained mature DC cells were mixed with the freshly isolated PBMCs of another donor at a ratio of 1:10, and meanwhile antibodies at different concentrations (hIgG as a control) were added. After co-culture for 5-6 days, cell supernatant was collected and assayed for IFN-.gamma. content using an ELISA kit (purchased from Dakewe).

[0330] The effect of VP101 on secretion of IFN-.gamma. in mixed culture system of DC and PBMC cells is shown in FIG. 23. As can be seen in FIG. 23, VP101 can effectively promote secretion of IFN-.gamma. in a dose-dependent manner. In addition, at doses of 30 nM and 300 nM, VP101 has greater activity in promoting secretion of IFN-.gamma. than equivalent 14C12H1L1, and at dose level of 30 nM, it has greater activity in promoting secretion of IFN-.gamma. than equivalent nivolumab.

[0331] 2. Promotion of secretion of IL-2 and IFN-.gamma. by VP101, BsAbB7 and BsAbB8b in mixed culture system of DC and PBMC cells

[0332] Step 1 in this example was referred to for the experimental method, namely PBMCs were isolated by Ficoll-Paque Plus (GE Healthcare) and added to IL-4 (Peprotech 200-04, 1000 U/mL) and GM-CSF (Peprotech 300-03, 1000 U/mL) for 6 days of induction, and then TNF-.alpha. (Peprotech 300-01A, 200 U/mL) was additionally added for 3 days of induction to obtain mature DC cell.

[0333] On the day of co-culture, fresh PBMCs were isolated from peripheral blood of another donor, and the obtained mature DC cells were mixed with the freshly isolated PBMCs of another donor at a ratio of 1:10, and meanwhile antibodies at different concentrations (hIgG as a control) were added; after co-culture for 5-6 days, cell supernatant was collected and assayed for IL-2 and IFN-.gamma. content using an ELISA kit (purchased from Dakewe).

[0334] The effect of VP101 on secretion of IFN-.gamma. in mixed culture system of DC and PBMC cells is shown in FIG. 24. As can be seen from FIG. 24, VP101 can effectively promote secretion of IFN-.gamma. in a dose-dependent manner. The pharmacological activity of VP101 in promoting secretion of IFN-.gamma. is significantly better than that of BsAbB7 and BsAbB8.

[0335] The effect of VP101 on secretion of IL-2 in mixed culture system of DC and PBMC cells is shown in FIG. 25. As can be seen from FIG. 25, VP101 can effectively promote secretion of IL-2 in a dose-dependent manner, and the pharmacological activity of VP101 in promoting secretion of IL-2 is better than that of BsAbB7 and BsAbB8.

[0336] 3. Promotion of secretion of IL-2 and IFN-.gamma. by VP101, 14C12H1L1 and nivolumab in mixed culture system of PBMC and Raji-PD-L1 cells

[0337] PD-L1 was stably transfected into Raji cells through lentivirus infection, and Raji-PD-L1 cells stably expressing PD-L1 were obtained after dosing and screening; PBMCs, after two days of stimulation by SEB, were cultured in together with mitomycin C-treated Raji-PD-L1.

[0338] The results are shown in FIGS. 26 and 27. The results show that VP101 can effectively promote secretion of IL-2 and IFN-.gamma., and at dose level of 300 nM, the activity of VP101 in promoting secretion of IL-2 is significantly better than that of equivalent 14C12H1L1 and nivolumab.

[0339] The isotype control antibody to be studied was Human Anti-Hen Lysozyme (anti-HEL, i.e., human IgG, abbreviated as hIgG), and it was prepared as described in Preparation Example 6 above.

[0340] 4. The promotion of secretion of IL-2 and IFN-.gamma. by VP101, BsAbB7 and BsAbB8 in mixed culture system of PBMC and Raji-PD-L1 cells was studied by referring to the experimental method described in step 3 of this example.

[0341] The results of secretion of IFN-.gamma. are shown in FIG. 28. The results show that VP101 can effectively promote secretion of IFN-.gamma. in a dose-dependent manner. At the same time, VP101 is significantly better than BsAbB7 at the same dose, while the pharmacological activity of VP101 is significantly better than that of BsAbB8 at dose levels of 3 nM and 30 nM.

[0342] The results of secretion of IL-2 are shown in FIG. 29. The results show that VP101 can effectively promote secretion of IL-2 in a dose-dependent manner. At the same time, the pharmacological activity of VP101 is significantly better than that of BsAbB7 at doses of 3 nM and 300 nM, while VP101 is equivalent to BsAbB8 at the same dose.

EXAMPLE 9

Experiment of Inhibition of Tumor Growth In Vivo by VP101

[0343] To detect the in vivo tumor-inhibiting activity of VP101, U87MG cells (human glioma cells, purchased from ATCC) were first inoculated subcutaneously into 5-7 week old female Scid Beige mice (purchased from Vital River), and the modeling and specific mode of administration were shown in Table 15. After the administration, the length and width of each group of tumors were measured, and the tumor volume was calculated.

TABLE-US-00033 TABLE 15 Dosing regimen of treating U87MG tumor xenograft Scid Beige mouse model with VP101 Grouping n Tumor xenograft Condition of administration Isotype control 7 U-87MG, 5 million Isotype control antibody, hIgG, 40 mg/kg cells/mouse 40 mg/kg, injected intravenously subcutaneously on days 0, 7 and 13 Bevacizumab 8 Bevacizumab 30 mg/kg, 30mg/kg injected intravenously on days 0, 7 and 13 VP101 7 VP101 40 mg/kg, 40mg/kg injected intravenously on days 0, 7 and 13 VP101 7 VP101 4 mg/kg, 4mg/kg injected intravenously on days 0, 7 and 13

[0344] The results are shown in FIG. 30. The results show that compared with an isotype control antibody hIgG (the preparation method is the same as that of the Preparation Example 6), bevacizumab and VP101 at different doses can effectively inhibit the growth of mouse tumors, and the high-dose VP101 is better than that of low-dose VP 101 in inhibiting tumors.

[0345] Furthermore, as shown in FIG. 31, VP101 does not affect the body weight of tumor-bearing mouse.

[0346] While the content of the present application has provided complete and clear description of its disclosed embodiments, it is not limited thereto. For those skilled in the art, modifications and replacements to the present invention are possible with the guidance of these descriptions, and such modifications and replacements are included within the scope of the present invention. The full scope of the present application is given by the appended claims and any equivalent thereof.

Sequence CWU 1

1

261171PRTArtificialThe amino acid sequence of VEGFA-His 1Ala Pro Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys1 5 10 15Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu 20 25 30Val Asp Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys 35 40 45Pro Ser Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn Asp Glu 50 55 60Gly Leu Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Met Gln Ile65 70 75 80Met Arg Ile Lys Pro His Gln Gly Gln His Ile Gly Glu Met Ser Phe 85 90 95Leu Gln His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg 100 105 110Gln Glu Asn Pro Cys Gly Pro Cys Ser Glu Arg Arg Lys His Leu Phe 115 120 125Val Gln Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser 130 135 140Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys145 150 155 160Asp Lys Pro Arg Arg His His His His His His 165 1702513DNAArtificialNucleotide sequence of VEGFA-His 2gcacccatgg ccgagggcgg cggccagaac caccacgagg tggtgaagtt catggacgtg 60taccagagaa gctactgcca ccccatcgag accctggtgg acatcttcca ggagtacccc 120gacgagatcg agtacatctt caagcccagc tgcgtgcccc tgatgagatg cggcggctgc 180tgcaacgacg agggcctgga gtgcgtgccc accgaggaga gcaacatcac catgcagatc 240atgagaatca agccccacca gggccagcac atcggcgaga tgagcttcct gcagcacaac 300aagtgcgagt gcagacccaa gaaggacaga gccagacagg agaacccctg cggcccctgc 360agcgagagaa gaaagcacct gttcgtgcag gacccccaga cctgcaagtg cagctgcaag 420aacaccgaca gcagatgcaa ggccagacag ctggagctga acgagagaac ctgcagatgc 480gacaagccca gaagacatca tcaccatcac cac 5133998PRTArtificialThe amino acid sequence of Fusion protein VEGFR2- hFc 3Met Gln Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu1 5 10 15Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro 20 25 30Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr 35 40 45Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 50 55 60Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser65 70 75 80Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn 85 90 95Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser 100 105 110Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser 115 120 125Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys 130 135 140Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser145 150 155 160Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg 165 170 175Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile 180 185 190Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser 195 200 205Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile Tyr 210 215 220Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu225 230 235 240Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 245 250 255Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 260 265 270Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe 275 280 285Leu Ser Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu 290 295 300Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr305 310 315 320Phe Val Arg Val His Glu Lys Pro Phe Val Ala Phe Gly Ser Gly Met 325 330 335Glu Ser Leu Val Glu Ala Thr Val Gly Glu Arg Val Arg Ile Pro Ala 340 345 350Lys Tyr Leu Gly Tyr Pro Pro Pro Glu Ile Lys Trp Tyr Lys Asn Gly 355 360 365Ile Pro Leu Glu Ser Asn His Thr Ile Lys Ala Gly His Val Leu Thr 370 375 380Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn Tyr Thr Val Ile Leu385 390 395 400Thr Asn Pro Ile Ser Lys Glu Lys Gln Ser His Val Val Ser Leu Val 405 410 415Val Tyr Val Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser Pro Val 420 425 430Asp Ser Tyr Gln Tyr Gly Thr Thr Gln Thr Leu Thr Cys Thr Val Tyr 435 440 445Ala Ile Pro Pro Pro His His Ile His Trp Tyr Trp Gln Leu Glu Glu 450 455 460Glu Cys Ala Asn Glu Pro Ser Gln Ala Val Ser Val Thr Asn Pro Tyr465 470 475 480Pro Cys Glu Glu Trp Arg Ser Val Glu Asp Phe Gln Gly Gly Asn Lys 485 490 495Ile Glu Val Asn Lys Asn Gln Phe Ala Leu Ile Glu Gly Lys Asn Lys 500 505 510Thr Val Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala Leu Tyr 515 520 525Lys Cys Glu Ala Val Asn Lys Val Gly Arg Gly Glu Arg Val Ile Ser 530 535 540Phe His Val Thr Arg Gly Pro Glu Ile Thr Leu Gln Pro Asp Met Gln545 550 555 560Pro Thr Glu Gln Glu Ser Val Ser Leu Trp Cys Thr Ala Asp Arg Ser 565 570 575Thr Phe Glu Asn Leu Thr Trp Tyr Lys Leu Gly Pro Gln Pro Leu Pro 580 585 590Ile His Val Gly Glu Leu Pro Thr Pro Val Cys Lys Asn Leu Asp Thr 595 600 605Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser Thr Asn Asp Ile 610 615 620Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr625 630 635 640Val Cys Leu Ala Gln Asp Arg Lys Thr Lys Lys Arg His Cys Val Val 645 650 655Arg Gln Leu Thr Val Leu Glu Arg Val Ala Pro Thr Ile Thr Gly Asn 660 665 670Leu Glu Asn Gln Thr Thr Ser Ile Gly Glu Ser Ile Glu Val Ser Cys 675 680 685Thr Ala Ser Gly Asn Pro Pro Pro Gln Ile Met Trp Phe Lys Asp Asn 690 695 700Glu Thr Leu Val Glu Asp Ser Gly Ile Val Leu Lys Asp Gly Asn Arg705 710 715 720Asn Leu Thr Ile Arg Arg Val Arg Lys Glu Asp Glu Gly Leu Tyr Thr 725 730 735Cys Gln Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 740 745 750Ile Ile Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Ser Arg Glu Asn 755 760 765Leu Tyr Phe Gln Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 770 775 780Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp785 790 795 800Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 805 810 815Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 820 825 830Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 835 840 845Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 850 855 860Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro865 870 875 880Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 885 890 895Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 900 905 910Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 915 920 925Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 930 935 940Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys945 950 955 960Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 965 970 975Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 980 985 990Ser Leu Ser Pro Gly Lys 99542997DNAArtificialNucleotide sequence of Fusion protein VEGFR2- hFc 4atgcagagca aggtgctgct ggccgtcgcc ctgtggctct gcgtggagac ccgggccgcc 60tctgtgggtt tgcctagtgt ttctcttgat ctgcccaggc tcagcataca aaaagacata 120cttacaatta aggctaatac aactcttcaa attacttgca ggggacagag ggacttggac 180tggctttggc ccaataatca gagtggcagt gagcaaaggg tggaggtgac tgagtgcagc 240gatggcctct tctgtaagac actcacaatt ccaaaagtga tcggaaatga cactggagcc 300tacaagtgct tctaccggga aactgacttg gcctcggtca tttatgtcta tgttcaagat 360tacagatctc catttattgc ttctgttagt gaccaacatg gagtcgtgta cattactgag 420aacaaaaaca aaactgtggt gattccatgt ctcgggtcca tttcaaatct caacgtgtca 480ctttgtgcaa gatacccaga aaagagattt gttcctgatg gtaacagaat ttcctgggac 540agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600gaagcaaaaa ttaatgatga aagttaccag tctattatgt acatagttgt cgttgtaggg 660tataggattt atgatgtggt tctgagtccg tctcatggaa ttgaactatc tgttggagaa 720aagcttgtct taaattgtac agcaagaact gaactaaatg tggggattga cttcaactgg 780gaataccctt cttcgaagca tcagcataag aaacttgtaa accgagacct aaaaacccag 840tctgggagtg agatgaagaa atttttgagc accttaacta tagatggtgt aacccggagt 900gaccaaggat tgtacacctg tgcagcatcc agtgggctga tgaccaagaa gaacagcaca 960tttgtcaggg tccatgaaaa accttttgtt gcttttggaa gtggcatgga atctctggtg 1020gaagccacgg tgggggagcg tgtcagaatc cctgcgaagt accttggtta cccaccccca 1080gaaataaaat ggtataaaaa tggaataccc cttgagtcca atcacacaat taaagcgggg 1140catgtactga cgattatgga agtgagtgaa agagacacag gaaattacac tgtcatcctt 1200accaatccca tttcaaagga gaagcagagc catgtggtct ctctggttgt gtatgtccca 1260ccccagattg gtgagaaatc tctaatctct cctgtggatt cctaccagta cggcaccact 1320caaacgctga catgtacggt ctatgccatt cctcccccgc atcacatcca ctggtattgg 1380cagttggagg aagagtgcgc caacgagccc agccaagctg tctcagtgac aaacccatac 1440ccttgtgaag aatggagaag tgtggaggac ttccagggag gaaataaaat tgaagttaat 1500aaaaatcaat ttgctctaat tgaaggaaaa aacaaaactg taagtaccct tgttatccaa 1560gcggcaaatg tgtcagcttt gtacaaatgt gaagcggtca acaaagtcgg gagaggagag 1620agggtgatct ccttccacgt gaccaggggt cctgaaatta ctttgcaacc tgacatgcag 1680cccactgagc aggagagcgt gtctttgtgg tgcactgcag acagatctac gtttgagaac 1740ctcacatggt acaagcttgg cccacagcct ctgccaatcc atgtgggaga gttgcccaca 1800cctgtttgca agaacttgga tactctttgg aaattgaatg ccaccatgtt ctctaatagc 1860acaaatgaca ttttgatcat ggagcttaag aatgcatcct tgcaggacca aggagactat 1920gtctgccttg ctcaagacag gaagaccaag aaaagacatt gcgtggtcag gcagctcaca 1980gtcctagagc gtgtggcacc cacgatcaca ggaaacctgg agaatcagac gacaagtatt 2040ggggaaagca tcgaagtctc atgcacggca tctgggaatc cccctccaca gatcatgtgg 2100tttaaagata atgagaccct tgtagaagac tcaggcattg tattgaagga tgggaaccgg 2160aacctcacta tccgcagagt gaggaaggag gacgaaggcc tctacacctg ccaggcatgc 2220agtgttcttg gctgtgcaaa agtggaggca tttttcataa tagaaggtgc ccaggaaaag 2280acgaacttgg aatctagaga aaacctgtat tttcagggca ctcacacatg cccaccgtgc 2340ccagcacctg aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac 2400accctcatga tctcccggac ccctgaggtc acatgcgtgg tggtggacgt gagccacgaa 2460gaccctgagg tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca 2520aagccgcggg aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg 2580caccaggact ggctgaatgg caaggagtac aagtgcaagg tctccaacaa agccctccca 2640gcccccatcg agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac 2700accctgcccc catcccggga tgagctgacc aagaaccagg tcagcctgac ctgcctggtc 2760aaaggcttct atcccagcga catcgccgtg gagtgggaga gcaatgggca gccggagaac 2820aactacaaga ccacgcctcc cgtgttggac tccgacggct ccttcttcct ctacagcaag 2880ctcaccgtgg acaagagcag gtggcagcag gggaacgtct tctcatgctc cgtgatgcat 2940gaggctctgc acaaccacta cacgcagaag agcctctccc tgtctcccgg gaaatga 29975123PRTArtificialThe amino acid sequence of Bevacizumab heavy chain variable region 5Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30Gly Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Ala Asp Phe 50 55 60Lys Arg Arg Phe Thr Phe Ser Leu Asp Thr Ser Lys Ser Thr Ala Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Tyr Pro His Tyr Tyr Gly Ser Ser His Trp Tyr Phe Asp Val 100 105 110Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 1206369DNAArtificialNucleotide sequence of Bevacizumab heavy chain variable region 6gaggtgcagc tggtcgagtc cggggggggg ctggtgcagc caggcgggtc tctgaggctg 60agttgcgccg cttcagggta caccttcaca aactatggaa tgaattgggt gcgccaggca 120ccaggaaagg gactggagtg ggtcggctgg atcaacactt acaccgggga acctacctat 180gcagccgact ttaagcggcg gttcaccttc agcctggata caagcaaatc cactgcctac 240ctgcagatga acagcctgcg agctgaggac accgcagtct actattgtgc taaatatccc 300cactactatg ggagcagcca ttggtatttt gacgtgtggg ggcaggggac tctggtgaca 360gtgagcagc 3697107PRTArtificialThe amino acid sequence of Bevacizumab light chain variable region 7Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Ser Ala Ser Gln Asp Ile Ser Asn Tyr 20 25 30Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile 35 40 45Tyr Phe Thr Ser Ser Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Thr Val Pro Trp 85 90 95Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 1058321DNAArtificialNucleotide sequence of Bevacizumab light chain variable region 8gatattcaga tgactcagag cccctcctcc ctgtccgcct ctgtgggcga cagggtcacc 60atcacatgca gtgcttcaca ggatatttcc aactacctga attggtatca gcagaagcca 120ggaaaagcac ccaaggtgct gatctacttc actagctccc tgcactcagg agtgccaagc 180cggttcagcg gatccggatc tggaaccgac tttactctga ccatttctag tctgcagcct 240gaggatttcg ctacatacta ttgccagcag tattctaccg tgccatggac atttggccag 300gggactaaag tcgagatcaa g 3219118PRTArtificialThe amino acid sequence of humanized antibody 14C12H1L1 heavy chain variable region 9Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ser Tyr 20 25 30Asp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Asp Trp Val 35 40 45Ala Thr Ile Ser Gly Gly Gly Arg Tyr Thr Tyr Tyr Pro Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Asn Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95Ala Asn Arg Tyr Gly Glu Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr 100 105 110Leu Val Thr Val Ser Ser 11510354DNAArtificialNucleotide sequence of humanized antibody 14C12H1L1 heavy chain variable region 10gaagtgcagc tggtcgagtc tgggggaggg ctggtgcagc ccggcgggtc actgcgactg 60agctgcgcag cttccggatt cgcctttagc tcctacgaca tgtcctgggt gcgacaggca 120ccaggaaagg gactggattg ggtcgctact atctcaggag gcgggagata cacctactat 180cctgacagcg tcaagggccg gttcacaatc tctagagata acagtaagaa caatctgtat 240ctgcagatga acagcctgag ggctgaggac accgcactgt actattgtgc caaccgctac 300ggggaagcat ggtttgccta ttgggggcag ggaaccctgg tgacagtctc tagt 35411107PRTArtificialThe amino acid sequence of humanized antibody 14C12H1L1 light chain variable region 11Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Met Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Phe Thr Cys Arg Ala Ser Gln Asp Ile Asn Thr Tyr 20 25 30Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile 35 40 45Tyr Arg Ala Asn Arg Leu Val Ser Gly Val Pro Ser Arg Phe Ser Gly 50

55 60Ser Gly Ser Gly Gln Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Met Ala Thr Tyr Tyr Cys Leu Gln Tyr Asp Glu Phe Pro Leu 85 90 95Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100 10512321DNAArtificialNucleotide sequence of humanized antibody 14C12H1L1 light chain variable region 12gacattcaga tgactcagag cccctcctcc atgtccgcct ctgtgggcga cagggtcacc 60ttcacatgcc gcgctagtca ggatatcaac acctacctga gctggtttca gcagaagcca 120gggaaaagcc ccaagacact gatctaccgg gctaatagac tggtgtctgg agtcccaagt 180cggttcagtg gctcagggag cggacaggac tacactctga ccatcagctc cctgcagcct 240gaggacatgg caacctacta ttgcctgcag tatgatgagt tcccactgac ctttggcgcc 300gggacaaaac tggagctgaa g 3211320PRTArtificialThe amino acid sequence of Linker 1 13Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly1 5 10 15Gly Gly Gly Ser 20145PRTArtificiallinker fragment 14Gly Gly Gly Gly Ser1 5158PRTArtificialHCDR1 of Antibody Bevacizumab 15Gly Tyr Thr Phe Thr Asn Tyr Gly1 5168PRTArtificialHCDR2 of Antibody Bevacizumab 16Ile Asn Thr Tyr Thr Gly Glu Pro1 51716PRTArtificialHCDR3 of Antibody Bevacizumab 17Ala Lys Tyr Pro His Tyr Tyr Gly Ser Ser His Trp Tyr Phe Asp Val1 5 10 15186PRTArtificialLCDR1 of Antibody Bevacizumab 18Gln Asp Ile Ser Asn Tyr1 5193PRTArtificialLCDR2 of Antibody Bevacizumab 19Phe Thr Ser1209PRTArtificialLCDR3 of Antibody Bevacizumab 20Gln Gln Tyr Ser Thr Val Pro Trp Thr1 5218PRTArtificialHCDR1 of Antibody 14C12H1L1 21Gly Phe Ala Phe Ser Ser Tyr Asp1 5228PRTArtificialHCDR2 of Antibody 14C12H1L1 22Ile Ser Gly Gly Gly Arg Tyr Thr1 52311PRTArtificialHCDR3 of Antibody 14C12H1L1 23Ala Asn Arg Tyr Gly Glu Ala Trp Phe Ala Tyr1 5 10246PRTArtificialLCDR1 of Antibody 14C12H1L1 24Gln Asp Ile Asn Thr Tyr1 5253PRTArtificialLCDR2 of Antibody 14C12H1L1 25Arg Ala Asn1269PRTArtificialLCDR3 of Antibody 14C12H1L1 26Leu Gln Tyr Asp Glu Phe Pro Leu Thr1 5

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed