Modified Serotype 28 Adenoviral Vectors

Wei; Lisa ;   et al.

Patent Application Summary

U.S. patent application number 17/200012 was filed with the patent office on 2021-09-02 for modified serotype 28 adenoviral vectors. This patent application is currently assigned to GenVec, Inc.. The applicant listed for this patent is GenVec, Inc.. Invention is credited to Douglas E. Brough, C. Richter King, Lisa Wei.

Application Number20210269827 17/200012
Document ID /
Family ID1000005594718
Filed Date2021-09-02

United States Patent Application 20210269827
Kind Code A1
Wei; Lisa ;   et al. September 2, 2021

MODIFIED SEROTYPE 28 ADENOVIRAL VECTORS

Abstract

The invention provides a replication-deficient serotype 28 adenoviral vector characterized by comprising a portion of a serotype 45 adenoviral hexon protein and/or a portion of a serotype 45 fiber protein in place of the endogenous serotype 28 hexon and/or fiber protein.


Inventors: Wei; Lisa; (Gaithersburg, MD) ; Brough; Douglas E.; (Gaithersburg, MD) ; King; C. Richter; (New York, NY)
Applicant:
Name City State Country Type

GenVec, Inc.

Gaithersburg

MD

US
Assignee: GenVec, Inc.
Gaithersburg
MD

Family ID: 1000005594718
Appl. No.: 17/200012
Filed: March 12, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15700279 Sep 11, 2017 10947560
17200012
14403651 Nov 25, 2014 9790519
PCT/US2013/042824 May 28, 2013
15700279
61652407 May 29, 2012

Current U.S. Class: 1/1
Current CPC Class: A61K 48/00 20130101; C12N 2710/10021 20130101; C12N 2810/6018 20130101; C12N 2710/10345 20130101; C12N 2710/10043 20130101; C12N 2710/10343 20130101; C12N 2710/10322 20130101; C12N 15/86 20130101; C12N 2710/16634 20130101; A61K 48/0008 20130101
International Class: C12N 15/86 20060101 C12N015/86; A61K 48/00 20060101 A61K048/00

Goverment Interests



STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] This invention was made with Government support under Grant Number 5R43AI077147-02 awarded by the National Institutes of Health. The Government has certain rights in this invention.
Claims



1. A replication-deficient serotype 28 adenoviral vector comprising one or both of the following: (a) at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein, and (b) at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein.

2. The adenoviral vector of claim 1, which comprises at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein, or at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein.

3. The adenoviral vector of claim 1, which comprises at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein, and at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein.

4. The adenoviral vector of claim 1, wherein the portion of an adenovirus serotype 45 hexon protein comprises at least one hypervariable region (HVR).

5. The adenoviral vector of claim 4, wherein the portion of an adenovirus serotype 45 hexon protein comprises nine HVRs.

6. The adenoviral vector of claim 1, wherein the portion of an adenovirus serotype 45 hexon protein comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence that is at least 91.4% identical to SEQ ID NO: 1.

7. The adenoviral vector of claim 6, wherein the portion of an adenovirus serotype 45 hexon protein is encoded by the nucleic acid sequence of SEQ ID NO: 2.

8. The adenoviral vector of claim 1, wherein the portion of an adenovirus serotype 45 fiber protein comprises the amino acid sequence of SEQ ID NO: 3, or an amino acid sequence that is at least 67% identical to SEQ ID NO: 3.

9. The adenoviral vector of claim 8, wherein the portion of an adenovirus serotype 45 fiber protein is encoded by the nucleic acid sequence of SEQ ID NO: 4.

10. The adenoviral vector of claim 1, which comprises: (a) an amino acid sequence of a serotype 28 adenovirus penton protein, (b) an amino acid sequence of a serotype 28 adenovirus pIX protein, (c) an amino acid sequence of a serotype 28 adenovirus p100 protein, (d) an amino acid sequence of a serotype 28 adenovirus L1 52/55K protein, or (e) any combination of (a)-(d).

11. The adenoviral vector of claim 1, wherein the adenoviral vector requires complementation of a deficiency in one or more early regions of the adenoviral genome for propagation and does not require complementation of any other deficiency of the adenoviral genome for propagation.

12. The adenoviral vector of claim 1, wherein the one or more early regions are selected from the group consisting of the E1 region, the E2 region, and the E4 region of the adenovirus genome.

13. The adenoviral vector of claim 12, wherein the adenoviral vector requires complementation of a deficiency in the E1 region of the adenoviral genome for propagation and does not require complementation of any other deficiency of the adenoviral genome for propagation.

14. The adenoviral vector of claim 12, wherein the adenoviral vector requires complementation of a deficiency in the E1A region or the E1B region of the adenoviral genome for propagation and does not require complementation of any other deficiency of the adenoviral genome for propagation.

15. The adenoviral vector of claim 12, wherein the adenoviral vector requires at most complementation of a deficiency in the E4 region of the adenoviral genome for propagation and does not require complementation of any other deficiency of the adenoviral genome for propagation.

16. The adenoviral vector of claim 12, wherein the adenoviral vector requires complementation of a deficiency in the E1 region of the adenoviral genome and a deficiency in the E4 region of the adenoviral genome for propagation and does not require complementation of any other deficiency of the adenoviral genome for propagation.

17. The adenoviral vector of claim 1, which comprises the nucleic acid sequence of SEQ ID NO: 10.

18. The adenoviral vector of claim 1 further comprising a transgene.

19. A composition comprising the adenoviral vector of claim 1 and a pharmaceutically acceptable carrier.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application is a continuation of co-pending U.S. application Ser. No. 15/700,279, filed Sep. 11, 2017, which is a continuation of U.S. application Ser. No. 14/403,651, filed Nov. 25, 2014, now U.S. Pat. No. 9,790,519, which is a 371 of International Patent Application No. PCT/US2013/042824, filed May 28, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/652,407, filed May 29, 2012.

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY

[0003] Incorporated by reference in its entirety herein is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith and identified as follows: One 79,166 Byte ASCII (Text) file named "753312_ST25.TXT," created on Mar. 12, 2021.

BACKGROUND OF THE INVENTION

[0004] In vivo delivery of proteins in biologically relevant forms and amounts has been an obstacle to drug and vaccine development for decades. One solution that has proven to be a successful alternative to traditional protein delivery approaches is the use of exogenous nucleic acid sequences for production of proteins in vivo. Gene transfer vectors ideally enter a wide variety of cell types, have the capacity to accept large nucleic acid sequences, are safe, and can be produced in quantities required for treating patients. Viral vectors are gene transfer vectors with these advantageous properties (see, e.g., Thomas et al., Nature Review Genetics, 4: 346-358 (2003)). Furthermore, while many viral vectors are engineered to infect a broad range of cell types, viral vectors also can be modified to target specific cell types, which can enhance the therapeutic efficacy of the vector (see, e.g., Kay et al., Nature Medicine, 7(1): 33-40 (2001)).

[0005] Viral vectors that have been used with some success to deliver exogenous proteins to mammalian cells for therapeutic purposes include, for example, Retrovirus (see, e.g., Cavazzana-Calvo et al., Science, 288 (5466): 669-672 (2000)), Lentivirus (see, e.g., Cartier et al., Science, 326: 818-823 (2009)), Adeno-associated virus (AAV) (see, e.g., Mease et al., Journal of Rheumatology, 27(4): 692-703 (2010)), Herpes Simplex Virus (HSV) (see, e.g., Goins et al., Gene Ther., 16(4): 558-569 (2009)), Vaccinia Virus (see, e.g., Mayrhofer et al., J. Virol., 83(10): 5192-5203 (2009)), and Adenovirus (see, e.g., Lasaro and Ertl, Molecular Therapy, 17(8): 1333-1339 (2009)).

[0006] Despite their advantageous properties, widespread use of viral gene transfer vectors is hindered by several factors. In this respect, certain cells are not readily amenable to gene delivery by currently available viral vectors. For example, lymphocytes are impaired in the uptake of adenoviruses (Silver et al., Virology, 165: 377-387 (1988), and Horvath et al., J. Virology, 62(1): 341-345 (1988)). In addition, viral vectors that integrate into the host cell's genome (e.g., retroviral vectors) have the potential to cause insertion mutations in oncogenes (see, e.g., Cavazzana-Calvo et al., supra, and Hacein-Bey-Abina et al., N. Engl. J Med., 348: 255-256 (2003)).

[0007] The use of viral vectors for gene transfer also is impeded by the immunogenicity of viral vectors. A majority of the U.S. population has been exposed to wild-type forms of many of the viruses currently under development as gene transfer vectors (e.g., adenovirus). As a result, much of the U.S. population has developed pre-existing immunity to certain virus-based gene transfer vectors. Such vectors are quickly cleared from the bloodstream, thereby reducing the effectiveness of the vector in delivering biologically relevant amounts of a gene product. Moreover, the immunogenicity of certain viral vectors prevents efficient repeat dosing, which can be advantageous for "boosting" the immune system against pathogens when viral vectors are used in vaccine applications, thereby resulting in only a small fraction of a dose of the viral vector delivering its payload to host cells.

[0008] Thus, there remains a need for improved viral vectors that can be used to efficiently deliver genes to mammalian cells in vivo. The invention provides such viral vectors.

BRIEF SUMMARY OF THE INVENTION

[0009] The invention provides a replication-deficient serotype 28 adenoviral vector comprising one or both of the following: (a) at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein, and (b) at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

[0010] FIG. 1 is a flow diagram of the construction of plasmid pAC28UL19.H (45) by homologous recombination. Steps 1 through 10 illustrate the homologous recombination between the Ad28 viral vector genome plasmid and the shuttle plasmid containing the Ad45 hexon followed by subsequent recombination containing the CMVTetO.UL19 expression cassette as described in Example 1.

[0011] FIG. 2 is a graph depicting experimental data of CD8+ T-cell responses induced by serotype 5 and 28 adenoviral vectors encoding an HSV2 UL19 protein (Ad5 UL19 and Ad28 UL19, respectively), as well as the mutant serotype 28 adenoviral vector encoding an HSV2 UL19 protein (Ad28 H/F UL19) described in Example 2.

DETAILED DESCRIPTION OF THE INVENTION

[0012] The invention is predicated, at least in part, on the generation of an adenoviral vector based on a serotype 28 adenovirus (Ad28) containing one or more modified capsid proteins, which can effectively be used to deliver and express nucleic acid sequences encoding therapeutic proteins. It is believed that a vector based on Ad28 will provide improved delivery to human cells because Ad28 seroprevalence is low in human populations. It is also believed that a serotype 28 adenoviral vector containing a modified hexon protein and/or a modified fiber protein as described herein can stimulate a more robust T-cell response than an Ad28 vector comprising wild-type hexon and fiber proteins when used in vaccine applications.

[0013] A serotype 28 adenovirus is a member of the group D adenoviruses. In addition to Ad28, the group D adenoviruses include the following serotypes: 8, 9, 10, 13, 15, 17, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, and 56 (see, e.g., Gema et al., J. Infectious Diseases, 145(5): 678-682 (1982), and Robinson et al., Virology, 409(2): 141-147 (2011)). The genome of human Ad28 has been sequenced and is available via the GenBank database (Accession No. FJ824826.1).

[0014] The term "adenoviral vector," as used herein, refers to an adenovirus in which the adenoviral genome has been manipulated to accommodate a nucleic acid sequence that is non-native with respect to the adenoviral genome. Adenovirus is a medium-sized (90-100 nm), nonenveloped icosohedral virus containing approximately 36 kb of double-stranded DNA. There are 49 human adenoviral serotypes, categorized into 6 subgenera (A through F) based on nucleic acid comparisons, fiber protein characteristics, and biological properties (Crawford-Miksza et al., J. Virol., 70: 1836-1844 (1996)). The group C viruses (e.g., serotypes 2 and 5, or Ad2 and Ad5) are well characterized, and currently are employed for gene transfer studies, including human gene therapy trials (see, e.g., Rosenfeld et al., Science, 252: 431-434 (1991); Rosenfeld et al., Cell, 68: 143-155 (1992); Zabner, Cell, 75: 207-216 (1993); Crystal et al., Nat. Gen., 8: 42-51 (1994); Yei et al., Gene Therapy, 1: 192-200 (1994); Chen et al., Proc. Natl. Acad. Sci., 91: 3054-3057 (1994); Yang et al., Nat. Gen., 7: 362-369 (1994); Zabner et al., Nat. Gen., 6: 75-83 (1994)). Typically, an adenoviral vector is generated by introducing one or more mutations (e.g., deletion, insertion, or substitution) into the adenoviral genome of the adenovirus so as to accommodate the insertion of a non-native nucleic acid sequence, for example, for gene transfer, into the adenovirus.

[0015] The adenovirus capsid mediates the key interactions of the early stages of the infection of a cell by the virus, and is required for packaging adenovirus genomes at the end of the adenovirus life cycle. The capsid comprises 252 capsomeres, which includes 240 hexons, 12 penton base proteins, and 12 fibers (Ginsberg et al., Virology, 28: 782-83 (1966)). In one embodiment of the invention, one or more capsid proteins (also referred to herein as "coat" proteins) of the adenoviral vector can be manipulated to alter the binding specificity or recognition of the vector for a viral receptor on a potential host cell. Such manipulations can include deletion of regions of the fiber or penton, insertions of various native or non-native ligands into portions of the capsid proteins, and the like. Manipulation of capsid proteins can broaden the range of cells infected by the adenoviral vector or enable targeting of the adenoviral vector to a specific cell type.

[0016] The adenoviral vector of the invention can comprise a modified hexon protein. The adenovirus hexon protein is the largest and most abundant protein in the adenovirus capsid. The hexon protein is essential for virus capsid assembly, determination of the icosahedral symmetry of the capsid (which in turn defines the limits on capsid volume and DNA packaging size), and integrity of the capsid. In addition, the hexon protein is a primary target for modification in order to reduce neutralization of adenoviral vectors (see, e.g., Gall et al., J. Virol., 72: 10260-264 (1998), and Rux et al., J. Virol., 77(17): 9553-9566 (2003)). The major structural features of the hexon protein are shared by adenoviruses across serotypes, but the hexon protein differs in size and immunological properties between serotypes (Jornvall et al., J. Biol. Chem., 256(12): 6181-6186 (1981)). A comparison of 15 adenovirus hexon proteins reveals that the predominant antigenic and serotype-specific regions of the hexon protein appear to be in loops 1 and 2 (i.e., LI or l1, and LII or l2, respectively), within which are seven to nine discrete hypervariable regions (HVR1 to HVR 7 or HVR9) varying in length and sequence between adenoviral serotypes (Crawford-Miksza et al., J. Virol., 70(3): 1836-1844 (1996), and Bruder et al., PLoS ONE, 7(4): e33920 (2012)).

[0017] The hexon protein is "modified" in that it comprises a non-native amino acid sequence in addition to or in place of a wild-type hexon amino acid sequence of the serotype 28 adenoviral vector. In this respect, at least a portion of the wild-type hexon protein (e.g., the entire hexon protein) of the inventive serotype 28 adenoviral vector desirably is removed and replaced with a corresponding portion of a hexon protein from a non-group D adenovirus (e.g., a group A, B, C, E, or F adenovirus), or an adenovirus that does not normally infect humans (e.g., a simian or gorilla adenovirus). Alternatively and preferably, at least a portion of the wild-type hexon protein of the serotype 28 adenoviral vector can be removed and replaced with a corresponding portion of a hexon protein from another group D adenovirus. For example, a portion of the wild-type hexon protein of the serotype 28 adenoviral vector can be removed and replaced with a corresponding portion of a hexon protein from any group D adenovirus (such as those described herein). Preferably, the inventive serotype 28 adenoviral vector comprises at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein. Any suitable amino acid residue(s) of a wild-type hexon protein of the serotype 28 adenoviral vector can be modified or removed, so long as viral capsid assembly is not impeded. Similarly, amino acids can be added to the hexon protein as long as the structural integrity of the capsid is maintained. In a preferred embodiment, at least 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 100%) of the endogenous Ad28 hexon protein is modified or removed.

[0018] A "portion" of an amino acid sequence comprises at least three amino acids (e.g., about 3 to about 800 amino acids). Preferably, a "portion" comprises 10 or more (e.g., 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, 40 or more, 50 or more, or 100 or more) amino acid residues, but less than the entire wild-type hexon protein (e.g., 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, 300 or less, 200 or less, or 100 or less amino acid residues). For example, a portion can be about 10 to about 700 amino acids (e.g., about 10, 100, 300, 500, or 600 amino acids), about 10 to about 500 amino acids (e.g., about 20, 50, 200, or 400 amino acids), or about 10 to about 300 amino acids (e.g., about 15, 40, 60, 70, 90, 150, 250, or 290 amino acids), or a range defined by any two of the foregoing values. More preferably, a "portion" comprises no more than about 600 amino acids (e.g., about 10 to about 550 amino acids, about 10 to about 500 amino acids, or about 50 to about 300 amino acids, or a range defined by any two of the foregoing values).

[0019] A "portion" of a nucleic acid sequence comprises at least ten nucleotides (e.g., about 10 to about 5000 nucleotides). Preferably, a "portion" of a nucleic acid sequence comprises 10 or more (e.g., 15 or more, 20 or more, 25 or more, 30 or more, 35 or more, 40 or more, 45 or more, 50 or more, or 100 or more) nucleotides, but less than 5,000 (e.g., 4900 or less, 4000 or less, 3000 or less, 2000 or less, 1000 or less, 800 or less, 500 or less, 300 or less, or 100 or less) nucleotides. Preferably, a portion of a nucleic acid sequence is about 10 to about 3500 nucleotides (e.g., about 10, 20, 30, 50, 100, 300, 500, 700, 1000, 1500, 2000, 2500, or 3000 nucleotides), about 10 to about 1000 nucleotides (e.g., about 25, 55, 125, 325, 525, 725, or 925 nucleotides), or about 10 to about 500 nucleotides (e.g., about 15, 30, 40, 50, 60, 70, 80, 90, 150, 175, 250, 275, 350, 375, 450, 475, 480, 490, 495, or 499 nucleotides), or a range defined by any two of the foregoing values. More preferably, a "portion" of a nucleic acid sequence comprises no more than about 3200 nucleotides (e.g., about 10 to about 3200 nucleotides, about 10 to about 3000 nucleotides, or about 30 to about 500 nucleotides, or a range defined by any two of the foregoing values).

[0020] Desirably, the portion of an adenovirus serotype 45 hexon protein comprises at least one hypervariable region (HVR) in place of an endogenous Ad28 HVR. Thus, at least one HVR of the hexon protein of the inventive serotype 28 adenoviral vector is removed and replaced with at least one HVR from a wild-type serotype 45 adenovirus. In one embodiment, the serotype 28 adenoviral vector can comprise one or more of HVR1, HVR2, HVR3, HVR4, HVR5, HVR6, HVR7, HVR8, or HVR9 of a wild-type serotype 45 adenovirus hexon protein in place of the corresponding endogenous Ad28 HVR. Preferably, two or more (e.g., 2, 3, 4, 5, 6, 7, 8, or 9) HVRs of the hexon protein of the serotype 28 adenoviral vector are removed and replaced with corresponding HVRs from a serotype 45 adenovirus. More preferably, the inventive serotype 28 adenoviral vector comprises all nine HVRs of a serotype 45 adenovirus hexon protein in place of the corresponding endogenous Ad28 HVRs. In one embodiment, the entire wild-type hexon protein of the serotype 28 adenoviral vector is replaced with the entire hexon protein of a serotype 45 adenovirus.

[0021] Nucleic acid sequences that encode all or a portion of a serotype 28 or 45 adenovirus hexon protein are publicly available (see, e.g., GenBank Accession Nos. DQ149626.1 and AB330126.1). Amino acid sequences that comprise a full-length serotype 28 or 45 adenovirus hexon protein, or portions thereof, also are publicly available (see, e.g., GenBank Accession Nos. ABA00010.1 and BAG48822). In one embodiment, the portion of an adenovirus serotype 45 hexon protein comprises, for example, the amino acid sequence of SEQ ID NO: 1, and a nucleic acid sequence that encodes a portion of a serotype 45 adenovirus hexon protein comprises, for example, SEQ ID NO: 2. In another embodiment, the portion of an adenovirus serotype 45 hexon protein comprises an amino acid sequence that is at least 91.4% identical (e.g., at least 91.5% identical, at least 92% identical, at least 92.5% identical, at least 93% identical, at least 93.5% identical, at least 94% identical, at least 94.5% identical, at least 95% identical, at least 95.5% identical, at least 96% identical, at least 96.5% identical, at least 97% identical, at least 97.5% identical, at least 98% identical, at least 98.5% identical, at least 99% identical, or at least 99.5% identical) to SEQ ID NO: 1.

[0022] Nucleic acid or amino acid sequence "identity," as described herein, can be determined by comparing a nucleic acid or amino acid sequence of interest to a reference nucleic acid or amino acid sequence. The number of nucleotides or amino acid residues that have been changed and/or modified (such as, e.g., by point mutations, insertions, or deletions) in the reference sequence so as to result in the sequence of interest are counted. The total number of such changes is subtracted from the total length of the sequence of interest, and the difference is divided by the length of the sequence of interest and expressed as a percentage. A number of mathematical algorithms for obtaining the optimal alignment and calculating identity between two or more sequences are known and incorporated into a number of available software programs. Examples of such programs include CLUSTAL-W, T-Coffee, and ALIGN (for alignment of nucleic acid and amino acid sequences), BLAST programs (e.g., BLAST 2.1, BL2SEQ, and later versions thereof) and FASTA programs (e.g., FASTA3x, FASTM, and SSEARCH) (for sequence alignment and sequence similarity searches). Sequence alignment algorithms also are disclosed in, for example, Altschul et al., J. Molecular Biol., 215(3): 403-410 (1990); Beigert et al., Proc. Nat. Acad. Sci. USA, 106(10): 3770-3775 (2009); Durbin et al., eds., Biological Sequence Analysis: Probalistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, U.K. (2009), Soding, Bioinformatics, 21(7): 951-960 (2005); Altschul et al., Nucleic Acids Res., 25(17): 3389-3402 (1997); and Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University Press, Cambridge, U.K. (1997)).

[0023] The adenoviral vector of the invention can comprise a modified fiber protein. The adenovirus fiber protein is a homotrimer of the adenoviral polypeptide IV that has three domains: the tail, shaft, and knob (Devaux et al., J. Molec. Biol., 215: 567-88 (1990), and Yeh et al., Virus Res., 33: 179-98 (1991)). The fiber protein mediates primary viral binding to receptors on the cell surface via the knob and the shaft domains (Henry et al., J. Virol., 68(8): 5239-46 (1994)). The amino acid sequences for trimerization are located in the knob, which appears necessary for the amino terminus of the fiber (the tail) to properly associate with the penton base (Novelli et al., Virology, 185: 365-76 (1991)). In addition to recognizing cell receptors and binding the penton base, the fiber contributes to serotype identity. Fiber proteins from different adenoviral serotypes differ considerably (see, e.g., Green et al., EMBO J., 2: 1357-65 (1983), Chroboczek et al., Virology, 186: 280-85 (1992), and Signas et al., J. Virol., 53: 672-78 (1985)). Thus, the fiber protein has multiple functions that are key to the life cycle of adenovirus.

[0024] The fiber protein is "modified" in that it comprises a non-native amino acid sequence, in addition to or in place of a wild-type fiber amino acid sequence of the inventive serotype 28 adenoviral vector. In this respect, a portion of the wild-type fiber protein (e.g., the fiber tail, the fiber shaft, the fiber knob, or the entire fiber protein) of the inventive serotype 28 adenoviral vector can be removed and replaced with a corresponding portion of a fiber protein from a non-group D adenovirus (e.g., a group A, B, C, E, or F adenovirus), or an adenovirus that does not infect humans (e.g., a simian or gorilla adenovirus). Alternatively and preferably, at least a portion of the wild-type fiber protein of the inventive serotype 28 adenoviral vector can be removed and replaced with a corresponding portion of a fiber protein from another group D adenovirus. For example, a portion of the wild-type fiber protein of the inventive serotype 28 adenoviral vector can be removed and replaced with a corresponding portion of a fiber protein from any group D adenovirus (such as those described herein). Preferably, the inventive serotype 28 adenoviral vector comprises at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein. Any suitable amino acid residue(s) of a wild-type fiber protein of the serotype 28 adenoviral vector that mediates or assists in the interaction between the fiber knob and the native cellular receptor can be modified or removed, so long as the fiber protein is able to trimerize. Similarly, amino acids can be added to the fiber knob as long as the fiber protein retains the ability to trimerize. In a preferred embodiment, at least 75% (e.g., at least 80%, at least 85%, at least 90%, at least 95%, or 100%) of the endogenous Ad28 fiber protein is modified or removed.

[0025] Nucleic acid sequences that encode all or a portion of a serotype 28 or 45 adenovirus fiber protein are publicly available (see, e.g., GenBank Accession Nos. AB361404.1, Y14242.1, FM210554.1, and AB361421.1). Amino acid sequences that comprise a full-length serotype 28 or 45 adenovirus fiber protein, or portions thereof, also are publicly available (see, e.g., GenBank Accession Nos. ACQ91171, CAR66130.1, BAG71098.1, and CAH18767.1). In one embodiment, the portion of an adenovirus serotype 45 fiber protein comprises the amino acid sequence of SEQ ID NO: 3, and a nucleic acid sequence that encodes a portion of a serotype 45 adenovirus fiber protein comprises, for example, SEQ ID NO: 4. In another embodiment, the portion of an adenovirus serotype 45 fiber protein comprises an amino acid sequence that is at least 67% identical (e.g., at least 68% identical, at least 69% identical, at least 70% identical, at least 71% identical, at least 72% identical, at least 73% identical, at least 74% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical) to SEQ ID NO: 3.

[0026] The inventive serotype 28 adenoviral vector comprises the aforementioned modified hexon protein, the aforementioned modified fiber protein, or the modified hexon protein and the modified fiber protein. For example, the inventive serotype 28 adenoviral vector comprises at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein, or at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein. Alternatively, the inventive serotype 28 adenoviral vector comprises at least a portion of an adenovirus serotype 45 hexon protein in place of at least a portion of the endogenous serotype 28 hexon protein, and at least a portion of an adenovirus serotype 45 fiber protein in place of at least a portion of the endogenous serotype 28 fiber protein.

[0027] Modifications to adenovirus coat proteins, including methods for generating chimeric hexon and fiber proteins, are described in, for example, e.g., U.S. Pat. Nos. 5,543,328; 5,559,099; 5,712,136; 5,731,190; 5,756,086; 5,770,442; 5,846,782; 5,871,727; 5,885,808; 5,922,315; 5,962,311; 5,965,541; 6,057,155; 6,127,525; 6,153,435; 6,329,190; 6,455,314; 6,465,253; 6,576,456; 6,649,407; and 6,740,525; U.S. Patent Application Publications 2001/0047081 A1, 2002/0099024 A1, 2002/0151027 A1, 2003/0022355 A1, and 2003/0099619 A1, and International Patent Application Publications WO 1996/007734, WO 1996/026281, WO 1997/020051, WO 1998/007865, WO 1998/007877, WO 1998/040509, WO 1998/054346, WO 2000/015823, WO 2001/058940, and WO 2001/092549.

[0028] The adenoviral vector can be replication-competent, conditionally replication-competent, or replication-deficient.

[0029] A replication-competent adenoviral vector can replicate in typical host cells, i.e., cells typically capable of being infected by an adenovirus. A replication-competent adenoviral vector can have one or more mutations as compared to the wild-type adenovirus (e.g., one or more deletions, insertions, and/or substitutions) in the adenoviral genome that do not inhibit viral replication in host cells. For example, the adenoviral vector can have a partial or entire deletion of the adenoviral early region known as the E3 region, which is not essential for propagation of the adenoviral genome.

[0030] A conditionally-replicating adenoviral vector is an adenoviral vector that has been engineered to replicate under pre-determined conditions. For example, replication-essential gene functions, e.g., gene functions encoded by the adenoviral early regions, can be operably linked to an inducible, repressible, or tissue-specific transcription control sequence, e.g., promoter. In such an embodiment, replication requires the presence or absence of specific factors that interact with the transcription control sequence. Conditionally-replicating adenoviral vectors are further described in U.S. Pat. No. 5,998,205.

[0031] A replication-deficient adenoviral vector is an adenoviral vector that requires complementation of one or more gene functions or regions of the adenoviral genome that are required for replication, as a result of, for example, a deficiency in the one or more replication-essential gene function or regions, such that the adenoviral vector does not replicate in typical host cells, especially those in a human to be infected by the adenoviral vector.

[0032] A deficiency in a gene function or genomic region, as used herein, is defined as a disruption (e.g., deletion) of sufficient genetic material of the adenoviral genome to obliterate or impair the function of the gene (e.g., such that the function of the gene product is reduced by at least about 2-fold, 5-fold, 10-fold, 20-fold, 30-fold, or 50-fold) whose nucleic acid sequence was disrupted (e.g., deleted) in whole or in part. Deletion of an entire gene region often is not required for disruption of a replication-essential gene function. However, for the purpose of providing sufficient space in the adenoviral genome for one or more transgenes, removal of a majority of one or more gene regions may be desirable. While deletion of genetic material is preferred, mutation of genetic material by addition or substitution also is appropriate for disrupting gene function. Replication-essential gene functions are those gene functions that are required for adenovirus replication (e.g., propagation) and are encoded by, for example, the adenoviral early regions (e.g., the E1, E2, and E4 regions), late regions (e.g., the L1, L2, L3, L4, and L5 regions), genes involved in viral packaging (e.g., the IVa2 gene), and virus-associated RNAs (e.g., VA-RNA-1 and/or VA-RNA-2).

[0033] Whether the adenoviral vector is replication-competent or replication-deficient, the adenoviral vector retains at least a portion of a serotype 28 adenoviral genome. The adenoviral vector can comprise any portion of a serotype 28 adenoviral genome, including protein coding and non-protein coding regions. Desirably, the adenoviral vector comprises at least one nucleic acid sequence that encodes a serotype 28 adenovirus protein. The adenoviral vector can comprise any suitable adenovirus protein, or a nucleic acid sequence that encodes any suitable adenovirus protein, such as, for example, a protein of any one of the early region genes (i.e., E1A, E1B, E2A, E2B, E3, and/or E4 regions), or a protein encoded by any one of the late region genes, which encode the virus structural proteins (i.e., L1, L2, L3, L4, and L5 regions).

[0034] The adenoviral vector desirably comprises one or more amino acid sequences of the pIX protein, the penton protein, the p100 protein, the L1 52/55K protein of a serotype 28 adenovirus, or any combination of the foregoing. The adenoviral vector can comprise a full-length amino acid sequence of a serotype 28 adenovirus protein. Alternatively, the adenoviral vector can comprise a portion of a full-length amino acid sequence of a serotype 28 adenovirus protein. An amino acid sequence of a serotype 28 adenovirus pIX protein comprises, for example, SEQ ID NO: 5. An amino acid sequence of a serotype 28 adenovirus penton protein comprises, for example, SEQ ID NO: 6. An amino acid sequence of a serotype 28 adenovirus p100 protein comprises, for example, SEQ ID NO: 7. An amino acid sequence of a serotype 28 adenovirus L1 52/55K protein comprises, for example, SEQ ID NO: 8. The adenoviral vector also desirably comprises a nucleic acid sequence encoding a DNA polymerase protein of a serotype 28 adenovirus or a portion thereof. A nucleic acid sequence encoding a DNA polymerase of a serotype 28 adenovirus comprises, for example, SEQ ID NO: 9. The adenoviral vector desirably comprises one or more of SEQ ID NOs: 5-9.

[0035] In another embodiment, the invention provides a virus-like particle comprising one or more amino acid sequences of the pIX protein, the penton protein, the p100 protein, the L1 52/55K protein of a serotype 28 adenovirus, or any combination of the foregoing, as well as the serotype 45 hexon protein and/or the serotype 45 fiber protein described herein. A "virus-like particle" consists of one or more viral coat proteins that assemble into viral particles, but lacks any viral genetic material (see, e.g., Miyanohara et al., J. Virol., 59: 176-180 (1986), Gheysen et al., Cell, 59: 103-112 (1989), and Buonaguro et al., ASHI Quarterly, 29: 78-80 (2005)).

[0036] Preferably, the adenoviral vector is replication-deficient, such that the replication-deficient adenoviral vector requires complementation of at least one replication-essential gene function of one or more regions of the adenoviral genome for propagation (e.g., to form adenoviral vector particles).

[0037] The replication-deficient adenoviral vector can be modified in any suitable manner to cause the deficiencies in the one or more replication-essential gene functions in one or more regions of the adenoviral genome for propagation. The complementation of the deficiencies in the one or more replication-essential gene functions of one or more regions of the adenoviral genome refers to the use of exogenous means to provide the deficient replication-essential gene functions. Such complementation can be effected in any suitable manner, for example, by using complementing cells and/or exogenous DNA (e.g., helper adenovirus) encoding the disrupted replication-essential gene functions.

[0038] The adenoviral vector can be deficient in one or more replication-essential gene functions of only the early regions (i.e., E1-E4 regions) of the adenoviral genome, only the late regions (i.e., L1-L5 regions) of the adenoviral genome, both the early and late regions of the adenoviral genome, or all adenoviral genes (i.e., a high capacity adenovector (HC-Ad)). See Morsy et al., Proc. Natl. Acad. Sci. USA, 95: 965-976 (1998); Chen et al., Proc. Natl. Acad. Sci. USA, 94: 1645-1650 (1997); and Kochanek et al., Hum. Gene Ther., 10: 2451-2459 (1999). Examples of replication-deficient adenoviral vectors are disclosed in U.S. Pat. Nos. 5,837,511; 5,851,806; 5,994,106; 6,127,175; 6,482,616; and 7,195,896, and International Patent Application Publications WO 1994/028152, WO 1995/002697, WO 1995/016772, WO 1995/034671, WO 1996/022378, WO 1997/012986, WO 1997/021826, and WO 2003/022311.

[0039] The early regions of the adenoviral genome include the E1, E2, E3, and E4 regions. The late regions of the adenoviral genome include the L1, L2, L3, L4, and L5 regions. The adenoviral vector also can have a mutation in the major late promoter (MLP), as discussed in International Patent Application Publication WO 2000/000628, which can render the adenoviral vector replication-deficient if desired.

[0040] The E1 region comprises the E1A and E1B subregions, and one or more deficiencies in replication-essential gene functions in the E1 region can include one or more deficiencies in replication-essential gene functions in either or both of the E1A and E1B subregions, thereby requiring complementation of the deficiency in the E1A subregion and/or the E1B subregion of the adenoviral genome for the adenoviral vector to propagate (e.g., to form adenoviral vector particles).

[0041] The E2 region comprises the E2A and E2B subregions, and one or more deficiencies in replication-essential gene functions in the E2 region can include one or more deficiencies in replication-essential gene functions in either or both of the E2A and E2B subregions, thereby requiring complementation of the deficiency in the E2A subregion and/or the E2B subregion of the adenoviral genome for the adenoviral vector to propagate (e.g., to form adenoviral vector particles).

[0042] The E3 region does not include any replication-essential gene functions, such that a deletion of the E3 region in part or in whole does not require complementation of any gene functions in the E3 region for the adenoviral vector to propagate (e.g., to form adenoviral vector particles). In the context of the invention, the E3 region is defined as the region that initiates with the open reading frame that encodes a protein with high homology to the 12.5K protein from the E3 region of human adenovirus 28 (NCBI reference sequence FJ824826) and ends with the open reading frame that encodes a protein with high homology to the 14.7K protein from the E3 region of human adenovirus 28 (NCBI reference sequence FJ824826). The E3 region may be deleted in whole or in part, or retained in whole or in part. The size of the deletion may be tailored so as to retain an adenoviral vector whose genome closely matches the optimum genome packaging size. A larger deletion will accommodate the insertion of larger heterologous nucleic acid sequences in the adenoviral genome. In one embodiment of the invention, the L4 polyadenylation signal sequences, which reside in the E3 region, are retained.

[0043] The E4 region comprises multiple open reading frames (ORFs). An adenoviral vector with a deletion of all of the open reading frames of the E4 region except ORF6, and in some cases ORF3, does not require complementation of any gene functions in the E4 region for the adenoviral vector to propagate (e.g., to form adenoviral vector particles). Conversely, an adenoviral vector with a disruption or deletion of ORF6, and in some cases ORF3, of the E4 region (e.g., with a deficiency in a replication-essential gene function based in ORF6 and/or ORF3 of the E4 region), with or without a disruption or deletion of any of the other open reading frames of the E4 region or the native E4 promoter, polyadenylation sequence, and/or the right-side inverted terminal repeat (ITR), requires complementation of the deficiency in the E4 region (specifically, of ORF6 and/or ORF3 of the E4 region) for the adenoviral vector to propagate (e.g., to form adenoviral vector particles).

[0044] The one or more regions of the adenoviral genome that contain one or more deficiencies in replication-essential gene functions desirably are one or more early regions of the adenoviral genome, i.e., the E1, E2, and/or E4 regions, optionally with the deletion in part or in whole of the E3 region. In other words, the adenoviral vector requires, at most, complementation of a deficiency in one or more early regions of the adenoviral genome for propagation.

[0045] The replication-deficient adenoviral vector also can have one or more mutations as compared to the wild-type adenovirus (e.g., one or more deletions, insertions, and/or substitutions) in the adenoviral genome that do not inhibit viral replication in host cells. Thus, in addition to one or more deficiencies in replication-essential gene functions, the adenoviral vector can be deficient in other respects that are not replication-essential. For example, the adenoviral vector can have a partial or entire deletion of the adenoviral early region known as the E3 region, which is not essential for propagation of the adenoviral genome.

[0046] In one embodiment, the adenoviral vector is replication-deficient and requires, at most, complementation of the E1 region of the adenoviral genome, for propagation (e.g., to form adenoviral vector particles). Thus, the replication-deficient adenoviral vector requires complementation of at least one replication-essential gene function of the E1A subregion and/or the E1B subregion of the adenoviral genome (denoted an E1-deficient adenoviral vector) for propagation (e.g., to form adenoviral vector particles). The adenoviral vector can be deficient in at least one replication-essential gene function (desirably all replication-essential gene functions) of the E1 region of the adenoviral genome and at least one gene function of the nonessential E3 region of the adenoviral genome (denoted an E1/E3-deficient adenoviral vector). Such an adenoviral vector requires, at most, complementation of a deficiency in the E1 region of the adenoviral genome for propagation.

[0047] In one embodiment, the adenoviral vector is replication-deficient and requires, at most, complementation of the E2 region, preferably the E2A subregion, of the adenoviral genome, for propagation (e.g., to form adenoviral vector particles). Thus, the replication-deficient adenoviral vector requires complementation of at least one replication-essential gene function of the E2A subregion of the adenoviral genome (denoted an E2A-deficient adenoviral vector) for propagation (e.g., to form adenoviral vector particles). The adenoviral vector can be deficient in at least one replication-essential gene function (desirably all replication-essential gene functions) of the E2A region of the adenoviral genome and at least one gene function of the nonessential E3 region of the adenoviral genome (denoted an E2A/E3-deficient adenoviral vector). Such an adenoviral vector requires, at most, complementation of a deficiency in the E2 region of the adenoviral genome for propagation.

[0048] In one embodiment, the adenoviral vector is replication-deficient and requires, at most, complementation of the E4 region of the adenoviral genome, for propagation (e.g., to form adenoviral vector particles). Thus, the replication-deficient adenoviral vector requires complementation of at least one replication-essential gene function of the E4 region of the adenoviral genome (denoted an E4-deficient adenoviral vector) for propagation (e.g., to form adenoviral vector particles). The adenoviral vector can be deficient in at least one replication-essential gene function (desirably all replication-essential gene functions) of the E4 region of the adenoviral genome and at least one gene function of the nonessential E3 region of the adenoviral genome (denoted an E3/E4-deficient adenoviral vector). Such an adenoviral vector requires, at most, complementation of a deficiency in the E4 region of the adenoviral genome for propagation.

[0049] In one embodiment, the adenoviral vector requires complementation of the E1 and E2 (e.g., E2A) regions of the adenoviral genome for propagation (denoted an E1/E2-deficient adenoviral vector), wherein the adenoviral vector also can be deficient in at least one gene function of the E3 region (denoted an E1/E2/E3-deficient adenoviral vector). Such an adenoviral vector requires, at most, complementation of a deficiency in the E1 region and a deficiency in the E2 region of the adenoviral genome for propagation.

[0050] In one embodiment, the adenoviral vector is replication-deficient and requires, at most, complementation of the E1 and E4 regions of the adenoviral genome for propagation (e.g., to form adenoviral vector particles). Thus, the replication-deficient adenoviral vector requires complementation of at least one replication-essential gene function of both the E1 and E4 regions of the adenoviral genome (denoted an E1/E4-deficient adenoviral vector) for propagation (e.g., to form adenoviral vector particles). The adenoviral vector can be deficient in at least one replication-essential gene function (desirably all replication-essential gene functions) of the E1 region of the adenoviral genome, at least one replication-essential gene function of the E4 region of the adenoviral genome, and at least one gene function of the nonessential E3 region of the adenoviral genome (denoted an E1/E3/E4-deficient adenoviral vector). Such an adenoviral vector requires, at most, complementation of a deficiency in the E1 region and a deficiency in the E4 region of the adenoviral genome for propagation.

[0051] In a preferred embodiment, the adenoviral vector requires, at most, complementation of a deficiency in the E1 region of the adenoviral genome for propagation, and does not require complementation of any other deficiency of the adenoviral genome for propagation. In another preferred embodiment, the adenoviral vector requires, at most, complementation of a deficiency in both the E1 and E4 regions of the adenoviral genome for propagation, and does not require complementation of any other deficiency of the adenoviral genome for propagation.

[0052] The adenoviral vector, when deficient in multiple replication-essential gene functions of the adenoviral genome (e.g., an E1/E4-deficient adenoviral vector), can include a spacer sequence to provide viral growth in a complementing cell line similar to that achieved by adenoviruses or adenoviral vectors deficient in a single replication-essential gene function (e.g., an E1-deficient adenoviral vector). The spacer sequence can contain any nucleotide sequence or sequences which are of a desired length, such as sequences at least about 15 base pairs (e.g., between about 15 nucleotides and about 12,000 nucleotides), preferably about 100 nucleotides to about 10,000 nucleotides, more preferably about 500 nucleotides to about 8,000 nucleotides, even more preferably about 1,500 nucleotides to about 6,000 nucleotides, and most preferably about 2,000 to about 3,000 nucleotides in length, or a range defined by any two of the foregoing values. The spacer sequence can be coding or non-coding and native or non-native with respect to the adenoviral genome, but does not restore the replication-essential function to the deficient region. The spacer also can contain an expression cassette. More preferably, the spacer comprises a polyadenylation sequence and/or a gene that is non-native with respect to the adenovirus or adenoviral vector. The use of a spacer in an adenoviral vector is further described in, for example, U.S. Pat. No. 5,851,806 and International Patent Application Publication WO 1997/021826.

[0053] The replication-deficient adenoviral vector of the invention can be produced in complementing cell lines that provide gene functions not present in the replication-deficient adenovirus or adenoviral vector, but required for viral propagation, at appropriate levels in order to generate high titers of viral vector stock. Such complementing cell lines are known and include, but are not limited to, 293 cells (described in, e.g., Graham et al., J. Gen. Virol., 36: 59-72 (1977)), PER.C6 cells (described in, e.g., International Patent Application Publication WO 1997/000326, and U.S. Pat. Nos. 5,994,128 and 6,033,908), and 293-ORF6 cells (described in, e.g., International Patent Application Publication WO 1995/34671 and Brough et al., J. Virol., 71: 9206-9213 (1997)). Other suitable complementing cell lines to produce the replication-deficient adenoviral vector of the invention include complementing cells that have been generated to propagate adenoviral vectors encoding transgenes whose expression inhibits viral growth in host cells (see, e.g., U.S. Patent Application Publication 2008/0233650). Additional suitable complementing cells are described in, for example, U.S. Pat. Nos. 6,677,156 and 6,682,929, and International Patent Application Publication WO 2003/020879. In some instances, the cellular genome need not comprise nucleic acid sequences, the gene products of which complement for all of the deficiencies of a replication-deficient adenoviral vector. One or more replication-essential gene functions lacking in a replication-deficient adenoviral vector can be supplied by a helper virus, e.g., an adenoviral vector that supplies in trans one or more essential gene functions required for replication of the replication-deficient adenoviral vector. Alternatively, the inventive adenoviral vector can comprise a non-native replication-essential gene that complements for the one or more replication-essential gene functions lacking in the inventive replication-deficient adenoviral vector. For example, an E1/E4-deficient adenoviral vector can be engineered to contain a nucleic acid sequence encoding E4 ORF 6 that is obtained or derived from a different adenovirus (e.g., an adenovirus of a different serotype than the inventive adenoviral vector, or an adenovirus of a different species than the inventive adenoviral vector).

[0054] An example of an E1/E3-deficient serotype 28 adenoviral vector comprising a serotype 45 hexon protein and a serotype 45 fiber protein as described herein comprises the nucleic acid sequence of SEQ ID NO: 10. Using the publicly available genome information for Ad28, however, one of ordinary skill in the art would be able generate other Ad28 vectors with similar deficiencies and/or modifications using routine methods known in the art and/or described herein.

[0055] The adenoviral vector can further comprise one or more exogenous or non-native nucleic acids, which can be positioned at any suitable place in the adenoviral vector. By removing all or part of the adenoviral genome, for example, the E1, E3, and E4 regions of the adenoviral genome, the resulting adenoviral vector is able to accept inserts of exogenous nucleic acid sequences while retaining the ability to be packaged into adenoviral capsids. An exogenous nucleic acid sequence can be inserted at any position in the adenoviral genome so long as insertion in the position allows for the formation of adenovirus or the adenoviral vector particle. The exogenous nucleic acid sequence preferably is positioned in the E1 region, the E3 region, or the E4 region of the adenoviral genome. In embodiments where the adenoviral vector comprises multiple exogenous nucleic acid sequences (e.g., 2, 3, 4 or more exogenous nucleic acid sequences), at least one exogenous nucleic acid sequence is positioned in the E1 region, and at least one exogenous nucleic acid sequence is positioned in the E4 region. For example, when the adenoviral vector comprises three exogenous nucleic acid sequences, two exogenous nucleic acid sequences can be positioned in the E1 region, and one exogenous nucleic acid sequence can be positioned in the E4 region.

[0056] An "exogenous" or "non-native" nucleic acid sequence is any nucleic acid sequence (e.g., DNA, RNA, or cDNA sequence) that is not a naturally occurring nucleic acid sequence of an adenovirus in a naturally occurring position. Thus, the non-native nucleic acid sequence can be naturally found in an adenovirus, but located at a non-native position within the adenoviral genome and/or operably linked to a non-native promoter. The terms "non-native nucleic acid sequence," "heterologous nucleic acid sequence," and "exogenous nucleic acid sequence" are synonymous and can be used interchangeably in the context of the invention. The non-native nucleic acid sequence preferably is DNA and preferably encodes a protein (i.e., one or more nucleic acid sequences encoding one or more proteins).

[0057] The non-native nucleic acid can be in the form of a transgene. The term "transgene" is defined herein as a non-native nucleic acid sequence that is operably linked to appropriate regulatory elements (e.g., a promoter), such that the non-native nucleic acid sequence can be expressed to produce a protein (e.g., peptide or polypeptide). The regulatory elements (e.g., promoter) can be native or non-native to the adenovirus or adenoviral vector.

[0058] The non-native nucleic acid sequence can encode a therapeutic protein that can be used to prophylactically or therapeutically treat a mammal for a disease. Examples of suitable therapeutic proteins include cytokines, toxins, tumor suppressor proteins, growth factors, hormones, receptors, mitogens, immunoglobulins, neuropeptides, neurotransmitters, and enzymes. Alternatively, the non-native nucleic acid sequence can encode an antigen of a pathogen (e.g., a bacterium or a virus), and the adenoviral vector can be used as a vaccine. For example, the non-native nucleic acid sequence can encode an antigen of a Herpes Simplex Virus-2, including, but not limited to an HSV-2 UL47 protein (e.g., SEQ ID NO: 11 or SEQ ID NO: 13), and/or an HSV-2 UL19 protein (e.g., SEQ ID NO: 12).

[0059] The invention provides a composition comprising the adenoviral vector described herein and a carrier therefor (e.g., a pharmaceutically acceptable carrier). The composition desirably is a physiologically acceptable (e.g., pharmaceutically acceptable) composition, which comprises a carrier, preferably a physiologically (e.g., pharmaceutically) acceptable carrier, and the adenoviral vector. Any suitable carrier can be used within the context of the invention, and such carriers are well known in the art. The choice of carrier will be determined, in part, by the particular use of the composition (e.g., administration to an animal) and the particular method used to administer the composition. Ideally, in the context of replication-deficient adenoviral vectors, the pharmaceutical composition preferably is free of replication-competent adenovirus. The pharmaceutical composition optionally can be sterile.

[0060] Suitable compositions include aqueous and non-aqueous isotonic sterile solutions, which can contain anti-oxidants, buffers, and bacteriostats, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The composition can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water, immediately prior to use. Extemporaneous solutions and suspensions can be prepared from sterile powders, granules, and tablets. Preferably, the carrier is a buffered saline solution. More preferably, the adenovirus or adenoviral vector is part of a composition formulated to protect the adenovirus or adenoviral vector from damage prior to administration. For example, the composition can be formulated to reduce loss of the adenovirus or adenoviral vector on devices used to prepare, store, or administer the adenovirus or adenoviral vector, such as glassware, syringes, or needles. The composition can be formulated to decrease the light sensitivity and/or temperature sensitivity of the adenovirus or adenoviral vector. To this end, the composition preferably comprises a pharmaceutically acceptable liquid carrier, such as, for example, those described above, and a stabilizing agent selected from the group consisting of polysorbate 80, L-arginine, polyvinylpyrrolidone, trehalose, and combinations thereof. Use of such a composition will extend the shelf life of the adenovirus or adenoviral vector, and facilitate its administration. Formulations for adenovirus or adenoviral vector-containing compositions are further described in, for example, U.S. Pat. Nos. 6,225,289, 6,514,943, and International Patent Application Publication WO 2000/034444.

[0061] The composition also can be formulated to enhance transduction efficiency. In addition, one of ordinary skill in the art will appreciate that the adenoviral vector can be present in a composition with other therapeutic or biologically-active agents. For example, factors that control inflammation, such as ibuprofen or steroids, can be part of the composition to reduce swelling and inflammation associated with in vivo administration of the adenoviral vector. If the adenoviral vector is used to deliver an antigen-encoding nucleic acid sequence to a host, immune system stimulators or adjuvants, e.g., interleukins, lipopolysaccharide, double-stranded RNA, and/or TNFSF14/LIGHT (see, e.g., Zhang et al., J. Virol. Methods, 153(2): 142-148 (2008)) can be administered to enhance or modify any immune response to the antigen. Antibiotics, i.e., microbicides and fungicides, can be utilized to treat existing infection and/or reduce the risk of future infection, such as infection associated with gene transfer procedures.

[0062] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

Example 1

[0063] This example demonstrates the construction of a serotype 28 adenoviral vector comprising a serotype 45 adenovirus hexon protein and a serotype 45 adenovirus fiber protein, which encodes a Herpes Simplex Virus-2 (HSV) antigen.

[0064] A human serotype 28 adenoviral vector was prepared with a deletion in the E1 region, a portion of the hexon protein replaced with a portion of the hexon protein of a human serotype 45 adenovirus, and an insertion of a codon-optimized nucleic acid sequence encoding a wild-type HSV-2 UL19 protein into the E1 region (Ad28UL19 H(Ad45)). Ad28UL19 H(Ad45) is replication-deficient due to the deletion of the essential replication function provided by E1. In place of the E1 sequences, a CMVtetO UL19 expression cassette was introduced to provide the HSV-2 UL19 nucleic acid sequence. The expression cassette, located at the E1 region deletion junction, was oriented right-to-left with respect to the viral genome.

[0065] Ad28UL19 H(Ad45) has an E1 region deletion of nucleotides 462 through 3111. The deletion includes the E1A protein and part of the E1B protein, which renders the vector replication-incompetent in noncomplementing cell lines.

[0066] The construction of plasmid pAC28UL19.H(45) to provide Ad28UL19 H(Ad45) is schematically depicted in FIG. 1. Specifically, wild-type Ad28 virus DNA was rescued into a plasmid backbone by homologous recombination by using pAd28RSQ plasmid to make an Ad28 genome-containing plasmid (pACE28) (see FIG. 1, Step 3). A CMV tetO EGFP expression plasmid was introduced into the Ad28 genome-containing plasmid by homologous recombination to make an E1-deleted Ad28 genome-containing plasmid (pAC28EGFP) (462-3111 t ef) (see FIG. 1, Steps 4 and 5). PCR amplification and subcloning of the Ad45 hexon sequence into a shuttle plasmid was carried out by standard restriction enzyme subcloning. The Ad45 hexon nucleic acid sequence was inserted into pAC28EGFP plasmid by homologous recombination in E. coli to generate the Ad45 hexon-containing Ad28 adenoviral genome in plasmid form (pAC28EGFP.H(45)) (see FIG. 1, Steps 7 and 8). The HSV-2 UL19 gene was inserted into an adenoviral vector expression shuttle plasmid by standard restriction enzyme subcloning. The CMVTetO.UL19 gene was inserted into the pAC28EGFP.H(45) plasmid by homologous recombination in E. coli to generate the UL19-expressing Ad28 adenovector genome containing the Ad45 hexon sequence in plasmid form (pAC28UL19.H(45)) (see FIG. 1, Steps 9 and 10).

[0067] Plasmid pAC28UL19.H(45) was linearized with the restriction endonuclease PmeI. Adherent 293-ORF6 cells were transfected with the linearized plasmid, thereby resulting in conversion of the adenoviral genome (i.e., DNA) of the linearized plasmid into the viral vector Ad28UL19H(45).

[0068] The Ad28UL19H(45) adenoviral vector was expanded by serial passaging to generate high titer cell-virus lysate. The adenoviral vector was purified from the lysates by density-equilibrium centrifugation in cesium chloride gradients. The purified adenoviral vector was dialyzed into Final Formulation Buffer (FFB). The structural integrity of the genome of the adenoviral vector was confirmed by PCR, and the expression of the HSV-2 UL19 nucleic acid sequence was confirmed by Western blot.

[0069] A similar method was used to incorporate a portion of the Ad45 fiber nucleic acid sequence in place of a portion of the Ad28 fiber nucleic acid sequence.

[0070] The results of this example confirm the production of a serotype 28 adenoviral vector in accordance with the invention.

Example 2

[0071] This example demonstrates that the administration of the inventive serotype 28 adenoviral vector encoding one or more HSV antigens induces an immune response against HSV.

[0072] A serotype 28 adenoviral vector comprising portions of the hexon and fiber proteins from a serotype 45 adenovirus vector (Ad28 H/F) was produced using the methods described in Example 1. A first such adenoviral vector comprised a nucleic acid sequence encoding a wild-type HSV-2 UL47 protein (SEQ ID NO: 11). A second such adenoviral vector comprised a codon-optimized nucleic acid sequence encoding a wild-type HSV-2 UL19 protein (SEQ ID NO: 12).

[0073] T-cell response following a single intramuscular administration of each of the adenoviral vector-delivered antigens (1.times.10.sup.9 PU) was assessed in a mouse model and compared to natural infection (1.times.10.sup.6 PFU of HSV administered intravaginally) and control (i.e., formulation buffer (FFB)). A single administration of the adenoviral vector encoding either HSV-2 antigen induced a T-cell response that was greater than the T-cell response induced by a natural HSV infection.

[0074] The results of this example confirm that administration of the inventive serotype 28 adenoviral vector comprising a nucleic acid sequence encoding an HSV antigen induces an immune response against HSV.

Example 3

[0075] This example demonstrates that the administration of the inventive serotype 28 adenoviral vector encoding one or more HSV antigens induces an immune response against HSV.

[0076] Mice were divided into groups of four, and each group received a single intramuscular administration of one of the following: (a) an E1-deleted serotype 5 adenoviral vector encoding an HSV2 UL19 protein, (b) an E1-deleted serotype 28 adenoviral vector encoding an HSV2 UL19 protein, (c) the Ad28 H/F vector of the invention as described in Example 2, which encodes an HSV2 UL19 protein, and (d) formulation buffer (FFB; negative control). CD8+ T-cell responses following vaccination with the adenoviral vectors (1.times.10.sup.9 PU) were assessed. The elicited T-cell responses are plotted in the graph of FIG. 2.

[0077] As is apparent from the results depicted in FIG. 2, a single administration of the Ad28H/F vector elicited a strong CD8+ T-cell response that was comparable to the CD8+ T-cell response elicited by the Ad5 vector.

[0078] The results of this example confirm that administration of the inventive serotype 28 adenoviral vector can induce a strong immune response against HSV.

[0079] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

[0080] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0081] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Sequence CWU 1

1

131531PRTAdenovirus 1Arg Ser Gln Arg Leu Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp1 5 10 15Thr Thr Tyr Ser Tyr Lys Ala Arg Phe Thr Leu Ala Val Gly Asp Asn 20 25 30Arg Val Leu Asp Met Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu 35 40 45Asp Arg Gly Pro Ser Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser 50 55 60Leu Ala Pro Lys Ser Ala Pro Asn Pro Ser Gln Trp Asp Ala Lys Glu65 70 75 80Lys Glu Gly Val Ala Gln Thr Glu Lys Asn Val Leu Lys Thr Phe Gly 85 90 95Val Ala Ala Thr Gly Gly Phe Asn Ile Thr Asp Gln Gly Leu Leu Leu 100 105 110Gly Thr Glu Glu Thr Ala Glu Asn Val Lys Lys Asp Ile Tyr Ala Glu 115 120 125Lys Thr Phe Gln Pro Glu Pro Gln Val Gly Glu Glu Asn Trp Gln Glu 130 135 140Ser Glu Ala Phe Tyr Gly Gly Arg Ala Ile Lys Lys Asp Thr Lys Met145 150 155 160Lys Pro Cys Tyr Gly Ser Phe Ala Arg Pro Thr Asn Glu Lys Gly Gly 165 170 175Gln Ala Lys Phe Lys Thr Leu Asp Gly Gln Val Thr Lys Asp Pro Asp 180 185 190Ile Asp Phe Ala Tyr Phe Asp Val Pro Gly Gly Lys Ala Pro Thr Gly 195 200 205Ser Ser Leu Pro Glu Glu Tyr Lys Ala Asp Ile Ile Leu Tyr Thr Glu 210 215 220Asn Val Asn Leu Glu Thr Pro Asp Thr His Ile Val Tyr Lys Pro Gly225 230 235 240Lys Glu Asp Asp Asn Ser Glu Ile Asn Leu Thr Gln Gln Ser Met Pro 245 250 255Asn Arg Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Val Gly Leu Met 260 265 270Tyr Tyr Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser 275 280 285Gln Leu Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser 290 295 300Tyr Gln Leu Leu Leu Asp Ser Leu Gly Asp Arg Thr Arg Tyr Phe Ser305 310 315 320Met Trp Asn Ser Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile 325 330 335Glu Asn His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu 340 345 350Asn Gly Thr Gly Thr Asn Ser Thr Tyr Gln Gly Val Lys Ile Thr Gly 355 360 365Asn Asn Asp Gly Asp Leu Glu Thr Glu Trp Glu Arg Asp Glu Ala Ile 370 375 380Ser Arg Gln Asn Gln Ile Cys Lys Gly Asn Val Tyr Ala Met Glu Ile385 390 395 400Asn Leu Gln Ala Asn Leu Trp Lys Ser Phe Leu Tyr Ser Asn Val Ala 405 410 415Leu Tyr Leu Pro Asp Ser Tyr Lys Tyr Thr Pro Ala Asn Val Thr Leu 420 425 430Pro Ala Asn Thr Asn Thr Tyr Glu Tyr Met Asn Gly Arg Val Val Ala 435 440 445Pro Ser Leu Val Asp Ala Tyr Ile Asn Ile Gly Ala Arg Trp Ser Leu 450 455 460Asp Pro Met Asp Asn Val Asn Pro Phe Asn His His Arg Asn Ala Gly465 470 475 480Leu Arg Tyr Arg Ser Met Leu Leu Gly Asn Gly Arg Tyr Val Pro Phe 485 490 495His Ile Gln Val Pro Gln Lys Phe Phe Ala Ile Lys Asn Leu Leu Leu 500 505 510Leu Pro Gly Ser Tyr Thr Tyr Glu Trp Asn Phe Arg Lys Asp Val Asn 515 520 525Met Ile Leu 53021596DNAAdenovirus 2ccggtcccag cgtctgacgc tgcgcttcgt gcccgtggat cgcgaggaca ccacgtactc 60gtacaaggcg cgcttcactc tggccgtggg agacaaccgg gtgctagaca tggccagcac 120ttactttgac atccgcggcg tcctggaccg cggtcccagc ttcaaaccct actcgggcac 180ggcttacaac agcctggccc ccaagagcgc tcccaatccc agccagtggg atgcaaagga 240aaaggaagga gttgcccaaa cagaaaaaaa tgttttaaaa acatttggtg ttgccgctac 300aggtggtttt aatattacag atcagggttt gttacttgga actgaggaaa cagctgaaaa 360cgttaaaaag gatatctatg cagagaaaac tttccagcct gaacctcaag ttggtgaaga 420aaactggcag gaaagtgaag ccttttatgg aggaagggct attaagaaag acaccaaaat 480gaagccatgc tatggttcat ttgccagacc cactaatgaa aaaggaggac aggctaaatt 540taaaacacta gatgggcaag ttacaaaaga tccagatatt gactttgctt actttgacgt 600ccctggcgga aaagctccaa caggcagtag tctaccggaa gaatacaaag cagatataat 660tttgtacaca gaaaatgtta atctggaaac accagatact cacatagtgt ataaacctgg 720caaagaagat gacaattctg aaattaactt aacacaacag tccatgccaa acagacccaa 780ctacattggc tttagggaca actttgtagg tctcatgtac tacaacagta ctggcaacat 840gggtgtgctg gctggtcagg cctctcagtt gaatgctgtg gtggacttgc aagacagaaa 900caccgagctg tcttaccagc tcttgctaga ttctctgggt gacagaacca gatactttag 960catgtggaac tctgcggttg acagttatga tcccgatgtc aggatcattg agaatcacgg 1020tgtggaagat gaacttccaa actattgctt cccattgaat ggcactggta ccaattccac 1080ctatcaaggt gtaaaaatta caggtaataa tgatggcgat cttgaaaccg aatgggaaag 1140agatgaagca atctctagac aaaaccaaat ctgcaagggc aacgtctatg ccatggagat 1200caacctccag gccaacctgt ggaagagttt tctgtactcg aacgtagccc tgtacctgcc 1260tgactcatac aagtacacgc cggccaacgt cacgctgccc gccaacacca acacctacga 1320gtacatgaac ggccgcgtgg tagccccctc gctggtggac gcttacatca acatcggcgc 1380ccgctggtcg ctggatccca tggacaatgt aaacccattc aaccaccacc gcaacgcggg 1440cctgcgctac cgttccatgt tgttgggcaa cggtcgctac gtgcccttcc acatccaagt 1500gccccaaaag ttctttgcca tcaagaacct gcttctgctc ccgggctcct acacctacga 1560gtggaacttc cgcaaggacg tcaacatgat cctgca 15963324PRTAdenovirus 3Leu Ser Leu Lys Leu Ala Asp Pro Ile Ala Ile Val Asn Gly Asp Val1 5 10 15Ser Leu Lys Val Gly Gly Gly Leu Thr Leu Gln Glu Gly Asn Leu Thr 20 25 30Val Asp Ala Lys Ala Pro Leu Gln Val Ala Asn Asp Asn Lys Leu Glu 35 40 45Leu Ser Tyr Ala Asp Pro Phe Glu Val Lys Asp Thr Lys Leu Gln Leu 50 55 60Lys Val Gly His Gly Leu Lys Val Ile Asp Glu Lys Thr Ser Ser Gly65 70 75 80Leu Gln Ser Leu Ile Gly Asn Leu Val Val Leu Thr Gly Lys Gly Ile 85 90 95Gly Thr Gln Glu Leu Lys Asp Lys Asp Asp Glu Thr Lys Asn Ile Gly 100 105 110Val Gly Ile Asn Val Arg Ile Gly Lys Asn Glu Ser Leu Ala Phe Asp 115 120 125Lys Asp Gly Asn Leu Val Ala Trp Asp Asn Glu Asn Asp Arg Arg Thr 130 135 140Leu Trp Thr Thr Pro Asp Thr Ser Pro Asn Cys Lys Ile Ser Thr Glu145 150 155 160Lys Asp Ser Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile 165 170 175Leu Ala Ser Val Ser Leu Leu Ala Val Ala Gly Ser Tyr Leu Asn Met 180 185 190Thr Ala Ser Thr Gln Lys Ser Ile Lys Val Ser Leu Met Phe Asp Ser 195 200 205Lys Gly Leu Leu Met Thr Thr Ser Ser Ile Asp Lys Gly Tyr Trp Asn 210 215 220Tyr Arg Asn Lys Asn Ser Val Val Gly Thr Ala Tyr Glu Asn Ala Ile225 230 235 240Pro Phe Met Pro Asn Leu Val Ala Tyr Pro Arg Pro Asn Thr Pro Asp 245 250 255Ser Lys Ile Tyr Ala Arg Ser Lys Ile Val Gly Asn Val Tyr Leu Ala 260 265 270Gly Leu Ala Tyr Gln Pro Ile Val Ile Thr Val Ser Phe Asn Gln Glu 275 280 285Lys Asp Ala Ser Cys Ala Tyr Ser Ile Thr Phe Glu Phe Ala Trp Asn 290 295 300Lys Asp Tyr Val Gly Gln Phe Asp Thr Thr Ser Phe Thr Phe Ser Tyr305 310 315 320Ile Ala Gln Glu4975DNAAdenovirus 4ttgtcactca aactggctga cccaatagcc atcgtcaatg gggatgtctc actcaaggtg 60ggaggtggac tcactttgca agaaggaaac ctaactgttg atgcaaaggc tccattgcaa 120gttgcaaatg acaacaaatt ggagctttct tatgcagacc catttgaggt taaagacact 180aagctacaat taaaagtagg tcatggttta aaagtaatag atgaaaaaac ttcttcaggt 240cttcaaagtc taattggaaa tctcgtagtt ttaacaggaa aaggaattgg cactcaagaa 300ttaaaagaca aagacgatga aactaaaaat ataggagttg gaataaatgt gagaataggg 360aaaaacgaaa gtctggcgtt tgacaaagat ggaaatttgg tagcatggga taatgaaaac 420gacaggcgca ctctatggac aactccagac acatctccaa attgtaaaat aagtactgaa 480aaagactcca aacttacttt agtccttact aaatgcggat ctcaaattct agcaagtgtg 540tctttgcttg ctgtcgctgg aagttatctt aatatgacag ctagtactca aaagagtata 600aaggtatctt tgatgtttga ctcaaaaggg cttctaatga ctacatcttc tattgataaa 660ggatattgga attatagaaa taaaaacagc gttgttggaa ctgcttatga aaacgcaatt 720ccatttatgc caaatttagt ggcttatcca agacctaaca cgccagactc taaaatttat 780gctagaagca aaattgttgg aaatgtttat ttagcaggtt tggcttacca accaattgtc 840ataacagtta gttttaatca ggagaaggat gcaagttgtg cttactcaat aacatttgaa 900tttgcctgga acaaagacta cgttggtcaa tttgatacca cctcctttac cttctcttat 960attgcccaag aatga 9755134PRTAdenovirus 5Met Asn Gly Thr Gly Gly Pro Phe Glu Gly Gly Leu Phe Ser Pro Tyr1 5 10 15Leu Thr Thr Arg Leu Pro Gly Trp Ala Gly Val Arg Gln Asn Val Met 20 25 30Gly Ser Thr Val Asp Gly Arg Pro Val Leu Pro Ala Asn Ser Ser Thr 35 40 45Met Thr Tyr Ala Thr Val Gly Ser Ser Ser Leu Asp Ser Thr Ala Ala 50 55 60Ala Ala Ala Ala Ala Ala Ala Met Thr Ala Thr Arg Leu Ala Ser Ser65 70 75 80Tyr Met Pro Ser Ser Gly Ser Ser Pro Ser Val Pro Ser Ser Ile Ile 85 90 95Ala Glu Glu Lys Leu Leu Ala Leu Leu Ala Glu Leu Glu Ala Leu Ser 100 105 110Arg Gln Leu Ala Ala Leu Thr Gln Gln Val Ser Glu Leu Arg Glu Gln 115 120 125Gln Gln Gln Gln Asn Lys 1306519PRTAdenovirus 6Met Arg Arg Ala Val Val Ser Ser Ser Pro Pro Pro Ser Tyr Glu Ser1 5 10 15Val Met Ala Gln Ala Thr Leu Glu Val Pro Phe Val Pro Pro Arg Tyr 20 25 30Met Ala Pro Thr Glu Gly Arg Asn Ser Ile Arg Tyr Ser Glu Leu Ala 35 40 45Pro Gln Tyr Asp Thr Thr Arg Val Tyr Leu Val Asp Asn Lys Ser Ala 50 55 60Asp Ile Ala Ser Leu Asn Tyr Gln Asn Asp His Ser Asn Phe Leu Thr65 70 75 80Thr Val Val Gln Asn Asn Asp Phe Thr Pro Ala Glu Ala Ser Thr Gln 85 90 95Thr Ile Asn Phe Asp Glu Arg Ser Arg Trp Gly Gly Asp Leu Lys Thr 100 105 110Ile Leu His Thr Asn Met Pro Asn Val Asn Glu Tyr Met Phe Thr Ser 115 120 125Lys Phe Lys Ala Arg Val Met Val Ala Arg Lys His Pro Lys Asp Val 130 135 140Asp Ala Ser Asp Leu Ser Lys Asp Ile Leu Glu Tyr Asp Trp Phe Glu145 150 155 160Phe Thr Leu Pro Glu Gly Asn Phe Ser Glu Thr Met Thr Ile Asp Leu 165 170 175Met Asn Asn Ala Ile Leu Glu Asn Tyr Leu Gln Val Gly Arg Gln Asn 180 185 190Gly Val Leu Glu Ser Asp Ile Gly Val Lys Phe Asp Ser Arg Asn Phe 195 200 205Lys Leu Gly Trp Asp Pro Val Thr Lys Leu Val Met Pro Gly Val Tyr 210 215 220Thr Tyr Glu Ala Phe His Pro Asp Val Val Leu Leu Pro Gly Cys Gly225 230 235 240Val Asp Phe Thr Glu Ser Arg Leu Ser Asn Leu Leu Gly Ile Arg Lys 245 250 255Lys Gln Pro Phe Gln Glu Gly Phe Arg Ile Met Tyr Glu Asp Leu Val 260 265 270Gly Gly Asn Ile Pro Ala Leu Leu Asn Val Lys Glu Tyr Leu Lys Asp 275 280 285Lys Glu Glu Ala Gly Thr Ala Asp Ala Asn Thr Ile Lys Ala Gln Asn 290 295 300Asp Ala Val Pro Arg Gly Asp Asn Tyr Ala Ser Ala Ala Glu Ala Lys305 310 315 320Ala Ala Gly Lys Glu Ile Glu Leu Lys Ala Ile Leu Lys Asp Asp Ser 325 330 335Asn Arg Ser Tyr Asn Val Ile Glu Gly Thr Thr Asp Thr Leu Tyr Arg 340 345 350Ser Trp Tyr Leu Ser Tyr Thr Tyr Gly Asp Pro Glu Lys Gly Val Gln 355 360 365Ser Trp Thr Leu Leu Thr Thr Pro Asp Val Thr Cys Gly Ala Glu Gln 370 375 380Val Tyr Trp Ser Leu Pro Asp Leu Met Gln Asp Pro Val Thr Phe Arg385 390 395 400Ser Thr Gln Gln Val Ser Asn Tyr Pro Val Val Gly Ala Glu Leu Met 405 410 415Pro Phe Arg Ala Lys Ser Phe Tyr Asn Asp Leu Ala Val Tyr Ser Gln 420 425 430Leu Ile Arg Ser Tyr Thr Ser Leu Thr His Val Phe Asn Arg Phe Pro 435 440 445Asp Asn Gln Ile Leu Cys Arg Pro Pro Ala Pro Thr Ile Thr Thr Val 450 455 460Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly Thr Leu Pro Leu Arg465 470 475 480Ser Ser Ile Arg Gly Val Gln Arg Val Thr Val Thr Asp Ala Arg Arg 485 490 495Arg Thr Cys Pro Tyr Val Tyr Lys Ala Leu Gly Ile Val Ala Pro Arg 500 505 510Val Leu Ser Ser Arg Thr Phe 5157732PRTAdenovirus 7Met Glu Glu Gln Pro Arg Lys Gln Glu Gln Glu Glu Asp Leu Thr Thr1 5 10 15His Glu Gln Pro Lys Ile Glu Gln Asp Leu Gly Phe Glu Glu Pro Ala 20 25 30Arg Leu Glu Pro Pro Gln Asp Glu Gln Glu His Glu Gln Asp Ala Gly 35 40 45Gln Glu Glu Thr Asp Ala Gly Leu Glu His Gly Tyr Leu Gly Gly Glu 50 55 60Glu Asp Val Leu Leu Lys His Leu Gln Arg Gln Ser Leu Ile Leu Arg65 70 75 80Asp Ala Leu Ala Asp Arg Ser Glu Thr Pro Leu Ser Val Glu Glu Leu 85 90 95Cys Arg Ala Tyr Glu Leu Asn Leu Phe Ser Pro Arg Val Pro Pro Lys 100 105 110Arg Gln Pro Asn Gly Thr Cys Glu Pro Asn Pro Arg Leu Asn Phe Tyr 115 120 125Pro Val Phe Ala Val Pro Glu Ala Leu Ala Thr Tyr His Ile Phe Phe 130 135 140Lys Asn Gln Lys Ile Pro Val Ser Cys Arg Ala Asn Arg Thr Arg Ala145 150 155 160Asp Ala Leu Leu Ala Leu Gly Pro Gly Ala His Ile Pro Asp Ile Ala 165 170 175Ser Leu Glu Glu Val Pro Lys Ile Phe Glu Gly Leu Gly Arg Asp Glu 180 185 190Thr Arg Ala Ala Asn Ala Leu Lys Glu Thr Ala Glu Glu Glu Gly His 195 200 205Thr Ser Ala Leu Val Glu Leu Glu Gly Asp Asn Ala Arg Leu Ala Val 210 215 220Leu Lys Arg Ser Val Glu Leu Thr His Phe Ala Tyr Pro Ala Val Asn225 230 235 240Leu Pro Pro Lys Val Met Arg Arg Ile Met Asp Gln Leu Ile Met Pro 245 250 255His Ile Glu Ala Leu Asp Glu Ser Gln Glu Gln Arg Pro Glu Asp Val 260 265 270Arg Pro Val Val Ser Asp Glu Met Leu Ala Arg Trp Leu Gly Thr Arg 275 280 285Asp Pro Gln Ala Leu Glu Gln Arg Arg Lys Leu Met Leu Ala Val Val 290 295 300Leu Val Thr Leu Glu Leu Glu Cys Met Arg Arg Phe Phe Ser Asp Pro305 310 315 320Glu Thr Leu Arg Lys Val Glu Glu Thr Leu His Tyr Thr Phe Arg His 325 330 335Gly Phe Val Arg Gln Ala Cys Lys Ile Ser Asn Val Glu Leu Thr Asn 340 345 350Leu Val Ser Cys Leu Gly Ile Leu His Glu Asn Arg Leu Gly Gln Thr 355 360 365Val Leu His Ser Thr Leu Lys Gly Glu Ala Arg Arg Asp Tyr Val Arg 370 375 380Asp Cys Ile Phe Leu Phe Leu Cys His Thr Trp Gln Ala Ala Met Gly385 390 395 400Val Trp Gln Gln Cys Leu Glu Asp Glu Asn Leu Lys Glu Leu Asp Lys 405 410 415Val Leu Ala Arg Asn Leu Lys Lys Leu Trp Thr Gly Phe Asp Glu Arg 420 425 430Thr Val Ala Ser Asp Leu Ala Gln Ile Val Phe Pro Glu Arg Leu Arg 435 440 445Gln Thr Leu Lys Gly Gly Leu Pro Asp Phe Met Ser Gln Ser Met Ile 450 455 460Gln Asn Tyr Arg Thr Phe Ile Leu Glu Arg Ser Gly Met Leu Pro Ala465 470 475 480Thr Cys Asn Ala Phe Pro Ser Asp Phe Val Pro Leu Ser Tyr Arg Glu 485 490 495Cys Pro Pro Pro Leu Trp Ser His Cys Tyr Leu Leu Gln Leu Ala Asn 500 505 510Tyr Ile Ala Tyr His Ser Asp Val Ile Glu Asp Val Ser Gly Glu Gly 515

520 525Leu Leu Glu Cys His Cys Arg Cys Asn Leu Cys Ser Pro His Arg Ser 530 535 540Leu Val Cys Asn Pro Gln Leu Leu Ser Glu Thr Gln Val Ile Gly Thr545 550 555 560Phe Glu Leu Gln Gly Pro Gln Glu Ser Thr Ala Pro Leu Lys Leu Thr 565 570 575Pro Gly Leu Trp Thr Ser Ala Tyr Leu Arg Lys Phe Val Pro Glu Asp 580 585 590Tyr His Ala His Glu Ile Lys Phe Phe Glu Asp Gln Ser Arg Pro Gln 595 600 605His Ala Asp Leu Thr Ala Cys Val Ile Thr Gln Gly Ala Ile Leu Ala 610 615 620Gln Leu His Ala Ile Gln Lys Ser Arg Gln Glu Phe Leu Leu Lys Lys625 630 635 640Gly Arg Gly Val Tyr Leu Asp Pro Gln Thr Gly Glu Val Leu Asn Pro 645 650 655Gly Leu Pro Gln His Ala Glu Glu Glu Ala Gly Ala Ala Ser Gly Gly 660 665 670Asp Gly Arg Arg Met Gly Gln Pro Gly Arg Gly Gly Arg Met Gly Gly 675 680 685Gly Asp Arg Gly Gly Arg Ile Gly Arg Gly Gly Arg Gly Ala Gly Asn 690 695 700Arg Ala Ala Arg Arg Arg Thr Ile Arg Ala Gly Ser Pro Gly Gly His705 710 715 720Gly Tyr Asn Leu Arg Ser Ser Gly Gln Ala Ser Ser 725 7308373PRTAdenovirus 8Met His Pro Val Leu Arg Gln Met Arg Pro Thr Pro Pro Ala Thr Thr1 5 10 15Ala Thr Ala Ala Val Ala Gly Ala Gly Ala Val Ala Pro Pro Gln Thr 20 25 30Glu Met Asp Leu Glu Glu Gly Glu Gly Leu Ala Arg Leu Gly Ala Pro 35 40 45Ser Pro Glu Arg His Pro Arg Val Gln Leu Gln Lys Asp Val Arg Pro 50 55 60Ala Tyr Val Pro Pro Gln Asn Leu Phe Arg Asp Arg Ser Gly Glu Glu65 70 75 80Pro Glu Glu Met Arg Asp Cys Arg Phe Arg Ala Gly Arg Glu Leu Arg 85 90 95Glu Gly Leu Asp Arg Gln Arg Val Leu Arg Asp Glu Asp Phe Glu Pro 100 105 110Asn Glu Gln Thr Gly Ile Ser Pro Ala Arg Ala His Val Ala Ala Ala 115 120 125Asn Leu Val Thr Ala Tyr Glu Gln Thr Val Lys Gln Glu Arg Asn Phe 130 135 140Gln Lys Ser Phe Asn Asn His Val Arg Thr Leu Ile Ala Arg Glu Glu145 150 155 160Val Ala Leu Gly Leu Met His Leu Trp Asp Leu Ala Glu Ala Ile Val 165 170 175Gln Asn Pro Asp Ser Lys Pro Leu Thr Ala Gln Leu Phe Leu Val Val 180 185 190Gln His Ser Arg Asp Asn Glu Ala Phe Arg Glu Ala Leu Leu Asn Ile 195 200 205Ala Glu Pro Glu Gly Arg Trp Leu Leu Glu Leu Ile Asn Ile Leu Gln 210 215 220Ser Ile Val Val Gln Glu Arg Ser Leu Ser Leu Ala Glu Lys Val Ala225 230 235 240Ala Ile Asn Tyr Ser Val Leu Ser Leu Gly Lys Phe Tyr Ala Arg Lys 245 250 255Ile Tyr Lys Thr Pro Tyr Val Pro Ile Asp Lys Glu Val Lys Ile Asp 260 265 270Ser Phe Tyr Met Arg Met Ala Leu Lys Val Leu Thr Leu Ser Asp Asp 275 280 285Leu Gly Val Tyr Arg Asn Asp Arg Ile His Lys Ala Val Ser Thr Ser 290 295 300Arg Arg Arg Glu Leu Ser Asp Arg Glu Leu Met Leu Ser Leu Arg Arg305 310 315 320Ala Leu Val Gly Gly Ala Ala Gly Gly Glu Glu Ser Tyr Phe Asp Met 325 330 335Gly Ala Asp Leu His Trp Gln Pro Ser Arg Arg Ala Leu Glu Ala Ala 340 345 350Tyr Gly Pro Glu Asp Leu Glu Glu Asp Glu Glu Glu Glu Glu Asp Ala 355 360 365Pro Ala Ala Gly Tyr 37093531DNAAdenovirus 9atggccttgg ttcaaagtca cggggccagt ggtcttcacg cagaggcggc agatccagga 60tgtcaaccga cgcgtcgtcg cgcacgccag cgctctcagg gcgcagcacc gggacctgcc 120cgagcgccac gccgacgtgc ctctgccgcc cctgcccgcg gggccggaac cgccgctgcc 180gccgggagcg cgtccgcgac accgcttcta aaagcgcacc gcggcacggt cgtggccccg 240cgcagctacg ggctcatgca atgcgtggac acggccacca actcacccgt agaaatcaag 300taccatctgc atctcaagca cgccctcacc cgcctctacg aggtcaacct cagaaccctg 360cccccggacc tggatctccg cgacaccatg gacagctccc aactgcgcgc cctcgtcttc 420gctctccgcc cccgccgcgc cgagatctgg acctggctcc cgcgcgggct cgtcagcctc 480tccgtcctcg aggagcccca gggtgagtcc cacgcaggcg aacatgaaaa ccaccagcca 540gggccgccac tcctgaagtt cctcctcaag ggacgcgctg tgtatctcgt ggatgaggta 600cagcccgtgc agcgctgcga gtactgcgga cgcttttaca agcatcagca cgagtgctcg 660gttcgccggc gggatttcta ctttcatcac atcaacagcc actcgtccaa ctggtggcag 720gaaatccagt tcttcccaat cggctctcat cctcgcacgg agaggctctt tgtcacctac 780gatgtagaaa cctacacctg gatggggtcc ttcggcaagc agctcgtccc cttcatgctg 840gtcatgaaat tctccgggga ccccgagctg atcgccctgg ctcgcgatct cgccgtgcgc 900ttacgctggg atcgctggga gcgggacccc ctcaccttct actgcgtcac accagaaaag 960atggccgtgg gccagcagtt ccgcctcttt cgcgacgagc tccagaccct catggcccgc 1020gagctctggg cttccttcat gcaagccaac ccacatctcc aggagtgggc gctcgagcag 1080cacggcctgc aatgccccga ggacctcacc tacgaggagc tcaaaaagct gccgcacatc 1140aaaggccgcc cgcgattcat ggaactctac atcgtcgggc acaacatcaa cggcttcgac 1200gagatcgtcc tcgccgccca ggtgatcaac aaccgagcct ccgtcccggg ccctttccgc 1260atcacccgca atttcatgcc gcgggcaggc aagattctct tcaatgacgt cactttcgct 1320ctgcctaacc ccctctcgaa gaagcgcacc gatttcgagc tctgggagca cggcggctgc 1380gacgactcgg acttcaagta ccagttcttg aaagtcatgg tcagggacac cttcgccctg 1440acgcacacct cgctccgcaa ggccgctcaa gcttacgccc tccccgtgga gaagggctgc 1500tgtccctaca aggccgtgaa ccatttctac atgctgggct cttaccgtgc ggacgatcga 1560ggattcccgc tccgggagta ctggaaggat gacgaggagt acgccctcaa ccgcgagctg 1620tgggagaaga aaggagaagc gggttatgac atcatccgcg aaacgctgga ctactgcgcc 1680atggacgtcc tcgtcaccgc cgagctcgtc gccaagctgc aagactccta cgcgcacttc 1740atccgcgact cggtccgcct gccccacgcc cactttaaca tcttccaacg gcccaccatc 1800tcctccaact cgcacgccat ctttcgccag atcgtcttcc gcgccgagca gccccagcgc 1860accaatctcg gcccctcctt cttggccccc tcgcacgagt tgtatgacta cgtgcgcgcc 1920agcatccgcg gggggcgctg ttatcccacc tacatcggca tcctctcgga gcccatctat 1980gtctatgaca tctgcggcat gtacgcctcc gccctcacgc atcccatgcc ctggggtccg 2040cccctcaacc cctacgagcg agcgctggcc gcccgcgagt ggcagatggc cttggatgat 2100gcatcctcaa aaatcgatta ttttgacaag gaactctgtc cgggcatctt caccatcgat 2160gcggaccccc ctgacgagca cctcctggat gtgctgcccc cgttctgctc gcgcaagggt 2220ggcagactct gctggaccaa cgagcccctg cgcggcgagg tggccaccag cgtggacctg 2280gtcaccctgc ataaccgcgg ctggcgcgtc aggatcgtgc ccgacgagcg caccaccgtc 2340ttccccgaat ggaagtgcgt cgcgcgcgag tatgtccagc tcaacatcgc ggccaaggag 2400cgcgccgacc gtgacaaaaa tcagaccatg agatccatcg ccaagcttct ctccaacgcc 2460ctctatggct cctttgccac caagcttgac aataaaaaaa tagtcttttc tgaccagatg 2520gatgaaagtc tcctaaaaag catcgcggca gggcaagcca acatcaaatc ctcctcgttt 2580ctagaaactg acaacctgag tgccgaggtc atgcccgctc tcgagaggga atacctaccc 2640caacagctgg cgctcgtgga cagcgacgcg gaagagagtg aggacgagca cagacccgcc 2700cccttttata cccccccgtc ggggaccccc ggtcacgtgg cctacaccta caagccaatc 2760accttcttgg atgcggagga gggggacatg tgcttgcaca cggtggaaaa ggtggacccc 2820ctggtggaca acgaccgcta cccctcgcac gtggcctcct ttgtcttggc gtggacgcgc 2880gccttcgtct cagagtggtc cgaatttctc tacgaggagg accgcgggac gcccctgcag 2940gacaggccaa tcaagtccat ctacggggac accgacagcc tgtttgtcac cgagcgcgga 3000cacagactca tggagacgcg aggtaagaag cgcatcaaaa agaacggggg aaaactggtt 3060tttgaccccg aacaacccga gctcacctgg ctcgtcgagt gcgagaccgt ctgcgcccac 3120tgcggagcgg acgcgttcgc ccccgagtcc gtctttctcg cacccaagct atacgccctg 3180caatccctcc tctgtcccgc ctgtgggcgc tcttccaagg gcaagctccg cgccaagggc 3240cacgccgccg aggccctcaa ctacgagctc atggtcaact gctatctcgc cgacgcgcag 3300ggcgaagacc gtgcccgttt cagcaccagc aggatgagtc tcaagcgaac ccttgcaagc 3360gcccagcccg gggcccaccc cttcaccgtg acggagacaa ccctcacgcg gaccctgaga 3420ccctggaagg acatgacgct ggccgcgctg gacgcccatc gtctcgtgcc ctacagtcgc 3480agtcgtccca acccccgaaa cgaggaagtc tgctggatcg agatgccgta g 35311028607DNAArtificial SequenceSynthetic 10catcatcaat aatatacccc acaaagtaaa caaaagttaa tatgcaaatg agcttttgaa 60tttagggcgg ggccgtcgct gattggccgt tgcaagaacc gttagtgacg tcacgacgca 120cggccgacgc tcgccgcgga ggcgtggcct agcccggaag caagtcgcgg ggctgatgac 180gtataaaaaa gcggacttta gacccggaaa cggccgattt tcccgcggcc acgcccggat 240atgaggtaat tctgggcgga tgcaagtgaa attaggtcat tttggcgcga aaactgaatg 300aggaagtgaa aagcgaaaaa taccggtccc tcccagggcg gaatatttac cgagggccga 360gagactttga ccgattacgt gggggtttcg attgcggtgt ttttttcgcg aatttccgcg 420tccgtgtcaa agtccggtgt ttatgtcaca gatcagctga tagctgctgt tggagaacga 480tgccttctcc agggtgaacc tgaacggcat ctttgacatg gatgtctcgg tgtacaagat 540cctgagatac gatgagacca agtccagggt gcgcgcttgc gagtgcgggg gcagacacac 600caggatgcag ccagtggccc tggatgtgac cgaggagctg agaccagacc acctggtgat 660ggcctgtacc gggaccgagt tcagctccag tggggaggac acagattaga ggtaggtttt 720tgagtagtgg gcgtggctaa tgtgagtata aaggtgggtg tcttacgagg gtctttttgc 780ttttctgcag acatcatgaa cgggaccggc gggcccttcg aaggggggct ttttagccct 840tatttgacaa cccgcctgcc gggatgggcc ggagttcgtc agaatgtgat gggatcgacg 900gtggatgggc gcccagtgct tccagcaaat tcctcgacca tgacctacgc gaccgtgggg 960agctcgtcgc tcgacagcac cgccgcagcc gcggcagccg cagccgccat gacagcgacg 1020agactggcct cgagctacat gcccagcagc ggcagcagcc cctctgtgcc cagttccatc 1080atcgccgagg agaaactgct ggccctgctg gccgagctgg aagccctgag ccgccagctg 1140gccgccctga cccagcaggt gtctgagctc cgcgagcagc agcagcagca aaataaatga 1200ttcaataaac acagattctg attcaaacag caaagcatct ttattattta ttttttcgcg 1260cgcggtaggc cctggtccac ctctcccgat cattgagagt gcggtggatt ttttccagga 1320cccggtagag gtgggattgg atgttgaggt acatgggcat gagcccgtcc cgggggtgga 1380ggtagcacca ctgcatggcc tcgtgctctg gggtcgtgtt gtagatgatc cagtcatagc 1440aggggcgctg ggcgtggtgc tggatgatgt ctttaaggag gagactgatg gccacgggga 1500gccccttggt gtaggtgttg gcaaagcggt tgagctggga aggatgcatg cggggggaga 1560tgatgtgcag tttggcctgg atcttgaggt tggcaatgtt gccgcccaga tcccgcctgg 1620ggttcatgtt gtgcaggacc accaggacgg tgtagcccgt gcacttgggg aacttatcat 1680gcaacttgga agggaatgcg tggaagaatt tggagacgcc cttgtgcccg cccaggtttt 1740ccatgcactc atccatgatg atggcgatgg gcccgtgggc tgcggctttg gcaaagacgt 1800ttctggggtc agagacatcg taattatgct cctgggtgag atcgtcataa gacattttaa 1860tgaatttggg gcggagggtg ccagattggg ggacgatggt tccctcgggc cccggggcga 1920agttcccctc gcagatctgc atctcccagg ctttcatctc ggaggggggg atcatgtcca 1980cctgcggggc tatgaaaaaa acggtttccg gggcgggggt gatgagctgc gaggagagca 2040ggtttcttaa cagctgggac ttgccgcacc cggtcgggcc gtatatgacc ccgatgacgg 2100gttgcaggtg gtagttcaag gacatgcagc tgccgtcgtc ccggaggagg ggggccacct 2160cgttgagcat gtctctgact tggaggtttt cccggacgag ctcgccgagg aggcggtccc 2220cgcccagcga gagcagctct tgcagggaag caaagttttt caggggcttg agcccgtcgg 2280ccatgggcat cttggcgagg gtctgcgaga ggagctccag gcggtcccag agctcggtga 2340cgtgctctac ggcatctcga tccagcagac ttcctcgttt cgggggttgg gacgactgcg 2400actgtagggc acgagacgat gggcgtccag cgcggccagc gtcatgtcct tccagggtct 2460cagggtccgc gtgagggttg tctccgtcac ggtgaagggg tgggccccgg gctgggcgct 2520tgcaagggtt cgcttgagac tcatcctgct ggtgctgaaa cgggcacggt cttcgccctg 2580cgcgtcggcg agatagcagt tgaccatgag ctcgtagttg agggcctcgg cggcgtggcc 2640cttggcgcgg agcttgccct tggaagagcg cccacaggcg ggacagagga gggattgcag 2700ggcgtatagc ttgggtgcga gaaagacgga ctcgggggcg aacgcgtccg ctccgcagtg 2760ggcgcagacg gtctcgcact cgacgagcca ggtgagctcg ggttgttcgg ggtcaaaaac 2820cagttttccc ccgttctttt tgatgcgctt cttacctcgc gtctccatga gtctgtgtcc 2880gcgctcggtg acaaacaggc tgtcggtgtc cccgtagatg gacttgattg gcctgtcctg 2940caggggcgtc ccgcggtcct cctcgtagag aaattcggac cactctgaga cgaaggcgcg 3000cgtccacgcc aagacaaagg aggccacgtg cgaggggtag cggtcgttgt ccaccagggg 3060gtccaccttt tccaccgtgt gcaagcacat gtccccctcc tccgcatcca agaaggtgat 3120tggcttgtag gtgtaggcca cgtgaccggg ggtccccgac gggggggtat aaaagggggc 3180gggtctgtgc tcgtcctcac tctcttccgc gtcgctgtcc acgagcgcca gctgttgggg 3240taggtattcc ctctcgagag cgggcatgac ctcggcactc aggttgtcag tttctagaaa 3300cgaggaggat ttgatgttgg cttgccctgc cgcgatgctt tttaggagac tttcatccat 3360ctggtcagaa aagactattt ttttattgtc aagcttggtg gcaaaggagc catagagggc 3420gttggagaga agcttggcga tggatctcat ggtctgattt ttgtcacggt cggcgcgctc 3480cttggccgcg atgttgagct ggacatactc gcgcgcgacg cacttccatt cggggaagac 3540ggtggtgcgc tcgtcgggca cgatcctgac gcgccagccg cggttatgca gggtgaccag 3600gtccacgctg gtggccacct cgccgcgcag gggctcgttg gtccagcaga gtctgccacc 3660cttgcgcgag cagaacgggg gcagcacatc caggaggtgc tcgtcagggg ggtccgcatc 3720gatggtgaag atgcccggac agagttcctt gtcaaaataa tcgatttttg aggatgcatc 3780atccaaggcc atctgccact cgcgggcggc cagcgctcgc tcgtaggggt tgaggggcgg 3840accccagggc atgggatgcg tgagggcgga ggcgtacatg ccgcagatgt catagacata 3900gatgggctcc gagaggatgc cgatgtaggt gggataacag cgccccccgc ggatgctggc 3960gcgcacgtag tcatacaact cgtgcgaggg ggccaagaag gaggggccga gattggtgcg 4020ctggggctgc tcggcgcgga agacgatctg gcgaaagatg gcgtgcgagt tggaggagat 4080ggtgggccgt tggaagatgt taaagtgggc gtggggcagg cggaccgagt cgcggatgaa 4140gtgcgcgtag gagtcttgca gcttggcgac gagctcggcg gtgacgagga cgtccatggc 4200gcagtagtcc agcgtttcgc ggatgatgtc ataacccgct tctcctttct tctcccacag 4260ctcgcggttg agggcgtact cctcgtcatc cttccagtac tcccggagcg ggaatcctcg 4320atcgtccgca cggtaagagc ccagcatgta gaaatggttc acggccttgt agggacagca 4380gcccttctcc acggggaggg cgtaagcttg agcggccttg cggagcgagg tgtgcgtcag 4440ggcgaaggtg tccctgacca tgactttcaa gaactggtac ttgaagtccg agtcgtcgca 4500gccgccgtgc tcccagagct cgaaatcggt gcgcttcttc gagagggggt taggcagagc 4560gaaagtgacg tcattgaaga gaatcttgcc tgcccgcggc atgaaattgc gggtgatgcg 4620gaaagggccc gggacggagg ctcggttgtt gatcacctgg gcggcgagga cgatctcgtc 4680gaagccgttg atgttgtgcc cgacgatgta gagttccatg aatcgcgggc ggcctttgat 4740gtgcggcagc tttttgagct cctcgtaggt gaggtcctcg gggcattgca ggccgtgctg 4800ctcgagcgcc cactcctgga gatgtgggtt ggcttgcatg aaggaagccc agagctcgcg 4860ggccatgagg gtctggagct cgtcgcgaaa gaggcggaac tgctggccca cggccatctt 4920ttctggtgtg acgcagtaga aggtgagggg gtcccgctcc cagcgatccc agcgtaagcg 4980cacggcgaga tcgcgagcca gggcgatcag ctcggggtcc ccggagaatt tcatgaccag 5040catgaagggg acgagctgct tgccgaagga ccccatccag gtgtaggttt ctacatcgta 5100ggtgacaaag agcctctccg tgcgaggatg agagccgatt gggaagaact ggatttcctg 5160ccaccagttg gacgagtggc tgttgatgtg atgaaagtag aaatcccgcc ggcgaaccga 5220gcactcgtgc tgatgcttgt aaaagcgtcc gcagtactcg cagcgctgca cgggctgtac 5280ctcatccacg agatacacag cgcgtccctt gaggaggaac ttcaggagtg gcggccctgg 5340ctggtggttt tcatgttcgc ctgcgtggga ctcaccctgg ggctcctcga ggacggagag 5400gctgacgagc ccgcgcggga gccaggtcca gatctcggcg cggcgggggc ggagagcgaa 5460gacgagggcg cgcagttggg agctgtccat ggtgtcgcgg agatccaggt ccgggggcag 5520ggttctgagg ttgacctcgt agaggcgggt gagggcgtgc ttgagatgca gatggtactt 5580gatttctacg ggtgagttgg tggccgtgtc cacgcattgc atgagcccgt agctgcgcgg 5640ggccacgacc gtgccgcggt gcgcttttag aagcggtgtc gcggacgcgc tcccggcggc 5700agcggcggtt ccggccccgc gggcaggggc ggcagaggca cgtcggcgtg gcgctcgggc 5760aggtcccggt gctgcgccct gagagcgctg gcgtgcgcga cgacgcgtcg gttgacatcc 5820tggatctgcc gcctctgcgt gaagaccact ggccccgtga ctttgaacct gaaagacagt 5880tcaacagaat caatctcggc gtcattgacg gcggcctgac gcaggatctc ttgcacgtcg 5940cccgagttgt cctggtaggc gatttcggac atgaactgct cgatctcctc ctcctggaga 6000tcgccgcggc cagcgcgctc gacggtggcg gcgaggtcat tcgagatgcg acccatgagc 6060tgcgagaagg cgcccaggcc gctctcgttc cagacgcggc tgtagaccac gtccccgtcg 6120gcgtcgcgcg cgcgcatgac cacctgcgcg aggttgagct ccacgtgccg cgtgaagacg 6180gcgtagttgc gcaggcgctg gaagaggtag ttgagggtgg tggcgatgtg ctcggtgacg 6240aagaagtaca tgatccagcg gcgcaggggc atctcgctga tgtcgccgat ggcctccagc 6300ctttccatgg cctcgtagaa atccacggcg aagttgaaaa actgggcgtt gcgggccgag 6360accgtgagct cgtcttccaa gagccggatg agctcggcga tggtggcgcg cacctcgcgc 6420tcgaaacccc cgggggcctc ctcctcttcc tcttcttcca tgacgacctc ttcttctatt 6480tcttcctctg ggggcggtgg tggtggcggg gcccgacgac gacggcggcg caccgggaga 6540cggtcgacga agcgctcgat catctccccg cggcggcgac gcatggtttc ggtgacggcg 6600cgaccccgtt cgcgaggacg cagcgtgaag acgccgccgg tcatctcccg gtaatggggc 6660gggtccccgt tgggcagcga gagggcgctg acgatgcatc ttatcaattg cggtgtaggg 6720gacgtgagcg cgtcgagatc gaccggatcg gagaatcttt cgaggaaagc gtctagccaa 6780tcgcagtcgc aaggtaagct caaacacgta gcagccctgt ggacgctgtt agaattgcgg 6840ttgctgatga tgtaattgaa gtaggcgttt ttaaggcggc ggatggtggc gaggaggacc 6900aggtccttgg gtcccgcttg ctggatgcgg agccgctcgg ccatgcccca ggcctggccc 6960tgacaccggc tcaggttctt gtagtagtca tgcatgagcc tttcaatgtc atcactggcg 7020gaggcggagt cttccatgcg ggtgaccccg acgcccctga gcggctgcac gagcgccagg 7080tcggcgacga cgcgctcggc gaggatggcc tgttgcacgc gggtgagggt gtcctggaag 7140tcgtccatgt cgacgaagcg gtggtaggcc cctgtgttga tggtgtaggt gcagttggcc 7200atgagcgacc agttgacggt ctgcaggccg ggttgcacga cctcggagta cctgatccgc 7260gagaaggcgc gcgagtcgaa gacgtagtcg ttgcaggtgc gcacgaggta ctggtagccg 7320actaggaagt gcggcggcgg ctggcggtag agtggccagc gctgggtggc cggcgctccc 7380ggggccaggt cctcgagcat gaggcggtgg tagccgtaga ggtagcggga catccaggtg 7440atgccggcgg cagtggtgga ggcgcgcggg aactcgcgga cgcggttcca gatgttgcgc 7500agcggcagga aatagtccat ggtcggcacg gtctggccgg tgagacgcgc gcagtcattg 7560acgctctaga ggcaaaaacg aaagcggttg agcgggctct tcctccgtag cctggcggaa 7620cgcaaacggg ttaggccgcg tgtgtacccc ggttcgagtc ccctcgaatc aggctggagc 7680cgcgactaac gtggtattgg cactcccgtc tcgacccgag cccgatagcc gccaggatac 7740ggcggagagc cctttttgcc ggccgagggg agtcgctaga cttgaaagcg gccgaaaacc 7800ctgccgggta gtggctcgcg cccgtagtct ggagaagcat cgccagggtt gagtcgcggc 7860agaacccggt tcgcggacgg ccgcggcgag cgggacttgg tcaccccgcc gatttaaaga

7920cccacagcca gccgacttct ccagttacgg gagcgagccc ccttttttct ttttgccaga 7980tgcatcccgt cctgcgccaa atgcgtccca cccccccggc gaccaccgcg accgcggccg 8040tagcaggcgc cggcgctgta gccccgccac agacagagat ggacttggaa gagggcgaag 8100ggctggcgag actgggggcg ccgtccccgg agcgacaccc ccgcgtgcag ctgcagaagg 8160acgtgcgccc ggcgtacgtg cctccgcaga acctgttcag ggaccgcagc ggggaggagc 8220ccgaggagat gcgcgactgc cggtttcggg cgggcaggga gctgcgcgag ggcctggacc 8280gccagcgcgt gctgcgcgac gaggatttcg agccgaacga gcagacgggg atcagccccg 8340cgcgcgcgca cgtggcggcg gccaacctgg tgacggccta cgagcagacg gtgaagcagg 8400agcgcaactt ccaaaagagt ttcaacaacc acgtgcgcac cctgatcgcg cgcgaggagg 8460tggccctggg cttgatgcac ctgtgggacc tggcggaggc catcgtgcag aacccggaca 8520gcaagcctct gacggcgcag ctgttcctgg tggtgcagca cagcagggac aacgaggcgt 8580tcagggaggc gctgctgaac atcgccgagc ccgagggtcg ctggctgctg gagctgatta 8640acatcttgca gagcatcgta gtgcaggagc gcagcttgag cctggccgag aaggtggcgg 8700cgatcaacta ctcggtgctg agcctgggca agttttacgc gcgcaagatt tacaagacgc 8760cgtatgtgcc catagacaag gaggtgaaga tagacagctt ttacatgcgc atggcgctca 8820aggtgctgac gctgagcgac gacctgggcg tgtaccgcaa cgaccgcatc cacaaggccg 8880tgagcacgag ccggcggcgc gagctgagcg accgcgagct gatgctgagc ctgcgccggg 8940cgctggtagg gggcgccgcc ggcggcgagg agtcctactt cgacatgggg gcggacctgc 9000attggcagcc gagccggcgc gccttggagg ccgcctacgg tccagaggac ttggaagagg 9060atgaggaaga ggaggaggat gcacccgctg cggggtactg acgcctccgt gatgtgtttt 9120tagatgtccc agcaagcccc ggaccccgcc ataagggcgg cgctgcaaag ccagccgtcc 9180ggtctagcat cggacgactg ggaggccgcg atgcaacgca tcatggccct gacgacccgc 9240aaccccgagt cctttagaca acagccgcag gccaacagac tctcggccat tctggaggcg 9300gtggtcccct ctcggaccaa ccccacgcac gagaaggtgc tggcgatcgt gaacgcgctg 9360gcggagaaca aggccatccg tcccgacgag gccgggctgg tgtacaacgc cctgctggag 9420cgcgtgggcc gctacaacag cacgaacgtg cagtccaacc tggaccggct ggtgacggac 9480gtgcgcgagg ccgtggcgca gcgcgagcgg ttcaagaacg agggcctggg ctcgctggtg 9540gcgctgaacg ccttcctggc gacgcagccg gcgaacgtgc cgcgcgggca ggacgattac 9600accaacttta tcagcgcgct gcggctgatg gtgaccgagg tgccccagag cgaggtgtac 9660cagtcgggcc ctgactactt tttccagacg agccggcagg gcttgcagac ggtgaacctg 9720agtcaggctt tcaagaacct gcgcgggctg tggggcgtgc aggcgcccgt gggcgaccgg 9780tcgacggtga gcagcttgct gacgcccaac tcgcggctgc tgctgttgct gatcgcgccc 9840tttactgaca gcggcagcgt aaaccgcaac tcgtacctgg gccacctgct gacgctgtac 9900cgcgaggcca taggccaggc acaggtggac gagcagacct tccaggaaat tacgagcgtg 9960agccgcgcgc tggggcagaa cgacaccgac agtctgaggg ccaccctgaa ctttttgctg 10020accaatagac agcagaagat cccggcgcag tacgcactgt cggccgagga ggaaaggatc 10080ctgagatatg tgcagcagag cgtagggctg ttcctgatgc aggagggtgc cacccccagc 10140gccgcgctgg acatgaccgc gcgcaacatg gaacctagca tgtacgccgc caaccggccg 10200ttcatcaata agctgatgga ctacctgcac cgcgcggcgg ccatgaacac ggactacttt 10260accaacgcca tcctgaaccc gcactggctc ccgccgccgg gtttctacac gggcgagtac 10320gacatgcccg accccaacga cgggttcctg tgggacgacg tggacagcgc ggtgttctcg 10380ccggcctttc aaaagcgtca ggaggcgccg ccgagcgagg gcgcggtggg gagaagcccc 10440tttcctagct tagggagttt gcatagcttg ccgggctcgg tgaacagcgg cagggtgagc 10500cggccgcgct tgctgggcga ggacgagtac ctgaacgact cgctactgca gccgccgcgg 10560gccaagaacg ccatggccaa taacgggata gagagtctgg tggacaaact gaaccgctgg 10620aagacctacg ctcaggacca tagggacgcg cccgcgccgc ggcgacagcg ccacgaccgg 10680cagcggggcc tggtgtggga cgacgaggac tcggccgacg atagcagcgt gttggacttg 10740ggcgggagcg gtggggccaa cccgttcgca catctgcagc ccaaactggg gcggcggatg 10800ttttgaaatg caaaataaaa ctcaccaagg ccatagcgtg cgttctcttc cttgttagag 10860atgaggcgcg cggtggtgtc ttcctctcct cctccctcgt acgagagcgt gatggcgcag 10920gcgaccctgg aggttccgtt tgtgcctccg cggtatatgg ctcctacgga gggcagaaac 10980agcattcgtt actcggagct ggctccgcag tacgacacca ctcgcgtgta cttggtggac 11040aacaagtcgg cggacatcgc ttctctgaac taccaaaacg accacagcaa cttcctgacc 11100acggtggtgc agaacaacga tttcaccccc gccgaggcca gcacgcagac gataaatttt 11160gacgagcggt cgcggtgggg cggtgatctg aagaccattc tgcacaccaa catgcccaat 11220gtgaacgagt acatgttcac cagcaagttt aaggcgcggg tgatggtggc tagaaagcat 11280cccaaagatg tagatgccag tgatttaagc aaggatatct tagagtatga ttggtttgag 11340tttaccctgc ccgagggcaa cttttccgag accatgacca tagacctgat gaacaacgcc 11400atcttggaaa actacttgca agtggggcgg caaaatggcg tgctggagag cgatatcggt 11460gtcaagtttg acagcaggaa tttcaagctg ggctgggacc cggtgaccaa gctggtgatg 11520cctggggtct acacctacga ggccttccac ccggacgtgg tgctgctgcc gggctgcggg 11580gtggacttca ccgagagtcg tctgagcaac ctcctgggca ttcgcaagaa gcaacctttc 11640caagagggct tcagaatcat gtatgaggat ctagtagggg gcaacatccc cgccctcctg 11700aatgtcaagg agtatctgaa ggataaggaa gaagctggca cagcagatgc aaataccatt 11760aaggctcaga atgatgcagt cccaagagga gataactatg catcagcggc agaagccaaa 11820gcagcaggaa aagaaattga gttgaaggcc attttgaaag atgattcaaa cagaagctac 11880aatgtgatcg agggaaccac agacaccctg taccgcagtt ggtacctgtc ctatacctac 11940ggtgatcccg agaagggagt gcagtcgtgg acactgctta ccaccccgga cgtcacctgc 12000ggcgcggagc aagtctactg gtcgctgccg gacctcatgc aagaccccgt caccttccgc 12060tctacccagc aagtcagcaa ctaccccgtg gtcggcgccg agctcatgcc tttccgcgcc 12120aagagctttt acaacgacct cgccgtctac tctcagctca tccgcagcta cacctccctc 12180acccacgtct tcaaccgctt ccccgacaac cagatcctct gccgcccgcc cgcgcccacc 12240atcaccaccg tcagtgaaaa cgtgcctgct ctcacagatc acgggacgct accgctgcgc 12300agcagtatcc gcggagtcca gcgagtgacc gtcactgacg cccgtcgccg cacctgtccc 12360tacgtctaca aggccctggg catagtcgcg ccgcgcgtgc tttccagtcg caccttctaa 12420aaaatgtcta ttctcatctc gcccagcaat aacaccggct ggggtcttac taggcccagc 12480accatgtacg gaggagccaa gaagcgctcc cagcagcacc ccgtccgcgt ccgcggccac 12540ttccgcgctc cctggggcgc ttacaagcgc gggcggactt ccaccgccgc cgtgcgcacc 12600accgtcgacg acgtcatcga ctcggtggtc gccgacgcgc gcaactatac ccccgccccc 12660tccaccgtgg acgcggtcat cgacagcgtg gtggccgatg cacgcgacta tgccagacgc 12720aagagccggc ggcgacggat cgccaggcgc caccggagca cgcccgccat gcgcgccgcc 12780cgggctctgc tgcgccgcgc cagacgcacg ggccgccggg ccatgatgcg agccgcgcgc 12840cgcgctgcca ctgcacccac ccccgcaggc aggactcgca gacgagcggc cgccgccgcc 12900gccgcggcca tttctagcat gaccagaccc aggcgcggaa acgtgtactg ggtgcgcgac 12960tccgtcacgg gcgtgcgcgt gcccgtgcgc acccgtcctc ctcgtccctg atctaatgct 13020tgtgtcctcc cccgcaagcg acgatgtcaa agcgcaaaat caaggaggag atgctccagg 13080tcgtcgcccc ggagatttac ggacccccgg accagaaacc ccgcaaaatc aagcgggtta 13140aaaaaaagga tgaggtggac gagggggcag tagagtttgt gcgcgagttc gctccgcggc 13200ggcgcgtaaa ttggaagggg cgcagggtgc agcgcgtgtt gcggcccggc acggcggtgg 13260tgttcacgcc cggcgagcgg tcctcggtca ggagcaagcg tagctatgac gaggtgtacg 13320gcgacgacga catcctggac caggcggcgg agcgggcggg cgagttcgcc tacgggaagc 13380ggtcgcgcga agaggagctg atctcgctgc cgctggacga aagcaacccc acgccgagcc 13440tgaagcccgt gaccctgcag caggtgctgc cccaggcgat gctgctgccg agccgcgggg 13500tcaagcgcga gggcgagagc atgtacccga ccatgcagat catggtgccc aagcgccggc 13560gcgtggagga cgtgctggac accgtgaaaa tggatgtgga gcccgaggtc aaggtgcgcc 13620ccatcaagca ggtggcgccg ggcctgggcg tgcagaccgt ggacattcag atccccaccg 13680acatggatgt cgacaaaaaa ccctcgacca gcatcgaggt gcagactgac ccctggctcc 13740cagcctccac cgctaccgtc tctacttcta ccgccgccac ggctaccgag cctacaagga 13800ggcgaagatg gggcgccgcc agccggctga tgcccaacta cgtgttgcat ccttccatca 13860tcccgacgcc gggctaccgc ggcacccggt actacgccag ccgcaggcgc ccagccagca 13920aacgccgccg ccgcaccgcc acccgccgcc gtctggcccc cgcccgcgtg cgccgcgtaa 13980ccacgcgccg gggccgctcg ctcgttctgc ccaccgtgcg ctaccacccc agcatccttt 14040aatccgtgtg ctgtgatact gttgcagaga gatggctctc acttgccgcc tgcgcatccc 14100cgtcccgaat taccgaggaa gatcccgccg caggagaggc atggcaggca gcggcctgaa 14160ccgccgccgg cggcgggcca tgcgcaggcg cctgagtggc ggctttctgc ccgcgctcat 14220ccccataatc gccgcggcca ttggcacgat cccgggcata gcttccgttg cgctgcaggc 14280gtcgcagcgc cgttgatgtg cgaataaagc ctctttagac tctgacacac ctggtcctgt 14340atatttttag aatggaagac atcaattttg cgtccctggc tccgcggcac ggcacgcggc 14400cgttcatggg cacctggaac gagatcggca ccagccagct gaacgggggc gccttcaatt 14460ggagcagtgt ctggagcggg cttaaaaatt tcggctcgac gctccggacc tatgggaaca 14520aggcctggaa tagtagcacg gggcagttgt taagggaaaa gctcaaagac cagaacttcc 14580agcaaaaggt ggtggacggc ctggcctcgg gcattaacgg ggtggtggac atcgcgaacc 14640aggccgtgca gcgcgagata aacagccgcc tggacccgcg gccgcccacg gtggtggaga 14700tggaagatgc aactcttccg ccgcccaaag gcgagaagcg cccgcggccc gacgcggagg 14760agacgatcct gcaggtggac gagccgccct cgtacgagga ggccgtcaag gccggcatgc 14820ccaccacgcg catcatcgcg ccgctggcca cgggtgtaat gaaacccgcc acccttgacc 14880tgcctccacc acccacgccc gctccaccga aggcagctcc ggtcgtgcag gcccccccgg 14940tggcgaccgc cgtgcgccgc gtccccgccc gccgccaggc ccagaactgg cagagcacgc 15000tgcacagtat cgtgggcctg ggagtgaaaa gtctgaagcg ccgccgatgc tattgagaga 15060gaggaaagag gacactaaag ggagagctta acttgtatgt gccttaccgc cagagaacgc 15120gcgaagatgg ccaccccctc gatgatgccg cagtgggcgt acatgcacat cgccgggcag 15180gacgcctcgg agtacctgag cccgggtctg gtgcagtttg cccgcgccac cgacacgtac 15240ttcagcctgg gcaacaagtt taggaacccc acggtggctc ccacccacga tgtgaccacg 15300gaccggtccc agcgtctgac gctgcgcttc gtgcccgtgg atcgcgagga caccacgtac 15360tcgtacaagg cgcgcttcac tctggccgtg ggagacaacc gggtgctaga catggccagc 15420acttactttg acatccgcgg cgtcctggac cgcggtccca gcttcaaacc ctactcgggc 15480acggcttaca acagcctggc ccccaagagc gctcccaatc ccagccagtg ggatgcaaag 15540gaaaaggaag gagttgccca aacagaaaaa aatgttttaa aaacatttgg tgttgccgct 15600acaggtggtt ttaatattac agatcagggt ttgttacttg gaactgagga aacagctgaa 15660aacgttaaaa aggatatcta tgcagagaaa actttccagc ctgaacctca agttggtgaa 15720gaaaactggc aggaaagtga agccttttat ggaggaaggg ctattaagaa agacaccaaa 15780atgaagccat gctatggttc atttgccaga cccactaatg aaaaaggagg acaggctaaa 15840tttaaaacac tagatgggca agttacaaaa gatccagata ttgactttgc ttactttgac 15900gtccctggcg gaaaagctcc aacaggcagt agtctaccgg aagaatacaa agcagatata 15960attttgtaca cagaaaatgt taatctggaa acaccagata ctcacatagt gtataaacct 16020ggcaaagaag atgacaattc tgaaattaac ttaacacaac agtccatgcc aaacagaccc 16080aactacattg gctttaggga caactttgta ggtctcatgt actacaacag tactggcaac 16140atgggtgtgc tggctggtca ggcctctcag ttgaatgctg tggtggactt gcaagacaga 16200aacaccgagc tgtcttacca gctcttgcta gattctctgg gtgacagaac cagatacttt 16260agcatgtgga actctgcggt tgacagttat gatcccgatg tcaggatcat tgagaatcac 16320ggtgtggaag atgaacttcc aaactattgc ttcccattga atggcactgg taccaattcc 16380acctatcaag gtgtaaaaat tacaggtaat aatgatggcg atcttgaaac cgaatgggaa 16440agagatgaag caatctctag acaaaaccaa atctgcaagg gcaacgtcta tgccatggag 16500atcaacctcc aggccaacct gtggaagagt tttctgtact cgaacgtagc cctgtacctg 16560cctgactcat acaagtacac gccggccaac gtcacgctgc ccgccaacac caacacctac 16620gagtacatga acggccgcgt ggtagccccc tcgctggtgg acgcttacat caacatcggc 16680gcccgctggt cgctggatcc catggacaat gtaaacccat tcaaccacca ccgcaacgcg 16740ggcctgcgct accgttccat gttgttgggc aacggtcgct acgtgccctt ccacatccaa 16800gtgccccaaa agttctttgc catcaagaac ctgcttctgc tcccgggctc ctacacctac 16860gagtggaact tccgcaagga cgtcaacatg atcctgcaga gttccctcgg aaacgatctg 16920cgcgtcgacg gcgcctccgt ccgcttcgac agcgtcaacc tctacgccac cttcttcccc 16980atggcgcaca acaccgcctc caccctggaa gccatgctgc gcaacgacac caacgaccag 17040tccttcaacg actacctctc ggccgccaac atgctctacc ccatcccggc caaggccacc 17100aacgtgccca tctccatccc ctcacgcaac tgggccgcct tccgcggctg gagtttcacc 17160aggctcaaga ccaaggaaac tccctcgcta ggctcgggtt tcgacccata ctttgtctac 17220tcgggctcca tcccctatct cgacgggacc ttctacctca atcacacctt caagaaggtc 17280tccatcatgt tcgactcctc ggtcagctgg cccggcaacg accggctgct cacgccgaac 17340gagttcgaga tcaagcgcag cgtcgacggg gagggctaca acgtggccca atgcaacatg 17400accaaggact ggttcctcgt ccagatgctc tcccactaca acatcggcta ccagggcttc 17460cacgtgcccg agggctacaa ggaccgcatg tactccttct tccgcaactt ccagcccatg 17520agcaggcagg tggtcgatga gatcaactac aaggactaca aggccgtcac cctgcccttc 17580cagcacaaca actcgggctt caccggctac ctcgcaccca ccatgcgtca ggggcagccc 17640taccccgcca acttccccta cccgctcatc ggccagacag ccgtgccctc cgtcacccag 17700aaaaagttcc tctgcgacag ggtcatgtgg cgcatcccct tctccagcaa cttcatgtcc 17760atgggcgccc tcaccgacct gggtcagaac atgctctacg ccaactcggc ccatgcgctc 17820gacatgacct tcgaggtgga ccccatggat gagcccaccc tcctctatct tctcttcgaa 17880gttttcgacg tggtcagagt gcaccagccg caccgcggcg tcatcgaggc cgtctacctg 17940cgcacgccct tctccgccgg aaacgccacc acataagcat gagcggctcc agcgaaagag 18000agctcgcggc catcgtgcgc gacctgggct gcgggcccta ctttttgggc acccacgaca 18060agcgcttccc tggcttcctc gccggcgaca agctggcctg cgccatcgtc aacacggccg 18120gccgcgagac cggaggcgtg cactggctcg ccttcggctg gaacccgcgc tcgcgcacct 18180gctacatgtt cgacccattt gggttctcgg accgccggct caagcagatt tacagcttcg 18240agtacgaggc tatgctgcgc cgaagcgccc tggcttcctc gccagaccgc tgtctcagcc 18300tcgagcagtc cacccagacc gtgcaggggc ccgactccgc cgcctgcgga cttttctgtt 18360gcatgttctt gcatgccttc gtgcactggc ccgaccgacc catggacggg aaccccacca 18420tgaacttgct gacgggggtg cccaacggca tgctacaatc gccacaggtg ctgcccaccc 18480tccggcgcaa ccaggaggag ctctaccgct tcctcgcgcg ccactcccct tactttcgat 18540cccaccgcgc cgccatcgaa cacgccaccg cttttgacaa aatgaaacaa ctgcgtgtat 18600ctcaataaac agcactttta ttttacatgc actggagtat atgcaagtta tttaaaagtc 18660gaaggggttc tcgcgctcgt cgttgtgcgc cgcgctgggg agggccacgt tgcggtactg 18720atacttgggc tgccacttga actcggggat caccagtttg ggcactgggg tctcggggaa 18780ggtctcgctc cacatgcgcc ggctcatctg cagggcgccc agtatgtccg gggcggagat 18840cttgaaatcg cagttggggc cggtgctctg cgcgcgcgag ttgcggtaca cggggttgca 18900gcactggaac accatcagac tggggtactt cacactggcc agcacgctct tgtcgctgat 18960ctgatccttg tccaggtcct cggcgttgct caggccgaac ggggtcatct tgcacagctg 19020gcggcccagg aagggcacgc tctgaggctt gtggttacac tcgcagtgca cgggcatcag 19080catcatcccc gcaccgcgct gcatattcgg gtagagggcc ttgacaaagg ccgagatctg 19140cttgaaagct tgctgggcct tggccccctc gctgaagaac agaccacagc tcttcccgct 19200gaactggtta ttcccgcacc cggcatcatg cacgcagcag cgcgcgtcat ggctggtcag 19260ttgcaccacg ctccgtcccc agcggttctg ggtcaccttg gccttgctgg gttgctcctt 19320caacgcgcgc tgcccgttct cgctggtcac atccatctcc accacgtggt ccttgtggat 19380catcaccgtc ccatgcagac acttgagctg gccttccacc tcggtgcagc cgtgatccca 19440cagggcgcat ccggtgcact cccaattctt gtgtgcgatc ccgctgtggc tgaagatgta 19500accttgcaac atgcggccca tgacggtgct aaatgctttc tgggtggtga aggtcagttg 19560catcccgcgg acctcctcgt tcatccaggt ctggcacatc ttctggaaga tctcggtctg 19620ctcgggcatg agcttgtaag catcgcgcag gccgctgtcg acgcggtagc gttccatcag 19680tacgttcatg gtatccatgc ccttctccca ggacgagacc agaggcagac tcagggggtt 19740gcgcacgttc aggacacctg gggtcgcggg ctcgacgatg cgttttccgt ccttgtcttc 19800cttcaacaga accggaggct ggctgaatcc cactcccacg atcacggcat cttcctgggg 19860catctcttcg tcggggtcta ccttggtcac atgcttggtc tttctggctt gcttcttttt 19920tggaggactg tccacgggga ccacgtcctc ctcggaagac ccggagccca cccgctgata 19980ctttcggcgc ttggtgggca gaggaggtgg cggcgagggg ctcctctcct gctccggcgg 20040atagcgcgcc gacccgtggc cccggggcgg agtggcctct cggtccatga accggcgcac 20100gtcctgactg ccgccggcca ttatttccta ggggaagatg gaggagcagc cgcgtaagca 20160ggagcaggag gaggacttaa ccacccacga gcaacccaaa atcgagcagg acctgggctt 20220cgaagagccg gctcgtctag aacccccaca ggatgaacag gagcacgagc aagacgcagg 20280ccaggaggag accgacgctg ggctcgagca tggctacctg ggaggagagg aggatgtgct 20340gctgaaacac ctgcagcgcc agtccctcat cctccgggat gccctggccg accggagcga 20400aacccccctc agcgtcgagg agctgtgtcg ggcctacgag ctcaacctat tctcgccgcg 20460cgtgcccccc aaacgccagc ccaacggcac atgcgagccc aacccgcgtc tcaacttcta 20520tcccgtcttt gcggtccccg aggcccttgc cacctatcac atctttttca agaaccaaaa 20580gatccccgtc tcctgtcgcg ccaaccgcac ccgcgccgac gcgctcctcg ctctggggcc 20640cggcgcacac atacctgata tcgcttccct ggaagaggtg cccaagatct tcgaagggct 20700cggtcgggac gagacgcgcg cggcgaacgc tctgaaagaa acagcagagg aagagggtca 20760cactagcgcc ctggtagagt tggaaggcga caacgctagg ctggccgtgc tcaagcgcag 20820tgtcgagctc acccacttcg cctaccccgc cgtcaacctc ccgcccaagg tcatgcgtcg 20880catcatggat cagctcatca tgccccacat cgaggccctc gatgaaagtc aggagcagcg 20940ccccgaggac gtccggcccg tggtcagcga cgagatgctc gcgcgctggc tcggaacccg 21000cgacccccag gctttggaac agcggcgcaa actcatgctg gccgtggtcc tggtcaccct 21060cgagctcgaa tgcatgcgcc gcttcttcag cgaccccgag accctacgca aagtcgagga 21120aaccctgcac tacactttca gacacggctt cgtcaggcag gcctgcaaga tctccaacgt 21180ggagctgacc aacctggtct cctgcctggg tatccttcac gagaaccgcc tggggcagac 21240cgtgctccac tctaccctga agggcgaggc gcgtcgggac tatgtccgcg actgcatctt 21300tctctttctc tgccacacat ggcaagcggc catgggcgtg tggcagcagt gtctcgagga 21360cgagaacctg aaggagctgg acaaggttct tgctagaaac cttaaaaagc tgtggacggg 21420cttcgacgag cgcaccgtcg cctcggacct ggcccagatc gtcttccccg agcgcctgag 21480gcagacgctg aaaggcgggc tgccagactt catgagccag agcatgatac aaaactaccg 21540cactttcatt ctcgagcgat ctggaatgct gcccgccacc tgcaacgcct tcccctccga 21600ctttgtcccg ctgagctacc gcgagtgtcc cccgccgctg tggagccatt gctacctctt 21660gcagctggcc aactacatcg cctaccactc ggacgtgatc gaggacgtga gcggcgaggg 21720gcttctcgag tgccactgcc gctgcaacct gtgctccccg caccgctccc tggtctgcaa 21780cccccagctc ctgagcgaga cccaggtcat cggtaccttc gagctgcaag gtccgcagga 21840gtccaccgct ccgctgaaac tcacgccggg gttgtggact tccgcgtacc tgcgcaaatt 21900tgtacccgag gactaccacg cccatgagat aaagttcttc gaggaccaat cgcgtccgca 21960gcacgcggat ctcacggcct gcgtcatcac ccagggcgcg atcctcgccc aattgcacgc 22020catccaaaaa tcccgccaag agtttcttct gaaaaagggt agaggggtct acctggaccc 22080ccagacgggc gaggtgctca acccgggtct cccccagcat gccgaggaag aagcaggagc 22140cgctagtgga ggagatggaa gaagaatggg acagccaggc agaggaggac gaatgggagg 22200aggagacaga ggaggaagaa ttggaagagg tggaagagga gcaggcaaca gagcagcccg 22260tcgccgcacc atccgcgccg gcagccccgg cggtcacgga tacaacctcc gcagctccgg 22320ccaagcctcc tcgtagatgg gatcgagtga agggtgacgg taagcacgag cggcagggct 22380accgatcatg gagggcccac aaagccgcga tcatcgcctg cttgcaagac tgcgggggga 22440acatcgcttt cgcccgccgc tacctgctct tccaccgcgg ggtgaacatc ccccgcaacg 22500tgttgcatta ctaccgtcac cttcacagct aagaaaaaat cagaagtaag aggagtcgcc 22560ggaggaggcc tgaggatcgc ggcgaacgag cccttgacca ccagggagct gaggaaccgg 22620atcttcccca ctctttatgc catttttcag cagagtcgag gtcagcagca agagctcaaa 22680gtaaaaaacc ggtctctgcg ctcgctcacc cgcagttgct tgtaccacaa aaacgaagat 22740cagctgcagc gcactctcga agacgccgag gctctgttcc acaagtactg cgcgctcact 22800cttaaagact aaggcgcgcc cacccggaaa aaaggcggga attacctcat cgccaccatg 22860agcaaggaga ttcccacccc ttacatgtgg agctatcagc cccagatggg cctggccgcg 22920ggcgcctccc aagactactc cacacgcatg aactggctca gtgccggccc ctcgatgatc

22980tcacgggtca acggggtccg cagtcatcga aaccagatat tgttggagca ggcggcggtc 23040acctccacgc ccagggcaaa gctcaacccg cgtaattggc cctccaccct ggtgtatcag 23100gaaatccccg ggccgactac cgtactactt ccgcgtgacg cactggccga agtccgcatg 23160actaactcag gtgtccagct ggccggcggc gcttcccggt gcccgctccg cccacaatcg 23220ggtataaaaa ccctggtgat ccgaggcaga ggcacacagc tcaacgacga gttggtgagc 23280tcttcgatcg gtctgcgacc ggacggagtg ttccaactag ccggagccgg gagatcctcc 23340ttcactccca accaggccta cctgaccttg cagagcagct cttcggagcc tcgctccgga 23400ggcatcggaa ccctccagtt cgtggaggag tttgtgccct cggtctactt caaccccttc 23460tcgggatcgc caggcctcta cccggacgag ttcataccga acttcgacgc agtgagagaa 23520gcggtggacg gctacgactg aatgtcccat ggtgactcgg ctgagctcgc tcggttgagg 23580catctggacc actgccgccg cctgcgctgc ttcgcccggg agagctgcgg actcatctac 23640tttgagtttc ccgaggagca ccccaacggc cctgcacacg gagtgcgaat caacgtagag 23700ggcaccaccg agtctcacct ggtcaggttc ttcacccagc aacccttcct ggtcgagcgg 23760gaccggggcg ccaccaccta caccgtctac tgcatctgtc ctaacccgaa gttgcatgag 23820aatttttgct gtactctttg tggtgagttt aataaaagct gaactaagaa cctactttgg 23880aatcccttgt cgtcatcctc gaaacaagac cgtcttcttt accaaccaga ccaaggttcg 23940tctgaactgc acaaccaaca ggaagtacct tctctggact ttccaaaaca cctcactcgc 24000tgttgtcaat acccgtgacg acgtcaaccc catagtcatc acccagcagt cgggcgagac 24060caacggctgc atccactgct cctgcgaaag ccccgagtgc atctactccc tcctcaagac 24120cctttgcgga ctccgcgacc tcctccccat gaactgatgt tgattaaaag cccaaaaacc 24180aatcataccc ttcccccatt tccccatccc caattactca taagaataaa tcattggaac 24240taatcattca ataaagatca cttacttgaa atctgaaagt atgtctctgg tgtagttgtt 24300cagcagcacc tcggtaccct cctcccagct ctggtactcc agtccccggc gggcggcgaa 24360cttcctccac accttgaaag ggatgtcaaa ttcctggtcc acaattttca ttgtcttccc 24420tctcagatga caaagaggct ccgggtggaa gatgacttca accccgtcta cccctatggc 24480tacgcgcgga atcagaatat ccccttcctc actcccccct ttgtttcttc cgatggattc 24540caaaacttcc cacccggggt attgtcactc aaactggctg acccaatagc catcgtcaat 24600ggggatgtct cactcaaggt gggaggtgga ctcactttgc aagaaggaaa cctaactgtt 24660gatgcaaagg ctccattgca agttgcaaat gacaacaaat tggagctttc ttatgcagac 24720ccatttgagg ttaaagacac taagctacaa ttaaaagtag gtcatggttt aaaagtaata 24780gatgaaaaaa cttcttcagg tcttcaaagt ctaattggaa atctcgtagt tttaacagga 24840aaaggaattg gcactcaaga attaaaagac aaagacgatg aaactaaaaa tataggagtt 24900ggaataaatg tgagaatagg gaaaaacgaa agtctggcgt ttgacaaaga tggaaatttg 24960gtagcatggg ataatgaaaa cgacaggcgc actctatgga caactccaga cacatctcca 25020aattgtaaaa taagtactga aaaagactcc aaacttactt tagtccttac taaatgcgga 25080tctcaaattc tagcaagtgt gtctttgctt gctgtcgctg gaagttatct taatatgaca 25140gctagtactc aaaagagtat aaaggtatct ttgatgtttg actcaaaagg gcttctaatg 25200actacatctt ctattgataa aggatattgg aattatagaa ataaaaacag cgttgttgga 25260actgcttatg aaaacgcaat tccatttatg ccaaatttag tggcttatcc aagacctaac 25320acgccagact ctaaaattta tgctagaagc aaaattgttg gaaatgttta tttagcaggt 25380ttggcttacc aaccaattgt cataacagtt agttttaatc aggagaagga tgcaagttgt 25440gcttactcaa taacatttga atttgcctgg aacaaagact acgttggtca atttgatacc 25500acctccttta ccttctctta tattgcccaa gaatgaaaga ccaataaacg tgtttttcat 25560ttgaaaattt tcatgtatct ttattgattt ttacaccagc acgggtagtc agtctcccac 25620caccagccca tttcacagtg taaacaattc tctcagcacg ggtggcctta aataggggaa 25680tgttctgatt agtgcgggaa ctgaacttgg ggtctataat ccacacagtt tcctggcgag 25740ccaaacgggg gtcggtgatt gagatgaagc cgtcctctga aaagtcatcc aagcgggcct 25800cgcagtccaa ggtcacagtc tggtggaatg agaagaacgc acagattcat actcggaaaa 25860caggatgggt ctgtgcctct ccatcagcgc cctcaacagt ctttgccgcc ggggctcggt 25920gcggctgctg cagatgggat cgggatcgca agtctctctg actatgatcc ccacagcctt 25980cagcatcagt ctcctggtgc gtcgggcaca gcaccgcatc ctgatctcgc tcatgttctc 26040acagtaagtg cagcacataa tcaccatgtt attcagcagc ccataattca ggatgctcca 26100gccaaagctc atgttgggga tgatggaacc cacgtgacca tcataccaga tgcggcagta 26160tatcaggtgc ctgcccctca tgaacacact gcccatatac atgatctctt tgggcatgtt 26220tctgttcaca atctgccggt accaggggaa tcgctggttg aacatgcacc cgtaaatgac 26280tctcctgaac cacacggcca gcagggtgcc tcccgcccga cactgcaggg agcccgggga 26340tgaacagtgg caatgcagga tccagcgctc gtacccgctc accatctgag ctctcaccaa 26400gtccagggta gcaggacaca ggcacactga catacatctt tttaaaattt ttatttcctc 26460tggggacagg atcatatccc aggggactgg aaactcttgg agcagggtaa agccagcagc 26520acatggcaat ccacggacag aacttacatt atgataatct gcatgatcac aatcgggcaa 26580cagagggtgt tgttcagtca gagaggccct ggtctcctca tcagatcgtg gtaaacgggc 26640cctgcgatat ggatgatggc ggagcaagct cgactgatcc tcggtttgca ttgtagtgga 26700ttctcttgcg taccttgtcg tacttctgcc agcagaaatg ggcccttgaa cagcagatac 26760ctctccttct cctgtctttc cgctgctgac gctcagtcat ccaactgaag tacagccatt 26820cccgcaggtt ctcgagcagc tcctcagcat ctgatgaaac aaaagttctg tccatgcgga 26880ttccccttaa cacatcagcc aggacattgt aggccatccc aatccagtta atgcagcctg 26940gtctatcatt cagaggaggt gggggaagaa ctggaagaac catttttatt ccaagcggtc 27000tcgaaggatg ataaagtgca agtcacgcag gtgacagcgt tccccgccgc tgtgctggtg 27060gaaacagaca gccaggtcaa aacctactct attttcaagg tgctcgactg tggcttcgag 27120cagtggctct acgcgtacat ccagcataag aatcacatta aaggctggcc ctccatcgat 27180ttcatcaatc atcaggttac actcattcac cattcccagg taattctcat ttttccagcc 27240ttgaattatt tctacaaatt gttggtgtaa gtccactccg cacatgtgga aaagttccca 27300cagcgccccc tccactttca taatcaggca gaccttcata atagcaacag atctggctgc 27360tccaccacct gcagcgtgtt caaaacaaca agattcaatg agtttctgcc ctctgccctg 27420agctcgcgtc tcagcgtcag ctgtaaaaag tcactcaagt cctcggccac tacagatgcc 27480aattcagagc cagggctaag cgtgggactg gcaagcgtga tggagtactt taatgctcca 27540aagctagcac ccaaaaactg cacgctggaa taagctctct ttgtgtcacc ggtgattcct 27600tccaaaaggt gagtgataaa gcgaggtagg tgctctctaa tcatagcagt aatggaaaag 27660tcctctaaat aagtcactag ggccccaggg accacaatgt ggtagctgac agcgcgtcgc 27720tcaagcatgg ttagtagaga tgagagtctg aaaaacagaa agcatgcact aaaccagagt 27780ggcaagtctt actgaaggaa aaatcactct ctccagcagc aaagtgccca ctgggtggcc 27840ctctcggaca tacaaaaatc gatccgtgtg gttaaagagc agcacagtta gctactgtct 27900tctcccagca aagatcacat cggactgggt tagtatgccc ctggaatggt agtcattcaa 27960ggccataaat ctgccttggt agccattagg aatcagcacg ctcactctca agtgaaccaa 28020aaccacccca tgcggaggaa tgtggaaaga ttcggggcaa aagaaattat atctattgct 28080agtcccttcc tggacgggag cgattcctcc agggctatct atgaaagcat acagagattc 28140agccatagct cagcccgctt accagtagac agagagcaca gcagtacaag cgccaacagc 28200agcgactgac tacccactaa cccagctccc tatttaaagg caccttacac tgacgtaatg 28260accaaaggtc taaaaacccc gccaaaaaaa aacacacacg ccctgggtgt ttttcgcgaa 28320aacacttccg cgttctcact tcctcgtatc gatttcgtga ctcaacttcc gggttcccac 28380gttacgtcac ttctgccctt acatgtaact cagccgtagg gtgccatctt gcccacgtcc 28440aagatggctt ccatgtccgg ccacgcctcc gcggcgaccg tcagccgtgc gtcgtgacgt 28500cactaacggt tcttgcaacg gccaatcagc gacggccccg ccctaaattc aaaagctcat 28560ttgcatatta acttttgttt actttgtggg gtatattatt gatgatg 28607112094DNAHerpes Simplex Virus 11atgtctgtga gaggacacgc cgtgagaaga agaagagcca gcaccagatc tcatgcccca 60tctgcccaca gagctgatag ccctgtggag gatgaacctg aaggcggcgg agtgggactg 120atgggatacc tgcgggccgt gttcaacgtg gacgacgatt ctgaagtgga agccgctggc 180gaaatggcct ctgaggaacc ccctcctcgg agaagaagag aggctagagg ccaccctgga 240agcagaagag cctctgaagc cagagctgct gcccctccta gaagagctag cttccccaga 300cctagaagcg tgacagccag atcccagagc gtgagaggca gaagagatag cgccatcacc 360agagccccta gaggcggata tctgggcccc atggacccta gagatgtgct gggaagagtg 420ggcggatcta gagtggtgcc tagccccctg tttctggacg agctgaacta cgaagaggac 480gattatcctg ccgccgtggc ccatgatgat ggacctggcg ccagaccttc tgccacagtg 540gagatcctgg ccggaagagt gtctggacct gaactgcagg ccgccttccc tctggataga 600ctgacaccta gagtggccgc ctgggatgag tctgtgagat ctgccctggc tctgggacat 660ccagccggct tttacccttg tcccgatagc gcctttggcc tgtctagagt gggcgtgatg 720cactttgcta gccctgccga ccctaaggtg ttcttcaggc agacactgca gcagggcgaa 780gctctggctt ggtacgtgac aggcgacgcc attctggatc tgaccgacag aagagccaag 840accagccctt ctagagccat gggctttctg gtggacgcca ttgtgagagt ggccatcaat 900ggatgggtgt gcggcacaag actgcacaca gagggcagag gctctgagct ggatgataga 960gccgccgaac tgagaaggca gtttgcctct ctgacagccc tgagacctgt gggagctgct 1020gctgtgcctc tgctgtctgc tggcggagct gctcctcctc atcctggacc tgatgccgcc 1080gtgtttagaa gcagcctggg cagcctgctg tattggcctg gcgtgagagc cctgctgggc 1140agagattgta gagtggctgc cagatacgca ggcaggatga cctatattgc cacaggcgcc 1200ctgctggcta gattcaatcc tggcgccgtg aaatgtgtgc tgcctaggga agccgctttt 1260gctggcagag tgctggatgt gctggccgtg ctggctgaac agacagtgca gtggctgtct 1320gtggtggtgg gagctagact gcatcctcac tctgcccatc ctgcctttgc cgatgtggaa 1380caggaagccc tgtttagagc cctgccactg ggatctccag gcgtggtggc cgctgaacat 1440gaagctctgg gcgatacagc tgctagaagg ctgctggcca catctggact gaatgccgtg 1500ctgggagccg ctgtgtatgc tctgcatacc gccctggcta cagtgacact gaagtacgcc 1560ctggcctgtg gagatgctag aagaaggcgg gacgacgctg ctgctgctag ggctgtgctg 1620gctacaggac tgatcctgca gagactgctg ggactggctg atacagtggt ggcttgtgtg 1680gccctggctg cttttgatgg cggaagcaca gctcctgaag tgggcaccta cacccctctg 1740agatacgcct gtgtgctgag agctacccag cctctgtacg ccagaacaac ccctgccaag 1800ttctgggctg atgtgagagc cgctgccgaa catgtggatc tgagacctgc ctcttctgct 1860cctagagccc ctgtgtctgg aactgccgat ccagccttcc tgctggaaga tctggccgct 1920tttcctcctg cccctctgaa tagcgagtct gtgctgggcc ctagagtgag agtggtggac 1980atcatggccc agttccggaa actgctgatg ggcgatgaag aaacagccgc cctgagagcc 2040cacgtgtcag gaagaagagc tacaggcctg ggaggacctc ctagaccttg atga 2094124125DNAHerpes Simplex Virus 12atggctgccc ctgccagaga tccccctggc tacagatacg ccgctgccat cctgcctacc 60ggcagcatcc tgagcaccat cgaggtggcc agccacagac ggctgttcga cttcttcgcc 120gccgtgcgga gcgatgagaa cagcctgtac gacgtggagt tcgacgccct gctgggcagc 180tactgcaaca ccctgagcct ggtccggttc ctggaactgg gcctgagcgt ggcctgtgtg 240tgcaccaagt tccccgagct ggcctacatg aacgagggcc gggtgcagtt tgaggtgcac 300cagcccctga tcgccagaga tggcccccac cctgtggagc agcccgtgca caactacatg 360accaaggtga tcgacagacg ggccctgaat gccgccttta gcctggccac agaggccatc 420gccctgctga caggcgaagc cctggatggc accggcatca gcctgcacag gcagctgagg 480gccattcagc agctggcccg gaatgtgcag gctgtgctgg gcgcctttga gagaggcacc 540gccgaccaga tgctgcacgt gctgctggaa aaggcccctc ctctggccct gctgctgccc 600atgcagagat acctggacaa cggccggctg gccacaagag tggccagagc caccctggtg 660gccgagctga agcggagctt ctgcgatacc agcttcttcc tgggcaaggc cggccacaga 720agggaagcca tcgaggcctg gctggtcgat ctgaccaccg ccacccagcc atctgtggcc 780gtgcccagac tgacccacgc cgacaccaga ggcagacccg tggatggcgt gctggtgacc 840acagccgcca tcaagcagcg gctgctgcag agcttcctga aggtggagga caccgaggcc 900gatgtgcctg tgacctacgg cgagatggtg ctgaacggcg ccaatctggt gaccgccctg 960gtgatgggca aagccgtgag atccctggac gacgtgggca gacacctgct ggacatgcag 1020gaagagcagc tggaagccaa ccgggagacc ctggatgagc tggaaagcgc ccctcagacc 1080accagagtgc gggccgatct ggtggccatc ggcgacaggc tggtgttcct ggaagctctg 1140gaacggcgga tctacgccgc caccaacgtg ccttaccctc tggtcggcgc catggacctg 1200accttcgtgc tgcccctggg cctgttcaac cccgccatgg aaaggtttgc cgcccacgcc 1260ggcgatctgg tgcctgcccc tggccaccct gaacccagag ccttcccccc cagacagctg 1320ttcttctggg gcaaggacca ccaggtgctg agactgagca tggaaaacgc cgtgggcacc 1380gtgtgtcacc ccagcctgat gaacatcgac gccgccgtgg gcggagtgaa ccacgatcct 1440gtggaggccg ccaatcccta cggcgcctac gtggctgctc ctgctggacc aggcgccgac 1500atgcagcagc ggtttctgaa cgcctggcgg cagagactgg cccacggcag agtgagatgg 1560gtggccgagt gccagatgac cgccgagcag ttcatgcagc ccgacaacgc caacctggcc 1620ctggaactgc accccgcctt cgatttcttt gccggcgtgg ccgatgtgga actgccaggc 1680ggcgaagtgc ctccagctgg ccctggcgcc atccaggcca catggcgggt ggtgaacggc 1740aatctgccac tggccctgtg ccctgtggcc ttcagagatg ccagggggct ggaactggga 1800gtgggcaggc atgccatggc ccctgccaca attgccgccg tgaggggcgc cttcgaggac 1860agatcctacc ccgccgtgtt ctacctgctg caggccgcca tccatggcaa cgagcacgtg 1920ttctgcgccc tggccagact ggtgacccag tgcatcacca gctactggaa caacaccaga 1980tgcgccgcct tcgtgaacga ctacagcctg gtgtcctaca tcgtgaccta cctgggcggc 2040gacctgcctg aggaatgcat ggccgtgtac cgggacctgg tggcccatgt ggaggctctg 2100gcccagctgg tcgacgactt caccctgcct ggccctgagc tgggaggaca ggcccaggcc 2160gaactgaacc acctgatgcg ggaccctgct ctgctgcctc ccctggtctg ggattgcgac 2220ggcctgatga gacacgccgc cctggacagg caccgggact gcagaatcga tgccggcgga 2280cacgagcctg tgtacgctgc cgcctgcaat gtggccaccg ccgacttcaa ccggaacgac 2340ggcaggctgc tgcacaacac ccaggccaga gccgccgatg ccgccgacga cagacctcac 2400agacccgccg actggaccgt gcaccacaag atctactact acgtgctggt gcccgccttc 2460agcagaggca ggtgctgtac agccggcgtg cggttcgaca gagtgtacgc caccctgcag 2520aacatggtgg tgcccgagat tgcccctggc gaggaatgcc ccagcgaccc cgtgacagat 2580cctgcccacc ctctgcaccc tgccaacctg gtggctaaca ccgtgaagcg gatgttccac 2640aacggcaggg tggtggtgga tggccctgcc atgctgaccc tgcaggtgct ggcccacaac 2700atggccgaga ggaccacagc cctgctgtgt tctgccgccc ctgacgctgg cgccaatacc 2760gccagcaccg ccaacatgcg gatcttcgac ggcgccctgc atgctggcgt cctgctgatg 2820gccccccagc acctggatca caccatccag aacggcgagt acttttacgt gctgcccgtg 2880cacgccctgt ttgccggcgc tgaccacgtg gccaacgccc ccaatttccc ccctgccctg 2940agggatctgg ccagggacgt gcctctggtg cctcctgccc tgggcgccaa ctacttcagc 3000agcatccggc agcctgtggt gcagcatgcc agagaatctg ccgctggcga gaacgccctg 3060acctacgccc tgatggccgg ctacttcaag atgagccccg tggccctgta tcaccagctg 3120aaaaccggcc tgcaccctgg cttcggcttt accgtggtgc ggcaggacag attcgtgacc 3180gagaacgtgc tgttcagcga gagagccagc gaggcctact tcctgggcca gctccaggtg 3240gccagacacg aaacaggcgg gggagtgaat ttcaccctga cccagcccag aggcaacgtg 3300gatctgggcg tgggctatac agccgtggcc gccaccggca ccgtgagaaa ccccgtgacc 3360gacatgggca acctgcccca gaacttctac ctgggcaggg gagcccctcc cctgctggat 3420aatgccgccg ctgtgtacct gaggaacgcc gtggtggccg gcaatagact cggacccgcc 3480cagcctctgc ctgtgttcgg ctgcgcccag gtgccaagac gggccggaat ggaccacgga 3540caggacgccg tgtgcgagtt catcgccacc cccgtggcca ccgacatcaa ctactttcgg 3600aggccctgca accctagagg aagggccgct ggcggagtgt atgccggcga caaggaaggc 3660gacgtcatcg ccctgatgta cgaccacggc cagagcgatc ccgccagacc ttttgccgcc 3720accgccaacc cttgggccag ccagaggttc agctacggcg atctgctgta caatggcgcc 3780taccacctca atggcgccag ccctgtgctg tccccctgct tcaagttctt cacagccgcc 3840gacatcaccg ccaagcaccg gtgcctggaa aggctgatcg tggagaccgg cagcgccgtg 3900tctacagcca ccgccgccag cgacgtgcag ttcaagaggc ccccaggctg cagagaactg 3960gtggaggacc cttgcggcct gttccaggaa gcctacccca tcacctgcgc ctctgatcct 4020gccctgctgc ggagcgctag agatggcgag gcccacgcca gggaaaccca cttcacccag 4080tacctgatct acgacgccag ccccctgaag ggcctgagcc tgtga 4125131686DNAHerpes Simplex Virus 13atggagactt cagtcagagg gcacgcagta cggaggcgac gcgccagcac cagatcgcac 60gccccctcgg cacatagggc ggactccccg gtggaggacg aacccgaagg agggggagtg 120ggactcatgg aaaccgggta tctccgggca gtctttaacg tggatgatga cagcgaggta 180gaggcagcgg gtgaaatgga gacagcctcc gaagagccac cccctagacg gcggagagaa 240gcgagaggac atcccggttc cagacgggca tcagaagcga gggccgcagc tccgcctcga 300agggcgtcct tccctagacc acgctcagtg acggcgaggt cgcagtccgt ccgcggcaga 360cgggactcgg ccatcactcg agcgccgagg ggtgggtatc tgggaccgat ggagacagat 420ccgcgggacg tgctggggcg agtcggaggc agccgggtgg tgccctcgcc cttgttcctc 480gatgagctta actacgagga ggatgactac cctgctgccg tcgcgcatga cgacggaccc 540ggagcgaggc cgtccgcgac ggtcgagatt cttgcgggtc gcgtgagcgg accagaattg 600caggcggcct tccctctcga tcgcttgacg cccagggtag ccgcttggga tgaatccgta 660cgctcagcac tggcgctggg gcacccagcc ggcttctacc catgcccgga ctccgccttt 720gggttgtcgc gcgtaggggt catggagaca cactttgcat cgcctgctga tccgaaagtg 780ttctttcgac aaacactgca gcagggggag gctctggcat ggtatgtcac tggggatgcg 840atcttggacc tcaccgatcg acgggccaaa acatcgccta gccgggctat ggagacagga 900ttcctcctcg acgcggctgt acgggtcgcg atcaacggtt gggtatgtgg aacgagattg 960cataccgaag gacgcggatc ggaacttgac gatcgcgcag cagaacttcg gagacagttc 1020gcatcgctca cggccctccg gccagtggga gcagccgcgg tgccattgct ctccgcggga 1080ggggctgcgc ctccccaccc gggtccggat gcggccgtgt tccgctcatc gttggggtca 1140ttgctttact ggcctggcgt ccgggctctg cttggcaggg actgcagggt cgccgccaga 1200tacgcgggta ggatggaaac gacctatatc gcgacggggg cactgctcgc caggttcaat 1260cccggtgccg tgaagtgtgt cctgccgcga gaagccgcgt tcgctgggag agtgctggac 1320gtcctggcgg tgctggcaga gcaaacagta cagtggctct cggtggtagt cggtgcccgc 1380ttgcatcccc actcagcgca cccggcattt gccgacgtcg aacaggaggc gctgtttcgc 1440gcccttcccc ttgggtcacc cggagtggtc gcagctgagc acgaagccct tggggataca 1500gcggcacgcc ggttgctggc gacatcgggt cttaatgcgg tgttgggtgc ggcggtgtac 1560gcgctccata ccgcgctggc caccgtcact ttgaaatacg cactggcgtg cggggatgca 1620cgccgacgca gggatgacgc ggcagccgcc agagctgtac ttgcgaccgg attgattctt 1680cagtag 1686

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed