Antibody That Binds To Envelope Glycoprotein Of Sever Fever With Thrombocytopenia Syndrome Virus And Use For Same

CHUNG; Junho ;   et al.

Patent Application Summary

U.S. patent application number 17/171044 was filed with the patent office on 2021-06-10 for antibody that binds to envelope glycoprotein of sever fever with thrombocytopenia syndrome virus and use for same. This patent application is currently assigned to SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION. The applicant listed for this patent is INSTITUT PASTEUR KOREA, SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION. Invention is credited to Junho CHUNG, Hyori KIM, Jinhee KIM, Ki-Hyun KIM, Seungtaek KIM, Meehyun KO, Ji-Young MIN, Myoung-don OH, Wan Beom PARK.

Application Number20210171611 17/171044
Document ID /
Family ID1000005406024
Filed Date2021-06-10

United States Patent Application 20210171611
Kind Code A1
CHUNG; Junho ;   et al. June 10, 2021

ANTIBODY THAT BINDS TO ENVELOPE GLYCOPROTEIN OF SEVER FEVER WITH THROMBOCYTOPENIA SYNDROME VIRUS AND USE FOR SAME

Abstract

The present invention relates to an antibody which specifically binds to the envelope glycoprotein of severe fever with thrombocytopenia syndrome virus (SFTSV), the pathogen of severe fever with thrombocytopenia syndrome (SFTS), and is used in order to effectively detect or diagnosis SFTSV and treat SFTS.


Inventors: CHUNG; Junho; (Seoul, KR) ; KIM; Ki-Hyun; (Seoul, KR) ; KIM; Hyori; (Seoul, KR) ; OH; Myoung-don; (Seoul, KR) ; PARK; Wan Beom; (Seoul, KR) ; KIM; Seungtaek; (Seoul, KR) ; KIM; Jinhee; (Gyeonggi-Do, KR) ; MIN; Ji-Young; (Bethesda, MD) ; KO; Meehyun; (Gyeonggi-do, KR)
Applicant:
Name City State Country Type

SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
INSTITUT PASTEUR KOREA

Seoul
Gyeonggi-Do

KR
KR
Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION

INSTITUT PASTEUR KOREA

Family ID: 1000005406024
Appl. No.: 17/171044
Filed: February 9, 2021

Related U.S. Patent Documents

Application Number Filing Date Patent Number
16086761 Sep 20, 2018 10947299
PCT/KR2017/003156 Mar 23, 2017
17171044

Current U.S. Class: 1/1
Current CPC Class: A61K 39/42 20130101; A61P 31/14 20180101; C12N 15/62 20130101; G01N 35/00029 20130101; G01N 33/56983 20130101; C07K 2317/565 20130101; C07K 2317/76 20130101; C07K 16/10 20130101; C07K 14/005 20130101; C07K 14/175 20130101; C07K 2317/622 20130101
International Class: C07K 16/10 20060101 C07K016/10; C07K 14/175 20060101 C07K014/175; G01N 35/00 20060101 G01N035/00; A61P 31/14 20060101 A61P031/14; C07K 14/005 20060101 C07K014/005; G01N 33/569 20060101 G01N033/569; A61K 39/42 20060101 A61K039/42; C12N 15/62 20060101 C12N015/62

Foreign Application Data

Date Code Application Number
Mar 23, 2016 KR 10-2016-0034727

Claims



1.-19. (canceled)

20. An antibody which specifically binds to Gc that is an envelope glycoprotein of severe fever with thrombocytopenia syndrome virus, wherein the antibody comprises a) a light chain complementarity determining region 1 (LCDR1) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 21, 22, 23, 24 and 25, b) a light chain complementarity determining region 2 (LCDR2) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 41, 42, 43, 44 and 45, c) a light chain complementarity determining region 3 (LCDR3) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 61, 62, 63, 64 and 65, d) a heavy chain complementarity determining region 1 (HCDR1) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 26, 27, 28, 29 and 30, e) a heavy chain complementarity determining region 2 (HCDR2) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 46, 47, 48, 49 and 50, and f) a heavy chain complementarity determining region 3 (HCDR3) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 66, 67, 68, 69 and 70.

21. The antibody according to claim 20, wherein the antibody comprises a light chain comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 1, 2, 3, 4 and 5, and a heavy chain comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 6, 7, 8, 9 and 10.

22. The antibody according to claim 20, wherein the antibody comprises a light chain comprising a sequence having 95% or more of sequence identity to any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 1, 2, 3, 4 and 5, and a heavy chain comprising a sequence having 95% or more of sequence identity to any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 6, 7, 8, 9 and 10.

23. An antibody which specifically binds to Gn that is an envelope glycoprotein of severe fever with thrombocytopenia syndrome virus, wherein the antibody comprises a) a light chain complementarity determining region 1 (LCDR1) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 101, 102, 103, 104 and 105, b) a light chain complementarity determining region 2 (LCDR2) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 121, 122, 123, 124 and 125, c) a light chain complementarity determining region 3 (LCDR3) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 141, 142, 143, 144 and 145, d) a heavy chain complementarity determining region 1 (HCDR1) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 106, 107, 108, 109 and 110, e) a heavy chain complementarity determining region 2 (HCDR2) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 126, 127, 128, 129 and 130, and f) a heavy chain complementarity determining region 3 (HCDR3) comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 146, 147, 148, 149 and 150.

24. The antibody according to claim 23, wherein the antibody comprises a light chain comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 81, 82, 83, 84 and 85, and a heavy chain comprising any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 86, 87, 88, 89 and 90.

25. The antibody according to claim 23, wherein the antibody comprises a light chain comprising a sequence having 95% or more of sequence identity to any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 81, 82, 83, 84 and 85, and a heavy chain comprising a sequence having 95% or more of sequence identity to any one of amino acids sequence selected from the group consisting of SEQ ID NOs: 86, 87, 88, 89 and 90.

26. A nucleic acid comprising at least one of a) a nucleotide sequence encoding a polypeptide comprising a sequence having 95% or more of sequence identity to any one of amino acids selected from the group consisting of SEQ ID NOs: 1, 2, 3, 4 and 5, and a nucleotide sequence encoding a polypeptide comprising a sequence having 95% or more of sequence identity to any one of amino acids selected from the group consisting of SEQ ID NOs: 6, 7, 8, 9 and 10; and b) a nucleotide sequence encoding a polypeptide comprising a sequence having 95% or more of sequence identity to any one of amino acids selected from the group consisting of SEQ ID NOs: 81, 82, 83, 84 and 85, and a nucleotide sequence encoding a polypeptide comprising a sequence having 95% or more of sequence identity to any one of amino acids selected from the group consisting of SEQ ID NOs: 86, 87, 88, 89 and 90.

27. A vector comprising the nucleic acid of claim 26.

28. A host cell comprising the vector of claim 27.

29. A composition for diagnosing or detecting SFTSV comprising the antibody of claim 20.

30. A kit for diagnosing or detecting SFTSV comprising the antibody of claim 20.

31. A method for diagnosing or detecting SFTSV using the antibody of claim 20.

32. The method according to claim 31, wherein the method uses a complex in which the antibody and a magnetic bead are bound.

33. A pharmaceutical composition comprising the antibody of claim 20.

34. A method for preventing or treating SFTS using the antibody of claim claim 20.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional application of U.S. application Ser. No. 16/086,761, filed on Sep. 20, 2018, which is a national phase application of PCT Application No. PCT/KR2017/003156, filed on Mar. 23, 2017, which claims the benefit and priority to Korean patent application No. 10-2016-0034727, filed on Mar. 23, 2016. The entire disclosures of the applications identified in this paragraph are incorporated herein by references.

TECHNICAL FIELD

[0002] The present invention relates to an antibody which specifically binds to the envelope glycoprotein of severe fever with thrombocytopenia syndrome virus (SFTSV), the pathogen of severe fever with thrombocytopenia syndrome (SFTS), and is used in order to detect or diagnosis SFTSV and treat SFTS.

BACKGROUND

[0003] Severe Fever with Thrombocytopenia Syndrome (SFTS) is a new kind of mite-mediated infectious disease, and is mostly occurred by Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) mediated by Haemaphysalis longicornis or Amblyomma testudinarium. SFTS was firstly reported in China in 2009, and the disease and virus was reported in Japan and Korea in 2012. The main symptoms of SFTS are fever, abdominal pain, nausea, vomiting, thrombocytopenia or leukopenia, etc., and in case of serious case, multiple organ failure may occur and result in death. SFTS has consistently occurred in China, Japan or Korea every year, and the fatality rate caused thereby is very high, and it mostly occurs in the period between spring and summer. A black-stripped field mouse is probable as the wild host of SFTSV, and it was presumed that domestic animals can play a role of host, since the serum antibody was found at the high ratio in domestic animals such as goat, cow, dog or chicken, etc. in the major outbreak areas of China. It has been reported that the infection from person to person occurred by mediating a body fluid of an infected person, but there is no approved therapeutic agent or prevention method to effectively treat SFTS until now.

[0004] There is a method of confirming an anti-SFTSV antibody titer in blood to confirm SFTS infection. Then the anti-SFTSV antibody titer is mostly measured with an antibody for N protein of SFTSV. The antibody is an antibody for SFTSV internal protein exposed when SFTSV becomes extinct. Thus, the conventional diagnosis by confirming the anti-SFTSV antibody titer has limitation that the existence of virus which is alive and actively acts cannot be accurately figured out. As another method of diagnosing SFTS, the method for detecting the RNA sequence of SFTSV in a subject derived from a human body has been known as having high accuracy, but it has a difficulty to isolate virus RNA of good quality from the subject.

[0005] On the other hand, International patent publication No. 2015/053455 (WO2015/053455A1) discloses the method for detecting an antibody for SFTSV, but specifically it does not disclose to which antigen of SFTSV the antibody binds and the neutralization activity of the antibody at all.

[0006] Thus, the development of an antibody or method which can effectively detect, isolate or purify SFTSV by recovering limitations of an inaccurate virus titer measurement method of conventional enzyme immunoreaction diagnosis method detecting the amount of killed SFTSV protein, or conventional low purity of virus RNA isolation method in blood is need.

DISCLOSURE

Technical Problem

[0007] The problem to be solved by the present invention is to provide an antibody which can effectively detect or diagnose SFTSV and treat SFTS. In addition, the other problem to be solved by the present invention is to provide an antibody which specifically binds to SFTSV, particularly an envelope glycoprotein of SFTSV.

Technical Solution

[0008] To solve the technical problems, the present invention provides a novel antibody which specifically binds to SFTSV, particularly its envelope glycoprotein. In addition, the present invention provides a method for effectively detecting, isolating or purifying SFTSV using the antibody. In addition, the present invention, a method for effectively preventing or treating SFTS using the antibody.

[0009] As the result that the present inventors have made extensive efforts to overcome the limitations of conventional diagnosis methods of SFTSV, they found a novel antibody which specifically binds to an envelope glycoprotein of SFTSV, particularly Gc or Gn, and found that SFTSV can be effectively detected using it, to complete the present invention.

[0010] SFTSV is a minus single strand RNA virus, and belongs to Bunyaviridae family, phlebovirus species. The virus is a globular virus of 80-100 nm diameter and uses Haemaphysalis longicornis as a mediator. The genome of the virus consists of large (L), Medium (M) and small (S) segments, and these encode 6 proteins of RNA dependent RNA polymerase (RdRp), glycoprotein precursor (M), glycoprotein N (Gn), glycoprotein C (Gc), nucleocapsid protein (NP) and non-structural protein (NSs).

[0011] In the present invention, an "antibody" may include whole antibodies and any antigen binding portion or single chains thereof. A naturally occurring "antibody" is a glycoprotein comprising at least two heavy chains (H) and two light chains (L) interconnected by disulfide bonds. Each heavy chain consists of a heavy chain variable region (VH) and a heavy chain constant region (CH). The heavy chain constant region consists of three domains, CH1, CH2 and CH3. Each light chain consists of a light chain variable region (VL) and a light chain constant region (CL). The light chain constant region consists of one domain, CL. The VH and VL regions may be further subdivided into regions of hypervariability, referred to as complementarity determining regions (CDR), interspersed with regions that are more conserved, referred to as framework regions (FR). Each VH and VL consists of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.

[0012] The present invention provides an antibody which specifically binds to an envelope glycoprotein of SFTSV, particularly an envelope glycoprotein of SFTSV, Gc or Gn. Preferably, the antibody may be comprise a specific amino acid sequence as follows or consists of them. In addition, certain modifications which are obvious in constant regions of heavy chains and light chains are included in the scope of the present invention in the range having same or similar binding specificity. Furthermore, as each of those antibodies can bind to the envelope glycoprotein of SFTSV, an antibody binding to other envelope glycoproteins of SFTSV of the present invention can be produced by mixing and matching VH, VL, full length light chain and full length heavy chain sequences (amino acid sequences and nucleotide sequences encoding the amino acid sequences).

[0013] In one example, the amino acid sequences of antibody clones (Ab1-5) which binds to Gc envelope glycoprotein of the present invention are shown in the following Tables 1-8.

[0014] Amino acid sequences of light chains and heavy chains binding to Gc envelope glycoprotein.

TABLE-US-00001 TABLE 1 SEQ ID Antibody NO and site Sequence 1 light chain ELTLTQSPATLSLSPGETATLSCGASQSVSTNYLA of Ab1 WYQQKPGLAPRLLIY DASSRAT GIPDRFSGSGSGTDFTLTISRLAPEDSAVYYC QQYGSSPLT FGGGTKLEIK 2 light chain ELVVTQPPSVSGAPGQRVTISC SGSSSNIGNNTVN of Ab2 WYQQLPGTAPKLLIY SNNQRPS GVPDRFSGSKSGTSASLAITGLQADDEADYYC QSFDSSLNDWV FGGGTKLTVL 3 light chain ELELTQPPSVSGAPGQRVTISC TGSSSNIGAGYDVH of Ab3 WYQQLPGTAPKLLIY GNSNRPS GVPDRFSGSKSDTSASLAISGLRSEDEADYYC AAWDDSLNGQVV FGGGTKLTVL 4 light chain ELVLTQPPSASGTPGQRVTISC SGSSSNIGSNTVN of Ab4 WYQQLPGTAPKLLIY SNNQRPP GVPDRFSGSKSGTSASLAISGLQSEDEADYYC QSYDSSLSYV FGTGTKVTVL 5 light chain ELVVTQEPSLTVPPGGTVTLTC GSSTGPVTTTQYPY of Ab5 WFQQKPGQAPRTLIY DTNNRHP WTPARFSGSLLGGKAALTLSGAQPEDDA-YYC LLTSASAPWV FGGGTKLTVL 6 heavy chain QVQLVQSGPEVKKPGSSVKVSCKAS GGTFSTYAIS of Ab1 WVRQAPGQGLEWMG GIIPISGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCA VPV--------- VPAASGPFDYWG QGTLVTVSS 7 heavy chain EVQLVESGGGLVKPGGSLRLSCAAS GFTFSSYSMN of Ab2 WVRQAPGKGLEWVS SISSSSRYIFYADSVKG RFTISRDNAKNSLYLQMNSLRAEDTAVYYCA SLGYCSGGSCYGFPEGGNAFDIWG QGTMVTVSS 8 heavy chain QVQLQESGPGLVKPSETLSLTCTVS GGSFSGYYWS of Ab3 WIRQPPGKGLEWIG EIIHSGSTNYNPSLKS RVTISVDTSKNQFSLKLSSVTAADTAVYYCA RGDYYD--------- SSGAFDYWG QGTLVTVSS 9 heavy chain EVQLVESGGGLVQPGGSLRLSCAAS GFTFSSYSMN of Ab4 WVRQAPGKGLEWVS SISSSSRYIFYADSVKG RFTISRDNAKNSLYLQMNSLRAEDTAVYY-- SLGYCSGGSCYGFPEGGNAFDIWG QGTMVTVSS 10 heavy chain QVQLVQSGGGLVQPGGSLRLSCSAS GFTFSSYAMH of Ab5 WVRQAPGKGLEYVS AISSDGGSTYYADSVKG RFTISRDNSKNTLYLQMSSLRAEDTAVYYCV NDG------------ SSNHFDYWG QGTLVTVSS

[0015] Amino acid sequences of light chain or heavy chain framework region 1 (LFR1 or HFR1) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00002 TABLE 2 SEQ ID Antibody NO and site Sequence 11 LFR1 of Ab1 ELTLTQSPATLSLSPGETATLSC 12 LFR1 of Ab2 ELVVTQPPSVSGAPGQRVTISC 13 LFR1 of Ab3 ELELTQPPSVSGAPGQRVTISC 14 LFR1 of Ab4 ELVLTQPPSASGTPGQRVTISC 15 LFR1 of Ab5 ELVVTQEPSLTVPPGGTVTLTC 16 HFR1 of Ab1 QVQLVQSGPEVKKPGSSVKVSCKAS 17 HFR1 of Ab2 EVQLVESGGGLVKPGGSLRLSCAAS 18 HFR1 of Ab3 QVQLQESGPGLVKPSETLSLTCTVS 19 HFR1 of Ab4 EVQLVESGGGLVQPGGSLRLSCAAS 20 HFR1 of Ab5 QVQLVQSGGGLVQPGGSLRLSCSAS

[0016] Amino acid sequences of light chain or heavy chain complementarity determining region 1 (LCDR1 or HCDR1) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00003 TABLE 3 SEQ ID Antibody and NO site Sequence 21 LCDR1 of Ab1 GASQSVSTNYLA 22 LCDR1 of Ab2 SGSSSNIGNNTVN 23 LCDR1 of Ab3 TGSSSNIGAGYDVH 24 LCDR1 of Ab4 SGSSSNIGSNTVN 25 LCDR1 of Ab5 GSSTGPVTTTQYPY 26 HCDR1 of Ab1 GGTFSTYAIS 27 HCDR1 of Ab2 GFTFSSYSMN 28 HCDR1 of Ab3 GGSFSGYYWS 29 HCDR1 of Ab4 GFTFSSYSMN 30 HCDR1 of Ab5 GFTFSSYAMH

[0017] Amino acid sequences of light chain or heavy chain framework region 2 (LFR2 or HFR2) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00004 TABLE 4 SEQ ID Antibody and NO site Sequence 31 LFR2 of Ab1 WYQQKPGLAPRLLIY 32 LFR2 of Ab2 WYQQLPGTAPKLLIY 33 LFR2 of Ab3 WYQQLPGTAPKLLIY 34 LFR2 of Ab4 WYQQLPGTAPKLLIY 35 LFR2 of Ab5 WFQQKPGQAPRTLIY 36 HFR2 of Ab1 WVRQAPGQGLEWMG 37 HFR2 of Ab2 WVRQAPGKGLEWVS 38 HFR2 of Ab3 WIRQPPGKGLEWIG 39 HFR2 of Ab4 WVRQAPGKGLEWVS 40 HFR2 of Ab5 WVRQAPGKGLEYVS

[0018] Amino acid sequences of light chain or heavy chain complementarity determining region 2 (LCDR2 or HCDR2) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00005 TABLE 5 SEQ ID Antibody and NO site Sequence 41 LCDR2 of Ab1 DASSRAT 42 LCDR2 of Ab2 SNNQRPS 43 LCDR2 of Ab3 GNSNRPS 44 LCDR2 of Ab4 SNNQRPP 45 LCDR2 of Ab5 DTNNRHP 46 HCDR2 of Ab1 GIIPISGTANYAQKFQG 47 HCDR2 of Ab2 SISSSSRYIFYADSVKG 48 HCDR2 of Ab3 EIIHSGSTNYNPSLKS 49 HCDR2 of Ab4 SISSSSRYIFYADSVKG 50 HCDR2 of Ab5 AISSDGGSTYYADSVKG

[0019] Amino acid sequences of light chain or heavy chain framework region 3 (LFR3 or HFR3) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00006 TABLE 6 SEQ ID Antibody NO and site Sequence 51 LFR3 of Ab1 GIPDRFSGSGSGTDFTLTISRLAPEDSAVYYC 52 LFR3 of Ab2 GVPDRFSGSKSGTSASLAITGLQADDEADYYC 53 LFR3 of Ab3 GVPDRFSGSKSDTSASLAISGLRSEDEADYYC 54 LFR3 of Ab4 GVPDRFSGSKSGTSASLAISGLQSEDEADYYC 55 LFR3 of Ab5 WTPARFSGSLLGGKAALTLSGAQPEDDA-YYC 56 HFR3 of Ab1 RVTITADESTSTAYMELSSLRSEDTAVYYCA 57 HFR3 of Ab2 RFTISRDNAKNSLYLQMNSLRAEDTAVYYCA 58 HFR3 of Ab3 RVTISVDTSKNQFSLKLSSVTAADTAVYYCA 59 HFR3 of Ab4 RFTISRDNAKNSLYLQMNSLRAEDTAVYY-- 60 HFR3 of Ab5 RFTISRDNSKNTLYLQMSSLRAEDTAVYYCV

[0020] Amino acid sequences of light chain or heavy chain complementarity determining region 3 (LCDR3 or HCDR3) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00007 TABLE 7 SEQ ID Antibody and NO site Sequence 61 LCDR3 of Ab1 QQYGSSPLT 62 LCDR3 of Ab2 QSFDSSLNDWV 63 LCDR3 of Ab3 AAWDDSLNGQVV 64 LCDR3 of Ab4 QSYDSSLSYV 65 LCDR3 of Ab5 LLTSASAPWV 66 HCDR3 of Ab1 VPV---------VPAASGPFDYWG 67 HCDR3 of Ab2 SLGYCSGGSCYGFPEGGNAFDIWG 68 HCDR3 of Ab3 RGDYYD---------SSGAFDYWG 69 HCDR3 of Ab4 SLGYCSGGSCYGFPEGGNAFDIWG 70 HCDR3 of Ab5 NDG------------SSNHFDYWG

[0021] Amino acid sequences of light chain or heavy chain framework region 4 (LFR4 or HFR4) of the antibody binding to Gc envelope glycoprotein.

TABLE-US-00008 TABLE 8 SEQ ID Antibody and NO site Sequence 71 LFR4 of Ab1 FGGGTKLEIK 72 LFR4 of Ab2 FGGGTKLTVL 73 LFR4 of Ab3 FGGGTKLTVL 74 LFR4 of Ab4 FGTGTKVTVL 75 LFR4 of Ab5 FGGGTKLTVL 76 HFR4 of Ab1 QGTLVTVSS 77 HFR4 of Ab2 QGTMVTVSS 78 HFR4 of Ab3 QGTLVTVSS 79 HFR4 of Ab4 QGTMVTVSS 80 HFR4 of Ab5 QGTLVTVSS

[0022] In some exemplary embodiments, the antibody specifically binding to the envelope glycoprotein of SFTSV, Gc may comprise a light chain comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 1, 2, 3, 4 and 5, and a heavy chain comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 6, 7, 8, 9 and 10. The antibody consisting of these specific sequences can specifically and effectively bind to the envelope glycoprotein, Gc, and thus can be very usefully used for detection of SFTSV.

[0023] In another exemplary embodiment, preferably, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gc of the present invention can be provided as an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 1 and a heavy chain comprising an amino acid of SEQ ID NO 6, an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 2 and a heavy chain comprising an amino acid of SEQ ID NO 7, an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 3 and a heavy chain comprising an amino acid of SEQ ID NO 8, an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 4 and a heavy chain comprising an amino acid of SEQ ID NO 9, and an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 5 and a heavy chain comprising an amino acid of SEQ ID NO 10.

[0024] In another exemplary embodiment, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gc of the present invention can comprise a light chain complementarity determining region 1 (LCDR1) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 21, 22, 23, 24 and 25, a light chain complementarity determining region 2 (LCDR2) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 41, 42, 43, 44 and 45, a light chain complementarity determining region 3 (LCDR3) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 61, 62, 63, 64 and 65, a heavy chain complementarity determining region 1 (HCDR1) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 26, 27, 28, 29 and 30, a heavy chain complementarity determining region 2 (HCDR2) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 46, 47, 48, 49 and 50, and a heavy chain complementarity determining region 3 (HCDR3) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 66, 67, 68, 69 and 70.

[0025] In another exemplary embodiment, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gc of the present invention can be provided as an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 21, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 41, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 61, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 26, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 46, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 66; an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 22, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 42, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 62, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 27, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 47, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 67; an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 23, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 43, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 63, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 28, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 48, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 68; an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 24, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 44, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 64, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 29, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 49, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 69; or an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 25, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 45, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 65, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 30, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 50, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 70.

[0026] In one example, the amino acid sequences of antibody clones (Ab6-10) which binds to Gn envelope glycoprotein of the present invention are shown in the following Tables 9-16.

[0027] Amino acid sequences of light chains and heavy chains binding to Gn envelope glycoprotein.

TABLE-US-00009 TABLE 9 SEQ ID Antibody NO and site Sequence 81 light chain ELALTQPPSVSVAPGKTAKITC GGDDIGSKTVQ of Ab6 WYQQTSGQAPVLVVY DDSDRPS GIPERFSGANSGNTATLTISRVEAGDEADYYC QVWDGRSDHVV FGGGTKLTVL 82 light chain ELVLTQPPSVSAAPGQKVTISC SGSSSNIGNNVVS of Ab7 WYQQLPGTAPKLLIY DDNRRPS GIPDRFSGSKSGTSATLDITGLQTGDEADYYC ATWDGSLTAGRVL FGSGTKLTVL 83 light chain ELALTQPPSVSVAPAMTAKITC GGDDIGSTTVQ of Ab8 WYQQTSGQAPVLVVY DDSDRPS GIPERFSGANSGNTATLTISRVEAGDEADYYC QVWDGRSDHVV FGGGTKLTVL 84 light chain ELELTQPPSVSGTPGKRVSMSC SGSRSNIGGNVVN of Ab9 WYQQLPGKAPKLFIY NNDQRPS GVPDRVSGSKSGTSVSVAISGLQPEDEADYYC AAWDDILNGVV FGGGTQLTVL 85 light chain ELVMTQSPSSLSASVGDTVTITC RASQSIYTYLN of Ab10 WYHQTPGKAPKLLIS AASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC QQYADVPVT FGGGTKLEIK 86 heavy chain QVQLVQSGAEVKKPGESLKISCKGS GYIFTNYWIG of Ab6 WVRQMPGKGLEWM GIIYPGDSDTRYSPSFQG QVTISADRSISTAYLQWSSLKASDTAMYYCA RLKLRGFSGGYGSGRRYFDYWG QGTLVTVSS 87 heavy chain QVQLVQSGAEVKKPGESLKISCKGS GYSFTSYWIG of Ab7 WVRQMPGKGLEWM GIIYPGDSDTRYSPSFQG QVTISADKSISTAYLQWSSLKASDTAMYYCA RLKLRGFSGGYGSGSRYFDYWG QGTLVTVSS 88 heavy chain QVQLVQSGAEVKKPGESLKISCKGS GYIFTNYWIG of Ab8 WVRQMPGKGLEWM GIIYPGDSDTRYSPSFQG QVTISADRSISTANLQWSSLKASDTALYYCA RLKLRGFSGGYGSGRRYFDYWG QGTLVTVSS 89 heavy chain QVQLVQSGAEVKKPGESLKISCKGS GYNFTNYWIG of Ab9 WVRQLPGKGLEWM GIIYPGDSDTRYSPSFQG QVTISADKSISTAYLQWSSLKASDTAMYYCA RIRVIGFYD-- SSPPPLFDYWG QGTLVTVSS 90 heavy chain EVQLVESGGGVVQPGRSLRLSCAAS GFTFSGYGIH of Ab10 WVRQAPGKGLEWV ALISYDGSNKYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCA KDR-----DYFGSG-- FFDYWG QGTLVTVSS

[0028] Amino acid sequences of light chain or heavy chain framework region 1 (LFR1 or HFR1) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00010 TABLE 10 SEQ ID Antibody and NO site Sequence 91 LFR1 of Ab6 ELALTQPPSVSVAPGKTAKITC 92 LFR1 of Ab7 ELVLTQPPSVSAAPGQKVTISC 93 LFR1 of Ab8 ELALTQPPSVSVAPAMTAKITC 94 LFR1 of Ab9 ELELTQPPSVSGTPGKRVSMSC 95 LFR1 of Ab10 ELVMTQSPSSLSASVGDTVTITC 96 HFR1 of Ab6 QVQLVQSGAEVKKPGESLKISCKGS 97 HFR1 of Ab7 QVQLVQSGAEVKKPGESLKISCKGS 98 HFR1 of Ab8 QVQLVQSGAEVKKPGESLKISCKGS 99 HFR1 of Ab9 QVQLVQSGAEVKKPGESLKISCKGS 100 HFR1 of Ab10 EVQLVESGGGVVQPGRSLRLSCAAS

[0029] Amino acid sequences of light chain or heavy chain complementarity determining region 1 (LCDR1 or HCDR1) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00011 TABLE 11 SEQ ID Antibody and NO site Sequence 101 LCDR1 of Ab6 GGDDIGSKTVQ 102 LCDR1 of Ab7 SGSSSNIGNNVVS 103 LCDR1 of Ab8 GGDDIGSTTVQ 104 LCDR1 of Ab9 SGSRSNIGGNVVN 105 LCDR1 of Ab10 RASQSIYTYLN 106 HCDR1 of Ab6 GYIFTNYWIG 107 HCDR1 of Ab7 GYSFTSYWIG 108 HCDR1 of Ab8 GYIFTNYWIG 109 HCDR1 of Ab9 GYNFTNYWIG 110 HCDR1 of Ab10 GFTFSGYGIH

[0030] Amino acid sequences of light chain or heavy chain framework region 2 (LFR2 or HFR2) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00012 TABLE 12 SEQ ID Antibody and NO site Sequence 111 LFR2 of Ab6 WYQQTSGQAPVLVVY 112 LFR2 of Ab7 WYQQLPGTAPKLLIY 113 LFR2 of Ab8 WYQQTSGQAPVLVVY 114 LFR2 of Ab9 WYQQLPGKAPKLFIY 115 LFR2 of Ab10 WYHQTPGKAPKLLIS 116 HFR2 of Ab6 WVRQMPGKGLEWM 117 HFR2 of Ab7 WVRQMPGKGLEWM 118 HFR2 of Ab8 WVRQMPGKGLEWM 119 HFR2 of Ab9 WVRQLPGKGLEWM 120 HFR2 of Ab10 WVRQAPGKGLEWV

[0031] Amino acid sequences of light chain or heavy chain complementarity determining region 2 (LCDR2 or HCDR2) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00013 TABLE 13 SEQ ID Antibody and NO site Sequence 121 LCDR2 of Ab6 DDSDRPS 122 LCDR2 of Ab7 DDNRRPS 123 LCDR2 of Ab8 DDSDRPS 124 LCDR2 of Ab9 NNDQRPS 125 LCDR2 of Ab10 AASSLQS 126 HCDR2 of Ab6 GIIYPGDSDTRYSPSFQG 127 HCDR2 of Ab7 GIIYPGDSDTRYSPSFQG 128 HCDR2 of Ab8 GIIYPGDSDTRYSPSFQG 129 HCDR2 of Ab9 GIIYPGDSDTRYSPSFQG 130 HCDR2 of Ab10 ALISYDGSNKYYADSVKG

[0032] Amino acid sequences of light chain or heavy chain framework region 3 (LFR3 or HFR3) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00014 TABLE 14 SEQ ID Antibody NO and site Sequence 131 LFR3 of Ab6 GIPERFSGANSGNTATLTISRVEAGDEADYYC 132 LFR3 of Ab7 GIPDRFSGSKSGTSATLDITGLQTGDEADYYC 133 LFR3 of Ab8 GIPERFSGANSGNTATLTISRVEAGDEADYYC 134 LFR3 of Ab9 GVPDRVSGSKSGTSVSVAISGLQPEDEADYYC 135 LFR3 of Ab10 GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC 136 HFR3 of Ab6 QVTISADRSISTAYLQWSSLKASDTAMYYCA 137 HFR3 of Ab7 QVTISADKSISTAYLQWSSLKASDTAMYYCA 138 HFR3 of Ab8 QVTISADRSISTANLQWSSLKASDTALYYCA 139 HFR3 of Ab9 QVTISADKSISTAYLQWSSLKASDTAMYYCA 140 HFR3 of Ab10 RFTISRDNSKNTLYLQMNSLRAEDTAVYYCA

[0033] Amino acid sequences of light chain or heavy chain complementarity determining region 3 (LCDR3 or HCDR3) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00015 TABLE 15 SEQ ID Antibody and NO site Sequence 141 LCDR3 of Ab6 QVWDGRSDHVV 142 LCDR3 of Ab7 ATWDGSLTAGRVL 143 LCDR3 of Ab8 QVWDGRSDHVV 144 LCDR3 of Ab9 AAWDDILNGVV 145 LCDR3 of Ab10 QQYADVPVT 146 HCDR3 of Ab6 RLKLRGFSGGYGSGRRYFDYWG 147 HCDR3 of Ab7 RLKLRGFSGGYGSGSRYFDYWG 148 HCDR3 of Ab8 RLKLRGFSGGYGSGRRYFDYWG 149 HCDR3 of Ab9 RIRVIGFYD--SSPPPLFDYWG 150 HCDR3 of Ab10 KDR-----DYFGSG--FFDYWG

[0034] Amino acid sequences of light chain or heavy chain framework region 4 (LFR4 or HFR4) of the antibody binding to Gn envelope glycoprotein.

TABLE-US-00016 TABLE 16 SEQ ID Antibody and NO site Sequence 151 LFR4 of Ab6 FGGGTKLTVL 152 LFR4 of Ab7 FGSGTKLTVL 153 LFR4 of Ab8 FGGGTKLTVL 154 LFR4 of Ab9 FGGGTQLTVL 155 LFR4 of Ab10 FGGGTKLEIK 156 HFR4 of Ab6 QGTLVTVSS 157 HFR4 of Ab7 QGTLVTVSS 158 HFR4 of Ab8 QGTLVTVSS 159 HFR4 of Ab9 QGTLVTVSS 160 HFR4 of Ab10 QGTLVTVSS

[0035] In one exemplary embodiment, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gn of the present invention may comprise a light chain comprising any one of amino acid sequences selected from the group consisting of SEQ ID NO 81, 82, 83, 84 and 85, and a heavy chain comprising any one of amino acid sequences selected from the group consisting of SEQ ID NO 86, 87, 88, 89 and 90. The antibody consisting of these specific sequences can specifically and effectively bind to the envelope glycoprotein, Gn, and thus can be very usefully used for detection of SFTSV.

[0036] In another exemplary embodiment, preferably, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gn of the present invention can be provided as an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 81 and a heavy chain comprising an amino acid of SEQ ID NO 86, an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 82 and a heavy chain comprising an amino acid of SEQ ID NO 87, an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 83 and a heavy chain comprising an amino acid of SEQ ID NO 88, an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 84 and a heavy chain comprising an amino acid of SEQ ID NO 89, and an antibody comprising a light chain comprising an amino acid sequence of SEQ ID NO 85 and a heavy chain comprising an amino acid of SEQ ID NO 90.

[0037] In another exemplary embodiment, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gn of the present invention can comprise a light chain complementarity determining region 1 (LCDR1) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 101, 102, 103, 104 and 105, a light chain complementarity determining region 2 (LCDR2) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 121, 122, 123, 124 and 125, a light chain complementarity determining region 3 (LCDR3) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 141, 142, 143, 144 and 145, a heavy chain complementarity determining region 1 (HCDR1) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 106, 107, 108, 109 and 110, a heavy chain complementarity determining region 2 (HCDR2) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 126, 127, 128, 129 and 130, and a heavy chain complementarity determining region 3 (HCDR3) comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 146, 147, 148, 149 and 150.

[0038] In another exemplary embodiment, the antibody which specifically binds to the envelope glycoprotein of SFTSV, Gn of the present invention can be provided as an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 101, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 121, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 141, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 106, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 126, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 146; an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 102, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 122, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 142, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 107, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 127, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 147; an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 103, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 123, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 143, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 108, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 128, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 148; an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 104, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 124, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 144, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 109, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 129, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 149; or an antibody comprising a light chain complementarity determining region 1 (LCDR1) of SEQ ID NO 105, a light chain complementarity determining region 2 (LCDR2) of SEQ ID NO 125, a light chain complementarity determining region 3 (LCDR3) of SEQ ID NO 145, a heavy chain complementarity determining region 1 (HCDR1) of SEQ ID NO 110, a heavy chain complementarity determining region 2 (HCDR2) of SEQ ID NO 130, and a heavy chain complementarity determining region 3 (HCDR3) of SEQ ID NO 150.

[0039] In one exemplary embodiment, the antibody of the present invention may include an antibody comprising an amino acid which is a homologue of an antibody comprising heavy chains and light chains described in the above Table 1 or Table 9. In addition, the antibody of the present invention may comprise a light chain variable region comprising the LCDR1, LCDR2 and LCDR3 sequences, and a heavy chain variable region comprising HCDR1, HCDR2 and HCDR3 sequences, and at least one of these CDR sequences may have the antibody disclosed herein or a specific amino acid sequence based on its conservative modification. In addition, the antibody of the present invention may be an antibody possessing functional properties of antibody binding to the envelope glycoprotein of SFTSV, Gc or Gn, and may be an antibody which binds to a same epitope as an antibody comprising heavy chains and light chains disclosed in Table 1 or Table 9. Furthermore, the antibody of the present invention may be prepared using an antibody having one or more kinds of light chains or antibody sequences suggested herein as a starting material for engineering the modified antibody, and comprise all the antibodies having partially modified properties from the starting antibody.

[0040] In the present invention, the antibody may comprise a modification to the framework region in the light chain or heavy chain in order to improve properties of the antibody. In addition, the antibody may have at least 1.times.10.sup.7 M.sup.-1, 1.times.10.sup.8 M.sup.-1, 1.times.10.sup.9 M.sup.-1, 1.times.10.sup.10 M.sup.-1 or 1.times.10.sup.11 M.sup.-1 of affinity constant (KA) for the envelope glycoprotein of SFTSV.

[0041] In addition, the antibody of the present invention may be a complete human antibody which specifically binds to the SFTSV envelope glycoprotein. This can have further reduced antigenicity when administered into a human subject, compared with chimera antibody, etc. The human antibody may comprise a heavy chain or light chain variable region, or a full length of heavy chain or light chain that are products of or one derived from a specific germline sequence, when it is collected from a system using a variable region or full length chain human germ line immunoglobulin gene. Moreover, the antibody of the present invention may be a De-immunized antibody having antigenicity.

[0042] In addition, in the present invention, the antigen may be a bispecific or a multispecific antibody. The antibody or its antigen-binding fragment of the present invention may be a bispecific molecule binding to two or more of different binding sites or target molecules.

[0043] In some exemplary embodiments, the antibody of the present invention may be a monoclonal antibody which specifically binds to the envelope glycoprotein of SFTSV. For example, the antibody of the present invention may be a human or humanized monoclonal antibody or chimera antibody which specifically binds to the envelope glycoprotein of SFTSV, and the antibody of the present invention may comprise a human heavy chain constant region and a human light chain constant region. In addition, the antibody of the present invention may be a single chain antibody, and the antibody of the present invention may be a Fab fragment, and may be a scFv (Single-chain variable fragment), and may be an IgG isotype. Preferably, the antibody of the present invention may be the scFv.

[0044] In the present invention, the monoclonal antibody may be produced by common monoclonal antibody methods, and the synthesized antibody genes can be expressed and purified by inserting them into a vector for antibody expression, preferably pcDNA, pCI, pCMV or pCEP4. In addition, viral or carcinogenic transformation of B lymphocytes may be used, and it may be prepared on the basis of the sequence of murine monoclonal antibody prepared using a murine system. For example, using a standard molecule biology technology, a DNA encoding heavy chain and light chain immunoglobulins is obtained from a murine hybridoma, and a non-murine immunoglobulin sequence can be contained with it.

[0045] In some exemplary embodiments, the present invention provides an antibody comprising a framework in which an amino acid is substituted with an antibody framework from each human VH or VL germline sequence, or its antigen binding fragment.

[0046] In another exemplary embodiment, the present invention provides a nucleic acid comprising a nucleotide sequence encoding a polypeptide comprising a light chain comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 1, 2, 3, 4 and 5, and a polypeptide comprising a heavy chain comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOs 6, 7, 8, 9 and 10. In one embodiment, the nucleic acid may be any one of nucleic acid sequences selected from the group consisting of SEQ ID NOs 161, 162, 163, 164, 165, 166, 167, 168, 169 and 170, and this is shown in the following Table 17 (The bolded parts are light chain variable regions (VL), and the underlined parts are heavy chain variable regions (VH)).

TABLE-US-00017 TABLE 17 SEQ ID NO Antibody Nucleic acid sequence 161 Ab1 GAGCTCACACTCACGCAGTCTCCAGCCACCCTGTCTTTGTCTCCAG scFv GGGAAACAGCCACCCTCTCCTGCGGGGCCAGTCAGAGTGTTAGCA CCAACTACTTAGCCTGGTACCAGCAGAAACCTGGCCTGGCGCCCA GGCTCCTCATCTATGATGCATCCAGCAGGGCCACTGGCATCCCAG ACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCA TCAGCAGACTGGCGCCTGAAGATTCTGCGGTGTATTACTGTCAGC AATATGGTAGCTCACCTCTCACTTTCGGCGGAGGGACCAAGCTGG AGATCAAAGGTGGTTCCTCTAGATCTTCCTCCTCTGGTGGCGGTGG CTCGGGCGGTGGTGGGCAGGTGCAGCTGGTGCAGTCTGGGCCTGA GGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCT GGAGGCACCTTCAGCACCTATGCTATCAGCTGGGTGCGACAGGCC CCTGGACAAGGGCTTGAGTGGATGGGAGGGATCATCCCTATCTCTG GTACAGCAAACTACGCACAGAAATTCCAGGGCAGAGTCACCATTAC CGCGGACGAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCT GAGATCTGAGGACACGGCCGTGTATTACTGTGCGGTACCAGTAGTA CCAGCTGCCAGCGGCCCTTTTGACTACTGGGGCCAGGGAACCCTG GTCACCGTCTCCTCAGCC 162 Ab2 GAGCTCGTGGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGG scFv GCAGAGGGTCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGG AAATAATACTGTAAACTGGTACCAGCAGCTCCCAGGAACGGCCCC CAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCC ATCACTGGGCTCCAGGCTGACGATGAGGCTGATTATTACTGCCAG TCCTTTGACAGCAGCCTGAATGATTGGGTGTTCGGCGGGGGCACC AAGCTGACCGTCCTAGGCGGTGGTTCCTCTAGATCTTCCTCCTCTG GTGGCGGTGGCTCGGGCGGTGGTGGGGAGGTGCAGCTGGTGGAG TCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTAGCTATAGCATGAACTGGGT CCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAG TAGTAGTAGTCGTTACATATTCTACGCAGACTCAGTGAAGGGCCGAT TCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATG AACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGC CTAGGATATTGTAGTGGTGGTAGCTGCTACGGGTTCCCGGAAGGTG GGAATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC TTCA 163 Ab3 GAGCTCGAGCTGACTCAGCCACCCTCAGTGTCTGGGGCCCCAGG scFv GCAGAGGGTCACCATCTCCTGCACTGGGAGCAGCTCCAACATCGG GGCAGGTTATGATGTACACTGGTACCAGCAGCTTCCAGGAACAGC CCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGT CCCTGACCGATTCTCTGGCTCCAAGTCTGACACCTCAGCCTCCCTG GCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGT GCAGCATGGGATGACAGCCTGAATGGCCAGGTGGTATTCGGCGG AGGCACCAAGCTGACCGTCCTAGGCGGTGGTTCCTCTAGATCTTC CTCCTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGCAGGTGCAGCT GCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTC CCTCACCTGCACTGTCTCTGGTGGGTCCTTCAGTGGTTACTACTGG AGCTGGATCCGCCAGCCCCCAGGAAAGGGGCTGGAGTGGATTGGG GAAATCATTCATAGTGGAAGCACCAACTACAACCCGTCCCTCAAGA GTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAATTCTCCCTG AAGCTGAGCTCTGTGACCGCCGCGGACACGGCTGTGTATTACTGTG CGAGAGGTGATTATTATGATAGTAGTGGTGCCTTTGACTACTGGGG CCAGGGAACCCTGGTCACCGTCTCCTCA 164 Ab4 GAGCTCGTGCTGACTCAGCCACCTTCAGCGTCTGGGACCCCCGGG scFv CAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGA AGTAATACTGTAAACTGGTACCAGCAGCTCCCCGGAACGGCCCCC AAACTCCTCATCTATAGTAATAATCAGCGGCCCCCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCC ATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGCCAG TCCTATGACAGCAGCCTGAGTTATGTCTTCGGAACTGGCACCAAG GTGACCGTCCTAGGCGGTGGTTCCTCTAGATCTTCCTCCTCTGGTG GCGGTGGCTCGGGCGGTGGTGGGGAGGTGCAGCTGGTGGAGTCT GGGGGAGGCTTGGTACAGCCGGGGGGGTCCCTGAGACTCTCCTGT GCAGCCTCTGGATTCACCTTCAGTAGCTATAGCATGAACTGGGTCC GCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTA GTAGTAGTCGTTACATATTCTACGCAGACTCAGTGAAGGGCCGATTC ACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAA CAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGCCTA GGATATTGTAGTGGTGGTAGCTGCTACGGGTTCCCGGAAGGTGGG AATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTC A 165 Ab5 GAGCTCGTGGTGACCCAGGAGCCCTCACTGACTGTGCCCCCAGGA scFv GGGACAGTCACTCTCACCTGTGGCTCCAGCACTGGACCTGTCACC ACTACTCAGTATCCCTACTGGTTCCAGCAGAAGCCTGGCCAGGCC CCCAGGACACTCATTTATGATACCAACAACAGACACCCCTGGACA CCTGCCCGCTTCTCAGGCTCCCTCCTTGGGGGCAAGGCTGCCCTG ACCCTTTCGGGAGCGCAGCCTGAGGATGACGCTTAGTATTATTGCT TGCTCACCTCTGCTAGCGCTCCTTGGGTGTTCGGCGGAGGCACCA AGCTGACCGTCCTAGGCGGTGGTTCCTCTAGATCTTCCTCCTCTGG TGGCGGTGGCTCGGGCGGTGGTGGGCAGGTGCAGCTGGTGCAGT CTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCT GTTCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTC CGCCAGGCTCCAGGGAAGGGACTGGAATATGTTTCAGCTATTAGTA GTGATGGGGGTAGCACATACTACGCAGACTCCGTGAAGGGCAGATT CACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGA GCAGTCTGAGAGCTGAGGACACGGCTGTATATTACTGTGTGAACGA TGGCAGCTCGAACCATTTTGACTACTGGGGCCAGGGAACCCTGGTC ACCGTCTCCTCA 166 Ab6 GAGCTCGCCCTGACTCAGCCTCCCTCCGTGTCAGTGGCCCCAGGA scFv AAGACGGCCAAGATTACCTGTGGGGGTGACGACATTGGAAGTAAA ACTGTGCAATGGTACCAACAGACCTCAGGCCAGGCCCCTGTGCTG GTCGTCTATGACGATAGCGACCGGCCCTCAGGGATCCCTGAGCGA TTCTCCGGCGCCAACTCTGGGAACACGGCCACCCTGACCATCAGC AGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTG GGACGGCAGAAGTGATCATGTGGTTTTCGGCGGAGGGACCAAGCT GACCGTCCTAGGCGGTGGTTCCTCTAGATCTTCCTCCTCTGGTGGC GGTGGCTCGGGCGGTGGTGGGCAGGTGCAGCTGGTGCAGTCTGG AGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAG GGTTCTGGATACATCTTTACCAACTACTGGATCGGCTGGGTGCGCC AGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTATCCTG GTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCAC CATCTCAGCCGACAGGTCCATCAGCACCGCCTACCTGCAGTGGAGC AGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGACTAA AGCTCCGGGGGTTTTCGGGCGGCTATGGTTCAGGGAGACGCTACT TTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA 167 Ab7 GAGCTCGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGG scFv ACTGAAGGTCACCATCTCCTGCTCTGGAAGCAGCTCTAACATTGG GAATAATGTTGTATCCTGGTACCAGCAACTCCCAGGAACAGCCCC CAAACTCCTCATTTATGACGATAACCGGCGACCCTCAGGGATTCCT GACCGATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGAC ATCACCGGACTCCAGACTGGGGACGAGGCCGATTACTACTGCGCA ACATGGGATGGCAGCCTGACTGCTGGCCGTGTGTTGTTCGGCAGT GGCACCAAGCTGACCGTCCTAGGTGGTGGTTCCTCTAGATCTTCCT CCTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGCAGGTGCAGCTG GTGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAG ATCTCCTGTAAGGGTTCTGGATACAGCTTTACCAGCTACTGGATCGG CTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGAT CATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCCTTCCAAG GCCAGGTCACCATCTCAGCCGACAAGTCCATCAGCACCGCCTACCT GCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGT GCGAGACTAAAGCTCCGGGGGTTTTCGGGCGGCTATGGTTCAGGG AGCCGCTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT CCTCA 168 Ab8 GAGCTCGCCCTGACTCAGCCTCCCTCCGTGTCAGTGGCCCCAGCA scFv ATGACGGCCAAGATTACCTGTGGGGGTGACGACATTGGAAGTACT ACTGTGCAATGGTACCAACAGACCTCAGGCCAGGCCCCTGTGCTG GTCGTCTATGACGATAGCGACCGGCCCTCAGGGATCCCTGAGCGA TTCTCCGGCGCCAACTCTGGGAACACGGCCACCCTGACCATCAGC AGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTG GGACGGCAGAAGTGATCATGTGGTTTTCGGCGGAGGGACCAAGCT GACCGTCCTAGGCGGTGGTTCCTCTAGATCTTCCTCCTCTGGTGGC GGTGGCTCGGGCGGTGGTGGGCAGGTGCAGCTGGTGCAGTCTGG AGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAG GGTTCTGGATACATCTTTACCAACTACTGGATCGGCTGGGTGCGCC AGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTATCCTG GTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCAC CATCTCAGCCGACAGGTCCATCAGCACCGCCAACCTGCAGTGGAG CAGCCTGAAGGCCTCGGACACCGCCCTGTATTACTGTGCGAGACTA AAGCTCCGGGGGTTTTCGGGCGGCTATGGTTCAGGGAGACGCTAC TTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA 169 Ab9 GAGCTCGAGCTGACTCAGCCACCCTCAGTGTCTGGGACCCCCGGG scFv AAGAGGGTCAGTATGTCTTGTTCTGGAAGTAGGTCCAACATCGGA GGTAATGTTGTGAACTGGTACCAGCAGCTCCCAGGAAAGGCCCCC AAACTCTTCATCTACAATAATGATCAGCGGCCCTCAGGGGTCCCTG ACCGAGTCTCTGGCTCCAAGTCAGGCACCTCAGTCTCCGTGGCCA TCAGTGGGCTCCAGCCTGAAGATGAGGCTGATTATTACTGTGCAG CTTGGGATGACATCCTGAATGGTGTGGTCTTCGGCGGAGGGACCC AGCTGACCGTCCTCGGCGGTGGTTCCTCTAGATCTTCCTCCTCTGG TGGCGGTGGCTCGGGCGGTGGTGGGCAGGTGCAGCTGGTGCAGT CTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCT GTAAGGGTTCTGGATACAACTTCACCAACTACTGGATCGGGTGGGT GCGCCAGCTGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTA TCCTGGTGACTCCGACACCAGATATAGCCCGTCCTTCCAAGGCCAG GTCACCATCTCAGCCGACAAGTCCATCAGCACCGCCTACCTGCAGT GGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGA GAATTCGAGTTATCGGATTCTATGATAGTAGCCCCCCGCCCTTATTT GACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA 170 Ab10 GAGCTCGTGATGACTCAGTCTCCATCTTCCCTGTCCGCATCTGTGG scFv GAGACACAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTTACA CCTATTTAAATTGGTATCACCAGACACCAGGGAAAGCCCCTAAACT CCTGATTTCTGCTGCATCTAGTTTGCAAAGTGGTGTCCCATCAAGG TTCAGTGGCAGTGGGTCTGGGACAGATTTCACTCTCACCATCAGC AGTCTGCAACCTGAGGATTTTGCAACGTACTACTGTCAACAGTATG CGGATGTCCCGGTCACTTTCGGCGGAGGGACCAAGCTGGAGATCA AAGGTGGTTCCTCTAGATCTTCCTCCTCTGGTGGCGGTGGCTCGGG CGGTGGTGGGGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGG TCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATT CACCTTCAGTGGCTATGGCATACACTGGGTCCGCCAGGCTCCAGGC AAGGGGCTGGAGTGGGTGGCACTTATATCATATGATGGAAGTAATA AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGA CAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCT GAGGACACGGCTGTGTATTACTGTGCGAAAGATCGGGATTACTTTG GTTCAGGGTTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGT CTCCTCA

[0047] In another exemplary embodiment, the antibody of the present invention may comprise an amino acid sequence having at least 90%, 95%, 97%, 98% or 99% sequence identity with any one of amino acid sequences disclosed in the above Tables 1-16, within the range that the antibody specificity to the envelope glycoprotein of SFTSV is maintained. In addition, a nucleic acid which can express the antibody of the present invention may comprise a nucleic acid having at least 90%, 95%, 97%, 98% or 99% sequence identity with any one of nucleic acid sequences disclosed in the above Table 17.

[0048] In addition, the present invention provides a vector and a host cell comprising the nucleic acid. The vector of the present invention may comprise a nucleic acid encoding an amino acid sequence of the antibody binding to the envelope glycoprotein of SFTSV, Gc, or a nucleic acid encoding an amino acid of the antibody binding to Gn. Otherwise, the vector of the present invention may express a bispecific antibody, by comprising all the two kinds of nucleic acids.

[0049] In one exemplary embodiment, the present invention provides (1) a first recombinant DNA fragment encoding a heavy chain of the antibody of the present invention, and (2) a second recombinant DNA fragment encoding a light chain of the antibody of the present invention. In another exemplary embodiment, the present invention provides a host cell comprising a recombinant DNA fragment encoding a heavy chain and a light chain of the present invention, respectively. In some exemplary embodiments, the antibody or its antigen binding fragment is a human monoclonal antibody or its antigen binding fragment.

[0050] To express a polynucleotide encoding the antibody binding to the envelope glycoprotein of SFTSV of the present invention, various expression vectors can be used. To produce an antibody in a mammalian host cell, both of virus-based or non-viral expression vector may be used. For example, vectors such as pcDNA, pCI, pCMV or pCEP4, and the like and host cells such as HEK293, CHO or CHO-DG44, and the like may be used.

[0051] The host cell possessing and expressing the antibody of the present invention may be a prokaryotic or eukaryotic cell. For example, the host cell may be E. coli, preferably, E. coli ER2738. HB2151, BL21 and the like, and they may be useful for cloning and expressing the polynucleotide of the present invention. In addition, as other microbial hosts, Bacillus, for example, Bacillus subtilis or other intestinal bacteria, for example, Salmonella or Serratia, or various Pseudomonas species may be used. To express the antibody of the present invention, other microorganisms, for example, yeasts can be used, and an insect cell combined with a baculovirus vector may be also used.

[0052] In some preferable exemplary embodiments, a mammalian host cell may be used for expressing and preparing the SFTSV envelope glycoprotein binding polypeptide of the present invention. For example, it may be a hybridoma cell line expressing an endogenous immunoglobulin gene or a mammalian cell line possessing an exogenous expression vector. Further, it may comprise for example, CHO cell line, Cos cell line, HeLa cell, myeloma cell line, HEK cell line, transformed B-cell and hybridoma, as any animal or human cell. In addition, numerous appropriate host cell lines which can secret an immunoglobulin can be used, and preferably, HEK293, CHO or CHO-DG44 may be used.

[0053] In addition, the present invention provides a composition for diagnosing SFTSV comprising one or more kinds of SFTSV envelope glycoprotein binding molecules (for example, Gc or Gn binding antibody or its antigen binding fragment). The composition for diagnosis of the present invention may be usefully used for detection, isolation or purification of SFTSV. Moreover, the composition may further comprise one or more kinds of other agents appropriate for diagnosing SFTSV. In addition, the present invention provides a method for diagnosing SFTSV using the antibody of the present invention. The method may be used for quantitative or qualitative detection or diagnosis of SFTSV. Specifically, the diagnosis method may comprise a diagnosis examination to determine the expression of envelope glycoprotein and/or nucleic acid of SFTSV and the function of envelope glycoprotein of SFTSV from a biological sample (for example, blood, serum, cell or tissue) or a subject who is suffering from or at risk of developing SFTS. In the present invention, the detection includes quantitative and/or qualitative analysis, and includes detection of existence and absence and detection of virus titer, and this method has been known in the art, and those skilled in the art may select a proper method to conduct the present invention.

[0054] In the present invention, the detection of diagnosis or diagnosis of SFTSV may be detected by radio immunoassay, western blot, ELISA (Enzyme linked immunosorbent assay) or immune fluorescence assay, etc. which detects an antigen-antibody complex. In the present invention, an antigen may be labeled with a label such as a radioactive material, enzyme or fluorescent material, etc.

[0055] In one embodiment, the method of diagnosis of the present invention may use a complex in which the antibody to the envelope glycoprotein of SFTSV is conjugated to magnetic beads. Specifically, the method can more effectively detect, isolate or purify SFTSV, using the complex in which the antibody specific to the envelope glycoprotein of SFTSV, Gc or Gn is combined to magnetic beads. The antibody to the SFTSV envelope glycoprotein-magnetic bead complex combines with SFTSV existed in a subject using properties of the antibody and at that time, when the magnetic beads are pulled by magnetic power, viruses and other materials in the subject are separated, thereby effectively purifying the virus. The virus purified in this way is relatively useful for RNA isolation, as impurities are removed, and through this, purification result data of good quality can be obtained. In addition, an immunochemical response using another antibody can be processed for the virus attached to magnetic beads, and through this, SFTSV existed in the subject can be rapidly confirmed. The schematic figure of the diagnosis method was shown in FIG. 4.

[0056] In addition, the present invention provides a kit for diagnosing SFTSV comprising an antibody binding to an envelope glycoprotein of SFTSV. The kit may comprise any one or more aforementioned antibodies and a reagent for detecting an antigen-antibody complex. As the reagent for detecting an antigen-antibody complex, reagents used for radio immunoassay, ELISA (Enzyme linked immunosorbent assay) or immune fluorescence assay and the like may be used.

[0057] For example, for the detection of the immunoreaction, the detection reagent may be labeled directly or indirectly in the form of sandwich. In case of direct labeling method, a serum sample used for array, etc. may be labeled by a fluorescence label such as Cy3 or Cy5. In case of sandwich method, the detection may be performed by combining a target protein with a labeled detection antibody, after combining a non-labeled serum sample with an array in which a detection reagent is attached in advance. In case of sandwich method, as the sensitivity and specificity can be increased, the detection in the level of pg/mL is possible. Besides that, a radioactive material, a color material, a magnetic particle or a dense electron particle and the like may be used as a labeling material. A confocal microscope may be used for the fluorescence strength, and for example, may be obtained from Affymetrix, Inc. or Agilent Technologies, Inc, etc.

[0058] The kit of the present invention may further comprise one or more additional components needed for binding analysis, and for example, may further comprise a binding buffer, a reagent needed for sample preparation, a syringe for blood collection or negative and/or positive control. The kit of the present invention which can comprise various detection reagents may be provided for ELISA analysis, dip stick rapid kit analysis, microarray, gene amplification, or immunoassay, etc. according to analysis aspects, and proper detection reagents may be sorted according to the analysis aspects.

[0059] In addition, the present invention provides a pharmaceutical composition comprising the antibody binding to SFTSV envelope glycoprotein of the present invention. Preferably, the pharmaceutical composition may be used for prevention or treatment of SFTS. The antibody of the present invention can effectively prevent or treat SFTS, by neutralizing SFTSV and blocking proliferation of virus.

[0060] In the present invention, the composition may further contain one or more kinds of other agents appropriate for treating or preventing an SFTSV related disease. The carrier which can be used for the pharmaceutical composition may enhance the effect of composition, or stabilize the composition, or make preparation of the composition easy. The pharmaceutically acceptable carrier may comprise a physiologically acceptable solvent, a dispersive medium, a coating agent, an anti-bacterial agent, an anti-fungal agent, an isotonic agent or an absorption delaying agent and the like.

[0061] In the present invention, the pharmaceutical composition may be administered by a variety of methods known in the art, and the administration route and/or method may vary depending on the desired result. The pharmaceutical composition may be administered by administration methods, for example, intravenous, intramuscular, intraperitoneal or subcutaneous, and the like. According to the administration route, the active compound, antibody may be coated with a material protecting the compound from the action of acids and other natural conditions which may inactivate the compound.

[0062] In the present invention, the composition may be a sterile fluid. To maintain a proper fluidity, for example, a coating material such as lecithin or a surfactant may be used. In addition, the composition may comprise an isotonic agent (for example, sugar, polyalcohol, mannitol, sorbitol, and sodium chloride, etc.) or an absorption delaying agent (aluminum monostearate or gelatin, etc.).

[0063] In the present invention, the pharmaceutical composition may be prepared according to methods known in the art and commonly conducted, and preferably, may be prepared under GMP condition. The pharmaceutical composition may comprise a therapeutically effective dose or efficacious dose of the SFTSV envelope glycoprotein binding antibody. In addition, the dosage level of active ingredients in the pharmaceutical composition may be enough to achieve a therapeutic effect without toxicity to a patient.

[0064] In the present invention, the treatment dosage may be titrated to optimize safety and efficacy. When the antibody of the present invention is administered systemically, the range of dosage may be about 0.0001 to 100 mg, more commonly 0.01 to 15 mg per 1 kg of the host body weight. An exemplary treatment method entails systemic administration once per two weeks, or once per one month, or once per three months to 6 months. In some methods of systemic administration, the dosage is, and in some methods, the dosage may be adjusted to achieve the serum antibody concentration of 1 to 1000 .mu.g/mL in some methods of systemic administration and 25 to 500 .mu.g/mL in some methods. Otherwise, when less frequent administration is required, the antibody may be administered by a time-release agent. The dosage and frequency may be differed according to the half-life of the antibody in a patient. In prophylactic purposes, the relatively low dosage may be administered at relatively infrequent intervals for a long period of time.

[0065] In addition, the present invention provides a method for preventing or treating SFTS using the pharmaceutical composition. The prevention or treatment method may comprise administering the composition comprising the antibody of the present invention in an therapeutically effective amount. The "therapeutically effective amount" indicates an amount of the antibody of the present invention or the composition comprising thereof which is effective for prevention or treatment of SFTS diseases.

[0066] In addition, the present invention provides a use of an SFTSV envelope glycoprotein binding antibody for preparation of a composition for diagnosis of SFTSV. For the preparation of the composition for diagnosis, the antibody or composition comprising thereof of the present invention may comprise additional components such as an acceptable carrier, etc.

[0067] Furthermore, the present invention provides a use of an SFTSV envelope glycoprotein binding antibody. The antibody which specifically binds to SFTSV of the present invention may be used for SFTSV diagnosis, and may be used as a diagnosis use determining expression of the envelope glycoprotein and/or nucleic acid of SFTSV and the function of the protein from a subject who is suffering from or at risk of developing SFTS. In addition, the antibody of the present invention may be used as a use of prevention or treatment of SFTS occurred by SFTSV for a who is at risk of developing or suffering from SFTS.

Advantageous Effects

[0068] The antibody of the present invention can specifically bind to envelope glycoprotein of SFTSV, Gc or Gn, and thus SFTSV can be effectively detected or diagnosed and SFTS can be treated, using the antibody of the present invention.

BRIEF DESCRIPTION OF DRAWINGS

[0069] FIG. 1 shows the amino acid sequences of antibody clones Ab1 to Ab10.

[0070] FIG. 2 shows the ELISA analysis result of scFv fragment antibody purified for SFTSV envelope glycoprotein Gc and Gn. These data show mean.+-.S.D of 3 times repeated samples.

[0071] FIGS. 3A and 3B is (A) the immune fluorescence analysis result and (B) the fluorescence strength measurement of SFTSV infection. In the immune fluorescence analysis result, it was shown that Vero cells infected by SFTSV reacted with the antibody to Gn, and it was shown that Ab10 inhibited the virus infection dose-dependently. Ab10 was significantly excellent in inhibiting virus invasion compared with MAb 4-5.

[0072] FIG. 4 is a schematic figure showing the method for detecting SFTSV using an antibody-magnetic bead complex.

DETAILED DESCRIPTION

[0073] Hereinafter, examples, etc. will be described in detail to facilitate understanding of the present invention. However, the examples according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the following examples. The examples of the present invention are provided to describe the present invention more completely to those skilled in the art.

Example 1: Preparation of Cells

[0074] Vero cells derived from African green monkey kidneys were purchased from Korean Cell Line Bank, and cultured at 37.degree. C. under 5% carbon dioxide circumstance with Roswell Park Memorial Institute (RPMI)-1640 medium (Welgene) supplemented with 2% heat inactivated fetal bovine serum (Gibco) and penicillin-streptomycin (Gibco).

Example 2: Preparation of Virus Strains

[0075] The SFTS virus used in the present experiment was KF358691 which was isolated from a serum sample of 63-year-old female patient who was hospitalized in Seoul National University hospital and dead in 2012 [Kim K H, Yi J, Kim G, Choi S J, Jun K I, Kim N H, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerging infectious diseases. 2013; 19(11):1892-4]. The isolated virus was inoculated into a single layer of Vero cells and cultured at 37.degree. C. under 5% carbon dioxide circumstance. The virus was proliferated in Vero cells and all the experiments were performed at the third viral passage of virus culturing. Using Reed-Muench method, 50% tissue culture infection dose (TCID50) was titrated in Vero cells.

Example 3: Preparation of Recombinant SFTS Virus Glycoprotein and Single Chain Variable Fragment Antibody Fusion Protein

[0076] The amino acid sequence of SFTS virus glycoprotein used in the present experiment was previously reported [Kim K H, Yi J, Kim G, Choi S J, Jun K I, Kim N H, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerging infectious diseases. 2013; 19(11):1892-4]. To get a DNA strand encoding the SFTS virus glycoprotein, a human codon optimized DNA sequence corresponding to the amino acid sequence of SFTS virus glycoprotein of SEQ ID NO 171 (GenBank Accession No: AGT98506, amino acids 20-452 for Gn glycoprotein, amino acids 563-1035 for Gc glycoprotein) was synthesized (GenScript).

[0077] To overexpress recombinant SFTS virus glycoprotein Gc and Gn which were fused to human immunoglobulin G1 (IgG1) Fc region (Gc-Fc, Gn-Fc) or fused to human Ig k-chain constant region (Gc-Ck, Gn-Ck), the SFTS glycoprotein-encoding gene was prepared according to the method disclosed in [Park S, Lee D H, Park J G, Lee Y T, Chung J. A sensitive enzyme immunoassay for measuring cotinine in passive smokers. Clinica chimica acta; international journal of clinical chemistry 2010; 411(17-18): 1238-42], [Lee Y, Kim H, Chung J. An antibody reactive to the Gly63-Lys68 epitope of NT-proBNP exhibits O-glycosylation-independent binding. Experimental & molecular medicine. 2014; 46:e114].

[0078] First of all, a DNA sequence obtained by amplifying the Fc region of human IgG1 using 2 kinds of primers (5'-GAGCCCAAATCTTGTGACAAAACTCAC-3') and (5'-GGATCCTCATTTACCCGGGGACAGGGAG-3') from human marrow-derived cDNA library (Clontech Laboratories), or the synthesized constant region of human Ig k-chain (UniProtKB/Swiss-Prot: P01834.1) was modified to be positioned at the DNA 3' side of gene sequence to be added. The gene sequence to be added was cloned in a modified pCEP4 vector (Invitrogen) to enable gene addition by Sfil restriction enzyme.

[0079] The antibody clone was produced in the form of single chain variable fragment-human IgG1 Fc region fusion protein (scFv-Fc) using scFv coding DNA of each clone. Then, the vector was transfected into HEK293F cell (Invitrogen) using polyethyleneimine (Polysciences), and the transfected cell was cultured in FreeStyle.TM. 293 expression medium containing 100 U/L penicillin-streptomycin. The overexpressed recombinant SFTS virus glycoprotein fusion protein was purified through an affinity chromatography using A/KappaSelect column and AKTA pure chromatography system (GE Healthcare).

Example 4: Antibody Library Construction and Biopanning

[0080] Peripheral blood monocytes of patient recovered from SFTS were collected using Ficoll-Paque solution (GE Healthcare). The total RNAs were separated using TRIzol reagent (Invitrogen), and cDNA was synthesized from the total RNAs using SuperScript III first strand cDNA synthesis kit with oligo(dT) priming. Using the cDNA, the phage-display library of human single chain variable fragment (scFv) was constructed using pComb3XSS phagemid vector. In addition, to select scFv clone from the library, as disclosed in [Barbas C F, Burton D R, Scott J K, Silverman G J. Phage display: a laboratory manual: CSHL Press; 2004.], 4 rounds of biopanning were performed. 3 .mu.g of recombinant SFTS virus glycoprotein Gc or Gn human IgG1 Fc region fusion protein (Gc-Fc, Gn-Fc) was used for coating 5.times.106 of magnetic Dynabeads M-270 epoxy beads (Invitrogen) according to the manufacturer's instruction for each round of biopanning. And then the beads bound with proteins were used for biopanning procedures.

Example 5: Screening of Single Chain Variable Fragment Antibody to SFTS Virus

[0081] To select an individual antibody clone which bound to SFTS virus glycoproteins, the phage clone was selected form the last round of biopanning, and scFv-display phage was prepared for phage enzyme immunoassay. Microtiter plate (Corning) was coated with 100 ng of recombinant Gc, Gn human Ig k-chain constant region fusion proteins (Gc-Ck, Gn-Ck) per well at 4.degree. C. overnight. The well was blocked with 3% (w/v) BSA in 100 .mu.l of PBS at 37.degree. C. for 1 hour, and cultured with 50 .mu.l of culture supernatant containing phage at 37.degree. C. for 2 hours, and washed with 0.05% (v/v) Tween20 in 150 .mu.l of PBS three times. Then, 50 ml of horseradish peroxidase (HRP)-bound anti-M13 antibody distilled in a blocking buffer (1:5000) was added to each well, and then the plate was cultured at 37.degree. C. for 1 hour. After washing with 150 .mu.l of 0.05% PBST, 50 .mu.l of 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) substrate solution (Pierce) was added to each well, and cultured at the room temperature for 30 minutes. And then the absorbance of each well was measured at 405 nm using a microplate reader (Labsystems).

Example 6: Neutralization Analysis

[0082] The SFTS virus specific scFv-Fc fusion antibody (100 .mu.l/ml) was serially diluted to be decreased 10 folds each by 0.01 .mu.l/ml. scFvs of each concentration was mixed in an equivalent volume of 100 TCID50 SFTS virus (strain KF358691) and cultured at 37.degree. C. for 1 hours. Then, the virus-antibody mixture was transferred to the single layer of Vero cells in an 8-well confocal microscope chamber and cultured at 37.degree. C. for 1 hour. After removing the virus-antibody mixture, samples were cultured in RPMI-1640 medium containing 2% FBS and antibiotics at 37.degree. C. under 5% carbon dioxide circumstance. Vero cells in the 8-well confocal microscope chamber were used for immune fluorescence assay (IFA). All the experiments were performed three times and the relative neutralization effect was measured by comparing with MAb 4-5 [Xiling Guo et al. A human antibody neutralizing SFTS virus, an emerging hemorrhagic fever virus, 2013. Clin. Vaccine Immunol. 2013; 20(9):1426-32).] as a positive control and anti-newcastle disease virus (NDV) antibody as a negative control

Example 7: Immune Fluorescence Analysis (IFA) and Fluorescence Intensity Measurement

[0083] The relative neutralization effect was measured using immune fluorescence assay (IFA). Cells with or without treatment with virus-antibody mixture having or not having Ab10, MAb 4-5 (positive control), anti-NDV (negative control) were cultured for 2 days. The cells were fixed with 4% paraformaldehyde in phosphate-buffer saline (PBS) for 1 hour. After blocking and penetrating slides with 0.1% triton X-100 in 1% fetal bovine serum (BSA), they were cultured together with anti-SFTS virus glycoprotein Gn clone Ab6 antibody (5 .mu.l/ml) at 4.degree. C. overnight. The cells were washed and cultured with fluorescein isothiocyanate (FITC)-bound anti-human IgG (Pierce) at the room temperature for 1 hour. 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) was used for dying a nucleus. Samples were experimented with a confocal microscope (Leica, Buffalo Grove, Ill., USA). Fluorescence signal strength was measured using computer assisted Leica application suite advanced fluorescence (LAS AF). The microscope photographs were taken in 5 regions of each slide using .times.10/0.3 lens, and 3 median values were used for analysis. DAPI signal was set with 405 nm blue diode laser and Alexa 488 was adjusted with an argon ion laser.

Example 8: Production of scFv Antibody to SFTS Virus

[0084] Human scFv library was biopanned for the recombinant SFTS virus glycoprotein. After 4 rounds of panning, the antibody clone was screened by enzyme-linked immunosorbent assay analysis (ELISA). It was shown that 10 clones (Ab1 to 5 for Gc and Ab6 to 10 for Gn) recognized the SFTS virus through ELISA. The ELISA analysis result was shown in FIG. 2, and the amino acid sequences of each antibody clone were shown in FIG. 1.

Example 9: Neutralization Activity of Antibody to SFTS Virus

[0085] The neutralization activity of scFv-hFc antibody purified for the SFTS virus was experimented in Vero cells. Among 10 clones (Ab1 to Ab10) experimented, Ab10 exhibited the strongest neutralization activity. The Ab10 scFv-hFc antibody (100 .mu.l/ml) was diluted 10 folds and titrated for 100 TCID50 SFTS virus (KF358691 strain). The immune fluorescence analysis result and fluorescence strength measurement result of SFTSV infection were shown in FIG. 3.

[0086] In the immune fluorescence analysis (IFA), the cell treated with Ab10(100 .mu.l/ml) exhibited the least virus infection and its neutralization activity was dose-dependent. In other words, the more the amount of MAb 10 to be treated was, the smaller the number of cells infected by SFTS virus was. Compared with MAb 4-5 (positive control), Ab10 showed significantly high neutralization activity. The negative control antibody did not exhibit the neutralization activity at all.

[0087] This application contains references to amino acid sequences and/or nucleic acid sequences which have been submitted herewith as the sequence listing text file. The aforementioned sequence listing is hereby incorporated by reference in its entirety pursuant to 37 C.F.R. .sctn. 1.52(e).

Sequence CWU 1

1

1711108PRTArtificial SequenceAb1 Light chain 1Glu Leu Thr Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Thr Ala Thr Leu Ser Cys Gly Ala Ser Gln Ser Val Ser Thr Asn 20 25 30Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Leu Ala Pro Arg Leu Leu 35 40 45Ile Tyr Asp Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Ala65 70 75 80Pro Glu Asp Ser Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95Leu Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 1052110PRTArtificial SequenceAb2 Light chain 2Glu Leu Val Val Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln1 5 10 15Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn 20 25 30Thr Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45Ile Tyr Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln65 70 75 80Ala Asp Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Phe Asp Ser Ser Leu 85 90 95Asn Asp Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 1103112PRTArtificial SequenceAb3 Light chain 3Glu Leu Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln1 5 10 15Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly 20 25 30Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu 35 40 45Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60Ser Gly Ser Lys Ser Asp Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu65 70 75 80Arg Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser 85 90 95Leu Asn Gly Gln Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 1104109PRTArtificial SequenceAb4 Light chain 4Glu Leu Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln1 5 10 15Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30Thr Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45Ile Tyr Ser Asn Asn Gln Arg Pro Pro Gly Val Pro Asp Arg Phe Ser 50 55 60Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gln65 70 75 80Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Leu 85 90 95Ser Tyr Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu 100 1055109PRTArtificial SequenceAb5 Light chain 5Glu Leu Val Val Thr Gln Glu Pro Ser Leu Thr Val Pro Pro Gly Gly1 5 10 15Thr Val Thr Leu Thr Cys Gly Ser Ser Thr Gly Pro Val Thr Thr Thr 20 25 30Gln Tyr Pro Tyr Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg Thr 35 40 45Leu Ile Tyr Asp Thr Asn Asn Arg His Pro Trp Thr Pro Ala Arg Phe 50 55 60Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala65 70 75 80Gln Pro Glu Asp Asp Ala Tyr Tyr Cys Leu Leu Thr Ser Ala Ser Ala 85 90 95Pro Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 1056121PRTArtificial SequenceAb1 Heavy chain 6Gln Val Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys Pro Gly Ser1 5 10 15Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Thr Tyr 20 25 30Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45Gly Gly Ile Ile Pro Ile Ser Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr65 70 75 80Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Val Pro Val Val Pro Ala Ala Ser Gly Pro Phe Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 1207130PRTArtificial SequenceAb2 Heavy chain 7Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Ser Ile Ser Ser Ser Ser Arg Tyr Ile Phe Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Ser Leu Gly Tyr Cys Ser Gly Gly Ser Cys Tyr Gly Phe Pro Glu 100 105 110Gly Gly Asn Ala Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val 115 120 125Ser Ser 1308120PRTArtificial SequenceAb3 Heavy chain 8Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu1 5 10 15Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Phe Ser Gly Tyr 20 25 30Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45Gly Glu Ile Ile His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu65 70 75 80Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Gly Asp Tyr Tyr Asp Ser Ser Gly Ala Phe Asp Tyr Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 1209128PRTArtificial SequenceAb4 Heavy chain 9Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Ser Ile Ser Ser Ser Ser Arg Tyr Ile Phe Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Ser 85 90 95Leu Gly Tyr Cys Ser Gly Gly Ser Cys Tyr Gly Phe Pro Glu Gly Gly 100 105 110Asn Ala Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 120 12510118PRTArtificial SequenceAb5 Heavy chain 10Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Val 35 40 45Ser Ala Ile Ser Ser Asp Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Ser Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Val Asn Asp Gly Ser Ser Asn His Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110Leu Val Thr Val Ser Ser 1151123PRTArtificial SequenceAb1 LFR1 11Glu Leu Thr Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Thr Ala Thr Leu Ser Cys 201222PRTArtificial SequenceAb2 LFR1 12Glu Leu Val Val Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln1 5 10 15Arg Val Thr Ile Ser Cys 201322PRTArtificial SequenceAb3 LFR1 13Glu Leu Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln1 5 10 15Arg Val Thr Ile Ser Cys 201422PRTArtificial SequenceAb4 LFR1 14Glu Leu Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln1 5 10 15Arg Val Thr Ile Ser Cys 201522PRTArtificial SequenceAb5 LFR1 15Glu Leu Val Val Thr Gln Glu Pro Ser Leu Thr Val Pro Pro Gly Gly1 5 10 15Thr Val Thr Leu Thr Cys 201625PRTArtificial SequenceAb1 HFR1 16Gln Val Gln Leu Val Gln Ser Gly Pro Glu Val Lys Lys Pro Gly Ser1 5 10 15Ser Val Lys Val Ser Cys Lys Ala Ser 20 251725PRTArtificial SequenceAb2 HFR1 17Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser 20 251825PRTArtificial SequenceAb3 HFR1 18Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu1 5 10 15Thr Leu Ser Leu Thr Cys Thr Val Ser 20 251925PRTArtificial SequenceAb4 HFR1 19Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser 20 252025PRTArtificial SequenceAb5 HFR1 20Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser 20 252112PRTArtificial SequenceAb1 LCDR1 21Gly Ala Ser Gln Ser Val Ser Thr Asn Tyr Leu Ala1 5 102213PRTArtificial SequenceAb2 LCDR1 22Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Thr Val Asn1 5 102314PRTArtificial SequenceAb3 LCDR1 23Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His1 5 102413PRTArtificial SequenceAb4 LCDR1 24Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr Val Asn1 5 102514PRTArtificial SequenceAb5 LCDR1 25Gly Ser Ser Thr Gly Pro Val Thr Thr Thr Gln Tyr Pro Tyr1 5 102610PRTArtificial SequenceAb1 HCDR1 26Gly Gly Thr Phe Ser Thr Tyr Ala Ile Ser1 5 102710PRTArtificial SequenceAb2 HCDR1 27Gly Phe Thr Phe Ser Ser Tyr Ser Met Asn1 5 102810PRTArtificial SequenceAb3 HCDR1 28Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser1 5 102910PRTArtificial SequenceAb4 HCDR1 29Gly Phe Thr Phe Ser Ser Tyr Ser Met Asn1 5 103010PRTArtificial SequenceAb5 HCDR1 30Gly Phe Thr Phe Ser Ser Tyr Ala Met His1 5 103115PRTArtificial SequenceAb1 LFR2 31Trp Tyr Gln Gln Lys Pro Gly Leu Ala Pro Arg Leu Leu Ile Tyr1 5 10 153215PRTArtificial SequenceAb2 LFR2 32Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr1 5 10 153315PRTArtificial SequenceAb3 LFR2 33Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr1 5 10 153415PRTArtificial SequenceAb4 LFR2 34Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr1 5 10 153515PRTArtificial SequenceAb5 LFR2 35Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg Thr Leu Ile Tyr1 5 10 153614PRTArtificial SequenceAb1 HFR2 36Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly1 5 103714PRTArtificial SequenceAb2 HFR2 37Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser1 5 103814PRTArtificial SequenceAb3 HFR2 38Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile Gly1 5 103914PRTArtificial SequenceAb4 HFR2 39Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser1 5 104014PRTArtificial SequenceAb5 HFR2 40Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Val Ser1 5 10417PRTArtificial SequenceAb1 LCDR2 41Asp Ala Ser Ser Arg Ala Thr1 5427PRTArtificial SequenceAb2 LCDR2 42Ser Asn Asn Gln Arg Pro Ser1 5437PRTArtificial SequenceAb3 LCDR2 43Gly Asn Ser Asn Arg Pro Ser1 5447PRTArtificial SequenceAb4 LCDR2 44Ser Asn Asn Gln Arg Pro Pro1 5457PRTArtificial SequenceAb5 LCDR2 45Asp Thr Asn Asn Arg His Pro1 54617PRTArtificial SequenceAb1 HCDR2 46Gly Ile Ile Pro Ile Ser Gly Thr Ala Asn Tyr Ala Gln Lys Phe Gln1 5 10 15Gly4717PRTArtificial SequenceAb2 HCDR2 47Ser Ile Ser Ser Ser Ser Arg Tyr Ile Phe Tyr Ala Asp Ser Val Lys1 5 10 15Gly4816PRTArtificial SequenceAb3 HCDR2 48Glu Ile Ile His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser1 5 10 154917PRTArtificial SequenceAb4 HCDR2 49Ser Ile Ser Ser Ser Ser Arg Tyr Ile Phe Tyr Ala Asp Ser Val Lys1 5 10 15Gly5017PRTArtificial SequenceAb5 HCDR2 50Ala Ile Ser Ser Asp Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys1 5 10 15Gly5132PRTArtificial SequenceAb1 LFR3 51Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser1 5 10 15Leu Ala Ile Ser Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys 20 25 305232PRTArtificial SequenceAb2 LFR3 52Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser1 5 10 15Leu Ala Ile Ser Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys 20 25 305332PRTArtificial SequenceAb3 LFR3 53Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Asp Thr Ser Ala Ser1 5 10 15Leu Ala Ile Ser Gly Leu Arg Ser Glu Asp Glu Ala Asp Tyr Tyr Cys 20 25 305432PRTArtificial SequenceAb4 LFR3 54Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser1 5 10 15Leu Ala Ile Ser Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys 20 25 305531PRTArtificial SequenceAb5 LFR3 55Trp Thr Pro Ala Arg Phe Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala1 5 10 15Leu Thr Leu Ser Gly Ala Gln Pro Glu Asp Asp Ala Tyr Tyr Cys 20 25 305631PRTArtificial SequenceAb1 HFR3 56Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met Glu1 5 10 15Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala 20 25 305731PRTArtificial SequenceAb2 HFR3 57Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln1 5 10 15Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 20 25 305831PRTArtificial SequenceAb3 HFR3 58Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys1 5 10 15Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 20 25 305929PRTArtificial SequenceAb4 HFR3 59Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln1 5 10 15Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 20 256031PRTArtificial SequenceAb5 HFR3 60Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln1 5 10 15Met Ser Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val 20 25 30619PRTArtificial SequenceAb1 LCDR3 61Gln Gln Tyr Gly Ser Ser Pro Leu Thr1 56211PRTArtificial SequenceAb2 LCDR3 62Gln Ser Phe Asp Ser Ser Leu Asn Asp Trp Val1 5 106312PRTArtificial SequenceAb3 LCDR3 63Ala Ala Trp Asp Asp Ser Leu Asn

Gly Gln Val Val1 5 106410PRTArtificial SequenceAb4 LCDR3 64Gln Ser Tyr Asp Ser Ser Leu Ser Tyr Val1 5 106510PRTArtificial SequenceAb5 LCDR3 65Leu Leu Thr Ser Ala Ser Ala Pro Trp Val1 5 106615PRTArtificial SequenceAb1 HCDR3 66Val Pro Val Val Pro Ala Ala Ser Gly Pro Phe Asp Tyr Trp Gly1 5 10 156724PRTArtificial SequenceAb2 HCDR3 67Ser Leu Gly Tyr Cys Ser Gly Gly Ser Cys Tyr Gly Phe Pro Glu Gly1 5 10 15Gly Asn Ala Phe Asp Ile Trp Gly 206815PRTArtificial SequenceAb3 HCDR3 68Arg Gly Asp Tyr Tyr Asp Ser Ser Gly Ala Phe Asp Tyr Trp Gly1 5 10 156924PRTArtificial SequenceAb4 HCDR3 69Ser Leu Gly Tyr Cys Ser Gly Gly Ser Cys Tyr Gly Phe Pro Glu Gly1 5 10 15Gly Asn Ala Phe Asp Ile Trp Gly 207012PRTArtificial SequenceAb5 HCDR3 70Asn Asp Gly Ser Ser Asn His Phe Asp Tyr Trp Gly1 5 107110PRTArtificial SequenceAb1 LFR4 71Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys1 5 107210PRTArtificial SequenceAb2 LFR4 72Phe Gly Gly Gly Thr Lys Leu Thr Val Leu1 5 107310PRTArtificial SequenceAb3 LFR4 73Phe Gly Gly Gly Thr Lys Leu Thr Val Leu1 5 107410PRTArtificial SequenceAb4 LFR4 74Phe Gly Thr Gly Thr Lys Val Thr Val Leu1 5 107510PRTArtificial SequenceAb5 LFR4 75Phe Gly Gly Gly Thr Lys Leu Thr Val Leu1 5 10769PRTArtificial SequenceAb1 HFR4 76Gln Gly Thr Leu Val Thr Val Ser Ser1 5779PRTArtificial SequenceAb2 HFR4 77Gln Gly Thr Met Val Thr Val Ser Ser1 5789PRTArtificial SequenceAb3 HFR4 78Gln Gly Thr Leu Val Thr Val Ser Ser1 5799PRTArtificial SequenceAb4 HFR4 79Gln Gly Thr Met Val Thr Val Ser Ser1 5809PRTArtificial SequenceAb5 HFR4 80Gln Gly Thr Leu Val Thr Val Ser Ser1 581108PRTArtificial SequenceAb6 Light chain 81Glu Leu Ala Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys1 5 10 15Thr Ala Lys Ile Thr Cys Gly Gly Asp Asp Ile Gly Ser Lys Thr Val 20 25 30Gln Trp Tyr Gln Gln Thr Ser Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ala 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Arg Ser Asp His 85 90 95Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 10582112PRTArtificial SequenceAb7 Light chain 82Glu Leu Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln1 5 10 15Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn 20 25 30Val Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45Ile Tyr Asp Asp Asn Arg Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser 50 55 60Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Asp Ile Thr Gly Leu Gln65 70 75 80Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Ala Thr Trp Asp Gly Ser Leu 85 90 95Thr Ala Gly Arg Val Leu Phe Gly Ser Gly Thr Lys Leu Thr Val Leu 100 105 11083108PRTArtificial SequenceAb8 Light chain 83Glu Leu Ala Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Ala Met1 5 10 15Thr Ala Lys Ile Thr Cys Gly Gly Asp Asp Ile Gly Ser Thr Thr Val 20 25 30Gln Trp Tyr Gln Gln Thr Ser Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ala 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Val Glu Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Gly Arg Ser Asp His 85 90 95Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 10584110PRTArtificial SequenceAb9 Light chain 84Glu Leu Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Thr Pro Gly Lys1 5 10 15Arg Val Ser Met Ser Cys Ser Gly Ser Arg Ser Asn Ile Gly Gly Asn 20 25 30Val Val Asn Trp Tyr Gln Gln Leu Pro Gly Lys Ala Pro Lys Leu Phe 35 40 45Ile Tyr Asn Asn Asp Gln Arg Pro Ser Gly Val Pro Asp Arg Val Ser 50 55 60Gly Ser Lys Ser Gly Thr Ser Val Ser Val Ala Ile Ser Gly Leu Gln65 70 75 80Pro Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ile Leu 85 90 95Asn Gly Val Val Phe Gly Gly Gly Thr Gln Leu Thr Val Leu 100 105 11085107PRTArtificial SequenceAb10 Light chain 85Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Thr Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Tyr Thr Tyr 20 25 30Leu Asn Trp Tyr His Gln Thr Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Ser Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ala Asp Val Pro Val 85 90 95Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 10586128PRTArtificial SequenceAb6 Heavy chain 86Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ile Phe Thr Asn Tyr 20 25 30Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55 60Gln Gly Gln Val Thr Ile Ser Ala Asp Arg Ser Ile Ser Thr Ala Tyr65 70 75 80Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95Ala Arg Leu Lys Leu Arg Gly Phe Ser Gly Gly Tyr Gly Ser Gly Arg 100 105 110Arg Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 12587128PRTArtificial SequenceAb7 Heavy chain 87Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr 20 25 30Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55 60Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr65 70 75 80Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95Ala Arg Leu Lys Leu Arg Gly Phe Ser Gly Gly Tyr Gly Ser Gly Ser 100 105 110Arg Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 12588128PRTArtificial SequenceAb8 Heavy chain 88Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ile Phe Thr Asn Tyr 20 25 30Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55 60Gln Gly Gln Val Thr Ile Ser Ala Asp Arg Ser Ile Ser Thr Ala Asn65 70 75 80Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Leu Tyr Tyr Cys 85 90 95Ala Arg Leu Lys Leu Arg Gly Phe Ser Gly Gly Tyr Gly Ser Gly Arg 100 105 110Arg Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 12589126PRTArtificial SequenceAb9 Heavy chain 89Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Asn Phe Thr Asn Tyr 20 25 30Trp Ile Gly Trp Val Arg Gln Leu Pro Gly Lys Gly Leu Glu Trp Met 35 40 45Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55 60Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr65 70 75 80Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95Ala Arg Ile Arg Val Ile Gly Phe Tyr Asp Ser Ser Pro Pro Pro Leu 100 105 110Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 12590121PRTArtificial SequenceAb10 Heavy chain 90Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Gly Tyr 20 25 30Gly Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ala Leu Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys Asp Arg Asp Tyr Phe Gly Ser Gly Phe Phe Asp Tyr Trp Gly 100 105 110Gln Gly Thr Leu Val Thr Val Ser Ser 115 1209122PRTArtificial SequenceAb6 LFR1 91Glu Leu Ala Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Lys1 5 10 15Thr Ala Lys Ile Thr Cys 209222PRTArtificial SequenceAb7 LFR1 92Glu Leu Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln1 5 10 15Lys Val Thr Ile Ser Cys 209322PRTArtificial SequenceAb8 LFR1 93Glu Leu Ala Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Ala Met1 5 10 15Thr Ala Lys Ile Thr Cys 209422PRTArtificial SequenceAb9 LFR1 94Glu Leu Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Thr Pro Gly Lys1 5 10 15Arg Val Ser Met Ser Cys 209525PRTArtificial SequenceAb10 LFR1 95Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser 20 259625PRTArtificial SequenceAb6 HFR1 96Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser 20 259725PRTArtificial SequenceAb7 HFR1 97Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser 20 259825PRTArtificial SequenceAb8 HFR1 98Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser 20 259925PRTArtificial SequenceAb9 HFR1 99Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10 15Ser Leu Lys Ile Ser Cys Lys Gly Ser 20 2510025PRTArtificial SequenceAb10 HFR1 100Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser 20 2510111PRTArtificial SequenceAb6 LCDR1 101Gly Gly Asp Asp Ile Gly Ser Lys Thr Val Gln1 5 1010213PRTArtificial SequenceAb7 LCDR1 102Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Val Val Ser1 5 1010311PRTArtificial SequenceAb8 LCDR1 103Gly Gly Asp Asp Ile Gly Ser Thr Thr Val Gln1 5 1010413PRTArtificial SequenceAb9 LCDR1 104Ser Gly Ser Arg Ser Asn Ile Gly Gly Asn Val Val Asn1 5 1010511PRTArtificial SequenceAb10 LCDR1 105Arg Ala Ser Gln Ser Ile Tyr Thr Tyr Leu Asn1 5 1010610PRTArtificial SequenceAb6 LCDR1 106Gly Tyr Ile Phe Thr Asn Tyr Trp Ile Gly1 5 1010710PRTArtificial SequenceAb7 LCDR1 107Gly Tyr Ser Phe Thr Ser Tyr Trp Ile Gly1 5 1010810PRTArtificial SequenceAb8 LCDR1 108Gly Tyr Ile Phe Thr Asn Tyr Trp Ile Gly1 5 1010910PRTArtificial SequenceAb9 LCDR1 109Gly Tyr Asn Phe Thr Asn Tyr Trp Ile Gly1 5 1011010PRTArtificial SequenceAb10 LCDR1 110Gly Phe Thr Phe Ser Gly Tyr Gly Ile His1 5 1011115PRTArtificial SequenceAb6 LFR2 111Trp Tyr Gln Gln Thr Ser Gly Gln Ala Pro Val Leu Val Val Tyr1 5 10 1511215PRTArtificial SequenceAb7 LFR2 112Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr1 5 10 1511315PRTArtificial SequenceAb8 LFR2 113Trp Tyr Gln Gln Thr Ser Gly Gln Ala Pro Val Leu Val Val Tyr1 5 10 1511415PRTArtificial SequenceAb9 LFR2 114Trp Tyr Gln Gln Leu Pro Gly Lys Ala Pro Lys Leu Phe Ile Tyr1 5 10 1511515PRTArtificial SequenceAb10 LFR2 115Trp Tyr His Gln Thr Pro Gly Lys Ala Pro Lys Leu Leu Ile Ser1 5 10 1511613PRTArtificial SequenceAb6 HFR2 116Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met1 5 1011713PRTArtificial SequenceAb7 HFR2 117Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met1 5 1011813PRTArtificial SequenceAb8 HFR2 118Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met1 5 1011913PRTArtificial SequenceAb9 HFR2 119Trp Val Arg Gln Leu Pro Gly Lys Gly Leu Glu Trp Met1 5 1012013PRTArtificial SequenceAb10 HFR2 120Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val1 5 101217PRTArtificial SequenceAb6 LCDR2 121Asp Asp Ser Asp Arg Pro Ser1 51227PRTArtificial SequenceAb7 LCDR2 122Asp Asp Asn Arg Arg Pro Ser1 51237PRTArtificial SequenceAb8 LCDR2 123Asp Asp Ser Asp Arg Pro Ser1 51247PRTArtificial SequenceAb9 LCDR2 124Asn Asn Asp Gln Arg Pro Ser1 51257PRTArtificial SequenceAb10 LCDR2 125Ala Ala Ser Ser Leu Gln Ser1 512618PRTArtificial SequenceAb6 HCDR2 126Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe1 5 10 15Gln Gly12718PRTArtificial SequenceAb7 HCDR2 127Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe1 5 10 15Gln Gly12818PRTArtificial SequenceAb8 HCDR2 128Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe1 5 10 15Gln Gly12918PRTArtificial SequenceAb9 HCDR2 129Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe1 5 10 15Gln Gly13018PRTArtificial SequenceAb10 HCDR2 130Ala Leu Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val1 5 10 15Lys Gly13132PRTArtificial SequenceAb6 LFR3 131Gly Ile Pro Glu Arg Phe Ser Gly Ala Asn Ser Gly Asn Thr Ala Thr1 5 10 15Leu Thr Ile Ser Arg Val Glu Ala Gly Asp Glu Ala Asp Tyr Tyr Cys 20 25 3013232PRTArtificial SequenceAb7 LFR3 132Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr1 5 10 15Leu Asp Ile Thr Gly Leu Gln Thr Gly Asp Glu Ala Asp Tyr Tyr Cys 20 25 3013332PRTArtificial SequenceAb8 LFR3 133Gly Ile Pro Glu Arg Phe Ser Gly Ala Asn Ser Gly Asn Thr Ala Thr1 5 10 15Leu Thr Ile Ser Arg Val Glu Ala Gly Asp Glu Ala Asp Tyr Tyr Cys 20 25

3013432PRTArtificial SequenceAb9 LFR3 134Gly Val Pro Asp Arg Val Ser Gly Ser Lys Ser Gly Thr Ser Val Ser1 5 10 15Val Ala Ile Ser Gly Leu Gln Pro Glu Asp Glu Ala Asp Tyr Tyr Cys 20 25 3013532PRTArtificial SequenceAb10 LFR3 135Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr1 5 10 15Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys 20 25 3013631PRTArtificial SequenceAb6 HFR3 136Gln Val Thr Ile Ser Ala Asp Arg Ser Ile Ser Thr Ala Tyr Leu Gln1 5 10 15Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala 20 25 3013731PRTArtificial SequenceAb7 HFR3 137Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr Leu Gln1 5 10 15Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala 20 25 3013831PRTArtificial SequenceAb8 HFR3 138Gln Val Thr Ile Ser Ala Asp Arg Ser Ile Ser Thr Ala Asn Leu Gln1 5 10 15Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Leu Tyr Tyr Cys Ala 20 25 3013931PRTArtificial SequenceAb9 HFR3 139Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr Leu Gln1 5 10 15Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala 20 25 3014031PRTArtificial SequenceAb10 HFR3 140Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln1 5 10 15Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 20 25 3014111PRTArtificial SequenceAb6 LCDR3 141Gln Val Trp Asp Gly Arg Ser Asp His Val Val1 5 1014213PRTArtificial SequenceAb7 LCDR3 142Ala Thr Trp Asp Gly Ser Leu Thr Ala Gly Arg Val Leu1 5 1014311PRTArtificial SequenceAb8 LCDR3 143Gln Val Trp Asp Gly Arg Ser Asp His Val Val1 5 1014411PRTArtificial SequenceAb9 LCDR3 144Ala Ala Trp Asp Asp Ile Leu Asn Gly Val Val1 5 101459PRTArtificial SequenceAb10 LCDR3 145Gln Gln Tyr Ala Asp Val Pro Val Thr1 514622PRTArtificial SequenceAb6 HCDR3 146Arg Leu Lys Leu Arg Gly Phe Ser Gly Gly Tyr Gly Ser Gly Arg Arg1 5 10 15Tyr Phe Asp Tyr Trp Gly 2014722PRTArtificial SequenceAb7 HCDR3 147Arg Leu Lys Leu Arg Gly Phe Ser Gly Gly Tyr Gly Ser Gly Ser Arg1 5 10 15Tyr Phe Asp Tyr Trp Gly 2014822PRTArtificial SequenceAb8 HCDR3 148Arg Leu Lys Leu Arg Gly Phe Ser Gly Gly Tyr Gly Ser Gly Arg Arg1 5 10 15Tyr Phe Asp Tyr Trp Gly 2014920PRTArtificial SequenceAb9 HCDR3 149Arg Ile Arg Val Ile Gly Phe Tyr Asp Ser Ser Pro Pro Pro Leu Phe1 5 10 15Asp Tyr Trp Gly 2015015PRTArtificial SequenceAb10 HCDR3 150Lys Asp Arg Asp Tyr Phe Gly Ser Gly Phe Phe Asp Tyr Trp Gly1 5 10 1515110PRTArtificial SequenceAb6 LFR4 151Phe Gly Gly Gly Thr Lys Leu Thr Val Leu1 5 1015210PRTArtificial SequenceAb7 LFR4 152Phe Gly Ser Gly Thr Lys Leu Thr Val Leu1 5 1015310PRTArtificial SequenceAb8 LFR4 153Phe Gly Gly Gly Thr Lys Leu Thr Val Leu1 5 1015410PRTArtificial SequenceAb9 LFR4 154Phe Gly Gly Gly Thr Gln Leu Thr Val Leu1 5 1015510PRTArtificial SequenceAb10 LFR4 155Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys1 5 101569PRTArtificial SequenceAb6 HFR4 156Gln Gly Thr Leu Val Thr Val Ser Ser1 51579PRTArtificial SequenceAb7 HFR4 157Gln Gly Thr Leu Val Thr Val Ser Ser1 51589PRTArtificial SequenceAb8 HFR4 158Gln Gly Thr Leu Val Thr Val Ser Ser1 51599PRTArtificial SequenceAb9 HFR4 159Gln Gly Thr Leu Val Thr Val Ser Ser1 51609PRTArtificial SequenceAb10 HFR4 160Gln Gly Thr Leu Val Thr Val Ser Ser1 5161744DNAArtificial SequenceAb1 scFv 161gagctcacac tcacgcagtc tccagccacc ctgtctttgt ctccagggga aacagccacc 60ctctcctgcg gggccagtca gagtgttagc accaactact tagcctggta ccagcagaaa 120cctggcctgg cgcccaggct cctcatctat gatgcatcca gcagggccac tggcatccca 180gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggcg 240cctgaagatt ctgcggtgta ttactgtcag caatatggta gctcacctct cactttcggc 300ggagggacca agctggagat caaaggtggt tcctctagat cttcctcctc tggtggcggt 360ggctcgggcg gtggtgggca ggtgcagctg gtgcagtctg ggcctgaggt gaagaagcct 420gggtcctcgg tgaaggtctc ctgcaaggct tctggaggca ccttcagcac ctatgctatc 480agctgggtgc gacaggcccc tggacaaggg cttgagtgga tgggagggat catccctatc 540tctggtacag caaactacgc acagaaattc cagggcagag tcaccattac cgcggacgaa 600tccacgagca cagcctacat ggagctgagc agcctgagat ctgaggacac ggccgtgtat 660tactgtgcgg taccagtagt accagctgcc agcggccctt ttgactactg gggccaggga 720accctggtca ccgtctcctc agcc 744162777DNAArtificial SequenceAb2 scFv 162gagctcgtgg tgacgcagcc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60tcctgttctg gaagcagctc caacatcgga aataatactg taaactggta ccagcagctc 120ccaggaacgg cccccaaact cctcatctat agtaataatc agcggccctc aggggtccct 180gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcac tgggctccag 240gctgacgatg aggctgatta ttactgccag tcctttgaca gcagcctgaa tgattgggtg 300ttcggcgggg gcaccaagct gaccgtccta ggcggtggtt cctctagatc ttcctcctct 360ggtggcggtg gctcgggcgg tggtggggag gtgcagctgg tggagtctgg gggaggcctg 420gtcaagcctg gggggtccct gagactctcc tgtgcagcct ctggattcac cttcagtagc 480tatagcatga actgggtccg ccaggctcca gggaaggggc tggagtgggt ctcatccatt 540agtagtagta gtcgttacat attctacgca gactcagtga agggccgatt caccatctcc 600agagacaacg ccaagaactc actgtatctg caaatgaaca gcctgagagc cgaggacacg 660gctgtgtatt actgtgcgag cctaggatat tgtagtggtg gtagctgcta cgggttcccg 720gaaggtggga atgcttttga tatctggggc caagggacaa tggtcaccgt ctcttca 777163753DNAArtificial SequenceAb3 scFv 163gagctcgagc tgactcagcc accctcagtg tctggggccc cagggcagag ggtcaccatc 60tcctgcactg ggagcagctc caacatcggg gcaggttatg atgtacactg gtaccagcag 120cttccaggaa cagcccccaa actcctcatc tatggtaaca gcaatcggcc ctcaggggtc 180cctgaccgat tctctggctc caagtctgac acctcagcct ccctggccat cagtgggctc 240cggtccgagg atgaggctga ttattactgt gcagcatggg atgacagcct gaatggccag 300gtggtattcg gcggaggcac caagctgacc gtcctaggcg gtggttcctc tagatcttcc 360tcctctggtg gcggtggctc gggcggtggt gggcaggtgc agctgcagga gtcgggccca 420ggactggtga agccttcgga gaccctgtcc ctcacctgca ctgtctctgg tgggtccttc 480agtggttact actggagctg gatccgccag cccccaggaa aggggctgga gtggattggg 540gaaatcattc atagtggaag caccaactac aacccgtccc tcaagagtcg agtcaccata 600tcagtagaca cgtccaagaa ccaattctcc ctgaagctga gctctgtgac cgccgcggac 660acggctgtgt attactgtgc gagaggtgat tattatgata gtagtggtgc ctttgactac 720tggggccagg gaaccctggt caccgtctcc tca 753164774DNAArtificial SequenceAb4 scFv 164gagctcgtgc tgactcagcc accttcagcg tctgggaccc ccgggcagag ggtcaccatc 60tcttgttctg gaagcagctc caacatcgga agtaatactg taaactggta ccagcagctc 120cccggaacgg cccccaaact cctcatctat agtaataatc agcggccccc aggggtccct 180gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcag tgggctccag 240tctgaggatg aggctgatta ttactgccag tcctatgaca gcagcctgag ttatgtcttc 300ggaactggca ccaaggtgac cgtcctaggc ggtggttcct ctagatcttc ctcctctggt 360ggcggtggct cgggcggtgg tggggaggtg cagctggtgg agtctggggg aggcttggta 420cagccggggg ggtccctgag actctcctgt gcagcctctg gattcacctt cagtagctat 480agcatgaact gggtccgcca ggctccaggg aaggggctgg agtgggtctc atccattagt 540agtagtagtc gttacatatt ctacgcagac tcagtgaagg gccgattcac catctccaga 600gacaacgcca agaactcact gtatctgcaa atgaacagcc tgagagccga ggacacggct 660gtgtattact gtgcgagcct aggatattgt agtggtggta gctgctacgg gttcccggaa 720ggtgggaatg cttttgatat ctggggccaa gggacaatgg tcaccgtctc ttca 774165741DNAArtificial SequenceAb5 scFv 165gagctcgtgg tgacccagga gccctcactg actgtgcccc caggagggac agtcactctc 60acctgtggct ccagcactgg acctgtcacc actactcagt atccctactg gttccagcag 120aagcctggcc aggcccccag gacactcatt tatgatacca acaacagaca cccctggaca 180cctgcccgct tctcaggctc cctccttggg ggcaaggctg ccctgaccct ttcgggagcg 240cagcctgagg atgacgctta gtattattgc ttgctcacct ctgctagcgc tccttgggtg 300ttcggcggag gcaccaagct gaccgtccta ggcggtggtt cctctagatc ttcctcctct 360ggtggcggtg gctcgggcgg tggtgggcag gtgcagctgg tgcagtctgg gggaggcttg 420gtccagcctg gggggtccct gagactctcc tgttcagcct ctggattcac cttcagtagc 480tatgctatgc actgggtccg ccaggctcca gggaagggac tggaatatgt ttcagctatt 540agtagtgatg ggggtagcac atactacgca gactccgtga agggcagatt caccatctcc 600agagacaatt ccaagaacac gctgtatctt caaatgagca gtctgagagc tgaggacacg 660gctgtatatt actgtgtgaa cgatggcagc tcgaaccatt ttgactactg gggccaggga 720accctggtca ccgtctcctc a 741166765DNAArtificial SequenceAb6 scFv 166gagctcgccc tgactcagcc tccctccgtg tcagtggccc caggaaagac ggccaagatt 60acctgtgggg gtgacgacat tggaagtaaa actgtgcaat ggtaccaaca gacctcaggc 120caggcccctg tgctggtcgt ctatgacgat agcgaccggc cctcagggat ccctgagcga 180ttctccggcg ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240gatgaggccg actattactg tcaggtgtgg gacggcagaa gtgatcatgt ggttttcggc 300ggagggacca agctgaccgt cctaggcggt ggttcctcta gatcttcctc ctctggtggc 360ggtggctcgg gcggtggtgg gcaggtgcag ctggtgcagt ctggagcaga ggtgaaaaag 420cccggggagt ctctgaagat ctcctgtaag ggttctggat acatctttac caactactgg 480atcggctggg tgcgccagat gcccgggaaa ggcctggagt ggatggggat catctatcct 540ggtgactctg ataccagata cagcccgtcc ttccaaggcc aggtcaccat ctcagccgac 600aggtccatca gcaccgccta cctgcagtgg agcagcctga aggcctcgga caccgccatg 660tattactgtg cgagactaaa gctccggggg ttttcgggcg gctatggttc agggagacgc 720tactttgact actggggcca gggaaccctg gtcaccgtct cctca 765167777DNAArtificial SequenceAb7 scFv 167gagctcgtgc tgacgcagcc gccctcagtg tctgcggccc caggactgaa ggtcaccatc 60tcctgctctg gaagcagctc taacattggg aataatgttg tatcctggta ccagcaactc 120ccaggaacag cccccaaact cctcatttat gacgataacc ggcgaccctc agggattcct 180gaccgattct ctggctccaa gtctggcacg tcagccaccc tggacatcac cggactccag 240actggggacg aggccgatta ctactgcgca acatgggatg gcagcctgac tgctggccgt 300gtgttgttcg gcagtggcac caagctgacc gtcctaggtg gtggttcctc tagatcttcc 360tcctctggtg gcggtggctc gggcggtggt gggcaggtgc agctggtgca gtctggagca 420gaggtgaaaa agcccgggga gtctctgaag atctcctgta agggttctgg atacagcttt 480accagctact ggatcggctg ggtgcgccag atgcccggga aaggcctgga gtggatgggg 540atcatctatc ctggtgactc tgataccaga tacagcccgt ccttccaagg ccaggtcacc 600atctcagccg acaagtccat cagcaccgcc tacctgcagt ggagcagcct gaaggcctcg 660gacaccgcca tgtattactg tgcgagacta aagctccggg ggttttcggg cggctatggt 720tcagggagcc gctactttga ctactggggc cagggaaccc tggtcaccgt ctcctca 777168765DNAArtificial SequenceAb8 scFv 168gagctcgccc tgactcagcc tccctccgtg tcagtggccc cagcaatgac ggccaagatt 60acctgtgggg gtgacgacat tggaagtact actgtgcaat ggtaccaaca gacctcaggc 120caggcccctg tgctggtcgt ctatgacgat agcgaccggc cctcagggat ccctgagcga 180ttctccggcg ccaactctgg gaacacggcc accctgacca tcagcagggt cgaagccggg 240gatgaggccg actattactg tcaggtgtgg gacggcagaa gtgatcatgt ggttttcggc 300ggagggacca agctgaccgt cctaggcggt ggttcctcta gatcttcctc ctctggtggc 360ggtggctcgg gcggtggtgg gcaggtgcag ctggtgcagt ctggagcaga ggtgaaaaag 420cccggggagt ctctgaagat ctcctgtaag ggttctggat acatctttac caactactgg 480atcggctggg tgcgccagat gcccgggaaa ggcctggagt ggatggggat catctatcct 540ggtgactctg ataccagata cagcccgtcc ttccaaggcc aggtcaccat ctcagccgac 600aggtccatca gcaccgccaa cctgcagtgg agcagcctga aggcctcgga caccgccctg 660tattactgtg cgagactaaa gctccggggg ttttcgggcg gctatggttc agggagacgc 720tactttgact actggggcca gggaaccctg gtcaccgtct cctca 765169765DNAArtificial SequenceAb9 scFv 169gagctcgagc tgactcagcc accctcagtg tctgggaccc ccgggaagag ggtcagtatg 60tcttgttctg gaagtaggtc caacatcgga ggtaatgttg tgaactggta ccagcagctc 120ccaggaaagg cccccaaact cttcatctac aataatgatc agcggccctc aggggtccct 180gaccgagtct ctggctccaa gtcaggcacc tcagtctccg tggccatcag tgggctccag 240cctgaagatg aggctgatta ttactgtgca gcttgggatg acatcctgaa tggtgtggtc 300ttcggcggag ggacccagct gaccgtcctc ggcggtggtt cctctagatc ttcctcctct 360ggtggcggtg gctcgggcgg tggtgggcag gtgcagctgg tgcagtctgg agcagaggtg 420aaaaagcccg gggagtctct gaagatctcc tgtaagggtt ctggatacaa cttcaccaac 480tactggatcg ggtgggtgcg ccagctgccc gggaaaggcc tggagtggat ggggatcatc 540tatcctggtg actccgacac cagatatagc ccgtccttcc aaggccaggt caccatctca 600gccgacaagt ccatcagcac cgcctacctg cagtggagca gcctgaaggc ctcggacacc 660gccatgtatt actgtgcgag aattcgagtt atcggattct atgatagtag ccccccgccc 720ttatttgact actggggcca gggaaccctg gtcaccgtct cctca 765170738DNAArtificial SequenceAb10 scFv 170gagctcgtga tgactcagtc tccatcttcc ctgtccgcat ctgtgggaga cacagtcacc 60atcacttgcc gggcaagtca gagcatttac acctatttaa attggtatca ccagacacca 120gggaaagccc ctaaactcct gatttctgct gcatctagtt tgcaaagtgg tgtcccatca 180aggttcagtg gcagtgggtc tgggacagat ttcactctca ccatcagcag tctgcaacct 240gaggattttg caacgtacta ctgtcaacag tatgcggatg tcccggtcac tttcggcgga 300gggaccaagc tggagatcaa aggtggttcc tctagatctt cctcctctgg tggcggtggc 360tcgggcggtg gtggggaggt gcagctggtg gagtctgggg gaggcgtggt ccagcctggg 420aggtccctga gactctcctg tgcagcctct ggattcacct tcagtggcta tggcatacac 480tgggtccgcc aggctccagg caaggggctg gagtgggtgg cacttatatc atatgatgga 540agtaataaat actatgcaga ctccgtgaag ggccgattca ccatctccag agacaattcc 600aagaacacgc tgtatctgca aatgaacagc ctgagagctg aggacacggc tgtgtattac 660tgtgcgaaag atcgggatta ctttggttca gggttctttg actactgggg ccagggaacc 720ctggtcaccg tctcctca 7381711073PRTArtificial Sequencemembrane glycoprotein polyprotein of SFTSV 171Met Met Lys Val Ile Trp Phe Ser Ser Leu Ile Cys Phe Val Ile Gln1 5 10 15Cys Ser Gly Asp Ser Gly Pro Ile Ile Cys Ala Gly Pro Ile His Ser 20 25 30Asn Lys Ser Ala Asp Ile Pro His Leu Leu Gly Tyr Ser Glu Lys Ile 35 40 45Cys Gln Ile Asp Arg Leu Ile His Val Ser Ser Trp Leu Arg Asn His 50 55 60Ser Gln Phe Gln Gly Tyr Val Gly Gln Arg Gly Gly Arg Ser Gln Val65 70 75 80Ser Tyr Tyr Pro Ala Glu Asn Ser Tyr Ser Arg Trp Ser Gly Leu Leu 85 90 95Ser Pro Cys Asp Ala Asp Trp Leu Gly Met Leu Val Val Lys Lys Ala 100 105 110Lys Gly Ser Asp Met Ile Val Pro Gly Pro Ser Tyr Lys Gly Lys Val 115 120 125Phe Phe Glu Arg Pro Thr Phe Asp Gly Tyr Val Gly Trp Gly Cys Gly 130 135 140Ser Gly Lys Ser Arg Thr Glu Ser Gly Glu Leu Cys Ser Ser Asp Ser145 150 155 160Gly Thr Ser Ser Gly Leu Leu Pro Ser Asp Arg Val Leu Trp Ile Gly 165 170 175Asp Val Ala Cys Gln Pro Met Thr Pro Ile Pro Glu Glu Thr Phe Leu 180 185 190Glu Leu Lys Ser Phe Ser Gln Ser Glu Phe Pro Asp Ile Cys Lys Ile 195 200 205Asp Gly Ile Val Phe Asn Gln Cys Glu Gly Glu Ser Leu Pro Gln Pro 210 215 220Phe Asp Val Ala Trp Met Asp Val Gly His Ser His Lys Ile Ile Met225 230 235 240Arg Glu His Lys Thr Lys Trp Val Gln Glu Ser Ser Ser Lys Asp Phe 245 250 255Val Cys Tyr Lys Glu Gly Thr Gly Pro Cys Ser Glu Ser Glu Glu Lys 260 265 270Thr Cys Lys Thr Ser Gly Ser Cys Arg Gly Asp Met Gln Phe Cys Lys 275 280 285Val Ala Gly Cys Glu His Gly Glu Glu Ala Ser Glu Ala Lys Cys Arg 290 295 300Cys Ser Leu Val His Lys Pro Gly Glu Val Val Val Ser Tyr Gly Gly305 310 315 320Met Arg Val Arg Pro Lys Cys Tyr Gly Phe Ser Arg Met Met Ala Thr 325 330 335Leu Glu Val Asn Gln Pro Glu Gln Arg Ile Gly Gln Cys Thr Gly Cys 340 345 350His Leu Glu Cys Ile Asn Gly Gly Val Arg Leu Ile Thr Leu Thr Ser 355 360 365Glu Leu Lys Ser Ala Thr Val Cys Ala Ser His Phe Cys Ser Ser Ala 370 375 380Thr Ser Gly Lys Lys Ser Thr Glu Ile Gln Phe His Ser Gly Ser Leu385 390 395 400Val Gly Lys Thr Ala Ile His Val Lys Gly Ala Leu Val Asp Gly Thr 405 410 415Glu Phe Thr Phe Glu Gly Ser Cys Met Phe Pro Asp Gly Cys Asp Ala 420 425 430Val Asp Cys Thr Phe Cys Arg Glu Phe Leu Lys Asn Pro Gln Cys Tyr 435 440 445Pro Ala Lys Lys Trp Leu Phe Ile Ile Ile Val Ile Leu Leu Gly Tyr 450 455 460Ala Gly Leu Met Leu Leu Thr Asn Val Leu Lys Ala Ile Gly Ile Trp465 470 475 480Gly Ser Trp Val Ile Ala Pro Val Lys Leu Ile Phe Ala Ile Ile Lys

485 490 495Lys Leu Met Arg Ala Val Ser Cys Leu Met Gly Lys Leu Met Asp Arg 500 505 510Gly Arg Gln Val Ile His Glu Glu Ile Gly Glu Asn Arg Glu Gly Asn 515 520 525Gln Asp Asp Val Arg Ile Glu Met Ala Arg Pro Arg Arg Val Arg His 530 535 540Trp Met Tyr Ser Pro Val Ile Leu Thr Ile Leu Ala Ile Gly Leu Ala545 550 555 560Glu Ser Cys Asp Glu Met Val His Ala Asp Ser Lys Leu Val Ser Cys 565 570 575Arg Gln Gly Ser Gly Asn Met Lys Glu Cys Val Thr Thr Gly Arg Ala 580 585 590Leu Leu Pro Ala Val Asn Pro Gly Gln Glu Ala Cys Leu His Phe Thr 595 600 605Ala Pro Gly Ser Pro Asp Ser Lys Cys Leu Lys Ile Lys Val Lys Arg 610 615 620Ile Asn Leu Lys Cys Lys Lys Ser Ser Ser Tyr Phe Val Pro Asp Ala625 630 635 640Arg Ser Arg Cys Thr Ser Val Arg Arg Cys Arg Trp Ala Gly Asp Cys 645 650 655Gln Ser Gly Cys Pro Pro His Phe Thr Ser Asn Ser Phe Ser Asp Asp 660 665 670Trp Ala Gly Lys Met Asp Arg Ala Gly Leu Gly Phe Ser Gly Cys Ser 675 680 685Asp Gly Cys Gly Gly Ala Ala Cys Gly Cys Phe Asn Ala Ala Pro Ser 690 695 700Cys Ile Phe Trp Arg Lys Trp Val Glu Asn Pro His Gly Ile Ile Trp705 710 715 720Lys Val Ser Pro Cys Ala Ala Trp Val Pro Ser Ala Val Ile Glu Leu 725 730 735Thr Met Pro Ser Gly Glu Val Arg Thr Phe His Pro Met Ser Gly Ile 740 745 750Pro Thr Gln Val Phe Lys Gly Val Ser Val Thr Tyr Leu Gly Ser Asp 755 760 765Met Glu Val Ser Gly Leu Thr Asp Leu Cys Glu Ile Glu Glu Leu Lys 770 775 780Ser Lys Lys Leu Ala Leu Ala Pro Cys Asn Gln Ala Gly Met Gly Val785 790 795 800Val Gly Lys Val Gly Glu Ile Gln Cys Ser Ser Glu Glu Ser Ala Arg 805 810 815Thr Ile Lys Lys Asp Gly Cys Ile Trp Asn Ala Asp Leu Val Gly Ile 820 825 830Glu Leu Arg Val Asp Asp Ala Val Cys Tyr Ser Lys Ile Thr Ser Val 835 840 845Glu Ala Val Ala Asn Tyr Ser Ala Ile Pro Thr Thr Ile Gly Gly Leu 850 855 860Arg Phe Glu Arg Ser His Asp Ser Gln Gly Lys Ile Ser Gly Ser Pro865 870 875 880Leu Asp Ile Thr Ala Ile Arg Gly Ser Phe Ser Val Asn Tyr Arg Gly 885 890 895Leu Arg Leu Ser Leu Ser Glu Ile Thr Ala Thr Cys Thr Gly Glu Val 900 905 910Thr Asn Val Ser Gly Cys Tyr Ser Cys Met Thr Gly Ala Lys Val Ser 915 920 925Ile Lys Leu His Ser Ser Lys Asn Ser Thr Ala His Val Arg Cys Lys 930 935 940Gly Asp Glu Thr Ala Phe Ser Val Leu Glu Gly Val His Ser Tyr Thr945 950 955 960Val Ser Leu Ser Phe Asp His Ala Val Val Asp Glu Gln Cys Gln Leu 965 970 975Asn Cys Gly Gly His Glu Ser Gln Val Thr Leu Lys Gly Asn Leu Ile 980 985 990Phe Leu Asp Val Pro Lys Phe Val Asp Gly Ser Tyr Met Gln Thr Tyr 995 1000 1005His Ser Thr Val Pro Thr Gly Ala Asn Ile Pro Ser Pro Thr Asp 1010 1015 1020Trp Leu Asn Ala Leu Phe Gly Asn Gly Leu Ser Arg Trp Ile Leu 1025 1030 1035Gly Val Ile Gly Val Leu Leu Gly Gly Leu Ala Leu Phe Phe Met 1040 1045 1050Ile Met Ser Leu Phe Lys Leu Gly Thr Lys Gln Val Phe Arg Ser 1055 1060 1065Arg Thr Lys Leu Ala 1070

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed