Methods And Kits For Determining A Personalized Treatment Regimen For A Subject Suffering From A Pathologic Disorder

SMITH; Yoav

Patent Application Summary

U.S. patent application number 17/100987 was filed with the patent office on 2021-03-18 for methods and kits for determining a personalized treatment regimen for a subject suffering from a pathologic disorder. The applicant listed for this patent is YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD.. Invention is credited to Yoav SMITH.

Application Number20210079475 17/100987
Document ID /
Family ID1000005237342
Filed Date2021-03-18

View All Diagrams
United States Patent Application 20210079475
Kind Code A1
SMITH; Yoav March 18, 2021

METHODS AND KITS FOR DETERMINING A PERSONALIZED TREATMENT REGIMEN FOR A SUBJECT SUFFERING FROM A PATHOLOGIC DISORDER

Abstract

The invention relates to methods and kits for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder based on calculating the value of M, that indicates the ability of said subject to eliminate said disorder. The invention specifically relates to optimization of interferon treatment of viral disorders.


Inventors: SMITH; Yoav; (Jerusalem, IL)
Applicant:
Name City State Country Type

YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD.

Jerusalem

IL
Family ID: 1000005237342
Appl. No.: 17/100987
Filed: November 23, 2020

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15303427 Oct 11, 2016 10846371
PCT/IL2015/050363 Apr 2, 2015
17100987
61977966 Apr 10, 2014

Current U.S. Class: 1/1
Current CPC Class: C12Q 1/6883 20130101; G16H 10/40 20180101; C12Q 2600/106 20130101; Y02A 90/10 20180101; G01N 2800/52 20130101; C12Q 2600/158 20130101; G16H 20/10 20180101; G16B 20/00 20190201
International Class: C12Q 1/6883 20060101 C12Q001/6883; G16B 20/00 20060101 G16B020/00; G16H 10/40 20060101 G16H010/40; G16H 20/10 20060101 G16H020/10

Claims



1. A method for determining a personalized treatment regimen for a subject suffering from a pathologic disorder, said method comprises the step of: a. Calculating the value of M, wherein said value indicates the ability of said subject to eliminate said disorder; b. Determining the value of M1, said value indicates the minimal ability required for eliminating said disorder; c. providing the dose A1 and number B1 of administrations of said dose to obtain an amount C1 of said medicament required for eliminating said disorder in subjects having a value of M that is equal or above said M1 value, wherein A1*B1=C1; d. Calculating the dose A and number B of administrations of said dose A to obtain an amount C1 required for said subject having said M determined/calculated in step (a), wherein said A=A1/(M1/M) and B=B1*(M1/M); thereby at least one of determining and optimizing the treatment regimen for said subject.

2. The method according to claim 1, wherein calculating the value of M is performed by the steps of any one of: I. A static analysis comprising: Ia. determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject, to obtain an expression value Ex.sub.samp in said sample; Ib. providing a standard curve of expression values of subjects suffering from the same pathologic disorder; Ic. Obtaining a maximal expression value Ex.sub.max and a minimal expression value Ex.sub.min from said standard curve of (Ib); and Id. Calculating the M value of said sample, wherein M=1-[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min]; II. An induced dynamic analysis comprising: IIa. determining the level of expression of at least one of genes in a biological sample of said subject, to obtain an expression value in said sample; IIb. exposing or contacting said subject or at least one other sample obtained from said subject to or with an immuno-stimulant; IIc. determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in said at least one other biological sample of said subject obtained in step IIb; and IId. calculating the rate of change (RC) between the expression value obtained in step (IIa), and the expression value obtained in step (IIc), thereby obtaining the rate of change in the sample RC.sub.samp; IIe. providing a standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects treated with said immuno-stimulant; IIf. Obtaining a maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value from said standard curve of (IIe); and IIg. Calculating the M value of said sample, wherein M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject; or III. A dynamic analysis comprising: IIIa. determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject, to obtain an expression value in said sample, wherein said sample is obtained prior the initiation of said treatment with said medicament; IIIb. determining the level of expression of at least one ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in at least one other biological sample of said subject, wherein said at least one other sample is obtained after the initiation of said treatment; IIIc. calculating the rate of change between the expression value obtained in step (IIIa), and the expression value obtained in step (IIIb), thereby obtaining the rate of change in the sample RC.sub.samp; IIId. providing a predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects suffering from the same disorder that were treated with said medicament; IIIe. Obtaining a maximal rate of change value RC.sub.max and a minimal rate of change value RC.sub.min from said standard curve of (IId); and IIIf. Calculating the M value of said sample, wherein M=RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject.

3. The method according to claim 2, wherein calculating the value of M1 is performed by the steps of any one of: I. Ia. Providing a K value for said disorder; Ib. calculating the M1, wherein M1.gtoreq.1-(1/k), thereby determining the M1 value; and II. IIa. Providing a standard M1 value calculated for a responder population.

4. The method according to claim 2, wherein in steps (a) and (b) the expression of OAS2, HERC5, UPS18, UBE216 and optionally of ISG15 genes is determined.

5. The method according to claim 1, wherein said method is for determining a personalized interferon treatment regimen for a subject suffering from a pathologic disorder.

6. The method according to claim 2, wherein determining the level of expression of at least one of said ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject is performed by the step of contacting detecting molecules specific for said genes with a biological sample of said subject, or with any nucleic acid or protein product obtained therefrom, and wherein said detecting molecules are selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules.

7. The method according to claim 6, wherein said nucleic acid detecting molecule comprises isolated oligonucleotide/s, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and optionally, to a control reference gene, and wherein said detecting molecule is at least one of a pair of primers, at least one primer, nucleotide probes or any combinations thereof.

8. The method according to claim 1, wherein said subject is suffering from an immune-related disorder, and wherein said immune-related disorder is any one of an infectious condition, an autoimmune disease, and a proliferative disorder.

9. The method according to claim 8, wherein said subject is suffering from an infectious condition caused by any one of (Hepatitis C virus) HCV, dengue virus, influenza, poliovirus, HIV (human immune deficiency virus) and West Nile virus (WNV) infection.

10. The method according to claim 8, wherein said subject is suffering from Multiple sclerosis (MS).

11. The method according to claim 8, wherein said subject is suffering from Rheumatoid Arthritis (RA), and wherein said genes are at least one of IFIT1, IFITM3, IFIT3, OAS1, OAS3, HERC5, RSAD2, MX1, IFI44L, IFI6, IFI44 and DDX58 genes.

12. The method according to claim 2, wherein said immuno-stimulant is any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D).

13. A kit for determining and/or optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder comprising: a. detecting molecules specific for determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample, wherein said detecting molecules are selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules; b. means for calculating the M value of a tested subject, wherein said value indicates the ability of said subject to eliminate said disorder; c. means for calculating the value of M1 or a standard M1 value calculated for a responder population, said M1 value indicates the minimal ability required for eliminating said disorder; and d. means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject.

14. The kit according to claim 13, wherein means for calculating the value of M comprise at least one of: I. means for static analysis comprising: Ia. detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample for determining an expression value Ex.sub.samp in said sample; Ib. a standard curve of expression values of subjects suffering from the same pathologic disorder or predetermined maximal expression value Ex.sub.max and a minimal expression value Ex.sub.min calculated from said standard curve; and Ic. a formula for calculating M value, wherein said formula is M=[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min)]; II. means for an induced dynamic analysis comprising: IIa. detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample for determining an expression value Ex.sub.samp in said sample before and after stimulation of said subject with an immuno-stimulant, and for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of said sample before and after stimulation; IIb. an immuno-stimulant; IIc. a standard curve of the rate of change in the expression of at least one of ISG15, FIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects treated with said immuno-stimulant, or predetermined maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value calculated from said standard curve; and IId. a formula for calculating said M value, wherein said formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)]; and III. means for a dynamic analysis comprising: IIIa. detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample for determining an expression value Ex.sub.samp in said sample before and after treatment of said subject with said medicament, and for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of said sample; IIIb. a predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects suffering from the same disorder and treated with said medicament, or predetermined maximal rate of change value RC.sub.max and minimal rate of change value RC.sub.min calculated from said standard curve; and IIIc. a formula for calculating said M value, wherein said formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)]; and wherein means for calculating the value of M1 comprise: a. a predetermined K value of said disorder; b. a formula for calculating said M1 value, wherein said formula is M1.gtoreq.1-(1/k).

15. The kit according to claim 13, wherein said nucleic acid detecting molecule comprises isolated oligonucleotides, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and optionally, to a control reference gene, and wherein said detecting molecule is at least one of a pair of primers, at least one primer, nucleotide probes or any combinations thereof.

16. The kit according to claim 13, wherein said subject is suffering from an infectious condition caused by any one of HCV, dengue virus, influenza, poliovirus, HIV and WNV infection.

17. The kit according to claim 13, wherein said subject is suffering from Multiple sclerosis (MS).

18. The kit according to claim 13, wherein said subject is suffering from Rheumatoid Arthritis (RA) and wherein said kit comprises detecting molecules specific for determining the level of expression of at least one of IFIT1, IFITM3, IFIT3, OAS1, OAS3, HERC5, RSAD2, MX1, IFI44L, IFI6, IFI44 and DDX58 genes.

19. The kit according to claim 13, wherein said immuno-stimulant is any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D).

20. A computer software product for determining and/or optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder, the product comprising a computer readable medium in which program instructions are stored, which instructions, when read by a computer, cause the computer to a. Calculate and/or determine the value of M, wherein said value indicates the ability of said subject to eliminate said disorder; b. Determine the value of M1, said value indicates the minimal ability required for eliminating said disorder; c. calculate the dose A and number B of administrations of said dose A to obtain an amount C required for said subject having said M determined/calculated in step (a), from predetermined dose A1 and number B1 of administrations of said dose, using the formula of A=A/(M1/M) and B=B1*(M1/M).
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 15/303,427, filed on Oct. 11, 2016, which is a National Phase of PCT Patent Application No. PCT/IL2015/050363 having International filing date of Apr. 2, 2015, which claims the benefit of priority under 35 U. S.C. .sctn. 119(e) of U.S. Provisional Patent Application No. 61/977,966, filed on Apr. 10, 2014. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.

FIELD OF THE INVENTION

[0002] The invention relates to personalized medicine. More specifically, the invention provides methods and kits for determining and optimizing a treatment regimen of a medicament, for a subject suffering from a pathologic disorder.

BACKGROUND REFERENCES

[0003] References considered to be relevant as background to the presently disclosed subject matter are listed below: [0004] Chen Limin, et al., Gastroenterology 128:1437-1444 (2005). [0005] Taylor, M W, et al., Journal of Virology 81:3391-3401 (2007). [0006] van Baarsen L G, et al., PLoS ONE 3:e1927 (2008). [0007] Zeremski M, et al., J. Acquir. Immune. Defic. Syndr. 45:262-268 (2007). [0008] Tarantino G, et al., Digestive and Liver Disease 40:A1-A40 (2008). [0009] US2009/157324 [0010] WO10/076788 [0011] Sadlet A J et al, Nature Reviews Immunology 8: 559 (2008) [0012] Grinde B, et al, Virol J. 4: 24 (2007) [0013] David Stifflerl J. et al., PLoS ONE 4(8) e6661 (2009)

[0014] Acknowledgement of the above references herein is not to be inferred as meaning that these are in any way relevant to the patentability of the presently disclosed subject matter.

BACKGROUND OF THE INVENTION

[0015] Determining treatment protocols that may be suitable for each individual or a subset of individuals is highly desirable. Clinical diagnosis and management has been long focused on clinical sign and symptoms of a patient in order to treat specific diseases. Recently along with the advances in genetic profiling, it became possible to understand the impact of genetic variability as measured in individuals or subsets of individuals on the disease progression.

[0016] Personalized medicine is therefore aimed at enabling decisions and practices to the individual patient by use for example of genetic information.

[0017] It has been recently shown that evaluating the differences in the genetic profile of the two or more groups of patients can provide valuable insight into resistant to treatment.

[0018] For example, interferon therapy is widely used in the treatment of a variety of diseases including for example, multiple sclerosis (MS), hepatitis B, hepatitis C, inflammatory diseases and many cancers types. However, not all subjects treated with interferon equally respond to this therapy and moreover, responsive subjects experience relapse of the disease after remission periods. In fact, in both MS and type 1 hepatitis C Virus (HCV) the success of treatment is only about 50%, namely about half of the patients administered with interferon will not benefit but rather experience only related side effects.

[0019] Chen et al. 2005, compared the gene expression levels in liver specimens taken before treatment from 15 non-responders and 16 responders to Pegylated interferon (IFN-alpha), identified 18 genes that have a significantly different expression between all responders and all non-responders and concluded that up-regulation of a specific set of interferon-responsive gens predict non response to exogenous treatment.

[0020] Taylor M., et al. 2007, found that the induced levels of known interferon-stimulated genes such as the OAS1, OAS2, MX1, IRF-7 and TLR-7 genes is lower in poor-response patients than in marked- or intermediate-response patients.

[0021] Van Baarsen et al., 2008 show that the expression level of interferon response genes in the peripheral blood of multiple sclerosis patients prior to treatment can serve a role as a biomarker for the differential clinical response to interferon beta.

[0022] Zeremaki M, et al., 2007 showed that PEG-interferon induced elevations in IP-10 are greater in responders than in non-responders after the first PEG-interferon dose.

[0023] Tarantino et al., 2008 described that serum levels of B-Lymphocyes stimulator (BLyS) have a potential role as a predictor of outcome in patients with acute hepatitis C.

[0024] The Inventor previous US Patent Application, US2009157324 describes a computational method for selecting a group of genes from a predetermined group of genes whose expression level is significantly different among a first group of individuals (being for example responders to a treatment) and comparing their expression in a second group of individuals (for example not responders). The statistical significance of each group of genes is determined in both up regulated genes or down regulated genes, namely their expression in the first group is higher or lower than in the second group, respectively. The genes in both groups (up regulated and down regulated) are ranked according to number of times each gene was ranked in the highest statistical significant score. A subset of genes having the highest score, either up regulated or down regulated are then selected as biomarkers.

[0025] In another application by the Inventor, International Patent Publication WO10076788, computational and experimental methods are provided for predicting the responsiveness of a subject to interferon therapy by measuring the expression level of various genes such as OAS3, IF16, ISG15, OAS2, IFIT1, KIR3DL3, KIR3DL2, KIR3DL1, KIR2DL1, KIR2DL2, KIR2DL3, KLRG1, KIR3DS1, CD160, HLA-A, HLA-B, HLA-C, HLA-F, HLA-G and IFI27. Specifically, the inventor has found that OAS3, IF16, ISG15, OAS2 and IFIT1 are up-regulated in patients that do not respond to interferon treatment as compared to patients that respond to interferon therapy or compared to healthy controls.

[0026] Thus, the correlations between genetic profiling and personalized medicine, namely treatment regimens, needs to be considered for predicting response to therapy, predicting treatment success and monitoring disease prognosis and pathogenesis, specifically chances for disease relapse.

SUMMARY OF THE INVENTION

[0027] A first aspect of the invention relates to a method for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. In certain embodiments, the method of the invention comprises the step of:

[0028] First step (a) involves calculating and determining the value of M. The value M indicates the ability, capability of a specific subject, in this case, the examined subject, to eliminate the specific disorder.

[0029] More specifically, the value of the individual's M reflects the efficiency of the specific tested subject in cellular elements that are required for challenging and eliminating a specific disorder. In certain embodiments the M value indicates the strength of the individual's innate immunity, and may be used for predicting it's ability to eliminate a specific disorder.

[0030] The next step (b), involves determining the value of M1 that indicates the minimal ability required for eliminating said disorder.

[0031] In the nest step (c), providing the dose A1 and number B1 of administrations of such dose to obtain an amount C1 of a specific medicament required for eliminating a specific disorder in subjects having a value of M that is equal or above the optimal M1 value, wherein A1*B1=C1.

[0032] The next step (d) involves calculating the dose A and number B of administrations of such specific dose A to obtain an amount C1 required for the examined subject having the specific M value determined and calculated in step (a). More specifically, the specific optimal dose required for a successful treatment for the tested subject would be A=A1/(M1/M). The specific number of administrations of such dose may be calculated using the formula B=B1*(M1/M); thereby determining and optimizing the treatment regimen for the specific tested subject.

[0033] A further aspect of the invention relates to a kit for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder.

[0034] In certain embodiments, such kit may comprise elements required for performing any of the methods described above. More specifically, such kit may comprise:

[0035] (a) detecting molecules specific for determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample. In certain embodiments the kits of the invention may further comprise detecting molecules for the STAT1, IFI44, EIF2AK2 and DHX58 genes and any combinations thereof with any of the marker genes of the invention.

[0036] The kit of the invention further comprises (b), means for calculating the M value of a tested subject. As noted above, the M value indicates the ability of said subject to eliminate said disorder. The kit of the invention further comprises (c) means for calculating the value of M1 or a standard M1 value calculated for a responder population. As indicated above, the M1 value indicates the minimal ability, or in other words, the optimal M1 value required for a successful elimination of the disorder. Finally, the kit of the invention comprises (d) means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject.

[0037] In yet a further aspect, the invention provides a computer software product for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. Such product comprising a computer readable medium in which program instructions are stored, which instructions, when read by a computer, cause the computer to: (a) calculate and determine the value of M that indicates the ability of said subject to eliminate said disorder; (b) determine the value of M1, that indicates the minimal ability required for eliminating said disorder. (c) calculate the dose A and number B of administrations of said dose A to obtain an amount C required for said subject having said M determined/calculated in step (a), from predetermined dose A1 and number B1 of administrations of said dose, using the formula of A=A1/(M1/M) and B=B1*(M1/M).

BRIEF DESCRIPTION OF THE DRAWINGS

[0038] In order to understand the disclosure and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

[0039] FIG. 1 shows a schematic representation at the cellular level of a cell infected with a virus that is multiplied by a rate K followed by the regulation of specific genes caused either by the immune system or by an external treatment that may lead to viral elimination by rate M. The virus or other viruses may penetrate other cells by a certain rate. As schematically illustrated here, the virus may be destroyed by the activity of a set of proteins encoded by a set of genes for example, ISG15, USP18, HERC5 and OAS, in the UPS (Ubiquitin Proteasome System).

[0040] FIG. 2 shows MATLAB simulation of the model with k=2 and p=0 as constant parameters and M being varied from 0 to 1. The lower line represents 0.1 of initial load and provides information whether the down regulation was more than one tenth of the initial virus load.

[0041] FIG. 3 shows MATLAB simulation of the model with k=3 and p=0 as constant parameters and M being varied from 0 to 1. The lower line represents 0.1 of initial load and provides information whether the down regulation was more than one tenth of the initial virus load.

[0042] FIG. 4 shows MATLAB simulation of the model including PI administration with k=2, p=0 and M=0.44 as constant parameters and M1 being varied from 0 to 0.44. As shown by the figure, the optimal M1 should be over 0.3 using the PI treatment.

[0043] FIG. 5 is a volcano plot showing the significant changes in the expression level of different genes in West Nile virus (WNV) infected retinal pigment epithelial (RPE). Expression data was obtained Gene Expression Omnibus Accession No. GSE30719. The "X"-axis represents log 2 of ratio between gene expression measured after 24 hours after infection and a baseline level of the same gene measured before infection, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).

[0044] FIG. 6 is a volcano plot showing the significant changes in the expression level of different genes in H1N1 (left) compare to H5N1 (right). Expression data was obtained from Gene Expression Omnibus Accession No. GSE18816. The "X"-axis represents log 2 of ratio between gene expression measured after 6 hours after infection and a baseline level of the same gene measured before infection, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).

[0045] FIG. 7 is a volcano plot showing the significant changes in the expression level of different genes in blood of children infected with dengue virus. Expression data was obtained from Gene Expression Omnibus Accession No. GSE13052. The "X"-axis represents log 2 of ratio between gene expression measured 4 days after infection in 9 acute dengue shock patients and a baseline level of the same gene measured in 9 acute uncomplicated dengue patients, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).

[0046] FIG. 8 is a volcano plot showing the significant changes in the expression level of different genes in liver biopsies of ten responders and ten non-responders HCV patients before treatment (left) and after one week of IFN and Rib treatment (right). Expression data was obtained from Gene Expression Omnibus Accession No. GSE17183. The "X"-axis represents log 2 of ratio between gene expression measured in responders vs. non-responders, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds whereas the points present to the left of the left vertical line (shown at a value of -0.75 on the x-axis), represent genes that were down regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).

[0047] FIG. 9 is a volcano plot showing the significant changes in the expression level of different genes in MS patients three months after treatment with IFN-.beta.. Expression data was obtained from Gene Expression Omnibus Accession No GSE16214. The "X"-axis represents log 2 of ratio between gene expression measured in after treatment, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).

[0048] FIGS. 10A and 10B are graphs showing the expression of IFI27, IFI44L, IFI6, MX1 and ISG15 genes measured in PBMCs of MS patients before (FIG. 10A) and three month after treatment with interferon alpha (IFN-.alpha.) (FIG. 10B). Expression data was downloaded from Gene Expression Omnibus Accession No GSE16214. The "X"-axis represents the subject number and the "Y" axis represents the normalized expression level of the genes.

[0049] FIG. 11 is a graph showing the sum of the expression of the USP18, IFI44, MX1, IFI44L, OAS3, HERC5 and RSAD2 genes (square) and the relapse rate (diamond) of 50 MS patients (patients are indicated in the X-axis.

[0050] FIG. 12 is a graph illustrating the differential expression as calculated from the sum of the common genes, MX1, IFITM3, IFI44L, HERC5, IFI44, IFI6, OAS1, OAS3, RSAD2, IFIT1, IFIT3 and DDX58 in RA patients that are responders and non-responders to infliximab (influx) treatment, and responders and non-responders to RTX treatment (Rituxi=Rituximab).

[0051] FIG. 13 is a graph showing the sum of expression of the IFI27, ISG15, IFIH1, IFI44L, OAS2, DDX58, IFIT1 and IFI6 genes in 44 HIV patients treated with HAART (squares) and the virus load (diamonds).

[0052] FIG. 14 is a graph showing the expression of the ISG15, HERC5, USP10 and UBE2L6 genes, in the ferret experimental groups as indicated therein.

[0053] FIG. 15 is a graph showing the clustering of genes measured for a population of 15 healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No GSE838. The "X" axis denotes the tested individual and the "Y" axis represents the measured genes.

[0054] FIG. 16 is a graph showing the expression of IGS15, IFIT1, OAS2 and USP18 genes measured in healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No GSE838 the "X"-axis represents the subject number (patients 1-15) and the "Y" axis represents the normalized expression level of the genes ranging from 0 to 1.

[0055] FIG. 17 is a graph showing the clustering of genes measured for a population of 145 healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No GSE3649. The "X" axis denotes the tested individual and the "Y" axis represents the measured genes

[0056] FIG. 18 is a graph showing the expression IGS15 and IFIT1 gene measured in healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No. GSE3649. The "X"-axis represents the subject number and the "Y" axis represents the normalized expression level of the genes ranging from 0 to 1.

[0057] FIG. 19 is a volcano plot showing the significant changes in the expression level of different genes in healthy individuals 24 hours following injection of poly ICLC. Expression data was obtained from Gene Expression Omnibus Accession No GSE32862. The "X"-axis represents log 2 of ratio between gene expression measured 24 hours as compared to base line level before administration, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. Abbreviations: val. (value); rat. (ratio).

[0058] FIG. 20 is a volcano plot showing the significant changes in the expression level of different genes in healthy individuals 24 hours following injection of poly ICLC. Expression data was obtained from Gene Expression Omnibus Accession No GSE32862. The "X"-axis represents log 2 of ratio between gene expression measured 24 hours as compared to base line level before administration, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. Abbreviations: val. (value); rat. (ratio). The genes ISG15, HERC5 and UBE2L6 are given in squares, IFI44 set (in triangle pointing right), IFIT set (in circles), OAS set (in triangles pointing left), triggers DDX58, TLR7, IFIH1, MYd88.

[0059] FIG. 21 is a graph showing principal component analysis (PCA) of the expression level of IFIT1, IFI44L, IFI6 and ISG15. The data was obtained from PBMC of healthy donors 24 hours after administration of poly ICLC as compared to baseline levels.

[0060] FIG. 22 are graphs showing timing of genes dynamics. Dashed lines correspond to non responders and full lines to responders. X-axis represents time and the Y-axis represents expression of the indicated genes.

[0061] FIG. 23 are graphs showing timing of genes dynamics for longer periods. Dashed lines correspond to non responders and full lines to responders. X-axis represents time and the Y-axis represents expression of the indicated genes.

[0062] FIG. 24 is a histogram graph showing the changes in genes expression after 24 hours following PolyC treatment in healthy donors divided by baseline level of the same gene.

[0063] FIG. 25 is a graph showing the calculation of M from the model equations.

[0064] FIGS. 26A-26B is a graph showing simulation of replication vs. immune defense, per different M. As can be seen for the same individual with an M value suitable for K=3, that is calculated as follows M=1-1/3=0.66 being infected by a variety of viruses with varying K (multiplication rate). FIG. 26A shows that at K rate higher than 3, the virus progresses. FIG. 26B shows situation where K smaller than M, attenuation of the virus is achieved. The X-axis represents time from initial infection different k values and the Y-axis represents the virus load per the different k values.

[0065] FIGS. 27A-27B is a graph showing simulation instructing how much PI is needed per each individuals M and virus K. The PI effectively increases the individuals M, FIG. 27A shows an individual with M=0.6, FIG. 27B shows an individual with M=0.8 both are affected by the same range of PI injections. The better M the quicker an individual to become a responder with the same PI.

[0066] FIG. 28 is a graph showing sum of the expression of the ubiquitin genes, ISG15, USP18, HERC5, UBE2L6, as measured in A549 cells at 2, 4, 6, 8 and 10 hours post infection with the three different influenza strains.

[0067] FIG. 29 is a graph showing the sum of the expression of the ubiquitin genes, ISG15, USP18, HERC5 and UBE2L6 in different time points up to 120 hr (X-axis) post infection of H3N2, in nine different individuals. Each individual is represented in one panel numbered 1 to 9.

[0068] FIG. 30 is a graph showing the simulation results, in the upper panel the virus load of a virus having replication rate of 1.93, the lower panel shows the sum of the expression of the 4 genes, in individual 6 as presented in FIG. 29.

[0069] FIG. 31 is a graph showing the simulation results, in the upper panel the virus load of a virus having replication rate of 1.94, the lower panel shows the sum of the expression of the 4 genes, in individual 6 as presented in FIG. 29.

[0070] FIG. 32 is a bar graph showing the normalized and scaled sum expression of the genes UBE2L6, USP18, HERC5, OAS2 and ISG15 in each one of the tested patients and the amount of reduction in virus load.

[0071] FIG. 33 is a bar graph showing the normalized and scaled (0-1) sum expression of the five genes UBE2L6, USP18, HERC5 and OAS2 in each one of the tested patients and the scaled M values of each patient as calculated using the simulation.

[0072] FIGS. 34A and 34B are bar graphs showing the sum expression of HERC5 and UBE2L6 genes (FIG. 34A) and the M value (FIG. 34B) in IFN responsive and non-responsive HCV patients. The data was obtained from PBMC of HCV patients.

[0073] FIG. 35 is a bar graph showing the expression of HERC5 and the viral load in responsive and non-responsive HCV patients. The data was obtained from PBMC of HCV patients.

[0074] FIG. 36 is a bar graph showing the normalized expression of HERC5 gene (open box) and normalized M value (black box) obtained from model simulation using viral load data in responsive and non-responsive HCV patients. The data was obtained from PBMC of HCV patients.

[0075] FIGS. 37A to 37C are graphs showing correlation between gene expression and M value, with FIG. 37A showing the sum of normalized and scaled expression of the five genes UBE2L6, USP18, HERC5, OAS2 and ISG15, FIG. 37B showing the M value calculated from the gene expression. The data was obtained from liver samples of HCV patients. FIG. 37C shows MATLAB simulation of the model with k=1.92 and p=0 as described herein.

[0076] FIG. 38 is a volcano plot showing the significant changes in the expression level of different genes in liver biopsies in responders and non-responders HCV patients before treatment (left) and after one week of IFN and Rib treatment (right). Expression data was obtained from Masao H. et al. The "X"-axis represents log 2 of ratio between gene expression measured in responders vs. non-responders, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds whereas the points present to the left of the left vertical line (shown at a value of -0.75 on the x-axis), represent genes that were down regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).

[0077] FIGS. 39A and 39B are graphs showing the expression of HERC5 gene expression before initiation of IFN and Rib treatment (FIG. 39A) and ratio between HERC5 gene expression measured after one week of treatment and a baseline level of the same gene measured before infection (FIG. 39B). The data was obtained from liver samples of HCV patients.

[0078] FIG. 40 is a graph showing normalized M value obtained from the model simulation for each one of the patients using the virus load data.

[0079] FIGS. 41A and 41B are model simulations predicting viral progression in a non responsive (FIG. 41A) and responsive (FIG. 41B) HCV patients.

[0080] FIG. 42 is a model simulation predicting treatment regimen in HCV patients having an M value of 0.82.

[0081] FIG. 43 is a model simulation predicting treatment regimen in HCV patient having an M value of 0.7995 (patient p18).

DETAILED DESCRIPTION OF THE INVENTION

[0082] The importance of adjusting suitable treatment protocols is highly valuable and clinically desired in view of the fact that a large number of treatment protocols are often associated with some extent of undesired side effects, and moreover, may be unsuccessful. Thus, optimizing a treatment protocol before and/or at early stages after initiation of treatment and/or throughout or after a treatment period may avoid inadequate treatments, reduce unnecessary side effects and improve chance of success. Interferon is widely clinically used for treatment of a variety of diseases including for example inflammatory diseases such as hepatitis C infections, autoimmune diseases such as multiple sclerosis and different types of proliferative disorders. Significant therapeutic advances were made in the treatment of interferon associated diseases however, it is still difficult to determine at the time of disease diagnosis and treatment adjustments, which patients will respond to treatment and which would eventually relapse. Surprisingly, although interferon is considered as a state of art therapy in treatment of these diseases, many of the treated patients do not respond to the therapy and even if they do, many of the patients experience a relapse of the disease.

[0083] Thus, there is a critical need for reliable tailor-made optimization methods that will provide gaudiness and identification of treatment success and failure, breakthrough point and predict inadequate treatments, providing efficient dosing regimens of interferon.

[0084] Thus, a first aspect of the invention relates to a method for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. In certain embodiments, the method of the invention comprises the step of:

[0085] First step (a) involves calculating and determining the value of M. It should be further noted that the value M indicates the ability of a specific subject, in this case, the examined subject, to eliminate the specific disorder. More specifically, the value of the individual's M reflects the efficiency of the specific tested subject in requiting cellular elements that are required for challenging and eliminating a specific disorder. In certain embodiments the M value indicates the strength of the individual's innate immunity, and may be used for predicting the individual's ability to eliminate a specific disorder.

[0086] The next step (b), involves determining the value of M1 that indicates the minimal ability required for eliminating the specific disorder. Moreover, the value M1 reflects the optimal threshold of the ability and efficiency of requiting elements required for eliminating a specific disorder. It should be noted that this value is calculated for populations of subjects that perform successful recovery in response to a certain treatment. In some embodiments, this group of subjects may be considered a "responders".

[0087] In the next step (c), providing the dose A1 and number B1 of administrations of such dose to obtain an amount C1 of a specific medicament required for eliminating a specific disorder in subjects having a value of M that is equal or above the optimal M1 value, wherein A1*B1=C1.

[0088] The next step (d) involves calculating the dose A and number B of administrations of such specific dose A to obtain an amount C1 required for the examined subject having the specific M value determined and calculated in step (a). More specifically, the specific optimal dose required for a successful treatment for the tested subject would be A=A1/(M1/M). The specific number of administrations of such dose may be calculated using the formula B=B1*(M1/M); thereby determining and optimizing the treatment regimen for the specific tested subject.

[0089] According to more specific embodiments of the method of the invention, calculating the value of M of the tested individual may be performed using different approaches. It should be noted that such determination may be performed using any of the approaches of the invention or any combination thereof.

[0090] More specifically, determination of the specific M value of the tested individual may be performed by (I) using a static analysis. More specifically, "static" analysis means that the M value may be calculated for a specific individual even before starting a treatment with the particular medicament, and would not reflect any change occurring in response to such treatment.

[0091] In some embodiments, such approach may comprise the steps of:

[0092] First (Ia), determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample of the tested subject, to obtain an expression value Ex.sub.samp in the tested sample. In certain embodiments of the method of the invention the level of expression of at least one of STAT1, IFI44, EIF2AK2 and DHX58 genes may be also determined.

[0093] In the next step (Ib), providing a standard curve, specifically, predetermined standard curve of expression values of subjects suffering from the same pathologic disorder.

[0094] In the next step (Ic) Obtaining a maximal expression value Ex.sub.max and a minimal expression value Exon from the standard curve of (Ib), indicating the variance in the gene expression of a certain marker gene in a predetermined population; and finally, step (Id) Calculating the M value of the tested sample. Such calculation is based on using the following formula wherein M=1-[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min)].

[0095] In yet another embodiment, as an approach for determining the individual's M value, an induced dynamic analysis (II) may be used. It should be appreciated that such approach is based on pre measurements of the M value for an individual, specifically, before such individual was affected by a certain pathologic disorder. More specifically, using such approach, the specific M value of a specific individual may be predetermined, providing information that may be used in the future in case such subject may be affected by any pathologic disorder. More specifically, such predetermined individual value may serve as valuable information that may be used for optimizing treatment regimen for such individual. Moreover, the method of the invention provides the use of such M value for specifically optimized treatment regimen suitable for a certain pathologic disorder.

[0096] In more specific embodiment, the induced dynamic analysis (II) comprises the steps of:

[0097] First (IIa), determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject, to obtain an expression value in the tested sample.

[0098] In the second step (IIb) exposing the tested subject to an immuno-stimulant. Alternatively, this step may be performed in vitro, more specifically, a sample of the examined subject may be contacted with an immuno-stimulant.

[0099] The next step (IIc) involves determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a sample of said individual that has been exposed to said immuno-stimulant. In case of the alternative in vitro analysis, determining the level of at least one of these marker genes in at least one other biological sample of the tested subject that has been contacted in vitro with the immuno-stimulant, as indicated in step (IIb).

[0100] In the next step (IId) calculating the rate of change between the expression value obtained in step (IIa), and the expression value obtained in step (IIc), thereby obtaining the rate of change in the sample RC.sub.samp, more specifically, the rate of change in the expression of at least one of the marker genes of the invention, in response to such immuno-stimulant. Such change of expression reflects the intrinsic ability of the tested subject in requiting elements that may be involved in eliminating of any disorder, and therefore reflects the specific ability a certain subject to challenge disorders.

[0101] In the next step (IIe), providing a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes or any combinations thereof in subjects treated with said immuno-stimulant. It should be noted that such predetermined standard curve is based on a population of healthy subjects (or non-diseased subjects) treated with the same immuno-stimulant.

[0102] In step (IIf) obtaining a maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value from said standard curve of (IIe); and

[0103] In final step (IIg), calculating the M value of the tested sample using the formula: wherein M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject.

[0104] In yet another alternative approach, were predetermined M values of an individual are not available, the invention provides a method for optimizing treatment regimen for a subject that has been already started a certain treatment, using a dynamic analysis (III) comprising:

[0105] In the first step (IIIa), determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of the tested subject, to obtain an expression value in the tested sample. It should be noted that such sample should be obtained prior the initiation of the specific treatment with said medicament.

[0106] In the next step (IIIb) determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in at least one other biological sample of the tested subject. Such at least one other sample should be obtained after the initiation of the specific treatment.

[0107] In step (IIIc) calculating the rate of change between the expression value obtained in step (IIIa), and the expression value obtained in step (IIIb), thereby obtaining the rate of change in the sample RC.sub.samp, in response to such treatment.

[0108] In the next step (IId) providing a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects suffering from the same disorder that were treated with the same medicament.

[0109] In step (IIe) obtaining a maximal rate of change value RC.sub.max and a minimal rate of change value RC.sub.min from the standard curve, specifically, predetermined standard curve of (IId); and

[0110] Finally in (IIf), calculating the M value of the tested sample using the following formula: wherein M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject.

[0111] As indicated above, an essential step in the method of the invention is the determination of the expression level of several specific marker genes provided herein. In certain embodiments, these marker genes include at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 or any combinations thereof.

[0112] In certain embodiments the methods of the invention may further use the STAT1, IFI44, EIF2AK2 and DHX58 genes and any combinations thereof with any of the marker genes of the invention.

[0113] It should be therefore appreciated that the method of the invention may use at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty one, at least twenty two, at least twenty three, at least twenty four, at least twenty five or at least twenty six of said marker genes, specifically of any one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and any combinations thereof. In yet some other embodiments the methods of the invention may use 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 or more or any combination of the marker genes of the invention. In yet further embodiments, the methods and kits of the invention may use any of the marker genes of the invention with any combination thereof with additional 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 and more, specifically, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 and more, specifically, 300, 350 or 400 further marker genes or control reference genes or any combinations thereof. In certain embodiments, such control reference gene (having an equal expression in samples of responsive and non-responsive subjects) may be a house keeping gene, for example, GAPDH or actin.

[0114] As mentioned above, the method and kits of the invention may use the marker genes provided herein, ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and any combination thereof.

[0115] More specifically, ISG15 ubiquitin-like modifier (ISG15) gene (GenBank Accession No. NM_005101; SEQ ID NO: 1) encodes the ISG15 protein (GenBank Accession No. NP_005092.1; SEQ ID NO: 2). ISG15 is reported to be an ubiquitin-like protein that is conjugated to intracellular target proteins after IFN-alpha or IFN-beta stimulation. Its enzymatic pathway is partially distinct from that of ubiquitin, differing in substrate specificity and interaction with ligating enzymes. ISG15 conjugation pathway uses a dedicated E1 enzyme, but seems to converge with the ubiquitin conjugation pathway at the level of a specific E2 enzyme. Targets include STAT1, SERPINA3G/SPI2A, JAK1, MAPK3/ERK1, PLCG1, EIF2AK2/PKR, MX1/MxA, and RIG-1. It undergoes deconjugation by USP18/UBP43. It shows specific chemotactic activity towards neutrophils and activates them to induce release of eosinophil chemotactic factors. It was suggested to serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments.

[0116] Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene (GenBank Accession No. NM_001548; SEQ ID NO: 3) encodes the IRF1 protein (GenBank Accession No. NP_001539; SEQ ID NO: 4).

[0117] Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) gene (GenBank Accession No. NM_001547; SEQ ID NO: 5) encodes the IFIT2 protein (GenBank Accession No. NP_001538; SEQ ID NO: 6).

[0118] Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) gene (GenBank Accession Nos. NM_001031683; SEQ ID NO: 7, NM_001549; SEQ ID NO: 9) encodes the IFIT3 protein (GenBank Accession Nos. NP_001026853; SEQ ID NO: 8, NP_001540; SEQ ID NO: 10).

[0119] Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) gene (GenBank Accession No. NM_012420; SEQ ID NO: 11) encodes the IFIT5 protein (GenBank Accession No. NP_036552; SEQ ID NO: 12).

[0120] 2'-5'-oligoadenylate synthetase 1 (OAS1) gene (GenBank Accession No. NM_016816 SEQ ID NO:13, NM_002534 SEQ ID NO:15, NM_001032409 SEQ ID NO:17) encodes the OAS1 protein (GenBank Accession No. NP_058132 SEQ ID NO:14, NP_002525 SEQ ID NO:16, NP_001027581 SEQ ID NO:18). OAS1 encodes a member of the 2-5A synthetase family, essential proteins involved in the innate immune response to viral infection. The encoded protein is induced by interferons and uses adenosine triphosphate in 2'-specific nucleotidyl transfer reactions to synthesize 2', 5'-oligoadenylates (2-5As). These molecules activate latent RNase L, which results in viral RNA degradation and the inhibition of viral replication. The three known members of this gene family are located in a cluster on chromosome 12. Mutations in this gene have been associated with host susceptibility to viral infection. Alternatively spliced transcript variants encoding different isoforms have been described.

[0121] 2'-5'-oligoadenylate synthetase 2 (OAS2) gene (GenBank Accession No. NM_016817 SEQ ID NO:19, NM_002535 SEQ ID NO:21, NM_001032731 SEQ ID NO:23) encodes the OAS2 protein (GenBank Accession No. NP_058197 SEQ ID NO:20, NP_002526 SEQ ID NO:22, NP_001027903 SEQ ID NO:24).

[0122] 2'-5'-oligoadenylate synthetase 3 (OAS3) gene (GenBank Accession No. NM_006187 SEQ ID NO:25) encodes the OAS3 protein (GenBank Accession No. NP_006178.2 SEQ ID NO:26). OAS3 may play a role in mediating resistance to virus infection, control of cell growth, differentiation, and apoptosis. OAS3 synthesizes preferentially dimeric 2', 5'-oligoadenylate molecules. GTP can be an alternative substrate.

[0123] 2'-5'-oligoadenylate synthetase-like (OASL) gene (GenBank Accession Nos. NM_003733; SEQ ID NO: 27, NM_198213; SEQ ID NO: 29) encodes the OASL protein (GenBank Accession Nos. NP_003724; SEQ ID NO: 28, NP_937856; SEQ ID NO: 30).

[0124] HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) gene (GenBank Accession No. NM_016323; SEQ ID NO: 31) encodes the HERC5 protein (GenBank Accession No. NP_057407 SEQ ID NO: 32). HERC5 gene is a member of the HERC family of ubiquitin ligases and encodes a protein with a HECT domain and five RCC1 repeats. Pro-inflammatory cytokines up regulate expression of this gene in endothelial cells. The HERC5 protein localizes to the cytoplasm and perinuclear region and functions as an interferon-induced E3 protein ligase that mediates ISGylation of protein targets. It is a major E3 ligase for ISG15 conjugation. HERC5 Acts as a positive regulator of innate antiviral response in cells induced by interferon. Makes part of the ISGylation machinery that recognizes target proteins in a broad and relatively non-specific manner.

[0125] Ubiquitin specific peptidase 18 (USP18) gene (GenBank Accession No. NM_017414; SEQ ID NO: 33) encodes the USP18 protein (GenBank Accession No. NP_059110 SEQ ID NO: 34). The protein encoded by this gene belongs to the ubiquitin-specific proteases (UBP) family of enzymes that cleave ubiquitin from ubiquitinated protein substrates. It is highly expressed in liver and thymus, and is localized to the nucleus. USP18 protein efficiently cleaves only ISG15 (a ubiquitin-like protein) fusions, and deletion of this gene in mice results in a massive increase of ISG15 conjugates in tissues, indicating that this protein is a major ISG15-specific protease. Mice lacking this gene are also hypersensitive to interferon, suggesting a function of this protein in downregulating interferon responses, independent of its isopeptidase activity towards ISG15. USP18 can efficiently cleave only ISG15 fusions including native ISG15 conjugates linked via isopeptide bonds. Necessary to maintain a critical cellular balance of ISG15-conjugated proteins in both healthy and stressed organisms.

[0126] Radical S-adenosyl methionine domain containing 2 (RSAD2) gene (GenBank Accession No. NM_080657; SEQ ID NO: 35) encodes the RSAD2 protein (GenBank Accession No. NP_542388; SEQ ID NO: 36). RSAD2 is reported to be involved in antiviral defense. It was suggested to impair virus budding by disrupting lipid rafts at the plasma membrane, a feature which is essential for the budding process of many viruses. In addition, it was reported to act through binding with and inactivating FPPS, an enzyme involved in synthesis of cholesterol, farnesylated and geranylated proteins, ubiquinones dolichol and heme. Moreover, it is considered to play a major role in the cell antiviral state induced by type I and type II interferon. Finally, it was reported to display antiviral effect against HIV-1 virus, hepatitis C virus, human cytomegalovirus, and aphaviruses, but not vesiculovirus.

[0127] Myxovirus (influenza virus) resistance 1 (MX) gene (GenBank Accession No. NM_002462 SEQ ID NO:37, NM_001178046 SEQ ID NO:39, NM_001144925 SEQ ID NO:41) encodes the MX1 protein (GenBank Accession No. NP_002453 SEQ ID NO:38, NP_001171517 SEQ ID NO:40, NP_001138397 SEQ ID NO:42). In mouse, the interferon-inducible Mx protein is responsible for a specific antiviral state against influenza virus infection. The protein encoded by this gene is similar to the mouse protein as determined by its antigenic relatedness, induction conditions, physicochemical properties, and amino acid analysis. This cytoplasmic protein is a member of both the dynamin family and the family of large GTPases. Two transcript variants encoding the same protein have been found for this gene. MX1 may regulate the calcium channel activity of TRPCs. Ring-like assemblies may induce membrane tabulation.

[0128] Interferon-inducedprotein 44-like (IFI44L) gene (GenBank Accession No. NM_006820.3; SEQ ID NO: 43) encodes the IFI44L protein (GenBank Accession No. NP_006811; SEQ ID NO: 44) that belongs to the IFI44 family of proteins is located in the cytoplasm and exhibits a low antiviral activity against hepatitis C. The expression of the protein is induced by type I interferon.

[0129] DEAD (Asp-Glu-Ala-Asp) boxpolypeptide 58 (DDX58) gene (GenBank Accession No. NM_014314; SEQ ID NO: 45) encodes the DDX58 protein (GenBank Accession No. NP_055129; SEQ ID NO: 46). DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases which are implicated in a number of cellular processes involving RNA binding and alteration of RNA secondary structure. This gene encodes a protein containing RNA helicase-DEAD box protein motifs and a caspase recruitment domain (CARD). It is involved in viral double-stranded (ds) RNA recognition and the regulation of immune response. It is an innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and pro-inflammatory cytokines. Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylate interferon regulatory factors: IRF3 and IRF7 which in turn activate transcription of antiviral immunological genes, including interferons (IFNs); IFN-alpha and IFN-beta. Detects both positive and negative strand RNA viruses including members of the families Paramyxoviridae: Human respiratory synctial virus and measles virus (MeV), Rhabdoviridae: vesicular stomatitis virus (VSV), Orthomyxoviridae: influenza A and B virus, Flaviviridae: Japanese encephalitis virus (JEV), hepatitis C virus (HCV), dengue virus (DENV) and west Nile virus (WNV).

[0130] E1-like ubiquitin-activating enzyme (UBE1L) gene (GenBank Accession No. AF294032; SEQ ID NO: 79) encodes the UBE1L protein (GenBank Accession No. AAG49557; SEQ ID NO: 80). UBE1L is the E1-like ubiquitin-activating enzyme for the IFN-stimulated gene, 15-kDa protein (ISG15).

[0131] Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) gene (GenBank Accession No. NM_198183 SEQ ID NO: 81; GenBank Accession No. NM_004223 SEQ ID NO: 83) encodes the UBE2L6 protein (GenBank Accession No. NP_937826 SEQ ID NO: 82; GenBank Accession No. NP_004214 SEQ ID NO: 84). The UBE2L6 gene encodes a member of the E2 ubiquitin-conjugating enzyme family. This enzyme is highly similar in primary structure to the enzyme encoded by the UBE2L3 gene. UBE2L6 catalyzes the covalent attachment of ubiquitin or ISG15 to other proteins. UBE2L6 functions in the E6/E6-AP-induced ubiquitination of p53/TP53. It also promotes ubiquitination and subsequent proteasomal degradation of FLT3.

[0132] Interferon alpha-inducible protein 27 (IFI27) gene (GenBank Accession Nos. NM_001130080 and NM_005532; SEQ ID NOs: 85, 87, respectively) encodes the IFI27 protein (GenBank Accession Nos. NP_001123552 and NP_005523; SEQ ID NOs: 86, 88, respectively). The IFI27 protein was reported to promote cell death and mediate IFN-induced apoptosis characterized by a rapid and robust release of cytochrome C from the mitochondria and activation of BAX and caspases 2, 3, 6, 8 and 9.

[0133] Interferon induced with helicase C domain 1 (IFIH1) gene (GenBank Accession No. NM_022168 SEQ ID NO: 89) encodes the IFIH1 protein (GenBank Accession No. NP_071451 SEQ ID NO: 90). IFIH1 is an innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and proinflammatory cytokines. Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long-dsRNA (>1 kb in length). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases.

[0134] Toll-like receptor 7 (TLR-7) gene (GenBank Accession No. NM_016562 SEQ ID NO: 91) encodes the TLR-7 protein (GenBank Accession No. NP_057646 SEQ ID NO: 92). The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is predominantly expressed in lung, placenta, and spleen, and lies in close proximity to another family member, TLR8, on chromosome X.

[0135] Interferon regulatory factor 7 (IRF7) gene (GenBank Accession Nos. NM_001572 SEQ ID NO: 93; NM_004029 SEQ ID NO: 95) encodes the IRF7 protein (GenBank Accession Nos. NP_001563 SEQ ID NO: 94; NP_004020 SEQ ID NO: 96). IFR7 is reported to be a transcriptional activator. It binds to the interferon-stimulated response element (ISRE) in IFN promoters and in the Q promoter (Qp) of EBV nuclear antigen 1 (EBNA1). It is also reported to function as a molecular switch for antiviral activity. It is reported to be activated by phosphorylation in response to infection. The activation leads to nuclear retention, DNA binding, and depression of transactivation ability.

[0136] Interferon, alpha-inducible protein 6 (IFI6) gene (GenBank Accession Nos. NM_022873, SEQ ID NO:97; NM_022872, SEQ ID NO:99; NM_002038, SEQ ID NO:101) encodes the IFI6 protein (GenBank Accession Nos. NP_075011, SEQ ID NO:98; NP_075010, SEQ ID NO:100; NP_002029, SEQ ID NO:102). IFI6 gene was first identified as one of the many genes induced by interferon. The encoded IFI6 protein may play a critical role in the regulation of apoptosis.

[0137] In yet another embodiment, the methods, kits and compositions of the invention may further include detecting molecules for the STAT1 gene. Signal transducer and activator of transcription 1 (STAT) gene (GenBank Accession No. NM_007315 SEQ ID NO:103, NM_139266 SEQ ID NO:104) encodes the STAT1 protein (GenBank Accession No. NP_009330 SEQ ID NO:105, NP 644671 SEQ ID NO: 106). Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and growth factors.

[0138] Interferon-induced protein 44 (IFI44) gene (GenBank Accession No. NM_006417; SEQ ID NO: 107) encodes the IFI44 protein (GenBank Accession No. NP_006408; SEQ ID NO: 108), that was reported to aggregate to form microtubular structures.

[0139] EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) gene (GenBank Accession No. NM_002759.1; SEQ ID NO: 109) encodes the EIF2AK2 protein (GenBank Accession No. NC_000002.11; SEQ ID NO: 110). The protein encoded by this gene is a serine/threonine protein kinase that is activated by autophosphorylation after binding to dsRNA. The activated form of the encoded protein can phosphorylate translation initiation factor EIF2S1, which in turn inhibits protein synthesis. This protein is also activated by manganese ions and heparin. Three transcript variants encoding two different isoforms have been found for this gene.

[0140] DHX58 DHX58 (DEXH (Asp-Glu-X-His) box polypeptide 58), gene (GenBank Accession No. NM_024119; SEQ ID NO: 111) encodes the DHX58 protein (GenBank Accession No. NC_000017.10; SEQ ID NO: 112). DHX58 acts as a regulator of DDX58/RIG-I and IFIH1/MDA5 mediated antiviral signaling. Cannot initiateantiviral signaling as it lacks the CARD domain required for activating MAVS/IPS1-dependent signaling

[0141] The terms "level of expression" or "expression level" are used interchangeably and generally refer to a numerical representation of the amount (quantity) of a polynucleotide which encodes an amino acid product or protein in a biological sample.

[0142] "Expression" generally refers to the process by which gene-encoded information is converted into the structures present and operating in the cell. For example, biomarker gene expression values measured in Real-Time Polymerase Chain Reaction, sometimes also referred to as RT-PCR or quantitative PCR (qPCR), represent luminosity measured in a tested sample, where an intercalating fluorescent dye is integrated into double-stranded DNA products of the qPCR reaction performed on reverse-transcribed sample RNA, i.e., test sample RNA converted into DNA for the purpose of the assay. The luminosity is captured by a detector that converts the signal intensity into a numerical representation which is said expression value, in terms of miRNA. Therefore, according to the invention "expression" of a gene, specifically, a gene encoding the biomarker genes of the invention may refer to transcription into a polynucleotide. Fragments of the transcribed polynucleotide, the translated protein, or the post-translationally modified protein shall also be regarded as expressed whether they originate from a transcript generated by alternative splicing or a degraded transcript, or from a post-translational processing of the protein, e.g., by proteolysis. Methods for determining the level of expression of the biomarkers of the invention will be described in more detail herein after.

[0143] In certain and specific embodiments, the step of determining the level of expression to obtain an expression value by the method of the invention further comprises an additional and optional step of normalization. According to this embodiment, in addition to determination of the level of expression of the biomarkers of the invention, the level of expression of at least one suitable control reference gene (e.g., housekeeping genes) is being determined in the same sample. According to such embodiment, the expression level of the biomarkers of the invention obtained in step (a) is normalized according to the expression level of said at least one reference control gene obtained in the additional optional step in said test sample, thereby obtaining a normalized expression value. Optionally, similar normalization is performed also in at least one control sample or a representing standard when applicable.

[0144] The term "expression value" thus refers to the result of a calculation, that uses as an input the "level of expression" or "expression level" obtained experimentally and by normalizing the "level of expression" or "expression level" by at least one normalization step as detailed herein, the calculated value termed herein "expression value" is obtained.

[0145] More specifically, as used herein, "normalized values" are the quotient of raw expression values of marker genes, divided by the expression value of a control reference gene from the same sample, such as a stably-expressed housekeeping control gene. Any assayed sample may contain more or less biological material than is intended, due to human error and equipment failures. Importantly, the same error or deviation applies to both the marker genes of the invention and to the control reference gene, whose expression is essentially constant. Thus, division of the marker gene raw expression value by the control reference gene raw expression value yields a quotient which is essentially free from any technical failures or inaccuracies (except for major errors which destroy the sample for testing purposes) and constitutes a normalized expression value of said marker gene. This normalized expression value may then be compared with normalized cutoff values, i.e., cutoff values calculated from normalized expression values. In certain embodiments, the control reference gene may be a gene that maintains stable in all samples analyzed in the microarray analysis.

[0146] It should be noted that normalized biomarker genes expression level values that are higher (positive) or lower (negative) in comparison with a corresponding predetermined standard expression value or a cut-off value in a control sample predict to which population of patients the tested sample belongs.

[0147] It should be appreciated that in some embodiments an important step in determining the expression level is to examine whether the normalized expression value of any one of the biomarker genes of the tested sample is within the range of the expression value of a standard population or a cutoff value for such population.

[0148] More specifically, the specific expression values of the tested samples are compared to a predetermined cutoff value. As used herein the term "comparing" denotes any examination of the expression level and/or expression values obtained in the samples of the invention as detailed throughout in order to discover similarities or differences between at least two different samples. It should be noted that comparing according to the present invention encompasses the possibility to use a computer based approach.

[0149] As described hereinabove, the method of the invention refers to a predetermined cutoff value. It should be noted that a "cutoff value", sometimes referred to simply as "cutoff" herein, is a value that meets the requirements for both high diagnostic sensitivity (true positive rate) and high diagnostic specificity (true negative rate).

[0150] It should be noted that the terms "sensitivity" and "specificity" are used herein with respect to the ability of one or more markers, to correctly classify a sample as belonging to a pre-established population associated with responsiveness to treatment with a certain medicament.

[0151] In certain alternative embodiments, a control sample may be used (instead of, or in addition to, pre-determined cutoff values). Accordingly, the normalized expression values of the biomarker genes used by the invention in the test sample are compared to the expression values in the control sample. In certain embodiments, such control sample may be obtained from at least one of a healthy subject, a subject suffering from the same pathologic disorder, a subject that responds to treatment with said medicament and a non-responder subject.

[0152] The term "response" or "responsiveness" to a certain treatment refers to an improvement in at least one relevant clinical parameter as compared to an untreated subject diagnosed with the same pathology (e.g., the same type, stage, degree and/or classification of the pathology), or as compared to the clinical parameters of the same subject prior to interferon treatment with said medicament.

[0153] The term "non responder" to treatment with a specific medicament, refers to a patient not experiencing an improvement in at least one of the clinical parameter and is diagnosed with the same condition as an untreated subject diagnosed with the same pathology (e.g., the same type, stage, degree and/or classification of the pathology), or experiencing the clinical parameters of the same subject prior to treatment with the specific medicament.

[0154] In case the method of the invention uses the dynamic approaches for determining the M value of the tested individual, at least two samples may be obtained from the subjects. These samples should be obtained from different time points, before and after the treatment, and therefore may be considered as "temporally separated samples". As indicated above, in accordance with some embodiments of the invention, in order to asses response and determine the rate of change in the expression of the marker genes of the invention upon treatment with a specific medicament, at least two "temporally-separated" test samples must be collected from the treated patient and compared thereafter in order to obtain the rate of expression change in the biomarker genes. In practice, to detect a change in the biomarker genes expression, at least two "temporally-separated" test samples and preferably more must be collected from the patient.

[0155] The expression of at least one of the markers is then determined using the method of the invention, applied for each sample. As detailed above, the rate of change in marker expression is calculated by determining the ratio between the two expression values, obtained from the same patient in different time-points or time intervals.

[0156] This period of time, also referred to as "time interval", or the difference between time points (wherein each time point is the time when a specific sample was collected) may be any period deemed appropriate by medical staff and modified as needed according to the specific requirements of the patient and the clinical state he or she may be in. For example, this interval may be at least one day, at least three days, at least three days, at least one week, at least two weeks, at least three weeks, at least one month, at least two months, at least three months, at least four months, at least five months, at least one year, or even more.

[0157] More specifically, one sample should be obtained prior to treatment with the specific medicament. Prior as used herein is meant the first time point is at any time before initiation of treatment, ideally several minutes before initiation of treatment. However, it should be noted that any time point before initiation of the treatment, including hours, days, weeks, months or years, may be useful for this method and is therefore encompassed by the invention. The second time point is collected from the same patient after hours, days, weeks, months or even years after initiation of treatment. More specifically, at least 3 hours, at least 4 hours, at least 6 hours, at least 10 hours, at least 12 hours, at least 24 hours, at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 7 days, at least 8 days, at least 9 days, at least 10 days, at least 11 days, at least 12 days, at least 13 days, at least 14 days, at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 31 days, at least 32 days, at least 33 days, at least 40 days, at least 50 days, at least 60 days, at least 70 days, at least 78 days, at least 80, at least 90 days, at least 100 days, at least 110, at least 120 days, at least 130 days, at least 140 days or at least 150 days after initiation of treatment.

[0158] In some embodiments, the second time point is obtained between 1 hour to 24 month after initiation of the treatment. In some other embodiments, the second time point is between 1 hour to 6 hours after initiation of the treatment. In yet some other embodiments, the second time point is between 1 month to 3 month after initiation of the treatment.

[0159] In practice, for assessing response to a specific treatment, at least two test samples (before and after treatment) must be collected from the treated patient, and preferably more. The expression level of the genes is then determined using the method of the invention, applied for each sample. As detailed above, the expression value is obtained from the experimental expression level. The rate of change of each biomarker expression, namely at least one of the genes indicated by the invention, is then calculated and determined by dividing the two expression values obtained from the same patient in different time-points or time intervals one by the other.

[0160] It should be appreciated that in some embodiments, the term "before treatment" may also encompass samples that are obtained from a treated subject, between two treatments. More specifically, in cases wherein the interval between treatments is once a day, a week, a month, a year or every several days, months or years, "before treatment" may be obtained right before the next treatment. The second "after treatment" sample may be taken after several hours or days of the treatment as indicated above.

[0161] It should be noted that it is possible to divide the prior-treatment expression value by the after treatment expression value and vise versa. For the sake of clarity, as used herein, the rate of change is referred as the ratio obtained when dividing the expression value obtained at the later time point of the time interval by the expression value obtained at the earlier time point (for example before initiation of treatment).

[0162] For example, this interval may be at least one day, at least three days, at least three days, at least one week, at least two weeks, at least three weeks, at least one month, at least two months, at least three months, at least four months, at least five months, at least one year, or even more. Permeably the second point is obtained at the earlier time point that can provide valuable information regarding assessing response of the patient to interferon treatment or to treatment with any other drug, medicament or any other combination of drugs or medicaments.

[0163] The rate of change in the expression value of the different marker genes of the invention may reflect either reduction or elevation of expression. More specifically, "reduction" or "down-regulation" of the marker genes as a result of interferon treatment includes any "decrease", "inhibition", "moderation", "elimination" or "attenuation" in the expression of said genes and relate to the retardation, restraining or reduction of the biomarker genes expression or levels by any one of about 1% to 99.9%, specifically, about 1% to about 5%, about 5% to 10%, about 10% to 15%, about 15% to 20%, about 20% to 25%, about 25% to 30%, about 30% to 35%, about 35% to 40%, about 40% to 45%, about 45% to 50%, about 50% to 55%, about 55% to 60%, about 60% to 65%, about 65% to 70%, about 75% to 80%, about 80% to 85% about 85% to 90%, about 90% to 95%, about 95% to 99%, or about 99% to 99.9%.

[0164] Alternatively, "up-regulation" of any one of the biomarker genes as a result of interferon or any other drug treatment includes any "increase", "elevation", "enhancement" or "elevation" in the expression of said genes and relate to the enhancement and increase of at least one of the biomarker genes expression or levels by any one of about 1% to 99.9%, specifically, about 1% to about 5%, about 5% to 10%, about 10% to 15%, about 15% to 20%, about 20% to 25%, about 25% to 30%, about 30% to 35%, about 35% to 40%, about 40% to 45%, about 45% to 50%, about 50% to 55%, about 55% to 60%, about 60% to 65%, about 65% to 70%, about 75% to 80%, about 80% to 85% about 85% to 90%, about 90% to 95%, about 95% to 99%, or about 99% to 99.9%.

[0165] As appreciated, a predetermined rate of change calculated for a pre-established population as detailed above for example encompasses a range for the rate of change having a low value and a high value, as obtained from a population of individuals including healthy controls, responders and non-responders to said medicament. Thus a subgroup of responsive patients can be obtained from the entire tested population. In this pre-established responsive population, the low value may be characterized by a low response whereas the high value may be associated with a high response as indicated by regular clinical evaluation. Therefore, in addition to assessing responsiveness to treatment, the rate of change may provide insight into the degree of responsiveness. For example, a calculated rate of change that is closer in its value to the low value may be indicative of a low response and thus although the patient is considered responsive, increasing dosing or frequency of administration may be considered. Alternatively, a calculated rate of change that is closer in its value to the high value may be indicative of a high response, even at times leading to remission and thus lowering the administration dosage may be considered.

[0166] For clarity, when referring to a pre-established population associated with responsiveness, or the ability to eradicate pathogens, it is meant that a statistically-meaningful group of patients treated with a specific medicament was analyzed as disclosed herein, and the correlations between the biomarker gene/s expression values (and optionally other patient clinical parameters) and responsiveness to such treatment was calculated. The population may optionally be further divided into sub-populations according to other patient parameters, for example gender and age.

[0167] Another embodiment of the method of the invention defines the step of calculating the value of M1, the optimal threshold required for successful elimination of the pathologic disorder. In such embodiment, this optimal M1 value may be determined using two alternative approaches:

[0168] In one embodiment, determination of the M1 value may be performed by the steps of:

[0169] First (Ia) Providing a K value for the specific disorder. It should be noted that the K value reflects the severity of the disorder. For example, disorders caused by a viral infection, the K value may be the multiplicity rate of such virus, in other words, the pathogen growth rate. Methods for obtaining the multiplicity rate of a virus (the K value of the present application) are described for example in Ruy M. Ribeiro et al., PLOS Pathogens 8 (8):e1002881 (2012); Deborah Cromer et al., Journal of Virology 87: 3376-3381 (2013); Ying Fang et al., J. Virol. Methods. 173(2): 251-258 (2011) and Stiffler J D, et al. PLoS ONE 4(8): e6661. doi:10.1371/journal.pone.0006661 (2009).

[0170] In the next step (Ib) involves calculating the M1 using the formula, wherein M1>1-(1/k), thereby determining the M1 value.

[0171] Another alternative approach for determining the M1 value, may involve the use of standard curve, specifically, predetermined standard curve of a responder population thereby calculating for such curve, the optimal M1 value.

[0172] According to some embodiments, the method of the invention may be specifically practiced using 4 or 5 marker genes. More specifically, in some embodiments, the method of the invention may use the expression value of OAS2, HERC5, UPS18, UBE216 and optionally of ISG15 genes. In some embodiments, the method of the invention may use OAS2, HERC5, UPS18 and UBE216 as markers for calculating M. In yet further embodiments, the method of the invention may use OAS2, HERC5, UPS18, UBE216 and ISG15 genes.

[0173] According to certain embodiments, the method of the invention may be specifically suitable for determining and optimizing a personalized interferon treatment regimen for a subject suffering from a pathologic disorder.

[0174] More specifically, the methods of the invention described herein, relate to interferon treatment, specifically, to optimize interferon treatment regimen to a specific individual, as a personalized medicine approach. As used herein the term "interferon" or "IFN" which is interchangeably used herein, refers to a synthetic, recombinant or purified interferon, and encompasses interferon type I that binds to the cell surface receptor complex IFN-.alpha. receptor (IFNAR) consisting of IFNAR and IFNAR2 chains; interferon type II that binds to the IFNGR receptor; and interferon type III, that binds to a receptor complex consisting of IL10R2 (also called CRF2-4) and IFNLR1 (also called CRF2-12).

[0175] Interferon type I in human includes interferon alpha 1 (GenBank Accession No. NM_024013 and NP_076918; SEQ ID NOs: 47 and 48 respectively), interferon alpha 2 (GenBank Accession No. NM_000605 and NP_000596; SEQ ID NO: 49 and 50, respectively), Interferon alpha-4 (GenBank Accession No. NM_021068 and NP_066546; SEQ ID NO: 51 and 52, respectively), Interferon alpha-5 (GenBank Accession No. NM_002169 and NP_002160; SEQ ID NO: 53 and 54, respectively), Interferon alpha-6 (GenBank Accession No. NM_021002 and NP_066282; SEQ ID NO: 55 and 56, respectively), Interferon alpha-7 (GenBank Accession No. NM_021057 and NP_066401; SEQ ID NO: 57 and 58, respectively), Interferon alpha-8 (GenBank Accession No. NM_002170 and NP_002161; SEQ ID NO: 59 and 60, respectively), Interferon alpha-10 (GenBank Accession No. NM_002171 and NP_002162; SEQ ID NO: 61 and 62, respectively), Interferon alpha-1/13 (GenBank Accession No. NM_006900 and NP_008831; SEQ ID NO: 63 and 64, respectively), Interferon alpha-14 (GenBank Accession No. NM_002172 and NP_002163; SEQ ID NO: 65 and 66, respectively), Interferon alpha-16 (GenBank Accession No. NM_002173 and NP_002164; SEQ ID NO: 67 and 68, respectively), Interferon alpha-17 (GenBank Accession No. NM_021268 and NP_067091; SEQ ID NO: 69 and 70, respectively) and Interferon alpha-21 (GenBank Accession No. NM_002175 and NP_002166; SEQ ID NO: 71 and 72, respectively), Interferon, beta 1 (GenBank Accession No. NM_002176 and NP_002167; SEQ ID NO: 73 and 74, respectively), and Interferon omega-1 (GenBank Accession No. NM_002177 and NP_002168; SEQ ID NOs: 75 and 76 respectively)].

[0176] Interferon type II in humans is Interferon-gamma (GenBank Accession No. NM_000619 and NP_000610; SEQ ID NOs: 77 and 78 respectively).

[0177] As used herein the phrase "interferon treatment" refers to administration of interferon into a subject in need thereof. It should be noted that administration of interferon may comprise a single or multiple dosages, as well as a continuous administration, depending on the pathology to be treated and a clinical assessment of the subject receiving the treatment.

[0178] Various modes of interferon administration are known in the art. These include, but are not limited to, injection (e.g., using a subcutaneous, intramuscular, intravenous, or intradermal injection), intranasal administration and oral administration.

[0179] According to some embodiments of the invention, interferon treatment is provided to the subject in doses matching his weight, at a frequency of once a week, for a period of up to 48 weeks.

[0180] Non-limiting examples of interferon treatment and representative diseases includes the following interferon beta-la (multiple sclerosis), interferon beta-Ib (multiple sclerosis), recombinant IFN-.alpha.2b (various cancers).

[0181] As appreciated in the art, interferon alfa-2a treatment is known as Roferon. Interferon alpha 2b treatment is by Intron A or Reliferon or Uniferon. Interferon beta-1a is sold under the trade names Avonex and Rebif. CinnaGen is a biosimilar compound. Interferon beta-1b is sold under trade names Betaferon, Betaseron, Extavia and ZIFERON.

[0182] Interferon treatment may comprise PEGylated interferon i.e., conjugated to a polyethylene glycol (PEG) polymer. For example, PEGylated interferon alpha 2a is sold under the trade name Pegasys. PEGylated interferon alpha 2a in Egypt is sold under the trade name Reiferon Retard. PEGylated interferon alpha 2b is sold under the trade name PegIntron.

[0183] The interferon treatment can also comprise a combination of interferon and ribavirin. For example, PEGylated interferon alpha 2b plus ribavirin is sold under the trade name Pegetron.

[0184] In yet another specific embodiment, determining the level of expression of at least one of said ISG15, IFIT1-5, OAS1-3L, HERC5, USP18, IFIT2, RSAD2, ISIT1, MX1, IFIT3, IFI44L, OASL, OAS1, OAS2, OAS3, DIX5B, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of the tested subject in order to calculate the specific M value of the individual as described herein above, may be performed by the step of contacting detecting molecules specific for said genes with a biological sample of said subject, or with any nucleic acid or protein product obtained therefrom.

[0185] The term "contacting" means to bring, put, incubate or mix together. As such, a first item is contacted with a second item when the two items are brought or put together, e.g., by touching them to each other or combining them. In the context of the present invention, the term "contacting" includes all measures or steps which allow interaction between the at least one of the detection molecules for the biomarker genes and optionally one suitable control reference gene and the nucleic acid or amino acid molecules of the tested sample. The contacting is performed in a manner so that the at least one of detecting molecule of the genes and at least one suitable control reference gene can interact with or bind to the nucleic acid molecules or alternatively, a protein product of the at least one biomarker gene, in the tested sample. The binding will preferably be non-covalent, reversible binding, e.g., binding via salt bridges, hydrogen bonds, hydrophobic interactions or a combination thereof.

[0186] In certain embodiments, the detection step further involves detecting a signal from the detecting molecules that correlates with the expression level of said genes or any product thereof in the sample from the subject, by a suitable means. According to some embodiments, the signal detected from the sample by any one of the experimental methods detailed herein below reflects the expression level of said genes or product thereof. Such signal-to-expression level data may be calculated and derived from a calibration curve. Thus, in certain embodiments, the method of the invention may optionally further involve the use of a calibration curve created by detecting a signal for each one of increasing pre-determined concentrations of said genes or product. Obtaining such a calibration curve may be indicative to evaluate the range at which the expression levels correlate linearly with the concentrations of said genes or product. It should be noted in this connection that at times when no change in expression level of genes or product is observed, the calibration curve should be evaluated in order to rule out the possibility that the measured expression level is not exhibiting a saturation type curve, namely a range at which increasing concentrations exhibit the same signal.

[0187] It must be appreciated that in certain embodiments such calibration curve as described above may by also part or component in any of the kits provided by the invention herein after.

[0188] In more specific embodiments, the detecting molecules used by the method of the invention for determining the expression level of the marker genes, may be selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules.

[0189] According to certain embodiments, the method of the invention may use nucleic acid detecting molecules that may comprise isolated oligonucleotide/s, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (optionally further of STAT1, IFI44, EIF2AK2 and DHX58 genes) and optionally, to a control reference gene. More specifically, such detecting molecule may be at least one of, a pair of primers, at least one primer and/or nucleotide probe/s or any combination thereof. It should be noted that in some embodiments, each of said oligonucleotides is specifically directed against a specific marker gene or against a specific control gene (e.g., house keeping genes).

[0190] As used herein, "nucleic acid molecules" or "nucleic acid sequence" are interchangeable with the term "polynucleotide(s)" and it generally refers to any polyribonucleotide or poly-deoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA or any combination thereof. "Nucleic acids" include, without limitation, single- and double-stranded nucleic acids. As used herein, the term "nucleic acid(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "nucleic acids". The term "nucleic acids" as it is used herein embraces such chemically, enzymatically or metabolically modified forms of nucleic acids, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including for example, simple and complex cells. A "nucleic acid" or "nucleic acid sequence" may also include regions of single- or double-stranded RNA or DNA or any combinations.

[0191] As used herein, the term "oligonucleotide" is defined as a molecule comprised of two or more deoxyribonucleotides and/or ribonucleotides, and preferably more than three. Its exact size will depend upon many factors which in turn, depend upon the ultimate function and use of the oligonucleotide. The oligonucleotides may be from about 3 to about 1,000 nucleotides long. Although oligonucleotides of 5 to 100 nucleotides are useful in the invention, preferred oligonucleotides range from about 5 to about 15 bases in length, from about 5 to about 20 bases in length, from about 5 to about 25 bases in length, from about 5 to about 30 bases in length, from about 5 to about 40 bases in length or from about 5 to about 50 bases in length. More specifically, the detecting oligonucleotides molecule used by the composition of the invention may comprise any one of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 bases in length. It should be further noted that the term "oligonucleotide" refers to a single stranded or double stranded oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring bases, sugars and covalent internucleoside linkages (e.g., backbone) as well as oligonucleotides having non-naturally-occurring portions which function similarly.

[0192] As indicated throughout, in certain embodiments when the detecting molecules used are nucleic acid based molecules, specifically, oligonucleotides. It should be noted that the oligonucleotides used in here specifically hybridize to nucleic acid sequences of the biomarker genes of the invention. Optionally, where also the expression of at least one of the biomarker genes is being examined, the method of the invention may use as detecting molecules oligonucleotides that specifically hybridize to a nucleic acid sequence of said at least one of the genes. As used herein, the term "hybridize" refers to a process where two complementary nucleic acid strands anneal to each other under appropriately stringent conditions. Hybridizations are typically and preferably conducted with probe-length nucleic acid molecules, for example, 5-100 nucleotides in length, 5-50, 5-40, 5-30 or 5-20.

[0193] As used herein "selective or specific hybridization" in the context of this invention refers to a hybridization which occurs between a polynucleotide encompassed by the invention as detecting molecules, and the specific biomarker gene and/or any control reference gene, wherein the hybridization is such that the polynucleotide binds to the gene or any control reference gene preferentially to any other RNA in the tested sample. In a specific embodiment a polynucleotide which "selectively hybridizes" is one which hybridizes with a selectivity of greater than 60 percent, greater than 70 percent, greater than 80 percent, greater than 90 percent and most preferably on 100 percent (i.e. cross hybridization with other RNA species preferably occurs at less than 40 percent, less than 30 percent, less than 20 percent, less than 10 percent). As would be understood to a person skilled in the art, a detecting polynucleotide which "selectively hybridizes" to the biomarker genes or any control reference gene can be designed taking into account the length and composition.

[0194] The measuring of the expression of any one of the biomarker genes and any control reference gene or any combination thereof can be done by using those polynucleotides as detecting molecules, which are specific and/or selective for the biomarker genes of the invention to quantitate the expression of said biomarker genes or any control reference gene. In a specific embodiment of the invention, the polynucleotides which are specific and/or selective for said genes may be probes or a pair of primers.

[0195] It should be further appreciated that the methods, as well as the compositions and kits of the invention may comprise, as an oligonucleotide-based detection molecule, both primers and probes.

[0196] The term, "primer", as used herein refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest, or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon many factors, including temperature, source of primer and the method used. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains 10-30 or more nucleotides, although it may contain fewer nucleotides. More specifically, the primer used by the methods, as well as the compositions and kits of the invention may comprise 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides or more. In certain embodiments, such primers may comprise 30, 40, 50, 60, 70, 80, 90, 100 nucleotides or more. In specific embodiments, the primers used by the method of the invention may have a stem and loop structure. The factors involved in determining the appropriate length of primer are known to one of ordinary skill in the art and information regarding them is readily available.

[0197] As used herein, the term "probe" means oligonucleotides and analogs thereof and refers to a range of chemical species that recognize polynucleotide target sequences through hydrogen bonding interactions with the nucleotide bases of the target sequences. The probe or the target sequences may be single- or double-stranded RNA or single- or double-stranded DNA or a combination of DNA and RNA bases. A probe is at least 5 or preferably, 8 nucleotides in length. A probe may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and up to 30 nucleotides in length as long as it is less than the full length of the target marker gene. Probes can include oligonucleotides modified so as to have a tag which is detectable by fluorescence, chemiluminescence and the like. The probe can also be modified so as to have both a detectable tag and a quencher molecule, for example TaqMan.RTM. and Molecular Beacon.RTM. probes, that will be described in detail below.

[0198] The oligonucleotides and analogs thereof may be RNA or DNA, or analogs of RNA or DNA, commonly referred to as antisense oligomers or antisense oligonucleotides. Such RNA or DNA analogs comprise, but are not limited to, 2-'0-alkyl sugar modifications, methylphosphonate, phosphorothiate, phosphorodithioate, formacetal, 3-thioformacetal, sulfone, sulfamate, and nitroxide backbone modifications, and analogs, for example, LNA analogs, wherein the base moieties have been modified. In addition, analogs of oligomers may be polymers in which the sugar moiety has been modified or replaced by another suitable moiety, resulting in polymers which include, but are not limited to, morpholino analogs and peptide nucleic acid (PNA) analogs. Probes may also be mixtures of any of the oligonucleotide analog types together or in combination with native DNA or RNA. At the same time, the oligonucleotides and analogs thereof may be used alone or in combination with one or more additional oligonucleotides or analogs thereof.

[0199] Thus, according to one embodiment, such oligonucleotides are any one of a pair of primers or nucleotide probes, and wherein the level of expression of at least one of the biomarker genes is determined using a nucleic acid amplification assay selected from the group consisting of: a Real-Time PCR, micro array, PCR, in situ hybridization and comparative genomic hybridization.

[0200] The term "amplification assay", with respect to nucleic acid sequences, refers to methods that increase the representation of a population of nucleic acid sequences in a sample. Nucleic acid amplification methods, such as PCR, isothermal methods, rolling circle methods, etc., are well known to the skilled artisan. More specifically, as used herein, the term "amplified", when applied to a nucleic acid sequence, refers to a process whereby one or more copies of a particular nucleic acid sequence is generated from a template nucleic acid, preferably by the method of polymerase chain reaction.

[0201] "Polymerase chain reaction" or "PCR" refers to an in vitro method for amplifying a specific nucleic acid template sequence. The PCR reaction involves a repetitive series of temperature cycles and is typically performed in a volume of 50-100 microliter. The reaction mix comprises dNTPs (each of the four deoxynucleotides dATP, dCTP, dGTP, and dTTP), primers, buffers, DNA polymerase, and nucleic acid template. The PCR reaction comprises providing a set of polynucleotide primers wherein a first primer contains a sequence complementary to a region in one strand of the nucleic acid template sequence and primes the synthesis of a complementary DNA strand, and a second primer contains a sequence complementary to a region in a second strand of the target nucleic acid sequence and primes the synthesis of a complementary DNA strand, and amplifying the nucleic acid template sequence employing a nucleic acid polymerase as a template-dependent polymerizing agent under conditions which are permissive for PCR cycling steps of (i) annealing of primers required for amplification to a target nucleic acid sequence contained within the template sequence, (ii) extending the primers wherein the nucleic acid polymerase synthesizes a primer extension product. "A set of polynucleotide primers", "a set of PCR primers" or "pair of primers" can comprise two, three, four or more primers.

[0202] Real time nucleic acid amplification and detection methods are efficient for sequence identification and quantification of a target since no pre-hybridization amplification is required. Amplification and hybridization are combined in a single step and can be performed in a fully automated, large-scale, closed-tube format.

[0203] Methods that use hybridization-triggered fluorescent probes for real time PCR are based either on a quench-release fluorescence of a probe digested by DNA Polymerase (e.g., methods using TaqMan.RTM., MGB-TaqMan.RTM.), or on a hybridization-triggered fluorescence of intact probes (e.g., molecular beacons, and linear probes). In general, the probes are designed to hybridize to an internal region of a PCR product during annealing stage (also referred to as amplicon). For those methods utilizing TaqMan.RTM. and MGB-TaqMan.RTM. the 5'-exonuclease activity of the approaching DNA Polymerase cleaves a probe between a fluorophore and a quencher, releasing fluorescence.

[0204] Thus, a "real time PCR" or "RT-PCT" assay provides dynamic fluorescence detection of amplified genes or any control reference gene produced in a PCR amplification reaction. During PCR, the amplified products created using suitable primers hybridize to probe nucleic acids (TaqMan.RTM. probe, for example), which may be labeled according to some embodiments with both a reporter dye and a quencher dye. When these two dyes are in close proximity, i.e. both are present in an intact probe oligonucleotide, the fluorescence of the reporter dye is suppressed. However, a polymerase, such as AmpliTaq Gold.TM., having 5'-3' nuclease activity can be provided in the PCR reaction. This enzyme cleaves the fluorogenic probe if it is bound specifically to the target nucleic acid sequences between the priming sites. The reporter dye and quencher dye are separated upon cleavage, permitting fluorescent detection of the reporter dye. Upon excitation by a laser provided, e.g., by a sequencing apparatus, the fluorescent signal produced by the reporter dye is detected and/or quantified. The increase in fluorescence is a direct consequence of amplification of target nucleic acids during PCR. The method and hybridization assays using self-quenching fluorescence probes with and/or without internal controls for detection of nucleic acid application products are known in the art, for example, U.S. Pat. Nos. 6,258,569; 6,030,787; 5,952,202; 5,876,930; 5,866,336; 5,736,333; 5,723,591; 5,691,146; and 5,538,848.

[0205] More particularly, QRT-PCR or "qPCR" (Quantitative RT-PCR), which is quantitative in nature, can also be performed to provide a quantitative measure of gene expression levels. In QRT-PCR reverse transcription and PCR can be performed in two steps, or reverse transcription combined with PCR can be performed. One of these techniques, for which there are commercially available kits such as TaqMan.RTM. (Perkin Elmer, Foster City, Calif.), is performed with a transcript-specific antisense probe.

[0206] This probe is specific for the PCR product (e.g. a nucleic acid fragment derived from a gene, or in this case, from a pre-miRNA) and is prepared with a quencher and fluorescent reporter probe attached to the 5' end of the oligonucleotide. Different fluorescent markers are attached to different reporters, allowing for measurement of at least two products in one reaction.

[0207] When Taq DNA polymerase is activated, it cleaves off the fluorescent reporters of the probe bound to the template by virtue of its 5-to-3' exonuclease activity. In the absence of the quenchers, the reporters now fluoresce. The color change in the reporters is proportional to the amount of each specific product and is measured by a fluorometer; therefore, the amount of each color is measured and the PCR product is quantified. The PCR reactions can be performed in any solid support, for example, slides, microplates, 96 well plates, 384 well plates and the like so that samples derived from many individuals are processed and measured simultaneously. The TaqMan.RTM. system has the additional advantage of not requiring gel electrophoresis and allows for quantification when used with a standard curve.

[0208] A second technique useful for detecting PCR products quantitatively without is to use an intercalating dye such as the commercially available QuantiTect SYBR Green PCR (Qiagen, Valencia Calif.).

[0209] RT-PCR is performed using SYBR green as a fluorescent label which is incorporated into the PCR product during the PCR stage and produces fluorescence proportional to the amount of PCR product.

[0210] Both TaqMan.RTM. and QuantiTect SYBR systems can be used subsequent to reverse transcription of RNA. Reverse transcription can either be performed in the same reaction mixture as the PCR step (one-step protocol) or reverse transcription can be performed first prior to amplification utilizing PCR (two-step protocol).

[0211] Additionally, other known systems to quantitatively measure mRNA expression products include Molecular Beacons.RTM. which uses a probe having a fluorescent molecule and a quencher molecule, the probe capable of forming a hairpin structure such that when in the hairpin form, the fluorescence molecule is quenched, and when hybridized, the fluorescence increases giving a quantitative measurement of gene expression.

[0212] According to this embodiment, the detecting molecule may be in the form of probe corresponding and thereby hybridizing to any region or part of the biomarker genes or any control reference gene. More particularly, it is important to choose regions which will permit hybridization to the target nucleic acids. Factors such as the Tm of the oligonucleotide, the percent GC content, the degree of secondary structure and the length of nucleic acid are important factors.

[0213] It should be further noted that a standard Northern blot assay can also be used to ascertain an RNA transcript size and the relative amounts of the biomarker genes or any control gene product, in accordance with conventional Northern hybridization techniques known to those persons of ordinary skill in the art.

[0214] The invention further contemplates the use of amino acid based molecules such as proteins or polypeptides as detecting molecules disclosed herein and would be known by a person skilled in the art to measure the protein products of the marker genes of the invention. Techniques known to persons skilled in the art (for example, techniques such as Western Blotting, Immunoprecipitation, ELISAs, protein microarray analysis, Flow cytometry and the like) can then be used to measure the level of protein products corresponding to the biomarker of the invention. As would be understood to a person skilled in the art, the measure of the level of expression of the protein products of the biomarker of the invention requires a protein, which specifically and/or selectively binds to the biomarker genes of the invention.

[0215] As indicated above, the detecting molecules of the invention may be amino acid based molecules that may be referred to as protein/s or polypeptide/s. As used herein, the terms "protein" and "polypeptide" are used interchangeably to refer to a chain of amino acids linked together by peptide bonds. In a specific embodiment, a protein is composed of less than 200, less than 175, less than 150, less than 125, less than 100, less than 50, less than 45, less than 40, less than 35, less than 30, less than 25, less than 20, less than 15, less than 10, or less than 5 amino acids linked together by peptide bonds. In another embodiment, a protein is composed of at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500 or more amino acids linked together by peptide bonds. It should be noted that peptide bond as described herein is a covalent amid bond formed between two amino acid residues.

[0216] In specific embodiments, the detecting amino acid molecules are isolated antibodies, with specific binding selectively to the proteins encoded by the biomarker genes as detailed above. Using these antibodies, the level of expression of proteins encoded by the genes may be determined using an immunoassay which is selected from the group consisting of FACS, a Western blot, an ELISA, a RIA, a slot blot, a dot blot, immunohistochemical assay and a radio-imaging assay.

[0217] In yet other specific embodiments, the method of the invention may use any sample. In more specific embodiment, such sample may be any one of peripheral blood mononuclear cells and biopsies of organs or tissues.

[0218] It should be noted that any of the detecting molecules used by the methods, compositions and kits of the invention are isolated and purified. Still further, it must be understood that any of the detecting molecules (for example, primers and/or probes) or reagents used by the compositions, kits, arrays and in any step of the methods of the invention are non-naturally occurring products or compounds, As such, none of the detecting molecules of the invention are directed to naturally occurring compounds or products.

[0219] According to certain embodiments, the sample examined by the method of the invention may be any one of peripheral blood mononuclear cells and biopsies of organs or tissues.

[0220] Still further, according to certain embodiments, the method of the invention uses any appropriate biological sample. The term "biological sample" in the present specification and claims is meant to include samples obtained from a mammal subject.

[0221] It should be recognized that in certain embodiments a biological sample may be for example, bone marrow, lymph fluid, blood cells, blood, serum, plasma, urine, sputum, saliva, faeces, semen, spinal fluid or CSF, the external secretions of the skin, respiratory, intestinal, and genitourinary tracts, tears, milk, any human organ or tissue, any sample obtained by lavage, optionally of the breast ducal system, plural effusion, sample of in vitro or ex vivo cell culture and cell culture constituents. More specific embodiments, the sample may be any one of peripheral blood mononuclear cells and biopsies of organs or tissues.

[0222] According to an embodiment of the invention, the sample is a cell sample. More specifically, the cell is a blood cell (e.g., white blood cells, macrophages, B- and T-lymphocytes, monocytes, neutrophiles, eosinophiles, and basophiles) which can be obtained using a syringe needle from a vein of the subject. It should be noted that the cell may be isolated from the subject (e.g., for in vitro detection) or may optionally comprise a cell that has not been physically removed from the subject (e.g., in vivo detection).

[0223] According to a specific embodiment, the sample used by the method of the invention is a sample of peripheral blood mononuclear cells (PBMCs).

[0224] The phrase, "peripheral blood mononuclear cells (PBMCs)" as used herein, refers to a mixture of monocytes and lymphocytes. Several methods for isolating white blood cells are known in the art. For example, PBMCs can be isolated from whole blood samples using density gradient centrifugation procedures. Typically, anticoagulated whole blood is layered over the separating medium. At the end of the centrifugation step, the following layers are visually observed from top to bottom: plasma/platelets, PBMCs, separating medium and erythrocytes/granulocytes. The PBMC layer is then removed and washed to remove contaminants (e.g., red blood cells) prior to determining the expression level of the polynucleotide (s) bio-markers of the invention.

[0225] In yet another embodiment, the sample may be a biopsy of human organs or tissue, specifically, liver biopsy.

[0226] According to some embodiments, the sample may be biopsies of organs or tissues. The biopsies may be obtained by a surgical operation from an organ or tissue of interest, for example liver biopsy, cerebrospinal fluid (CSF), brain biopsy, skin biopsy.

[0227] The term biopsy used herein refers to a medical test commonly performed by a surgeon or an interventional radiologist involving sampling of cells or tissues for examination. It is the medical removal of tissue from a living subject to determine the presence or extent of a disease. The tissue is generally examined under a microscope by a pathologist, and can also be analyzed chemically. When an entire lump or suspicious area is removed, the procedure is called an excisional biopsy. When only a sample of tissue is removed with preservation of the histological architecture of the tissue's cells, the procedure is called an incisional biopsy or core biopsy. When a sample of tissue or fluid is removed with a needle in such a way that cells are removed without preserving the histological architecture of the tissue cells, the procedure is called a needle aspiration biopsy.

[0228] According to some embodiments of the invention, the cell is a liver cell.

[0229] It should be noted that liver cells (hepatic cell) can be obtained by a liver biopsy (e.g., using a surgical tool or a needle). It should be noted that certain embodiments of the invention contemplate the use of different biological samples.

[0230] According to certain embodiments, the method of the invention may be specifically suitable for optimizing personalized treatment regimen for a subject suffering from an immune-related disorder.

[0231] It should be noted that an "Immune-related disorder" is a condition that is associated with the immune system of a subject, either through activation or inhibition of the immune system, or that can be treated, prevented or diagnosed by targeting a certain component of the immune response in a subject, such as the adaptive or innate immune response.

[0232] In more specific embodiments, the immune-related disorder may be any one of an infectious condition, autoimmune disease and a proliferative disorder.

[0233] It should be appreciated that the method of the invention may be applicable for determining the appropriate treatment regimen for a specific individual affected with any disorder, for example, any disorder caused by any pathogenic agent. Pathogenic agents include prokaryotic microorganisms, lower eukaryotic microorganisms, complex eukaryotic organisms, viruses, fungi, prions, parasites, yeasts, toxins and venoms.

[0234] A prokaryotic microorganism includes bacteria such as Gram positive, Gram negative and Gram variable bacteria and intracellular bacteria. Examples of bacteria contemplated herein include the species of the genera Treponema sp., Borrelia sp., Neisseria sp., Legionella sp., Bordetella sp., Escherichia sp., Salmonella sp., Shigella sp., Klebsiella sp., Yersinia sp., Vibrio sp., Hemophilus sp., Rickettsia sp., Chlamydia sp., Mycoplasma sp., Staphylococcus sp., Streptococcus sp., Bacillus sp., Clostridium sp., Corynebacterium sp., Proprionibacterium sp., Mycobacterium sp., Ureaplasma sp. and Listeria sp.

[0235] Particular species include Treponema pallidum, Borrelia burgdorferi, Neisseria gonorrhea, Neisseria meningitidis, Legionella pneumophila, Bordetella pertussis, Escherichia coli, Salmonella typhi, Salmonella typhimurium, Shigella dysenteriae, Klebsiella pneumoniae, Yersinia pestis, Vibrio cholerae, Hemophilus influenzae, Rickettsia rickettsii, Chlamydia trachomatis, Mycoplasma pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Bacillus anthracis, Clostridium botulinum, Clostridium tetani, Clostridium perfringens, Corynebacterium diphtheriae, Proprionibacterium acnes, Mycobacterium tuberculosis, Mycobacterium leprae and Listeria monocytogenes.

[0236] A lower eukaryotic organism includes a yeast or fungus such as but not limited to Pneumocystis carinii, Candida albicans, Aspergillus, Histoplasma capsulatum, Blastomyces dermatitidis, Cryptococcus neoformans, Trichophyton and Microsporum.

[0237] A complex eukaryotic organism includes worms, insects, arachnids, nematodes, aemobe, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, Trypanosoma brucei gambiense, Trypanosoma cruzi, Balantidium coli, Toxoplasma gondii, Cryptosporidium or Leishmania.

[0238] The term "fungi" includes for example, fungi that cause diseases such as ringworm, histoplasmosis, blastomycosis, aspergillosis, cryptococcosis, sporotrichosis, coccidioidomycosis, paracoccidio-idoinycosis, and candidiasis.

[0239] The term parasite includes, but not limited to, infections caused by somatic tapeworms, blood flukes, tissue roundworms, ameba, and Plasmodium, Trypanosoma, Leishmania, and Toxoplasma species.

[0240] The term "viruses" is used in its broadest sense to include viruses of the families adenoviruses, papovaviruses, herpesviruses: simplex, varicella-zoster, Epstein-Barr, CMV, pox viruses: smallpox, vaccinia, hepatitis B, rhinoviruses, hepatitis A, poliovirus, rubella virus, hepatitis C, arboviruses, rabies virus, influenza viruses A and B, flaviviruses, measles virus, mumps virus, HIV, HTLV I and II.

[0241] As shown by the following Examples, the method of the invention may be particularly useful for optimizing treatment for HCV infected subjects. Therefore, the method of the invention may be used for optimizing treatment in subjects suffering from viral infections, for example, Hepatitis C virus infection (type 1, 2, 3 or 4), or HCV or influenza infections.

[0242] According to a particular embodiment, the subject is suffering from an infectious condition caused by hepatitis C virus (HCV).

[0243] As used herein the term "HCV" refers to hepatitis C virus having genotype 1 (also known as HCV Type 1), genotype 2 (also known as HCV Type 2), genotype 3 (also known as HCV Type 3), genotype 4 (also known as HCV Type 4), genotype 5 (also known as HCV Type 5) or genotype 6 (also known as HCV Type 6).

[0244] The phrase "HCV infection" encompasses acute (refers to the first 6 months after infection) and chronic (refers to infection with hepatitis C virus which persists more than 6 month) infection with the hepatitis C virus. Thus, according to some embodiments of the invention, the subject is diagnosed with chronic HCV infection.

[0245] According to some embodiments of the invention, the subject is infected with HCV type 1. According to some embodiments of the invention, the subject is infected with HCV type 2, 3 or 4. More specifically, Hepatitis C virus (HCV or sometimes HVC) is a small (55-65 nm in size), enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae and as indicated herein, is the cause of hepatitis C in humans. The hepatitis C virus particle consists of a core of RNA, surrounded by an icosahedral protective shell of protein, and further encased in a lipid (fatty) envelope of cellular origin. The Hepatitis C virus has a positive sense single-stranded RNA genome consisting of a single open reading frame that is 9600 nucleotide bases long.

[0246] Hepatitis C is an infectious disease affecting primarily the liver, is caused by the hepatitis C virus (HCV). The infection is often asymptomatic, but chronic infection can lead to scarring of the liver and ultimately to cirrhosis, which is generally apparent after many years. In some cases, those with cirrhosis will go on to develop liver failure, liver cancer, or life-threatening esophageal and gastric varices. The invention in some embodiments thereof provides methods, kits and compositions for predicting responsiveness of HCV patients to treatment, specifically, interferon.

[0247] Still further, in certain embodiments the method of the invention may be particularly suitable for optimizing treatment regimen for subjects suffering from an infectious condition caused by any one of HCV, dengue virus, influenza, poliovirus, HIV (human immuno deficiency virus), West Nile virus (WNV) infection and Middle East respiratory syndrome coronavirus (MERS-CoV).

[0248] According to some particular embodiments, the subject may be a subject suffering from an infectious condition caused by a CMV (cytomegalovirus). In more specific embodiments, the virus may be Human cytomegalovirus (HCMV). CMV belongs to the Herpesviridae family that may be also referred to herein as herpesviruses. HCMV may be also referred to as Human herpesvirus 5 (HHV-5). HCMV infections are frequently associated with the salivary glands. HCMV infection is typically unnoticed in healthy people, but can be life-threatening for the immunocompromised, such as HIV-infected persons, organ transplant recipients, or new born infants. It should be therefore appreciated that the method if the invention may be applicable for determining treatment regimen also for subjects infected by CMV.

[0249] A subset of immune-mediated diseases is known as autoimmune diseases. As used herein autoimmune diseases arise from an inappropriate immune response of the body against substances and tissues normally present in the body. In other words, the immune system mistakes some part of the body as a pathogen and attacks its own cells. This may be restricted to certain organs (e.g. in autoimmune thyroiditis) or involve a particular tissue in different places (e.g. Goodpasture's disease which may affect the basement membrane in both the lung and the kidney). Autoimmune disease are categorized by Witebsky's postulates (first formulated by Ernst Witebsky and colleagues in 1957) and include (i) direct evidence from transfer of pathogenic antibody or pathogenic T cells, (ii) indirect evidence based on reproduction of the autoimmune disease in experimental animals and (iii) circumstantial evidence from clinical clues. The treatment of autoimmune diseases is typically done by compounds that decrease the immune response.

[0250] Non-limiting examples for autoimmune disorders include Multiple Sclerosis (MS), inflammatory arthritis. rheumatoid arthritis (RA), Eaton-Lambert syndrome, Goodpasture's syndrome, Greave's disease, Guillain-Barr syndrome, autoimmune hemolytic anemia (AIHA), hepatitis, insulin-dependent diabetes mellitus (IDDM) and NIDDM, systemic lupus erythematosus (SLE), myasthenia gravis, plexus disorders e.g. acute brachial neuritis, polyglandular deficiency syndrome, primary biliary cirrhosis, rheumatoid arthritis, scleroderma, thrombocytopenia, thyroiditis e.g. Hashimoto's disease, Sjogren's syndrome, allergic purpura, psoriasis, mixed connective tissue disease, polymyositis, dermatomyositis, vasculitis, polyarteritis nodosa, arthritis, alopecia areata, polymyalgia rheumatica, Wegener's granulomatosis, Reiter's syndrome, Behget's syndrome, ankylosing spondylitis, pemphigus, bullous pemphigoid, dermatitis herpetiformis, inflammatory bowel disease, ulcerative colitis and Crohn's disease and fatty liver disease.

[0251] In yet another embodiment, the subject is suffering from Multiple sclerosis (MS).

[0252] Thus, in more specific embodiment, the method of the invention may be particularly useful for optimizing treatment, specifically, interferon treatment for a subject suffering from an autoimmune disorder, specifically, Multiple sclerosis (MS).

[0253] As used herein the phrase "multiple sclerosis" (abbreviated MS, formerly known as disseminated sclerosis or encephalomyelitis disseminata) is a chronic, inflammatory, demyelinating disease that affects the central nervous system (CNS). Disease onset usually occurs in young adults, is more common in women, and has a prevalence that ranges between 2 and 150 per 100,000 depending on the country or specific population.

[0254] MS is characterized by presence of at least two neurological attacks affecting the central nervous system (CNS) and accompanied by demyelinating lesions on brain magnetic resonance imaging (MRI). MS takes several forms, with new symptoms occurring either in discrete episodes (relapsing forms) or slowly accumulating over time (progressive forms). Most people are first diagnosed with relapsing-remitting MS (RRMS) but develop secondary-progressive MS (SPMS) after a number of years. Between episodes or attacks, symptoms may go away completely, but permanent neurological problems often persist, especially as the disease advances.

[0255] Relapsing-remitting multiple sclerosis (RRMS) occurring in 85 percent of the patients and a progressive multiple sclerosis occurring in 15 percent of the patients.

[0256] According to some embodiments of the invention, the method of the invention may be particularly applicable for subjects diagnosed with RRMS, where early diagnosis of relapse may improve the treatment.

[0257] In certain embodiments, the methods of the invention may be also useful for determining and optimizing treatment regimen for subjects suffering from Rehumatoid arthritis (RA). It should be appreciated that there are different forms of arthritis that may be generally grouped into two main categories, inflammatory arthritis, and degenerative arthritis, each with different causes. Therefore, according to one specific embodiments the method of the invention may be specifically applicable for inflammatory arthritis. It should be noted that inflammatory arthritis is characterized by synovitis, bone erosions, osteopenia, soft-tissue swelling, and uniform joint space narrowing. More specifically, the hallmarks of joint inflammation are synovitis and erosion of bone. The latter will initially appear as a focal discontinuity of the thin, white, subchondral bone plate. Normally, this subchondral bone plate can be seen even in cases of severe osteopenia, whereas its discontinuity indicates erosion. Still further, the method of the invention may be applicable for determining the most effective personally tailored treatment regimen for a subject suffering from a malignant disorder.

[0258] As used herein to describe the present invention, "cancer", "tumor" and "malignancy" all relate equivalently to a hyperplasia of a tissue or organ. If the tissue is a part of the lymphatic or immune systems, malignant cells may include non-solid tumors of circulating cells. Malignancies of other tissues or organs may produce solid tumors. In general, the methods of the present invention may be applicable for non-solid and solid tumors.

[0259] Malignancy, as contemplated in the present invention may be selected from the group consisting of carcinomas, melanomas, lymphomas and sarcomas. Malignancies that may find utility in the present invention can comprise but are not limited to hematological malignancies (including leukemia, lymphoma and myeloproliferative disorders), hypoplastic and aplastic anemia (both virally induced and idiopathic), myelodysplastic syndromes, all types of paraneoplastic syndromes (both immune mediated and idiopathic) and solid tumors (including lung, liver, breast, colon, prostate GI tract, pancreas and Karposi). More particularly, the malignant disorder may be hepaotcellular carcinoma, colon cancer, melanoma, myeloma, acute or chronic leukemia.

[0260] In certain embodiments, the methods of the invention may be also useful for determining and optimizing treatment regimen for subjects suffering from a proliferative disorder, specifically a cancer, even in cases the medicament is used only as an adjuvant treatment for cell therapy. More specifically, the methods and kits of the invention may be used for optimizing interferon treatment regimen in cases that interferon is being used as an adjuvant for cell therapy, for example in melanoma patients.

[0261] It should be noted that in certain embodiments, were the method of the invention uses an induced dynamic approach for determining the M value of the tested individual, an immuno-stimulant suitable for such method may be any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D), TLR stimulants such as double-strand RNA or GC.

[0262] In some specific embodiments, Poly ICLC as used herein is an immunostimulant comprising a synthetic complex of carboxymethylcellulose, polyinosinic-polycytidylic acid, and poly-L-lysine double-stranded RNA. Poly ICLC may stimulate the release of cytotoxic cytokines and induce interferon-gamma production.

[0263] A further aspect of the invention relates to a kit for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder.

[0264] In certain embodiments, such kit may comprise elements required for performing any of the methods described above. More specifically, such kit may comprise:

[0265] (a) detecting molecules specific for determining the level of expression of at least one of ISG15, IFIT1-5, OAS1-3L, HERC5, USP18, IFIT2, RSAD2, ISIT1, MX1, IFIT3, IFI44L, OASL, OAS1, OAS2, OAS3, DIX5B, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample.

[0266] The kit of the invention further comprises (b), means for calculating the M value of a tested subject. As noted above, the M value indicates the ability of said subject to eliminate said disorder.

[0267] The Kit of the invention further comprises (c) means for calculating the value of M1 or a standard M1 value calculated for a responder population. As indicated above, the M1 value indicates the minimal ability, or specifically, the optimal M1 value required for a successful elimination of the disorder.

[0268] Finally, the kit of the invention comprises (d) means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject.

[0269] According to some specific embodiments, means for calculating the value of M comprised within the kit of the invention should enable determination of the M value by any of the different approaches mentioned by the invention. More specifically, the kit of the invention may comprise at least one of:

[0270] (I) means for performing static analysis for measuring the individual's M value, comprising:

[0271] (Ia) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample for determining an expression value Ex.sub.samp in said sample;

[0272] (Ib) a standard curve, specifically, a predetermined standard curve of expression values of subjects suffering from the same pathologic disorder. Alternatively, the kit of the invention may comprise predetermined values, specifically, maximal expression value Ex.sub.max and a minimal expression value Ex.sub.min calculated from such standard curve. In yet another embodiment, the kit of the invention may comprise control samples of at least one individual having a Ex.sub.max expression value and at least one individual having an Ex.sub.min expression value; and

[0273] (Ic) a formula for calculating M value, more specifically, such formula is M=[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min]. It should be further noted that the kit of the invention may further comprise instructions for determining the expression of any one of the marker genes used by the invention. Moreover, the kit of the invention may further comprise instructions for calculating the required values from the standard curve as well as instructions for calculating the M value using the formula provided.

[0274] In yet another alternative or additional embodiment, the kit of the invention may comprise means for performing an induced dynamic analysis (II). It should be noted that such analysis should be performed on healthy individuals. In more specific embodiments, such means comprise:

[0275] (IIa) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample for determining an expression value Ex.sub.samp in the tested sample before and after stimulation of the subject (or in case of in vitro stimulation of a sample of said subject) with an immuno-stimulant. The kit of the invention further comprises means for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of the sample before and after stimulation;

[0276] (IIb) an immuno-stimulant;

[0277] (IIc) a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) in subjects (specifically, healthy subjects) treated with said immuno-stimulant. Alternatively, the kit of the invention may comprise predetermined maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value calculated from such standard curve; and

[0278] (IId) the kit further comprises a formula for calculating said M value. Such formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min>]. The kit of the invention further comprises instructions for determining the expression of any one of the marker genes used by the invention. Moreover, the kit of the invention may further comprise instructions for calculating the required values from the standard curve as well as instructions for calculating the M value using the formula provided.

[0279] In yet another embodiment, the kit of the invention may comprise means for a dynamic analysis (III) comprising:

[0280] (IIIa) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) in a biological sample for determining an expression value Ex.sub.samp in the examined sample before and after treatment of the tested subject with said specific medicament, and for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of the tested sample.

[0281] The kit of the invention further comprises (IIb) a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) genes in subjects suffering from the same disorder and treated with the same medicament. Alternatively, the kit of the invention may comprise predetermined maximal rate of change value RC.sub.max and minimal rate of change value RC.sub.min calculated from such standard curve; and

[0282] The kit of the invention further comprises (IIc) a formula for calculating the M value/More specifically, such formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)].

[0283] It should be further noted that the kit of the invention may further comprise instructions for determining the expression of any one of the marker genes used by the invention. Moreover, the kit of the invention may further comprise instructions for calculating the required values from the standard curve as well as instructions for calculating the M value using the formula provided.

[0284] According to certain embodiments, means for calculating the value of M1 comprised within the kit of the invention may comprise:

[0285] (a) a standard curve, specifically, predetermined K value of the specific disorder;

[0286] (b) a formula for calculating said M1 value. More specifically, such formula is M1>1-(1/k).

[0287] In yet another embodiment, the kit of the invention comprises means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject. It should be note that these means include for example, a predetermined dose A1 and predetermined number B1 of administrations of said dose to obtain a predetermined amount C1 of said medicament required for eliminating said disorder in subjects having a value of M that is equal or above said M1 value. These means further comprise the formulas A=A1/(M1/M) and B=B1*(M1/M); that are required for calculating the dose required for the tested subject.

[0288] According to some embodiments, the kit of the invention may be specifically practiced using 4 or 5 marker genes. More specifically, in some embodiments, the kit of the invention may comprise detecting molecule specific for determining the expression value of OAS2, HERC5, UPS18, UBE216 and optionally of ISG15 genes. In some embodiments, the kit of the invention may comprise detecting molecules specific for OAS2, HERC5, UPS18 and UBE216. In yet further embodiments, the kit of the invention may comprise detecting molecules specific for OAS2, HERC5, UPS18, UBE216 and ISG15 genes.

[0289] According to one specific embodiment, the kit of the invention comprises detecting molecules that are isolated oligonucleotides, each oligonucleotide specifically hybridize to a nucleic acid sequence of at least one of genes and optionally, to a control reference gene. More specifically, such detecting molecules may be at least one of pair of primer/s at least one primer, and/or nucleotide probes.

[0290] According to specific embodiments, the kit of the invention may further comprise at least one reagent for conducting a nucleic acid amplification based assay selected from the group consisting of a Real-Time PCR, micro arrays, PCR, in situ Hybridization and Comparative Genomic Hybridization.

[0291] According to some specific embodiments, the kit of the invention may be specifically suitable for determining and optimizing a personalized interferon treatment regimen for a subject suffering from a pathologic disorder.

[0292] In more specific embodiments, the detecting molecules comprised within the kit of the invention are selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules.

[0293] In more specific embodiments, such nucleic acid detecting molecule comprises isolated oligonucleotides, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) and optionally, to a control reference gene.

[0294] Still further, such detecting molecule may be at least one of a pair of primers or nucleotide probes.

[0295] In one embodiment, the polynucleotide-based detection molecules of the invention may be in the form of nucleic acid probes which can be spotted onto an array to measure RNA from the sample of a subject to be diagnosed.

[0296] As defined herein, a "nucleic acid array" refers to a plurality of nucleic acids (or "nucleic acid members"), optionally attached to a support where each of the nucleic acid members is attached to a support in a unique pre-selected and defined region. These nucleic acid sequences are used herein as detecting nucleic acid molecules. In one embodiment, the nucleic acid member attached to the surface of the support is DNA. In a preferred embodiment, the nucleic acid member attached to the surface of the support is either cDNA or oligonucleotides. In another embodiment, the nucleic acid member attached to the surface of the support is cDNA synthesized by polymerase chain reaction (PCR). In another embodiment, a "nucleic acid array" refers to a plurality of unique nucleic acid detecting molecules attached to nitrocellulose or other membranes used in Southern and/or Northern blotting techniques. For oligonucleotide-based arrays, the selection of oligonucleotides corresponding to the gene of interest which are useful as probes is well understood in the art.

[0297] As indicated above, assay based on micro array or RT-PCR may involve attaching or spotting of the probes in a solid support. As used herein, the terms "attaching" and "spotting" refer to a process of depositing a nucleic acid onto a substrate to form a nucleic acid array such that the nucleic acid is stably bound to the substrate via covalent bonds, hydrogen bonds or ionic interactions.

[0298] As used herein, "stably associated" or "stably bound" refers to a nucleic acid that is stably bound to a solid substrate to form an array via covalent bonds, hydrogen bonds or ionic interactions such that the nucleic acid retains its unique pre-selected position relative to all other nucleic acids that are stably associated with an array, or to all other pre-selected regions on the solid substrate under conditions in which an array is typically analyzed (i.e., during one or more steps of hybridization, washes, and/or scanning, etc.).

[0299] As used herein, "substrate" or "support" or "solid support", when referring to an array, refers to a material having a rigid or semi-rigid surface. The support may be biological, non-biological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, beads, containers, capillaries, pads, slices, films, plates, slides, chips, etc. Often, the substrate is a silicon or glass surface, (poly)tetrafluoroethylene, (poly) vinylidendifmoride, polystyrene, polycarbonate, a charged membrane, such as nylon or nitrocellulose, or combinations thereof. Preferably, at least one surface of the substrate will be substantially flat. The support may optionally contain reactive groups, including, but not limited to, carboxyl, amino, hydroxyl, thiol, and the like. In one embodiment, the support may be optically transparent. As noted above, the solid support may include polymers, such as polystyrene, agarose, sepharose, cellulose, glass, glass beads and magnetizable particles of cellulose or other polymers. The solid-support can be in the form of large or small beads, chips or particles, tubes, plates, or other forms.

[0300] The method of the invention may be used for personalized medicine, namely adjusting and customizing healthcare with decisions and practices being suitable to the individual patient by use of genetic information and any additional information collected at different stages of the disease.

[0301] According to specific embodiments, the biological sample may be a blood sample. Specifically, the biological sample is a sample of peripheral blood mononuclear cells (PBMCs). The kit of the invention may therefore optionally comprise suitable mans for obtaining said sample. More specifically, for using the kit of the invention, one must first obtain samples from the tested subjects. To do so, means for obtaining such samples may be required. Such means for obtaining a sample from the mammalian subject can be by any means for obtaining a sample from the subject known in the art. Examples for obtaining e.g. blood or bone marrow samples are known in the art and could be any kind of finger or skin prick or lancet based device, which basically pierces the skin and results in a drop of blood being released from the skin. In addition, aspirating or biopsy needles may be also used for obtaining spleen lymph nodes tissue samples. Samples may of course be taken from any other living tissue, or body secretions comprising viable cells, such as biopsies, saliva or even urine.

[0302] The inventors consider the kit of the invention in compartmental form. It should be therefore noted that the detecting molecules used for detecting the expression levels of the biomarker genes may be provided in a kit attached to an array. As defined herein, a "detecting molecule array" refers to a plurality of detection molecules that may be nucleic acids based or protein based detecting molecules (specifically, probes, primers and antibodies), optionally attached to a support where each of the detecting molecules is attached to a support in a unique pre-selected and defined region.

[0303] For example, an array may contain different detecting molecules, such as specific antibodies or primers. As indicated herein before, in case a combined detection of the biomarker genes expression level, the different detecting molecules for each target may be spatially arranged in a predetermined and separated location in an array. For example, an array may be a plurality of vessels (test tubes), plates, micro-wells in a micro-plate, each containing different detecting molecules, specifically, probes, primers and antibodies, against polypeptides encoded by the marker genes used by the invention. An array may also be any solid support holding in distinct regions (dots, lines, columns) different and known, predetermined detecting molecules.

[0304] As used herein, "solid support" is defined as any surface to which molecules may be attached through either covalent or non-covalent bonds. Thus, useful solid supports include solid and semi-solid matrixes, such as aero gels and hydro gels, resins, beads, biochips (including thin film coated biochips), micro fluidic chip, a silicon chip, multi-well plates (also referred to as microtiter plates or microplates), membranes, filters, conducting and no conducting metals, glass (including microscope slides) and magnetic supports. More specific examples of useful solid supports include silica gels, polymeric membranes, particles, derivative plastic films, glass beads, cotton, plastic beads, alumina gels, polysaccharides such as Sepharose, nylon, latex bead, magnetic bead, paramagnetic bead, super paramagnetic bead, starch and the like. This also includes, but is not limited to, microsphere particles such as Lumavidin.TM.. Or LS-beads, magnetic beads, charged paper, Langmuir-Blodgett films, functionalized glass, germanium, silicon, PTFE, polystyrene, gallium arsenide, gold, and silver. Any other material known in the art that is capable of having functional groups such as amino, carboxyl, thiol or hydroxyl incorporated on its surface, is also contemplated. This includes surfaces with any topology, including, but not limited to, spherical surfaces and grooved surfaces.

[0305] It should be further appreciated that any of the reagents, substances or ingredients included in any of the methods and kits of the invention may be provided as reagents embedded, linked, connected, attached, placed or fused to any of the solid support materials described above.

[0306] According to other embodiments, the kit of the invention may be suitable for examining samples such as peripheral blood mononuclear cells and biopsies of organs or tissues.

[0307] According to some embodiments, the kit of the invention is specifically suitable for optimizing a treatment regimen for subjects suffering from an immune-related disorder.

[0308] In more specific embodiments, such immune-related disorder may be any one of an infectious condition, an autoimmune disease, and a proliferative disorder.

[0309] In certain embodiments, the kit of the invention is suitable for optimizing treatment regimen to a subject suffering from an infectious condition caused by any one of HCV, dengue virus, influenza, poliovirus, HIV (human immune-deficiency virus) and West Nile virus (WNV) infection.

[0310] In yet other embodiments, the kit of the invention may be suitable for optimizing treatment regimen for a subject suffering from Multiple sclerosis (MS).

[0311] In yet other embodiments, the kit of the invention may be suitable for optimizing treatment regimen for a subject suffering from Rheumatoid Arthritis (RA).

[0312] In more specific embodiments, were the kit of the invention comprises means for determining the M value using the induced dynamic approach, the kit of the invention may comprises at least one immuno-stimulant that may be any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D).

[0313] In yet a further aspect, the invention provides a computer software product for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. Such product comprising a computer readable medium in which program instructions are stored, which instructions, when read by a computer, cause the computer to:

[0314] (a) calculate and determine the value of M that indicates the ability of said subject to eliminate said disorder;

[0315] (b) determine the value of M1, that indicates the minimal ability required for eliminating said disorder.

[0316] (c) calculate the dose A and number B of administrations of said dose A to obtain an amount C required for said subject having said M determined/calculated in step (a), from predetermined dose A1 and number B1 of administrations of said dose, using the formula of A=A1/(M1/M) and B=B1*(M1/M).

[0317] Still further, it must be understood that in certain embodiments, the invention further provides a prognostic composition comprising (a) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) and (b) a biological sample. In certain embodiments, the biological sample may be obtained from the subject that is to be prognosed. In some embodiments, the sample may be a control sample, as discussed herein before. In an optional embodiment, the detecting molecules may be attached to a solid support. As such, the composition of the invention may be specifically suitable for performing any of the prognostic methods disclosed by the invention.

[0318] As used herein, "disease", "disorder", "condition" and the like, as they relate to a subject's health, are used interchangeably and have meanings ascribed to each and all of such terms.

[0319] The present invention relates to the treatment of subjects, or patients, in need thereof. By "patient", "individual" or "subject in need" it is meant any organism who may be affected by the above-mentioned conditions, and to whom the treatment and diagnosis methods herein described is desired, including humans. More specifically, the composition of the invention is intended for mammals. By "mammalian subject" is meant any mammal for which the proposed therapy is desired, including human, equine, canine, and feline subjects, most specifically humans.

[0320] It should be noted that specifically in cases of non-human subjects, the method of the invention may be performed using administration via injection, drinking water, feed, spraying, oral gavages and directly into the digestive tract of subjects in need thereof.

[0321] The term "treatment or prevention" refers to the complete range of therapeutically positive effects of administrating to a subject including inhibition, reduction of, alleviation of, and relief from, a condition known to be treated with interferon, for example an immune-related disorder as detailed herein. More specifically, treatment or prevention of relapse or recurrence of the disease includes the prevention or postponement of development of the disease, prevention or postponement of development of symptoms and/or a reduction in the severity of such symptoms that will or are expected to develop. These further include ameliorating existing symptoms, preventing-additional symptoms and ameliorating or preventing the underlying metabolic causes of symptoms. It should be appreciated that the terms "inhibition", "moderation", "reduction" or "attenuation" as referred to herein, relate to the retardation, restraining or reduction of a process by any one of about 1% to 99.9%, specifically, about 1% to about 5%, about 5% to 10%, about 10% to 15%, about 15% to 20%, about 20% to 25%, about 25% to 30%, about 30% to 35%, about 35% to 40%, about 40% to 45%, about 45% to 50%, about 50% to 55%, about 55% to 60%, about 60% to 65%, about 65% to 70%, about 75% to 80%, about 80% to 85% about 85% to 90%, about 90% to 95%, about 95% to 99%, or about 99% to 99.9%.

[0322] With regards to the above, it is to be understood that, where provided, percentage values such as, for example, 10%, 50%, 120%, 500%, etc., are interchangeable with "fold change" values, i.e., 0.1, 0.5, 1.2, 5, etc., respectively.

[0323] All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.

[0324] As used herein the term "about" refers to 10% The terms "comprises", "comprising", "includes", "including", "having" and their conjugates mean "including but not limited to". The term "consisting essentially of" means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.

[0325] The term "about" as used herein indicates values that may deviate up to 1%, more specifically 5%, more specifically 10%, more specifically 15%, and in some cases up to 20% higher or lower than the value referred to, the deviation range including integer values, and, if applicable, non-integer values as well, constituting a continuous range.

[0326] As used herein the term "about" refers to 10%. The terms "comprises", "comprising", "includes", "including", "having" and their conjugates mean "including but not limited to". This term encompasses the terms "consisting of" and "consisting essentially of". The phrase "consisting essentially of" means that the composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method. Throughout this specification and the Examples and claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[0327] As used herein the term "method" refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.

[0328] The term "about" as used herein indicates values that may deviate up to 1 percent, more specifically 5 percent, more specifically 10 percent, more specifically 15 percent, and in some cases up to 20 percent higher or lower than the value referred to, the deviation range including integer values, and, if applicable, non-integer values as well, constituting a continuous range.

[0329] It must be noted that, as used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise.

EXAMPLES

Experimental Procedures

[0330] The expression levels of the genes of interest were obtained from publicly available data bases [http://www.ncbi.nlm.nih.gov/geo/] using the following Gene Expression Omnibus Accession Nos:

[0331] Gene Expression Omnibus Accession No. GSE30719 (described in Example 2A) describes genetic data from retinal pigment epithelial (RPE) infected with immunopathogenic West Nile virus (WNV). RNA was extracted after 24 hours and analyzed using Affymetrix arrays.

[0332] Gene Expression Omnibus Accession No. GSE18816 (described in Example 2B) describes peripheral-blood leucocytes that were separated from buffy coats of three healthy blood donors and were differentiated for 14 days before use. Differentiated macrophages infected with H1N1 and H5N1 viruses at a multiplicity of infection (MOD of two were analyzed. Total RNA was extracted from cells after 1, 3, and 6h post-infection, and the gene expression profiling was performed using an Affymetrix Human Gene 1.0 ST microarray platform.

[0333] Gene Expression Omnibus Accession No. GSE13052 (described in Example 2C) describes studies from whole blood transcriptional profiles of children infected 4 days with dengue virus with different clinical outcomes. The tested subjects included 9 acute dengue shock samples, 9 acute uncomplicated dengue samples, 6 autologous follow up dengue samples and 6 autologous follow up uncomplicated dengue patients. Microarray data was normalized using Gene spring GX7 software, statistical analysis was performed in Multiexperiment viewer software. Pathway analysis was performed using Ingenuity Pathway analysis online software.

[0334] Gene Expression Omnibus Accession No. GSE17183 (described in Example 3A) provides data from liver biopsy from 30 patients before and one week after starting combination therapy with IFN+Rib. Hepatocytes and liver-infiltrating lymphocytes (LILs) were obtained from 12 patients using laser capture micro dissection (LCM).

[0335] Gene Expression Omnibus Accession No. GSE16214 (described in Example 3B) provides data from PBMC samples that were collected from relapsing-remitting MS subjects and CIS subjects. The first time point was chosen for each subject with multiple measurements based on an at least three months of treatment criteria. We thereafter analyzed the data for each treatment category.

[0336] Gene Expression Omnibus Accession No. GSE 5549 (described in Example 3C) provides gene expression microarrays data obtained from embryonic fibroblast cell line was synchronously infected with poliovirus in the absence or presence of interferon-.alpha., or with vacciniavirus, a virus that is not inhibited by interferon. The cells were incubated for 1 h with either poliovirus or vacciniavirus, washed and incubated for another 4 to 16 h. Total RNA from three parallel cell cultures were used for each time point and compared with mock infected cells.

[0337] Gene Expression Omnibus Accession No. Gene Expression Omnibus Accession No. GSE15245 (described in Example 4)

[0338] Gene Expression Omnibus Accession No. GSE 37107 and GEO 42296, disclosed gene profiling of RA patients treated with RTX or infliximab, respectively (described in Example 5).

[0339] Gene Expression Omnibus Accession No. GSE18464 provides gene expression data of CD 14+ monocytes isolated from 55 subjects, 22 with HIV HVL, 22 with HIV LVL and 11 HIV seronegative controls (described in Example 6).

[0340] Gene Expression Omnibus Accession No. GSE27248 provides gene expression of Ferrets (3 ferrets in each group) immunized with different adjuvant human seasonal vaccines of CFA plus vaccine, CpG plus vaccine, pegylated IFN-alpha plus vaccine and vaccine alone (PBS plus vaccine) (described in Example 7).

[0341] Gene Expression Omnibus Accession No. GSE31518, GSE31471 and GSE31472 (described in Example 10) provide gene expression data obtained at 2, 4, 6, 8 and 10 hours post infection of three different host cell lines (A549, MDCK and CEF) with three different Influenza A virus strains, pH1N1 (A/Singapore/478/2009), H9N2 and H5N2.

[0342] Gene Expression Omnibus Accession No. GSE52428 (described in Example 10) provide gene expression data obtained from microarrays assay of peripheral blood at baseline and every 8 hours for 7 days following intranasal influenza A H1N1 or H3N2 inoculation in healthy volunteers.

[0343] Gene Expression Omnibus Accession No. GSE838 (described in Example 8A) provides gene expression data in peripheral blood leukocytes (PBL) from normal individuals sampled multiple times over periods ranging from several weeks up to 6 months.

[0344] Gene Expression Omnibus Accession No. GSE3649 (described in Example 8B) provides data of variation in gene expression patterns in the blood of healthy individuals, by using cDNA microarrays.

[0345] Gene Expression Omnibus Accession No. GSE32862 (described in Example 9) provides data from synthetic double stranded RNA that induces innate immunity similar to a live viral vaccine in humans.

[0346] The innate immune response in humans to synthetic double stranded RNA (poly ICLC), a ligand for TLR3 and MDA-5 cytosolic RNA helicase was studied. Transcriptional analysis of blood samples from eight volunteers, after subcutaneous administration of poly ICLC were obtained and analyzed.

[0347] Gene Expression Omnibus Accession No. GSE13699 (described in Example 9) provides data of the immune response to the yellow fever vaccine 17D.

[0348] The data was downloaded from the each one of these selected Gene Expression Omnibus Accession and was analyzed using custom programs written in MATLAB.

[0349] Specifically, after verifying normalization of data (such as RMA quantile on Affymetrix arrays) and averaging multiple probes per gene, MATLAB mattest is carried out with permutations to calculate pvals. In brief, mattest perform two-sample t-test to evaluate differential expression of genes from two experimental conditions or phenotypes.

Example 1

[0350] A Mathematical Model for Determining a Treatment Regimen

[0351] The model developed in here is based on a biological situation in which an animal cell is being infected with a virus having a multiplicity rate K. The cell may be subjected to additional viruses penetrating the cytoplasm by a rate P. The viral infection is reduced or terminated at a rate of M (A person's M is considered to be from 0 to 1. For example, a value of M=0.5 means half of existing viruses will be destroyed).

[0352] The viral infection may be terminated by the immune system of a subject that upon infection is induced and thus capable of destroying the virus by itself with no external therapy. Alternately, the viral infection may be terminated by injection of an appropriate treatment for example with IFN that leads to distraction of the virus. After the IFN effect is diminished, infection may occur again.

[0353] The following set of equations was designed generally to describe the above situation:

[0354] The period at which the cell is being infected with a virus starts at time X(N-1) and ends at time X(N), the virus load at both time points should be therefore described as follows:

X(N).dbd.X(N-1)*K+P*X(N-1);

[0355] The period at which the virus is destroyed either by the immune system, by administration of treatment for example interferon or combination of both starts at time (N) and ends at time (N+1). The virus load (X) at the start point X(N) and the end time point X(N+1) is described as follows:

X(N+1)=X(N)-M*X(N);

[0356] As shown above, the virus load at a certain time point depends on the ability of said individual to eliminate and reduce said virus, as reflected by the M value. The following equations were used in MATLAB for simulation purposes.

[0357] FIG. 1 [based on schematics from Sadler A J. et al. Nature Reviews Immunology 8:559-568 (July 2008)], shows a schematic representation of such a model at a cellular level and emphasizes the ongoing balance between invading virus that is multiplying in the cytoplasm at a rate K and the effect of defending genes that are participating and assisting to diminish the virus. As detailed above, these genes are regulated either by the immune response, external treatment or combination of the two.

[0358] FIG. 2 shows simulations of the above model equations by assuming the following: P=0 (namely, no additional virus from neighboring cells is penetrating to the cell) and K=2 (namely, the virus population doubles itself. The value of M was varied throughout the simulation from 0 to 1. The results in FIG. 2 show the virus amount (virus load) as a function of the rate of M during time. As can be seen at lower M values of 0.04 to 0.48, the virus is capable of multiplying and hence the disease is progressing, as the immune system is not succeeding in elimination thereof. The effect of M is observed as follows: upon increasing the value of M for example from 0.04 to 0.36, the amount of virus is reduced, indicating that that the viral load is reduced to some extend as a function of M. Increasing M to a value higher than 0.6 shows that the viral load is reduced, namely the disease is eliminated. This may indicate that the immune system is succeeding in stopping the virus.

[0359] The simulation shown in FIG. 2, shows that a person having at least an M value of 0.6 will reach this limit using 12 shots (3 month), or he can reach this limit with 4 shots if he has M greater than 0.8. On the x axis the peaks represent IFN cycles assuming they are given once a week.

[0360] The model clearly shows that X(0) the initial load, has no impact on response rate as setting the initial load of the virus to different values does not change the curves, namely there is a dependency only on the relations between M and K, specifically, the ability of the individual and the virulence of the pathogen.

[0361] FIG. 3 shown similar simulations, however, in this simulation the virus is simulated to multiply faster and k is set to 3. The results show that the response curves for the different M's in this new situation are different (FIG. 3). For example, the virus amount is reduced at a large M value of about 0.68. In other words, for eliminating more virulent viruses, a larger M is required.

[0362] The assumption for P=0 is based on virological consideration for example once the virus penetrates the cell penetrations of other viruses from the exterior are blocked.

[0363] These two simulation results can be interpreted as follows:

[0364] First--assuming that an individual is infected with a virus, initially the immune system responds to this infection in an attempt to destroy the virus. The virus is multiplied by a rate K and the immune system of the tested subject may be viewed as a component having the rate M. The "decision" or determination if a person will be able to fight the viral infection on its own depends on the interplay between M and K as shown in FIGS. 2 and 3. The simulation using different M values may be viewed as a heterogeneous population having varying immune system capabilities.

[0365] Second--assuming that an individual is infected with a virus and is being treated with an anti viral treatment directed to distraction of the virus. The virus is multiplied by a rate K and the antiviral treatment may be viewed as a component having the rate M. The interplay between M and K as shown in FIGS. 2 and 3 may be used for determining if a person will cure from the viral infection using the treatment. The simulation with different M values may be viewed as different treatments regimens (dosing and timing), or a heterogeneous population having varying response to treatment (possibly because of immune response) or combinations of the two. In such a situation, the time unit (X-axis) may be considered as the number of treatment administrations (for example injections) to be used.

[0366] The clinical implications of this model suggest that if an intrinsic M of an individual can be measured, it may be possible to precisely predict if an individual will be able to use its own immune system to fight, eradicate and/or eliminate a viral infection (assuming K is known). This model may be further used to predict if an individual is a responder or non responder to treatment with a specific therapeutic agent, for example, IFN treatment. This can be used to predict the outcome of the response, namely what will be the viral amount (viral load) at the end of the treatment and as such, may help in determining the required dosage regimen accordingly. Moreover, this model may be used for calculating and determining the rate of the elevation in the M value required for eliminating of a specific virus having a specific K rate in a specific viral load. Such elevation of M may be achieved by designing an appropriate treatment regimen.

[0367] For example, a person that is characterized by having a M value of 0.6 is being administered with IFN in order to treat a viral infection of a virus that has a K value of 2 (namely, doubles itself every week), will need 12 injections to reach one tenth of his initial load. The results may also serve for prediction of the interval time between treatments, namely, if the time between the injections is shortened from a week to 3 days, an individual may reach the targeted virus load in half the time.

[0368] As known in the art, occasionally infectious disease/s are also treated with a new generation of compounds known as Protease Inhibitors (PI), or with a combination of interferon with any "new generation" drug. Thus, the model incorporates a further possibility that after a subject is being infected with a virus, interferon is administered together with a Protease Inhibitor.

[0369] In such a case the virus is in fact affected by interferon and the protease inhibitors, reflected by M1. Accordingly, the equation

X(N+1)=X(N)-M*X(N);

is now represented as:

X(N+1)=X(N)-M*X(N)-M1*X(N);

[0370] FIG. 4 shows a simulation of a situation with K of 2, P of 0 and M is 0.44. In such case, the tuning should be M1 greater than 0.3 to shift an original non-responder person having a basic rate of M=0.44 to a responder. In fact, having a value of M1 of 0.14 seems to be sufficient to be considered as a responder.

[0371] Turning to FIG. 2, a person with M=0.44 being infected with a virus of k=2 and assume D p=0, seems not to recover from the infection. However, the use of the correct M1 value that may be achieved in this case using combined treatment with Protease Inhibitors might help as seen in FIG. 4.

[0372] M may be considered as a result of the amount of IFN genes that are released upon infection and/or upon treatment (such as for example ISG15, HERC5, USP18, OAS2, OAS 3, OASL, IFI44L). Thus, in case treatment includes PI, the M1 value is added to the value of M that may be now considered as a total amount required for eliminating existing viruses. Similarly, the methods of the invention provide any specific regimen of treatment, being personally adapted to achieve the required M1 value in a person having a particular M value that is required to achieve the desired result of virus elimination, or elimination of any of the disease symptoms.

[0373] The following examples provide results obtained from statistical analysis of data base information and are aimed at showing the importance of combining genetic data from different groups of individuals, and uses thereof in determining a suitable Taylor-made treatment for each individual. Specifically, the inventor has used data from healthy individuals, healthy individuals after stimulation of the immune system, individuals infected with different types of viruses (having different lethality potential) and patients treated with appropriate treatments. The complete data presented in the Examples below provide a comprehensive analysis and a unique understanding on a representative arsenal of genes and the degree to which each gene can be up regulated.

[0374] Moreover, the data presented herein clearly indicate that the value of M is an individual value for each subject and determination thereof (prior to the occurrence of any pathologic disorder), may reflect the ability of a given subject to overcome pathologic disorders, specifically, viral infections. Furthermore, predetermination of such characterizing M value for each individual enables determination, optimization and fine tuning of treatment regimen specifically suitable and effective for such individual.

Example 2

[0375] Gene Profiling after Viral Infections

[0376] The purpose of this example was to find a minimal representative set of genes that are regulated after infection and that measuring their expression will enable determination of the capability of an individual to overcome a viral infection. More specifically, a set of genes enabling the determination of the specific M value of a given individual.

Example 2A

[0377] Genes Expression in West Nile Virus (WNV) Infected RPE

[0378] FIG. 5 shows a representation of genes, each depicted by a different point, such that each point represents the ratio of the specific gene between its expression 24 hours after infection and its base line value. Each point corresponds to an average value of the ratio of the specific gene calculated for all the tested individuals. Each gene (point) is assigned with a value along the X axis that corresponds to the regulation fold (either up regulation or down regulation) and with a value along the Y axis corresponding to the significant of the regulation. Thus, this analysis provides a quantitative indication for the dominating genes that are regulated in infected individuals with respect to a baseline level determined before infection.

[0379] The analysis was obtained by averaging all probes per gene analyzed using volcano analysis on their RMA affymetrix normalized data, at 24h post infection.

[0380] The results indicate that in individuals who were infected with the virus, a high number of genes were up regulated. Specifically, IFIT1-5, OAS1-3L, ISG15, HERC5, USP18 and triggering genes like TLR3, IFIH1, DDX58(RIG-I)

Example 2B

[0381] Gene Expression in Macrophages Infected with H1N1 and H5N1 Viruses

[0382] As appreciated, human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome.

[0383] Table 1 shows a list of genes that were found to be up regulated 6 hours post infection in the more challenging H5N1 compare to H1N1. FIG. 6 is a volcano plot showing the genes that are up regulated six hours post infection with both viruses.

[0384] As shown in Table 1 and FIG. 6, the group of genes including the ISG15, HERC5, USP18, OAS, IFIT and IFI44 show an enhanced up regulation pattern after infection with H5N1.

[0385] As can be seen, the degree of up regulation for each gene is increased after infection with H5N1 compared to H1N1.

[0386] These results suggest that an increased immune response is provided by the host upon infection with H5N1 that is considered more lethal. This enhanced host response may be mediated for example by IFIH1 (MDA5) and DDX58 (RIG-I) gene products.

TABLE-US-00001 TABLE 1 IFN Genes up regulated in the more challenging H5N1 compare to H1N1 at 6 hours post infection. Gene Name Fold Change LAMP3 2.019927 OASL 1.740487 HERC5 1.66951 IFNA13///IFNA1 1.605767 RSAD2 1.257327 ISG15 1.22565 DDX58 1.22122 IFIT1 1.173913 IFIH1 1.141153 IFNA8 1.098233 IFIT2 0.884427 DHX58 0.843863 IFIT3 0.7848 IFI44 0.77259 OAS2 0.745073 USP41///USP18 0.739487 IFIT5 0.722987 MX1 0.65857

Example 2C

[0387] Gene expression in whole blood transcriptional profiles of children infected 4 days with dengue virus Genetic expression from blood obtained from children infected with dengue virus (dengue fever) that developed to dengue shock syndrome (DSS) was compared to well-matched patients with uncomplicated dengue.

[0388] FIG. 7 is a volcano plot showing the group of genes that are regulated for children presenting with dengue shock syndrome (DSS) and well-matched patients with uncomplicated dengue. The plot shows uncomplicated vs. DSS.

[0389] The genes include ISG15, HERC5, UBE2L6, USP18, OAS, IFIT, and IFI44. These results show that this set of genes is regulated to protect the host from the infection. Without being bound by any theory, the inventors suggest that this is mediated by IFIH1 (MDA5), DDX58 (RIG-I) and TLR7.

[0390] Taken together the results shown in all the individuals infected with different viruses having different lethality potential, that a representative set of genes that is being unregulated. The set of genes include for example IFIT2, RSAD2, ISIT1, HERC5, MX1, IFIT3, IFI44L, OASL, OAS1, OAS2, OAS3, DDX58, DHX58, ISG15, USP18, and UBE2L.

[0391] These genes that are involved in innate immunity may be used as an indicator for the ability of a specific individual to eliminate that pathologic disorder.

Example 3

[0392] Gene Profiling after Interferon Treatment

Example 3A

[0393] Gene Analysis in HCV Patients Treated with Interferon

[0394] The differential genetic expression in liver biopsies of responders and non-responders HCV patients after combined therapy is shown in FIG. 8. Specifically, the left hand side shows the ratio of expression level of genes in responders vs. non-responders at day 0 (namely, before treatment), whereas the right hand side shows the results obtained after one week following treatment of IFN and RBV. The results provide a representative set of genes having a low expression value before treatment in patients who are referred to as responders. One week after treatment, these genes were clearly up regulated in the responders group.

[0395] A non-limiting example is the results of ISG15 expression as specifically shown in Table 2. The initial ISG15 expression level in responders is low compared to non-responders. As shown by the Table, a week after treatment, a clear elevation in the expression of said gene appears in the responder group, whereas the non-responders show a clear reduction. Based on these results it may be suggested that the expression level of this gene in responders is close to its saturation level, and therefore interferon cannot induce elevation in the expression of these genes.

[0396] The same results were obtained for HERC5, USP18, OAS, IFIT and IFI44.

TABLE-US-00002 TABLE 2 Expression level of ISG15 in biopsies of ten responders and ten non-responders HCV patients before treatment and after one week of IFN and Rib treatment. non responders responders log2 expression before IFN 9.016884851 7.682601881 log2 change after 1 week of 0.399427605 2.694511557 treatment

[0397] The results obtained here are in accordance with previous results shown in International Patent Application WO10076788 that is a previous application by the inventor, which describes five signature genes that are up regulated before interferon treatment in patients that are considered non-responders to interferon treatment. Thus, based on the expression of the five signature genes before treatment, one can assess the probability to respond to treatment.

[0398] These finding were also repeated in additional data sets. Chen et al which gene expression from tissue taken from HCV patients before treatment in Gene Expression Omnibus Accession No. GSE 11190 provides data on tissue before and 4 hours after IFN injection. The same behavior as explained here was shown in these data sets.

Example 3B

[0399] MS Patients Treated with Interferon

[0400] Analysis of a cohort of 90 patients from PBMC samples of relapsing-remitting MS subjects and Clinically Isolated Demyelinating Syndrome (CIS) subjects.

[0401] Samples were selected at the first time point for each subject with multiple measurements based on an at least three months of treatment criteria Data was obtained Gene Expression Omnibus Accession No. GSE16214.

[0402] Both the volcano (FIG. 9) and the dynamic analysis disclosed in FIGS. 10A and 10B show the same observation of the determination of available dynamic range to predict the outcome of the treatment.

[0403] The volcano plot in FIG. 9 shows the genes are up regulated following treatment with IFN .beta. compared to not-treated patients.

[0404] FIGS. 10A and 10B show the level of genes expression in MS patients before and after three month of treatment, respectively. The expression level of the genes is lower in most patients before treatment. Specifically, about 70 patients show low levels of expression and only about 20 patients show higher levels of expression (FIG. 10A). After treatment, as shown in FIG. 10B, patients who had a low gene expression before treatment (namely patients 1 to 70), show an increased expression after treatment, whereas those patients who had a high gene expression before treatment (namely patients 71 to 90), show a reduced expression after treatment.

[0405] The patients exhibiting an increase in the expression level may be considered as responders whereas the patients showing a decrease in the expression level or lack of elevation, may be considered as non-responders.

Example 3C

[0406] Gene Analysis in Poliovirus Infected Cells and Treated with Interferon

[0407] A human embryonic fibroblast cell line was synchronously infected with poliovirus in the absence or presence of interferon-.alpha., or with vaccinia virus, a virus that is not inhibited by interferon. The samples were washed and incubated for another 4 to 16 h. Total RNA from three parallel cell cultures were used for each time point and compared with mock infected cells.

[0408] Interferon-alpha, at a concentration sufficient to inhibit poliovirus replication, was used to define genes that might be involved in viral defense.

[0409] Analysis of GSE 5549 database shows that the top genes of the Interferon are up regulated when Embryonic cells are injected with IFN (Table 3 shown 16h following injection), and Table 4, shows the elevation of gene expression at 16 hr after IFN was added to culture infected with polio virus (Table 4). Tables 3 and 4 show data from Grinde B, et al. (2007).

TABLE-US-00003 TABLE 3 HE cells, interferon, Name of gene 16 h Interferon. alpha-inducible protein (clone IFI-15K) 5.11 Interferon. alpha-inducible protein (clone IFI-6-16) 3.09 Major histocompatibility complex. class I. C 2.71 Interferon induced transmembrane protein 2 (1-8D) 2.63 H300000271 2.6 Lymphocyte antigen 6 complex. locus E 2.56 HLA class I histocompatibility antigen. A-3 alpha 2.55 chain precursor (MHC class I antigen A*3). [Source: Uniprot/SWISSPROT:Acc:P04439] Signal transducer and activator of transcription 2.483333 1. 91kDa Interferon-induced protein 44-like 2.45 Major histocompatibility complex. class I. B 2.4 Interferon-induced protein with tetratricopeptide 2.29 repeats 3 Tripartite motif-containing 22 2.2 HLA-G histocompatibility antigen. class I. G 2.145 Ubiquitin-conjugating enzyme E2L 6 2.14 HLA class I histocompatibility antigen. alpha 2.136667 chain G precursor (HLA G antigen). [Source: Uniprot/SWISSPROT:Acc:P17693] Major histocompatibility complex. class I. F 2.12 Beta-2-microglobulin 2.08 HLA class I histocompatibility antigen. B-7 alpha 2.05 chain precursor (MHC class I antigen B*7). [Source: Uniprot/SWISSPROT:Acc:P01889] Bone marrow stromal cell antigen 2 2.02 Epithelial stromal interaction 1 (breast) 2.01 2'.5'-oligoadenylate synthetase 1. 40/46kDa 1.98

TABLE-US-00004 TABLE 4 HE cells, interferon + poliovirus, Name of gene 16h Interferon, alpha-inducible protein (clone IFI-15K) 4.91 Interferon, alpha-inducible protein (clone IFI-6-16) 2.89 Major histocompatibility complex. class I. C 2.8 Major histocompatibility complex. class I. C 2.73 Interferon induced transmembrane protein 2 (1-8D) 2.71 Interferon-induced protein 44-like 2.7 Signal transducer and activator of transcription 2.6 1. 91kDa Major histocompatibility complex. class I. C 2.58 Major histocompatibility complex. class I. B 2.47 Signal transducer and activator of transcription 2.44 1. 91kDa Major histocompatibility complex. class I. A 2.43 H300000271 2.38 HLA class I histocompatibility antigen. B-7 alpha 2.37 chain precursor (MHC class I antigen B*7). [Source: Uniprot/SWISSPROT:Acc:P01889] major histocompatibility complex. class I. B 2.35 2'.5'-oligoadenylate synthetase 1. 40/46kDa 2.29 Interferon-induced protein with tetratricopeptide 2.28 repeats 3 Signal transducer and activator of transcription 1. 2.26 91kDa HLA class I histocompatibility antigen. A-3 alpha 2.25 chain precursor (MHC class I antigen A*3). [Source: Uniprot/SWISSPROT:Acc:P04439] HLA-G histocompatibility antigen. class I. G 2.19 Tripartite motif-containing 22 2.18 HLA-G histocompatibility antigen. class I. G 2.16 Beta-2-microglobulin 2.15 Ubiquitin-conjugating enzyme E2L 6 2.15

[0410] The results show that a set of genes can be detected in all the studied cases regardless of the viral origin, namely the set is reproducible and universal. In this connection, the M value, that reflects the ability of the specific individual to eliminate the disease symptoms (viral infection, for example), can be considered as a phenotype.

[0411] Taken together the results shown above suggest that there is a dynamic range for each gene that controls the extent to which a gene can be up regulated and down regulated. This dynamic range of a given gene is required and accordingly the protein encoded by said gene is recruited by the host for eliminating a variety of viral infections. For example, the more pathogenic virus H5N1 compared to H1N1, dengue virus in children and western Nile virus. This dynamic range varies between people as evident from the differences between responders and non responders and from the differences between people that mange to fight viral infection on their own and those who do not. The results presented herein clearly suggested that M as defined in the model above is a phenotypic properties of a specific individual.

Example 4

[0412] Inverse Correlation Between the Expression of the Genes of the Invention and Relapse in MS Patients

[0413] The inventors used gene expression data of Gene Expression Omnibus Accession No. GSE15245, to determine whether the expression of the genes of the invention, namely, USP18, IFI44, MX1, IFI44L, OAS3, HERC5 and RSAD2, can distinguish between MS patients experiencing relapse and patients that respond to interferon treatment and therefore do not experience relapse. As shown in FIG. 11, sum of the expression values of these genes was inversely correlated with relapse rate of fifty MS patients. More specifically, patients 27 to 50 that displayed low initial expression level of the genes of the invention, showed no relapse, whereas patients exhibiting high expression level of the genes of the invention showed enhanced relapse rate.

[0414] The inventors have further analyzed data obtained from GSE5574 that provides gene expression data of MS patients treated with Avonex (0-interferon once a week). The expression of the ISG15, UPS18, UBE2L6 and HERC5 genes of the invention was examined before and during treatment (6 points including 2 reading naive prior to treatment, 2 readings 24 hr following first treatment, 2 readings 6 month following treatment and a week after last IFNB Avonex treatment. The expression level was compared with the following clinical parameters, wherein nonresponsive patients experienced clinical exacerbations including optic neuritis and ataxia requiring steroid treatment, none of the other patients reported any progression of symptoms during the course of the study. The non-responsive patients could not elevate the expression of the genes of the invention (data not shown). Therefore, follow-up of the expression of the signatory genes of the invention during treatment reflects the responsiveness of the patient.

Example 5

[0415] Determination of Treatment Regimen in Rheumatoid Arthritis (RA) Patients

[0416] B cell depletion therapy, for example, by using Rituximab, a chimeric monoclonal antibody against the protein CD20 which is primarily found on the surface of immune system B cells, is efficacious in rheumatoid arthritis (RA) patients that do not respond to tumor necrosis factor (TNF) blocking agents. However, approximately 40% to 50% of rituximab (RTX) treated RA patients display a poor response. The inventors therefore next explored the possibility of using the method of the invention as a tool for determining an appropriate treatment regimen for RA patients. More specifically, the invention provides for any specific individual, a molecular tool to determine whether a RTX treatment is appropriate, or alternatively, treatment with TNF blockers, such as Infliximab (INN; trade name Remicade), that is a chimeric monoclonal antibody specific for tumor necrosis factor alpha (TNF-.alpha.), may be more appropriate. Therefore, the inventors analyzed gene expression data provided by GSE 37107 and GEO 42296 that disclosed gene profiling of RA patients treated with RTX or infliximab, respectively.

[0417] More specifically, Gene Expression Omnibus Accession No. GSE 37107 provides expression profiling data of on whole peripheral blood RNA obtained from 14 RA patients treated with RTX. Expression data of 6 non responders were compared to 8 responders. Responsiveness has been determined 6 months after treatment, using disease activity score (.DELTA.DAS28<1.2) and European League against Rheumatism (EULAR). The samples were obtained and examined prior to treatment.

[0418] Gene Expression Omnibus Accession No. GEO 42296 provides expression profiling data of whole peripheral blood RNA obtained from 29 individuals treated with infliximab and compares the gene expression profiling of 13 non-responders with 6 responders. The samples were obtained and examined prior to treatment.

[0419] The inventors have found that the genes presented in Table 5, are common to both groups and are differentially expressed in the RTX and the infliximab treatment. More specifically, the genes of Table 5, were found to be up-regulated in infliximab responders and down regulated in non-responders. In contrast, the very same genes were found to be down-regulated RTX responders, and up-regulated in RTX non-responders.

[0420] FIG. 12 illustrates the differential expression as calculated from the sum of the common genes, indicating that an individual displaying a high initial expression of these genes will benefit infliximab treatment, whereas an individual displaying a low initial level of expression of these genes will benefit RTX treatment.

TABLE-US-00005 TABLE 5 common signatory genes MXI IFITM3 IFI44L HERC5 IFI44 IFI6 OAS1 OAS3 RSAD2 IFIT1 IFIT3 DDX58

Example 6

[0421] Inverse Correlation Between the Expression of the Signatory Genes of the Invention and Responsiveness to HARRT Treatment of HIV Infected Patient

[0422] To examine whether the signatory genes of the invention may have a predictive value on further viral infections and treatment of patients with other therapeutic agents, The inventors next examined whether the signatory genes of the invention, namely, IFI27, ISG15, IFIH1, IFI44L, OAS2, DDX58, IFIT1 and IFI6, may correlate with responsiveness of HIV infected patients to HAART treatment. More specifically, HIV infected patients that were treated with highly active antiviral therapies (HAART) that is a combination of multiple drugs that act on different viral targets, as reflected by the reduction in virus load.

[0423] The inventors used gene expression data of Gene Expression Omnibus Accession No. GSE18464 that provides gene expression data of high-density cDNA microarrays was performed on CD 14+ monocytes isolated from 55 subjects, 22 with HIV HVL, 22 with HIV LVL and 11 HIV seronegative controls. The examined patients were evaluated for virus load. The categorization of high or low viral load was based on clinical criteria with LVL <10,000 RNA copies/ml and HVL as >10,000 RNA copies/ml. Subjects in the study were males between 30 and 66 years of age and the cohort was comprised of white (62%), black (19%), Hispanic (12%), Asian (4%) and other (3%) individuals. At the time of the study individuals in the LVL group were on highly active antiretroviral therapies (HAART), while subjects with HVL fell into one of three categories: on HAART (15); scheduled treatment interruption (6) or HAART naive (1).

[0424] FIG. 13 presents the correlation between reduced virus load of the HIV patients and the initial expression of the genes of the invention in all 44 examined patients. As shown by the figure, a low expression rate of the genes of the invention is associated with a low virus load that reflects responsiveness to HAART treatment in patients 22-44 (that are the LVL group).

Example 7

[0425] In Vivo Adjuvant Activity in Ferrets Vaccinated Against Influenza Virus

[0426] To examine whether the signatory genes of the invention may be applicable for prediction of responsiveness in other mammals, the gene expression profile of Ferrets vaccinated against influenza virus was next analyzed. The inventors used gene expression data of Gene Expression Omnibus Accession No. GSE27248 that provides gene expression of Ferrets (3 ferrets in each group) immunized with different adjuvant human seasonal vaccines of CFA plus vaccine, CpG plus vaccine, pegylated IFN-alpha plus vaccine and vaccine alone (PBS plus vaccine). The control group comprised 4 ferrets received PBS only. The whole blood was collected for RNA extraction and subsequent gene expression analysis was performed with Affymetrix GeneChip Canine Genome 2.0 Array. The inventors analyzed the expression of the genes of the invention ISG15, HERC5, USP18 and UBE2L6, in all experimental groups. As shown in FIG. 14, a clear correlation of elevated expression of the genes of the invention is exhibited in response to treatment with CpG adjuvant. It should be noted that CpG clearly enhanced activation and antibody production, indicating that dynamic analysis of the expression of the genes of the invention may serve as a tool for evaluating successful treatment.

Example 8

[0427] Genetic Data Obtained from Healthy Populations

[0428] The purpose of these examples was to study variations of gene expression in peripheral blood leukocytes of healthy individuals and thus to obtain an individual specific finger printing.

Example 8A

[0429] PBL Samples of Healthy Individuals

[0430] The data used herein was obtained from peripheral blood leukocytes (PBL) of normal individuals sampled multiple times over periods ranging from several weeks up to 6 months. The genetic data obtained after the first reading for each individual was clustered using k-mean clustering algorithm. FIG. 15 shows the clustering results of the tested individuals, as can be seen, the genes that are clustered within one group include for example ISG15, HERC5, USP18 OAS and IFIT and their triggering elements RIG-I and DDX60. The expression of these genes is correlated and changes together in healthy individuals between high and low levels of expression.

[0431] The close ties between these genes can be better appreciated by looking at Table 5 showing the measured correlation to each of these genes.

TABLE-US-00006 TABLE 6 correlation between ISG15 and all other genes p-value Column # Column ID r correlation Lower CI Upper CI N 3694 FLJ11354 0.930123 5.11E-07 0.79815 0.976917 15 8622 MX1 0.925057 7.95E-07 0.784585 0.9752 15 7251 KPTN 0.92249 9.83E-07 0.777762 0.974328 15 1522 cig5 0.919924 1.21E-06 0.770975 0.973454 15 5764 IFIT4 0.917704 1.43E-06 0.76513 0.972697 15 12247 TREX1 0.903768 3.83E-06 0.72901 0.967918 15 2307 DKFZp434J0310 0.893967 7.02E-06 0.704176 0.964529 15 12478 USP18 0.893168 7.36E-06 0.702173 0.964252 15 8030 LY6E 0.891366 8.17E-06 0.697663 0.963625 15 6185 KIAA0082 0.887221 1.03E-05 0.687348 0.962182 15 5763 IFIT1 0.884509 1.20E-05 0.680644 0.961236 15 924 BST2 0.883635 1.25E-05 0.67849 0.960931 15 12390 UBE2L6 0.882725 1.31E-05 0.67625 0.960612 15 9071 OAS1 0.871427 2.32E-05 0.648773 0.956645 15 7574 LOC51191 0.870744 2.40E-05 0.647129 0.956404 15 9942 PRKR 0.868662 2.65E-05 0.642136 0.955669 15 8572 MTAP44 0.86321 3.40E-05 0.629145 0.95374 15 5758 IFI27 0.860744 3.80E-05 0.623314 0.952865 15 4966 GS3686 0.855596 4.75E-05 0.611221 0.951032 15 5760 IF135 0.853527 5.18E-05 0.606395 0.950294 15 9158 OS4 0.852918 5.32E-05 0.604976 0.950076 15 9131 OR1F1 0.847821 6.55E-05 0.593175 0.948253 15 47 ABCC1 0.828275 0.000137 0.548906 0.941196 15 7728 LOC51667 0.827948 0.000138 0.548179 0.941077 15 10972 SCO2 0.813388 0.000226 0.516209 0.935754 15 2505 DKFZP586A0522 0.805792 0.000287 0.499852 0.932954 15 5654 HSXIAPAF1 0.800053 0.000342 0.487637 0.930829 15 10571 REC8 0.798916 0.000354 0.485231 0.930407 15 4554 G1P3 0.794898 0.000398 0.47677 0.928913 15 3532 FLJ10783 0.785073 0.000526 0.456321 0.92524 15 8997 NRGN 0.782342 0.000567 0.450698 0.924214 15 5961 IRF7 0.781768 0.000576 0.44952 0.923999 15 3907 FLJ20037 0.779139 0.000618 0.444136 0.923009 15 5509 HSPC018 0.767953 0.000827 0.421502 0.918777 15 9558 PIK3R2 0.765603 0.000878 0.416799 0.917883 15 3811 FLJ13102 0.758369 0.00105 0.402444 0.915123 15 4012 FLJ20281 0.755838 0.001116 0.397462 0.914154 15 6423 KIAA0456 0.75358 0.001177 0.393035 0.913288 15 5970 ISG20 0.749655 0.001291 0.385382 0.911779 15

[0432] FIG. 16 shows the same expression but specially demonstrates the expression of IGS15, IFIT1, OAS2 and USP18 in the tested healthy individuals.

[0433] Using the clustering data (FIG. 15) and the specific genes expression graph (FIG. 16), it may be concluded that individuals 2, 7, 8 and 14 who express high levels of the genes at base line namely healthy individuals, will not benefit from IFN treatment if required.

[0434] The other individuals that are characterized by a low expression level would probably respond to IFN and in addition may have a better immune-response.

Example 8B

[0435] A similar approach was used to analyze large cohort of 145 healthy individuals.

[0436] More specifically, large dataset of 145 individuals was used to observe variation in gene expression patterns in blood, by using cDNA microarrays. Again in this group the correlated pattern of the IFN genes reappears as shown by the gene expression correlation in Table 7.

TABLE-US-00007 TABLE 7 correlation of genes with ISG15. p-value Column # Column ID r (correlation) Lower CI Upper CI N 7036 OAS3 0.744385 7.40E-27 0.661661 0.809205 145 4648 IFIT1 0.72467 6.83E-25 0.636894 0.793899 145 8999 SERPING1 0.708683 2.03E-23 0.616943 0.781422 145 4647 IFI6 0.701859 8.06E-23 0.608461 0.776078 145 5868 LY6E 0.694095 3.69E-22 0.598839 0.769986 145 4646 IFI44L 0.693568 4.09E-22 0.598186 0.769572 145 7035 OAS2 0.688079 1.16E-21 0.591402 0.765256 145 2079 CMPK2 0.668012 4.39E-20 0.566711 0.749417 145 6487 MX2 0.640268 4.28E-18 0.532872 0.727364 145 6486 MX1 0.633634 1.20E-17 0.524832 0.722064 145 7202 PARP14 0.625737 3.93E-17 0.515285 0.715741 145 3839 GBP1 0.603309 9.68E-16 0.488322 0.697704 145 9739 STAT1 0.593401 3.68E-15 0.47648 0.689698 145 9204 SLC22A23 0.578805 2.43E-14 0.459111 0.67786 145 4649 IFIT2 0.575336 3.76E-14 0.454997 0.675039 145 7209 PARP9 0.560641 2.25E-13 0.437624 0.663056 145 6230 MLC1 0.536979 3.34E-12 0.409841 0.643649 145 8743 RTP4 0.526616 1.21E-11 0.397258 0.635454 144 3517 FCGR1A 0.520442 1.95E-11 0.390565 0.630006 145 3840 GBP2 0.50984 5.76E-11 0.378266 0.621222 145 10725 UBE2L6 0.503062 1.13E-10 0.370427 0.615592 145 4845 ISG20 0.500953 1.39E-10 0.367991 0.613838 145 4651 IFIT5 0.49784 1.88E-10 0.3644 0.611247 145 10495 TRIM22 0.497346 1.97E-10 0.363831 0.610836 145 4644 IFI35 0.494534 2.58E-10 0.360591 0.608492 145 1645 CCR1 0.493976 2.72E-10 0.359949 0.608028 145 4640 IFI16 0.492824 3.04E-10 0.358622 0.607066 145

[0437] Analysis of the data by clustering is shown in FIG. 17 demonstrating the genes clustering together in one group include for example LY6E, SLC22A23, IFI44L, ISG15, SERPING1, MX2, OAS3, IFIT1 and CMPK2.

[0438] FIG. 18 shows an expression graph showing the expression level of ISG15 and IFIT1, where the individuals were sorted by the ISG15 expression level and not by the individual numbering. It can be suggested that the individuals in the right hand side of the graph (provided in the rectangular) would be non responsive to IFN as the initiation level of the genes is high before any treatment or pathological infection.

Example 9

[0439] Dynamic Analysis of Stimulated Healthy Individuals

[0440] As noted above, changes in the expression levels of genes are observed between cohorts of populations (healthy, infected but not treated yet and treated individuals) and well as between individuals that are responsive or non-responsive. One of the challenges was to quantify the dynamic range of a gene, namely what is the possible expression level a gene can exhibit.

[0441] In fact, it can be suggested that understanding and measuring this dynamic range of a set of known genes may help in determine the capabilities of an individual to use its own immune system in response to infection and/or the predicting if an individual will respond to interferon treatment, namely should interferon be administered to a patients as part of any medical treatment.

[0442] The data provided in Gene Expression Omnibus Accession No. Gse32862 provides information on the innate immune response in humans in response to synthetic double stranded RNA (poly ICLC), a ligand for TLR3 and MDA-5 cytosolic RNA helicase. poly ICLC is an immuno-stimulant and may be considered to have the same effect as interferon.

[0443] The study included transcriptional analysis of blood samples obtained from eight volunteers at different time points, after subcutaneous administration of poly ICLC.

[0444] The data analysis showed a peak in gene expression 24 hr following injection of poly ICLC (FIG. 19). FIG. 20 is a magnified volcano showing ISG15, IFIT1, IFI44, OASL and the triggering of IFIH1 and DDX58.

[0445] Principal component analysis (PCA) was applied using the data for ISG15, IFIT, IFI44, IFIT6 in order to evaluate the importance of the genes in predicting behavior of individuals and is shown in FIG. 21. As can be seen, three groups were obtained, one group including the majority of the individuals and two additional groups each one including one individual. It was suggested that the group with the majority of the individuals corresponds to responders or to individuals that will be able to fight the viral infection on their own. The two individuals were suggested to be non-responders.

[0446] Further, the volcano analysis shows that the up regulation following the poly ICLC mimics exactly the model simulation seen in all previous cases.

[0447] FIG. 22 shows the dynamics of gene expression with time in responders and non-responders.

[0448] As can be seen in FIG. 22, the dynamics of the expression is different in responders and non-responders, specifically, the expression in the non responders (dashed line is high at the beginning (time "0"--healthy) and thus the magnitude of change in the expression is limited and narrow. The expression in the responders, on the other hand, is low at the beginning (time 0) and this enables a large change in their future expression. FIG. 23 shows the same results obtained in longer time intervals with the dashed line corresponding to data obtained from non responders.

[0449] FIG. 24 shows the average increase in each gene expression as measured 24 hours after poly ICLC administration compared to baseline.

[0450] The fold increases are shown in Table 8.

TABLE-US-00008 TABLE 8 fold increase of genes Individual IFIT1 ISG15 IF144L IFIT6 i302 5.23 4.54 4.78 4.68 i304 4.99 4.08 3.68 3.58 i305 4.84 4.55 4.42 4.51 i307 1.99 1.12 2.78 2.35 i308 1.30 1.69 4.41 0.86 i309 4.42 4.47 3.98 3.96 i310 3.49 4.06 3.45 3.53

[0451] Since the observed changes in the expression level of the genes are a result of stimulation of the immune system, the results obtained here may be used to assess the capability of an immune system to react for example to a viral infection. In addition, these results may be also used to obtain information on the magnitude of possible changes in genes expression following interferon administration. Thus, taken together the magnitude of change observed in the expression level of the genes provides a range of the M values in the tested population. Namely, an individual having the highest increase in the expression, for example i302 is characterized with an M value of 1 and is expected to be able to use the immune system and to respond to treatment. On the contrary, an individual having the lowest increase in the expression, for example i308 is characterized with an M value of 0.2 and is expected to fail in inducing the immune system and not to respond to treatment.

[0452] M may be calculated from the area under the curve from baseline to its peak (around 24 hr) and back to baseline should be calculated (FIG. 25). The area of the triangle represents added amount of the fighting gene used to combat the virus in the next cycle (.about.48 hr). Thus the maximal reached pick can represent M=1 and other M's can be derived from the ratio of the triangle area to this maximum triangle area.

[0453] Table 9 shows the change in gene expression obtained after administrating poly ICLC in vivo and in vitro. In vitro samples were obtained from PBMCs isolated from blood of healthy donors via density gradient centrifugation. In vivo samples were obtained from subjects randomized to either 1.6 mg poly ICLC or placebo (sterile saline) in a 2:1 ratio, administered s.c.

[0454] As can be seen, similar patterns are observed both in vivo and in vitro suggesting that in vitro data can be used to calculate M values.

TABLE-US-00009 TABLE 9 changes in gene expression after administrating poly ICLC in vivo and in vitro. logFC logFC Marker in vivo in vitro gene pICLC pIC IFIT3 4.473713385 4.741052 IFIT1 4.384596081 5.420633 IFI44L 4.171223257 4.799476 IFI6 4.016294707 2.691117 HERC5 3.871166452 3.248894 IFIT3 3.75211871 4.750157 ISG15 3.726288606 4.480175 IFIT2 3.702681715 4.218502 RSAD2 3.628919044 4.957172 MX1 3.440496672 2.968754 IFIT3 3.438007383 2.896002 OASL 3.437579624 3.757009 IFITM3 3.301297669 3.898404 EPSTI1 3.288106942 3.001505 IFI44 3.233595065 3.578491 OAS1 3.122394636 3.803166 LAMP3 2.958338552 1.798831 MT2A 2.951819567 1.502288 HES4 2.904583684 2.542752 GBP1 2.885817399 2.094531 IRF7 2.818183268 2.601032 FCGR1B 2.815964332 0.34899 OAS2 2.744736242 2.835379 TNFSF10 2.708541769 3.520021 GBP5 2.707972339 1.841636 MT1A 2.696990876 1.162177 CXCL10 2.673387432 4.427627 OAS1 2.669871256 3.51157 IFI35 2.653402642 2.562161 LAP3 2.647847669 1.792573 SERPING1 2.629612763 2.03007 XAF1 2.627899914 3.065335 IFI27 2.616810145 3.207039 LY6E 2.578162512 2.557162 ZBP1 2.572024498 1.786611 SAMD9L 2.559958622 2.829755 OASL 2.488510388 2.512218

[0455] An exact pattern is shown by Gaucher et al in Gene Expression Omnibus Accession No. GSE13699, who examined the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of forty volunteers.

[0456] Table 10 shows the top ranking genes in two tested in vivo vaccination studies in two different locations (Montreal, Canada and Lausanne, Switzerland). Both groups received YF17D (ratio measured 1 week after administration) and the polyI CLC, averaged on all participants.

TABLE-US-00010 TABLE 10 Top ranked genes expressed in poly ICLC administered individuals and in individuals administered with yellow fever (YF) vaccine 17D (YF17D) in two tested groups. Group A Group B polyc (yf Canada) (yf Swiss) ratio 24 hr/ ratio 1 week/ ratio 1 week/ baseline baseline baseline RSAD2 IFI44L IFI44L IFI44L IFIT1 RSAD2 ISG15 ISG15 IFI44 IFI44 RSAD2 ISG15 OA53 HERC5 IFI27 HERC5 IFITM3 OAS3 LY6E IFI6 IFIT3 EPSTI1 IFIT3 EPSTI1 IFI27 LAMP3 HES4 IFITM3 IFI27 HERC5

[0457] Table 10 shows that there is a representative set of genes that is being regulated after administration of immune response stimulants. This suggests that the arsenal of observed genes may be regarded as the genes related to the M phenotype in a person.

[0458] Table 11 shows that among the cohort of individuals tested in Group A, a phenotype can be seen as provided in bold. The individuals that show a marked increase in the genes expression following stimulation of the immune response are suggested to correspond to individuals that will be able to use their immune system or to respond to therapy or both. The individuals that show a low increase in the genes expression are given in plain numbers and correspond to individuals that will not be able to use their own immune system, will not respond to treatment or both.

TABLE-US-00011 TABLE 11 Top ranking genes that are up regulated and extent of regulation. Marker gene diff diff diff diff diff diff diff diff diff diff diff avg IFI44L 1.9 3.25 5.7 3.2 4.1 5.5 3.7 5.2 4.7 0.8 3 3.73 RSAD2 1.9 3.47 5.6 3.4 4.2 4.5 3.9 5.4 3.9 1.2 3.5 3.72 IFI44 2.1 2.79 5.4 3.8 3.6 5.1 3.7 4.8 4 0.7 3 3.55 ISG15 1.8 3.16 4.6 2.5 3.5 4.2 3.3 4.4 3.2 1.3 2.7 3.16 IFI27 5 3.39 2.7 2.6 3.2 4.7 4.5 3.8 3.1 0 2.96 OAS3 1.2 2.22 4.6 2.2 3.2 3.5 2.8 4 2.5 0.4 2.4 2.64 IFIT3 2.3 2.61 3.7 2.6 2.6 2.9 2.8 3.5 2.1 0.8 1.8 2.52 EPSTI1 1.4 2.43 4 2.23 2.9 3.6 2.1 3.6 2.9 0.5 1.5 2.47 HES4 1.7 3.2 3.3 2.02 2.1 3.1 2.9 3.5 1.9 0.5 2.2 2.4 HERC5 0.9 2.03 3.7 1.53 2.7 3.2 2.4 3.4 1.6 1 2.4 2.26

[0459] FIG. 26 is a graph showing simulation of replication vs. immune defense, per different M. As can be seen for the same individual with an M value suitable for K=3, that is calculated as follows M=1-1/3=0.66 being infected by a variety of viruses with varying K (multiplication rate). FIG. 26A shows that at K rate higher than 3, the virus progresses. FIG. 26B shows situation where K smaller than M, attenuation of the virus is achieved.

[0460] FIGS. 27A-B is a graph showing simulation instructing how much PI is needed per each individuals M and virus K. The PI effectively increases the individuals M, FIG. 27A shows an individual with M=0.6, FIG. 27B shows an individual with M=0.8 both are affected by the same range of PI injections. The better M the quicker an individual to become a responder with the same PI. The results shown here suggest that if M is measured (as shown above) and K is known for each type of virus, a simulator may be used to guide any clinical decision on the frequency of treatment (by simulation that changes each point on the graph 2 days or 3 days instead of one week). In addition, such a simulator may also indicate if and how much further combined therapy, for example protease inhibitors (PI) is required.

Example 10

[0461] Correlation Between Virus Load and Induction of the Ubiquitin Genes Expression

[0462] As shown in Example 2B, infection of macrophages with influenza H1N1 and H5N1 strains, led to a significant elevation in the expression of the ubiquitin genes. The virulent strain, H5N1 showed a clear enhanced induction of the expression of said genes. To further establish the hypothesis that the virulence of the pathogen, as determined by measuring the increase in virus load, is correlated with the extent of the induced expression of the ubiquitin genes of the invention, specifically, ISG15, USP18, HERC5 and UBE2L6, the inventors have analyzed data of different host cells infected with three strains of influenza virus. Gene Expression Omnibus Accession No. GSE31518, GSE 31471 and GSE31472 provide gene expression data obtained at 2, 4, 6, 8 and 10 hours post infection of three different host cell lines (A549, MDCK and CEF) with three different Influenza A virus strains, pH1N1 (A/Singapore/478/2009), H9N2 and H5N2. Table 12, presents virus load (as indicated by measuring the vRNA copy number) of the three influenza strains 10 hr post infection of each of the three different host cell lines. FIG. 28 shows sum of the expression of the ubiquitin genes, ISG15, USP18, HERC5, UBE2L6, as measured in A549 cells at 2, 4, 6, 8 and 10 hours post infection with the three different influenza strains. A significant correlation between viral load in the infected A549 and the Ubiquitin genes sum expression is clearly observed.

[0463] The inventors have next examined the feasibility of using data of virus load and gene expression data to evaluate the ability of a specific individual (having a specific M value), to overcome an infection of a specific pathogen having a specific replication rate. Therefore, gene expression data of healthy human volunteers inoculated with intranasal influenza A H1N1 and H3N2 strains was analyzed by the inventors. Gene Expression Omnibus Accession No. GSE52428 provide gene expression data obtained from microarrays assay of peripheral blood at baseline and every 8 hours for 7 days following intranasal influenza A H1N1 or H3N2 inoculation in healthy volunteers.

[0464] FIG. 29 shows the sum of the expression of the 4 ubiquitin genes of the invention in different time points up to 120 hr post infection of H3N2 in all nine individuals (numbered as 1 to 9).

[0465] Simulation based on the model of the invention as described in Example 1 was performed using the data of all 9 infected individuals based on the calculated rate of induced expression of the ubiquitin genes, ISG15. USP18, HERC5 and UBE2L6.

[0466] FIGS. 30 and 31, present the result of such simulation using the data of individual 6. Assuming that individual I is infected with a virus having a replication rate of 1.93 every 6 hrs, as presented in FIG. 30, the sum of the expression of the 4 genes, is maximal between 12 to 18 hrs post infection, and reduced after 36 hrs, as shown in the lower panel of the figure. The rate of expression of these genes is correlated to the replication of the virus, that is maximal between 12 to 18 hrs post infection and is significantly reduced after 36 hrs, indicating that the specific individual may successfully reduce the virus load of a virus having replication rate of 1.93, and therefore overcome the infection. FIG. 31 presents simulation of the same individual infected with a virus having a little higher replication rate, of 1.94. As clearly shown in the figure, the same individual, when confronted with said virus, shows increase in the gene expression of the signatory genes of the invention (bottom panel), however, 24 hrs post infection, the replication rate of the virus increases with no corresponding increase in the expression of the signatory genes, indicating that said individual may experience failure of overcoming an infection of virus having a rate of replication of 1.94 each 6 hrs. It should be appreciated that M as it is measured for the whole range (min to max) or alternatively, as it is made of the segmented parts measured for the individual.

[0467] This example clearly demonstrates the correlation between the expression of the signatory genes of the invention and the ability of the virus to propagate in a specific individual having a specific ability of increasing expression of the signatory genes, or in other words, having a specific M value.

TABLE-US-00012 TABLE 12 Comparison of the M gene vRNA levels at 10 hpi in influenza virus-infected A549, MDCK and CEF vRNA (copy numbers) Virus A549 MDCK CEF H1N1 4.43 .+-. 0.07 5.74 .+-. 0.07 6.91 .+-. 0.05 H9N2 1.71 .+-. 0.04 3.42 .+-. 0.08 7.34 .+-. 0.07 H5N2(F118) 5.71 .+-. 0.04 4.91 .+-. 0.02 7.47 .+-. 0.10 H4N2(F189) 5.70 .+-. 0.08 5.01 .+-. 0.20 7.28 .+-. 0.06 H5N3 6.83 .+-. 0.04 5.93 .+-. 0.03 8.29 .+-. 0.06 pH1N1/276 1.92 .+-. 0.06 2.11 .+-. 0.26 5.10 .+-. 0.52 pH1N1/471 1.06 .+-. 0.09 2.69 .+-. 0.20 5.27 .+-. 0.11 pH1N1/478 1.67 .+-. 0.12 2.53 .+-. 0.20 4.92 .+-. 0.33 pH1N1/527 1.32 .+-. 0.11 2.46 .+-. 0.18 5.70 .+-. 0.21

Example 11

[0468] Prediction of Response to Treatment of IFN-.alpha. in Blood Samples and Liver Tissue of HCV Patients

[0469] To further establish the model of the invention, the inventors next evaluated the ability of calculating the M parameter of an individual (that reflects the ability of a specific individual to overcome a pathologic disorder), infected by HCV in this case, from the measured data of the expression of the signatory genes of the invention, namely, UBE2L6, USP18, HERC5, OAS2 and ISG15, and the reduction in virus load as measured 4 weeks after treatment with Interferon alpha. Therefore, RT-PCR analysis of the genetic profile in Peripheral Blood Mononucleated Cell (PBMC) and liver tissue of HCV patients was performed on samples obtained before initiation of IFN-.alpha. treatment, and one month after.

[0470] The expression levels of the following genes: UBE2L6, USP18, HERC5, OAS2 and ISG1 (using 3 probes) in each patient was measured by RT-PCR and normalized to a control gene GAPDH. In addition, in each one of the eight patients, the virus load was determined before treatment and 4 weeks after treatment with IFN-.alpha. using commercial kits.

[0471] Based on the sum expression of the five genes, an experimental M was calculated as follows:

M=1-[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min)].

[0472] Wherein Ex.sub.max is a maximal measured sum expression value of the five genes and Ex.sub.min is a minimal measured sum expression value of the five genes within a population and Ex.sub.samp is the measured sum expression value of the five genes for a specific patient within this population, to whom the M is calculated.

[0473] Based on the results of the change in virus load measured before treatment and after 4 weeks of treatment, two populations of HCV patients were defined: responders and non-responders.

[0474] A responder was considered as a patient that the amount of viral load was reduced by more than 100 within 4 weeks, (2 in log 10). A non-responder was considered as a patient that the amount of viral load was reduced by less than 100 within 4 weeks, (2 in log 10).

[0475] Experiments were conducted on different populations of HCV patients from samples obtained from PBMC and from liver tissue samples.

[0476] Experiments on Blood Samples:

[0477] As can be seen in FIG. 32, the patients denoted as p2, p1, p3, p5, p4, and p8 experienced an amount of down regulation of virus load higher than 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above.

[0478] In contrast, patients denoted as p6 and p7 experienced an amount of down regulation of virus load lower than 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.

[0479] The results in FIG. 32 demonstrated that the sum of normalized and scaled expression of the five genes UBE2L6, USP18, HERC5, OAS2 and ISG15 was significantly reduced in patients that were considered as responders (p2, p1, p3, p5, p4, and p8) compared to the expression in patients considered as non-responders (p6 and p7).

[0480] As indicated above, the virus load of these 8 HCV patients was recorded before and one month (4 injection cycles) after Pegylated Interferon-alpha Treatment. Gene signature of the UBE2L6, USP18, HERC5 and OAS2 genes expression was derived and scaled (0-1) before treatment. Simulation is carried out for different M values per 4 cycles of treatment.

[0481] Table 13 shows M values and their corresponding virus load decline in each of the 4 weeks of treatment with Peg Interferon as calculated by the model of the invention as described in Example 1.

TABLE-US-00013 TABLE 13 Simulation of calculated M values vs. reduction of virus load after treatment M value treatment_w1 treatment_w2 treatment_w3 treatment_w4 0.87 1 1.538461538 2.366863905 3.641329085 0.88 1 1.666666667 2.777777778 4.62962963 0.89 1 1.818181818 3.305785124 0.89 0.9 1 2 4 8 0.91 1 2.222222222 4.938271605 10.9739369 0.92 1 2.5 6.25 15.625 0.93 1 2.857142857 8.163265306 23.32361516 0.94 1 3.333333333 11.11111111 37.03703704 0.95 1 4 16 64 0.96 1 5 25 125 0.97 1 6.666666667 44.44444444 296.2962963 0.98 1 10 100 1000 0.985 1 13.33333333 177.7777778 2370.37037 0.998 1 100 10000 1000000 0.999 1 200 40000 8000000

[0482] As shown by the table, assuming that the initial measured virus load is 1 (treatment w1), different calculated M values indicated in the table, result in the indicated reduction (folds of reduction) in virus load.

[0483] The virus load and expression values of the UBE2L6, USP18, HERC5 and OAS2 genes obtained for 7 of the HCV patients analyzed above, were now calculated using the simulation values of Table 13, and are presented in Table 14.

[0484] More specifically, Table 14 shows the correlation between the measured fold of virus load reduction after 1 month of interferon treatment (second column from left), and the measured expression of the 4 genes of the invention (the third column from left presents sum of the expression values of all 4 genes, each value scaled between 0 to 1).

TABLE-US-00014 TABLE 14 Calculated M values vs. reduction of measured HCV virus load after IFN treatment fold decline in VL after 1 scaled_expression scaled simulation patient month simulation M scaled_expression (0-1) M (0_1) p2 14535.3 0.9918 0 0 0.950819672 p1 16760.7865 0.9921 0.96137233 0.251731718 0.953161593 p3 51955.95 0.9948 1.032753453 0.270422596 0.974238876 p4 20120.4 0.9928 1.144285694 0.299626892 0.958626073 p8 2061843.2 0.9981 2.057379621 0.538717093 1 p6 3.48570259 0.87 3.525351059 0.923099876 0 p7 52.4136592 0.948 3.81903535 1 0.608899297

[0485] As shown in the table, for patient p1, for example, the measured reduction in virus load was about 16,000 folds, going back to the simulation of reduction in virus load as a parameter of M value, as presented in Table 13, an M value of about 0.992 is correlated with reduction of about 15,625 folds in the measured virus load. This predicted M value (shown in the second column from left), is correlated to a scaled expression value of 0.25. In contrast, patient p6 that showed only 3.48 folds reduction in virus load, was correlated with a scaled expression of 0.9, and a low M value of 0.87 (in the simulation Table 13, reduction of about 3.6 folds is correlated with an M value of 0.87). The right column of Table 14 shows scaled M values, of between 0 to 1, were the lowest M value, 0.87, was considered as 0 (as shown for patient p6), and the higher M value in the simulation, 0.9981, is considered as 1 (as shown for patient p8). When correlating to the scaled expression values (sum of the expression values of the 4 signatory genes), it seems that patients having scaled expression value of below 0.5, efficiently reduce the virus load and are therefore considered as responsive to interferon treatment, whereas patients presenting an initial scaled expression value of above 0.5, and a low M value, show poor response that is reflected in low ability to reduce virus load.

[0486] FIG. 33 clearly shows that the four responders have M values between 0.95 to 1 while their expression value of the signatory genes is below 0.5. The two non responders (p6 and p7 having low M values and a corresponding high levels of initial expression of the signature genes, of above 0.9.

[0487] This example clearly demonstrate the feasibility of using the measured initial expression of the signatory genes of the invention, before starting any treatment, to evaluate the personal M value that distinguish between responders and non-responders and also indicate the extent of predicted responsiveness of a specific individual. The method of the invention thereby provides a powerful tool for personalized medicine.

[0488] Further analysis of the sum of the expression of two genes, HERC5 and UBE2L6 in HCV patients is shown in FIGS. 34A and 34B. In the analysis shown in these figures, patients denoted as p2, p1, p3, p4, p8, p11, p101 and p12 experienced clear reduction of virus load that is more than by 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above, whereas patients denoted as p6 and p7 experienced reduction of virus load lower than by 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.

[0489] Patient p12 experienced a reduction in virus load of 2.02 and thus theoretically should be considered as responder. However, in the following analysis, this patient was not categorized to any one of the groups since the value of 2.02 is in the border between responders and non-responders.

[0490] Analysis of the gene as described above is shown in FIG. 34A. As shown in FIG. 34A, a strong correlation was observed between the sum expression of the five genes and the patient's response to IFN treatment. A lower expression value was measured in patients p2, p1, p3, p4, p8, p11, p101 and p12 who were found responsive to IFN treatment. On the other hand, a high expression value was measured in patients p6 and p7 who were found not responsive.

[0491] Based on the experimental data of the expression of the two genes detailed above, the M value was calculated for each one of the patients. FIG. 34B shows the experimental M value calculated for each one of the tested patients presented in FIG. 34A.

[0492] As can be seen, a correlation exists between the M value and the patient's responsiveness to treatment. Patients having a high M value were found to be responsive to IFN treatment, whereas patients having a lower M value were found to be not responsive to treatment.

[0493] The effect of HCV in liver tissue may be considered different than the effect in blood samples. In HCV liver the battle is occurring inside hepatocytes and the inventor assume k=5 based on previous publications [Ruy M. Ribeiro et al., (2012)]. In PBMC the specificity of the cells is not as clear and the inventors assume it's in a close range to the shaded amount transferred to the blood from the source hepatocytes.

[0494] The cutoff value may be calculated by using the following equation:

M.sub.cutoff=I1-/K

[0495] Thus for a virus characterized by a K value of 5, the theoretical M.sub.cutoff value is 0.8. As can be seen in FIG. 34B, the inventor assumes for this example the range of M to be between 7.9 to 8.9 and scaled M accordingly. Once more viral loads data points in time were received the final range for the group was narrower (0.815 to 0.862). It should be noted that there is an inverse correlation between the calculated M value and the sum of the genes expression.

[0496] The inventors have also performed an analysis using the expression of a single gene, HERC5 which is considered as a predictive gene. FIG. 35 shows the patients denoted as p208, p213, p102, p201, p211, p203, p204, p202 and p101 experienced a reduction of virus load by more than 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above.

[0497] In contrast, patients denoted as p206 and p207 experienced reduction of virus load that is lower than by 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.

[0498] Patient denoted as p212 experienced reduction regulation of virus load of 2.02 and is thus considered on the boarder between responder and non-responder to IFN-.alpha. treatment in line with the definition above.

[0499] The results in FIG. 35 demonstrated that the expression of the gene HERC5 was significantly reduced in patients that were considered as responders compared to the expression in patients considered as non-responders. Interestingly, the expression of the gene HERC5 was significantly reduced also in patient denoted as p212, which experienced a reduction of virus load by about 100 (observed as 2 in log 10 scale).

[0500] The inventors have used the virus load measured or each patient at the beginning and at the end of the experiment and used these parameters for the model simulation to obtain a value of M for each patient, taking into account that K for HCV in blood samples is 5 [Ruy M. Ribeiro et al., (2012)].

TABLE-US-00015 TABLE 15 The expression of HERC5 gene (arbitrary units -2{circumflex over ( )}-dct rt-pcr_) and the calculated M for each one of the tested HCV patients. M calculated from Patient Expression of simulation # HERC5 assuming 4 weeks p202 0.00144 0.8635 p204 0.042563 0.863 p201 0.047145 0.862 p203 0.076972 0.867 p212 0.100299 0.836 p211 0.108098 0.872 p208 0.111671 0.883 p102 0.181633 0.8785 p213 0.188302 0.875 p101 0.28833 0.861 p207 1.801784 0.832 p206 3.157128 0.816

[0501] As shown in Table 15, the M values of all patients varied between 0.816 to 0.883.

[0502] The expression value of HERC5 and the M value obtained from the simulation were normalized with respect to the patient's population. FIG. 36, shows for each patient the normalized simulated M value (black box) and the normalized expression of HERC5 gene (open box). As can be seen, an inverse correlation is observed between the M value and the expression of HERC5 gene, with the patients being considered as responsive having considerably higher M value and the patients being considered as non-responsive having considerably lower M value.

[0503] Interestingly, the patient denoted as p212 that was considered on the boarder with respect to the virus load and responsive with respect to the HERC5 expression, has an intermediate M value. Simulation of the data of the patient denoted as p212 for a long time period of three month resulted in a M value correlating to responsiveness (data not shown).

[0504] Experiments on Tissue Samples

[0505] The data of liver tissue analysis of HCV patients is shown in FIGS. 37A and 37B. The patients denoted as p25, s12, p24, p26, s6, p22, s5 and s13 experienced reduction of virus load higher than by 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above.

[0506] In contrast, patients denoted as p27, s20, p23, s18, s15, p21, s16, cts17 and sb11 experienced an amount of down regulation of virus load lower than 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.

[0507] The results presented in FIG. 37A demonstrate that the sum of normalized and scaled expression of the five genes UBE2L6, USP18, HERC5, OAS2 and ISG15 was significantly lower in patients that were considered as responders (patients p25, s12, p24, p26, s6, p22, s5 and s13) compared to the sum of the normalized expression in patients considered as non-responders (patients p25, s12, p24, p26, s6, p22, s5 and s13).

[0508] As indicated above, the M value was calculated for each patient using the experimental data obtained for the five genes. FIG. 37B shows the experimental M value for each one of the tested patients as in FIG. 37A.

[0509] As can be seen in FIG. 37B, there exists a strong correlation between the M value of a patient and the patient's response to treatment. The patients who were found to be responsive to IFN treatment (namely, patients p25, s12, p24, p26, s6, p22, s5 and s13) were characterized by a high M value (ranging between 0.86 to 0.88, whereas patients who were found to be non-responders to IFN treatment (namely, patients p25, s12, p24, p26, s6, p22, s5 and s13) were characterized by a low M value (ranges between 0.79 to 0.834).

[0510] As shown in FIG. 37B, the M value (that may be considered as a cut off to distinguish between responders and non-responders may range between 00.835 to 0.855. In this illustration example as in the PBMC case we assumed a distribution of M between 0.79 to 0.89.

[0511] A clear link between the experimental data obtained from tissue samples and the mathematical model described herein indicate that there is a strong correlation between the simulation of M and the experimental data. HCV in tissue samples is characterized by a doubling time of 5, namely K=5. As shown herein in FIG. 37C, a simulations of the above model equations by taking K as 4, showed that at lower M values of 0 to 0.72, namely in those patients being characterized by M values of up to 0.72, the virus is capable of multiplying and hence the disease is progressing, as the immune system or IFN treatment fail to eradicate the virus.

[0512] An M value that is higher than 0.72, clearly reduce virus load thereby eliminating the disease caused by a virus with k=4. This may indicate that either the immune system or IFN treatment regimen or both succeed in eliminating the virus.

[0513] Similarly, HCV patients characterized by M values of above 0.8 will most likely be able to reduce or eliminate the disease.

[0514] These results clearly indicate that there is the model simulation of the invention predicts with a high accuracy a patient's behavior for a particular virus. Namely, for a given virus an accurate cutoff value of M can be determined, and such M value distinguishes patients that will be able to "fight" the disease by responding to treatment, and those who will still suffer from the disease, namely, patients that are not responsive to treatment.

Example 12

[0515] Calculation of M Using Model Simulation in HCV Patients Treated with Combination Therapy of IFN-.alpha. and Ribavirin (Rib)

[0516] Data from the publication by Honda M. et al. [Journal of Hepatology 53: 817-826 (2010)] was used for correlation analysis with the mathematical model. Superficially, the inventors used virus load measured in thirty HCV patients before and after administration of IFN-.alpha. 2b at different time points. In accordance with the response to treatment, Honda M. et al. have defined treatment outcomes according to as follows: sustained viral response (SVR) --clearance of HCV viremia at 24 weeks after initiation of therapy; transient response (TR)--no detectable HCV viremia at 24 weeks but relapse during the follow-up period; and non-response (NR).

[0517] FIG. 38 shows a differential genetic expression obtained in liver biopsies of responders and non-responders HCV patients after combined therapy as described in Masao H. et al. Specifically, the left hand side shows the ratio of expression level of genes in responders vs. non-responders at day 0 (namely, before treatment), whereas the right hand side shows the results obtained after one week following treatment of IFN and RBV. The results provide a representative set of genes having a low expression value before treatment in patients who are referred to as responders. One week after treatment, these genes were clearly up regulated in the responders group.

[0518] Among the genes shown in the volcano plot, the inventors have used the expression of HERC5 for further analysis as this gene was the predominant gene and obtained the best p-value in the analysis. FIG. 39A shows the expression of HERC5 before treatment and FIG. 39B shows the expression of HERC5 after one week of treatment relative to the expression before treatment.

[0519] The results in FIG. 39A show that the initial HERC5 expression level in responders (including the patients defined as TR is low compared to non-responders. As shown in FIG. 39B, a week after treatment, a clear elevation in the expression of HERC5 gene appears in the responder group (and in the patients defined as TR), whereas the non-responders show a clear reduction. Based on these results it may be suggested that the expression level of this gene in responders is close to its saturation level, and therefore interferon cannot induce elevation in the expression of these genes.

[0520] The inventors of the present application then used the virus load data measured for each patient at different time points in a model simulation as described herein to obtain an M value for each one of the tested patients (assuming that k is 5).

[0521] FIG. 40 show normalized M value obtained from the model simulation for each one of the patients. The results indicate that the patients being considered as non-responsive have considerably lower M values, whereas the patients that show response (defined as SVR or TR) have considerably higher M values.

[0522] Interestingly, in two of the responsive patients that were characterized with the heights M values in FIG. 40 (0.97 and 0.99), no virus was detected after 48 hours of treatment. These results suggest that for patients characterized with higher M value, a short treatment period is sufficient to reduce/eliminate the virus and there is no need to treat these patients using long-term treatment.

[0523] The M values calculated from the model simulation described herein were correlated to normalized expression of HERC5 in order to obtain a "calibration data" of M values.

[0524] Table 16 shows for each patient, the normalized expression of HERC5 before treatment and the model calculated M value. Such calibration data may be further used for derivation of M. The patients category NR, SVR or TR is as defined above.

TABLE-US-00016 TABLE 16 The expression of HERC5 gene and the simulated M for each one of the tested HCV patients. Normalized Expression of Patient HERC5 Simulated category before treatment M value NR 0.480499 0.7995 NR 1 0.8002 NR 0.780031 0.8004 NR 0.533021 0.803 NR 0.704628 0.804 NR 0.689028 0.805 SVR 0.694228 0.81 SVR 0.161206 0.81 TR 0.460218 0.81 SVR 0.330213 0.82 TR 0 0.824 SVR 0.25741 0.85 SVR 0.0078 0.97 SVR 0.01014 0.99

Example 13

[0525] Determining Treatment Duration by Calculating M Using Genetic Expression in HCV Patients Treated with IFN-.alpha.

[0526] Seventeen HCV patients were examined in this study as also presented in Example 11 and FIGS. 37A and 37B. The expression of HERC5 was determined for each one of the patients before initiation of treatment using RT-PCR.

[0527] Based on the response to treatment, the patients were categorized into responders or non-responders as shown in FIG. 37.

[0528] Using the calibration curve prepared in Example 12, the inventors have determined for each one of the patients, an M value based on the experimental normalized value of expression of HERC5. It should be noted that the inventor considers treatment with every day using IFN plus ribavirin, as the best way for calculating an accurate M and therefore approximates the treatment with PegIFN during the week.

[0529] Table 17 shows the normalized expression of HERC5 as measured by RT-PCT and the M value determined using the calibration data described above.

TABLE-US-00017 TABLE 17 The expression of HERC5 gene and the derived M (from the calibration data) for each one of the tested HCV patients. Normalized Expression of Patient HERC5 derived category before treatment M value NR s18 0.40773 0.7995 NR p21 0.413093 0.7995 NR p23 0.448118 0.7995 NR p27 0.494851 0.7995 NR cts17 0.589386 0.803 NR s20 0.654809 0.805 NR s16 0.804371 0.8004 NR s15 0.873918 0.8004 NRsb11 1 0.8002 Responsive p25 0 0.95 Responsive p12 0.030833 0.95 Responsive p26 0.076105 0.95 Responsive p24 0.113371 0.84 Responsive s6 0.120362 0.84 Responsive p22 0.170882 0.84 Responsive p13 0.250061 0.85 Responsive s5 0.276657 0.85

[0530] These results show that the patients that were experimentally categorized as non-responders have lower M value compared with the patients that were experimentally categorized as responders. This suggest that measuring the expression of a single gene before treatment in a given patient and using this expression to obtain the corresponding M value for this patient, may predict if the patient will respond to treatment.

[0531] For prediction of treatment regimen, data from two patients were used denoted as s18 (non-responder) and p25 (responder). As shown in Table 17, using the initial virus load and the derived M for each one of these two patients, the viral load after 4 weeks was measured as presented in Table 18. The figure also discloses the normalized expression of HERC5 marker gene calculated for both patients.

TABLE-US-00018 TABLE 18 virus load and M values of HCV patients Baseline Virus load HERC5 Derived virus after Patient expression M load 4 weeks S18 0.40773 0.7995 79986/07 168,162 P25 0 0.95 4539 HCV Not detected

[0532] Based on the model described herein, FIGS. 41A and 41B show results of model simulation for s18 and p25, respectively providing calculated predicted virus load.

[0533] As shown in FIG. 41A, patient denoted as s18 having a measured initial virus load of 79986.07 (Table 18) and a calculated derived M value of 0.7995, exhibits an increase in virus load after a month up to a value of about 170,000. This simulation strongly correlates with the virus load measured in this patient after four weeks of treatment, which is about 168,162, as presented in Table 18.

[0534] In addition, as shown in FIG. 41B, patient denoted as p25 having an initial virus load of 4,539 and a derived M value of 0.95, exhibits a decrease in virus load after a month up to a value basically to baseline level. This strongly correlates with the fact that no virus load was measured in this patient after four weeks of treatment as presented in Table 18.

[0535] Thus, for a patient having an M value of 0.795 (p18), IFN treatment would not reduce viral load and therefore should be avoided. However, for a patient having an M value of about 0.95, eradication of the virus is achieved within several days (less than a week) of treatment. The data shown herein therefore also provide means to determine the treatment duration and also type of treatment.

Example 14

[0536] Predicting Treatment Regimen for Patient Suffering from HCV and HIV

[0537] Data from the publication of Murphya, Alison A. et al, AIDS 2011, 25:1179-1187 was used to study the ability of the model to predict treatment regimen. Specifically, the data of average virus load obtained from all patients at different time points was used in the simulation to obtain a M value of 0.82 (K was set at 5).

[0538] FIG. 42 shows the model simulation (right curve) of the data providing a M value of 0.82.

[0539] The simulated M value (of 0.82) was then used together with the initial average virus load in a further simulation that used different dosing regimen, twice a week instead of once weekly. As can be seen in the left curve of FIG. 42, treatment twice a week was more efficient.

[0540] Further, the patient denoted as s18 (non responder) was further used in a model simulation of treatment regimen. Using the M value of 0.7995 and the initial virus load, the treatment outcome was simulated. As shown in the right curve in FIG. 43, there was an increase in virus load indicating that the patient was not responsive to treatment. Interestingly, as shown in left curve of FIG. 43, increasing the dosing regimen from once a week to twice a week did not result in a response to treatment. This data suggest that even treating this patient with higher amount and/or different regimen is not efficient and new medications need to be used.

TABLE-US-00019 TABLE 19 List of Sequences SEQ ID NO: Details 1 DNA sequence of ISG15 ubiquitin-like modifier (ISG15) 2 Protein sequence of ISG15 ubiquitin-like modifier (ISG15) 3 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) 4 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) 5 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) 6 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) 7 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 8 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 9 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 10 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 11 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) 12 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) 13 DNA sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 14 Protein sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 15 DNA sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 16 Protein sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 17 DNA sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 18 Protein sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 19 DNA sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 20 Protein sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 21 DNA sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 22 Protein sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 23 DNA sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 24 Protein sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 25 DNA sequence of 2'-5'-oligoadenylate synthetase 3 (OAS3) 26 Protein sequence of 2'-5'-oligoadenylate synthetase 3 (OAS3) 27 DNA sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 28 Protein sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 29 DNA sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 30 Protein sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 31 DNA sequence of HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) 32 Protein sequence of HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) 33 DNA sequence of ubiquitin specific peptidase 18 (USP18) 34 Protein sequence of ubiquitin specific peptidase 18 (USP18) 35 DNA sequence of Radical S-adenosyl methionine domain containing 2 (RSAD2) 36 Protein sequence of Radical S-adenosyl methionine domain containing 2 (RSAD2) 37 DNA sequence of myxovirus (influenza virus) resistance 1 (MX1) 38 Protein sequence of myxovirus (influenza virus) resistance 1 (MX1) 39 DNA sequence of myxovirus (influenza virus) resistance 1 (MX1) 40 Protein sequence of myxovirus (influenza virus) resistance 1 (MX1) 41 DNA sequence of myxovirus (influenza virus) resistance 1 (MX1) 42 Protein sequence of myxovirus (influenza virus) resistance 1 (MX1) 43 DNA sequence of Interferon-induced protein 44-like (IFI44L) 44 Protein sequence of Interferon-induced protein 44-like (IFI44L) 45 DNA sequence of DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58) 46 Protein sequence of DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58) 47 DNA sequence of interferon alpha 1 48 Protein sequence interferon alpha 1 49 DNA sequence of interferon alpha 2 50 Protein sequence of interferon alpha 2 51 DNA sequence of Interferon alpha-4 52 Protein sequence of Interferon alpha-4 53 DNA sequence of Interferon alpha-5 54 Protein sequence of Interferon alpha-5 55 DNA sequence of Interferon alpha-6 56 Protein sequence of Interferon alpha-6 57 DNA sequence of Interferon alpha-7 58 Protein sequence of Interferon alpha-7 59 DNA sequence of Interferon alpha-8 60 Protein sequence of Interferon alpha-8 61 DNA sequence of Interferon alpha-10 62 Protein sequence of Interferon alpha-10 63 DNA sequence of Interferon alpha-1/13 64 Protein sequence of Interferon alpha-1/13 65 DNA sequence of Interferon alpha-14 66 Protein sequence of Interferon alpha-14 67 DNA sequence of Interferon alpha-16 68 Protein sequence of Interferon alpha-16 69 DNA sequence of Interferon alpha-17 70 Protein sequence of Interferon alpha-17 71 DNA sequence of Interferon alpha-21 72 Protein sequence of Interferon alpha-21 73 DNA sequence of Interferon, beta 1 74 Protein sequence of Interferon, beta 1 75 DNA sequence of Interferon omega-1 76 Protein sequence of Interferon omega-1 77 DNA sequence of Interferon-gamma 78 Protein sequence of Interferon-gamma 79 DNA sequence of E1-like ubiquitin-activating enzyme (UBElL) 80 Protein sequence of E1-like ubiquitin-activating enzyme (UBElL) 81 DNA sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 82 Protein sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 83 DNA sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 84 Protein sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 85 DNA sequence of Interferon alpha-inducible protein 27 (IFI27) 86 protein sequence of Interferon alpha-inducible protein 27 (IFI27) 87 DNA sequence of Interferon alpha-inducible protein 27 (IFI27) 88 Protein sequence of Interferon alpha-inducible protein 27 (IFI27) 89 DNA sequence of Interferon induced with helicase C domain 1 (IFIH1) 90 Protein sequence of Interferon induced with helicase C domain 1 (IFIH1) 91 DNA sequence of Toll-like receptor 7 (TLR-7) 92 Protein sequence of Toll-like receptor 7 (TLR-7) 93 DNA sequence of Interferon regulatory factor 7 (IRF7) 94 Protein sequence of Interferon regulatory factor 7 (IRF7) 95 DNA sequence of Interferon regulatory factor 7 (IRF7) 96 Protein sequence of Interferon regulatory factor 7 (IRF7) 97 DNA sequence of Interferon, alpha-inducible protein 6 (IFI6) 98 Protein sequence of Interferon, alpha-inducible protein 6 (IFI6) 99 DNA sequence of Interferon, alpha-inducible protein 6 (IFI6) 100 Protein sequence of Interferon, alpha-inducible protein 6 (IFI6) 101 DNA sequence of Interferon, alpha-inducible protein 6 (IFI6) 102 Protein sequence of Interferon, alpha-inducible protein 6 (IFI6) 103 DNA sequence of Signal transducer and activator of transcription 1 (STAT1) 104 DNA sequence of Signal transducer and activator of transcription 1 (STAT1) 105 Protein sequence of Signal transducer and activator of transcription 1 (STAT1) 106 Protein sequence of Signal transducer and activator of transcription 1 (STAT1) 107 DNA sequence of Interferon-induced protein 44 (IFI44) gene 108 Protein sequence of Interferon-induced protein 44 (IFI44) gene 109 DNA sequence of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) 110 Protein sequence of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) 111 DNA sequence of DEXH (Asp-Glu-X-His) box polypeptide 58 (DHX58) 112 Protein sequence of DEXH (Asp-Glu-X-His) box polypeptide 58 (DHX58)

Sequence CWU 1

1

1121685DNAHomo sapiens 1ataatagggc cggtgctgcc tgccgaagcc ggcggctgag aggcagcgaa ctcatctttg 60ccagtacagg agcttgtgcc gtggcccaca gcccacagcc cacagccatg ggctgggacc 120tgacggtgaa gatgctggcg ggcaacgaat tccaggtgtc cctgagcagc tccatgtcgg 180tgtcagagct gaaggcgcag atcacccaga agatcggcgt gcacgccttc cagcagcgtc 240tggctgtcca cccgagcggt gtggcgctgc aggacagggt cccccttgcc agccagggcc 300tgggccccgg cagcacggtc ctgctggtgg tggacaaatg cgacgaacct ctgagcatcc 360tggtgaggaa taacaagggc cgcagcagca cctacgaggt acggctgacg cagaccgtgg 420cccacctgaa gcagcaagtg agcgggctgg agggtgtgca ggacgacctg ttctggctga 480ccttcgaggg gaagcccctg gaggaccagc tcccgctggg ggagtacggc ctcaagcccc 540tgagcaccgt gttcatgaat ctgcgcctgc ggggaggcgg cacagagcct ggcgggcgga 600gctaagggcc tccaccagca tccgagcagg atcaagggcc ggaaataaag gctgttgtaa 660agagaaaaaa aaaaaaaaaa aaaaa 6852165PRTHomo sapiens 2Met Gly Trp Asp Leu Thr Val Lys Met Leu Ala Gly Asn Glu Phe Gln1 5 10 15Val Ser Leu Ser Ser Ser Met Ser Val Ser Glu Leu Lys Ala Gln Ile 20 25 30Thr Gln Lys Ile Gly Val His Ala Phe Gln Gln Arg Leu Ala Val His 35 40 45Pro Ser Gly Val Ala Leu Gln Asp Arg Val Pro Leu Ala Ser Gln Gly 50 55 60Leu Gly Pro Gly Ser Thr Val Leu Leu Val Val Asp Lys Cys Asp Glu65 70 75 80Pro Leu Ser Ile Leu Val Arg Asn Asn Lys Gly Arg Ser Ser Thr Tyr 85 90 95Glu Val Arg Leu Thr Gln Thr Val Ala His Leu Lys Gln Gln Val Ser 100 105 110Gly Leu Glu Gly Val Gln Asp Asp Leu Phe Trp Leu Thr Phe Glu Gly 115 120 125Lys Pro Leu Glu Asp Gln Leu Pro Leu Gly Glu Tyr Gly Leu Lys Pro 130 135 140Leu Ser Thr Val Phe Met Asn Leu Arg Leu Arg Gly Gly Gly Thr Glu145 150 155 160Pro Gly Gly Arg Ser 16534396DNAHomo sapiens 3gcaaggacac acccacagct tacaccattg gctgctgttt agctccctta tataacactg 60tcttggggtt taaacgtaac tgaaaatcca caagacagaa tagccagatc tcagaggagc 120ctggctaagc aaaaccctgc agaacggctg cctaatttac agcaaccatg agtacaaatg 180gtgatgatca tcaggtcaag gatagtctgg agcaattgag atgtcacttt acatgggagt 240tatccattga tgacgatgaa atgcctgatt tagaaaacag agtcttggat cagattgaat 300tcctagacac caaatacagt gtgggaatac acaacctact agcctatgtg aaacacctga 360aaggccagaa tgaggaagcc ctgaagagct taaaagaagc tgaaaactta atgcaggaag 420aacatgacaa ccaagcaaat gtgaggagtc tggtgacctg gggcaacttt gcctggatgt 480attaccacat gggcagactg gcagaagccc agacttacct ggacaaggtg gagaacattt 540gcaagaagct ttcaaatccc ttccgctata gaatggagtg tccagaaata gactgtgagg 600aaggatgggc cttgctgaag tgtggaggaa aaaattatga acgggccaag gcctgctttg 660aaaaggtgct tgaagtggac cctgaaaacc ctgaatccag cgctgggtat gcgatctctg 720cctatcgcct ggatggcttt aaattagcca caaaaaatca caagccattt tctttgcttc 780ccctaaggca ggctgtccgc ttaaatccag acaatggata tattaaggtt ctccttgccc 840tgaagcttca ggatgaagga caggaagctg aaggagaaaa gtacattgaa gaagctctag 900ccaacatgtc ctcacagacc tatgtctttc gatatgcagc caagttttac cgaagaaaag 960gctctgtgga taaagctctt gagttattaa aaaaggcctt gcaggaaaca cccacttctg 1020tcttactgca tcaccagata gggctttgct acaaggcaca aatgatccaa atcaaggagg 1080ctacaaaagg gcagcctaga gggcagaaca gagaaaagct agacaaaatg ataagatcag 1140ccatatttca ttttgaatct gcagtggaaa aaaagcccac atttgaggtg gctcatctag 1200acctggcaag aatgtatata gaagcaggca atcacagaaa agctgaagag aattttcaaa 1260aattgttatg catgaaacca gtggtagaag aaacaatgca agacatacat ttccactatg 1320gtcggtttca ggaatttcaa aagaaatctg acgtcaatgc aattatccat tatttaaaag 1380ctataaaaat agaacaggca tcattaacaa gggataaaag tatcaattct ttgaagaaat 1440tggttttaag gaaacttcgg agaaaggcat tagatctgga aagcttgagc ctccttgggt 1500tcgtctacaa attggaagga aatatgaatg aagccctgga gtactatgag cgggccctga 1560gactggctgc tgactttgag aactctgtga gacaaggtcc ttaggcaccc agatatcagc 1620cactttcaca tttcatttca ttttatgcta acatttacta atcatctttt ctgcttactg 1680ttttcagaaa cattataatt cactgtaatg atgtaattct tgaataataa atctgacaaa 1740atattagttg tgttcaacaa ttagtgaaac agaatgtgtg tatgcatgta agaaagagaa 1800atcatttgta tgagtgctat gtagtagaga aaaaatgtta gttaactttg taggaaataa 1860aacattggac ttacactaaa tgtttaattc attcatttta ttgtgaaata aaaataaaat 1920ccttagctcc tccaccaact gaacagaccc tcttggccaa ggagacccca gaaaccttaa 1980aaactaagtt tcccaaccat gacaagatga gagatcattc acacctcatt atattccctc 2040ccttgctaac tgccattgga ctttttccac tgagttaaac agaaacccat ggaaaacaaa 2100gaacagaaga ctcactcctt ggctgacttc acctagctca ctccacgtag cgccacagcc 2160agactcccct cccctcttgc ggtttccaca tgacaactga tcagccttcc ctcctgataa 2220gtgaccactg cccacagact ggttctggcc agtccatgga ggctgcacac agggtgcctc 2280tatgtccttt gtttcacctt ttgatataga aaggctaatt ttgctgtatt ttaatgttaa 2340gtctccacca cagagtgaac acagaatgca tgtgacatac atgtttacat accactattg 2400tgtgactgcc cctcatgaat attcatagcc ccccataacc tgttaactat gtgtgtctag 2460ccaatccacc aaccataaaa cttctgtaat accctccctt cctccaagag cctgcttttg 2520gttgctgtgg taggctctgc ttcccaggct gcaggttgca ggagaggagg ctgcagtggc 2580tcacgcctgt aatctcagca cttcgatggg acgaggcagg cagatcacct gaacccagga 2640gttcgagagc agccttggca atggcaaaac caaccgtctc tacaaaaaat gcaaaaactt 2700agctgggtgt ggtggcatgc acctgtagct tcagttccag ctactcagga ggctgaggtg 2760agtggactgc tggagccagg gagttcgagg ctgcagtgtc gagatcttgc cactgcactc 2820cattctggat gatagaacga gaccccatct caaaaaaaaa aaaagttctc tccaattgta 2880tatagcttgt gattttatgt caacactatc aataaatagc tttcagtgca agaaaccaaa 2940aatactgtaa taaacaggca catattcttc ccaaacctca tgcagtttac aatctagtga 3000gagacacaga tagcagtaca gagtcaatta aaggttagtt ttcttcatga agatgtttta 3060attttaattc aatgtgaaag ggttccaagg agtttatctt gttttatgcc attttatttg 3120aagcactact tactaagtca tttgctgata ttaatctagt taaatcaaga aatattacat 3180gaaaatgttg ctaaatcaga gatcatgggt aacaatcacc tttgattatg aataatcata 3240ttttattgaa aggcaaggca caacaaataa taagaaggaa aaaataaata agcaatgtta 3300ttgatctttc attctgtata tgttttgggg ggaatatact agtttctttt agtggctgta 3360acaaattacc acaaacttgg tgacttaaaa tttcacagat ttactctttc ttacagttct 3420ggaggtcaga agtctgaaat gggtttcaat gagccaaagt caaggtattg atgacgctac 3480actcctccgg aggctctagg cagatagcct tttccagctt ccagaggctg cctgaattct 3540ttcatccatc ttaaaaacca acagtgtagt agcctcaaat ctctctctct gcttccttct 3600tcacatctcc ttctctcctc tgactctttt gcctctttct tctaaggacg caccaggtcc 3660acctgcataa tccagaataa ttgccccatc cgcaaatcct taatttaata acatctgcaa 3720agtccctttt gctatgtaaa gtagcatgtt cacaggttct ggagacttgg ccatggatac 3780gattgcgggg ggggcattat tcttaccaca gagcacccca agaaaatctc caaattttgg 3840gcttccaatc cattttgctt caattattta atatttttac tccttccagt agatactgat 3900ttcatccatt gcccttaaga aggtaggaca gagattatgg cacatctcac attaaatgct 3960atattttcgt tggaaataca ttttttgctt caacttttat tttaaattca agggtacatg 4020tgcaggatgt tcaggtttgt tacacaggta aacgtgtgcc atggcggttt gctgaacaga 4080tcatcccatc accaacagat catcccattg agaggtgaag ccggctgggc ttctgggttg 4140ggtggggact tggagaactt ttctgtctag ctaaagtatt gtaaaatgga ccagtcaaca 4200ctctgtaaaa tggaccaatc agctctctgt aaaatggacc aatcagcagg atgtgggtgg 4260ggccaagtaa gggaataaaa gcaggccacc cgagctggca gcggcaaccc gctcgggtcc 4320ccttccatgc tgtggaagtt ttgttctttc gctctttcaa taaatcttgc tgctgctcaa 4380aaaaaaaaaa aaaaaa 43964478PRTHomo sapiens 4Met Ser Thr Asn Gly Asp Asp His Gln Val Lys Asp Ser Leu Glu Gln1 5 10 15Leu Arg Cys His Phe Thr Trp Glu Leu Ser Ile Asp Asp Asp Glu Met 20 25 30Pro Asp Leu Glu Asn Arg Val Leu Asp Gln Ile Glu Phe Leu Asp Thr 35 40 45Lys Tyr Ser Val Gly Ile His Asn Leu Leu Ala Tyr Val Lys His Leu 50 55 60Lys Gly Gln Asn Glu Glu Ala Leu Lys Ser Leu Lys Glu Ala Glu Asn65 70 75 80Leu Met Gln Glu Glu His Asp Asn Gln Ala Asn Val Arg Ser Leu Val 85 90 95Thr Trp Gly Asn Phe Ala Trp Met Tyr Tyr His Met Gly Arg Leu Ala 100 105 110Glu Ala Gln Thr Tyr Leu Asp Lys Val Glu Asn Ile Cys Lys Lys Leu 115 120 125Ser Asn Pro Phe Arg Tyr Arg Met Glu Cys Pro Glu Ile Asp Cys Glu 130 135 140Glu Gly Trp Ala Leu Leu Lys Cys Gly Gly Lys Asn Tyr Glu Arg Ala145 150 155 160Lys Ala Cys Phe Glu Lys Val Leu Glu Val Asp Pro Glu Asn Pro Glu 165 170 175Ser Ser Ala Gly Tyr Ala Ile Ser Ala Tyr Arg Leu Asp Gly Phe Lys 180 185 190Leu Ala Thr Lys Asn His Lys Pro Phe Ser Leu Leu Pro Leu Arg Gln 195 200 205Ala Val Arg Leu Asn Pro Asp Asn Gly Tyr Ile Lys Val Leu Leu Ala 210 215 220Leu Lys Leu Gln Asp Glu Gly Gln Glu Ala Glu Gly Glu Lys Tyr Ile225 230 235 240Glu Glu Ala Leu Ala Asn Met Ser Ser Gln Thr Tyr Val Phe Arg Tyr 245 250 255Ala Ala Lys Phe Tyr Arg Arg Lys Gly Ser Val Asp Lys Ala Leu Glu 260 265 270Leu Leu Lys Lys Ala Leu Gln Glu Thr Pro Thr Ser Val Leu Leu His 275 280 285His Gln Ile Gly Leu Cys Tyr Lys Ala Gln Met Ile Gln Ile Lys Glu 290 295 300Ala Thr Lys Gly Gln Pro Arg Gly Gln Asn Arg Glu Lys Leu Asp Lys305 310 315 320Met Ile Arg Ser Ala Ile Phe His Phe Glu Ser Ala Val Glu Lys Lys 325 330 335Pro Thr Phe Glu Val Ala His Leu Asp Leu Ala Arg Met Tyr Ile Glu 340 345 350Ala Gly Asn His Arg Lys Ala Glu Glu Asn Phe Gln Lys Leu Leu Cys 355 360 365Met Lys Pro Val Val Glu Glu Thr Met Gln Asp Ile His Phe His Tyr 370 375 380Gly Arg Phe Gln Glu Phe Gln Lys Lys Ser Asp Val Asn Ala Ile Ile385 390 395 400His Tyr Leu Lys Ala Ile Lys Ile Glu Gln Ala Ser Leu Thr Arg Asp 405 410 415Lys Ser Ile Asn Ser Leu Lys Lys Leu Val Leu Arg Lys Leu Arg Arg 420 425 430Lys Ala Leu Asp Leu Glu Ser Leu Ser Leu Leu Gly Phe Val Tyr Lys 435 440 445Leu Glu Gly Asn Met Asn Glu Ala Leu Glu Tyr Tyr Glu Arg Ala Leu 450 455 460Arg Leu Ala Ala Asp Phe Glu Asn Ser Val Arg Gln Gly Pro465 470 47553505DNAHomo sapiens 5agtttcactt tcccttttgt aacgtcagct gaagggaaac aaacaaaaag gaaccagagg 60ccacttgtat atataggtct cttcagcatt tattggtggc agaagaggaa gatttctgaa 120gagtgcagct gcctgaaccg agccctgccg aacagctgag aattgcactg caaccatgag 180tgagaacaat aagaattcct tggagagcag cctacggcaa ctaaaatgcc atttcacctg 240gaacttgatg gagggagaaa actccttgga tgattttgaa gacaaagtat tttaccggac 300tgagtttcag aatcgtgaat tcaaagccac aatgtgcaac ctactggcct atctaaagca 360cctcaaaggg caaaacgagg cagccctgga atgcttacgt aaagctgaag agttaatcca 420gcaagagcat gctgaccagg cagaaatcag aagtctggtc acctggggaa actatgcctg 480ggtctactat cacatgggcc gactctcaga cgttcagatt tatgtagaca aggtgaaaca 540tgtctgtgag aagttttcca gtccctatag aattgagagt ccagagcttg actgtgagga 600agggtggaca cggttaaagt gtggaggaaa ccaaaatgaa agagcgaagg tgtgctttga 660gaaggctctg gaaaagaagc caaagaaccc agaattcacc tctggactgg caatagcaag 720ctaccgtctg gacaactggc caccatctca gaacgccatt gaccctctga ggcaagccat 780tcggctgaat cctgacaacc agtaccttaa agtcctcctg gctctgaagc ttcataagat 840gcgtgaagaa ggtgaagagg aaggtgaagg agagaagtta gttgaagaag ccttggagaa 900agccccaggt gtaacagatg ttcttcgcag tgcagccaag ttttatcgaa gaaaagatga 960gccagacaaa gcgattgaac tgcttaaaaa ggctttagaa tacataccaa acaatgccta 1020cctgcattgc caaattgggt gctgctatag ggcaaaagtc ttccaagtaa tgaatctaag 1080agagaatgga atgtatggga aaagaaagtt actggaacta ataggacacg ctgtggctca 1140tctgaagaaa gctgatgagg ccaatgataa tctcttccgt gtctgttcca ttcttgccag 1200cctccatgct ctagcagatc agtatgaaga cgcagagtat tacttccaaa aggaattcag 1260taaagagctt actcctgtag cgaaacaact gctccatctg cggtatggca actttcagct 1320gtaccaaatg aagtgtgaag acaaggccat ccaccacttt atagagggtg taaaaataaa 1380ccagaaatca agggagaaag aaaagatgaa agacaaactg caaaaaattg ccaaaatgcg 1440actttctaaa aatggagcag attctgaggc tttgcatgtc ttggcattcc ttcaggagct 1500gaatgaaaaa atgcaacaag cagatgaaga ctctgagagg ggtttggagt ctggaagcct 1560catcccttca gcatcaagct ggaatgggga atgaagaata gagatgtggt gcccactagg 1620ctactgctga aagggagctg aaattcctcc accaagttgg tattcaaaat atgtaatgac 1680tggtatggca aaagattgga ctaagacact ggccatacca ctggacaggg ttatgttaac 1740acctgaattg ctgggtcttg agagagccca aggagttctg ggagagggac cagattgggg 1800ggtaggtcca cgggcttggt gatagaatta tttctcgatt gacttcttga gtgcaatttg 1860aactgtaaca tttgcttagt cacctttagt ggagtaatct actgggcttg tttctatatt 1920tatataaagc agccaaatcc ttcatgtaat attgaagtcc atttttgcaa tgttgttcca 1980tacttggagt cattttgcat cccatagagg ttagtcctgc atagccagta atgtgctaag 2040ttcatccaaa agctggcgga ccaaagtcta aatagggctc agtatccccc atcgcttatc 2100tctgcctcct tcctcctcct tcccagtcta tcatcaacct tgagtattct acacaatgtg 2160aattcaagtg cctgattaat tgaggtggca acatagtttg agacgagggc agagaacagg 2220aagatacata gctagaagcg acgggtacaa aaagcaatgt gtacaagaag actttcagca 2280agtatacaga gagttcacct ctactctgcc ctcctcatag tcataatgta gcaagtaaag 2340aatgagaatg gattctgtac aatacactag aaaccaacat aatgtatttc tttaaaacct 2400gtgtgaaaaa ataaatgttc caccagtagg gataggggaa aagtaaccaa aagagagaaa 2460gagaaaggaa tgctggttta tctttgtaga ttgtaatcga atggagaaat ttgcagtatt 2520ttagccacta ttaggaattt tttttttttg taaaatgaag actgaactct gttcaaatgc 2580tttcatgaac ctggtttgag acggtaggaa agcaacaaaa cgtgggaacc tggtgactaa 2640gggcctggtg caaggacttg ggaaatgtca ttgataatag atggtggggt tttcccccct 2700ttagaaatgt tggatattaa gtgatataaa cacttctttt aactccgaaa atcttctgag 2760aaatcacaaa attcacggta tgcttggaac gattgagatt ttctaggtag atgctgaata 2820gcctagacat caaagttggt gtgaaccaaa atagagtcag ctgacccagc atcagccaca 2880ctctgggttg gaaaatgttt gcctgttgga attaatttaa gcttaagtat atatcaacat 2940tattttattg tgcaattaaa acaatacaaa ttcatggttt tttaaagtta aaaattctaa 3000ccactgtaac aacagttttt gtgttatttt ctgtattaaa catcttgttg cacgcatttg 3060aggtcatcag ggtgcaaaat ttgtattcct gaaaatgtca tatattttca ttaataaata 3120acctaaatat gataaaacat aaagcagtgt tctggttcat ctggaatttt gctgtacttt 3180aaatctttca gactcagcta ctgataaatg aaacgttaca caggtgtgaa ccaaatccaa 3240ataacctcga ctggtctact atcataatca cctgaacaga acaaaacttt ttcctcagct 3300ttaagagtcc agggcttcgg ataacagctg ccatctgcca cctgctacca ttgacctacg 3360tgaacacaga cattctgtct ccaccttgat ggtgggtggg ctgctcccct tttctttgtt 3420aaattttgtg ctttcatcac attttctcta ttctgacctc tgttatgaga aataaaagtc 3480actgattcca ttttaaaaaa aaaaa 35056472PRTHomo sapiens 6Met Ser Glu Asn Asn Lys Asn Ser Leu Glu Ser Ser Leu Arg Gln Leu1 5 10 15Lys Cys His Phe Thr Trp Asn Leu Met Glu Gly Glu Asn Ser Leu Asp 20 25 30Asp Phe Glu Asp Lys Val Phe Tyr Arg Thr Glu Phe Gln Asn Arg Glu 35 40 45Phe Lys Ala Thr Met Cys Asn Leu Leu Ala Tyr Leu Lys His Leu Lys 50 55 60Gly Gln Asn Glu Ala Ala Leu Glu Cys Leu Arg Lys Ala Glu Glu Leu65 70 75 80Ile Gln Gln Glu His Ala Asp Gln Ala Glu Ile Arg Ser Leu Val Thr 85 90 95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Met Gly Arg Leu Ser Asp 100 105 110Val Gln Ile Tyr Val Asp Lys Val Lys His Val Cys Glu Lys Phe Ser 115 120 125Ser Pro Tyr Arg Ile Glu Ser Pro Glu Leu Asp Cys Glu Glu Gly Trp 130 135 140Thr Arg Leu Lys Cys Gly Gly Asn Gln Asn Glu Arg Ala Lys Val Cys145 150 155 160Phe Glu Lys Ala Leu Glu Lys Lys Pro Lys Asn Pro Glu Phe Thr Ser 165 170 175Gly Leu Ala Ile Ala Ser Tyr Arg Leu Asp Asn Trp Pro Pro Ser Gln 180 185 190Asn Ala Ile Asp Pro Leu Arg Gln Ala Ile Arg Leu Asn Pro Asp Asn 195 200 205Gln Tyr Leu Lys Val Leu Leu Ala Leu Lys Leu His Lys Met Arg Glu 210 215 220Glu Gly Glu Glu Glu Gly Glu Gly Glu Lys Leu Val Glu Glu Ala Leu225 230 235 240Glu Lys Ala Pro Gly Val Thr Asp Val Leu Arg Ser Ala Ala Lys Phe 245 250 255Tyr Arg Arg Lys Asp Glu Pro Asp Lys Ala Ile Glu Leu Leu Lys Lys 260 265 270Ala Leu Glu Tyr Ile Pro Asn Asn Ala Tyr Leu His Cys Gln Ile Gly 275 280 285Cys Cys Tyr Arg Ala Lys Val Phe Gln Val Met Asn Leu Arg Glu Asn 290 295 300Gly Met Tyr Gly Lys Arg Lys Leu Leu Glu Leu Ile Gly His Ala Val305 310 315 320Ala His Leu Lys Lys Ala Asp Glu Ala Asn Asp Asn Leu Phe Arg Val 325 330 335Cys Ser Ile Leu Ala Ser Leu His Ala Leu Ala Asp Gln Tyr Glu Asp 340 345 350Ala Glu Tyr Tyr Phe Gln Lys Glu Phe Ser Lys Glu Leu Thr Pro Val 355 360 365Ala Lys Gln Leu Leu His Leu Arg Tyr Gly Asn Phe Gln Leu Tyr Gln 370 375 380Met Lys Cys Glu Asp Lys Ala Ile His His

Phe Ile Glu Gly Val Lys385 390 395 400Ile Asn Gln Lys Ser Arg Glu Lys Glu Lys Met Lys Asp Lys Leu Gln 405 410 415Lys Ile Ala Lys Met Arg Leu Ser Lys Asn Gly Ala Asp Ser Glu Ala 420 425 430Leu His Val Leu Ala Phe Leu Gln Glu Leu Asn Glu Lys Met Gln Gln 435 440 445Ala Asp Glu Asp Ser Glu Arg Gly Leu Glu Ser Gly Ser Leu Ile Pro 450 455 460Ser Ala Ser Ser Trp Asn Gly Glu465 47072464DNAHomo sapiens 7actttccttt cccctttcat aaaagcacag acctaacagc accctgggtg gaaacctctt 60cagcatttgc ttggaatcag taagctaaaa acaaaatcaa ccgggacccc agcttttcag 120aactgcaggg aaacagccat catgagtgag gtcaccaaga attccctgga gaaaatcctt 180ccacagctga aatgccattt cacctggaac ttattcaagg aagacagtgt ctcaagggat 240ctagaagata gagtgtgtaa ccagattgaa tttttaaaca ctgagttcaa agctacaatg 300tacaacttgt tggcctacat aaaacaccta gatggtaaca acgaggcagc cctggaatgc 360ttacggcaag ctgaagagtt aatccagcaa gaacatgctg accaagcaga aatcagaagt 420ctagtcactt ggggaaacta cgcctgggtc tactatcact tgggcagact ctcagatgct 480cagatttatg tagataaggt gaaacaaacc tgcaagaaat tttcaaatcc atacagtatt 540gagtattctg aacttgactg tgaggaaggg tggacacaac tgaagtgtgg aagaaatgaa 600agggcgaagg tgtgttttga gaaggctctg gaagaaaagc ccaacaaccc agaattctcc 660tctggactgg caattgcgat gtaccatctg gataatcacc cagagaaaca gttctctact 720gatgttttga agcaggccat tgagctgagt cctgataacc aatacgtcaa ggttctcttg 780ggcctgaaac tgcagaagat gaataaagaa gctgaaggag agcagtttgt tgaagaagcc 840ttggaaaagt ctccttgcca aacagatgtc ctccgcagtg cagccaaatt ttacagaaga 900aaaggtgacc tagacaaagc tattgaactg tttcaacggg tgttggaatc cacaccaaac 960aatggctacc tctatcacca gattgggtgc tgctacaagg caaaagtaag acaaatgcag 1020aatacaggag aatctgaagc tagtggaaat aaagagatga ttgaagcact aaagcaatat 1080gctatggact attcgaataa agctcttgag aagggactga atcctctgaa tgcatactcc 1140gatctcgctg agttcctgga gacggaatgt tatcagacac cattcaataa ggaagtccct 1200gatgctgaaa agcaacaatc ccatcagcgc tactgcaacc ttcagaaata taatgggaag 1260tctgaagaca ctgctgtgca acatggttta gagggtttgt ccataagcaa aaaatcaact 1320gacaaggaag agatcaaaga ccaaccacag aatgtatctg aaaatctgct tccacaaaat 1380gcaccaaatt attggtatct tcaaggatta attcataagc agaatggaga tctgctgcaa 1440gcagccaaat gttatgagaa ggaactgggc cgcctgctaa gggatgcccc ttcaggcata 1500ggcagtattt tcctgtcagc atctgagctt gaggatggta gtgaggaaat gggccagggc 1560gcagtcagct ccagtcccag agagctcctc tctaactcag agcaactgaa ctgagacaga 1620ggaggaaaac agagcatcag aagcctgcag tggtggttgt gacgggtagg acgataggaa 1680gacagggggc cccaacctgg gattgctgag cagggaagct ttgcatgttg ctctaaggta 1740catttttaaa gagttgtttt ttggccgggc gcagtggctc atgcctgtaa tcccagcact 1800ttgggaggcc gaggtgggcg gatcacgagg tctggagttt gagaccatcc tggctaacac 1860agtgaaatcc cgtctctact aaaaatacaa aaaattagcc aggcgtggtg gctggcacct 1920gtagtcccag ctacttggga ggctgaggca ggagaatggc gtgaacctgg aaggaagagg 1980ttgcagtgag ccaagattgc gcccctgcac tccagcctgg gcaacagagc aagactccat 2040ctcaaaaaaa aaaaaaaaaa aaaaaaagag ttgttttctc atgttcatta tagttcatta 2100cagttacata gtccgaaggt cttacaacta atcactggta gcaataaatg cttcaggccc 2160acatgatgct gattagttct cagttttcat tcagttcaca atataaccac cattcctgcc 2220ctccctgcca agggtcataa atggtgactg cctaacaaca aaatttgcag tctcatctca 2280ttttcatcca gacttctgga actcaaagat taacttttga ctaaccctgg aatatctctt 2340atctcactta tagcttcagg catgtattta tatgtattct tgatagcaat accataatca 2400atgtgtattc ctgatagtaa tgctacaata aatccaaaca tttcaactct gttaaaaaaa 2460aaaa 24648490PRTHomo sapiens 8Met Ser Glu Val Thr Lys Asn Ser Leu Glu Lys Ile Leu Pro Gln Leu1 5 10 15Lys Cys His Phe Thr Trp Asn Leu Phe Lys Glu Asp Ser Val Ser Arg 20 25 30Asp Leu Glu Asp Arg Val Cys Asn Gln Ile Glu Phe Leu Asn Thr Glu 35 40 45Phe Lys Ala Thr Met Tyr Asn Leu Leu Ala Tyr Ile Lys His Leu Asp 50 55 60Gly Asn Asn Glu Ala Ala Leu Glu Cys Leu Arg Gln Ala Glu Glu Leu65 70 75 80Ile Gln Gln Glu His Ala Asp Gln Ala Glu Ile Arg Ser Leu Val Thr 85 90 95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Leu Gly Arg Leu Ser Asp 100 105 110Ala Gln Ile Tyr Val Asp Lys Val Lys Gln Thr Cys Lys Lys Phe Ser 115 120 125Asn Pro Tyr Ser Ile Glu Tyr Ser Glu Leu Asp Cys Glu Glu Gly Trp 130 135 140Thr Gln Leu Lys Cys Gly Arg Asn Glu Arg Ala Lys Val Cys Phe Glu145 150 155 160Lys Ala Leu Glu Glu Lys Pro Asn Asn Pro Glu Phe Ser Ser Gly Leu 165 170 175Ala Ile Ala Met Tyr His Leu Asp Asn His Pro Glu Lys Gln Phe Ser 180 185 190Thr Asp Val Leu Lys Gln Ala Ile Glu Leu Ser Pro Asp Asn Gln Tyr 195 200 205Val Lys Val Leu Leu Gly Leu Lys Leu Gln Lys Met Asn Lys Glu Ala 210 215 220Glu Gly Glu Gln Phe Val Glu Glu Ala Leu Glu Lys Ser Pro Cys Gln225 230 235 240Thr Asp Val Leu Arg Ser Ala Ala Lys Phe Tyr Arg Arg Lys Gly Asp 245 250 255Leu Asp Lys Ala Ile Glu Leu Phe Gln Arg Val Leu Glu Ser Thr Pro 260 265 270Asn Asn Gly Tyr Leu Tyr His Gln Ile Gly Cys Cys Tyr Lys Ala Lys 275 280 285Val Arg Gln Met Gln Asn Thr Gly Glu Ser Glu Ala Ser Gly Asn Lys 290 295 300Glu Met Ile Glu Ala Leu Lys Gln Tyr Ala Met Asp Tyr Ser Asn Lys305 310 315 320Ala Leu Glu Lys Gly Leu Asn Pro Leu Asn Ala Tyr Ser Asp Leu Ala 325 330 335Glu Phe Leu Glu Thr Glu Cys Tyr Gln Thr Pro Phe Asn Lys Glu Val 340 345 350Pro Asp Ala Glu Lys Gln Gln Ser His Gln Arg Tyr Cys Asn Leu Gln 355 360 365Lys Tyr Asn Gly Lys Ser Glu Asp Thr Ala Val Gln His Gly Leu Glu 370 375 380Gly Leu Ser Ile Ser Lys Lys Ser Thr Asp Lys Glu Glu Ile Lys Asp385 390 395 400Gln Pro Gln Asn Val Ser Glu Asn Leu Leu Pro Gln Asn Ala Pro Asn 405 410 415Tyr Trp Tyr Leu Gln Gly Leu Ile His Lys Gln Asn Gly Asp Leu Leu 420 425 430Gln Ala Ala Lys Cys Tyr Glu Lys Glu Leu Gly Arg Leu Leu Arg Asp 435 440 445Ala Pro Ser Gly Ile Gly Ser Ile Phe Leu Ser Ala Ser Glu Leu Glu 450 455 460Asp Gly Ser Glu Glu Met Gly Gln Gly Ala Val Ser Ser Ser Pro Arg465 470 475 480Glu Leu Leu Ser Asn Ser Glu Gln Leu Asn 485 49092552DNAHomo sapiens 9attttcctcc tcccaacgat tttaaattag tttcactttc cagtttcctc ttccttcccc 60taaaagcaat tactcaaaaa cggagaaaac atcagctgat gcgtgcccta ctctcccacc 120cctttatata gttccttcag tatttacttg aggcagacag gaagacttct gaagaacaaa 180tcagcctggt caccagcttt tcggaacagc agagacacag agggcagtca tgagtgaggt 240caccaagaat tccctggaga aaatccttcc acagctgaaa tgccatttca cctggaactt 300attcaaggaa gacagtgtct caagggatct agaagataga gtgtgtaacc agattgaatt 360tttaaacact gagttcaaag ctacaatgta caacttgttg gcctacataa aacacctaga 420tggtaacaac gaggcagccc tggaatgctt acggcaagct gaagagttaa tccagcaaga 480acatgctgac caagcagaaa tcagaagtct agtcacttgg ggaaactacg cctgggtcta 540ctatcacttg ggcagactct cagatgctca gatttatgta gataaggtga aacaaacctg 600caagaaattt tcaaatccat acagtattga gtattctgaa cttgactgtg aggaagggtg 660gacacaactg aagtgtggaa gaaatgaaag ggcgaaggtg tgttttgaga aggctctgga 720agaaaagccc aacaacccag aattctcctc tggactggca attgcgatgt accatctgga 780taatcaccca gagaaacagt tctctactga tgttttgaag caggccattg agctgagtcc 840tgataaccaa tacgtcaagg ttctcttggg cctgaaactg cagaagatga ataaagaagc 900tgaaggagag cagtttgttg aagaagcctt ggaaaagtct ccttgccaaa cagatgtcct 960ccgcagtgca gccaaatttt acagaagaaa aggtgaccta gacaaagcta ttgaactgtt 1020tcaacgggtg ttggaatcca caccaaacaa tggctacctc tatcaccaga ttgggtgctg 1080ctacaaggca aaagtaagac aaatgcagaa tacaggagaa tctgaagcta gtggaaataa 1140agagatgatt gaagcactaa agcaatatgc tatggactat tcgaataaag ctcttgagaa 1200gggactgaat cctctgaatg catactccga tctcgctgag ttcctggaga cggaatgtta 1260tcagacacca ttcaataagg aagtccctga tgctgaaaag caacaatccc atcagcgcta 1320ctgcaacctt cagaaatata atgggaagtc tgaagacact gctgtgcaac atggtttaga 1380gggtttgtcc ataagcaaaa aatcaactga caaggaagag atcaaagacc aaccacagaa 1440tgtatctgaa aatctgcttc cacaaaatgc accaaattat tggtatcttc aaggattaat 1500tcataagcag aatggagatc tgctgcaagc agccaaatgt tatgagaagg aactgggccg 1560cctgctaagg gatgcccctt caggcatagg cagtattttc ctgtcagcat ctgagcttga 1620ggatggtagt gaggaaatgg gccagggcgc agtcagctcc agtcccagag agctcctctc 1680taactcagag caactgaact gagacagagg aggaaaacag agcatcagaa gcctgcagtg 1740gtggttgtga cgggtaggac gataggaaga cagggggccc caacctggga ttgctgagca 1800gggaagcttt gcatgttgct ctaaggtaca tttttaaaga gttgtttttt ggccgggcgc 1860agtggctcat gcctgtaatc ccagcacttt gggaggccga ggtgggcgga tcacgaggtc 1920tggagtttga gaccatcctg gctaacacag tgaaatcccg tctctactaa aaatacaaaa 1980aattagccag gcgtggtggc tggcacctgt agtcccagct acttgggagg ctgaggcagg 2040agaatggcgt gaacctggaa ggaagaggtt gcagtgagcc aagattgcgc ccctgcactc 2100cagcctgggc aacagagcaa gactccatct caaaaaaaaa aaaaaaaaaa aaaaagagtt 2160gttttctcat gttcattata gttcattaca gttacatagt ccgaaggtct tacaactaat 2220cactggtagc aataaatgct tcaggcccac atgatgctga ttagttctca gttttcattc 2280agttcacaat ataaccacca ttcctgccct ccctgccaag ggtcataaat ggtgactgcc 2340taacaacaaa atttgcagtc tcatctcatt ttcatccaga cttctggaac tcaaagatta 2400acttttgact aaccctggaa tatctcttat ctcacttata gcttcaggca tgtatttata 2460tgtattcttg atagcaatac cataatcaat gtgtattcct gatagtaatg ctacaataaa 2520tccaaacatt tcaactctgt taaaaaaaaa aa 255210490PRTHomo sapiens 10Met Ser Glu Val Thr Lys Asn Ser Leu Glu Lys Ile Leu Pro Gln Leu1 5 10 15Lys Cys His Phe Thr Trp Asn Leu Phe Lys Glu Asp Ser Val Ser Arg 20 25 30Asp Leu Glu Asp Arg Val Cys Asn Gln Ile Glu Phe Leu Asn Thr Glu 35 40 45Phe Lys Ala Thr Met Tyr Asn Leu Leu Ala Tyr Ile Lys His Leu Asp 50 55 60Gly Asn Asn Glu Ala Ala Leu Glu Cys Leu Arg Gln Ala Glu Glu Leu65 70 75 80Ile Gln Gln Glu His Ala Asp Gln Ala Glu Ile Arg Ser Leu Val Thr 85 90 95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Leu Gly Arg Leu Ser Asp 100 105 110Ala Gln Ile Tyr Val Asp Lys Val Lys Gln Thr Cys Lys Lys Phe Ser 115 120 125Asn Pro Tyr Ser Ile Glu Tyr Ser Glu Leu Asp Cys Glu Glu Gly Trp 130 135 140Thr Gln Leu Lys Cys Gly Arg Asn Glu Arg Ala Lys Val Cys Phe Glu145 150 155 160Lys Ala Leu Glu Glu Lys Pro Asn Asn Pro Glu Phe Ser Ser Gly Leu 165 170 175Ala Ile Ala Met Tyr His Leu Asp Asn His Pro Glu Lys Gln Phe Ser 180 185 190Thr Asp Val Leu Lys Gln Ala Ile Glu Leu Ser Pro Asp Asn Gln Tyr 195 200 205Val Lys Val Leu Leu Gly Leu Lys Leu Gln Lys Met Asn Lys Glu Ala 210 215 220Glu Gly Glu Gln Phe Val Glu Glu Ala Leu Glu Lys Ser Pro Cys Gln225 230 235 240Thr Asp Val Leu Arg Ser Ala Ala Lys Phe Tyr Arg Arg Lys Gly Asp 245 250 255Leu Asp Lys Ala Ile Glu Leu Phe Gln Arg Val Leu Glu Ser Thr Pro 260 265 270Asn Asn Gly Tyr Leu Tyr His Gln Ile Gly Cys Cys Tyr Lys Ala Lys 275 280 285Val Arg Gln Met Gln Asn Thr Gly Glu Ser Glu Ala Ser Gly Asn Lys 290 295 300Glu Met Ile Glu Ala Leu Lys Gln Tyr Ala Met Asp Tyr Ser Asn Lys305 310 315 320Ala Leu Glu Lys Gly Leu Asn Pro Leu Asn Ala Tyr Ser Asp Leu Ala 325 330 335Glu Phe Leu Glu Thr Glu Cys Tyr Gln Thr Pro Phe Asn Lys Glu Val 340 345 350Pro Asp Ala Glu Lys Gln Gln Ser His Gln Arg Tyr Cys Asn Leu Gln 355 360 365Lys Tyr Asn Gly Lys Ser Glu Asp Thr Ala Val Gln His Gly Leu Glu 370 375 380Gly Leu Ser Ile Ser Lys Lys Ser Thr Asp Lys Glu Glu Ile Lys Asp385 390 395 400Gln Pro Gln Asn Val Ser Glu Asn Leu Leu Pro Gln Asn Ala Pro Asn 405 410 415Tyr Trp Tyr Leu Gln Gly Leu Ile His Lys Gln Asn Gly Asp Leu Leu 420 425 430Gln Ala Ala Lys Cys Tyr Glu Lys Glu Leu Gly Arg Leu Leu Arg Asp 435 440 445Ala Pro Ser Gly Ile Gly Ser Ile Phe Leu Ser Ala Ser Glu Leu Glu 450 455 460Asp Gly Ser Glu Glu Met Gly Gln Gly Ala Val Ser Ser Ser Pro Arg465 470 475 480Glu Leu Leu Ser Asn Ser Glu Gln Leu Asn 485 490114034DNAHomo sapiens 11agtttctgag cgctcggcat ctgattcaat ctccagtttc ctgttcttgc tggggctggg 60gtctctcctt taacaaagac acgccgcgcg gccgagtcca ggggctgcag aggcctggcg 120cgcgcacgcg cacgcgcacg cccaccgcgc ggcttcccgc ggtccccggt gctgaggaga 180gagcgatccg agggactgcg ccgcccggac ggcctgcaga gcgctgccat catgagtgaa 240attcgtaagg acaccttgaa ggccattctg ttggagttag aatgtcattt tacatggaat 300ttacttaagg aagacattga tctgtttgag gtagaagata caattgggca acagcttgaa 360tttcttacca caaaatctag acttgctctt tataacctat tggcctatgt gaaacaccta 420aaaggccaaa ataaagacgc ccttgagtgc ttggaacaag cagaagaaat aatccagcaa 480gaacactcag acaaagaaga agtacgaagc ctggtcactt ggggaaacta tgcctgggtg 540tattatcaca tggaccagct tgaagaagct cagaagtata caggtaagat agggaatgtc 600tgtaagaaat tgtccagtcc ttctaactac aagttggagt gtcctgagac tgactgtgag 660aaaggctggg cactcttgaa atttggagga aagtattatc aaaaggctaa agcggctttt 720gagaaggctc tggaagtgga gcctgacaat ccagaattta acatcggcta tgctatcaca 780gtgtatcggc tggatgattc tgatagagaa gggtctgtaa agagcttttc tctggggcct 840ttgagaaagg ctgttaccct gaacccagat aacagctata ttaaggtttt tctggcactg 900aagcttcaag atgtacatgc agaagctgaa ggggaaaagt atattgaaga aatcctggac 960caaatatcat cccagcctta cgtccttcgt tatgcagcca agttctatag gagaaaaaat 1020tcctggaaca aagctctcga acttttaaaa aaggccttgg aggtgacacc aacttcttct 1080ttcctgcatc accagatggg actttgctac agggcacaaa tgatccaaat caagaaggcc 1140acacacaaca gacctaaagg aaaggataaa ctaaaggttg atgagctgat ttcatctgct 1200atatttcatt tcaaagcagc catggaacga gactctatgt ttgcatttgc ctacacagac 1260ctggccaaca tgtacgctga aggaggccag tatagcaatg ctgaggacat tttccggaaa 1320gctcttcgtc tggagaacat aaccgatgat cacaaacatc agatccatta ccactatggc 1380cgctttcagg aatttcaccg taaatcagaa aatactgcca tccatcatta tttagaagcc 1440ttaaaggtca aagacagatc accccttcgc accaaactga caagtgctct gaagaaattg 1500tctaccaaga gactttgtca caatgcttta gatgtgcaga gtttaagtgc cctagggttt 1560gtttacaagc tggaaggaga aaagaggcaa gctgctgagt actatgagaa ggcacaaaag 1620atagatccag aaaatgcaga attcctgact gctctctgtg agctccgact ttccatttaa 1680atacatactc taggaaatta gctctaagtt tttcccttca ttttgggttc tcctgtttgt 1740ttttttttta ttattttaat cccttgttta ttatagagct aatatttatt gaatagttat 1800tgtgtaccaa gcattgtgct aaatacttta tatgcattat gatgaatctt gtgcggtttt 1860ctttcttttt ttctttttaa ttaaaatact ataatccatt gagaaatagc aatattctag 1920ctattgtaac ttctaaaaat ggtatggcca ttagatctgt gctttttatc tctgctcttt 1980gaatttctca tattatatag taaatatatt cctacgtaaa cctttgatac ctagatcagg 2040aatactcttc caggagtaca aaattacatt attgatagtt aagctcttaa ttgtgtagct 2100tgcaaaagac agcacttttt agttacagat gttttgactt tgatgaggat atttagctat 2160caatctaata gtcacctaaa atatcttttt tgttggaaaa aagtttataa taaaaaagtt 2220tgtcatctct agtgacttca ataaagaaaa aactagaaga ggagaaaaag gatttcctca 2280aattttaaat atgtaacttc agggattcaa tccccaaatg tttattaagt agctagaaat 2340aattatgtgg aaaaaaatga ataatggaaa atagtgagtc tcaaattgtt ctcttttttt 2400ttttaactaa aacaaatctg caatgaatct agatgcaatt aattttattc cttccaacta 2460aaattacaat atttttaggt taaaattatt gagatataaa gcagccattg ggaaattggg 2520agaaatgata aacaaatgga aaaagaagat gtccctaacc tacacccata gattaccaag 2580gtttcagtgt actagttttg aatctgttct gaatggagtt tttataccct caatttctgg 2640cctttggcta ttttagcatt tcaaagtgac ttctatgaag cttttttttt aatgtgaaat 2700tttcagaatg ttgttttttt catgtagata ctccaggaag agttaagcac tgctttcagt 2760tttaatatcc accttgaggg gtcgctgctt gagggctctt atcccagggg actttttaat 2820tcggatgtta cttaatgtgg cttctctaat gtagtttctt tgattaccga ctacacaatt 2880atgtaccatc acagtattag tggaaaagta ccatgtgatt taattctcca ttcctccaat 2940gtaactctta aaattattat gtatgtgtgt gtgttttact ttttgttttt tatcatcttt 3000aaaatttcta ttatggtttg attattataa aaataatgaa ttctcactgt aaatttcaaa 3060aaaaaattac aaaagtatgt gaatttaaaa atgagagcag tcctctcacc ctaccacagt 3120tccacaccct caaggtaaac ttataactta taatttgata tgtaaacttc cagatctttt 3180ttctatgcgt aatcagacat acatatatac tgcagtgtat ctcacgtatt aatttttaaa 3240aatcttttgt tttacttaat tctgttttta ttattattat tattttgttt gatctattaa 3300ggaagaacaa ggaagggaat gatctttact caagaatttc agaaagtcag cactgaagtc 3360ctgacctatc agtagacaca tttgtccctt tcagatattt taggatattc tagcaaagca

3420ggccatttct cccacctgaa agtacataac ttctatcact tgccacataa ttaaaagaac 3480tcacattaag cggttactca gacagttaat catagaaaag attatttgct tcatcagttc 3540atagaaaaga ttatttgctt catcagttaa cttgttttta taaatcaggg ctgtgttcat 3600acacagaagg ggcctgagat ttctgcactt taaacaagct cctcctaggt gaggatgctg 3660tggctgttct aattacattt tgagtagtaa ggtctacagc attgttcctc aaacttggct 3720acgtattgga atcacctaaa aagttaaaac aaaacatgga tgtctgggtc ccgccccata 3780gagaatgact taattggcat ggggtgcagt ccaggcatca tgatttttag atttcccagt 3840tggaacttgt gcagcaaagt ttgggagcta ctgatggaca tgtgaaaagt aagtataaat 3900ggaataaaat taattaggct aataggctta acccaggaaa tcctaagttc cttgaatatc 3960cagtttgcat ttggactcct catcatatac ttggtatata atactctaat aaaagctgcc 4020tgagttgaat tgta 403412482PRTHomo sapiens 12Met Ser Glu Ile Arg Lys Asp Thr Leu Lys Ala Ile Leu Leu Glu Leu1 5 10 15Glu Cys His Phe Thr Trp Asn Leu Leu Lys Glu Asp Ile Asp Leu Phe 20 25 30Glu Val Glu Asp Thr Ile Gly Gln Gln Leu Glu Phe Leu Thr Thr Lys 35 40 45Ser Arg Leu Ala Leu Tyr Asn Leu Leu Ala Tyr Val Lys His Leu Lys 50 55 60Gly Gln Asn Lys Asp Ala Leu Glu Cys Leu Glu Gln Ala Glu Glu Ile65 70 75 80Ile Gln Gln Glu His Ser Asp Lys Glu Glu Val Arg Ser Leu Val Thr 85 90 95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Met Asp Gln Leu Glu Glu 100 105 110Ala Gln Lys Tyr Thr Gly Lys Ile Gly Asn Val Cys Lys Lys Leu Ser 115 120 125Ser Pro Ser Asn Tyr Lys Leu Glu Cys Pro Glu Thr Asp Cys Glu Lys 130 135 140Gly Trp Ala Leu Leu Lys Phe Gly Gly Lys Tyr Tyr Gln Lys Ala Lys145 150 155 160Ala Ala Phe Glu Lys Ala Leu Glu Val Glu Pro Asp Asn Pro Glu Phe 165 170 175Asn Ile Gly Tyr Ala Ile Thr Val Tyr Arg Leu Asp Asp Ser Asp Arg 180 185 190Glu Gly Ser Val Lys Ser Phe Ser Leu Gly Pro Leu Arg Lys Ala Val 195 200 205Thr Leu Asn Pro Asp Asn Ser Tyr Ile Lys Val Phe Leu Ala Leu Lys 210 215 220Leu Gln Asp Val His Ala Glu Ala Glu Gly Glu Lys Tyr Ile Glu Glu225 230 235 240Ile Leu Asp Gln Ile Ser Ser Gln Pro Tyr Val Leu Arg Tyr Ala Ala 245 250 255Lys Phe Tyr Arg Arg Lys Asn Ser Trp Asn Lys Ala Leu Glu Leu Leu 260 265 270Lys Lys Ala Leu Glu Val Thr Pro Thr Ser Ser Phe Leu His His Gln 275 280 285Met Gly Leu Cys Tyr Arg Ala Gln Met Ile Gln Ile Lys Lys Ala Thr 290 295 300His Asn Arg Pro Lys Gly Lys Asp Lys Leu Lys Val Asp Glu Leu Ile305 310 315 320Ser Ser Ala Ile Phe His Phe Lys Ala Ala Met Glu Arg Asp Ser Met 325 330 335Phe Ala Phe Ala Tyr Thr Asp Leu Ala Asn Met Tyr Ala Glu Gly Gly 340 345 350Gln Tyr Ser Asn Ala Glu Asp Ile Phe Arg Lys Ala Leu Arg Leu Glu 355 360 365Asn Ile Thr Asp Asp His Lys His Gln Ile His Tyr His Tyr Gly Arg 370 375 380Phe Gln Glu Phe His Arg Lys Ser Glu Asn Thr Ala Ile His His Tyr385 390 395 400Leu Glu Ala Leu Lys Val Lys Asp Arg Ser Pro Leu Arg Thr Lys Leu 405 410 415Thr Ser Ala Leu Lys Lys Leu Ser Thr Lys Arg Leu Cys His Asn Ala 420 425 430Leu Asp Val Gln Ser Leu Ser Ala Leu Gly Phe Val Tyr Lys Leu Glu 435 440 445Gly Glu Lys Arg Gln Ala Ala Glu Tyr Tyr Glu Lys Ala Gln Lys Ile 450 455 460Asp Pro Glu Asn Ala Glu Phe Leu Thr Ala Leu Cys Glu Leu Arg Leu465 470 475 480Ser Ile131673DNAHomo sapiens 13tcccttctga ggaaacgaaa ccaacagcag tccaagctca gtcagcagaa gagataaaag 60caaacaggtc tgggaggcag ttctgttgcc actctctctc ctgtcaatga tggatctcag 120aaatacccca gccaaatctc tggacaagtt cattgaagac tatctcttgc cagacacgtg 180tttccgcatg caaatcaacc atgccattga catcatctgt gggttcctga aggaaaggtg 240cttccgaggt agctcctacc ctgtgtgtgt gtccaaggtg gtaaagggtg gctcctcagg 300caagggcacc accctcagag gccgatctga cgctgacctg gttgtcttcc tcagtcctct 360caccactttt caggatcagt taaatcgccg gggagagttc atccaggaaa ttaggagaca 420gctggaagcc tgtcaaagag agagagcatt ttccgtgaag tttgaggtcc aggctccacg 480ctggggcaac ccccgtgcgc tcagcttcgt actgagttcg ctccagctcg gggagggggt 540ggagttcgat gtgctgcctg cctttgatgc cctgggtcag ttgactggcg gctataaacc 600taacccccaa atctatgtca agctcatcga ggagtgcacc gacctgcaga aagagggcga 660gttctccacc tgcttcacag aactacagag agacttcctg aagcagcgcc ccaccaagct 720caagagcctc atccgcctag tcaagcactg gtaccaaaat tgtaagaaga agcttgggaa 780gctgccacct cagtatgccc tggagctcct gacggtctat gcttgggagc gagggagcat 840gaaaacacat ttcaacacag cccagggatt tcggacggtc ttggaattag tcataaacta 900ccagcaactc tgcatctact ggacaaagta ttatgacttt aaaaacccca ttattgaaaa 960gtacctgaga aggcagctca cgaaacccag gcctgtgatc ctggacccgg cggaccctac 1020aggaaacttg ggtggtggag acccaaaggg ttggaggcag ctggcacaag aggctgaggc 1080ctggctgaat tacccatgct ttaagaattg ggatgggtcc ccagtgagct cctggattct 1140gctggctgaa agcaacagtg cagacgatga gaccgacgat cccaggaggt atcagaaata 1200tggttacatt ggaacacatg agtaccctca tttctctcat agacccagca cactccaggc 1260agcatccacc ccacaggcag aagaggactg gacctgcacc atcctctgaa tgccagtgca 1320tcttggggga aagggctcca gtgttatctg gaccagttcc ttcattttca ggtgggactc 1380ttgatccaga gaggacaaag ctcctcagtg agctggtgta taatccagga cagaacccag 1440gtctcctgac tcctggcctt ctatgccctc tatcctatca tagataacat tctccacagc 1500ctcacttcat tccacctatt ctctgaaaat attccctgag agagaacaga gagatttaga 1560taagagaatg aaattccagc cttgactttc ttctgtgcac ctgatgggag ggtaatgtct 1620aatgtattat caataacaat aaaaataaag caaataccat ttaaaaaaaa aaa 167314400PRTHomo sapiens 14Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile1 5 10 15Glu Asp Tyr Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asn His 20 25 30Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly 35 40 45Ser Ser Tyr Pro Val Cys Val Ser Lys Val Val Lys Gly Gly Ser Ser 50 55 60Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val65 70 75 80Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly 85 90 95Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu 100 105 110Arg Ala Phe Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn 115 120 125Pro Arg Ala Leu Ser Phe Val Leu Ser Ser Leu Gln Leu Gly Glu Gly 130 135 140Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu Thr145 150 155 160Gly Gly Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu 165 170 175Cys Thr Asp Leu Gln Lys Glu Gly Glu Phe Ser Thr Cys Phe Thr Glu 180 185 190Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu 195 200 205Ile Arg Leu Val Lys His Trp Tyr Gln Asn Cys Lys Lys Lys Leu Gly 210 215 220Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Tyr Ala Trp225 230 235 240Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg 245 250 255Thr Val Leu Glu Leu Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp 260 265 270Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu Lys Tyr Leu Arg 275 280 285Arg Gln Leu Thr Lys Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro 290 295 300Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Gly Trp Arg Gln Leu Ala305 310 315 320Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp 325 330 335Gly Ser Pro Val Ser Ser Trp Ile Leu Leu Ala Glu Ser Asn Ser Ala 340 345 350Asp Asp Glu Thr Asp Asp Pro Arg Arg Tyr Gln Lys Tyr Gly Tyr Ile 355 360 365Gly Thr His Glu Tyr Pro His Phe Ser His Arg Pro Ser Thr Leu Gln 370 375 380Ala Ala Ser Thr Pro Gln Ala Glu Glu Asp Trp Thr Cys Thr Ile Leu385 390 395 400151470DNAHomo sapiens 15tcccttctga ggaaacgaaa ccaacagcag tccaagctca gtcagcagaa gagataaaag 60caaacaggtc tgggaggcag ttctgttgcc actctctctc ctgtcaatga tggatctcag 120aaatacccca gccaaatctc tggacaagtt cattgaagac tatctcttgc cagacacgtg 180tttccgcatg caaatcaacc atgccattga catcatctgt gggttcctga aggaaaggtg 240cttccgaggt agctcctacc ctgtgtgtgt gtccaaggtg gtaaagggtg gctcctcagg 300caagggcacc accctcagag gccgatctga cgctgacctg gttgtcttcc tcagtcctct 360caccactttt caggatcagt taaatcgccg gggagagttc atccaggaaa ttaggagaca 420gctggaagcc tgtcaaagag agagagcatt ttccgtgaag tttgaggtcc aggctccacg 480ctggggcaac ccccgtgcgc tcagcttcgt actgagttcg ctccagctcg gggagggggt 540ggagttcgat gtgctgcctg cctttgatgc cctgggtcag ttgactggcg gctataaacc 600taacccccaa atctatgtca agctcatcga ggagtgcacc gacctgcaga aagagggcga 660gttctccacc tgcttcacag aactacagag agacttcctg aagcagcgcc ccaccaagct 720caagagcctc atccgcctag tcaagcactg gtaccaaaat tgtaagaaga agcttgggaa 780gctgccacct cagtatgccc tggagctcct gacggtctat gcttgggagc gagggagcat 840gaaaacacat ttcaacacag cccagggatt tcggacggtc ttggaattag tcataaacta 900ccagcaactc tgcatctact ggacaaagta ttatgacttt aaaaacccca ttattgaaaa 960gtacctgaga aggcagctca cgaaacccag gcctgtgatc ctggacccgg cggaccctac 1020aggaaacttg ggtggtggag acccaaaggg ttggaggcag ctggcacaag aggctgaggc 1080ctggctgaat tacccatgct ttaagaattg ggatgggtcc ccagtgagct cctggattct 1140gctggtgaga cctcctgctt cctccctgcc attcatccct gcccctctcc atgaagcttg 1200agacatatag ctggagacca ttctttccaa agaacttacc tcttgccaaa ggccatttat 1260attcatatag tgacaggctg tgctccatat tttacagtca ttttggtcac aatcgagggt 1320ttctggaatt ttcacatccc ttgtccagaa ttcattcccc taagagtaat aataaataat 1380ctctaacacc atttattgac tgtctgcttc gggctcaggt tctgtcctaa gccctttaat 1440atgcactctc tcattaaata gtcacaacaa 147016364PRTHomo sapiens 16Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile1 5 10 15Glu Asp Tyr Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asn His 20 25 30Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly 35 40 45Ser Ser Tyr Pro Val Cys Val Ser Lys Val Val Lys Gly Gly Ser Ser 50 55 60Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val65 70 75 80Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly 85 90 95Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu 100 105 110Arg Ala Phe Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn 115 120 125Pro Arg Ala Leu Ser Phe Val Leu Ser Ser Leu Gln Leu Gly Glu Gly 130 135 140Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu Thr145 150 155 160Gly Gly Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu 165 170 175Cys Thr Asp Leu Gln Lys Glu Gly Glu Phe Ser Thr Cys Phe Thr Glu 180 185 190Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu 195 200 205Ile Arg Leu Val Lys His Trp Tyr Gln Asn Cys Lys Lys Lys Leu Gly 210 215 220Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Tyr Ala Trp225 230 235 240Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg 245 250 255Thr Val Leu Glu Leu Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp 260 265 270Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu Lys Tyr Leu Arg 275 280 285Arg Gln Leu Thr Lys Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro 290 295 300Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Gly Trp Arg Gln Leu Ala305 310 315 320Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp 325 330 335Gly Ser Pro Val Ser Ser Trp Ile Leu Leu Val Arg Pro Pro Ala Ser 340 345 350Ser Leu Pro Phe Ile Pro Ala Pro Leu His Glu Ala 355 360171575DNAHomo sapiens 17tcccttctga ggaaacgaaa ccaacagcag tccaagctca gtcagcagaa gagataaaag 60caaacaggtc tgggaggcag ttctgttgcc actctctctc ctgtcaatga tggatctcag 120aaatacccca gccaaatctc tggacaagtt cattgaagac tatctcttgc cagacacgtg 180tttccgcatg caaatcaacc atgccattga catcatctgt gggttcctga aggaaaggtg 240cttccgaggt agctcctacc ctgtgtgtgt gtccaaggtg gtaaagggtg gctcctcagg 300caagggcacc accctcagag gccgatctga cgctgacctg gttgtcttcc tcagtcctct 360caccactttt caggatcagt taaatcgccg gggagagttc atccaggaaa ttaggagaca 420gctggaagcc tgtcaaagag agagagcatt ttccgtgaag tttgaggtcc aggctccacg 480ctggggcaac ccccgtgcgc tcagcttcgt actgagttcg ctccagctcg gggagggggt 540ggagttcgat gtgctgcctg cctttgatgc cctgggtcag ttgactggcg gctataaacc 600taacccccaa atctatgtca agctcatcga ggagtgcacc gacctgcaga aagagggcga 660gttctccacc tgcttcacag aactacagag agacttcctg aagcagcgcc ccaccaagct 720caagagcctc atccgcctag tcaagcactg gtaccaaaat tgtaagaaga agcttgggaa 780gctgccacct cagtatgccc tggagctcct gacggtctat gcttgggagc gagggagcat 840gaaaacacat ttcaacacag cccagggatt tcggacggtc ttggaattag tcataaacta 900ccagcaactc tgcatctact ggacaaagta ttatgacttt aaaaacccca ttattgaaaa 960gtacctgaga aggcagctca cgaaacccag gcctgtgatc ctggacccgg cggaccctac 1020aggaaacttg ggtggtggag acccaaaggg ttggaggcag ctggcacaag aggctgaggc 1080ctggctgaat tacccatgct ttaagaattg ggatgggtcc ccagtgagct cctggattct 1140gctgacccag cacactccag gcagcatcca ccccacaggc agaagaggac tggacctgca 1200ccatcctctg aatgccagtg catcttgggg gaaagggctc cagtgttatc tggaccagtt 1260ccttcatttt caggtgggac tcttgatcca gagaggacaa agctcctcag tgagctggtg 1320tataatccag gacagaaccc aggtctcctg actcctggcc ttctatgccc tctatcctat 1380catagataac attctccaca gcctcacttc attccaccta ttctctgaaa atattccctg 1440agagagaaca gagagattta gataagagaa tgaaattcca gccttgactt tcttctgtgc 1500acctgatggg agggtaatgt ctaatgtatt atcaataaca ataaaaataa agcaaatacc 1560atttaaaaaa aaaaa 157518414PRTHomo sapiens 18Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile1 5 10 15Glu Asp Tyr Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asn His 20 25 30Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly 35 40 45Ser Ser Tyr Pro Val Cys Val Ser Lys Val Val Lys Gly Gly Ser Ser 50 55 60Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val65 70 75 80Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly 85 90 95Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu 100 105 110Arg Ala Phe Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn 115 120 125Pro Arg Ala Leu Ser Phe Val Leu Ser Ser Leu Gln Leu Gly Glu Gly 130 135 140Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu Thr145 150 155 160Gly Gly Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu 165 170 175Cys Thr Asp Leu Gln Lys Glu Gly Glu Phe Ser Thr Cys Phe Thr Glu 180 185 190Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu 195 200 205Ile Arg Leu Val Lys His Trp Tyr Gln Asn Cys Lys Lys Lys Leu Gly 210 215 220Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Tyr Ala Trp225 230 235 240Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg 245 250 255Thr Val Leu Glu Leu Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp 260 265 270Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu Lys Tyr Leu Arg 275 280 285Arg Gln Leu Thr Lys Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro 290 295 300Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Gly Trp Arg Gln Leu Ala305

310 315 320Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp 325 330 335Gly Ser Pro Val Ser Ser Trp Ile Leu Leu Thr Gln His Thr Pro Gly 340 345 350Ser Ile His Pro Thr Gly Arg Arg Gly Leu Asp Leu His His Pro Leu 355 360 365Asn Ala Ser Ala Ser Trp Gly Lys Gly Leu Gln Cys Tyr Leu Asp Gln 370 375 380Phe Leu His Phe Gln Val Gly Leu Leu Ile Gln Arg Gly Gln Ser Ser385 390 395 400Ser Val Ser Trp Cys Ile Ile Gln Asp Arg Thr Gln Val Ser 405 410193539DNAHomo sapiens 19caagagttgg taagctcgct gcagtgggtg gagagaggcc tctagacttc agtttcagtt 60tcctggctct gggcagcagc aagaattcct ctgcctccca tcctaccatt cactgtcttg 120ccggcagcca gctgagagca atgggaaatg gggagtccca gctgtcctcg gtgcctgctc 180agaagctggg ttggtttatc caggaatacc tgaagcccta cgaagaatgt cagacactga 240tcgacgagat ggtgaacacc atctgtgacg tcctgcagga acccgaacag ttccccctgg 300tgcagggagt ggccataggt ggctcctatg gacggaaaac agtcttaaga ggcaactccg 360atggtaccct tgtcctcttc ttcagtgact taaaacaatt ccaggatcag aagagaagcc 420aacgtgacat cctcgataaa actggggata agctgaagtt ctgtctgttc acgaagtggt 480tgaaaaacaa tttcgagatc cagaagtccc ttgatgggtt caccatccag gtgttcacaa 540aaaatcagag aatctctttc gaggtgctgg ccgccttcaa cgctctgagc ttaaatgata 600atcccagccc ctggatctat cgagagctca aaagatcctt ggataagaca aatgccagtc 660ctggtgagtt tgcagtctgc ttcactgaac tccagcagaa gttttttgac aaccgtcctg 720gaaaactaaa ggatttgatc ctcttgataa agcactggca tcaacagtgc cagaaaaaaa 780tcaaggattt accctcgctg tctccgtatg ccctggagct gcttacggtg tatgcctggg 840aacaggggtg cagaaaagac aactttgaca ttgctgaagg cgtcagaacc gtactggagc 900tgatcaaatg ccaggagaag ctgtgtatct attggatggt caactacaac tttgaagatg 960agaccatcag gaacatcctg ctgcaccagc tccaatcagc gaggccagta atcttggatc 1020cagttgaccc aaccaataat gtgagtggag ataaaatatg ctggcaatgg ctgaaaaaag 1080aagctcaaac ctggttgact tctcccaacc tggataatga gttacctgca ccatcttgga 1140atgttctgcc tgcaccactc ttcacgaccc caggccacct tctggataag ttcatcaagg 1200agtttctcca gcccaacaaa tgcttcctag agcagattga cagtgctgtt aacatcatcc 1260gtacattcct taaagaaaac tgcttccgac aatcaacagc caagatccag attgtccggg 1320gaggatcaac cgccaaaggc acagctctga agactggctc tgatgccgat ctcgtcgtgt 1380tccataactc acttaaaagc tacacctccc aaaaaaacga gcggcacaaa atcgtcaagg 1440aaatccatga acagctgaaa gccttttgga gggagaagga ggaggagctt gaagtcagct 1500ttgagcctcc caagtggaag gctcccaggg tgctgagctt ctctctgaaa tccaaagtcc 1560tcaacgaaag tgtcagcttt gatgtgcttc ctgcctttaa tgcactgggt cagctgagtt 1620ctggctccac acccagcccc gaggtttatg cagggctcat tgatctgtat aaatcctcgg 1680acctcccggg aggagagttt tctacctgtt tcacagtcct gcagcgaaac ttcattcgct 1740cccggcccac caaactaaag gatttaattc gcctggtgaa gcactggtac aaagagtgtg 1800aaaggaaact gaagccaaag gggtctttgc ccccaaagta tgccttggag ctgctcacca 1860tctatgcctg ggagcagggg agtggagtgc cggattttga cactgcagaa ggtttccgga 1920cagtcctgga gctggtcaca caatatcagc agctctgcat cttctggaag gtcaattaca 1980actttgaaga tgagaccgtg aggaagtttc tactgagcca gttgcagaaa accaggcctg 2040tgatcttgga cccagccgaa cccacaggtg acgtgggtgg aggggaccgt tggtgttggc 2100atcttctggc aaaagaagca aaggaatggt tatcctctcc ctgcttcaag gatgggactg 2160gaaacccaat accaccttgg aaagtgccga caatgcagac accaggaagt tgtggagcta 2220ggatccatcc tattgtcaat gagatgttct catccagaag ccatagaatc ctgaataata 2280attctaaaag aaacttctag agatcatctg gcaatcgctt ttaaagactc ggctcaccgt 2340gagaaagagt cactcacatc cattcttccc ttgatggtcc ctattcctcc ttcccttgct 2400tcttggactt cttgaaatca atcaagactg caaacccttt cataaagtct tgccttgctg 2460aactccctct ctgcaggcag cctgccttta aaaatagttg ctgtcatcca ctttatgtgc 2520atcttatttc tgtcaacttg tatttttttt cttgtatttt tccaattagc tcctcctttt 2580tccttccagt ctaaaaaagg aatcctctgt gtcttcaaag caaagctctt tactttcccc 2640ttggttctca taactctgtg atcttgctct cggtgcttcc aactcatcca cgtcctgtct 2700gtttcctctg tatacaaaac cctttctgcc cctgctgaca cagacatcct ctatgccagc 2760agccagccaa ccctttcatt agaacttcaa gctctccaaa ggctcagatt ataactgttg 2820tcatatttat atgaggctgt tgtcttttcc ttctgagcct gcctttctcc cccccaccca 2880ggagtatcct cttgccaaat caaaagactt tttccttggg ctttagcctt aaagatactt 2940gaaggtctag gtgctttaac ctcacatacc ctcacttaaa cttttatcac tgttgcatat 3000accagttgtg atacaataaa gaatgtatct ggattttgtg cctagttcct agcacacagc 3060ttcaaaaatt ctagagtttc ctgataggag tgtcttttgt attcataaca agcccttttc 3120acccatgcct gggtttatgc taacaaggtt acccatggtg ggcccttagt ttcaaggaag 3180gagttggcca agccagaaag accaagcatg tggttaaagc attggaattt tcagccccat 3240cccaccccca atctccaagg aggtgatggg gctggaaatt gagttcaatt ttaacatggc 3300cagtgattta agcaatgctg cctatgtaaa gaaaccccaa taaaaactct ggacagtgag 3360gcttggggag cttcctgatt ggcagacatt ccaatgtact aggaaggtag cgcatcttga 3420ttccacaggg acaaaggctc ctgagctctg ggcccttcca gtgcttgcca ccctacatac 3480tctttgtctg gctcttcatt tgtattcttt ataataaaat ggtgattgta agtagagca 353920719PRTHomo sapiens 20Met Gly Asn Gly Glu Ser Gln Leu Ser Ser Val Pro Ala Gln Lys Leu1 5 10 15Gly Trp Phe Ile Gln Glu Tyr Leu Lys Pro Tyr Glu Glu Cys Gln Thr 20 25 30Leu Ile Asp Glu Met Val Asn Thr Ile Cys Asp Val Leu Gln Glu Pro 35 40 45Glu Gln Phe Pro Leu Val Gln Gly Val Ala Ile Gly Gly Ser Tyr Gly 50 55 60Arg Lys Thr Val Leu Arg Gly Asn Ser Asp Gly Thr Leu Val Leu Phe65 70 75 80Phe Ser Asp Leu Lys Gln Phe Gln Asp Gln Lys Arg Ser Gln Arg Asp 85 90 95Ile Leu Asp Lys Thr Gly Asp Lys Leu Lys Phe Cys Leu Phe Thr Lys 100 105 110Trp Leu Lys Asn Asn Phe Glu Ile Gln Lys Ser Leu Asp Gly Phe Thr 115 120 125Ile Gln Val Phe Thr Lys Asn Gln Arg Ile Ser Phe Glu Val Leu Ala 130 135 140Ala Phe Asn Ala Leu Ser Leu Asn Asp Asn Pro Ser Pro Trp Ile Tyr145 150 155 160Arg Glu Leu Lys Arg Ser Leu Asp Lys Thr Asn Ala Ser Pro Gly Glu 165 170 175Phe Ala Val Cys Phe Thr Glu Leu Gln Gln Lys Phe Phe Asp Asn Arg 180 185 190Pro Gly Lys Leu Lys Asp Leu Ile Leu Leu Ile Lys His Trp His Gln 195 200 205Gln Cys Gln Lys Lys Ile Lys Asp Leu Pro Ser Leu Ser Pro Tyr Ala 210 215 220Leu Glu Leu Leu Thr Val Tyr Ala Trp Glu Gln Gly Cys Arg Lys Asp225 230 235 240Asn Phe Asp Ile Ala Glu Gly Val Arg Thr Val Leu Glu Leu Ile Lys 245 250 255Cys Gln Glu Lys Leu Cys Ile Tyr Trp Met Val Asn Tyr Asn Phe Glu 260 265 270Asp Glu Thr Ile Arg Asn Ile Leu Leu His Gln Leu Gln Ser Ala Arg 275 280 285Pro Val Ile Leu Asp Pro Val Asp Pro Thr Asn Asn Val Ser Gly Asp 290 295 300Lys Ile Cys Trp Gln Trp Leu Lys Lys Glu Ala Gln Thr Trp Leu Thr305 310 315 320Ser Pro Asn Leu Asp Asn Glu Leu Pro Ala Pro Ser Trp Asn Val Leu 325 330 335Pro Ala Pro Leu Phe Thr Thr Pro Gly His Leu Leu Asp Lys Phe Ile 340 345 350Lys Glu Phe Leu Gln Pro Asn Lys Cys Phe Leu Glu Gln Ile Asp Ser 355 360 365Ala Val Asn Ile Ile Arg Thr Phe Leu Lys Glu Asn Cys Phe Arg Gln 370 375 380Ser Thr Ala Lys Ile Gln Ile Val Arg Gly Gly Ser Thr Ala Lys Gly385 390 395 400Thr Ala Leu Lys Thr Gly Ser Asp Ala Asp Leu Val Val Phe His Asn 405 410 415Ser Leu Lys Ser Tyr Thr Ser Gln Lys Asn Glu Arg His Lys Ile Val 420 425 430Lys Glu Ile His Glu Gln Leu Lys Ala Phe Trp Arg Glu Lys Glu Glu 435 440 445Glu Leu Glu Val Ser Phe Glu Pro Pro Lys Trp Lys Ala Pro Arg Val 450 455 460Leu Ser Phe Ser Leu Lys Ser Lys Val Leu Asn Glu Ser Val Ser Phe465 470 475 480Asp Val Leu Pro Ala Phe Asn Ala Leu Gly Gln Leu Ser Ser Gly Ser 485 490 495Thr Pro Ser Pro Glu Val Tyr Ala Gly Leu Ile Asp Leu Tyr Lys Ser 500 505 510Ser Asp Leu Pro Gly Gly Glu Phe Ser Thr Cys Phe Thr Val Leu Gln 515 520 525Arg Asn Phe Ile Arg Ser Arg Pro Thr Lys Leu Lys Asp Leu Ile Arg 530 535 540Leu Val Lys His Trp Tyr Lys Glu Cys Glu Arg Lys Leu Lys Pro Lys545 550 555 560Gly Ser Leu Pro Pro Lys Tyr Ala Leu Glu Leu Leu Thr Ile Tyr Ala 565 570 575Trp Glu Gln Gly Ser Gly Val Pro Asp Phe Asp Thr Ala Glu Gly Phe 580 585 590Arg Thr Val Leu Glu Leu Val Thr Gln Tyr Gln Gln Leu Cys Ile Phe 595 600 605Trp Lys Val Asn Tyr Asn Phe Glu Asp Glu Thr Val Arg Lys Phe Leu 610 615 620Leu Ser Gln Leu Gln Lys Thr Arg Pro Val Ile Leu Asp Pro Ala Glu625 630 635 640Pro Thr Gly Asp Val Gly Gly Gly Asp Arg Trp Cys Trp His Leu Leu 645 650 655Ala Lys Glu Ala Lys Glu Trp Leu Ser Ser Pro Cys Phe Lys Asp Gly 660 665 670Thr Gly Asn Pro Ile Pro Pro Trp Lys Val Pro Thr Met Gln Thr Pro 675 680 685Gly Ser Cys Gly Ala Arg Ile His Pro Ile Val Asn Glu Met Phe Ser 690 695 700Ser Arg Ser His Arg Ile Leu Asn Asn Asn Ser Lys Arg Asn Phe705 710 715213647DNAHomo sapiens 21caagagttgg taagctcgct gcagtgggtg gagagaggcc tctagacttc agtttcagtt 60tcctggctct gggcagcagc aagaattcct ctgcctccca tcctaccatt cactgtcttg 120ccggcagcca gctgagagca atgggaaatg gggagtccca gctgtcctcg gtgcctgctc 180agaagctggg ttggtttatc caggaatacc tgaagcccta cgaagaatgt cagacactga 240tcgacgagat ggtgaacacc atctgtgacg tcctgcagga acccgaacag ttccccctgg 300tgcagggagt ggccataggt ggctcctatg gacggaaaac agtcttaaga ggcaactccg 360atggtaccct tgtcctcttc ttcagtgact taaaacaatt ccaggatcag aagagaagcc 420aacgtgacat cctcgataaa actggggata agctgaagtt ctgtctgttc acgaagtggt 480tgaaaaacaa tttcgagatc cagaagtccc ttgatgggtt caccatccag gtgttcacaa 540aaaatcagag aatctctttc gaggtgctgg ccgccttcaa cgctctgagc ttaaatgata 600atcccagccc ctggatctat cgagagctca aaagatcctt ggataagaca aatgccagtc 660ctggtgagtt tgcagtctgc ttcactgaac tccagcagaa gttttttgac aaccgtcctg 720gaaaactaaa ggatttgatc ctcttgataa agcactggca tcaacagtgc cagaaaaaaa 780tcaaggattt accctcgctg tctccgtatg ccctggagct gcttacggtg tatgcctggg 840aacaggggtg cagaaaagac aactttgaca ttgctgaagg cgtcagaacc gtactggagc 900tgatcaaatg ccaggagaag ctgtgtatct attggatggt caactacaac tttgaagatg 960agaccatcag gaacatcctg ctgcaccagc tccaatcagc gaggccagta atcttggatc 1020cagttgaccc aaccaataat gtgagtggag ataaaatatg ctggcaatgg ctgaaaaaag 1080aagctcaaac ctggttgact tctcccaacc tggataatga gttacctgca ccatcttgga 1140atgttctgcc tgcaccactc ttcacgaccc caggccacct tctggataag ttcatcaagg 1200agtttctcca gcccaacaaa tgcttcctag agcagattga cagtgctgtt aacatcatcc 1260gtacattcct taaagaaaac tgcttccgac aatcaacagc caagatccag attgtccggg 1320gaggatcaac cgccaaaggc acagctctga agactggctc tgatgccgat ctcgtcgtgt 1380tccataactc acttaaaagc tacacctccc aaaaaaacga gcggcacaaa atcgtcaagg 1440aaatccatga acagctgaaa gccttttgga gggagaagga ggaggagctt gaagtcagct 1500ttgagcctcc caagtggaag gctcccaggg tgctgagctt ctctctgaaa tccaaagtcc 1560tcaacgaaag tgtcagcttt gatgtgcttc ctgcctttaa tgcactgggt cagctgagtt 1620ctggctccac acccagcccc gaggtttatg cagggctcat tgatctgtat aaatcctcgg 1680acctcccggg aggagagttt tctacctgtt tcacagtcct gcagcgaaac ttcattcgct 1740cccggcccac caaactaaag gatttaattc gcctggtgaa gcactggtac aaagagtgtg 1800aaaggaaact gaagccaaag gggtctttgc ccccaaagta tgccttggag ctgctcacca 1860tctatgcctg ggagcagggg agtggagtgc cggattttga cactgcagaa ggtttccgga 1920cagtcctgga gctggtcaca caatatcagc agctctgcat cttctggaag gtcaattaca 1980actttgaaga tgagaccgtg aggaagtttc tactgagcca gttgcagaaa accaggcctg 2040tgatcttgga cccagccgaa cccacaggtg acgtgggtgg aggggaccgt tggtgttggc 2100atcttctggc aaaagaagca aaggaatggt tatcctctcc ctgcttcaag gatgggactg 2160gaaacccaat accaccttgg aaagtgccgg taaaagtcat ctaaaggagg cgttgtctgg 2220aaatagccct gtaacaggct tgaatcaaag aacttctcct actgtagcaa cctgaaatta 2280actcagacac aaataaagga aacccagctc acaggagctt aaacagctgg tcagccccct 2340aagcccccac tacaagtgat cctcaggcag gtaaccccag attcatgcac tgtagggtgc 2400tgcgcagcat ccctagtctc tacccagtag atgccactag ccctcctctc ccagtgacaa 2460ccaaaagtct tcagacattg tcaaacgttc ccctgggttc acagatcttt ctgcctttgg 2520cttttggctc caccctcttt agctgttaat ttgagtactt atggccctga aagcggccac 2580ggtgcctcca gatggcaggt ttgcaatcca agcaggaaga aggaaaagat acccaaaggt 2640caagaacaca gtgattttat tagaagtttc atccgcaaat tttcttccat ttcattgctc 2700agaaatgtca tgtggctacc tgtaacttga aggtggctac aaagatgact gtggacgtgg 2760gttgcactgg ccacccaagg atgtctgcca cacctctcca aagccctccc tacctaccaa 2820gatatacctg atatattcca ccaggatatc ctccctccag atatacttgg ttctctccac 2880caggttcttt ctttaaagca ggatttctca actttgatac ttactcacat ttggggctag 2940acagttcttt gtttggaggc tctcttgtgc attgtaggat gttgagcagc atctctggcc 3000tgtacccagt agatgccacc cagttgtgac aattaaaagt gtcttgagac tttatcatgt 3060gtcttctgcc ctaggtgaga acccttgcac tagaggaacc ctacacccca accctggggg 3120gaatgtaggg aagaggtggc caagccaacc gtggggttag ctctaattat taagatatgc 3180attataaata aataccaaaa aattgtctct ggcaatagtt accttcccag atacaggtcc 3240cccctttttt cccctaactc ttttaagcaa tgattgtaac tattaggaga cattgctctc 3300ccacgtatgt ttttcttttt agacaatgca gacaccagga agttgtggag ctaggatcca 3360tcctattgtc aatgagatgt tctcatccag aagccataga atcctgaata ataattctaa 3420aagaaacttc tagagatcat ctggcaatcg cttttaaaga ctcggctcac cgtgagaaag 3480agtcactcac atccattctt cccttgatgg tccctattcc tccttccctt gcttcttgga 3540cttcttgaaa tcaatcaaga ctgcaaaccc tttcataaag tcttgccttg ctgaactccc 3600tctctgcagg cagcctgcct ttaaaaatag ttgctgtcat ccacttt 364722687PRTHomo sapiens 22Met Gly Asn Gly Glu Ser Gln Leu Ser Ser Val Pro Ala Gln Lys Leu1 5 10 15Gly Trp Phe Ile Gln Glu Tyr Leu Lys Pro Tyr Glu Glu Cys Gln Thr 20 25 30Leu Ile Asp Glu Met Val Asn Thr Ile Cys Asp Val Leu Gln Glu Pro 35 40 45Glu Gln Phe Pro Leu Val Gln Gly Val Ala Ile Gly Gly Ser Tyr Gly 50 55 60Arg Lys Thr Val Leu Arg Gly Asn Ser Asp Gly Thr Leu Val Leu Phe65 70 75 80Phe Ser Asp Leu Lys Gln Phe Gln Asp Gln Lys Arg Ser Gln Arg Asp 85 90 95Ile Leu Asp Lys Thr Gly Asp Lys Leu Lys Phe Cys Leu Phe Thr Lys 100 105 110Trp Leu Lys Asn Asn Phe Glu Ile Gln Lys Ser Leu Asp Gly Phe Thr 115 120 125Ile Gln Val Phe Thr Lys Asn Gln Arg Ile Ser Phe Glu Val Leu Ala 130 135 140Ala Phe Asn Ala Leu Ser Leu Asn Asp Asn Pro Ser Pro Trp Ile Tyr145 150 155 160Arg Glu Leu Lys Arg Ser Leu Asp Lys Thr Asn Ala Ser Pro Gly Glu 165 170 175Phe Ala Val Cys Phe Thr Glu Leu Gln Gln Lys Phe Phe Asp Asn Arg 180 185 190Pro Gly Lys Leu Lys Asp Leu Ile Leu Leu Ile Lys His Trp His Gln 195 200 205Gln Cys Gln Lys Lys Ile Lys Asp Leu Pro Ser Leu Ser Pro Tyr Ala 210 215 220Leu Glu Leu Leu Thr Val Tyr Ala Trp Glu Gln Gly Cys Arg Lys Asp225 230 235 240Asn Phe Asp Ile Ala Glu Gly Val Arg Thr Val Leu Glu Leu Ile Lys 245 250 255Cys Gln Glu Lys Leu Cys Ile Tyr Trp Met Val Asn Tyr Asn Phe Glu 260 265 270Asp Glu Thr Ile Arg Asn Ile Leu Leu His Gln Leu Gln Ser Ala Arg 275 280 285Pro Val Ile Leu Asp Pro Val Asp Pro Thr Asn Asn Val Ser Gly Asp 290 295 300Lys Ile Cys Trp Gln Trp Leu Lys Lys Glu Ala Gln Thr Trp Leu Thr305 310 315 320Ser Pro Asn Leu Asp Asn Glu Leu Pro Ala Pro Ser Trp Asn Val Leu 325 330 335Pro Ala Pro Leu Phe Thr Thr Pro Gly His Leu Leu Asp Lys Phe Ile 340 345 350Lys Glu Phe Leu Gln Pro Asn Lys Cys Phe Leu Glu Gln Ile Asp Ser 355 360 365Ala Val Asn Ile Ile Arg Thr Phe Leu Lys Glu Asn Cys Phe Arg Gln 370 375 380Ser Thr Ala Lys Ile Gln Ile Val Arg Gly Gly Ser Thr Ala Lys Gly385 390 395 400Thr Ala Leu Lys Thr Gly Ser Asp Ala Asp Leu Val Val Phe His Asn 405 410 415Ser Leu Lys Ser Tyr Thr Ser Gln Lys Asn Glu Arg His Lys Ile Val 420 425 430Lys Glu Ile His Glu Gln Leu Lys Ala Phe Trp Arg Glu Lys Glu Glu 435 440 445Glu Leu Glu Val Ser Phe Glu Pro Pro Lys Trp Lys Ala Pro Arg Val 450 455

460Leu Ser Phe Ser Leu Lys Ser Lys Val Leu Asn Glu Ser Val Ser Phe465 470 475 480Asp Val Leu Pro Ala Phe Asn Ala Leu Gly Gln Leu Ser Ser Gly Ser 485 490 495Thr Pro Ser Pro Glu Val Tyr Ala Gly Leu Ile Asp Leu Tyr Lys Ser 500 505 510Ser Asp Leu Pro Gly Gly Glu Phe Ser Thr Cys Phe Thr Val Leu Gln 515 520 525Arg Asn Phe Ile Arg Ser Arg Pro Thr Lys Leu Lys Asp Leu Ile Arg 530 535 540Leu Val Lys His Trp Tyr Lys Glu Cys Glu Arg Lys Leu Lys Pro Lys545 550 555 560Gly Ser Leu Pro Pro Lys Tyr Ala Leu Glu Leu Leu Thr Ile Tyr Ala 565 570 575Trp Glu Gln Gly Ser Gly Val Pro Asp Phe Asp Thr Ala Glu Gly Phe 580 585 590Arg Thr Val Leu Glu Leu Val Thr Gln Tyr Gln Gln Leu Cys Ile Phe 595 600 605Trp Lys Val Asn Tyr Asn Phe Glu Asp Glu Thr Val Arg Lys Phe Leu 610 615 620Leu Ser Gln Leu Gln Lys Thr Arg Pro Val Ile Leu Asp Pro Ala Glu625 630 635 640Pro Thr Gly Asp Val Gly Gly Gly Asp Arg Trp Cys Trp His Leu Leu 645 650 655Ala Lys Glu Ala Lys Glu Trp Leu Ser Ser Pro Cys Phe Lys Asp Gly 660 665 670Thr Gly Asn Pro Ile Pro Pro Trp Lys Val Pro Val Lys Val Ile 675 680 685232123DNAHomo sapiens 23caagagttgg taagctcgct gcagtgggtg gagagaggcc tctagacttc agtttcagtt 60tcctggctct gggcagcagc aagaattcct ctgcctccca tcctaccatt cactgtcttg 120ccggcagcca gctgagagca atgggaaatg gggagtccca gctgtcctcg gtgcctgctc 180agaagctggg ttggtttatc caggaatacc tgaagcccta cgaagaatgt cagacactga 240tcgacgagat ggtgaacacc atctgtgacg tcctgcagga acccgaacag ttccccctgg 300tgcagggagt ggccataggt ggctcctatg gacggaaaac agtcttaaga ggcaactccg 360atggtaccct tgtcctcttc ttcagtgact taaaacaatt ccaggatcag aagagaagcc 420aacgtgacat cctcgataaa actggggata agctgaagtt ctgtctgttc acgaagtggt 480tgaaaaacaa tttcgagatc cagaagtccc ttgatgggtt caccatccag gtgttcacaa 540aaaatcagag aatctctttc gaggtgctgg ccgccttcaa cgctctgagt aagcattgct 600gggtgtcagg agagaaaagc caaagaagcg ggtgccagac agctctgtgc aacctctagg 660ccatgagtgg gatagatacc actgctgctt taaaaaatgg gagaccatag accctcagga 720gagaagaatc ccttctaccc tggactcgct ctcttctctg gaactaactt ctcccccata 780ccctgattgt ctttggagaa aatgttctgg attctagaat ctaaggcaga gccttttaag 840ccatactgta cacataaatc acctggaacc ttgttaaaat gcagatcctg actcaggagg 900tctgagttag agcccaggat ttcatatttc tagccagctc catgatgagc tgctggtccg 960cagatcatgc ttgcaggttt tgaccagagt cagtgttggt tagagtaaga ggatgaggca 1020gacatctggg aaaagtccag ctggggcaag catttgaagt ctgccttcct accaggtcaa 1080aatcaaggca acgaccttcc atagataact atcaaagctt gagggggtgc cttgaaccca 1140actcctaaat ccctaagacc tgcccacctc ttgtgtctcc tgtctcagca aacattccca 1200cactcttgca tattgttaaa gtaacctctg cttaccaggc ttctggttta ataaaagatg 1260gctagagtga ctccatctta aagcaagtag ctaggcactc aaaaggaacc tacaggctta 1320atacttgggt ctgaaaatag ccacagtcta agctgaccac caattataat tgcagaatat 1380ttaaggccat acaaaacatc tcccactaag cctacaaaat gtccaggtgt cctaaaagtt 1440cagcccactt aaaggcagca ttaatgagca ggtttaggtt gaaggattaa tggtcatcaa 1500taccactgtt aagaagaaaa ttcttggcca aattgaattt aatggagttt aactgagcag 1560acaattcaca aatctagaag cctcctgagc cagagtaggt tcagagagtc ttgaacacag 1620ccacgtggtg gaagaagatt tatggacagg aaaaggaaaa tgatgtactg aaaatgaaag 1680tgaggtacag aaacagccag actggttata gctcagcatt ggccttattt gaacgagatt 1740tgaacagttg gccacctttg attggccgaa actcagtgat tggcacaaga gtaggttgca 1800gtctgtttac acatcctttt aggttatagt tcaccatgta cagagaaatt ttaggccaaa 1860cttaaaatat gtaaggaggc agctttaggc taaacttgat ttaacagcac caataccccc 1920tacctttagt gagcacatct gcacattcca attttaatga cagctcctta gaatttctta 1980tcaacgaaga cactaacaaa gaatggcgca ttcctccttc tcctttctga ggatgcccta 2040ccctgtaaca aagtcgtttc taataaattt gcttctttca ccataaaaaa aaaaaaaaaa 2100aaaaaaaaaa aaaaaaaaaa aaa 212324172PRTHomo sapiens 24Met Gly Asn Gly Glu Ser Gln Leu Ser Ser Val Pro Ala Gln Lys Leu1 5 10 15Gly Trp Phe Ile Gln Glu Tyr Leu Lys Pro Tyr Glu Glu Cys Gln Thr 20 25 30Leu Ile Asp Glu Met Val Asn Thr Ile Cys Asp Val Leu Gln Glu Pro 35 40 45Glu Gln Phe Pro Leu Val Gln Gly Val Ala Ile Gly Gly Ser Tyr Gly 50 55 60Arg Lys Thr Val Leu Arg Gly Asn Ser Asp Gly Thr Leu Val Leu Phe65 70 75 80Phe Ser Asp Leu Lys Gln Phe Gln Asp Gln Lys Arg Ser Gln Arg Asp 85 90 95Ile Leu Asp Lys Thr Gly Asp Lys Leu Lys Phe Cys Leu Phe Thr Lys 100 105 110Trp Leu Lys Asn Asn Phe Glu Ile Gln Lys Ser Leu Asp Gly Phe Thr 115 120 125Ile Gln Val Phe Thr Lys Asn Gln Arg Ile Ser Phe Glu Val Leu Ala 130 135 140Ala Phe Asn Ala Leu Ser Lys His Cys Trp Val Ser Gly Glu Lys Ser145 150 155 160Gln Arg Ser Gly Cys Gln Thr Ala Leu Cys Asn Leu 165 170256646DNAHomo sapiens 25gttcggagag ccgggcggga aaacgaaacc agaaatccga aggccgcgcc agagccctgc 60ttccccttgc acctgcgccg ggcggccatg gacttgtaca gcaccccggc cgctgcgctg 120gacaggttcg tggccagaag gctgcagccg cggaaggagt tcgtagagaa ggcgcggcgc 180gctctgggcg ccctggccgc tgccctgagg gagcgcgggg gccgcctcgg tgctgctgcc 240ccgcgggtgc tgaaaactgt caagggaggc tcctcgggcc ggggcacagc tctcaagggt 300ggctgtgatt ctgaacttgt catcttcctc gactgcttca agagctatgt ggaccagagg 360gcccgccgtg cagagatcct cagtgagatg cgggcatcgc tggaatcctg gtggcagaac 420ccagtccctg gtctgagact cacgtttcct gagcagagcg tgcctggggc cctgcagttc 480cgcctgacat ccgtagatct tgaggactgg atggatgtta gcctggtgcc tgccttcaat 540gtcctgggtc aggccggctc cggcgtcaaa cccaagccac aagtctactc taccctcctc 600aacagtggct gccaaggggg cgagcatgcg gcctgcttca cagagctgcg gaggaacttt 660gtgaacattc gcccagccaa gttgaagaac ctaatcttgc tggtgaagca ctggtaccac 720caggtgtgcc tacaggggtt gtggaaggag acgctgcccc cggtctatgc cctggaattg 780ctgaccatct tcgcctggga gcagggctgt aagaaggatg ctttcagcct agccgaaggc 840ctccgaactg tcctgggcct gatccaacag catcagcacc tgtgtgtttt ctggactgtc 900aactatggct tcgaggaccc tgcagttggg cagttcttgc agcggcagct taagagaccc 960aggcctgtga tcctggaccc agctgacccc acatgggacc tggggaatgg ggcagcctgg 1020cactgggatt tgctagccca ggaggcagca tcctgctatg accacccatg ctttctgagg 1080gggatggggg acccagtgca gtcttggaag gggccgggcc ttccacgtgc tggatgctca 1140ggtttgggcc accccatcca gctagaccct aaccagaaga cccctgaaaa cagcaagagc 1200ctcaatgctg tgtacccaag agcagggagc aaacctccct catgcccagc tcctggcccc 1260actggggcag ccagcatcgt cccctctgtg ccgggaatgg ccttggacct gtctcagatc 1320cccaccaagg agctggaccg cttcatccag gaccacctga agccgagccc ccagttccag 1380gagcaggtga aaaaggccat cgacatcatc ttgcgctgcc tccatgagaa ctgtgttcac 1440aaggcctcaa gagtcagtaa agggggctca tttggccggg gcacagacct aagggatggc 1500tgtgatgttg aactcatcat cttcctcaac tgcttcacgg actacaagga ccaggggccc 1560cgccgcgcag agatccttga tgagatgcga gcgcagctag aatcctggtg gcaggaccag 1620gtgcccagcc tgagccttca gtttcctgag cagaatgtgc ctgaggctct gcagttccag 1680ctggtgtcca cagccctgaa gagctggacg gatgttagcc tgctgcctgc cttcgatgct 1740gtggggcagc tcagttctgg caccaaacca aatccccagg tctactcgag gctcctcacc 1800agtggctgcc aggagggcga gcataaggcc tgcttcgcag agctgcggag gaacttcatg 1860aacattcgcc ctgtcaagct gaagaacctg attctgctgg tgaagcactg gtaccgccag 1920gttgcggctc agaacaaagg aaaaggacca gcccctgcct ctctgccccc agcctatgcc 1980ctggagctcc tcaccatctt tgcctgggag cagggctgca ggcaggattg tttcaacatg 2040gcccaaggct tccggacggt gctggggctc gtgcaacagc atcagcagct ctgtgtctac 2100tggacggtca actatagcac tgaggaccca gccatgagaa tgcaccttct tggccagctt 2160cgaaaaccca gacccctggt cctggacccc gctgatccca cctggaacgt gggccacggt 2220agctgggagc tgttggccca ggaagcagca gcgctgggga tgcaggcctg ctttctgagt 2280agagacggga catctgtgca gccctgggat gtgatgccag ccctccttta ccaaacccca 2340gctggggacc ttgacaagtt catcagtgaa tttctccagc ccaaccgcca gttcctggcc 2400caggtgaaca aggccgttga taccatctgt tcatttttga aggaaaactg cttccggaat 2460tctcccatca aagtgatcaa ggtggtcaag ggtggctctt cagccaaagg cacagctctg 2520cgaggccgct cagatgccga cctcgtggtg ttcctcagct gcttcagcca gttcactgag 2580cagggcaaca agcgggccga gatcatctcc gagatccgag cccagctgga ggcatgtcaa 2640caggagcggc agttcgaggt caagtttgaa gtctccaaat gggagaatcc ccgcgtgctg 2700agcttctcac tgacatccca gacgatgctg gaccagagtg tggactttga tgtgctgcca 2760gcctttgacg ccctaggcca gctggtctct ggctccaggc ccagctctca agtctacgtc 2820gacctcatcc acagctacag caatgcgggc gagtactcca cctgcttcac agagctacaa 2880cgggacttca tcatctctcg ccctaccaag ctgaagagcc tgatccggct ggtgaagcac 2940tggtaccagc agtgtaccaa gatctccaag gggagaggct ccctaccccc acagcacggg 3000ctggaactcc tgactgtgta tgcctgggag cagggcggga aggactccca gttcaacatg 3060gctgagggct tccgcacggt cctggagctg gtcacccagt accgccagct ctgtatctac 3120tggaccatca actacaacgc caaggacaag actgttggag acttcctgaa acagcagctt 3180cagaagccca ggcctatcat cctggatccg gctgacccga caggcaacct gggccacaat 3240gcccgctggg acctgctggc caaggaagct gcagcctgca catctgccct gtgctgcatg 3300ggacggaatg gcatccccat ccagccatgg ccagtgaagg ctgctgtgtg aagttgagaa 3360aatcagcggt cctactggat gaagagaaga tggacaccag ccctcagcat gaggaaattc 3420agggtcccct accagatgag agagattgtg tacatgtgtg tgtgagcaca tgtgtgcatg 3480tgtgtgcaca cgtgtgcatg tgtgtgtttt agtgaatctg ctctcccagc tcacacactc 3540ccctgcctcc catggcttac acactaggat ccagactcca tggtttgaca ccagcctgcg 3600tttgcagctt ctctgtcact tccatgactc tatcctcata ccaccactgc tgcttcccac 3660ccagctgaga atgccccctc ctccctgact cctctctgcc catgcaaatt agctcacatc 3720tttcctcctg ctgcaatcca tcccttcctc ccattggcct ctccttgcca aatctaaata 3780gtttatatag ggatggcaga gagttcccat ctcatctgtc agccacagtc atttggtact 3840ggctacctgg agccttatct tctgaagggt tttaaagaat ggccaattag ctgagaagaa 3900ttatctaatc aattagtgat gtctgccatg gatgcagtag aggaaagtgg tggtacaagt 3960gccatgattg attagcaatg tctgcactgg atacggaaaa aagaaggtgc ttgcaggttt 4020acagtgtata tgtgggctat tgaagagccc tctgagctcg gttgctagca ggagagcatg 4080cccatattgg cttactttgt ctgccacaga cacagacaga gggagttggg acatgcatgc 4140tatggggacc ctcttgttgg acacctaatt ggatgcctct tcatgagagg cctccttttc 4200ttcacctttt atgctgcact cctcccctag tttacacatc ttgatgctgt ggctcagttt 4260gccttcctga atttttattg ggtccctgtt ttctctccta acatgctgag attctgcatc 4320cccacagcct aaactgagcc agtggccaaa caaccgtgct cagcctgttt ctctctgccc 4380tctagagcaa ggcccaccag gtccatccag gaggctctcc tgacctcaag tccaacaaca 4440gtgtccacac tagtcaaggt tcagcccaga aaacagaaag cactctagga atcttaggca 4500gaaagggatt ttatctaaat cactggaaag gctggaggag cagaaggcag aggccaccac 4560tggactattg gtttcaatat tagaccactg tagccgaatc agaggccaga gagcagccac 4620tgctactgct aatgccacca ctacccctgc catcactgcc ccacatggac aaaactggag 4680tcgagaccta ggttagattc ctgcaaccac aaacatccat cagggatggc cagctgccag 4740agctgcggga agacggatcc cacctccctt tcttagcaga atctaaatta cagccagacc 4800tctggctgca gaggagtctg agacatgtat gattgaatgg gtgccaagtg ccagggggcg 4860gagtccccag cagatgcatc ctggccatct gttgcgtgga tgagggagtg ggtctatctc 4920agaggaagga acaggaaaca aagaaaggaa gccactgaac atcccttctc tgctccacag 4980gagtgcctta gacagcctga ctctccacaa accactgtta aaacttacct gctaggaatg 5040ctagattgaa tgggatggga agagccttcc ctcattattg tcattcttgg agagaggtga 5100gcaaccaagg gaagctcctc tgattcacct agaacctgtt ctctgccgtc tttggctcag 5160cctacagaga ctagagtagg tgaagggaca gaggacaggg cttctaatac ctgtgccata 5220ttgacagcct ccatccctgt cccccatctt ggtgctgaac caacgctaag ggcaccttct 5280tagactcacc tcatcgatac tgcctggtaa tccaaagcta gaactctcag gaccccaaac 5340tccacctctt ggattggccc tggctgctgc cacacacata tccaagagct cagggccagt 5400tctggtgggc agcagagacc tgctctgcca agttgtccag cagcagagtg gccctggcct 5460gggcatcaca agccagtgat gctcctggga agaccaggtg gcaggtcgca gttgggtacc 5520ttccattccc accacacaga ctctgggcct ccccgcaaaa tggctccaga attagagtaa 5580ttatgagatg gtgggaacca gagcaactca ggtgcatgat acaaggagag gttgtcatct 5640gggtagggca gagaggaggg cttgctcatc tgaacagggg tgtatttcat tccaggccct 5700cagtctttgg caatggccac cctggtgttg gcatattggc cccactgtaa cttttggggg 5760cttcccggtc tagccacacc ctcggatgga aagacttgac tgcataaaga tgtcagttct 5820ccctgagttg attgataggc ttaatggtca ccctaaaaac acccacatat gcttttcgat 5880ggaaccaggt aagttgacgc taaagttctt atggaaaaat acacacgcaa tagctaggaa 5940aacacaggga aagaagagtt ctgagcaggg cctagtctta gccaatatta aaacatacta 6000tgaagcctct gatacttaaa cagcatggcg ctggtacgta aatagaccaa tgcagttagg 6060tggctctttc caagactctg gggaaaaaag tagtaaaaag ctaaatgcaa tcaatcagca 6120attgaaagct aagtgagaga gccagagggc ctccttggtg gtaaaagagg gttgcatttc 6180ttgcagccag aaggcagaga aagtgaagac caagtccaga actgaatcct aagaaatgca 6240ggactgcaaa gaaattggtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tttaattttt 6300aaaaagtttt tattgagata caagtcaata ccataaagct ctcacccttc taaagtgtac 6360aattcagtgg tgtgagtata ttcataagat ttatacttgg tgtctattca taagacttat 6420atccagcata ttcataacta gagccatatc acagatgcat tcatcataat aattccagac 6480attttcatca ccctaaaagg aaaccctgaa acccattagc agtcattccc cattcctcca 6540acccattctc tccctaatcc ctagaaacca ccaatctgct gtgtatttca tctattgcca 6600acatttcata taaatggcat catacaaaaa aaaaaaaaaa aaaaaa 6646261087PRTHomo sapiens 26Met Asp Leu Tyr Ser Thr Pro Ala Ala Ala Leu Asp Arg Phe Val Ala1 5 10 15Arg Arg Leu Gln Pro Arg Lys Glu Phe Val Glu Lys Ala Arg Arg Ala 20 25 30Leu Gly Ala Leu Ala Ala Ala Leu Arg Glu Arg Gly Gly Arg Leu Gly 35 40 45Ala Ala Ala Pro Arg Val Leu Lys Thr Val Lys Gly Gly Ser Ser Gly 50 55 60Arg Gly Thr Ala Leu Lys Gly Gly Cys Asp Ser Glu Leu Val Ile Phe65 70 75 80Leu Asp Cys Phe Lys Ser Tyr Val Asp Gln Arg Ala Arg Arg Ala Glu 85 90 95Ile Leu Ser Glu Met Arg Ala Ser Leu Glu Ser Trp Trp Gln Asn Pro 100 105 110Val Pro Gly Leu Arg Leu Thr Phe Pro Glu Gln Ser Val Pro Gly Ala 115 120 125Leu Gln Phe Arg Leu Thr Ser Val Asp Leu Glu Asp Trp Met Asp Val 130 135 140Ser Leu Val Pro Ala Phe Asn Val Leu Gly Gln Ala Gly Ser Gly Val145 150 155 160Lys Pro Lys Pro Gln Val Tyr Ser Thr Leu Leu Asn Ser Gly Cys Gln 165 170 175Gly Gly Glu His Ala Ala Cys Phe Thr Glu Leu Arg Arg Asn Phe Val 180 185 190Asn Ile Arg Pro Ala Lys Leu Lys Asn Leu Ile Leu Leu Val Lys His 195 200 205Trp Tyr His Gln Val Cys Leu Gln Gly Leu Trp Lys Glu Thr Leu Pro 210 215 220Pro Val Tyr Ala Leu Glu Leu Leu Thr Ile Phe Ala Trp Glu Gln Gly225 230 235 240Cys Lys Lys Asp Ala Phe Ser Leu Ala Glu Gly Leu Arg Thr Val Leu 245 250 255Gly Leu Ile Gln Gln His Gln His Leu Cys Val Phe Trp Thr Val Asn 260 265 270Tyr Gly Phe Glu Asp Pro Ala Val Gly Gln Phe Leu Gln Arg Gln Leu 275 280 285Lys Arg Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro Thr Trp Asp 290 295 300Leu Gly Asn Gly Ala Ala Trp His Trp Asp Leu Leu Ala Gln Glu Ala305 310 315 320Ala Ser Cys Tyr Asp His Pro Cys Phe Leu Arg Gly Met Gly Asp Pro 325 330 335Val Gln Ser Trp Lys Gly Pro Gly Leu Pro Arg Ala Gly Cys Ser Gly 340 345 350Leu Gly His Pro Ile Gln Leu Asp Pro Asn Gln Lys Thr Pro Glu Asn 355 360 365Ser Lys Ser Leu Asn Ala Val Tyr Pro Arg Ala Gly Ser Lys Pro Pro 370 375 380Ser Cys Pro Ala Pro Gly Pro Thr Gly Ala Ala Ser Ile Val Pro Ser385 390 395 400Val Pro Gly Met Ala Leu Asp Leu Ser Gln Ile Pro Thr Lys Glu Leu 405 410 415Asp Arg Phe Ile Gln Asp His Leu Lys Pro Ser Pro Gln Phe Gln Glu 420 425 430Gln Val Lys Lys Ala Ile Asp Ile Ile Leu Arg Cys Leu His Glu Asn 435 440 445Cys Val His Lys Ala Ser Arg Val Ser Lys Gly Gly Ser Phe Gly Arg 450 455 460Gly Thr Asp Leu Arg Asp Gly Cys Asp Val Glu Leu Ile Ile Phe Leu465 470 475 480Asn Cys Phe Thr Asp Tyr Lys Asp Gln Gly Pro Arg Arg Ala Glu Ile 485 490 495Leu Asp Glu Met Arg Ala Gln Leu Glu Ser Trp Trp Gln Asp Gln Val 500 505 510Pro Ser Leu Ser Leu Gln Phe Pro Glu Gln Asn Val Pro Glu Ala Leu 515 520 525Gln Phe Gln Leu Val Ser Thr Ala Leu Lys Ser Trp Thr Asp Val Ser 530 535 540Leu Leu Pro Ala Phe Asp Ala Val Gly Gln Leu Ser Ser Gly Thr Lys545 550 555 560Pro Asn Pro Gln Val Tyr Ser Arg Leu Leu Thr Ser Gly Cys Gln Glu 565 570 575Gly Glu His Lys Ala Cys Phe Ala Glu Leu Arg Arg Asn Phe Met Asn 580 585 590Ile Arg Pro Val Lys Leu Lys Asn Leu Ile Leu Leu Val Lys His Trp 595 600 605Tyr Arg Gln Val Ala Ala Gln Asn Lys Gly Lys Gly

Pro Ala Pro Ala 610 615 620Ser Leu Pro Pro Ala Tyr Ala Leu Glu Leu Leu Thr Ile Phe Ala Trp625 630 635 640Glu Gln Gly Cys Arg Gln Asp Cys Phe Asn Met Ala Gln Gly Phe Arg 645 650 655Thr Val Leu Gly Leu Val Gln Gln His Gln Gln Leu Cys Val Tyr Trp 660 665 670Thr Val Asn Tyr Ser Thr Glu Asp Pro Ala Met Arg Met His Leu Leu 675 680 685Gly Gln Leu Arg Lys Pro Arg Pro Leu Val Leu Asp Pro Ala Asp Pro 690 695 700Thr Trp Asn Val Gly His Gly Ser Trp Glu Leu Leu Ala Gln Glu Ala705 710 715 720Ala Ala Leu Gly Met Gln Ala Cys Phe Leu Ser Arg Asp Gly Thr Ser 725 730 735Val Gln Pro Trp Asp Val Met Pro Ala Leu Leu Tyr Gln Thr Pro Ala 740 745 750Gly Asp Leu Asp Lys Phe Ile Ser Glu Phe Leu Gln Pro Asn Arg Gln 755 760 765Phe Leu Ala Gln Val Asn Lys Ala Val Asp Thr Ile Cys Ser Phe Leu 770 775 780Lys Glu Asn Cys Phe Arg Asn Ser Pro Ile Lys Val Ile Lys Val Val785 790 795 800Lys Gly Gly Ser Ser Ala Lys Gly Thr Ala Leu Arg Gly Arg Ser Asp 805 810 815Ala Asp Leu Val Val Phe Leu Ser Cys Phe Ser Gln Phe Thr Glu Gln 820 825 830Gly Asn Lys Arg Ala Glu Ile Ile Ser Glu Ile Arg Ala Gln Leu Glu 835 840 845Ala Cys Gln Gln Glu Arg Gln Phe Glu Val Lys Phe Glu Val Ser Lys 850 855 860Trp Glu Asn Pro Arg Val Leu Ser Phe Ser Leu Thr Ser Gln Thr Met865 870 875 880Leu Asp Gln Ser Val Asp Phe Asp Val Leu Pro Ala Phe Asp Ala Leu 885 890 895Gly Gln Leu Val Ser Gly Ser Arg Pro Ser Ser Gln Val Tyr Val Asp 900 905 910Leu Ile His Ser Tyr Ser Asn Ala Gly Glu Tyr Ser Thr Cys Phe Thr 915 920 925Glu Leu Gln Arg Asp Phe Ile Ile Ser Arg Pro Thr Lys Leu Lys Ser 930 935 940Leu Ile Arg Leu Val Lys His Trp Tyr Gln Gln Cys Thr Lys Ile Ser945 950 955 960Lys Gly Arg Gly Ser Leu Pro Pro Gln His Gly Leu Glu Leu Leu Thr 965 970 975Val Tyr Ala Trp Glu Gln Gly Gly Lys Asp Ser Gln Phe Asn Met Ala 980 985 990Glu Gly Phe Arg Thr Val Leu Glu Leu Val Thr Gln Tyr Arg Gln Leu 995 1000 1005Cys Ile Tyr Trp Thr Ile Asn Tyr Asn Ala Lys Asp Lys Thr Val 1010 1015 1020Gly Asp Phe Leu Lys Gln Gln Leu Gln Lys Pro Arg Pro Ile Ile 1025 1030 1035Leu Asp Pro Ala Asp Pro Thr Gly Asn Leu Gly His Asn Ala Arg 1040 1045 1050Trp Asp Leu Leu Ala Lys Glu Ala Ala Ala Cys Thr Ser Ala Leu 1055 1060 1065Cys Cys Met Gly Arg Asn Gly Ile Pro Ile Gln Pro Trp Pro Val 1070 1075 1080Lys Ala Ala Val 1085272103DNAHomo sapiens 27tgactagacg gccagcctgt taaggtggcc ccagatattc cagcctcagc ccagagtcct 60cctgtgcccc tactgcagca agggtgtctc caagaagggg gacctggagt cagcccgtca 120cacctggttt cctctctgct agggtccctc ctcccacaga gcactggagg gcagctgagg 180aggagctacc ttaaaaaagg aggtgtgtgc cagggagctg ggtaggagcc tggctatata 240tctgcccagc agcggtactc tcgggacaga gatggcactg atgcaggaac tgtatagcac 300accagcctcc aggctggact ccttcgtggc tcagtggctg cagccccacc gggagtggaa 360ggaagaggtg ctagacgctg tgcggaccgt ggaggagttt ctgaggcagg agcatttcca 420ggggaagcgt gggctggacc aggatgtgcg ggtgctgaag gtagtcaagg tgggctcctt 480cgggaatggc acggttctca ggagcaccag agaggtggag ctggtggcgt ttctgagctg 540tttccacagc ttccaggagg cagccaagca tcacaaagat gttctgaggc tgatatggaa 600aaccatgtgg caaagccagg acctgctgga cctcgggctc gaggacctga ggatggagca 660gagagtcccc gatgctctcg tcttcaccat ccagaccagg gggactgcgg agcccatcac 720ggtcaccatt gtgcctgcct acagagccct ggggccttct cttcccaact cccagccacc 780ccctgaggtc tatgtgagcc tgatcaaggc ctgcggtggt cctggaaatt tctgcccatc 840cttcagcgag ctgcagagaa atttcgtgaa acatcggcca actaagctga agagcctcct 900gcgcctggtg aaacactggt accagcagta tgtgaaagcc aggtccccca gagccaatct 960gccccctctc tatgctcttg aacttctaac catctatgcc tgggaaatgg gtactgaaga 1020agacgagaat ttcatgttgg acgaaggctt caccactgtg atggacctgc tcctggagta 1080tgaagtcatc tgtatctact ggaccaagta ctacacactc cacaatgcaa tcattgagga 1140ttgtgtcaga aaacagctca aaaaagagag gcccatcatc ctggatccgg ccgaccccac 1200cctcaacgtg gcagaagggt acagatggga catcgttgct cagagggcct cccagtgcct 1260gaaacaggac tgttgctatg acaacaggga gaaccccatc tccagctgga acgtgaagag 1320ggcacgagac atccacttga cagtggagca gaggggttac ccagatttca acctcatcgt 1380gaacccttat gagcccataa ggaaggttaa agagaaaatc cggaggacca ggggctactc 1440tggcctgcag cgtctgtcct tccaggttcc tggcagtgag aggcagcttc tcagcagcag 1500gtgctcctta gccaaatatg ggatcttctc ccacactcac atctatctgc tggagaccat 1560cccctccgag atccaggtct tcgtgaagaa tcctgatggt gggagctacg cctatgccat 1620caaccccaac agcttcatcc tgggtctgaa gcagcagatt gaagaccagc aggggcttcc 1680taaaaagcag cagcagctgg aattccaagg ccaagtcctg caggactggt tgggtctggg 1740gatctatggc atccaagaca gtgacactct catcctctcg aagaagaaag gagaggctct 1800gtttccagcc agttagtttt ctctgggaga cttctctgta catttctgcc atgtactcca 1860gaactcatcc tgtcaatcac tctgtcccat tgtctactgg gaaggtccca ggtcttcacc 1920agttttacaa tgagttatcc caggccagac gtggtagctc acacctgtaa tcccagaact 1980ttgggaggcc gaggtgggag gagcgcttga gccgaggagt tcaagaccag cctgggtatc 2040acagggagac cccgtctcta caaaataaaa aaataattca ctgggaaaaa aaaaaaaaaa 2100aaa 210328514PRTHomo sapiens 28Met Ala Leu Met Gln Glu Leu Tyr Ser Thr Pro Ala Ser Arg Leu Asp1 5 10 15Ser Phe Val Ala Gln Trp Leu Gln Pro His Arg Glu Trp Lys Glu Glu 20 25 30Val Leu Asp Ala Val Arg Thr Val Glu Glu Phe Leu Arg Gln Glu His 35 40 45Phe Gln Gly Lys Arg Gly Leu Asp Gln Asp Val Arg Val Leu Lys Val 50 55 60Val Lys Val Gly Ser Phe Gly Asn Gly Thr Val Leu Arg Ser Thr Arg65 70 75 80Glu Val Glu Leu Val Ala Phe Leu Ser Cys Phe His Ser Phe Gln Glu 85 90 95Ala Ala Lys His His Lys Asp Val Leu Arg Leu Ile Trp Lys Thr Met 100 105 110Trp Gln Ser Gln Asp Leu Leu Asp Leu Gly Leu Glu Asp Leu Arg Met 115 120 125Glu Gln Arg Val Pro Asp Ala Leu Val Phe Thr Ile Gln Thr Arg Gly 130 135 140Thr Ala Glu Pro Ile Thr Val Thr Ile Val Pro Ala Tyr Arg Ala Leu145 150 155 160Gly Pro Ser Leu Pro Asn Ser Gln Pro Pro Pro Glu Val Tyr Val Ser 165 170 175Leu Ile Lys Ala Cys Gly Gly Pro Gly Asn Phe Cys Pro Ser Phe Ser 180 185 190Glu Leu Gln Arg Asn Phe Val Lys His Arg Pro Thr Lys Leu Lys Ser 195 200 205Leu Leu Arg Leu Val Lys His Trp Tyr Gln Gln Tyr Val Lys Ala Arg 210 215 220Ser Pro Arg Ala Asn Leu Pro Pro Leu Tyr Ala Leu Glu Leu Leu Thr225 230 235 240Ile Tyr Ala Trp Glu Met Gly Thr Glu Glu Asp Glu Asn Phe Met Leu 245 250 255Asp Glu Gly Phe Thr Thr Val Met Asp Leu Leu Leu Glu Tyr Glu Val 260 265 270Ile Cys Ile Tyr Trp Thr Lys Tyr Tyr Thr Leu His Asn Ala Ile Ile 275 280 285Glu Asp Cys Val Arg Lys Gln Leu Lys Lys Glu Arg Pro Ile Ile Leu 290 295 300Asp Pro Ala Asp Pro Thr Leu Asn Val Ala Glu Gly Tyr Arg Trp Asp305 310 315 320Ile Val Ala Gln Arg Ala Ser Gln Cys Leu Lys Gln Asp Cys Cys Tyr 325 330 335Asp Asn Arg Glu Asn Pro Ile Ser Ser Trp Asn Val Lys Arg Ala Arg 340 345 350Asp Ile His Leu Thr Val Glu Gln Arg Gly Tyr Pro Asp Phe Asn Leu 355 360 365Ile Val Asn Pro Tyr Glu Pro Ile Arg Lys Val Lys Glu Lys Ile Arg 370 375 380Arg Thr Arg Gly Tyr Ser Gly Leu Gln Arg Leu Ser Phe Gln Val Pro385 390 395 400Gly Ser Glu Arg Gln Leu Leu Ser Ser Arg Cys Ser Leu Ala Lys Tyr 405 410 415Gly Ile Phe Ser His Thr His Ile Tyr Leu Leu Glu Thr Ile Pro Ser 420 425 430Glu Ile Gln Val Phe Val Lys Asn Pro Asp Gly Gly Ser Tyr Ala Tyr 435 440 445Ala Ile Asn Pro Asn Ser Phe Ile Leu Gly Leu Lys Gln Gln Ile Glu 450 455 460Asp Gln Gln Gly Leu Pro Lys Lys Gln Gln Gln Leu Glu Phe Gln Gly465 470 475 480Gln Val Leu Gln Asp Trp Leu Gly Leu Gly Ile Tyr Gly Ile Gln Asp 485 490 495Ser Asp Thr Leu Ile Leu Ser Lys Lys Lys Gly Glu Ala Leu Phe Pro 500 505 510Ala Ser291861DNAHomo sapiens 29tgactagacg gccagcctgt taaggtggcc ccagatattc cagcctcagc ccagagtcct 60cctgtgcccc tactgcagca agggtgtctc caagaagggg gacctggagt cagcccgtca 120cacctggttt cctctctgct agggtccctc ctcccacaga gcactggagg gcagctgagg 180aggagctacc ttaaaaaagg aggtgtgtgc cagggagctg ggtaggagcc tggctatata 240tctgcccagc agcggtactc tcgggacaga gatggcactg atgcaggaac tgtatagcac 300accagcctcc aggctggact ccttcgtggc tcagtggctg cagccccacc gggagtggaa 360ggaagaggtg ctagacgctg tgcggaccgt ggaggagttt ctgaggcagg agcatttcca 420ggggaagcgt gggctggacc aggatgtgcg ggtgctgaag gtagtcaagg tgggctcctt 480cgggaatggc acggttctca ggagcaccag agaggtggag ctggtggcgt ttctgagctg 540tttccacagc ttccaggagg cagccaagca tcacaaagat gttctgaggc tgatatggaa 600aaccatgtgg caaagccagg acctgctgga cctcgggctc gaggacctga ggatggagca 660gagagtcccc gatgctctcg tcttcaccat ccagaccagg gggactgcgg agcccatcac 720ggtcaccatt gtgcctgcct acagagccct ggggccttct cttcccaact cccagccacc 780ccctgaggtc tatgtgagcc tgatcaaggc ctgcggtggt cctggaaatt tctgcccatc 840cttcagcgag ctgcagagaa atttcgtgaa acatcggcca actaagctga agagcctcct 900gcgcctggtg aaacactggt accagcaggc ccatcatcct ggatccggcc gaccccaccc 960tcaacgtggc agaagggtac agatgggaca tcgttgctca gagggcctcc cagtgcctga 1020aacaggactg ttgctatgac aacagggaga accccatctc cagctggaac gtgaagaggg 1080cacgagacat ccacttgaca gtggagcaga ggggttaccc agatttcaac ctcatcgtga 1140acccttatga gcccataagg aaggttaaag agaaaatccg gaggaccagg ggctactctg 1200gcctgcagcg tctgtccttc caggttcctg gcagtgagag gcagcttctc agcagcaggt 1260gctccttagc caaatatggg atcttctccc acactcacat ctatctgctg gagaccatcc 1320cctccgagat ccaggtcttc gtgaagaatc ctgatggtgg gagctacgcc tatgccatca 1380accccaacag cttcatcctg ggtctgaagc agcagattga agaccagcag gggcttccta 1440aaaagcagca gcagctggaa ttccaaggcc aagtcctgca ggactggttg ggtctgggga 1500tctatggcat ccaagacagt gacactctca tcctctcgaa gaagaaagga gaggctctgt 1560ttccagccag ttagttttct ctgggagact tctctgtaca tttctgccat gtactccaga 1620actcatcctg tcaatcactc tgtcccattg tctactggga aggtcccagg tcttcaccag 1680ttttacaatg agttatccca ggccagacgt ggtagctcac acctgtaatc ccagaacttt 1740gggaggccga ggtgggagga gcgcttgagc cgaggagttc aagaccagcc tgggtatcac 1800agggagaccc cgtctctaca aaataaaaaa ataattcact gggaaaaaaa aaaaaaaaaa 1860a 186130255PRTHomo sapiens 30Met Ala Leu Met Gln Glu Leu Tyr Ser Thr Pro Ala Ser Arg Leu Asp1 5 10 15Ser Phe Val Ala Gln Trp Leu Gln Pro His Arg Glu Trp Lys Glu Glu 20 25 30Val Leu Asp Ala Val Arg Thr Val Glu Glu Phe Leu Arg Gln Glu His 35 40 45Phe Gln Gly Lys Arg Gly Leu Asp Gln Asp Val Arg Val Leu Lys Val 50 55 60Val Lys Val Gly Ser Phe Gly Asn Gly Thr Val Leu Arg Ser Thr Arg65 70 75 80Glu Val Glu Leu Val Ala Phe Leu Ser Cys Phe His Ser Phe Gln Glu 85 90 95Ala Ala Lys His His Lys Asp Val Leu Arg Leu Ile Trp Lys Thr Met 100 105 110Trp Gln Ser Gln Asp Leu Leu Asp Leu Gly Leu Glu Asp Leu Arg Met 115 120 125Glu Gln Arg Val Pro Asp Ala Leu Val Phe Thr Ile Gln Thr Arg Gly 130 135 140Thr Ala Glu Pro Ile Thr Val Thr Ile Val Pro Ala Tyr Arg Ala Leu145 150 155 160Gly Pro Ser Leu Pro Asn Ser Gln Pro Pro Pro Glu Val Tyr Val Ser 165 170 175Leu Ile Lys Ala Cys Gly Gly Pro Gly Asn Phe Cys Pro Ser Phe Ser 180 185 190Glu Leu Gln Arg Asn Phe Val Lys His Arg Pro Thr Lys Leu Lys Ser 195 200 205Leu Leu Arg Leu Val Lys His Trp Tyr Gln Gln Ala His His Pro Gly 210 215 220Ser Gly Arg Pro His Pro Gln Arg Gly Arg Arg Val Gln Met Gly His225 230 235 240Arg Cys Ser Glu Gly Leu Pro Val Pro Glu Thr Gly Leu Leu Leu 245 250 255311240DNAHomo sapiens 31ttatgggttt catttagtgg agaaattggg tatgacctcg gaggagtcaa gaaagagttc 60ttctactgtc tgtttgcaga gatgatccag ccggaatatg ggatgttcat gtatcctgaa 120ggggcttcct gcatgtggtt tcctgtcaag cctaaatttg agaagaaaag atacttcttt 180tttggggttc tatgtggact ttccctgttc aattgcaatg ttgccaacct tcctttccca 240ctggcactgt ttaagaaact tttggaccaa atgccatcat tggaagactt gaaagaactc 300agtcctgatt tgggaaagaa tttgcaaaca cttctggatg atgaaggtga taactttgag 360gaagtatttt acatccattt taatgtgcac tgggacagaa acgacacaaa cttaattcct 420aatggaagta gcataactgt caaccagact aacaagagag actatgtttc taagtatatc 480aattacattt tcaacgactc tgtaaaggcg gtttatgaag aatttcggag aggattttat 540aaaatgtgcg acgaagacat tatcaaatta ttccaccccg aagaactgaa ggatgtgatt 600gttggaaata cagattatga ttggaaaaca tttgaaaaga atgcacgtta tgaaccagga 660tataacagtt cacatcccac catagtgatg ttttggaagg ctttccacaa attgactctg 720gaagaaaaga aaaaattcct tgtatttctt acaggaactg acagactaca aatgaaagat 780ttaaataata tgaaaataac attttgctgt cctgaaagtt ggaatgaaag agaccctata 840agagcactga catgtttcag tgtcctcttc ctccctaaat attctacaat ggaaacagtt 900gaagaagcgc ttcaagaagc catcaacaac aacagaggat ttggctgacc agcttgcttg 960tccaacagcc ttattttgtt gttgttatcg ttgttgttgt tgttgttgtt gttgtttctc 1020tactttgttt tgttttaggc ttttagcagc ctgaagccat ggtttttcat ttctgtctct 1080agtgataagc aggaaagagg gatgaagaag agggtttact ggccggttag aacccgtgac 1140tgtattctct cccttggata cccctatgcc tacatcatat tccttacctc ttttgggaaa 1200tatttttcaa aaataaaata accgaaaaat taacataaaa 1240321024PRTHomo sapiens 32Met Glu Arg Arg Ser Arg Arg Lys Ser Arg Arg Asn Gly Arg Ser Thr1 5 10 15Ala Gly Lys Ala Ala Ala Thr Gln Pro Ala Lys Ser Pro Gly Ala Gln 20 25 30Leu Trp Leu Phe Pro Ser Ala Ala Gly Leu His Arg Ala Leu Leu Arg 35 40 45Arg Val Glu Val Thr Arg Gln Leu Cys Cys Ser Pro Gly Arg Leu Ala 50 55 60Val Leu Glu Arg Gly Gly Ala Gly Val Gln Val His Gln Leu Leu Ala65 70 75 80Gly Ser Gly Gly Ala Arg Thr Pro Lys Cys Ile Lys Leu Gly Lys Asn 85 90 95Met Lys Ile His Ser Val Asp Gln Gly Ala Glu His Met Leu Ile Leu 100 105 110Ser Ser Asp Gly Lys Pro Phe Glu Tyr Asp Asn Tyr Ser Met Lys His 115 120 125Leu Arg Phe Glu Ser Ile Leu Gln Glu Lys Lys Ile Ile Gln Ile Thr 130 135 140Cys Gly Asp Tyr His Ser Leu Ala Leu Ser Lys Gly Gly Glu Leu Phe145 150 155 160Ala Trp Gly Gln Asn Leu His Gly Gln Leu Gly Val Gly Arg Lys Phe 165 170 175Pro Ser Thr Thr Thr Pro Gln Ile Val Glu His Leu Ala Gly Val Pro 180 185 190Leu Ala Gln Ile Ser Ala Gly Glu Ala His Ser Met Ala Leu Ser Met 195 200 205Ser Gly Asn Ile Tyr Ser Trp Gly Lys Asn Glu Cys Gly Gln Leu Gly 210 215 220Leu Gly His Thr Glu Ser Lys Asp Asp Pro Ser Leu Ile Glu Gly Leu225 230 235 240Asp Asn Gln Lys Val Glu Phe Val Ala Cys Gly Gly Ser His Ser Ala 245 250 255Leu Leu Thr Gln Asp Gly Leu Leu Phe Thr Phe Gly Ala Gly Lys His 260 265 270Gly Gln Leu Gly His Asn Ser Thr Gln Asn Glu Leu Arg Pro Cys Leu 275 280 285Val Ala Glu Leu Val Gly Tyr Arg Val Thr Gln Ile Ala Cys Gly Arg 290 295 300Trp His Thr Leu Ala Tyr Val Ser Asp Leu Gly Lys Val Phe Ser Phe305 310 315 320Gly Ser Gly Lys Asp Gly Gln Leu Gly Asn Gly Gly Thr Arg Asp Gln 325 330

335Leu Met Pro Leu Pro Val Lys Val Ser Ser Ser Glu Glu Leu Lys Leu 340 345 350Glu Ser His Thr Ser Glu Lys Glu Leu Ile Met Ile Ala Gly Gly Asn 355 360 365Gln Ser Ile Leu Leu Trp Ile Lys Lys Glu Asn Ser Tyr Val Asn Leu 370 375 380Lys Arg Thr Ile Pro Thr Leu Asn Glu Gly Thr Val Lys Arg Trp Ile385 390 395 400Ala Asp Val Glu Thr Lys Arg Trp Gln Ser Thr Lys Arg Glu Ile Gln 405 410 415Glu Ile Phe Ser Ser Pro Ala Cys Leu Thr Gly Ser Phe Leu Arg Lys 420 425 430Arg Arg Thr Thr Glu Met Met Pro Val Tyr Leu Asp Leu Asn Lys Ala 435 440 445Arg Asn Ile Phe Lys Glu Leu Thr Gln Lys Asp Trp Ile Thr Asn Met 450 455 460Ile Thr Thr Cys Leu Lys Asp Asn Leu Leu Lys Arg Leu Pro Phe His465 470 475 480Ser Pro Pro Gln Glu Ala Leu Glu Ile Phe Phe Leu Leu Pro Glu Cys 485 490 495Pro Met Met His Ile Ser Asn Asn Trp Glu Ser Leu Val Val Pro Phe 500 505 510Ala Lys Val Val Cys Lys Met Ser Asp Gln Ser Ser Leu Val Leu Glu 515 520 525Glu Tyr Trp Ala Thr Leu Gln Glu Ser Thr Phe Ser Lys Leu Val Gln 530 535 540Met Phe Lys Thr Ala Val Ile Cys Gln Leu Asp Tyr Trp Asp Glu Ser545 550 555 560Ala Glu Glu Asn Gly Asn Val Gln Ala Leu Leu Glu Met Leu Lys Lys 565 570 575Leu His Arg Val Asn Gln Val Lys Cys Gln Leu Pro Glu Ser Ile Phe 580 585 590Gln Val Asp Glu Leu Leu His Arg Leu Asn Phe Phe Val Glu Val Cys 595 600 605Arg Arg Tyr Leu Trp Lys Met Thr Val Asp Ala Ser Glu Asn Val Gln 610 615 620Cys Cys Val Ile Phe Ser His Phe Pro Phe Ile Phe Asn Asn Leu Ser625 630 635 640Lys Ile Lys Leu Leu His Thr Asp Thr Leu Leu Lys Ile Glu Ser Lys 645 650 655Lys His Lys Ala Tyr Leu Arg Ser Ala Ala Ile Glu Glu Glu Arg Glu 660 665 670Ser Glu Phe Ala Leu Arg Pro Thr Phe Asp Leu Thr Val Arg Arg Asn 675 680 685His Leu Ile Glu Asp Val Leu Asn Gln Leu Ser Gln Phe Glu Asn Glu 690 695 700Asp Leu Arg Lys Glu Leu Trp Val Ser Phe Ser Gly Glu Ile Gly Tyr705 710 715 720Asp Leu Gly Gly Val Lys Lys Glu Phe Phe Tyr Cys Leu Phe Ala Glu 725 730 735Met Ile Gln Pro Glu Tyr Gly Met Phe Met Tyr Pro Glu Gly Ala Ser 740 745 750Cys Met Trp Phe Pro Val Lys Pro Lys Phe Glu Lys Lys Arg Tyr Phe 755 760 765Phe Phe Gly Val Leu Cys Gly Leu Ser Leu Phe Asn Cys Asn Val Ala 770 775 780Asn Leu Pro Phe Pro Leu Ala Leu Phe Lys Lys Leu Leu Asp Gln Met785 790 795 800Pro Ser Leu Glu Asp Leu Lys Glu Leu Ser Pro Asp Leu Gly Lys Asn 805 810 815Leu Gln Thr Leu Leu Asp Asp Glu Gly Asp Asn Phe Glu Glu Val Phe 820 825 830Tyr Ile His Phe Asn Val His Trp Asp Arg Asn Asp Thr Asn Leu Ile 835 840 845Pro Asn Gly Ser Ser Ile Thr Val Asn Gln Thr Asn Lys Arg Asp Tyr 850 855 860Val Ser Lys Tyr Ile Asn Tyr Ile Phe Asn Asp Ser Val Lys Ala Val865 870 875 880Tyr Glu Glu Phe Arg Arg Gly Phe Tyr Lys Met Cys Asp Glu Asp Ile 885 890 895Ile Lys Leu Phe His Pro Glu Glu Leu Lys Asp Val Ile Val Gly Asn 900 905 910Thr Asp Tyr Asp Trp Lys Thr Phe Glu Lys Asn Ala Arg Tyr Glu Pro 915 920 925Gly Tyr Asn Ser Ser His Pro Thr Ile Val Met Phe Trp Lys Ala Phe 930 935 940His Lys Leu Thr Leu Glu Glu Lys Lys Lys Phe Leu Val Phe Leu Thr945 950 955 960Gly Thr Asp Arg Leu Gln Met Lys Asp Leu Asn Asn Met Lys Ile Thr 965 970 975Phe Cys Cys Pro Glu Ser Trp Asn Glu Arg Asp Pro Ile Arg Ala Leu 980 985 990Thr Cys Phe Ser Val Leu Phe Leu Pro Lys Tyr Ser Thr Met Glu Thr 995 1000 1005Val Glu Glu Ala Leu Gln Glu Ala Ile Asn Asn Asn Arg Gly Phe 1010 1015 1020Gly332037DNAHomo sapiens 33gggaagctcg ggccggcagg gtttccccgc acgctggcgc ccagctcccg gcgcggaggc 60cgctgtaagt ttcgctttcc attcagtgga aaacgaaagc tgggcggggt gccacgagcg 120cggggccaga ccaaggcggg cccggagcgg aacttcggtc ccagctcggt ccccggctca 180gtcccgacgt ggaactcagc agcggaggct ggacgcttgc atggcgcttg agagattcca 240tcgtgcctgg ctcacataag cgcttcctgg aagtgaagtc gtgctgtcct gaacgcgggc 300caggcagctg cggcctgggg gttttggagt gatcacgaat gagcaaggcg tttgggctcc 360tgaggcaaat ctgtcagtcc atcctggctg agtcctcgca gtccccggca gatcttgaag 420aaaagaagga agaagacagc aacatgaaga gagagcagcc cagagagcgt cccagggcct 480gggactaccc tcatggcctg gttggtttac acaacattgg acagacctgc tgccttaact 540ccttgattca ggtgttcgta atgaatgtgg acttcaccag gatattgaag aggatcacgg 600tgcccagggg agctgacgag cagaggagaa gcgtcccttt ccagatgctt ctgctgctgg 660agaagatgca ggacagccgg cagaaagcag tgcggcccct ggagctggcc tactgcctgc 720agaagtgcaa cgtgcccttg tttgtccaac atgatgctgc ccaactgtac ctcaaactct 780ggaacctgat taaggaccag atcactgatg tgcacttggt ggagagactg caggccctgt 840atacgatccg ggtgaaggac tccttgattt gcgttgactg tgccatggag agtagcagaa 900acagcagcat gctcaccctc ccactttctc tttttgatgt ggactcaaag cccctgaaga 960cactggagga cgccctgcac tgcttcttcc agcccaggga gttatcaagc aaaagcaagt 1020gcttctgtga gaactgtggg aagaagaccc gtgggaaaca ggtcttgaag ctgacccatt 1080tgccccagac cctgacaatc cacctcatgc gattctccat caggaattca cagacgagaa 1140agatctgcca ctccctgtac ttcccccaga gcttggattt cagccagatc cttccaatga 1200agcgagagtc ttgtgatgct gaggagcagt ctggagggca gtatgagctt tttgctgtga 1260ttgcgcacgt gggaatggca gactccggtc attactgtgt ctacatccgg aatgctgtgg 1320atggaaaatg gttctgcttc aatgactcca atatttgctt ggtgtcctgg gaagacatcc 1380agtgtaccta cggaaatcct aactaccact ggcaggaaac tgcatatctt ctggtttaca 1440tgaagatgga gtgctaatgg aaatgcccaa aaccttcaga gattgacacg ctgtcatttt 1500ccatttccgt tcctggatct acggagtctt ctaagagatt ttgcaatgag gagaagcatt 1560gttttcaaac tatataactg agccttattt ataattaggg atattatcaa aatatgtaac 1620catgaggccc ctcaggtcct gatcagtcag aatggatgct ttcaccagca gacccggcca 1680tgtggctgct cggtcctggg tgctcgctgc tgtgcaagac attagccctt tagttatgag 1740cctgtgggaa cttcaggggt tcccagtggg gagagcagtg gcagtgggag gcatctgggg 1800gccaaaggtc agtggcaggg ggtatttcag tattatacaa ctgctgtgac cagacttgta 1860tactggctga atatcagtgc tgtttgtaat ttttcacttt gagaaccaac attaattcca 1920tatgaatcaa gtgttttgta actgctattc atttattcag caaatattta ttgatcatct 1980cttctccata agatagtgtg ataaacacag tcatgaataa agttattttc cacaaaa 203734372PRTHomo sapiens 34Met Ser Lys Ala Phe Gly Leu Leu Arg Gln Ile Cys Gln Ser Ile Leu1 5 10 15Ala Glu Ser Ser Gln Ser Pro Ala Asp Leu Glu Glu Lys Lys Glu Glu 20 25 30Asp Ser Asn Met Lys Arg Glu Gln Pro Arg Glu Arg Pro Arg Ala Trp 35 40 45Asp Tyr Pro His Gly Leu Val Gly Leu His Asn Ile Gly Gln Thr Cys 50 55 60Cys Leu Asn Ser Leu Ile Gln Val Phe Val Met Asn Val Asp Phe Thr65 70 75 80Arg Ile Leu Lys Arg Ile Thr Val Pro Arg Gly Ala Asp Glu Gln Arg 85 90 95Arg Ser Val Pro Phe Gln Met Leu Leu Leu Leu Glu Lys Met Gln Asp 100 105 110Ser Arg Gln Lys Ala Val Arg Pro Leu Glu Leu Ala Tyr Cys Leu Gln 115 120 125Lys Cys Asn Val Pro Leu Phe Val Gln His Asp Ala Ala Gln Leu Tyr 130 135 140Leu Lys Leu Trp Asn Leu Ile Lys Asp Gln Ile Thr Asp Val His Leu145 150 155 160Val Glu Arg Leu Gln Ala Leu Tyr Thr Ile Arg Val Lys Asp Ser Leu 165 170 175Ile Cys Val Asp Cys Ala Met Glu Ser Ser Arg Asn Ser Ser Met Leu 180 185 190Thr Leu Pro Leu Ser Leu Phe Asp Val Asp Ser Lys Pro Leu Lys Thr 195 200 205Leu Glu Asp Ala Leu His Cys Phe Phe Gln Pro Arg Glu Leu Ser Ser 210 215 220Lys Ser Lys Cys Phe Cys Glu Asn Cys Gly Lys Lys Thr Arg Gly Lys225 230 235 240Gln Val Leu Lys Leu Thr His Leu Pro Gln Thr Leu Thr Ile His Leu 245 250 255Met Arg Phe Ser Ile Arg Asn Ser Gln Thr Arg Lys Ile Cys His Ser 260 265 270Leu Tyr Phe Pro Gln Ser Leu Asp Phe Ser Gln Ile Leu Pro Met Lys 275 280 285Arg Glu Ser Cys Asp Ala Glu Glu Gln Ser Gly Gly Gln Tyr Glu Leu 290 295 300Phe Ala Val Ile Ala His Val Gly Met Ala Asp Ser Gly His Tyr Cys305 310 315 320Val Tyr Ile Arg Asn Ala Val Asp Gly Lys Trp Phe Cys Phe Asn Asp 325 330 335Ser Asn Ile Cys Leu Val Ser Trp Glu Asp Ile Gln Cys Thr Tyr Gly 340 345 350Asn Pro Asn Tyr His Trp Gln Glu Thr Ala Tyr Leu Leu Val Tyr Met 355 360 365Lys Met Glu Cys 370353512DNAHomo sapiens 35aactcagctg agtgttagtc aaagaaggtg tgtcctgctc cccaatgaca ggttgctcag 60agactgctga tttccatccc tatataaaga gagtccctgg catacagaga ctgctctgct 120ccaggcatct gccacaatgt gggtgcttac acctgctgct tttgctggga agctcttgag 180tgtgttcagg caacctctga gctctctgtg gaggagcctg gtcccgctgt tctgctggct 240gagggcaacc ttctggctgc tagctaccaa gaggagaaag cagcagctgg tcctgagagg 300gccagatgag accaaagagg aggaagagga ccctcctctg cccaccaccc caaccagcgt 360caactatcac ttcactcgcc agtgcaacta caaatgcggc ttctgtttcc acacagccaa 420aacatccttt gtgctgcccc ttgaggaagc aaagagagga ttgcttttgc ttaaggaagc 480tggtatggag aagatcaact tttcaggtgg agagccattt cttcaagacc ggggagaata 540cctgggcaag ttggtgaggt tctgcaaagt agagttgcgg ctgcccagcg tgagcatcgt 600gagcaatgga agcctgatcc gggagaggtg gttccagaat tatggtgagt atttggacat 660tctcgctatc tcctgtgaca gctttgacga ggaagtcaat gtccttattg gccgtggcca 720aggaaagaag aaccatgtgg aaaaccttca aaagctgagg aggtggtgta gggattatag 780agtcgctttc aagataaatt ctgtcattaa tcgtttcaac gtggaagagg acatgacgga 840acagatcaaa gcactaaacc ctgtccgctg gaaagtgttc cagtgcctct taattgaggg 900tgagaattgt ggagaagatg ctctaagaga agcagaaaga tttgttattg gtgatgaaga 960atttgaaaga ttcttggagc gccacaaaga agtgtcctgc ttggtgcctg aatctaacca 1020gaagatgaaa gactcctacc ttattctgga tgaatatatg cgctttctga actgtagaaa 1080gggacggaag gacccttcca agtccatcct ggatgttggt gtagaagaag ctataaaatt 1140cagtggattt gatgaaaaga tgtttctgaa gcgaggagga aaatacatat ggagtaaggc 1200tgatctgaag ctggattggt agagcggaaa gtggaacgag acttcaacac accagtggga 1260aaactcctag agtaactgcc attgtctgca atactatccc gttggtattt cccagtggct 1320gaaaacctga ttttctgctg cacgtggcat ctgattacct gtggtcactg aacacacgaa 1380taacttggat agcaaatcct gagacaatgg aaaaccatta actttacttc attggcttat 1440aaccttgttg ttattgaaac agcacttctg tttttgagtt tgttttagct aaaaagaagg 1500aatacacaca ggaataatga ccccaaaaat gcttagataa ggcccctata cacaggacct 1560gacatttagc tcaatgatgc gtttgtaaga aataagctct agtgatatct gtgggggcaa 1620aatttaattt ggatttgatt ttttaaaaca atgtttactg cgatttctat atttccattt 1680tgaaactatt tcttgttcca ggtttgttca tttgacagag tcagtatttt ttgccaaata 1740tccagataac cagttttcac atctgagaca ttacaaagta tctgcctcaa ttatttctgc 1800tggttataat gctttttttt ttttgccttt atgccattgc agtcttgtac tttttactgt 1860gatgtacaga aatagtcaac agatgtttcc aagaacatat gatatgataa tcctaccaat 1920tttcaagaag tctctagaaa gagataacac atggaaagac ggtgtggtgc agcccagccc 1980acggtggctg ttccatgaat gctggctacc tatgtgtgtg gtacctgttg tgtccctttc 2040tcttcaaaga tcctgagcaa aacaaagata cgctttccat ttgatgatgg agttgacatg 2100gaggcagtgc ttgcattgct ttgttcgcct atcatctggc cacatgaggc tgtcaagcaa 2160aagaatagga gtgtagttga gtagctggtt ggccctacat ctctgagaag tgacggcaca 2220ctgggttggc ataagatatc ctaaaatcac gctggaacct tgggcaagga agaatgtgag 2280caagagtaga gagagtgcct ggatttcatg tcagtgaagc caagtcacca tatcatattt 2340ttgaatgaac tctgagtcag ttgaaatagg gtaccatcta ggtcagttta agaagagtca 2400gctcagagaa agcaagcata agggaaaatg tcacgtaaac tagatcaggg aacaaaatcc 2460tctccttgtg gaaatatccc atgcagtttg ttgatacaac ttagtatctt attgcctaaa 2520aaaaaatttc ttatcattgt ttcaaaaaag caaaatcatg gaaaattttt gttgtccagg 2580caaataaaag gtcattttaa tttagctgca atttcagtgt tcctcactag gtggcattta 2640aatgtcgcct gatgtcatta agcaccatcc aaaaagtctg cttcataatc tattttcaag 2700acttggtgat tctgaaagtt ttggtttttg tgactttgtt tctcaggaaa aaaaatattc 2760ctacttaaat tttaagtcta taattcaatt taaatatgtg tgtgtctcat ccaggatagg 2820ataggttgtc ttctattttc cattttacct atttactttt tttgtaagaa aagagaaaaa 2880tgaattctaa agatgttccc catgggtttt gattgtgtct aagctatgat gaccttcata 2940taatcagcat aaacataaaa caaatttttt acttaacatg agtgcacttt actaatcctc 3000atggcacagt ggctcacgcc tgtaatccca gcacttggga ggacaatgtg ggtggatcac 3060gaggtcagga gttcgagaac agcctggcca acatggtgaa accccgtctc cactaaaaat 3120acaaaaatta gccaggcatg gtggcgtaca cttgtaattc cagctactca agaggctgag 3180gcaggaggat tgcttgaacc ctgaaggcag aggttacaga gccaagatag cgccactgca 3240ctccagcctg gatgacagag caagactccg tctcaaaaaa aaaaaaaaaa aaaagcaaga 3300gagttcaact aagaaaggtc acatatgtga aagcccaagg acactgtttg atatacagca 3360ggtattcaat cagtgttatt tgaaaccaaa tctgaatttg aagtttgaat cttctgagtt 3420ggaatgaatt tttttctagc tgagggaaac tgtatttttc tttccccaaa gaggaatgta 3480atgtaaagtg aaataaaact ataagctatg tt 351236361PRTHomo sapiens 36Met Trp Val Leu Thr Pro Ala Ala Phe Ala Gly Lys Leu Leu Ser Val1 5 10 15Phe Arg Gln Pro Leu Ser Ser Leu Trp Arg Ser Leu Val Pro Leu Phe 20 25 30Cys Trp Leu Arg Ala Thr Phe Trp Leu Leu Ala Thr Lys Arg Arg Lys 35 40 45Gln Gln Leu Val Leu Arg Gly Pro Asp Glu Thr Lys Glu Glu Glu Glu 50 55 60Asp Pro Pro Leu Pro Thr Thr Pro Thr Ser Val Asn Tyr His Phe Thr65 70 75 80Arg Gln Cys Asn Tyr Lys Cys Gly Phe Cys Phe His Thr Ala Lys Thr 85 90 95Ser Phe Val Leu Pro Leu Glu Glu Ala Lys Arg Gly Leu Leu Leu Leu 100 105 110Lys Glu Ala Gly Met Glu Lys Ile Asn Phe Ser Gly Gly Glu Pro Phe 115 120 125Leu Gln Asp Arg Gly Glu Tyr Leu Gly Lys Leu Val Arg Phe Cys Lys 130 135 140Val Glu Leu Arg Leu Pro Ser Val Ser Ile Val Ser Asn Gly Ser Leu145 150 155 160Ile Arg Glu Arg Trp Phe Gln Asn Tyr Gly Glu Tyr Leu Asp Ile Leu 165 170 175Ala Ile Ser Cys Asp Ser Phe Asp Glu Glu Val Asn Val Leu Ile Gly 180 185 190Arg Gly Gln Gly Lys Lys Asn His Val Glu Asn Leu Gln Lys Leu Arg 195 200 205Arg Trp Cys Arg Asp Tyr Arg Val Ala Phe Lys Ile Asn Ser Val Ile 210 215 220Asn Arg Phe Asn Val Glu Glu Asp Met Thr Glu Gln Ile Lys Ala Leu225 230 235 240Asn Pro Val Arg Trp Lys Val Phe Gln Cys Leu Leu Ile Glu Gly Glu 245 250 255Asn Cys Gly Glu Asp Ala Leu Arg Glu Ala Glu Arg Phe Val Ile Gly 260 265 270Asp Glu Glu Phe Glu Arg Phe Leu Glu Arg His Lys Glu Val Ser Cys 275 280 285Leu Val Pro Glu Ser Asn Gln Lys Met Lys Asp Ser Tyr Leu Ile Leu 290 295 300Asp Glu Tyr Met Arg Phe Leu Asn Cys Arg Lys Gly Arg Lys Asp Pro305 310 315 320Ser Lys Ser Ile Leu Asp Val Gly Val Glu Glu Ala Ile Lys Phe Ser 325 330 335Gly Phe Asp Glu Lys Met Phe Leu Lys Arg Gly Gly Lys Tyr Ile Trp 340 345 350Ser Lys Ala Asp Leu Lys Leu Asp Trp 355 360372983DNAHomo sapiens 37gttcgggccc gagaacctgc gtctcccgcg agttcccgcg aggcaagtgc tgcaggtgcg 60gggccaggag ctaggtttcg tttctgcgcc cggagccgcc ctcagcacag ggtctgtgag 120tttcatttct tcgcggcgcg gggcggggct gggcgcgggg tgaaagaggc gaagcgagag 180cggaggccgc actccagcac tgcgcaggga ccgccttgga ccgcagttgc cggccaggaa 240tcccagtgtc acggtggaca cgcctccctc gcgcccttgc cgcccacctg ctcacccagc 300tcaggggctt tggaattctg tggccacact gcgaggagat cggttctggg tcggaggcta 360caggaagact cccactccct gaaatctgga gtgaagaacg ccgccatcca gccaccattc 420caaggaggtg caggagaaca gctctgtgat accatttaac ttgttgacat tacttttatt 480tgaaggaacg tatattagag cttactttgc aaagaaggaa gatggttgtt tccgaagtgg 540acatcgcaaa agctgatcca gctgctgcat cccaccctct attactgaat ggagatgcta 600ctgtggccca gaaaaatcca ggctcggtgg ctgagaacaa cctgtgcagc cagtatgagg 660agaaggtgcg cccctgcatc gacctcattg actccctgcg ggctctaggt gtggagcagg

720acctggccct gccagccatc gccgtcatcg gggaccagag ctcgggcaag agctccgtgt 780tggaggcact gtcaggagtt gcccttccca gaggcagcgg gatcgtgacc agatgcccgc 840tggtgctgaa actgaagaaa cttgtgaacg aagataagtg gagaggcaag gtcagttacc 900aggactacga gattgagatt tcggatgctt cagaggtaga aaaggaaatt aataaagccc 960agaatgccat cgccggggaa ggaatgggaa tcagtcatga gctaatcacc ctggagatca 1020gctcccgaga tgtcccggat ctgactctaa tagaccttcc tggcataacc agagtggctg 1080tgggcaatca gcctgctgac attgggtata agatcaagac actcatcaag aagtacatcc 1140agaggcagga gacaatcagc ctggtggtgg tccccagtaa tgtggacatc gccaccacag 1200aggctctcag catggcccag gaggtggacc ccgagggaga caggaccatc ggaatcttga 1260cgaagcctga tctggtggac aaaggaactg aagacaaggt tgtggacgtg gtgcggaacc 1320tcgtgttcca cctgaagaag ggttacatga ttgtcaagtg ccggggccag caggagatcc 1380aggaccagct gagcctgtcc gaagccctgc agagagagaa gatcttcttt gagaaccacc 1440catatttcag ggatctgctg gaggaaggaa aggccacggt tccctgcctg gcagaaaaac 1500ttaccagcga gctcatcaca catatctgta aatctctgcc cctgttagaa aatcaaatca 1560aggagactca ccagagaata acagaggagc tacaaaagta tggtgtcgac ataccggaag 1620acgaaaatga aaaaatgttc ttcctgatag ataaagttaa tgcctttaat caggacatca 1680ctgctctcat gcaaggagag gaaactgtag gggaggaaga cattcggctg tttaccagac 1740tccgacacga gttccacaaa tggagtacaa taattgaaaa caattttcaa gaaggccata 1800aaattttgag tagaaaaatc cagaaatttg aaaatcagta tcgtggtaga gagctgccag 1860gctttgtgaa ttacaggaca tttgagacaa tcgtgaaaca gcaaatcaag gcactggaag 1920agccggctgt ggatatgcta cacaccgtga cggatatggt ccggcttgct ttcacagatg 1980tttcgataaa aaattttgaa gagtttttta acctccacag aaccgccaag tccaaaattg 2040aagacattag agcagaacaa gagagagaag gtgagaagct gatccgcctc cacttccaga 2100tggaacagat tgtctactgc caggaccagg tatacagggg tgcattgcag aaggtcagag 2160agaaggagct ggaagaagaa aagaagaaga aatcctggga ttttggggct ttccagtcca 2220gctcggcaac agactcttcc atggaggaga tctttcagca cctgatggcc tatcaccagg 2280aggccagcaa gcgcatctcc agccacatcc ctttgatcat ccagttcttc atgctccaga 2340cgtacggcca gcagcttcag aaggccatgc tgcagctcct gcaggacaag gacacctaca 2400gctggctcct gaaggagcgg agcgacacca gcgacaagcg gaagttcctg aaggagcggc 2460ttgcacggct gacgcaggct cggcgccggc ttgcccagtt ccccggttaa ccacactctg 2520tccagccccg tagacgtgca cgcacactgt ctgcccccgt tcccgggtag ccactggact 2580gacgacttga gtgctcagta gtcagactgg atagtccgtc tctgcttatc cgttagccgt 2640ggtgatttag caggaagctg tgagagcagt ttggtttcta gcatgaagac agagccccac 2700cctcagatgc acatgagctg gcgggattga aggatgctgt cttcgtactg ggaaagggat 2760tttcagccct cagaatcgct ccaccttgca gctctcccct tctctgtatt cctagaaact 2820gacacatgct gaacatcaca gcttatttcc tcatttttat aatgtccctt cacaaaccca 2880gtgttttagg agcatgagtg ccgtgtgtgt gcgtcctgtc ggagccctgt ctcctctctc 2940tgtaataaac tcatttctag cagacaaaaa aaaaaaaaaa aaa 298338662PRTHomo sapiens 38Met Val Val Ser Glu Val Asp Ile Ala Lys Ala Asp Pro Ala Ala Ala1 5 10 15Ser His Pro Leu Leu Leu Asn Gly Asp Ala Thr Val Ala Gln Lys Asn 20 25 30Pro Gly Ser Val Ala Glu Asn Asn Leu Cys Ser Gln Tyr Glu Glu Lys 35 40 45Val Arg Pro Cys Ile Asp Leu Ile Asp Ser Leu Arg Ala Leu Gly Val 50 55 60Glu Gln Asp Leu Ala Leu Pro Ala Ile Ala Val Ile Gly Asp Gln Ser65 70 75 80Ser Gly Lys Ser Ser Val Leu Glu Ala Leu Ser Gly Val Ala Leu Pro 85 90 95Arg Gly Ser Gly Ile Val Thr Arg Cys Pro Leu Val Leu Lys Leu Lys 100 105 110Lys Leu Val Asn Glu Asp Lys Trp Arg Gly Lys Val Ser Tyr Gln Asp 115 120 125Tyr Glu Ile Glu Ile Ser Asp Ala Ser Glu Val Glu Lys Glu Ile Asn 130 135 140Lys Ala Gln Asn Ala Ile Ala Gly Glu Gly Met Gly Ile Ser His Glu145 150 155 160Leu Ile Thr Leu Glu Ile Ser Ser Arg Asp Val Pro Asp Leu Thr Leu 165 170 175Ile Asp Leu Pro Gly Ile Thr Arg Val Ala Val Gly Asn Gln Pro Ala 180 185 190Asp Ile Gly Tyr Lys Ile Lys Thr Leu Ile Lys Lys Tyr Ile Gln Arg 195 200 205Gln Glu Thr Ile Ser Leu Val Val Val Pro Ser Asn Val Asp Ile Ala 210 215 220Thr Thr Glu Ala Leu Ser Met Ala Gln Glu Val Asp Pro Glu Gly Asp225 230 235 240Arg Thr Ile Gly Ile Leu Thr Lys Pro Asp Leu Val Asp Lys Gly Thr 245 250 255Glu Asp Lys Val Val Asp Val Val Arg Asn Leu Val Phe His Leu Lys 260 265 270Lys Gly Tyr Met Ile Val Lys Cys Arg Gly Gln Gln Glu Ile Gln Asp 275 280 285Gln Leu Ser Leu Ser Glu Ala Leu Gln Arg Glu Lys Ile Phe Phe Glu 290 295 300Asn His Pro Tyr Phe Arg Asp Leu Leu Glu Glu Gly Lys Ala Thr Val305 310 315 320Pro Cys Leu Ala Glu Lys Leu Thr Ser Glu Leu Ile Thr His Ile Cys 325 330 335Lys Ser Leu Pro Leu Leu Glu Asn Gln Ile Lys Glu Thr His Gln Arg 340 345 350Ile Thr Glu Glu Leu Gln Lys Tyr Gly Val Asp Ile Pro Glu Asp Glu 355 360 365Asn Glu Lys Met Phe Phe Leu Ile Asp Lys Val Asn Ala Phe Asn Gln 370 375 380Asp Ile Thr Ala Leu Met Gln Gly Glu Glu Thr Val Gly Glu Glu Asp385 390 395 400Ile Arg Leu Phe Thr Arg Leu Arg His Glu Phe His Lys Trp Ser Thr 405 410 415Ile Ile Glu Asn Asn Phe Gln Glu Gly His Lys Ile Leu Ser Arg Lys 420 425 430Ile Gln Lys Phe Glu Asn Gln Tyr Arg Gly Arg Glu Leu Pro Gly Phe 435 440 445Val Asn Tyr Arg Thr Phe Glu Thr Ile Val Lys Gln Gln Ile Lys Ala 450 455 460Leu Glu Glu Pro Ala Val Asp Met Leu His Thr Val Thr Asp Met Val465 470 475 480Arg Leu Ala Phe Thr Asp Val Ser Ile Lys Asn Phe Glu Glu Phe Phe 485 490 495Asn Leu His Arg Thr Ala Lys Ser Lys Ile Glu Asp Ile Arg Ala Glu 500 505 510Gln Glu Arg Glu Gly Glu Lys Leu Ile Arg Leu His Phe Gln Met Glu 515 520 525Gln Ile Val Tyr Cys Gln Asp Gln Val Tyr Arg Gly Ala Leu Gln Lys 530 535 540Val Arg Glu Lys Glu Leu Glu Glu Glu Lys Lys Lys Lys Ser Trp Asp545 550 555 560Phe Gly Ala Phe Gln Ser Ser Ser Ala Thr Asp Ser Ser Met Glu Glu 565 570 575Ile Phe Gln His Leu Met Ala Tyr His Gln Glu Ala Ser Lys Arg Ile 580 585 590Ser Ser His Ile Pro Leu Ile Ile Gln Phe Phe Met Leu Gln Thr Tyr 595 600 605Gly Gln Gln Leu Gln Lys Ala Met Leu Gln Leu Leu Gln Asp Lys Asp 610 615 620Thr Tyr Ser Trp Leu Leu Lys Glu Arg Ser Asp Thr Ser Asp Lys Arg625 630 635 640Lys Phe Leu Lys Glu Arg Leu Ala Arg Leu Thr Gln Ala Arg Arg Arg 645 650 655Leu Ala Gln Phe Pro Gly 660392683DNAHomo sapiens 39tttcttcgcg gcgcggggcg gggctgggcg cggggtgaaa gaggcgaagc gagagcggag 60gccgcactcc agcactgcgc agggaccgga attctgtggc cacactgcga ggagatcggt 120tctgggtcgg aggctacagg aagactccca ctccctgaaa tctggagtga agaacgccgc 180catccagcca ccattccaag cttactttgc aaagaaggaa gatggttgtt tccgaagtgg 240acatcgcaaa agctgatcca gctgctgcat cccaccctct attactgaat ggagatgcta 300ctgtggccca gaaaaatcca ggctcggtgg ctgagaacaa cctgtgcagc cagtatgagg 360agaaggtgcg cccctgcatc gacctcattg actccctgcg ggctctaggt gtggagcagg 420acctggccct gccagccatc gccgtcatcg gggaccagag ctcgggcaag agctccgtgt 480tggaggcact gtcaggagtt gcccttccca gaggcagcgg gatcgtgacc agatgcccgc 540tggtgctgaa actgaagaaa cttgtgaacg aagataagtg gagaggcaag gtcagttacc 600aggactacga gattgagatt tcggatgctt cagaggtaga aaaggaaatt aataaagccc 660agaatgccat cgccggggaa ggaatgggaa tcagtcatga gctaatcacc ctggagatca 720gctcccgaga tgtcccggat ctgactctaa tagaccttcc tggcataacc agagtggctg 780tgggcaatca gcctgctgac attgggtata agatcaagac actcatcaag aagtacatcc 840agaggcagga gacaatcagc ctggtggtgg tccccagtaa tgtggacatc gccaccacag 900aggctctcag catggcccag gaggtggacc ccgagggaga caggaccatc ggaatcttga 960cgaagcctga tctggtggac aaaggaactg aagacaaggt tgtggacgtg gtgcggaacc 1020tcgtgttcca cctgaagaag ggttacatga ttgtcaagtg ccggggccag caggagatcc 1080aggaccagct gagcctgtcc gaagccctgc agagagagaa gatcttcttt gagaaccacc 1140catatttcag ggatctgctg gaggaaggaa aggccacggt tccctgcctg gcagaaaaac 1200ttaccagcga gctcatcaca catatctgta aatctctgcc cctgttagaa aatcaaatca 1260aggagactca ccagagaata acagaggagc tacaaaagta tggtgtcgac ataccggaag 1320acgaaaatga aaaaatgttc ttcctgatag ataaagttaa tgcctttaat caggacatca 1380ctgctctcat gcaaggagag gaaactgtag gggaggaaga cattcggctg tttaccagac 1440tccgacacga gttccacaaa tggagtacaa taattgaaaa caattttcaa gaaggccata 1500aaattttgag tagaaaaatc cagaaatttg aaaatcagta tcgtggtaga gagctgccag 1560gctttgtgaa ttacaggaca tttgagacaa tcgtgaaaca gcaaatcaag gcactggaag 1620agccggctgt ggatatgcta cacaccgtga cggatatggt ccggcttgct ttcacagatg 1680tttcgataaa aaattttgaa gagtttttta acctccacag aaccgccaag tccaaaattg 1740aagacattag agcagaacaa gagagagaag gtgagaagct gatccgcctc cacttccaga 1800tggaacagat tgtctactgc caggaccagg tatacagggg tgcattgcag aaggtcagag 1860agaaggagct ggaagaagaa aagaagaaga aatcctggga ttttggggct ttccagtcca 1920gctcggcaac agactcttcc atggaggaga tctttcagca cctgatggcc tatcaccagg 1980aggccagcaa gcgcatctcc agccacatcc ctttgatcat ccagttcttc atgctccaga 2040cgtacggcca gcagcttcag aaggccatgc tgcagctcct gcaggacaag gacacctaca 2100gctggctcct gaaggagcgg agcgacacca gcgacaagcg gaagttcctg aaggagcggc 2160ttgcacggct gacgcaggct cggcgccggc ttgcccagtt ccccggttaa ccacactctg 2220tccagccccg tagacgtgca cgcacactgt ctgcccccgt tcccgggtag ccactggact 2280gacgacttga gtgctcagta gtcagactgg atagtccgtc tctgcttatc cgttagccgt 2340ggtgatttag caggaagctg tgagagcagt ttggtttcta gcatgaagac agagccccac 2400cctcagatgc acatgagctg gcgggattga aggatgctgt cttcgtactg ggaaagggat 2460tttcagccct cagaatcgct ccaccttgca gctctcccct tctctgtatt cctagaaact 2520gacacatgct gaacatcaca gcttatttcc tcatttttat aatgtccctt cacaaaccca 2580gtgttttagg agcatgagtg ccgtgtgtgt gcgtcctgtc ggagccctgt ctcctctctc 2640tgtaataaac tcatttctag cagacaaaaa aaaaaaaaaa aaa 268340662PRTHomo sapiens 40Met Val Val Ser Glu Val Asp Ile Ala Lys Ala Asp Pro Ala Ala Ala1 5 10 15Ser His Pro Leu Leu Leu Asn Gly Asp Ala Thr Val Ala Gln Lys Asn 20 25 30Pro Gly Ser Val Ala Glu Asn Asn Leu Cys Ser Gln Tyr Glu Glu Lys 35 40 45Val Arg Pro Cys Ile Asp Leu Ile Asp Ser Leu Arg Ala Leu Gly Val 50 55 60Glu Gln Asp Leu Ala Leu Pro Ala Ile Ala Val Ile Gly Asp Gln Ser65 70 75 80Ser Gly Lys Ser Ser Val Leu Glu Ala Leu Ser Gly Val Ala Leu Pro 85 90 95Arg Gly Ser Gly Ile Val Thr Arg Cys Pro Leu Val Leu Lys Leu Lys 100 105 110Lys Leu Val Asn Glu Asp Lys Trp Arg Gly Lys Val Ser Tyr Gln Asp 115 120 125Tyr Glu Ile Glu Ile Ser Asp Ala Ser Glu Val Glu Lys Glu Ile Asn 130 135 140Lys Ala Gln Asn Ala Ile Ala Gly Glu Gly Met Gly Ile Ser His Glu145 150 155 160Leu Ile Thr Leu Glu Ile Ser Ser Arg Asp Val Pro Asp Leu Thr Leu 165 170 175Ile Asp Leu Pro Gly Ile Thr Arg Val Ala Val Gly Asn Gln Pro Ala 180 185 190Asp Ile Gly Tyr Lys Ile Lys Thr Leu Ile Lys Lys Tyr Ile Gln Arg 195 200 205Gln Glu Thr Ile Ser Leu Val Val Val Pro Ser Asn Val Asp Ile Ala 210 215 220Thr Thr Glu Ala Leu Ser Met Ala Gln Glu Val Asp Pro Glu Gly Asp225 230 235 240Arg Thr Ile Gly Ile Leu Thr Lys Pro Asp Leu Val Asp Lys Gly Thr 245 250 255Glu Asp Lys Val Val Asp Val Val Arg Asn Leu Val Phe His Leu Lys 260 265 270Lys Gly Tyr Met Ile Val Lys Cys Arg Gly Gln Gln Glu Ile Gln Asp 275 280 285Gln Leu Ser Leu Ser Glu Ala Leu Gln Arg Glu Lys Ile Phe Phe Glu 290 295 300Asn His Pro Tyr Phe Arg Asp Leu Leu Glu Glu Gly Lys Ala Thr Val305 310 315 320Pro Cys Leu Ala Glu Lys Leu Thr Ser Glu Leu Ile Thr His Ile Cys 325 330 335Lys Ser Leu Pro Leu Leu Glu Asn Gln Ile Lys Glu Thr His Gln Arg 340 345 350Ile Thr Glu Glu Leu Gln Lys Tyr Gly Val Asp Ile Pro Glu Asp Glu 355 360 365Asn Glu Lys Met Phe Phe Leu Ile Asp Lys Val Asn Ala Phe Asn Gln 370 375 380Asp Ile Thr Ala Leu Met Gln Gly Glu Glu Thr Val Gly Glu Glu Asp385 390 395 400Ile Arg Leu Phe Thr Arg Leu Arg His Glu Phe His Lys Trp Ser Thr 405 410 415Ile Ile Glu Asn Asn Phe Gln Glu Gly His Lys Ile Leu Ser Arg Lys 420 425 430Ile Gln Lys Phe Glu Asn Gln Tyr Arg Gly Arg Glu Leu Pro Gly Phe 435 440 445Val Asn Tyr Arg Thr Phe Glu Thr Ile Val Lys Gln Gln Ile Lys Ala 450 455 460Leu Glu Glu Pro Ala Val Asp Met Leu His Thr Val Thr Asp Met Val465 470 475 480Arg Leu Ala Phe Thr Asp Val Ser Ile Lys Asn Phe Glu Glu Phe Phe 485 490 495Asn Leu His Arg Thr Ala Lys Ser Lys Ile Glu Asp Ile Arg Ala Glu 500 505 510Gln Glu Arg Glu Gly Glu Lys Leu Ile Arg Leu His Phe Gln Met Glu 515 520 525Gln Ile Val Tyr Cys Gln Asp Gln Val Tyr Arg Gly Ala Leu Gln Lys 530 535 540Val Arg Glu Lys Glu Leu Glu Glu Glu Lys Lys Lys Lys Ser Trp Asp545 550 555 560Phe Gly Ala Phe Gln Ser Ser Ser Ala Thr Asp Ser Ser Met Glu Glu 565 570 575Ile Phe Gln His Leu Met Ala Tyr His Gln Glu Ala Ser Lys Arg Ile 580 585 590Ser Ser His Ile Pro Leu Ile Ile Gln Phe Phe Met Leu Gln Thr Tyr 595 600 605Gly Gln Gln Leu Gln Lys Ala Met Leu Gln Leu Leu Gln Asp Lys Asp 610 615 620Thr Tyr Ser Trp Leu Leu Lys Glu Arg Ser Asp Thr Ser Asp Lys Arg625 630 635 640Lys Phe Leu Lys Glu Arg Leu Ala Arg Leu Thr Gln Ala Arg Arg Arg 645 650 655Leu Ala Gln Phe Pro Gly 660413409DNAHomo sapiens 41aaattcgcgg tgggggcgga gagcgcaggg agaagtaagc ccagtgcagg atcctgaggc 60ccgtgtttgc aggaccaggg ccggccttcc gattccccat tcattccaga agcaccgaac 120cacgctgtgc ccggatccca agtgcagcgg cacccagcgt gggcctgggg ttgccggttg 180acccggtcct cagcctggta gcagaggcca ggccagtgcc acaaggcacc taagtccacc 240tgggcctgga gcaggacagg ttgcaaaaga aaatatctcg ggacccccaa actccttatg 300ctaagggaaa catcgagcct gggaactgag ccatcaacgc tgccattctt tttcccaaac 360agaaccctgt tgtcagaggt acacccagag caactccaca ccgggtgcat gccacagcaa 420ctccatctta aataggagct ggtaaaacga ggctgatacc tactgggctg cattcccaga 480cggcatagcg aggaggtgct gaagagcgca ggtttggaga atgatcacct ggattggaac 540catagctcta ccaatatgga acccagctcc ttaggcctcg gtcttctcat ggagaacatg 600gtgtgataat cctactcctc tgggagggtg gctgttaagc cttggaccgc agttgccggc 660caggaatccc agtgtcacgg tggacacgcc tccctcgcgc ccttgccgcc cacctgctca 720cccagctcag gggctttgga attctgtggc cacactgcga ggagatcggt tctgggtcgg 780aggctacagg aagactccca ctccctgaaa tctggagtga agaacgccgc catccagcca 840ccattccaag gaggtgcagg agaacagctc tgtgatacca tttaacttgt tgacattact 900tttatttgaa ggaacgtata ttagagctta ctttgcaaag aaggaagatg gttgtttccg 960aagtggacat cgcaaaagct gatccagctg ctgcatccca ccctctatta ctgaatggag 1020atgctactgt ggcccagaaa aatccaggct cggtggctga gaacaacctg tgcagccagt 1080atgaggagaa ggtgcgcccc tgcatcgacc tcattgactc cctgcgggct ctaggtgtgg 1140agcaggacct ggccctgcca gccatcgccg tcatcgggga ccagagctcg ggcaagagct 1200ccgtgttgga ggcactgtca ggagttgccc ttcccagagg cagcgggatc gtgaccagat 1260gcccgctggt gctgaaactg aagaaacttg tgaacgaaga taagtggaga ggcaaggtca 1320gttaccagga ctacgagatt gagatttcgg atgcttcaga ggtagaaaag gaaattaata 1380aagcccagaa tgccatcgcc ggggaaggaa tgggaatcag tcatgagcta atcaccctgg 1440agatcagctc ccgagatgtc ccggatctga ctctaataga ccttcctggc ataaccagag 1500tggctgtggg caatcagcct gctgacattg ggtataagat caagacactc atcaagaagt 1560acatccagag gcaggagaca atcagcctgg tggtggtccc cagtaatgtg gacatcgcca 1620ccacagaggc tctcagcatg gcccaggagg tggaccccga gggagacagg accatcggaa 1680tcttgacgaa gcctgatctg gtggacaaag gaactgaaga caaggttgtg gacgtggtgc 1740ggaacctcgt gttccacctg aagaagggtt acatgattgt caagtgccgg ggccagcagg 1800agatccagga ccagctgagc ctgtccgaag ccctgcagag agagaagatc ttctttgaga 1860accacccata tttcagggat ctgctggagg aaggaaaggc cacggttccc tgcctggcag 1920aaaaacttac cagcgagctc atcacacata

tctgtaaatc tctgcccctg ttagaaaatc 1980aaatcaagga gactcaccag agaataacag aggagctaca aaagtatggt gtcgacatac 2040cggaagacga aaatgaaaaa atgttcttcc tgatagataa agttaatgcc tttaatcagg 2100acatcactgc tctcatgcaa ggagaggaaa ctgtagggga ggaagacatt cggctgttta 2160ccagactccg acacgagttc cacaaatgga gtacaataat tgaaaacaat tttcaagaag 2220gccataaaat tttgagtaga aaaatccaga aatttgaaaa tcagtatcgt ggtagagagc 2280tgccaggctt tgtgaattac aggacatttg agacaatcgt gaaacagcaa atcaaggcac 2340tggaagagcc ggctgtggat atgctacaca ccgtgacgga tatggtccgg cttgctttca 2400cagatgtttc gataaaaaat tttgaagagt tttttaacct ccacagaacc gccaagtcca 2460aaattgaaga cattagagca gaacaagaga gagaaggtga gaagctgatc cgcctccact 2520tccagatgga acagattgtc tactgccagg accaggtata caggggtgca ttgcagaagg 2580tcagagagaa ggagctggaa gaagaaaaga agaagaaatc ctgggatttt ggggctttcc 2640agtccagctc ggcaacagac tcttccatgg aggagatctt tcagcacctg atggcctatc 2700accaggaggc cagcaagcgc atctccagcc acatcccttt gatcatccag ttcttcatgc 2760tccagacgta cggccagcag cttcagaagg ccatgctgca gctcctgcag gacaaggaca 2820cctacagctg gctcctgaag gagcggagcg acaccagcga caagcggaag ttcctgaagg 2880agcggcttgc acggctgacg caggctcggc gccggcttgc ccagttcccc ggttaaccac 2940actctgtcca gccccgtaga cgtgcacgca cactgtctgc ccccgttccc gggtagccac 3000tggactgacg acttgagtgc tcagtagtca gactggatag tccgtctctg cttatccgtt 3060agccgtggtg atttagcagg aagctgtgag agcagtttgg tttctagcat gaagacagag 3120ccccaccctc agatgcacat gagctggcgg gattgaagga tgctgtcttc gtactgggaa 3180agggattttc agccctcaga atcgctccac cttgcagctc tccccttctc tgtattccta 3240gaaactgaca catgctgaac atcacagctt atttcctcat ttttataatg tcccttcaca 3300aacccagtgt tttaggagca tgagtgccgt gtgtgtgcgt cctgtcggag ccctgtctcc 3360tctctctgta ataaactcat ttctagcaga caaaaaaaaa aaaaaaaaa 340942662PRTHomo sapiens 42Met Val Val Ser Glu Val Asp Ile Ala Lys Ala Asp Pro Ala Ala Ala1 5 10 15Ser His Pro Leu Leu Leu Asn Gly Asp Ala Thr Val Ala Gln Lys Asn 20 25 30Pro Gly Ser Val Ala Glu Asn Asn Leu Cys Ser Gln Tyr Glu Glu Lys 35 40 45Val Arg Pro Cys Ile Asp Leu Ile Asp Ser Leu Arg Ala Leu Gly Val 50 55 60Glu Gln Asp Leu Ala Leu Pro Ala Ile Ala Val Ile Gly Asp Gln Ser65 70 75 80Ser Gly Lys Ser Ser Val Leu Glu Ala Leu Ser Gly Val Ala Leu Pro 85 90 95Arg Gly Ser Gly Ile Val Thr Arg Cys Pro Leu Val Leu Lys Leu Lys 100 105 110Lys Leu Val Asn Glu Asp Lys Trp Arg Gly Lys Val Ser Tyr Gln Asp 115 120 125Tyr Glu Ile Glu Ile Ser Asp Ala Ser Glu Val Glu Lys Glu Ile Asn 130 135 140Lys Ala Gln Asn Ala Ile Ala Gly Glu Gly Met Gly Ile Ser His Glu145 150 155 160Leu Ile Thr Leu Glu Ile Ser Ser Arg Asp Val Pro Asp Leu Thr Leu 165 170 175Ile Asp Leu Pro Gly Ile Thr Arg Val Ala Val Gly Asn Gln Pro Ala 180 185 190Asp Ile Gly Tyr Lys Ile Lys Thr Leu Ile Lys Lys Tyr Ile Gln Arg 195 200 205Gln Glu Thr Ile Ser Leu Val Val Val Pro Ser Asn Val Asp Ile Ala 210 215 220Thr Thr Glu Ala Leu Ser Met Ala Gln Glu Val Asp Pro Glu Gly Asp225 230 235 240Arg Thr Ile Gly Ile Leu Thr Lys Pro Asp Leu Val Asp Lys Gly Thr 245 250 255Glu Asp Lys Val Val Asp Val Val Arg Asn Leu Val Phe His Leu Lys 260 265 270Lys Gly Tyr Met Ile Val Lys Cys Arg Gly Gln Gln Glu Ile Gln Asp 275 280 285Gln Leu Ser Leu Ser Glu Ala Leu Gln Arg Glu Lys Ile Phe Phe Glu 290 295 300Asn His Pro Tyr Phe Arg Asp Leu Leu Glu Glu Gly Lys Ala Thr Val305 310 315 320Pro Cys Leu Ala Glu Lys Leu Thr Ser Glu Leu Ile Thr His Ile Cys 325 330 335Lys Ser Leu Pro Leu Leu Glu Asn Gln Ile Lys Glu Thr His Gln Arg 340 345 350Ile Thr Glu Glu Leu Gln Lys Tyr Gly Val Asp Ile Pro Glu Asp Glu 355 360 365Asn Glu Lys Met Phe Phe Leu Ile Asp Lys Val Asn Ala Phe Asn Gln 370 375 380Asp Ile Thr Ala Leu Met Gln Gly Glu Glu Thr Val Gly Glu Glu Asp385 390 395 400Ile Arg Leu Phe Thr Arg Leu Arg His Glu Phe His Lys Trp Ser Thr 405 410 415Ile Ile Glu Asn Asn Phe Gln Glu Gly His Lys Ile Leu Ser Arg Lys 420 425 430Ile Gln Lys Phe Glu Asn Gln Tyr Arg Gly Arg Glu Leu Pro Gly Phe 435 440 445Val Asn Tyr Arg Thr Phe Glu Thr Ile Val Lys Gln Gln Ile Lys Ala 450 455 460Leu Glu Glu Pro Ala Val Asp Met Leu His Thr Val Thr Asp Met Val465 470 475 480Arg Leu Ala Phe Thr Asp Val Ser Ile Lys Asn Phe Glu Glu Phe Phe 485 490 495Asn Leu His Arg Thr Ala Lys Ser Lys Ile Glu Asp Ile Arg Ala Glu 500 505 510Gln Glu Arg Glu Gly Glu Lys Leu Ile Arg Leu His Phe Gln Met Glu 515 520 525Gln Ile Val Tyr Cys Gln Asp Gln Val Tyr Arg Gly Ala Leu Gln Lys 530 535 540Val Arg Glu Lys Glu Leu Glu Glu Glu Lys Lys Lys Lys Ser Trp Asp545 550 555 560Phe Gly Ala Phe Gln Ser Ser Ser Ala Thr Asp Ser Ser Met Glu Glu 565 570 575Ile Phe Gln His Leu Met Ala Tyr His Gln Glu Ala Ser Lys Arg Ile 580 585 590Ser Ser His Ile Pro Leu Ile Ile Gln Phe Phe Met Leu Gln Thr Tyr 595 600 605Gly Gln Gln Leu Gln Lys Ala Met Leu Gln Leu Leu Gln Asp Lys Asp 610 615 620Thr Tyr Ser Trp Leu Leu Lys Glu Arg Ser Asp Thr Ser Asp Lys Arg625 630 635 640Lys Phe Leu Lys Glu Arg Leu Ala Arg Leu Thr Gln Ala Arg Arg Arg 645 650 655Leu Ala Gln Phe Pro Gly 660435889DNAHomo sapiens 43gctgccagct gagttttttt gctgctttga gtctcagttt tctttctttc ctagagtctc 60tgaagccaca gatctcttaa gaactttctg tctccaaacc gtggctgctc gataaatcag 120acagaacagt taatcctcaa tttaagcctg atctaacccc tagaaacaga tatagaacaa 180tggaagtgac aacaagattg acatggaatg atgaaaatca tctgcgcaag ctgcttggaa 240atgtttcttt gagtcttctc tataagtcta gtgttcatgg aggtagcatt gaagatatgg 300ttgaaagatg cagccgtcag ggatgtacta taacaatggc ttacattgat tacaatatga 360ttgtagcctt tatgcttgga aattatatta atttacatga aagttctaca gagccaaatg 420attccctatg gttttcactt caaaagaaaa atgacaccac tgaaatagaa actttactct 480taaatacagc accaaaaatt attgatgagc aactggtgtg tcgtttatcg aaaacggata 540ttttcattat atgtcgagat aataaaattt atctagataa aatgataaca agaaacttga 600aactaaggtt ttatggccac cgtcagtatt tggaatgtga agtttttcga gttgaaggaa 660ttaaggataa cctagacgac ataaagagga taattaaagc cagagagcac agaaataggc 720ttctagcaga catcagagac tataggccct atgcagactt ggtttcagaa attcgtattc 780ttttggtggg tccagttggg tctggaaagt ccagtttttt caattcagtc aagtctattt 840ttcatggcca tgtgactggc caagccgtag tggggtctga tatcaccagc ataaccgagc 900ggtataggat atattctgtt aaagatggaa aaaatggaaa atctctgcca tttatgttgt 960gtgacactat ggggctagat ggggcagaag gagcaggact gtgcatggat gacattcccc 1020acatcttaaa aggttgtatg ccagacagat atcagtttaa ttcccgtaaa ccaattacac 1080ctgagcattc tacttttatc acctctccat ctctgaagga caggattcac tgtgtggctt 1140atgtcttaga catcaactct attgacaatc tctactctaa aatgttggca aaagtgaagc 1200aagttcacaa agaagtatta aactgtggta tagcatatgt ggccttgctt actaaagtgg 1260atgattgcag tgaggttctt caagacaact ttttaaacat gagtagatct atgacttctc 1320aaagccgggt catgaatgtc cataaaatgc taggcattcc tatttccaat attttgatgg 1380ttggaaacta tgcttcagat ttggaactgg accccatgaa ggatattctc atcctctctg 1440cactgaggca gatgctgcgg gctgcagatg attttttaga agatttgcct cttgaggaaa 1500ctggtgcaat tgagagagcg ttacagccct gcatttgaga taagttgcct tgattctgac 1560atttggccca gcctgtactg gtgtgccgca atgagagtca atctctattg acagcctgct 1620tcagattttg cttttgttcg ttttgccttc tgtccttgga acagtcatat ctcaagttca 1680aaggccaaaa cctgagaagc ggtgggctaa gataggtcct actgcaaacc acccctccat 1740atttccgtac catttacaat tcagtttctg tgacatcttt ttaaaccact ggaggaaaaa 1800tgagatattc tctaatttat tcttctataa cactctatat agagctatgt gagtactaat 1860cacattgaat aatagttata aaattattgt atagacatct gcttcttaaa cagattgtga 1920gttctttgag aaacagcgtg gattttactt atctgtgtat tcacagagct tagcacagtg 1980cctggtaatg agcaagcata cttgccatta cttttccttc ccactctctc caacatcaca 2040ttcactttaa atttttctgt atatagaaag gaaaactagc ctgggcaaca tgatgaaacc 2100ccatctccac tgcaaaaaaa aaaaaaaaaa ataagaaaga acaaaacaaa ccccacaaaa 2160attagctggg tatgatggca cgtgcctgta gtcccagtta ctcaggatga ttgattgagc 2220cttggaggtg gaggctacag tgagctgaga ttgtgccact gtactctagc cagggagaaa 2280gagtgagatc ctggctcaaa aaaaccaaat aaaacaaaac aaacaaacga aaaacagaaa 2340ggaagactga aagagaatga aaagctgggg agaggaaata aaaataaaga aggaagagtg 2400tttcatttat atctgaatga aaatatgaat gactctaagt aattgaatta attaaaatga 2460gccaactttt ttttaacaat ttacatttta tttctatggg aaaaaataaa tattcctctt 2520ctaacaaacc catgcttgat tttcattaat tgaattccaa atcatcctag ccatgtgtcc 2580ttccatttag gttactgggg caaatcagta agaaagttct tatatttatg ctccaaataa 2640ttctgaagtc ctcttactag ctgtgaaagc tagtactatt aagaaagaaa acaaaattcc 2700caaaagatag ctttcacttt tttttttcct taaagacttc ctaattctct tctccaaatt 2760cttagtcttc ttcaaaataa tatgctttgg ttcaatagtt atccacattc tgacagtcta 2820atttagtttt aatcagaatt atactcatct tttgggtagt catagatatt aagaaagcaa 2880gagtttctta tgtccagtta tggaatattt cctaaagcaa ggctgcaggt gaagttgtgc 2940tcaagtgaat gttcaggaga cacaattcag tggaagaaat taagtcttta aaaaagacct 3000aggaatagga gaaccatgga aattgaggag gtaggcctac aagtagatat tgggaacaaa 3060attagagagg caaccagaaa aagttatttt aggctcacca gagttgttct tattgcacag 3120taacacacca atataccaaa acagcaggta ttgcagtaga gaaagagttt aataattgaa 3180tggcagaaaa atgaggaagg ttgaggaaac ctcaaatcta cctccctgct gagtctaagt 3240ttaggatttt taagagaaag gcaggtaagg tgctgaaggt ctggagctgc tgatttgttg 3300gggtataggg aatgaaatga aacatacaga gatgaaaact ggaagttttt ttttgtttgt 3360tttgtttttt ttttgttgtt gttttttttt ttttttgttt ttttgctgag tcaattcctt 3420ggagggggtc ttcagactga ctggtgtcag cagacccatg ggattccaag atctggaaaa 3480ctttttagat agaaacttga tgtttcttaa cgttacatat attatcttat agaaataact 3540aagggaagtt agtgccttgt gaccacatct atgtgacttt taggcagtaa gaaactataa 3600ggaaaggagc taacagtcat gctgtaagta gctacaggga attggcttaa agggcaagtt 3660ggttagtact tagctgtgtt tttattcaaa gtctacattt tatgtagtgg ttaatgtttg 3720ctgttcatta ggatggtttc acagttacca tacaaatgta gaagcaacag gtccaaaaag 3780tagggcatga ttttctccat gtaatccagg gagaaaacaa gccatgacca ttgttggttg 3840ggagactgaa ggtgattgaa ggttcaccat catcctcacc aacttttggg ccataattca 3900cccaaccctt tggtggagcc tgaaaaaaat ctgggcagaa tgtaggactt ctttattttg 3960tttaaagggg taacacagag tgcccttatg aaggagttgg agatcctgca aggaagagaa 4020ggagtgaagg agagatcaag agagagaaac aatgaggaac atttcatttg acccaacatc 4080ctttaggagc ataaatgttg acactaagtt atcccttttg tgctaaaatg gacagtattg 4140gcaaaatgat accacaactt cttattctct ggctctatat tgctttggaa acacttaaac 4200atcaaatgga gttaaataca tatttgaaat ttaggttagg aaatattggt gaggaggcct 4260caaaaagggg gaaacatctt ttgtctggga ggatattttc cattttgtgg atttccctga 4320tctttttcta ccaccctgag gggtggtggg aattatcatt ttgctacatt ttagaggtca 4380tccaggattt ttgaaacttt acattcttta cggttaagca agatgtacag ctcagtcaaa 4440gacactaaat tcttcttaga aaaatagtgc taaggagtat agcagatgac ctatatgtgt 4500gttggctggg agaatatcat cttaaagtga gagtgatgtt gtggagacag ttgaaatgtc 4560aatgctagag cctctgtggt gtgaatgggc acgttaggtt gttgcattag aaagtgactg 4620tttctgacag aaatttgtag ctttgtgcaa actcacccac catctacctc aataaaatat 4680agagaaaaga aaaatagagc agtttgagtt ctatgaggta tgcaggccca gagagacata 4740agtatgttcc tttagtcttg cttcctgtgt gccacactgc ccctccacaa ccatagctgg 4800gggcaattgt ttaaagtcat tttgttcccg actagctgcc ttgcacatta tcttcatttt 4860cctggaattt gatacagaga gcaatttata gccaattgat agcttatgct gtttcaatgt 4920aaattcgtgg taaataactt aggaactgcc tcttcttttt ctttgaaaac ctacttataa 4980ctgttgctaa taagaatgtg tattgttcag gacaacttgt ctccatacag ttgggttgta 5040accctcatgc ttggcccaaa taaactctct acttatatca gtttttccta cacttcttcc 5100ttttaggtca acaataccaa gaggggttac tgtgctgggt aatgtgtaaa cttgtgtctt 5160gtttagaaag ataaatttaa agactatcac attgcttttt cataaaacaa gacaggtcta 5220caattaattt attttgacgc aaattgatag gggggccaag taagccccat atgcttaatg 5280atcagctgat gaataatcat ctcctagcaa cataactcaa tctaatgcta aggtacccac 5340aagatggcaa ggctgatcaa agtcgtcatg gaatcctgca accaaaagcc atgggaattt 5400ggaagccctc aaatcccatt cctaatctga tgagtctatg gaccaatttg tggaggacag 5460tagattaaat agatctgatt tttgccatca atgtaaggag gataaaaact tgcataccaa 5520ttgtacaccc ttgcaaaatc tttctctgat gttggagaaa atgggccagt gagatcatgg 5580atatagaagt acagtcaatg ttcagctgta ccctcccaca atcccacttc cttcctcaac 5640acaattcaaa caaatagact cagactgttt caggctccag gacaggaagt gcagtgtagg 5700caaaattgca aaaattgagg gcacaggggt ggaggtgggg gggttgaata acaagctgtg 5760ctaaataatt acgtgtaaat atattttttc atttttaaaa attgatttct tttgcacatt 5820ccatgacaat atatgtcaca tttttaaaat aaatgcaaag aagcatacat ccaaaaaaaa 5880aaaaaaaaa 588944452PRTHomo sapiens 44Met Glu Val Thr Thr Arg Leu Thr Trp Asn Asp Glu Asn His Leu Arg1 5 10 15Lys Leu Leu Gly Asn Val Ser Leu Ser Leu Leu Tyr Lys Ser Ser Val 20 25 30His Gly Gly Ser Ile Glu Asp Met Val Glu Arg Cys Ser Arg Gln Gly 35 40 45Cys Thr Ile Thr Met Ala Tyr Ile Asp Tyr Asn Met Ile Val Ala Phe 50 55 60Met Leu Gly Asn Tyr Ile Asn Leu His Glu Ser Ser Thr Glu Pro Asn65 70 75 80Asp Ser Leu Trp Phe Ser Leu Gln Lys Lys Asn Asp Thr Thr Glu Ile 85 90 95Glu Thr Leu Leu Leu Asn Thr Ala Pro Lys Ile Ile Asp Glu Gln Leu 100 105 110Val Cys Arg Leu Ser Lys Thr Asp Ile Phe Ile Ile Cys Arg Asp Asn 115 120 125Lys Ile Tyr Leu Asp Lys Met Ile Thr Arg Asn Leu Lys Leu Arg Phe 130 135 140Tyr Gly His Arg Gln Tyr Leu Glu Cys Glu Val Phe Arg Val Glu Gly145 150 155 160Ile Lys Asp Asn Leu Asp Asp Ile Lys Arg Ile Ile Lys Ala Arg Glu 165 170 175His Arg Asn Arg Leu Leu Ala Asp Ile Arg Asp Tyr Arg Pro Tyr Ala 180 185 190Asp Leu Val Ser Glu Ile Arg Ile Leu Leu Val Gly Pro Val Gly Ser 195 200 205Gly Lys Ser Ser Phe Phe Asn Ser Val Lys Ser Ile Phe His Gly His 210 215 220Val Thr Gly Gln Ala Val Val Gly Ser Asp Ile Thr Ser Ile Thr Glu225 230 235 240Arg Tyr Arg Ile Tyr Ser Val Lys Asp Gly Lys Asn Gly Lys Ser Leu 245 250 255Pro Phe Met Leu Cys Asp Thr Met Gly Leu Asp Gly Ala Glu Gly Ala 260 265 270Gly Leu Cys Met Asp Asp Ile Pro His Ile Leu Lys Gly Cys Met Pro 275 280 285Asp Arg Tyr Gln Phe Asn Ser Arg Lys Pro Ile Thr Pro Glu His Ser 290 295 300Thr Phe Ile Thr Ser Pro Ser Leu Lys Asp Arg Ile His Cys Val Ala305 310 315 320Tyr Val Leu Asp Ile Asn Ser Ile Asp Asn Leu Tyr Ser Lys Met Leu 325 330 335Ala Lys Val Lys Gln Val His Lys Glu Val Leu Asn Cys Gly Ile Ala 340 345 350Tyr Val Ala Leu Leu Thr Lys Val Asp Asp Cys Ser Glu Val Leu Gln 355 360 365Asp Asn Phe Leu Asn Met Ser Arg Ser Met Thr Ser Gln Ser Arg Val 370 375 380Met Asn Val His Lys Met Leu Gly Ile Pro Ile Ser Asn Ile Leu Met385 390 395 400Val Gly Asn Tyr Ala Ser Asp Leu Glu Leu Asp Pro Met Lys Asp Ile 405 410 415Leu Ile Leu Ser Ala Leu Arg Gln Met Leu Arg Ala Ala Asp Asp Phe 420 425 430Leu Glu Asp Leu Pro Leu Glu Glu Thr Gly Ala Ile Glu Arg Ala Leu 435 440 445Gln Pro Cys Ile 450454759DNAHomo sapiens 45tagttattaa agttcctatg cagctccgcc tcgcgtccgg cctcatttcc tcggaaaatc 60cctgctttcc ccgctcgcca cgccctcctc ctacccggct ttaaagctag tgaggcacag 120cctgcgggga acgtagctag ctgcaagcag aggccggcat gaccaccgag cagcgacgca 180gcctgcaagc cttccaggat tatatccgga agaccctgga ccctacctac atcctgagct 240acatggcccc ctggtttagg gaggaagagg tgcagtatat tcaggctgag aaaaacaaca 300agggcccaat ggaggctgcc acactttttc tcaagttcct gttggagctc caggaggaag 360gctggttccg tggctttttg gatgccctag accatgcagg ttattctgga ctttatgaag 420ccattgaaag ttgggatttc aaaaaaattg aaaagttgga ggagtataga ttacttttaa 480aacgtttaca accagaattt aaaaccagaa ttatcccaac cgatatcatt tctgatctgt 540ctgaatgttt aattaatcag gaatgtgaag aaattctaca gatttgctct actaagggga 600tgatggcagg tgcagagaaa ttggtggaat gccttctcag atcagacaag gaaaactggc 660ccaaaacttt gaaacttgct ttggagaaag aaaggaacaa gttcagtgaa ctgtggattg 720tagagaaagg tataaaagat gttgaaacag aagatcttga ggataagatg gaaacttctg 780acatacagat tttctaccaa

gaagatccag aatgccagaa tcttagtgag aattcatgtc 840caccttcaga agtgtctgat acaaacttgt acagcccatt taaaccaaga aattaccaat 900tagagcttgc tttgcctgct atgaaaggaa aaaacacaat aatatgtgct cctacaggtt 960gtggaaaaac ctttgtttca ctgcttatat gtgaacatca tcttaaaaaa ttcccacaag 1020gacaaaaggg gaaagttgtc ttttttgcga atcagatccc agtgtatgaa cagcagaaat 1080ctgtattctc aaaatacttt gaaagacatg ggtatagagt tacaggcatt tctggagcaa 1140cagctgagaa tgtcccagtg gaacagattg ttgagaacaa tgacatcatc attttaactc 1200cacagattct tgtgaacaac cttaaaaagg gaacgattcc atcactatcc atctttactt 1260tgatgatatt tgatgaatgc cacaacacta gtaaacaaca cccgtacaat atgatcatgt 1320ttaattatct agatcagaaa cttggaggat cttcaggccc actgccccag gtcattgggc 1380tgactgcctc ggttggtgtt ggggatgcca aaaacacaga tgaagccttg gattatatct 1440gcaagctgtg tgcttctctt gatgcgtcag tgatagcaac agtcaaacac aatctggagg 1500aactggagca agttgtttat aagccccaga agtttttcag gaaagtggaa tcacggatta 1560gcgacaaatt taaatacatc atagctcagc tgatgaggga cacagagagt ctggcaaaga 1620gaatctgcaa agacctcgaa aacttatctc aaattcaaaa tagggaattt ggaacacaga 1680aatatgaaca atggattgtt acagttcaga aagcatgcat ggtgttccag atgccagaca 1740aagatgaaga gagcaggatt tgtaaagccc tgtttttata cacttcacat ttgcggaaat 1800ataatgatgc cctcattatc agtgagcatg cacgaatgaa agatgctctg gattacttga 1860aagacttctt cagcaatgtc cgagcagcag gattcgatga gattgagcaa gatcttactc 1920agagatttga agaaaagctg caggaactag aaagtgtttc cagggatccc agcaatgaga 1980atcctaaact tgaagacctc tgcttcatct tacaagaaga gtaccactta aacccagaga 2040caataacaat tctctttgtg aaaaccagag cacttgtgga cgctttaaaa aattggattg 2100aaggaaatcc taaactcagt tttctaaaac ctggcatatt gactggacgt ggcaaaacaa 2160atcagaacac aggaatgacc ctcccggcac agaagtgtat attggatgca ttcaaagcca 2220gtggagatca caatattctg attgccacct cagttgctga tgaaggcatt gacattgcac 2280agtgcaatct tgtcatcctt tatgagtatg tgggcaatgt catcaaaatg atccaaacca 2340gaggcagagg aagagcaaga ggtagcaagt gcttccttct gactagtaat gctggtgtaa 2400ttgaaaaaga acaaataaac atgtacaaag aaaaaatgat gaatgactct attttacgcc 2460ttcagacatg ggacgaagca gtatttaggg aaaagattct gcatatacag actcatgaaa 2520aattcatcag agatagtcaa gaaaaaccaa aacctgtacc tgataaggaa aataaaaaac 2580tgctctgcag aaagtgcaaa gccttggcat gttacacagc tgacgtaaga gtgatagagg 2640aatgccatta cactgtgctt ggagatgctt ttaaggaatg ctttgtgagt agaccacatc 2700ccaagccaaa gcagttttca agttttgaaa aaagagcaaa gatattctgt gcccgacaga 2760actgcagcca tgactgggga atccatgtga agtacaagac atttgagatt ccagttataa 2820aaattgaaag ttttgtggtg gaggatattg caactggagt tcagacactg tactcgaagt 2880ggaaggactt tcattttgag aagataccat ttgatccagc agaaatgtcc aaatgatatc 2940aggtcctcaa tcttcagcta cagggaatga gtaactttga gtggagaaga aacaaacata 3000gtgggtataa tcatggatcg cttgtacccc tgtgaaaata tattttttaa aaatatcttt 3060agcagtttgt actatattat atatgcaaag cacaaatgag tgaatcacag cactgagtat 3120tttgtaggcc aacagagctc atagtacttg ggaaaaatta aaaagcctca tttctagcct 3180tctttttaga gtcaactgcc aacaaacaca cagtaatcac tctgtacaca ctgggataga 3240tgaatgaatg gaatgttggg aatttttatc tccctttgtc tccttaacct actgtaaact 3300ggcttttgcc cttaacaatc tactgaaatt gttcttttga aggttaccag tgactctggt 3360tgccaaatcc actgggcact tcttaacctt ctatttgacc tctgcgcatt tggccctgtt 3420gagcactctt cttgaagctc tccctgggct tctctctctt ctagttctat tctagtcttt 3480ttttattgag tcctcctctt tgctgatccc ttccaagggt tcaatatata tacatgtata 3540tactgtacat atgtatatgt aactaatata catacataca ggtatgtata tgtaatggtt 3600atatgtactc atgttcctgg tgtagcaacg tgtggtatgg ctacacagag aacatgagaa 3660cataaagcca tttttatgct tactactaaa agctgtccac tgtagagttg ctgtatgtag 3720caatgtgtat ccactctaca gtggtcagct tttagtagag agcataaaaa tgataaaata 3780cttcttgaaa acttagttta ctatacatct tgccctatta atatgttctc ttaacgtgtg 3840ccattgttct ctttgaccat tttcctataa tgatgttgat gttcaacacc tggactgaat 3900gtctgttctc agatcccttg gatgttacag atgaggcagt ctgactgtcc tttctacttg 3960aaagattaga atatgtatcc aaatggcatt cacgtgtcac ttagcaaggt ttgctgatgc 4020ttcaaagagc ttagtttgcg gtttcctgga cgtggaaaca agtatctgag ttccctggag 4080atcaacggga tgaggtgtta cagctgcctc cctcttcatg caatctggtg agcagtggtg 4140caggcgggga gccagagaaa cttgccagtt atataacttc tctttggctt ttcttcatct 4200gtaaaacaag gataatactg aactgtaagg gttagtggag agtttttaat taaaagaatg 4260tgtgaaaagt acatgacaca gtagttgctt gataatagtt actagtagta gtattcttac 4320taagacccaa tacaaatgga ttatttaaac caagtttatg agttggtttt ttttcatttt 4380ctatttgtat tttattaaga gtgtcttttc ttatgtgatt ttttttaatt gctatttgat 4440atggtttggc tatatgtccc cacccaaatc tcatcttgaa ttataatccc catgtgtcaa 4500gggagggacc tgacgggagg tgattggatc acgggggcag ttgtccccat gctgttcttg 4560ggatagtgag ttagttctca tgagatctga tggttttata agtgtttgac aattcctcct 4620ttacacacac tctctctctc atctgctgcc atgtaagact tgcctgcttc cccttctgcc 4680atgattgtaa gtttcctgag gcctcctcag ccatgtggaa ctgtgaatct attaagcctc 4740ttttctttat aaatgaaaa 475946925PRTHomo sapiens 46Met Thr Thr Glu Gln Arg Arg Ser Leu Gln Ala Phe Gln Asp Tyr Ile1 5 10 15Arg Lys Thr Leu Asp Pro Thr Tyr Ile Leu Ser Tyr Met Ala Pro Trp 20 25 30Phe Arg Glu Glu Glu Val Gln Tyr Ile Gln Ala Glu Lys Asn Asn Lys 35 40 45Gly Pro Met Glu Ala Ala Thr Leu Phe Leu Lys Phe Leu Leu Glu Leu 50 55 60Gln Glu Glu Gly Trp Phe Arg Gly Phe Leu Asp Ala Leu Asp His Ala65 70 75 80Gly Tyr Ser Gly Leu Tyr Glu Ala Ile Glu Ser Trp Asp Phe Lys Lys 85 90 95Ile Glu Lys Leu Glu Glu Tyr Arg Leu Leu Leu Lys Arg Leu Gln Pro 100 105 110Glu Phe Lys Thr Arg Ile Ile Pro Thr Asp Ile Ile Ser Asp Leu Ser 115 120 125Glu Cys Leu Ile Asn Gln Glu Cys Glu Glu Ile Leu Gln Ile Cys Ser 130 135 140Thr Lys Gly Met Met Ala Gly Ala Glu Lys Leu Val Glu Cys Leu Leu145 150 155 160Arg Ser Asp Lys Glu Asn Trp Pro Lys Thr Leu Lys Leu Ala Leu Glu 165 170 175Lys Glu Arg Asn Lys Phe Ser Glu Leu Trp Ile Val Glu Lys Gly Ile 180 185 190Lys Asp Val Glu Thr Glu Asp Leu Glu Asp Lys Met Glu Thr Ser Asp 195 200 205Ile Gln Ile Phe Tyr Gln Glu Asp Pro Glu Cys Gln Asn Leu Ser Glu 210 215 220Asn Ser Cys Pro Pro Ser Glu Val Ser Asp Thr Asn Leu Tyr Ser Pro225 230 235 240Phe Lys Pro Arg Asn Tyr Gln Leu Glu Leu Ala Leu Pro Ala Met Lys 245 250 255Gly Lys Asn Thr Ile Ile Cys Ala Pro Thr Gly Cys Gly Lys Thr Phe 260 265 270Val Ser Leu Leu Ile Cys Glu His His Leu Lys Lys Phe Pro Gln Gly 275 280 285Gln Lys Gly Lys Val Val Phe Phe Ala Asn Gln Ile Pro Val Tyr Glu 290 295 300Gln Gln Lys Ser Val Phe Ser Lys Tyr Phe Glu Arg His Gly Tyr Arg305 310 315 320Val Thr Gly Ile Ser Gly Ala Thr Ala Glu Asn Val Pro Val Glu Gln 325 330 335Ile Val Glu Asn Asn Asp Ile Ile Ile Leu Thr Pro Gln Ile Leu Val 340 345 350Asn Asn Leu Lys Lys Gly Thr Ile Pro Ser Leu Ser Ile Phe Thr Leu 355 360 365Met Ile Phe Asp Glu Cys His Asn Thr Ser Lys Gln His Pro Tyr Asn 370 375 380Met Ile Met Phe Asn Tyr Leu Asp Gln Lys Leu Gly Gly Ser Ser Gly385 390 395 400Pro Leu Pro Gln Val Ile Gly Leu Thr Ala Ser Val Gly Val Gly Asp 405 410 415Ala Lys Asn Thr Asp Glu Ala Leu Asp Tyr Ile Cys Lys Leu Cys Ala 420 425 430Ser Leu Asp Ala Ser Val Ile Ala Thr Val Lys His Asn Leu Glu Glu 435 440 445Leu Glu Gln Val Val Tyr Lys Pro Gln Lys Phe Phe Arg Lys Val Glu 450 455 460Ser Arg Ile Ser Asp Lys Phe Lys Tyr Ile Ile Ala Gln Leu Met Arg465 470 475 480Asp Thr Glu Ser Leu Ala Lys Arg Ile Cys Lys Asp Leu Glu Asn Leu 485 490 495Ser Gln Ile Gln Asn Arg Glu Phe Gly Thr Gln Lys Tyr Glu Gln Trp 500 505 510Ile Val Thr Val Gln Lys Ala Cys Met Val Phe Gln Met Pro Asp Lys 515 520 525Asp Glu Glu Ser Arg Ile Cys Lys Ala Leu Phe Leu Tyr Thr Ser His 530 535 540Leu Arg Lys Tyr Asn Asp Ala Leu Ile Ile Ser Glu His Ala Arg Met545 550 555 560Lys Asp Ala Leu Asp Tyr Leu Lys Asp Phe Phe Ser Asn Val Arg Ala 565 570 575Ala Gly Phe Asp Glu Ile Glu Gln Asp Leu Thr Gln Arg Phe Glu Glu 580 585 590Lys Leu Gln Glu Leu Glu Ser Val Ser Arg Asp Pro Ser Asn Glu Asn 595 600 605Pro Lys Leu Glu Asp Leu Cys Phe Ile Leu Gln Glu Glu Tyr His Leu 610 615 620Asn Pro Glu Thr Ile Thr Ile Leu Phe Val Lys Thr Arg Ala Leu Val625 630 635 640Asp Ala Leu Lys Asn Trp Ile Glu Gly Asn Pro Lys Leu Ser Phe Leu 645 650 655Lys Pro Gly Ile Leu Thr Gly Arg Gly Lys Thr Asn Gln Asn Thr Gly 660 665 670Met Thr Leu Pro Ala Gln Lys Cys Ile Leu Asp Ala Phe Lys Ala Ser 675 680 685Gly Asp His Asn Ile Leu Ile Ala Thr Ser Val Ala Asp Glu Gly Ile 690 695 700Asp Ile Ala Gln Cys Asn Leu Val Ile Leu Tyr Glu Tyr Val Gly Asn705 710 715 720Val Ile Lys Met Ile Gln Thr Arg Gly Arg Gly Arg Ala Arg Gly Ser 725 730 735Lys Cys Phe Leu Leu Thr Ser Asn Ala Gly Val Ile Glu Lys Glu Gln 740 745 750Ile Asn Met Tyr Lys Glu Lys Met Met Asn Asp Ser Ile Leu Arg Leu 755 760 765Gln Thr Trp Asp Glu Ala Val Phe Arg Glu Lys Ile Leu His Ile Gln 770 775 780Thr His Glu Lys Phe Ile Arg Asp Ser Gln Glu Lys Pro Lys Pro Val785 790 795 800Pro Asp Lys Glu Asn Lys Lys Leu Leu Cys Arg Lys Cys Lys Ala Leu 805 810 815Ala Cys Tyr Thr Ala Asp Val Arg Val Ile Glu Glu Cys His Tyr Thr 820 825 830Val Leu Gly Asp Ala Phe Lys Glu Cys Phe Val Ser Arg Pro His Pro 835 840 845Lys Pro Lys Gln Phe Ser Ser Phe Glu Lys Arg Ala Lys Ile Phe Cys 850 855 860Ala Arg Gln Asn Cys Ser His Asp Trp Gly Ile His Val Lys Tyr Lys865 870 875 880Thr Phe Glu Ile Pro Val Ile Lys Ile Glu Ser Phe Val Val Glu Asp 885 890 895Ile Ala Thr Gly Val Gln Thr Leu Tyr Ser Lys Trp Lys Asp Phe His 900 905 910Phe Glu Lys Ile Pro Phe Asp Pro Ala Glu Met Ser Lys 915 920 92547863DNAHomo sapiens 47caaggttcag agtcacccat ctcagcaagc ccagaagtat ctgcaatatc tacgatggcc 60tcgccctttg ctttactgat ggtcctggtg gtgctcagct gcaagtcaag ctgctctctg 120ggctgtgatc tccctgagac ccacagcctg gataacagga ggaccttgat gctcctggca 180caaatgagca gaatctctcc ttcctcctgt ctgatggaca gacatgactt tggatttccc 240caggaggagt ttgatggcaa ccagttccag aaggctccag ccatctctgt cctccatgag 300ctgatccagc agatcttcaa cctctttacc acaaaagatt catctgctgc ttgggatgag 360gacctcctag acaaattctg caccgaactc taccagcagc tgaatgactt ggaagcctgt 420gtgatgcagg aggagagggt gggagaaact cccctgatga atgcggactc catcttggct 480gtgaagaaat acttccgaag aatcactctc tatctgacag agaagaaata cagcccttgt 540gcctgggagg ttgtcagagc agaaatcatg agatccctct ctttatcaac aaacttgcaa 600gaaagattaa ggaggaagga ataacatctg gtccaacatg aaaacaattc ttattgactc 660atacaccagg tcacgctttc atgaattctg tcatttcaaa gactctcacc cctgctataa 720ctatgaccat gctgataaac tgatttatct atttaaatat ttatttaact attcataaga 780tttaaattat ttttgttcat ataacgtcat gtgcaccttt acactgtggt tagtgtaata 840aaacatgttc cttatattta ctc 86348189PRTHomo sapiens 48Met Ala Ser Pro Phe Ala Leu Leu Met Val Leu Val Val Leu Ser Cys1 5 10 15Lys Ser Ser Cys Ser Leu Gly Cys Asp Leu Pro Glu Thr His Ser Leu 20 25 30Asp Asn Arg Arg Thr Leu Met Leu Leu Ala Gln Met Ser Arg Ile Ser 35 40 45Pro Ser Ser Cys Leu Met Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Pro Ala Ile Ser Val Leu65 70 75 80His Glu Leu Ile Gln Gln Ile Phe Asn Leu Phe Thr Thr Lys Asp Ser 85 90 95Ser Ala Ala Trp Asp Glu Asp Leu Leu Asp Lys Phe Cys Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Met Gln Glu Glu Arg 115 120 125Val Gly Glu Thr Pro Leu Met Asn Ala Asp Ser Ile Leu Ala Val Lys 130 135 140Lys Tyr Phe Arg Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu Ser 165 170 175Leu Ser Thr Asn Leu Gln Glu Arg Leu Arg Arg Lys Glu 180 185491143DNAHomo sapiens 49gagaacctgg agcctaaggt ttaggctcac ccatttcaac cagtctagca gcatctgcaa 60catctacaat ggccttgacc tttgctttac tggtggccct cctggtgctc agctgcaagt 120caagctgctc tgtgggctgt gatctgcctc aaacccacag cctgggtagc aggaggacct 180tgatgctcct ggcacagatg aggagaatct ctcttttctc ctgcttgaag gacagacatg 240actttggatt tccccaggag gagtttggca accagttcca aaaggctgaa accatccctg 300tcctccatga gatgatccag cagatcttca atctcttcag cacaaaggac tcatctgctg 360cttgggatga gaccctccta gacaaattct acactgaact ctaccagcag ctgaatgacc 420tggaagcctg tgtgatacag ggggtggggg tgacagagac tcccctgatg aaggaggact 480ccattctggc tgtgaggaaa tacttccaaa gaatcactct ctatctgaaa gagaagaaat 540acagcccttg tgcctgggag gttgtcagag cagaaatcat gagatctttt tctttgtcaa 600caaacttgca agaaagttta agaagtaagg aatgaaaact ggttcaacat ggaaatgatt 660ttcattgatt cgtatgccag ctcacctttt tatgatctgc catttcaaag actcatgttt 720ctgctatgac catgacacga tttaaatctt ttcaaatgtt tttaggagta ttaatcaaca 780ttgtattcag ctcttaaggc actagtccct tacagaggac catgctgact gatccattat 840ctatttaaat atttttaaaa tattatttat ttaactattt ataaaacaac ttatttttgt 900tcatattatg tcatgtgcac ctttgcacag tggttaatgt aataaaatat gttctttgta 960tttggtaaat ttattttgtg ttgttcattg aacttttgct atggaaactt ttgtacttgt 1020ttattcttta aaatgaaatt ccaagcctaa ttgtgcaacc tgattacaga ataactggta 1080cacttcattt atccatcaat attatattca agatataagt aaaaataaac tttctgtaaa 1140cca 114350188PRTHomo sapiens 50Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys1 5 10 15Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His65 70 75 80Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser 85 90 95Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr 100 105 110Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val 115 120 125Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys 130 135 140Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro145 150 155 160Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu 165 170 175Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu 180 18551982DNAHomo sapiens 51agaaaaccta gaggccgaag ttcaaggtta tccatctcaa gtagcctagc aatatttgca 60acatcccaat ggccctgtcc ttttctttac tgatggccgt gctggtgctc agctacaaat 120ccatctgttc tctgggctgt gatctgcctc agacccacag cctgggtaat aggagggcct 180tgatactcct ggcacaaatg ggaagaatct ctcatttctc ctgcctgaag gacagacatg 240atttcggatt ccccgaggag gagtttgatg gccaccagtt ccagaaggct caagccatct 300ctgtcctcca tgagatgatc cagcagacct tcaatctctt cagcacagag gactcatctg 360ctgcttggga acagagcctc ctagaaaaat tttccactga actttaccag caactgaatg 420acctggaagc atgtgtgata caggaggttg gggtggaaga gactcccctg atgaatgagg 480actccatcct ggctgtgagg aaatacttcc aaagaatcac tctttatcta acagagaaga 540aatacagccc ttgtgcctgg gaggttgtca gagcagaaat catgagatcc ctctcgtttt 600caacaaactt gcaaaaaaga ttaaggagga aggattgaaa cctggttcaa catggaaatg 660atcctgattg actaatacat tatctcacac tttcatgagt tcttccattt caaagactca 720cttctataac caccacgagt tgaatcaaaa ttttcaaatg ttttcagcag tgtgaagaag 780cttggtgtat acctgtgcag gcactagtcc tttacagatg acaatgctga tgtctctgtt 840catctattta tttaaatatt tatttatttt taaaatttaa attatttttt atgtgatatc 900atgagtacct

ttacattgtg gtgaatgtaa caatatatgt tcttcatatt tagccaatat 960attaatttcc tttttcatta aa 98252189PRTHomo sapiens 52Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser 35 40 45His Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Glu Glu 50 55 60Glu Phe Asp Gly His Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Glu Asp Ser 85 90 95Ser Ala Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115 120 125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu Ser 165 170 175Phe Ser Thr Asn Leu Gln Lys Arg Leu Arg Arg Lys Asp 180 18553700DNAHomo sapiens 53gcccaaggtt cagggtcact caatctcaac agcccagaag catctgcaac ctccccaatg 60gccttgccct ttgttttact gatggccctg gtggtgctca actgcaagtc aatctgttct 120ctgggctgtg atctgcctca gacccacagc ctgagtaaca ggaggacttt gatgataatg 180gcacaaatgg gaagaatctc tcctttctcc tgcctgaagg acagacatga ctttggattt 240cctcaggagg agtttgatgg caaccagttc cagaaggctc aagccatctc tgtcctccat 300gagatgatcc agcagacctt caatctcttc agcacaaagg actcatctgc tacttgggat 360gagacacttc tagacaaatt ctacactgaa ctttaccagc agctgaatga cctggaagcc 420tgtatgatgc aggaggttgg agtggaagac actcctctga tgaatgtgga ctctatcctg 480actgtgagaa aatactttca aagaatcacc ctctatctga cagagaagaa atacagccct 540tgtgcatggg aggttgtcag agcagaaatc atgagatcct tctctttatc agcaaacttg 600caagaaagat taaggaggaa ggaatgaaaa ctggttcaac atcgaaatga ttctcattga 660ctagtacacc atttcacact tcttgagttc tgccgtttca 70054189PRTHomo sapiens 54Met Ala Leu Pro Phe Val Leu Leu Met Ala Leu Val Val Leu Asn Cys1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Ser Asn Arg Arg Thr Leu Met Ile Met Ala Gln Met Gly Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85 90 95Ser Ala Thr Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Met Met Gln Glu Val Gly 115 120 125Val Glu Asp Thr Pro Leu Met Asn Val Asp Ser Ile Leu Thr Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175Leu Ser Ala Asn Leu Gln Glu Arg Leu Arg Arg Lys Glu 180 18555570DNAHomo sapiens 55atggctttgc cttttgcttt actgatggcc ctggtggtgc tcagctgcaa gtcaagctgc 60tctctggact gtgatctgcc tcagacccac agcctgggtc acaggaggac catgatgctc 120ctggcacaaa tgaggagaat ctctcttttc tcctgtctga aggacagaca tgacttcaga 180tttccccagg aggagtttga tggcaaccag ttccagaagg ctgaagccat ctctgtcctc 240catgaggtga ttcagcagac cttcaacctc ttcagcacaa aggactcatc tgttgcttgg 300gatgagaggc ttctagacaa actctatact gaactttacc agcagctgaa tgacctggaa 360gcctgtgtga tgcaggaggt gtgggtggga gggactcccc tgatgaatga ggactccatc 420ctggctgtga gaaaatactt ccaaagaatc actctctacc tgacagagaa aaagtacagc 480ccttgtgcct gggaggttgt cagagcagaa atcatgagat ccttctcttc atcaagaaac 540ttgcaagaaa ggttaaggag gaaggaataa 57056189PRTHomo sapiens 56Met Ala Leu Pro Phe Ala Leu Leu Met Ala Leu Val Val Leu Ser Cys1 5 10 15Lys Ser Ser Cys Ser Leu Asp Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly His Arg Arg Thr Met Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Arg Phe Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Glu Ala Ile Ser Val Leu65 70 75 80His Glu Val Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85 90 95Ser Val Ala Trp Asp Glu Arg Leu Leu Asp Lys Leu Tyr Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Met Gln Glu Val Trp 115 120 125Val Gly Gly Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175Ser Ser Arg Asn Leu Gln Glu Arg Leu Arg Arg Lys Glu 180 18557736DNAHomo sapiens 57tacccacctc aggtagccta gtgatatttg caaaatccca atggcccggt ccttttcttt 60actgatggtc gtgctggtac tcagctacaa atccatctgc tctctgggct gtgatctgcc 120tcagacccac agcctgcgta ataggagggc cttgatactc ctggcacaaa tgggaagaat 180ctctcctttc tcctgcttga aggacagaca tgaattcaga ttcccagagg aggagtttga 240tggccaccag ttccagaaga ctcaagccat ctctgtcctc catgagatga tccagcagac 300cttcaatctc ttcagcacag aggactcatc tgctgcttgg gaacagagcc tcctagaaaa 360attttccact gaactttacc agcaactgaa tgacctggaa gcatgtgtga tacaggaggt 420tggggtggaa gagactcccc tgatgaatga ggacttcatc ctggctgtga ggaaatactt 480ccaaagaatc actctttatc taatggagaa gaaatacagc ccttgtgcct gggaggttgt 540cagagcagaa atcatgagat ccttctcttt ttcaacaaac ttgaaaaaag gattaaggag 600gaaggattga aaactggttc atcatggaaa tgattctcat tgactaatgc atcatctcac 660actttcatga gttcttccat ttcaaagact cacttctata accaccacaa gttaatcaaa 720atttccaaat gttttc 73658189PRTHomo sapiens 58Met Ala Arg Ser Phe Ser Leu Leu Met Val Val Leu Val Leu Ser Tyr1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Arg Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Glu Phe Arg Phe Pro Glu Glu 50 55 60Glu Phe Asp Gly His Gln Phe Gln Lys Thr Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Glu Asp Ser 85 90 95Ser Ala Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115 120 125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Phe Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Met Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175Phe Ser Thr Asn Leu Lys Lys Gly Leu Arg Arg Lys Asp 180 185591039DNAHomo sapiens 59accagctcag cagcatccac aacatctaca atggccttga ctttttattt actggtggcc 60ctagtggtgc tcagctacaa gtcattcagc tctctgggct gtgatctgcc tcagactcac 120agcctgggta acaggagggc cttgatactc ctggcacaaa tgcgaagaat ctctcctttc 180tcctgcctga aggacagaca tgactttgaa ttcccccagg aggagtttga tgataaacag 240ttccagaagg ctcaagccat ctctgtcctc catgagatga tccagcagac cttcaacctc 300ttcagcacaa aggactcatc tgctgctttg gatgagaccc ttctagatga attctacatc 360gaacttgacc agcagctgaa tgacctggag tcctgtgtga tgcaggaagt gggggtgata 420gagtctcccc tgatgtacga ggactccatc ctggctgtga ggaaatactt ccaaagaatc 480actctatatc tgacagagaa gaaatacagc tcttgtgcct gggaggttgt cagagcagaa 540atcatgagat ccttctcttt atcaatcaac ttgcaaaaaa gattgaagag taaggaatga 600gacctggtac aacacggaaa tgattcttat agactaatac agcagctcac acttcgacaa 660gttgtgctct ttcaaagacc cttgtttctg ccaaaaccat gctatgaatt gaatcaaatg 720tgtcaagtgt tttcaggagt gttaagcaac atcctgttca gctgtatggg cactagtccc 780ttacagatga ccatgctgat ggatctattc atctatttat ttaaatcttt atttagttaa 840ctatctatag ggcttaaatt agttttgttc atattatatt atgtgaactt ttacattgtg 900aattgtgtaa caaaaacatg ttctttatat ttattatttt gccttgttta ttaaattttt 960actatagaaa aattctttat ttattcttta aaattgaact ccaaccctga ttgtgcaaac 1020tgattaaaga atggatggt 103960189PRTHomo sapiens 60Met Ala Leu Thr Phe Tyr Leu Leu Val Ala Leu Val Val Leu Ser Tyr1 5 10 15Lys Ser Phe Ser Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Glu Phe Pro Gln Glu 50 55 60Glu Phe Asp Asp Lys Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85 90 95Ser Ala Ala Leu Asp Glu Thr Leu Leu Asp Glu Phe Tyr Ile Glu Leu 100 105 110Asp Gln Gln Leu Asn Asp Leu Glu Ser Cys Val Met Gln Glu Val Gly 115 120 125Val Ile Glu Ser Pro Leu Met Tyr Glu Asp Ser Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Ser Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175Leu Ser Ile Asn Leu Gln Lys Arg Leu Lys Ser Lys Glu 180 18561963DNAHomo sapiens 61caaggttatc catctcaagt agcctagcaa tatttgcaac atcccaatgg ccctgtcctt 60ttctttactt atggccgtgc tggtgctcag ctacaaatcc atctgttctc tgggctgtga 120tctgcctcag acccacagcc tcggtaatag gagggccttg atactcctgg gacaaatggg 180aagaatctct cctttctcct gcctgaagga cagacatgat ttccgaatcc cccaggagga 240gtttgatggc aaccagttcc agaaggctca agccatctct gtcctccatg agatgatcca 300gcagaccttc aatctcttca gcacagagga ctcatctgct gcttgggaac agagcctcct 360agaaaaattt tccactgaac tttaccagca actgaatgac ctggaagcat gtgtgataca 420ggaggttggg gtggaagaga ctcccctgat gaatgaggac tccatcctgg ctgtgaggaa 480atacttccaa agaatcactc tttatctaat agagaggaaa tacagccctt gtgcctggga 540ggttgtcaga gcagaaatca tgagatccct ctcgttttca acaaacttgc aaaaaagatt 600aaggaggaag gattgaaaac tggttcaaca tggcaatgat cctgattgac taatacatta 660tctcacactt tcatgagttc ttccatttca aagactcact tctataacca cgacgcgttg 720aatcaaaatt ttcaaatgtt ttcagcagtg taaagaagtg tcgtgtatac ctgtgcaggc 780actagtcctt tacagatgac cattctgatg tctctgttca tcttttgttt aaatatttat 840ttaattattt ttaaaattta tgtaatatca tgagtcgctt tacattgtgg ttaatgtaac 900aatatatgtt cttcatattt agccaatata ttaatttcct ttttcattaa atttttacta 960tac 96362189PRTHomo sapiens 62Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Gly Gln Met Gly Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Arg Ile Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Glu Asp Ser 85 90 95Ser Ala Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115 120 125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Ile Glu Arg Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu Ser 165 170 175Phe Ser Thr Asn Leu Gln Lys Arg Leu Arg Arg Lys Asp 180 18563705DNAHomo sapiens 63agagaaccta gagcccaagg ttcagagtca cccatctcag caagcccaga agcatctgca 60atatctatga tggcctcgcc ctttgcttta ctgatggccc tggtggtgct cagctgcaag 120tcaagctgct ctctgggctg tgatctccct gagacccaca gcctggataa caggaggacc 180ttgatgctcc tggcacaaat gagcagaatc tctccttcct cctgtctgat ggacagacat 240gactttggat ttccccagga ggagtttgat ggcaaccagt tccagaaggc tccagccatc 300tctgtcctcc atgagctgat ccagcagatc ttcaacctct ttaccacaaa agattcatct 360gctgcttggg atgaggacct cctagacaaa ttctgcaccg aactctacca gcagctgaat 420gacttggaag cctgtgtgat gcaggaggag agggtgggag aaactcccct gatgaatgcg 480gactccatct tggctgtgaa gaaatacttc cgaagaatca ctctctatct gacagagaag 540aaatacagcc cttgtgcctg ggaggttgtc agagcagaaa tcatgagatc cctctcttta 600tcaacaaact tgcaagaaag attaaggagg aaggaataac acctggtcca acatgaaaca 660attcttattg actcatatac caggtcacgc tttcatgaat tctgc 70564190PRTHomo sapiens 64Met Met Ala Ser Pro Phe Ala Leu Leu Met Ala Leu Val Val Leu Ser1 5 10 15Cys Lys Ser Ser Cys Ser Leu Gly Cys Asp Leu Pro Glu Thr His Ser 20 25 30Leu Asp Asn Arg Arg Thr Leu Met Leu Leu Ala Gln Met Ser Arg Ile 35 40 45Ser Pro Ser Ser Cys Leu Met Asp Arg His Asp Phe Gly Phe Pro Gln 50 55 60Glu Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Pro Ala Ile Ser Val65 70 75 80Leu His Glu Leu Ile Gln Gln Ile Phe Asn Leu Phe Thr Thr Lys Asp 85 90 95Ser Ser Ala Ala Trp Asp Glu Asp Leu Leu Asp Lys Phe Cys Thr Glu 100 105 110Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Met Gln Glu Glu 115 120 125Arg Val Gly Glu Thr Pro Leu Met Asn Ala Asp Ser Ile Leu Ala Val 130 135 140Lys Lys Tyr Phe Arg Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr145 150 155 160Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu 165 170 175Ser Leu Ser Thr Asn Leu Gln Glu Arg Leu Arg Arg Lys Glu 180 185 19065778DNAHomo sapiens 65gttacccctc atcaaccagc ccagcagcat cttcgggatt cccaatggca ttgccctttg 60ctttaatgat ggccctggtg gtgctcagct gcaagtcaag ctgctctctg ggctgtaatc 120tgtctcaaac ccacagcctg aataacagga ggactttgat gctcatggca caaatgagga 180gaatctctcc tttctcctgc ctgaaggaca gacatgactt tgaatttccc caggaggaat 240ttgatggcaa ccagttccag aaagctcaag ccatctctgt cctccatgag atgatgcagc 300agaccttcaa tctcttcagc acaaagaact catctgctgc ttgggatgag accctcctag 360aaaaattcta cattgaactt ttccagcaaa tgaatgacct ggaagcctgt gtgatacagg 420aggttggggt ggaagagact cccctgatga atgaggactc catcctggct gtgaagaaat 480acttccaaag aatcactctt tatctgatgg agaagaaata cagcccttgt gcctgggagg 540ttgtcagagc agaaatcatg agatccctct ctttttcaac aaacttgcaa aaaagattaa 600ggaggaagga ttgaaaactg gttcatcatg gaaatgattc tcattgacta atacatcatc 660tcacactttc atgagttctt ccatttcaaa gactcacttc tcctataacc accacaagtt 720gaatcaaaat tttcaaatgt tttcaggagt gtaaagaagc atcatgtata cctgtgca 77866189PRTHomo sapiens 66Met Ala Leu Pro Phe Ala Leu Met Met Ala Leu Val Val Leu Ser Cys1 5 10 15Lys Ser Ser Cys Ser Leu Gly Cys Asn Leu Ser Gln Thr His Ser Leu 20 25 30Asn Asn Arg Arg Thr Leu Met Leu Met Ala Gln Met Arg Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Glu Phe Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Met Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asn Ser 85 90 95Ser Ala Ala Trp Asp Glu Thr Leu Leu Glu Lys Phe Tyr Ile Glu Leu 100 105 110Phe Gln Gln Met Asn Asp Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115 120 125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Lys 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Met Glu Lys Lys Tyr Ser145 150

155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu Ser 165 170 175Phe Ser Thr Asn Leu Gln Lys Arg Leu Arg Arg Lys Asp 180 18567939DNAHomo sapiens 67atcccaatgg ccctgtcctt ttctttactg atggccgtgc tggtgctcag ctacaaatcc 60atctgttctc tgggctgtga tctgcctcag actcacagcc tgggtaatag gagggccttg 120atactcctgg cacaaatggg aagaatctct catttctcct gcctgaagga cagatatgat 180ttcggattcc cccaggaggt gtttgatggc aaccagttcc agaaggctca agccatctct 240gccttccatg agatgatcca gcagaccttc aatctcttca gcacaaagga ttcatctgct 300gcttgggatg agaccctcct agacaaattc tacattgaac ttttccagca actgaatgac 360ctagaagcct gtgtgacaca ggaggttggg gtggaagaga ttgccctgat gaatgaggac 420tccatcctgg ctgtgaggaa atactttcaa agaatcactc tttatctgat ggggaagaaa 480tacagccctt gtgcctggga ggttgtcaga gcagaaatca tgagatcctt ctctttttca 540acaaacttgc aaaaaggatt aagaaggaag gattgaaaac tcattcaaca tggaaatgat 600cctcattgat taatacatca tctcacactt tcatgagttc ttccatttca aagactcact 660tctataacca ccacaagttg aatcaaaatt tcaaaatgtt ttcaggagtg taaagaagca 720tcgtgtttac ctgtgcaggc actagtcctt tacagatgac catgctgatg tctctattca 780tctatttatt taaatattta tttatttaac tatttttaag gtttaaatca tgttttatgt 840aatatcatgt gtacctttac attttgctta atgtaacaat atatgttctt catatttagt 900taatatatta acttcctttt cattaaattt ttactatac 93968189PRTHomo sapiens 68Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser 35 40 45His Phe Ser Cys Leu Lys Asp Arg Tyr Asp Phe Gly Phe Pro Gln Glu 50 55 60Val Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Ala Phe65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85 90 95Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Ile Glu Leu 100 105 110Phe Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Thr Gln Glu Val Gly 115 120 125Val Glu Glu Ile Ala Leu Met Asn Glu Asp Ser Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Met Gly Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175Phe Ser Thr Asn Leu Gln Lys Gly Leu Arg Arg Lys Asp 180 18569980DNAHomo sapiens 69gttcaaggtt acccatctca agtagcctag caacatttgc aacatcccaa tggccctgtc 60cttttcttta ctgatggccg tgctggtgct cagctacaaa tccatctgtt ctctaggctg 120tgatctgcct cagacccaca gcctgggtaa taggagggcc ttgatactcc tggcacaaat 180gggaagaatc tctcctttct cctgcctgaa ggacagacat gactttggac ttccccagga 240ggagtttgat ggcaaccagt tccagaagac tcaagccatc tctgtcctcc atgagatgat 300ccagcagacc ttcaatctct tcagcacaga ggactcatct gctgcttggg aacagagcct 360cctagaaaaa ttttccactg aactttacca gcaactgaat aacctggaag catgtgtgat 420acaggaggtt gggatggaag agactcccct gatgaatgag gactccatcc tggctgtgag 480gaaatacttc caaagaatca ctctttatct aacagagaag aaatacagcc cttgtgcctg 540ggaggttgtc agagcagaaa tcatgagatc tctctctttt tcaacaaact tgcaaaaaat 600attaaggagg aaggattgaa aactggttca acatggcaat gatcctgatt gactaataca 660ttatctcaca ctttcatgag ttcctccatt tcaaagactc acttctataa ccaccacgag 720ttgaatcaaa attttcaaat gttttcagca gtgtaaagaa gcgtcgtgta tacctgtgca 780ggcactagta ctttacagat gaccatgctg atgtctctgt tcatctattt atttaaatat 840ttatttaatt atttttaaga tttaaattat ttttttatgt aatatcatgt gtacctttac 900attgtggtga atgtaacaat atatgttctt catatttagc caatatatta atttcctttt 960tcattaaatt tttactatac 98070189PRTHomo sapiens 70Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Leu Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Thr Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Glu Asp Ser 85 90 95Ser Ala Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100 105 110Tyr Gln Gln Leu Asn Asn Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115 120 125Met Glu Glu Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Arg 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu Ser 165 170 175Phe Ser Thr Asn Leu Gln Lys Ile Leu Arg Arg Lys Asp 180 185711024DNAHomo sapiens 71ttcaaggtta cccatctcaa gtagcctagc aatattggca acatcccaat ggccctgtcc 60ttttctttac tgatggccgt gctggtgctc agctacaaat ccatctgttc tctgggctgt 120gatctgcctc agacccacag cctgggtaat aggagggcct tgatactcct ggcacaaatg 180ggaagaatct ctcctttctc ctgcctgaag gacagacatg actttggatt cccccaggag 240gagtttgatg gcaaccagtt ccagaaggct caagccatct ctgtcctcca tgagatgatc 300cagcagacct tcaatctctt cagcacaaag gactcatctg ctacttggga acagagcctc 360ctagaaaaat tttccactga acttaaccag cagctgaatg acctggaagc ctgcgtgata 420caggaggttg gggtggaaga gactcccctg atgaatgtgg actccatcct ggctgtgaag 480aaatacttcc aaagaatcac tctttatctg acagagaaga aatacagccc ttgtgcctgg 540gaggttgtca gagcagaaat catgagatcc ttctctttat caaaaatttt tcaagaaaga 600ttaaggagga aggaatgaaa cctgtttcaa catggaaatg atctgtattg actaatacac 660cagtccacac ttctatgact tctgccattt caaagactca tttctcctat aaccaccgca 720tgagttgaat caaaattttc agatcttttc aggagtgtaa ggaaacatca tgtttacctg 780tgcaggcact agtcctttac agatgaccat gctgatagat ctaattatct atctattgaa 840atatttattt atttattaga tttaaattat ttttgtccat gtaatattat gtgtactttt 900acattgtgtt atatcaaaat atgttattta tatttagtca atatattatt ttctttttat 960taatttttac tattaaaact tcttatatta tttgtttatt ctttaataaa gaaataccaa 1020gccc 102472189PRTHomo sapiens 72Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr1 5 10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser 35 40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70 75 80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85 90 95Ser Ala Thr Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100 105 110Asn Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115 120 125Val Glu Glu Thr Pro Leu Met Asn Val Asp Ser Ile Leu Ala Val Lys 130 135 140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150 155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser 165 170 175Leu Ser Lys Ile Phe Gln Glu Arg Leu Arg Arg Lys Glu 180 18573840DNAHomo sapiens 73acattctaac tgcaaccttt cgaagccttt gctctggcac aacaggtagt aggcgacact 60gttcgtgttg tcaacatgac caacaagtgt ctcctccaaa ttgctctcct gttgtgcttc 120tccactacag ctctttccat gagctacaac ttgcttggat tcctacaaag aagcagcaat 180tttcagtgtc agaagctcct gtggcaattg aatgggaggc ttgaatactg cctcaaggac 240aggatgaact ttgacatccc tgaggagatt aagcagctgc agcagttcca gaaggaggac 300gccgcattga ccatctatga gatgctccag aacatctttg ctattttcag acaagattca 360tctagcactg gctggaatga gactattgtt gagaacctcc tggctaatgt ctatcatcag 420ataaaccatc tgaagacagt cctggaagaa aaactggaga aagaagattt caccagggga 480aaactcatga gcagtctgca cctgaaaaga tattatggga ggattctgca ttacctgaag 540gccaaggagt acagtcactg tgcctggacc atagtcagag tggaaatcct aaggaacttt 600tacttcatta acagacttac aggttacctc cgaaactgaa gatctcctag cctgtgcctc 660tgggactgga caattgcttc aagcattctt caaccagcag atgctgttta agtgactgat 720ggctaatgta ctgcatatga aaggacacta gaagattttg aaatttttat taaattatga 780gttattttta tttatttaaa ttttattttg gaaaataaat tatttttggt gcaaaagtca 84074187PRTHomo sapiens 74Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser1 5 10 15Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg 20 25 30Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg 35 40 45Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu 50 55 60Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile65 70 75 80Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85 90 95Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val 100 105 110Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 115 120 125Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 130 135 140Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser145 150 155 160His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 165 170 175Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn 180 185751514DNAHomo sapiens 75gatctggtaa acctgaagca aatatagaaa cctatagggc ctgacttcct acataaagta 60aggagggtaa aaatggaggc tagaataagg gttaaaattt tgcttctaga acagagaaaa 120tgattttttt catatatata tgaatatata ttatatatac acatatatac atatattcac 180tatagtgtgt atacataaat atataatata tatattgtta gtgtagtgtg tgtctgatta 240tttacatgca tatagtatat acacttatga ctttagtacc cagacgtttt tcatttgatt 300aagcattcat ttgtattgac acagctgaag tttactggag tttagctgaa gtctaatgca 360aaattaatag attgttgtca tcctcttaag gtcataggga gaacacacaa atgaaaacag 420taaaagaaac tgaaagtaca gagaaatgtt cagaaaatga aaaccatgtg tttcctatta 480aaagccatgc atacaagcaa tgtcttcaga aaacctaggg tccaaggtta agccatatcc 540cagctcagta aagccaggag catcctcatt tcccaatggc cctcctgttc cctctactgg 600cagccctagt gatgaccagc tatagccctg ttggatctct gggctgtgat ctgcctcaga 660accatggcct acttagcagg aacaccttgg tgcttctgca ccaaatgagg agaatctccc 720ctttcttgtg tctcaaggac agaagagact tcaggttccc ccaggagatg gtaaaaggga 780gccagttgca gaaggcccat gtcatgtctg tcctccatga gatgctgcag cagatcttca 840gcctcttcca cacagagcgc tcctctgctg cctggaacat gaccctccta gaccaactcc 900acactggact tcatcagcaa ctgcaacacc tggagacctg cttgctgcag gtagtgggag 960aaggagaatc tgctggggca attagcagcc ctgcactgac cttgaggagg tacttccagg 1020gaatccgtgt ctacctgaaa gagaagaaat acagcgactg tgcctgggaa gttgtcagaa 1080tggaaatcat gaaatccttg ttcttatcaa caaacatgca agaaagactg agaagtaaag 1140atagagacct gggctcatct tgaaatgatt ctcattgatt aatttgccat ataacacttg 1200cacatgtgac tctggtcaat tcaaaagact cttatttcgg ctttaatcac agaattgact 1260gaattagttc tgcaaatact ttgtcggtat attaagccag tatatgttaa aaagacttag 1320gttcaggggc atcagtccct aagatgttat ttatttttac tcatttattt attcttacat 1380tttatcatat ttatactatt tatattctta tataacaaat gtttgccttt acattgtatt 1440aagataacaa aacatgttca gctttccatt tggttaaata ttgtattttg ttatttatta 1500aattattttc aaac 151476195PRTHomo sapiens 76Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr1 5 10 15Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn His Gly Leu 20 25 30Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg Arg Ile Ser 35 40 45Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe Pro Gln Glu 50 55 60Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met Ser Val Leu65 70 75 80His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr Glu Arg Ser 85 90 95Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His Thr Gly Leu 100 105 110His Gln Gln Leu Gln His Leu Glu Thr Cys Leu Leu Gln Val Val Gly 115 120 125Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu Arg 130 135 140Arg Tyr Phe Gln Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys Tyr Ser145 150 155 160Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys Ser Leu Phe 165 170 175Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp Arg Asp Leu 180 185 190Gly Ser Ser 195771240DNAHomo sapiens 77cacattgttc tgatcatctg aagatcagct attagaagag aaagatcagt taagtccttt 60ggacctgatc agcttgatac aagaactact gatttcaact tctttggctt aattctctcg 120gaaacgatga aatatacaag ttatatcttg gcttttcagc tctgcatcgt tttgggttct 180cttggctgtt actgccagga cccatatgta aaagaagcag aaaaccttaa gaaatatttt 240aatgcaggtc attcagatgt agcggataat ggaactcttt tcttaggcat tttgaagaat 300tggaaagagg agagtgacag aaaaataatg cagagccaaa ttgtctcctt ttacttcaaa 360ctttttaaaa actttaaaga tgaccagagc atccaaaaga gtgtggagac catcaaggaa 420gacatgaatg tcaagttttt caatagcaac aaaaagaaac gagatgactt cgaaaagctg 480actaattatt cggtaactga cttgaatgtc caacgcaaag caatacatga actcatccaa 540gtgatggctg aactgtcgcc agcagctaaa acagggaagc gaaaaaggag tcagatgctg 600tttcgaggtc gaagagcatc ccagtaatgg ttgtcctgcc tgcaatattt gaattttaaa 660tctaaatcta tttattaata tttaacatta tttatatggg gaatatattt ttagactcat 720caatcaaata agtatttata atagcaactt ttgtgtaatg aaaatgaata tctattaata 780tatgtattat ttataattcc tatatcctgt gactgtctca cttaatcctt tgttttctga 840ctaattaggc aaggctatgt gattacaagg ctttatctca ggggccaact aggcagccaa 900cctaagcaag atcccatggg ttgtgtgttt atttcacttg atgatacaat gaacacttat 960aagtgaagtg atactatcca gttactgccg gtttgaaaat atgcctgcaa tctgagccag 1020tgctttaatg gcatgtcaga cagaacttga atgtgtcagg tgaccctgat gaaaacatag 1080catctcagga gatttcatgc ctggtgcttc caaatattgt tgacaactgt gactgtaccc 1140aaatggaaag taactcattt gttaaaatta tcaatatcta atatatatga ataaagtgta 1200agttcacaac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 124078166PRTHomo sapiens 78Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu1 5 10 15Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu 20 25 30Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 35 40 45Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp 50 55 60Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe65 70 75 80Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile 85 90 95Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg 100 105 110Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val 115 120 125Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser 130 135 140Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg145 150 155 160Gly Arg Arg Ala Ser Gln 1657912979DNAHomo sapiensmisc_feature(5427)..(5427)n is a, c, g, or tmisc_feature(5460)..(5461)n is a, c, g, or tmisc_feature(12190)..(12190)n is a, c, g, or tmisc_feature(12192)..(12192)n is a, c, g, or tmisc_feature(12237)..(12240)n is a, c, g, or t 79gaattccttg agcccaggaa gctgcagtga gccacgtttg taccattgca ctccagcttg 60ggagatagag tgagaccctg tctcaaaaaa aaaaaaaaaa aaaaaaagaa aaatttattt 120ggcttacaga tgtctgggct gtacaagaag tgtggcagca gcatctgctt ccagtgaagg 180cattaggctc cttctactca gcagaagaca acatgcagct ggcatgtgca gagaccacat 240ggtaagagaa gaagccaatg ggggaatgca atggggggac ggggagacac acactttttt 300tttttttttt gagatggagt ctcgctctgt cacccaggct ggagtgcagt ggcgcgatct 360cggctcactg caagctctgc ctcccgggtt cacgccattc tcctgcctca gccgcccgag 420tagctgggac tacaggtgcc caccaccacg ccccgctgat tttttgtatt tttagtagag 480atggggtttc accatgttag ccaggatggt ctcgatctcc tgacctcgtg atctgcctgc 540cttggcttcc caaagtgctg ggattacagg catgagccac catgcctgtc cctttttttt 600tttttttttt tgagacaggg gctgtcaccc aggctggagt gcactggcgt ggtcatggct 660cattgcacct ttcacctcag gctcaagaga ccctcctacc tcagcctcct cagtagctgg 720gactaaggaa gtacaccacc atgcccagct aattattttt tttaagatgc aatctcactc 780tgttgcccag gctgcactgc agtggtacaa tctcagctca ctgcaacctc cgcctcctgg 840gttcaagcga ttctcttgct

tcagcctcct gagtagctgg gattacagat gcctgccacc 900aggcccggct aatttttgta tttttagtag atacagggtt tcgccatgtt ggccaggctg 960gtctcgaact cctaacctaa ggtgatccgc ccatctcggc ctcccaaagt gctgggatta 1020caggcatgag ccaccgtgcc tggcccatgc ccagctaagt taaaaaaatt tttggctggg 1080caaggtgatt catacctgta attccaacaa tttgggaagc taaggcaggc agatcccatt 1140tgagctcagg aattggagac catcttggac aatatggcga aatcctgtct ctacaaaata 1200tacaaaaatt agctgggtgt ggtggcgctg tgcctgtagt cccagctact ccagaggctg 1260aggtgggagg atggcttgag cccgggaggc agaggttgca gtgagccaaa atggtgacat 1320tgcactccag cctgggcaac agagccagac cctgtctcaa aaaaaaaaaa aaaaagctct 1380aaaaatagat agtggtgata gttagttaca caacattgtg aatgtactta aatgtcactg 1440aattatacac ttaaatgttt aaatggtaaa ttctatctta tgtatatttt accacaattt 1500aaaaatttta tctatttcta ttttaatgag agttttaaaa agcaggaatg gatattgaat 1560ttccttaaat actctttgga gtctattaaa gatagcattt tacttcaaaa tccagccctg 1620gtttctgtac ctagtacttc tgtcacacca gtaaatgtta ttgaatgaaa acaaacaaaa 1680gaccataaag acatacctct tcacgttcac taggattggt gtcatttttt taaaaaaagg 1740aaagaaaaat aaccagtatt ggcaacagtg tggatatata gaaatttttg tatattgctg 1800gtaggaatat aaaataggga aaacggtttg gtggttcctc aaaaagttca acataaaccc 1860aggcgcggtg gctcatgcct gtaatcctag cactttggga ggctgaggtg ggagaactgt 1920ttgatcccag gagtttgaga ccagcctagg caatatggtg agacctcatc tctacaaaaa 1980attagctagg catggtggcg catgcctgta gtcccagcta cctgggaggc taagacagaa 2040agatcacttg agcctggaag ggagtttgag gctgcagtga gcccagattg cgccactgca 2100ctccagcctg ggtgacagag tgatatcctg tctcaaaata aataaataaa taataaacaa 2160acacagaatt accatatgac ccagcaactc tactcctgtg tatatgccca aaaaagctga 2220aagcccaggc actgtggctt acacctgtaa tcccagcact ttaggaggcc gaggcacttg 2280accccaggat tttgagacca gcctgggcaa catagtactt gttcaagaat caggctgggc 2340atggtggctc acacctgtaa tcccagcact ttgggagggc aaggtgggag gatcacttga 2400ggccaggcat tcgagaccag cctgggcaag atagcaatac ccacccccaa tctctacaaa 2460agcaagtaat taattaggaa attagccaaa gccaggtgcg gtggctcacg cctgtagtcc 2520cagcactttg ggaggctgag gtgggcagat tgcttgagtc cagagattcg agaccagcct 2580aggcaacata tcaaaacccc gtctctacta aaagtaaaaa aagaaaaatt gcactttggg 2640aggccaaggc ggggggatca cctgatgtca ggagttcaag accagcctgg ccaacatggt 2700gaaaccccat ctctacaaaa atacaaaagt tagccgggca tgatggcagt gtctgtaatc 2760ccagctactc aggaggctgg gtcggaagaa tcatttgaat ccaggaggcg gaggttgcag 2820tgaaccaaga ttgtgccatt gcattccagc ctgggtgaca gagcaagcct ccgtctcaaa 2880aaaaaaaaaa aaaagaaaaa ttagccagat gtggtggtgc atgcctgtgg tcccagctac 2940tcaggaggct gtggtgggag gattgcttga gcccaagaca ctgaggctgc agtgagccat 3000gatcacacca ctgcactcca gcctaggcaa ccagagtgag accctgtctc aaaaacaaac 3060aaacaaacaa aaaccacttt aacagggtat ggtggtgcac acctctagtc ccagctactt 3120gggaggttga ggcagccgga tcacttgacc ccaggagatc gaggctgcag tccagcctgg 3180gcaaccgagt gagactgtct caaaaagaaa aaaaaaaaaa aaaggacata gcagcactat 3240tcacaaatcc aaaagttaga aataactcag atgtccatca acagatgaat ggataaacga 3300attgtggtat atacatataa tggactatta ttcagccatt aaaaggaatg aaatattgat 3360acaggctata aactctatga acattgaaaa cattctaagt gaaaggaaat agacataaga 3420ggtcacattt tgcaattctt tttttttttt tttttttttt tgagactgag tctcactctg 3480ttgcccaggc tggagcgcag tggctcgatc tcagctcact gcaacctcca tctcccgaat 3540tcaagcaatt cttctgcctc agcctcccga gtagctggga ttacatgtag gcatgcacca 3600ccatgcctgg ctaatttttg tacttttagt agagatgggg tttcaccatg ttggtcaggc 3660tggtcttgaa ctccagacct caggtggtcc acccgccttg gcctcccaaa gtgctaggat 3720tacaggtgtg agccaccatg cccggccaca tgtatggtaa ttattgaatg tgtttggtat 3780gttcgttgtg ggtgatgaaa tattttggaa ctagatagac gtgatggttg aacaacactg 3840tggatgcact aaatgccact gaattgtaca ctttaaaatt gttaacttta tgttacatga 3900atttcaccta aattaacaac aacaacaaaa aagaacttaa gacagcactt ggtttggcta 3960ttacgtagtt tcgtgacaaa cagtggtcca tctcccagag aactggcccc aggttcctaa 4020gaaggcaaaa ggagacacag gacctctctg cactattttt tttgcaactt cttatgagtc 4080tataattatt tcaaaataaa agtctaaaag gaaaataaga acatgtgtga atgtggctgc 4140cccatgcctc ccaccctcag gtctgacact cagagactga tcacctcttg agagtcctgg 4200aactcatccc aggttttaga ccctgaatgg cctgtctggg gctggcgtct ggaggcagga 4260tcaggagcca gctcagagca tagtttaact ttcacttttc ttttctccag aggagccagg 4320aagagagctg tgaccagcag cgtcccttat tcgcttggcc ttggttcctg tttgcactgg 4380ctacagcagg gcactggccc ctactgtcac cgccacctac acaaagaccc tatctctgag 4440cgctgcagcc tactgttcag ccccaggttt gaggatggat gccctggacg cttcgaagct 4500actggatgag gagctgtatt caagacagct gtgaggcccg aggtgggggg tggagagtgg 4560gatggtcttc agaccttgat ctacaactgc ttgccttctg cttcccatcc acaggtatgt 4620gctgggctca cctgccatgc agaggattca gggagccagg gtcctggtgt caggcctgca 4680gggcctgggg gccgaggtgg ccaagaactt ggttctgatg ggtgtgggca gcctcactct 4740gcatgatccc caccccacct gctggtccga cctggctgcc caggtaagtg tcctggggct 4800atgggctgcc agaccaagtg gggcacggcc caagaggagt gtctttgctc aggctgcact 4860ggctctctcc ctagtttctc ctctcagagc aggacttgga aaggagcaga gccgaggcct 4920ctcaagagct cttggctcag ctcaacagag ctgtccaggt cgtcgtgcac acgggtgaca 4980tcactgagga cctgctgttg gacttccagg tcagctcagg cctgcagccc tcaagagcag 5040gaagggctgg gcaatggttt tggccctgct gatcactgtg tccacccagg tggtggtgct 5100gactgctgca aagctggagg agcagctgaa ggtgggcacc ttgtgtcata agcatggagt 5160ttgctttctg gcggctgaca cccggggcct cgtggggtga gtaagactgc ctgcccagcc 5220taccatatta cagccagcaa ctggcctcat gctgtcctca gctccaggct tgctccagtg 5280cccctccaac cagcctcagg tctatcccag catgcctttc tgattctggt ccccagtcct 5340gccctctggt tcctccaacc tagcctccag acctgctcca gtaaccctct caaattctag 5400ttcccaagcc tctccttgca ttccttnccc aattctggcc ctctggccct gccctagtan 5460nccctatcct taagtacaat ctgtaagcca cctcagtgac ccctaccacc ccatctcagg 5520cagttgttct gtgactttgg tgaggacttc actgtgcagg accccacaga ggcagaaccc 5580ctgacagctg ccatccagca catctcccag gtgggtgctg agctgtaggc attcacccgc 5640tgaccaagga gaggctgcca gggcctgtgg aaggcaggtc caggcaaccc tgagccaagc 5700ctcctcctac ccagggctcc cctggcattc tcactctgag gaaaggggcc aatacccact 5760acttccgtga tggagacttg gtgactttct cgggaattga gggaatggtt gagctcaacg 5820actgtgatcc ccggtctatc cacgtgcggg gtaagccaat cccattccaa ttccaggtgc 5880agggcccaag cctccactgg aagtgagcac agcctggccc ttgggatggg tttttctccc 5940tccaccttct acaaggtgca gcaaggtttg ggacacagat gcaagatagg atggggtgtg 6000ggaactactc aggctcaagg atcattactg actagactgg aactccctca gaggatgggt 6060ccctggagat tggagacaca acaactttct ctcggtactt gcgtggtggg gctatcactg 6120aagtcaagag acccaagact gtgagacatg tgagtgcaag tccatctgag gtaggggagc 6180ttggtcgcct tgaggggccc atagcattct ggactagacc ctgagccagg tgcccttgca 6240gaagtccctg gacacagccc tgctccagcc ccatgtggtg gcccagagct cccaggaagt 6300tcaccatgcc cactgcctgc atcaggcctt ctgtgcactg cacaagttcc agcacctcca 6360tggccggcca ccccagccct gggatcctgt gagtagtcct gttgctccca cccccagcct 6420ctgtcattta ttggggtccc acctgccaga ggcaacaatg accattcaca aatccaagtc 6480tgatctccca acactgcagc ctttagagta gagactggtt ccatggaagt gccaggcaca 6540catcctgggg actcctgcta caccccgacc cctcagatct gtgctggaag ctgcactcag 6600attagtgaag cctcctggac tgctgtctgg tactgggcat cctctggtgg tgctgtgcag 6660gctggcagca gggccaggcc ttcccaccca ggcttctgct tcctcttctg tggaacaggg 6720tggatggagg gtggctggaa ggatttgagt caggagtaga gctcaggctg gggctactat 6780gcccacagag tcctaccaac aggttgatgc agagactgtg gtgggcctgg cccgggacct 6840ggaaccactg aagcggacag aggaagagcc actggaagag ccactggatg aggccctagt 6900gcggacagtc gccctaagca gtgcaaggtg tcttgagcct atggtggcat gctgggtcag 6960tagctgccca ggaagtgctg aaggtgggca gaggcatagg tgtggggggt actgggaaga 7020tgtggagatc agtgtgtgtg tcagagggca cccagcgcta gagagcagcc ctggagcctt 7080caccaacctg ggtgaagcct ccagccagga tctgaggggg gtcaggaggt ggcaggagtg 7140cccagcctga agtgctgccc ctaggcaatc tccagaagtt catgcctctg gaccagtggc 7200tttactttga tgccctcgat tgtcttccgg aagatgggga gctccttccc agtcctgagg 7260actgtgccct gagaggcagc cgctatgatg ggcaaattgc agtgtttggg gctggttttc 7320aggagaaact gagacgccag cactacctcc tggtgagctg tggggtgaga ctgggggtgc 7380ctttgggaga gccagcccag cccctctggc taaggctgtt cctgccaaca ggtgggcgct 7440ggtgccattg gttgtgagct gctcaaagtc tttgccctag tgggactggg ggccgggaac 7500agcgggggct tgactgttgt tgacatggac cacatagagc gctccaatct cagccgtcag 7560ttcctcttca ggtcccagga cgttggtgtg agtgctgacc cctctccaca ctcctgcatc 7620ccagaccgtc ctcccataca gcttcccacc caacatcttc ctgccttctt cccagagacc 7680caaggcagag gtggctgcag cagctgcccg gggcctgaac ccagacttac aggtgatccc 7740gctcacctac ccactggatc ccaccacaga gcacatctat ggggataact ttttctcccg 7800tgtggatggt gtggctgctg ccctggacag tttccaggcc cgtgagtgct tgacttcgga 7860ggtcagtccc ttgcccacag ctgtgccagt cccacttctg acccactgct cccctgccag 7920ggcgctatgt ggctgctcgt tgcacccact atctgaagcc actgctggag gcaggcacat 7980cgggcacctg gggcagtgct acagtattca tgccacatgt gactgaggcc tacagagccc 8040ctgcctcagc tgcagcttct gaggatgccc cctaccctgt ctgtaccgtg cggtacttcc 8100ctagcacagc cgagcacacc ctgcaggtag gaagcaccct ggagactccc accccaccca 8160gctcagccct cagctgcaga cctgttctcc acctgatacc tcattcttcc tccctcctcc 8220acagtgggcc cggcatgagt ttgaagaact cttccgactg tctgcagaga ccatcaacca 8280ccaccaacag taaggccacc aacagaggca gatgggagtc cagggctcca agcatgagtc 8340tgcaggactc agtctcacac ttcctcctct ctctgcaggg cacacacctc cctggcagac 8400atggatgagc cacagacact caccttactg aagccagtgc ttggggtcct gagagtgcgt 8460ccacagaact ggcaagactg tgtggcgtgg gctcttggcc actggaaact ctgctttcat 8520tatggcatca aacagctgct gaggcacttc ccacctaata aagtgtgtgg ctaggggttg 8580ggacgctggg ggctcagggg gaccagactg agcccagcag cttctactta cctacctagg 8640tgcttgagga tggaactccc ttctggtcag gtcccaaaca gtgtccccag cccttggagt 8700ttgacaccaa ccaagtgagt gggattctgt agggagctcc aagatagaga tgtggcccct 8760cagagcagag gtaggcattt ctgcattctg cagagatgca cagatgccca gagagagcca 8820tgcttgtgca tatatgggtg tctacatgtg aggcaaaggc aggcactcaa acagatccac 8880aaatggacag tgaccccacc catgcaccat gcctctctgt tctgctctct gctcttggtc 8940tggctgcagg acacacacct cctctacgta ctggcagctg ccaacctgta tgcccagatg 9000catgggctgc ctggctcaca ggactggact gcactcaggg agctgctgaa gctgctgcca 9060cagcctgacc cccaacagat ggcccccatc tttgctagta atctagagct ggcttcggct 9120tctgctgagt ttggtgaggc tcctggccct ggcccctcat gctgtctttc aaaggcctga 9180acctgtcctg tcctcagcct gtgctgcaga aggaagatag ggcctagggg atctacagcc 9240aatttgctac ctctcaggcc tcctaacctc actcctccat agtttcaggc ttatcctctg 9300gtccctcagt aggtcttctc cctgctgcct accccacatc ccagttcttg tggcagattc 9360ttggcaaaat aaataagtaa ataaataaag tccattggtt cctggggagt gtctagctat 9420ggcctgcagg tgaggacagg gtcacagagg tcatgagcac acatgggtga agactggggc 9480ttctagaggg gagattgtag cattaattaa gggggcttct tgatttgatc agggaatagt 9540aagtgacagg cttggcaaag accaagaata ggcacagggc tccaagaaga gtgcaggaga 9600caggggctaa ggactgcctc aacatcccct tccctgacag gccctgagca gcagaaggaa 9660ctgaacaaag ccctggaagt ctggagtgtg ggccctcccc tgaagcctct gatgtttgag 9720aaggtgggtg cccaagtggc agtgaggagt ggggctgggg agtttgtgga gaaaggtcag 9780gagctaataa ggtagttttg gagccccttg gcctgaattc cacagctgca gtgttaacac 9840tactttgact tgggccttac aggatgatga cagcaacttc catgtggact ttgtggtagc 9900ggcagctagc ctgagatgtc agaactacgg gattccaccg gtcaaccgtg cccaggtaac 9960cccacccctt gaggcttggg cctggaggtg gagggcaaac cctggcccta cgccttgggc 10020ccagaccaaa tctcttgtcc ttggcagagc aagcgaattg tgggccagat tatcccagcc 10080attgccacca ctacagcagc tgtggcaggc ctgttgggcc tggagctgta taaggtggtg 10140agtgggccac ggcctcgtag tgcctttcgc cacagctacc tacatctggc tgaaaactac 10200ctcatccgct atatgccttt tgccccagcc atccagacgg ttgagcccat gataccccac 10260ccttagccct actaggcctg ggtttcccct gcacctgccc atacaggccc caatctagct 10320gccggctctc actgaaactc agactgtgca gaagtcctga agactccctc cagccctctt 10380cctgctatga agccaggctg ggacctgtca gacacaggaa gcagccgtca gccatcccca 10440cccccaatcc tccaaagccc aggatctggg ggagctgcag ctttaactca ttagtggagc 10500cagacatccc ccacagtccc ctccttcctt ggagtacccc tgagggtagg tagtggggag 10560gggaccaggg catcagccca gaaagagtct agcttccccc tgcatggtac gggggccctg 10620gcctacctcc tacaagctga gttaaaaggt aataggcttg ccactagagg tgtggggtct 10680gcagccctga gtgtatttgt gtcacagttg tgagtgcaac tggggtctgg gcatccccgg 10740agtgtgggta tggaaggagc aagtttgcac atctgtgcat cagatgggag tgcagggctc 10800ccatcttcct gtgtcctcaa tgtgggcatg catggagatg catgtgggca cacatgtgtg 10860tgtttcctgg gcttgtgggc atttgtgttc ctgtgactgc agcgctgtga atgcctccag 10920ccttgtgccc aggctctgca gttggcattt ccttggggca aggatgaggg tagaaggaat 10980gccctcatga ggggagaggg cagaggtcat gggccagcac tgggtttctg ctgagcagcc 11040tggggtccct ctggactagc acacagagcc cctttgtgag gcaccctgcc tctaaccagc 11100atacaggctg cctttgtcca cagagtgaag caggtgaagg agaagccccc atctcacctc 11160tagcctagtc tcagcttgac cccagtgtgt tttctcaggg gctgataagc accccctgtc 11220ctggtctcta gatacctgcc agccatcctt ctgtccttag ctctaggtcc cagaacccca 11280agactcttgg aaggaaggaa gggacaggag gaggaagcct ctatgcattg tatccctgct 11340ggggtctctg ggacagtggg gccctggtgg tcactgtgcc ctttgcccct gtgtcccaat 11400gagtagccca aggcactggc agtacataca agattggggg acaggatgtg ccccccagct 11460cccagccttg tctttgagga acaagcagct ttatcagagg ctgcaggggc cctgctctgg 11520gtttcctcag gaagcaccac cgccgcatcc cccactctca caactggccc atgtgatgga 11580tcgtctgttt ccctgtgcgg gccccatagc cccatttcct gtgctggccc cggcctggac 11640ggggaggggg ctgagactct gggcccagat cccacctccc ccccaccccc caccccctgg 11700ctcctgtttc ctgctagtcc agctcttccc ctaggaaagg ctgctggtaa ctgggatggg 11760ggttgggggg aggtaagaag tctctgactc ctcctctacc tcatcccagt tccatcacct 11820gaagtggacc tcttgggacc gtctgaaggt accagctggg cagcctgaga ggaccctgga 11880gtcgctgctg gctcatcttc aggagcagca cgggttgagg gtgaggatcc tgctgcacgg 11940ctcagccctg ctctatgcgg ccggatggtc acctgaaaag caggcccagc acctgcccct 12000caggtgagcc cacttgggct ttagacaggc cccaccagtc cctggaggct ggggctaggg 12060accacactgc cttttgtctt cccagcccca ttctgggccc ctcacacctt cccaagcatt 12120ctttccccaa atggagccag caaacaggct ggaggtgggg tgagggccga gagctgagga 12180ggagtcttcn anggagctcg tatttggcca gcccatggct cccacatgct gcacagnnnn 12240ttcacagcca ctcctaagga cccatagctt cctgcctcct gcttggcctc atcagctgct 12300cctaaaatag tttcagatgt ttcctgtctt gagcagctcc tgctcctggc ttgggctcct 12360gacggcctgc cagcaccctc tctagtccat gccaggctgc cttctgcttg ccatggctca 12420cctctccaat ctcccctaaa cccaccccta ccagggtgac agaactggtt cagcagctga 12480caggccaggc acctgctcct gggcagcggg tgttggtgct agagctgagc tgtgagggtg 12540acgacgagga cactgccttc ccacctctgc actatgagct gtgacaaggc agccaccctg 12600tcacctagct caatggagcc ccggatccca agccctgcat tgtaagccca cagtaggcac 12660tcaataattg cttgttaaag gaaggcattg cagagaggac ggacgataga aaacagtgca 12720ctaatgcaca cgggtgtgac atgggcatga cagggacctt cacacagaga aaaaaagctc 12780ttcagaagat ttgtctccct gggcagtgct cacagggctg gggctgcctc ttagtgcctc 12840aggggtatgg agccaggaca gtctagaaaa aaggctttta ttgtcccagg ctggagggca 12900gggtcagagg tagctgacat cattgcagat gatgggctgg cggctacgac agctcatgag 12960agctgcaaag ctgagacat 12979801011PRTHomo sapiens 80Met Asp Ala Leu Asp Ala Ser Lys Leu Leu Asp Glu Glu Leu Tyr Ser1 5 10 15Arg Gln Leu Tyr Val Leu Gly Ser Pro Ala Met Gln Arg Ile Gln Gly 20 25 30Ala Arg Val Leu Val Ser Gly Leu Gln Gly Leu Gly Ala Glu Val Ala 35 40 45Lys Asn Leu Val Leu Met Gly Val Gly Ser Leu Thr Leu His Asp Pro 50 55 60His Pro Thr Cys Trp Ser Asp Leu Ala Ala Gln Phe Leu Leu Ser Glu65 70 75 80Gln Asp Leu Glu Arg Ser Arg Ala Glu Ala Ser Gln Glu Leu Leu Ala 85 90 95Gln Leu Asn Arg Ala Val Gln Val Val Val His Thr Gly Asp Ile Thr 100 105 110Glu Asp Leu Leu Leu Asp Phe Gln Val Val Val Leu Thr Ala Ala Lys 115 120 125Leu Glu Glu Gln Leu Lys Val Gly Thr Leu Cys His Lys His Gly Val 130 135 140Cys Phe Leu Ala Ala Asp Thr Arg Gly Leu Val Gly Gln Leu Phe Cys145 150 155 160Asp Phe Gly Glu Asp Phe Thr Val Gln Asp Pro Thr Glu Ala Glu Pro 165 170 175Leu Thr Ala Ala Ile Gln His Ile Ser Gln Gly Ser Pro Gly Ile Leu 180 185 190Thr Leu Arg Lys Gly Ala Asn Thr His Tyr Phe Arg Asp Gly Asp Leu 195 200 205Val Thr Phe Ser Gly Ile Glu Gly Met Val Glu Leu Asn Asp Cys Asp 210 215 220Pro Arg Ser Ile His Val Arg Glu Asp Gly Ser Leu Glu Ile Gly Asp225 230 235 240Thr Thr Thr Phe Ser Arg Tyr Leu Arg Gly Gly Ala Ile Thr Glu Val 245 250 255Lys Arg Pro Lys Thr Val Arg His Lys Ser Leu Asp Thr Ala Leu Leu 260 265 270Gln Pro His Val Val Ala Gln Ser Ser Gln Glu Val His His Ala His 275 280 285Cys Leu His Gln Ala Phe Cys Ala Leu His Lys Phe Gln His Leu His 290 295 300Gly Arg Pro Pro Gln Pro Trp Asp Pro Val Asp Ala Glu Thr Val Val305 310 315 320Gly Leu Ala Arg Asp Leu Glu Pro Leu Lys Arg Thr Glu Glu Glu Pro 325 330 335Leu Glu Glu Pro Leu Asp Glu Ala Leu Val Arg Thr Val Ala Leu Ser 340 345 350Ser Ala Arg Cys Leu Glu Pro Met Val Ala Cys Trp Val Ser Ser Cys 355 360 365Pro Gly Ser Ala Glu Gly Asn Leu Gln Lys Phe Met Pro Leu Asp Gln 370 375 380Trp Leu Tyr Phe Asp Ala Leu Asp Cys Leu Pro Glu Asp Gly Glu Leu385 390 395 400Leu Pro Ser Pro Glu Asp Cys Ala Leu Arg Gly Ser Arg Tyr Asp Gly 405 410 415Gln Ile Ala Val Phe Gly Ala Gly Phe Gln Glu Lys Leu Arg Arg Gln 420 425 430His Tyr Leu Leu Val Gly Ala Gly Ala Ile Gly Cys Glu Leu Leu Lys 435 440 445Val Phe Ala Leu Val Gly Leu Gly Ala Gly Asn Ser Gly Gly Leu Thr 450 455 460Val Val Asp Met Asp His Ile Glu Arg Ser Asn Leu Ser Arg Gln Phe465

470 475 480Leu Phe Arg Ser Gln Asp Val Gly Arg Pro Lys Ala Glu Val Ala Ala 485 490 495Ala Ala Ala Arg Gly Leu Asn Pro Asp Leu Gln Val Ile Pro Leu Thr 500 505 510Tyr Pro Leu Asp Pro Thr Thr Glu His Ile Tyr Gly Asp Asn Phe Phe 515 520 525Ser Arg Val Asp Gly Val Ala Ala Ala Leu Asp Ser Phe Gln Ala Arg 530 535 540Arg Tyr Val Ala Ala Arg Cys Thr His Tyr Leu Lys Pro Leu Leu Glu545 550 555 560Ala Gly Thr Ser Gly Thr Trp Gly Ser Ala Thr Val Phe Met Pro His 565 570 575Val Thr Glu Ala Tyr Arg Ala Pro Ala Ser Ala Ala Ala Ser Glu Asp 580 585 590Ala Pro Tyr Pro Val Cys Thr Val Arg Tyr Phe Pro Ser Thr Ala Glu 595 600 605His Thr Leu Gln Trp Ala Arg His Glu Phe Glu Glu Leu Phe Arg Leu 610 615 620Ser Ala Glu Thr Ile Asn His His Gln Gln Ala His Thr Ser Leu Ala625 630 635 640Asp Met Asp Glu Pro Gln Thr Leu Thr Leu Leu Lys Pro Val Leu Gly 645 650 655Val Leu Arg Val Arg Pro Gln Asn Trp Gln Asp Cys Val Ala Trp Ala 660 665 670Leu Gly His Trp Lys Leu Cys Phe His Tyr Gly Ile Lys Gln Leu Leu 675 680 685Arg His Phe Pro Pro Asn Lys Val Leu Glu Asp Gly Thr Pro Phe Trp 690 695 700Ser Gly Pro Lys Gln Cys Pro Gln Pro Leu Glu Phe Asp Thr Asn Gln705 710 715 720Asp Thr His Leu Leu Tyr Val Leu Ala Ala Ala Asn Leu Tyr Ala Gln 725 730 735Met His Gly Leu Pro Gly Ser Gln Asp Trp Thr Ala Leu Arg Glu Leu 740 745 750Leu Lys Leu Leu Pro Gln Pro Asp Pro Gln Gln Met Ala Pro Ile Phe 755 760 765Ala Ser Asn Leu Glu Leu Ala Ser Ala Ser Ala Glu Phe Gly Pro Glu 770 775 780Gln Gln Lys Glu Leu Asn Lys Ala Leu Glu Val Trp Ser Val Gly Pro785 790 795 800Pro Leu Lys Pro Leu Met Phe Glu Lys Asp Asp Asp Ser Asn Phe His 805 810 815Val Asp Phe Val Val Ala Ala Ala Ser Leu Arg Cys Gln Asn Tyr Gly 820 825 830Ile Pro Pro Val Asn Arg Ala Gln Ser Lys Arg Ile Val Gly Gln Ile 835 840 845Ile Pro Ala Ile Ala Thr Thr Thr Ala Ala Val Ala Gly Leu Leu Gly 850 855 860Leu Glu Leu Tyr Lys Val Val Ser Gly Pro Arg Pro Arg Ser Ala Phe865 870 875 880Arg His Ser Tyr Leu His Leu Ala Glu Asn Tyr Leu Ile Arg Tyr Met 885 890 895Pro Phe Ala Pro Ala Ile Gln Thr Phe His His Leu Lys Trp Thr Ser 900 905 910Trp Asp Arg Leu Lys Val Pro Ala Gly Gln Pro Glu Arg Thr Leu Glu 915 920 925Ser Leu Leu Ala His Leu Gln Glu Gln His Gly Leu Arg Val Arg Ile 930 935 940Leu Leu His Gly Ser Ala Leu Leu Tyr Ala Ala Gly Trp Ser Pro Glu945 950 955 960Lys Gln Ala Gln His Leu Pro Leu Arg Val Thr Glu Leu Val Gln Gln 965 970 975Leu Thr Gly Gln Ala Pro Ala Pro Gly Gln Arg Val Leu Val Leu Glu 980 985 990Leu Ser Cys Glu Gly Asp Asp Glu Asp Thr Ala Phe Pro Pro Leu His 995 1000 1005Tyr Glu Leu 1010811642DNAHomo sapiens 81aagccacggg gagaaacgtt gcagcccgcg ccgaacgccg ggcagcacaa aggatccccg 60actgccgggg agcggtgctc ggagggcaca ggtctacgcc atcccccacg cagtttcgga 120gatggagcgc tgggcccatg gagggaaggc ggcaggctcg gcggctccgg cagcttgctg 180gggcaggggc tcaaggcggc agtccgatag tggaggccgc tgagaactgt cacggagctg 240cgtctgtaca gcgagcatcc cttatttatt cagggcgagt gtgtatttgg ggcggcgtgc 300agggggctga caaagaccgg agagctcccg gtgcggccgc cggcggagcg aagactggaa 360cccgtatgag cgccccccag cgcccctgag cgctcgccgc cggtgcacgg cgcaccccgc 420gggaggcagg gatcagcaaa gccgtgcgcc ccgaggcccg cccccgtctc cgcacaaaga 480ccgagctgga ggatcttcag aagaagcctc ccccatacct gcggaacctg tccagcgatg 540atgccaatgt cctggtgtgg cacgctctcc tcctacccga ccaacctccc taccacctga 600aagccttcaa cctgcgcatc agcttcccgc cggagtatcc gttcaagcct cccatgatca 660aattcacaac caagatctac caccccaacg tggacgagaa cggacagatt tgcctgccca 720tcatcagcag tgagaactgg aagccttgca ccaagacttg ccaagtcctg gaggccctca 780atgtgctggt gaatagaccg aatatcaggg agcccctgcg gatggacctc gctgacctgc 840tgacacagaa tccggagctg ttcagaaaga atgccgaaga gttcaccctc cgattcggag 900tggaccggcc ctcctaactc atgttctgac cctctgtgca ctggatcctc ggcatagcgg 960acggacacac ctcatggact gaggccagag ccccctgtgg cccattcccc attcattttt 1020cccttcttag gttgttagtc attagtttgt gtgtgtgtgt ggtggaggga agggagctat 1080gagtgtgtgt gttgtgtatg gactcactcc caggttcacc tggccacagg tgcacccttc 1140ccacaccctt tacattcccc agagccaagg gagtttaagt ttgcagttac aggccagttc 1200tccagctctc catcttagag agacaggtca ccttgcaggc ctgcttgcag gaaatgaatc 1260cagcagccaa ctcgaatccc cctagggctc aggcactgag ggcctgggga cagtggagca 1320tatgggtggg agacagatgg agggtaccct atttacaact gagtcagcca agccactgat 1380gggaatatac agatttaggt gctaaaccat ttattttcca cggatgagtc acaatctgaa 1440gaatcaaact tccatcctga aaatctatat gtttcaaaac cacttgccat cctgttagat 1500tgccagttcc tgggaccagg cctcagactg tgaagtatat atcctccagc attcagtcca 1560gggggagcca cggaaaccat gttcttgctt aagccattaa agtcagagat gaattctgga 1620aaaaaaaaaa aaaaaaaaaa aa 16428287PRTHomo sapiens 82Met Ile Lys Phe Thr Thr Lys Ile Tyr His Pro Asn Val Asp Glu Asn1 5 10 15Gly Gln Ile Cys Leu Pro Ile Ile Ser Ser Glu Asn Trp Lys Pro Cys 20 25 30Thr Lys Thr Cys Gln Val Leu Glu Ala Leu Asn Val Leu Val Asn Arg 35 40 45Pro Asn Ile Arg Glu Pro Leu Arg Met Asp Leu Ala Asp Leu Leu Thr 50 55 60Gln Asn Pro Glu Leu Phe Arg Lys Asn Ala Glu Glu Phe Thr Leu Arg65 70 75 80Phe Gly Val Asp Arg Pro Ser 85831283DNAHomo sapiens 83gggggtgggg tccccggggc ggggcggggc gcgctgtgtc gcgggtcgga gctcggtcct 60gctggaggcc acgggtgcca cacactcggt cccgacatga tggcgagcat gcgagtggtg 120aaggagctgg aggatcttca gaagaagcct cccccatacc tgcggaacct gtccagcgat 180gatgccaatg tcctggtgtg gcacgctctc ctcctacccg accaacctcc ctaccacctg 240aaagccttca acctgcgcat cagcttcccg ccggagtatc cgttcaagcc tcccatgatc 300aaattcacaa ccaagatcta ccaccccaac gtggacgaga acggacagat ttgcctgccc 360atcatcagca gtgagaactg gaagccttgc accaagactt gccaagtcct ggaggccctc 420aatgtgctgg tgaatagacc gaatatcagg gagcccctgc ggatggacct cgctgacctg 480ctgacacaga atccggagct gttcagaaag aatgccgaag agttcaccct ccgattcgga 540gtggaccggc cctcctaact catgttctga ccctctgtgc actggatcct cggcatagcg 600gacggacaca cctcatggac tgaggccaga gccccctgtg gcccattccc cattcatttt 660tcccttctta ggttgttagt cattagtttg tgtgtgtgtg tggtggaggg aagggagcta 720tgagtgtgtg tgttgtgtat ggactcactc ccaggttcac ctggccacag gtgcaccctt 780cccacaccct ttacattccc cagagccaag ggagtttaag tttgcagtta caggccagtt 840ctccagctct ccatcttaga gagacaggtc accttgcagg cctgcttgca ggaaatgaat 900ccagcagcca actcgaatcc ccctagggct caggcactga gggcctgggg acagtggagc 960atatgggtgg gagacagatg gagggtaccc tatttacaac tgagtcagcc aagccactga 1020tgggaatata cagatttagg tgctaaacca tttattttcc acggatgagt cacaatctga 1080agaatcaaac ttccatcctg aaaatctata tgtttcaaaa ccacttgcca tcctgttaga 1140ttgccagttc ctgggaccag gcctcagact gtgaagtata tatcctccag cattcagtcc 1200agggggagcc acggaaacca tgttcttgct taagccatta aagtcagaga tgaattctgg 1260aaaaaaaaaa aaaaaaaaaa aaa 128384153PRTHomo sapiens 84Met Met Ala Ser Met Arg Val Val Lys Glu Leu Glu Asp Leu Gln Lys1 5 10 15Lys Pro Pro Pro Tyr Leu Arg Asn Leu Ser Ser Asp Asp Ala Asn Val 20 25 30Leu Val Trp His Ala Leu Leu Leu Pro Asp Gln Pro Pro Tyr His Leu 35 40 45Lys Ala Phe Asn Leu Arg Ile Ser Phe Pro Pro Glu Tyr Pro Phe Lys 50 55 60Pro Pro Met Ile Lys Phe Thr Thr Lys Ile Tyr His Pro Asn Val Asp65 70 75 80Glu Asn Gly Gln Ile Cys Leu Pro Ile Ile Ser Ser Glu Asn Trp Lys 85 90 95Pro Cys Thr Lys Thr Cys Gln Val Leu Glu Ala Leu Asn Val Leu Val 100 105 110Asn Arg Pro Asn Ile Arg Glu Pro Leu Arg Met Asp Leu Ala Asp Leu 115 120 125Leu Thr Gln Asn Pro Glu Leu Phe Arg Lys Asn Ala Glu Glu Phe Thr 130 135 140Leu Arg Phe Gly Val Asp Arg Pro Ser145 15085665DNAHomo sapiens 85gggaacacat ccaagcttaa gacggtgagg tcagcttcac attctcagga actctccttc 60tttgggtctg gctgaagttg aggatctctt actctctagg ccacggaatt aacccgagca 120ggcatggagg cctctgctct cacctcatca gcagtgacca gtgtggccaa agtggtcagg 180gtggcctctg gctctgccgt agttttgccc ctggccagga ttgctacagt tgtgattgga 240ggagttgtgg ccatggcggc tgtgcccatg gtgctcagtg ccatgggctt cactgcggcg 300ggaatcgcct cgtcctccat agcagccaag atgatgtccg cggcggccat tgccaatggg 360ggtggagttg cctcgggcag ccttgtggct actctgcagt cactgggagc aactggactc 420tccggattga ccaagttcat cctgggctcc attgggtctg ccattgcggc tgtcattgcg 480aggttctact agctccctgc ccctcgccct gcagagaaga gaaccatgcc aggggagaag 540gcacccagcc atcctgaccc agcgaggagc caactatccc aaatatacct ggggtgaaat 600ataccaaatt ctgcatctcc agaggaaaat aagaaataaa gatgaattgt tgcaactctt 660caaaa 66586122PRTHomo sapiens 86Met Glu Ala Ser Ala Leu Thr Ser Ser Ala Val Thr Ser Val Ala Lys1 5 10 15Val Val Arg Val Ala Ser Gly Ser Ala Val Val Leu Pro Leu Ala Arg 20 25 30Ile Ala Thr Val Val Ile Gly Gly Val Val Ala Met Ala Ala Val Pro 35 40 45Met Val Leu Ser Ala Met Gly Phe Thr Ala Ala Gly Ile Ala Ser Ser 50 55 60Ser Ile Ala Ala Lys Met Met Ser Ala Ala Ala Ile Ala Asn Gly Gly65 70 75 80Gly Val Ala Ser Gly Ser Leu Val Ala Thr Leu Gln Ser Leu Gly Ala 85 90 95Thr Gly Leu Ser Gly Leu Thr Lys Phe Ile Leu Gly Ser Ile Gly Ser 100 105 110Ala Ile Ala Ala Val Ile Ala Arg Phe Tyr 115 12087656DNAHomo sapiens 87gggaacacat ccaagcttaa gacggtgagg tcagcttcac attctcagga actctccttc 60tttgggtctg gctgaagttg aggatctctt actctctagg ccacggaatt aacccgagca 120ggcatggagg cctctgctct cacctcatca gcagtgacca gtgtggccaa agtggtcagg 180gtggcctctg gctctgccgt agttttgccc ctggccagga ttgctacagt tgtgattgga 240ggagttgtgg ctgtgcccat ggtgctcagt gccatgggct tcactgcggc gggaatcgcc 300tcgtcctcca tagcagccaa gatgatgtcc gcggcggcca ttgccaatgg gggtggagtt 360gcctcgggca gccttgtggc tactctgcag tcactgggag caactggact ctccggattg 420accaagttca tcctgggctc cattgggtct gccattgcgg ctgtcattgc gaggttctac 480tagctccctg cccctcgccc tgcagagaag agaaccatgc caggggagaa ggcacccagc 540catcctgacc cagcgaggag ccaactatcc caaatatacc tggggtgaaa tataccaaat 600tctgcatctc cagaggaaaa taagaaataa agatgaattg ttgcaactct tcaaaa 65688119PRTHomo sapiens 88Met Glu Ala Ser Ala Leu Thr Ser Ser Ala Val Thr Ser Val Ala Lys1 5 10 15Val Val Arg Val Ala Ser Gly Ser Ala Val Val Leu Pro Leu Ala Arg 20 25 30Ile Ala Thr Val Val Ile Gly Gly Val Val Ala Val Pro Met Val Leu 35 40 45Ser Ala Met Gly Phe Thr Ala Ala Gly Ile Ala Ser Ser Ser Ile Ala 50 55 60Ala Lys Met Met Ser Ala Ala Ala Ile Ala Asn Gly Gly Gly Val Ala65 70 75 80Ser Gly Ser Leu Val Ala Thr Leu Gln Ser Leu Gly Ala Thr Gly Leu 85 90 95Ser Gly Leu Thr Lys Phe Ile Leu Gly Ser Ile Gly Ser Ala Ile Ala 100 105 110Ala Val Ile Ala Arg Phe Tyr 115893617DNAHomo sapiens 89atcgaaacag aaaccaaagt caggcaaact ctgtaagaac tgcctgacag aaagctggac 60tcaaagctcc tacccgagtg tgcagcagga tcgccccggt ccgggacccc aggcgcacac 120cgcagagtcc aaagtgccgc gcctgccggc cgcacctgcc tgccgcggcc ccgcgcgccg 180ccccgctgcc cacctgcccg cctgcccacc tgcccaggtg cgagtgcagc cccgcgcgcc 240ggcctgagag ccctgtggac aacctcgtca ttgtcaggca cagagcggta gaccctgctt 300ctctaagtgg gcagcggaca gcggcacgca catttcacct gtcccgcaga caacagcacc 360atctgcttgg gagaaccctc tcccttctct gagaaagaaa gatgtcgaat gggtattcca 420cagacgagaa tttccgctat ctcatctcgt gcttcagggc cagggtgaaa atgtacatcc 480aggtggagcc tgtgctggac tacctgacct ttctgcctgc agaggtgaag gagcagattc 540agaggacagt cgccacctcc gggaacatgc aggcagttga actgctgctg agcaccttgg 600agaagggagt ctggcacctt ggttggactc gggaattcgt ggaggccctc cggagaaccg 660gcagccctct ggccgcccgc tacatgaacc ctgagctcac ggacttgccc tctccatcgt 720ttgagaacgc tcatgatgaa tatctccaac tgctgaacct ccttcagccc actctggtgg 780acaagcttct agttagagac gtcttggata agtgcatgga ggaggaactg ttgacaattg 840aagacagaaa ccggattgct gctgcagaaa acaatggaaa tgaatcaggt gtaagagagc 900tactaaaaag gattgtgcag aaagaaaact ggttctctgc atttctgaat gttcttcgtc 960aaacaggaaa caatgaactt gtccaagagt taacaggctc tgattgctca gaaagcaatg 1020cagagattga gaatttatca caagttgatg gtcctcaagt ggaagagcaa cttctttcaa 1080ccacagttca gccaaatctg gagaaggagg tctggggcat ggagaataac tcatcagaat 1140catcttttgc agattcttct gtagtttcag aatcagacac aagtttggca gaaggaagtg 1200tcagctgctt agatgaaagt cttggacata acagcaacat gggcagtgat tcaggcacca 1260tgggaagtga ttcagatgaa gagaatgtgg cagcaagagc atccccggag ccagaactcc 1320agctcaggcc ttaccaaatg gaagttgccc agccagcctt ggaagggaag aatatcatca 1380tctgcctccc tacagggagt ggaaaaacca gagtggctgt ttacattgcc aaggatcact 1440tagacaagaa gaaaaaagca tctgagcctg gaaaagttat agttcttgtc aataaggtac 1500tgctagttga acagctcttc cgcaaggagt tccaaccatt tttgaagaaa tggtatcgtg 1560ttattggatt aagtggtgat acccaactga aaatatcatt tccagaagtt gtcaagtcct 1620gtgatattat tatcagtaca gctcaaatcc ttgaaaactc cctcttaaac ttggaaaatg 1680gagaagatgc tggtgttcaa ttgtcagact tttccctcat tatcattgat gaatgtcatc 1740acaccaacaa agaagcagtg tataataaca tcatgaggca ttatttgatg cagaagttga 1800aaaacaatag actcaagaaa gaaaacaaac cagtgattcc ccttcctcag atactgggac 1860taacagcttc acctggtgtt ggaggggcca cgaagcaagc caaagctgaa gaacacattt 1920taaaactatg tgccaatctt gatgcattta ctattaaaac tgttaaagaa aaccttgatc 1980aactgaaaaa ccaaatacag gagccatgca agaagtttgc cattgcagat gcaaccagag 2040aagatccatt taaagagaaa cttctagaaa taatgacaag gattcaaact tattgtcaaa 2100tgagtccaat gtcagatttt ggaactcaac cctatgaaca atgggccatt caaatggaaa 2160aaaaagctgc aaaagaagga aatcgcaaag aacgtgtttg tgcagaacat ttgaggaagt 2220acaatgaggc cctacaaatt aatgacacaa ttcgaatgat agatgcgtat actcatcttg 2280aaactttcta taatgaagag aaagataaga agtttgcagt catagaagat gatagtgatg 2340agggtggtga tgatgagtat tgtgatggtg atgaagatga ggatgattta aagaaacctt 2400tgaaactgga tgaaacagat agatttctca tgactttatt ttttgaaaac aataaaatgt 2460tgaaaaggct ggctgaaaac ccagaatatg aaaatgaaaa gctgaccaaa ttaagaaata 2520ccataatgga gcaatatact aggactgagg aatcagcacg aggaataatc tttacaaaaa 2580cacgacagag tgcatatgcg ctttcccagt ggattactga aaatgaaaaa tttgctgaag 2640taggagtcaa agcccaccat ctgattggag ctggacacag cagtgagttc aaacccatga 2700cacagaatga acaaaaagaa gtcattagta aatttcgcac tggaaaaata aatctgctta 2760tcgctaccac agtggcagaa gaaggtctgg atattaaaga atgtaacatt gttatccgtt 2820atggtctcgt caccaatgaa atagccatgg tccaggcccg tggtcgagcc agagctgatg 2880agagcaccta cgtcctggtt gctcacagtg gttcaggagt tatcgaacat gagacagtta 2940atgatttccg agagaagatg atgtataaag ctatacattg tgttcaaaat atgaaaccag 3000aggagtatgc tcataagatt ttggaattac agatgcaaag tataatggaa aagaaaatga 3060aaaccaagag aaatattgcc aagcattaca agaataaccc atcactaata actttccttt 3120gcaaaaactg cagtgtgcta gcctgttctg gggaagatat ccatgtaatt gagaaaatgc 3180atcacgtcaa tatgacccca gaattcaagg aactttacat tgtaagagaa aacaaagcac 3240tgcaaaagaa gtgtgccgac tatcaaataa atggtgaaat catctgcaaa tgtggccagg 3300cttggggaac aatgatggtg cacaaaggct tagatttgcc ttgtctcaaa ataaggaatt 3360ttgtagtggt tttcaaaaat aattcaacaa agaaacaata caaaaagtgg gtagaattac 3420ctatcacatt tcccaatctt gactattcag aatgctgttt atttagtgat gaggattagc 3480acttgattga agattctttt aaaatactat cagttaaaca tttaatatga ttatgattaa 3540tgtattcatt atgctacaga actgacataa gaatcaataa aatgattgtt ttactctgca 3600aaaaaaaaaa aaaaaaa 3617901025PRTHomo sapiens 90Met Ser Asn Gly Tyr Ser Thr Asp Glu Asn Phe Arg Tyr Leu Ile Ser1 5 10 15Cys Phe Arg Ala Arg Val Lys Met Tyr Ile Gln Val Glu Pro Val Leu 20 25 30Asp Tyr Leu Thr Phe Leu Pro Ala Glu Val Lys Glu Gln Ile Gln Arg 35 40 45Thr Val Ala Thr Ser Gly Asn Met Gln Ala Val Glu Leu Leu Leu Ser 50 55 60Thr Leu Glu Lys Gly Val Trp His Leu Gly Trp Thr Arg Glu Phe Val65 70 75 80Glu Ala Leu Arg Arg Thr Gly Ser Pro Leu Ala Ala Arg Tyr Met Asn 85 90 95Pro Glu Leu Thr Asp Leu Pro Ser Pro Ser Phe Glu Asn Ala His Asp

100 105 110Glu Tyr Leu Gln Leu Leu Asn Leu Leu Gln Pro Thr Leu Val Asp Lys 115 120 125Leu Leu Val Arg Asp Val Leu Asp Lys Cys Met Glu Glu Glu Leu Leu 130 135 140Thr Ile Glu Asp Arg Asn Arg Ile Ala Ala Ala Glu Asn Asn Gly Asn145 150 155 160Glu Ser Gly Val Arg Glu Leu Leu Lys Arg Ile Val Gln Lys Glu Asn 165 170 175Trp Phe Ser Ala Phe Leu Asn Val Leu Arg Gln Thr Gly Asn Asn Glu 180 185 190Leu Val Gln Glu Leu Thr Gly Ser Asp Cys Ser Glu Ser Asn Ala Glu 195 200 205Ile Glu Asn Leu Ser Gln Val Asp Gly Pro Gln Val Glu Glu Gln Leu 210 215 220Leu Ser Thr Thr Val Gln Pro Asn Leu Glu Lys Glu Val Trp Gly Met225 230 235 240Glu Asn Asn Ser Ser Glu Ser Ser Phe Ala Asp Ser Ser Val Val Ser 245 250 255Glu Ser Asp Thr Ser Leu Ala Glu Gly Ser Val Ser Cys Leu Asp Glu 260 265 270Ser Leu Gly His Asn Ser Asn Met Gly Ser Asp Ser Gly Thr Met Gly 275 280 285Ser Asp Ser Asp Glu Glu Asn Val Ala Ala Arg Ala Ser Pro Glu Pro 290 295 300Glu Leu Gln Leu Arg Pro Tyr Gln Met Glu Val Ala Gln Pro Ala Leu305 310 315 320Glu Gly Lys Asn Ile Ile Ile Cys Leu Pro Thr Gly Ser Gly Lys Thr 325 330 335Arg Val Ala Val Tyr Ile Ala Lys Asp His Leu Asp Lys Lys Lys Lys 340 345 350Ala Ser Glu Pro Gly Lys Val Ile Val Leu Val Asn Lys Val Leu Leu 355 360 365Val Glu Gln Leu Phe Arg Lys Glu Phe Gln Pro Phe Leu Lys Lys Trp 370 375 380Tyr Arg Val Ile Gly Leu Ser Gly Asp Thr Gln Leu Lys Ile Ser Phe385 390 395 400Pro Glu Val Val Lys Ser Cys Asp Ile Ile Ile Ser Thr Ala Gln Ile 405 410 415Leu Glu Asn Ser Leu Leu Asn Leu Glu Asn Gly Glu Asp Ala Gly Val 420 425 430Gln Leu Ser Asp Phe Ser Leu Ile Ile Ile Asp Glu Cys His His Thr 435 440 445Asn Lys Glu Ala Val Tyr Asn Asn Ile Met Arg His Tyr Leu Met Gln 450 455 460Lys Leu Lys Asn Asn Arg Leu Lys Lys Glu Asn Lys Pro Val Ile Pro465 470 475 480Leu Pro Gln Ile Leu Gly Leu Thr Ala Ser Pro Gly Val Gly Gly Ala 485 490 495Thr Lys Gln Ala Lys Ala Glu Glu His Ile Leu Lys Leu Cys Ala Asn 500 505 510Leu Asp Ala Phe Thr Ile Lys Thr Val Lys Glu Asn Leu Asp Gln Leu 515 520 525Lys Asn Gln Ile Gln Glu Pro Cys Lys Lys Phe Ala Ile Ala Asp Ala 530 535 540Thr Arg Glu Asp Pro Phe Lys Glu Lys Leu Leu Glu Ile Met Thr Arg545 550 555 560Ile Gln Thr Tyr Cys Gln Met Ser Pro Met Ser Asp Phe Gly Thr Gln 565 570 575Pro Tyr Glu Gln Trp Ala Ile Gln Met Glu Lys Lys Ala Ala Lys Glu 580 585 590Gly Asn Arg Lys Glu Arg Val Cys Ala Glu His Leu Arg Lys Tyr Asn 595 600 605Glu Ala Leu Gln Ile Asn Asp Thr Ile Arg Met Ile Asp Ala Tyr Thr 610 615 620His Leu Glu Thr Phe Tyr Asn Glu Glu Lys Asp Lys Lys Phe Ala Val625 630 635 640Ile Glu Asp Asp Ser Asp Glu Gly Gly Asp Asp Glu Tyr Cys Asp Gly 645 650 655Asp Glu Asp Glu Asp Asp Leu Lys Lys Pro Leu Lys Leu Asp Glu Thr 660 665 670Asp Arg Phe Leu Met Thr Leu Phe Phe Glu Asn Asn Lys Met Leu Lys 675 680 685Arg Leu Ala Glu Asn Pro Glu Tyr Glu Asn Glu Lys Leu Thr Lys Leu 690 695 700Arg Asn Thr Ile Met Glu Gln Tyr Thr Arg Thr Glu Glu Ser Ala Arg705 710 715 720Gly Ile Ile Phe Thr Lys Thr Arg Gln Ser Ala Tyr Ala Leu Ser Gln 725 730 735Trp Ile Thr Glu Asn Glu Lys Phe Ala Glu Val Gly Val Lys Ala His 740 745 750His Leu Ile Gly Ala Gly His Ser Ser Glu Phe Lys Pro Met Thr Gln 755 760 765Asn Glu Gln Lys Glu Val Ile Ser Lys Phe Arg Thr Gly Lys Ile Asn 770 775 780Leu Leu Ile Ala Thr Thr Val Ala Glu Glu Gly Leu Asp Ile Lys Glu785 790 795 800Cys Asn Ile Val Ile Arg Tyr Gly Leu Val Thr Asn Glu Ile Ala Met 805 810 815Val Gln Ala Arg Gly Arg Ala Arg Ala Asp Glu Ser Thr Tyr Val Leu 820 825 830Val Ala His Ser Gly Ser Gly Val Ile Glu His Glu Thr Val Asn Asp 835 840 845Phe Arg Glu Lys Met Met Tyr Lys Ala Ile His Cys Val Gln Asn Met 850 855 860Lys Pro Glu Glu Tyr Ala His Lys Ile Leu Glu Leu Gln Met Gln Ser865 870 875 880Ile Met Glu Lys Lys Met Lys Thr Lys Arg Asn Ile Ala Lys His Tyr 885 890 895Lys Asn Asn Pro Ser Leu Ile Thr Phe Leu Cys Lys Asn Cys Ser Val 900 905 910Leu Ala Cys Ser Gly Glu Asp Ile His Val Ile Glu Lys Met His His 915 920 925Val Asn Met Thr Pro Glu Phe Lys Glu Leu Tyr Ile Val Arg Glu Asn 930 935 940Lys Ala Leu Gln Lys Lys Cys Ala Asp Tyr Gln Ile Asn Gly Glu Ile945 950 955 960Ile Cys Lys Cys Gly Gln Ala Trp Gly Thr Met Met Val His Lys Gly 965 970 975Leu Asp Leu Pro Cys Leu Lys Ile Arg Asn Phe Val Val Val Phe Lys 980 985 990Asn Asn Ser Thr Lys Lys Gln Tyr Lys Lys Trp Val Glu Leu Pro Ile 995 1000 1005Thr Phe Pro Asn Leu Asp Tyr Ser Glu Cys Cys Leu Phe Ser Asp 1010 1015 1020Glu Asp1025914992DNAHomo sapiens 91gaagactcca gatataggat cactccatgc catcaagaaa gttgatgcta ttgggcccat 60ctcaagctga tcttggcacc tctcatgctc tgctctcttc aaccagacct ctacattcca 120ttttggaaga agactaaaaa tggtgtttcc aatgtggaca ctgaagagac aaattcttat 180cctttttaac ataatcctaa tttccaaact ccttggggct agatggtttc ctaaaactct 240gccctgtgat gtcactctgg atgttccaaa gaaccatgtg atcgtggact gcacagacaa 300gcatttgaca gaaattcctg gaggtattcc cacgaacacc acgaacctca ccctcaccat 360taaccacata ccagacatct ccccagcgtc ctttcacaga ctggaccatc tggtagagat 420cgatttcaga tgcaactgtg tacctattcc actggggtca aaaaacaaca tgtgcatcaa 480gaggctgcag attaaaccca gaagctttag tggactcact tatttaaaat ccctttacct 540ggatggaaac cagctactag agataccgca gggcctcccg cctagcttac agcttctcag 600ccttgaggcc aacaacatct tttccatcag aaaagagaat ctaacagaac tggccaacat 660agaaatactc tacctgggcc aaaactgtta ttatcgaaat ccttgttatg tttcatattc 720aatagagaaa gatgccttcc taaacttgac aaagttaaaa gtgctctccc tgaaagataa 780caatgtcaca gccgtcccta ctgttttgcc atctacttta acagaactat atctctacaa 840caacatgatt gcaaaaatcc aagaagatga ttttaataac ctcaaccaat tacaaattct 900tgacctaagt ggaaattgcc ctcgttgtta taatgcccca tttccttgtg cgccgtgtaa 960aaataattct cccctacaga tccctgtaaa tgcttttgat gcgctgacag aattaaaagt 1020tttacgtcta cacagtaact ctcttcagca tgtgccccca agatggttta agaacatcaa 1080caaactccag gaactggatc tgtcccaaaa cttcttggcc aaagaaattg gggatgctaa 1140atttctgcat tttctcccca gcctcatcca attggatctg tctttcaatt ttgaacttca 1200ggtctatcgt gcatctatga atctatcaca agcattttct tcactgaaaa gcctgaaaat 1260tctgcggatc agaggatatg tctttaaaga gttgaaaagc tttaacctct cgccattaca 1320taatcttcaa aatcttgaag ttcttgatct tggcactaac tttataaaaa ttgctaacct 1380cagcatgttt aaacaattta aaagactgaa agtcatagat ctttcagtga ataaaatatc 1440accttcagga gattcaagtg aagttggctt ctgctcaaat gccagaactt ctgtagaaag 1500ttatgaaccc caggtcctgg aacaattaca ttatttcaga tatgataagt atgcaaggag 1560ttgcagattc aaaaacaaag aggcttcttt catgtctgtt aatgaaagct gctacaagta 1620tgggcagacc ttggatctaa gtaaaaatag tatatttttt gtcaagtcct ctgattttca 1680gcatctttct ttcctcaaat gcctgaatct gtcaggaaat ctcattagcc aaactcttaa 1740tggcagtgaa ttccaacctt tagcagagct gagatatttg gacttctcca acaaccggct 1800tgatttactc cattcaacag catttgaaga gcttcacaaa ctggaagttc tggatataag 1860cagtaatagc cattattttc aatcagaagg aattactcat atgctaaact ttaccaagaa 1920cctaaaggtt ctgcagaaac tgatgatgaa cgacaatgac atctcttcct ccaccagcag 1980gaccatggag agtgagtctc ttagaactct ggaattcaga ggaaatcact tagatgtttt 2040atggagagaa ggtgataaca gatacttaca attattcaag aatctgctaa aattagagga 2100attagacatc tctaaaaatt ccctaagttt cttgccttct ggagtttttg atggtatgcc 2160tccaaatcta aagaatctct ctttggccaa aaatgggctc aaatctttca gttggaagaa 2220actccagtgt ctaaagaacc tggaaacttt ggacctcagc cacaaccaac tgaccactgt 2280ccctgagaga ttatccaact gttccagaag cctcaagaat ctgattctta agaataatca 2340aatcaggagt ctgacgaagt attttctaca agatgccttc cagttgcgat atctggatct 2400cagctcaaat aaaatccaga tgatccaaaa gaccagcttc ccagaaaatg tcctcaacaa 2460tctgaagatg ttgcttttgc atcataatcg gtttctgtgc acctgtgatg ctgtgtggtt 2520tgtctggtgg gttaaccata cggaggtgac tattccttac ctggccacag atgtgacttg 2580tgtggggcca ggagcacaca agggccaaag tgtgatctcc ctggatctgt acacctgtga 2640gttagatctg actaacctga ttctgttctc actttccata tctgtatctc tctttctcat 2700ggtgatgatg acagcaagtc acctctattt ctgggatgtg tggtatattt accatttctg 2760taaggccaag ataaaggggt atcagcgtct aatatcacca gactgttgct atgatgcttt 2820tattgtgtat gacactaaag acccagctgt gaccgagtgg gttttggctg agctggtggc 2880caaactggaa gacccaagag agaaacattt taatttatgt ctcgaggaaa gggactggtt 2940accagggcag ccagttctgg aaaacctttc ccagagcata cagcttagca aaaagacagt 3000gtttgtgatg acagacaagt atgcaaagac tgaaaatttt aagatagcat tttacttgtc 3060ccatcagagg ctcatggatg aaaaagttga tgtgattatc ttgatatttc ttgagaagcc 3120ctttcagaag tccaagttcc tccagctccg gaaaaggctc tgtgggagtt ctgtccttga 3180gtggccaaca aacccgcaag ctcacccata cttctggcag tgtctaaaga acgccctggc 3240cacagacaat catgtggcct atagtcaggt gttcaaggaa acggtctagc ccttctttgc 3300aaaacacaac tgcctagttt accaaggaga ggcctggctg tttaaattgt tttcatatat 3360atcacaccaa aagcgtgttt tgaaattctt caagaaatga gattgcccat atttcagggg 3420agccaccaac gtctgtcaca ggagttggaa agatggggtt tatataatgc atcaagtctt 3480ctttcttatc tctctgtgtc tctatttgca cttgagtctc tcacctcagc tcctgtaaaa 3540gagtggcaag taaaaaacat ggggctctga ttctcctgta attgtgataa ttaaatatac 3600acacaatcat gacattgaga agaactgcat ttctaccctt aaaaagtact ggtatataca 3660gaaatagggt taaaaaaaac tcaagctctc tctatatgag accaaaatgt actagagtta 3720gtttagtgaa ataaaaaacc agtcagctgg ccgggcatgg tggctcatgc ttgtaatccc 3780agcactttgg gaggccgagg caggtggatc acgaggtcag gagtttgaga ccagtctggc 3840caacatggtg aaaccccgtc tgtactaaaa atacaaaaat tagctgggcg tggtggtggg 3900tgcctgtaat cccagctact tgggaggctg aggcaggaga atcgcttgaa cccgggaggt 3960ggaggtggca gtgagccgag atcacgccac tgcaatgcag cccgggcaac agagctagac 4020tgtctcaaaa gaacaaaaaa aaaaaaacac aaaaaaactc agtcagcttc ttaaccaatt 4080gcttccgtgt catccagggc cccattctgt gcagattgag tgtgggcacc acacaggtgg 4140ttgctgcttc agtgcttcct gctctttttc cttgggcctg cttctgggtt ccatagggaa 4200acagtaagaa agaaagacac atccttacca taaatgcata tggtccacct acaaatagaa 4260aaatatttaa atgatctgcc tttatacaaa gtgatattct ctacctttga taatttacct 4320gcttaaatgt ttttatctgc actgcaaagt actgtatcca aagtaaaatt tcctcatcca 4380atatctttca aactgttttg ttaactaatg ccatatattt gtaagtatct gcacacttga 4440tacagcaacg ttagatggtt ttgatggtaa accctaaagg aggactccaa gagtgtgtat 4500ttatttatag ttttatcaga gatgacaatt atttgaatgc caattatatg gattcctttc 4560attttttgct ggaggatggg agaagaaacc aaagtttata gaccttcaca ttgagaaagc 4620ttcagttttg aacttcagct atcagattca aaaacaacag aaagaaccaa gacattctta 4680agatgcctgt actttcagct gggtataaat tcatgagttc aaagattgaa acctgaccaa 4740tttgctttat ttcatggaag aagtgatcta caaaggtgtt tgtgccattt ggaaaacagc 4800gtgcatgtgt tcaagcctta gattggcgat gtcgtatttt cctcacgtgt ggcaatgcca 4860aaggctttac tttacctgtg agtacacact atatgaatta tttccaacgt acatttaatc 4920aataagggtc acaaattccc aaatcaatct ctggaataaa tagagaggta attaaattgc 4980tggagccaac ta 4992921049PRTHomo sapiens 92Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe1 5 10 15Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile65 70 75 80Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 100 105 110Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile145 150 155 160Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile225 230 235 240Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260 265 270Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp305 310 315 320Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 335His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 340 345 350Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360 365Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 370 375 380Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu385 390 395 400Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met 405 410 415Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys 420 425 430Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala 435 440 445Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His 450 455 460Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys465 470 475 480Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 485 490 495Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 500 505 510Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 515 520 525Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 530 535 540Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr545 550 555 560Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 565 570 575Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 580 585 590Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile 595 600 605Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 610 615 620Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn625 630 635 640Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp 645 650 655Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly 660 665 670Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys 675 680 685Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 690 695 700Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn705 710 715

720Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg 725 730 735Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 740 745 750Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro 755 760 765Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg 770 775 780Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His785 790 795 800Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 805 810 815Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 820 825 830Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 835 840 845Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly865 870 875 880Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 905 910Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 915 920 925Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 935 940Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys945 950 955 960Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045931972DNAHomo sapiens 93gaaactcccg cctggccacc ataaaagcgc cggccctccg cttccccgcg agacgaaact 60tcccgtcccg gcggctctgg cacccagggt ccggcctgcg ccttcccgcc aggcctggac 120actggttcaa cacctgtgac ttcatgtgtg cgcgccggcc acacctgcag tcacacctgt 180agccccctct gccaagagat ccataccgag gcagcgtcgg tggctacaag ccctcagtcc 240acacctgtgg acacctgtga cacctggcca cacgacctgt ggccgcggcc tggcgtctgc 300tgcgacagga gcccttacct cccctgttat aacacctgac cgccacctaa ctgcccctgc 360agaaggagca atggccttgg ctcctgagag ggcagcccca cgcgtgctgt tcggagagtg 420gctccttgga gagatcagca gcggctgcta tgaggggctg cagtggctgg acgaggcccg 480cacctgtttc cgcgtgccct ggaagcactt cgcgcgcaag gacctgagcg aggccgacgc 540gcgcatcttc aaggcctggg ctgtggcccg cggcaggtgg ccgcctagca gcaggggagg 600tggcccgccc cccgaggctg agactgcgga gcgcgccggc tggaaaacca acttccgctg 660cgcactgcgc agcacgcgtc gcttcgtgat gctgcgggat aactcggggg acccggccga 720cccgcacaag gtgtacgcgc tcagccggga gctgtgctgg cgagaaggcc caggcacgga 780ccagactgag gcagaggccc ccgcagctgt cccaccacca cagggtgggc ccccagggcc 840attcctggca cacacacatg ctggactcca agccccaggc cccctccctg ccccagctgg 900tgacaagggg gacctcctgc tccaggcagt gcaacagagc tgcctggcag accatctgct 960gacagcgtca tggggggcag atccagtccc aaccaaggct cctggagagg gacaagaagg 1020gcttcccctg actggggcct gtgctggagg cccagggctc cctgctgggg agctgtacgg 1080gtgggcagta gagacgaccc ccagccccgg gccccagccc gcggcactaa cgacaggcga 1140ggccgcggcc ccagagtccc cgcaccaggc agagccgtac ctgtcaccct ccccaagcgc 1200ctgcaccgcg gtgcaagagc ccagcccagg ggcgctggac gtgaccatca tgtacaaggg 1260ccgcacggtg ctgcagaagg tggtgggaca cccgagctgc acgttcctat acggcccccc 1320agacccagct gtccgggcca cagaccccca gcaggtagca ttccccagcc ctgccgagct 1380cccggaccag aagcagctgc gctacacgga ggaactgctg cggcacgtgg cccctgggtt 1440gcacctggag cttcgggggc cacagctgtg ggcccggcgc atgggcaagt gcaaggtgta 1500ctgggaggtg ggcggacccc caggctccgc cagcccctcc accccagcct gcctgctgcc 1560tcggaactgt gacaccccca tcttcgactt cagagtcttc ttccaagagc tggtggaatt 1620ccgggcacgg cagcgccgtg gctccccacg ctataccatc tacctgggct tcgggcagga 1680cctgtcagct gggaggccca aggagaagag cctggtcctg gtgaagctgg aaccctggct 1740gtgccgagtg cacctagagg gcacgcagcg tgagggtgtg tcttccctgg atagcagcag 1800cctcagcctc tgcctgtcca gcgccaacag cctctatgac gacatcgagt gcttccttat 1860ggagctggag cagcccgcct agaacccagt ctaatgagaa ctccagaaag ctggagcagc 1920ccacctagag ctggccgcgg ccgcccagtc taataaaaag aactccagaa ca 197294503PRTHomo sapiens 94Met Ala Leu Ala Pro Glu Arg Ala Ala Pro Arg Val Leu Phe Gly Glu1 5 10 15Trp Leu Leu Gly Glu Ile Ser Ser Gly Cys Tyr Glu Gly Leu Gln Trp 20 25 30Leu Asp Glu Ala Arg Thr Cys Phe Arg Val Pro Trp Lys His Phe Ala 35 40 45Arg Lys Asp Leu Ser Glu Ala Asp Ala Arg Ile Phe Lys Ala Trp Ala 50 55 60Val Ala Arg Gly Arg Trp Pro Pro Ser Ser Arg Gly Gly Gly Pro Pro65 70 75 80Pro Glu Ala Glu Thr Ala Glu Arg Ala Gly Trp Lys Thr Asn Phe Arg 85 90 95Cys Ala Leu Arg Ser Thr Arg Arg Phe Val Met Leu Arg Asp Asn Ser 100 105 110Gly Asp Pro Ala Asp Pro His Lys Val Tyr Ala Leu Ser Arg Glu Leu 115 120 125Cys Trp Arg Glu Gly Pro Gly Thr Asp Gln Thr Glu Ala Glu Ala Pro 130 135 140Ala Ala Val Pro Pro Pro Gln Gly Gly Pro Pro Gly Pro Phe Leu Ala145 150 155 160His Thr His Ala Gly Leu Gln Ala Pro Gly Pro Leu Pro Ala Pro Ala 165 170 175Gly Asp Lys Gly Asp Leu Leu Leu Gln Ala Val Gln Gln Ser Cys Leu 180 185 190Ala Asp His Leu Leu Thr Ala Ser Trp Gly Ala Asp Pro Val Pro Thr 195 200 205Lys Ala Pro Gly Glu Gly Gln Glu Gly Leu Pro Leu Thr Gly Ala Cys 210 215 220Ala Gly Gly Pro Gly Leu Pro Ala Gly Glu Leu Tyr Gly Trp Ala Val225 230 235 240Glu Thr Thr Pro Ser Pro Gly Pro Gln Pro Ala Ala Leu Thr Thr Gly 245 250 255Glu Ala Ala Ala Pro Glu Ser Pro His Gln Ala Glu Pro Tyr Leu Ser 260 265 270Pro Ser Pro Ser Ala Cys Thr Ala Val Gln Glu Pro Ser Pro Gly Ala 275 280 285Leu Asp Val Thr Ile Met Tyr Lys Gly Arg Thr Val Leu Gln Lys Val 290 295 300Val Gly His Pro Ser Cys Thr Phe Leu Tyr Gly Pro Pro Asp Pro Ala305 310 315 320Val Arg Ala Thr Asp Pro Gln Gln Val Ala Phe Pro Ser Pro Ala Glu 325 330 335Leu Pro Asp Gln Lys Gln Leu Arg Tyr Thr Glu Glu Leu Leu Arg His 340 345 350Val Ala Pro Gly Leu His Leu Glu Leu Arg Gly Pro Gln Leu Trp Ala 355 360 365Arg Arg Met Gly Lys Cys Lys Val Tyr Trp Glu Val Gly Gly Pro Pro 370 375 380Gly Ser Ala Ser Pro Ser Thr Pro Ala Cys Leu Leu Pro Arg Asn Cys385 390 395 400Asp Thr Pro Ile Phe Asp Phe Arg Val Phe Phe Gln Glu Leu Val Glu 405 410 415Phe Arg Ala Arg Gln Arg Arg Gly Ser Pro Arg Tyr Thr Ile Tyr Leu 420 425 430Gly Phe Gly Gln Asp Leu Ser Ala Gly Arg Pro Lys Glu Lys Ser Leu 435 440 445Val Leu Val Lys Leu Glu Pro Trp Leu Cys Arg Val His Leu Glu Gly 450 455 460Thr Gln Arg Glu Gly Val Ser Ser Leu Asp Ser Ser Ser Leu Ser Leu465 470 475 480Cys Leu Ser Ser Ala Asn Ser Leu Tyr Asp Asp Ile Glu Cys Phe Leu 485 490 495Met Glu Leu Glu Gln Pro Ala 500951885DNAHomo sapiens 95gaaactcccg cctggccacc ataaaagcgc cggccctccg cttccccgcg agacgaaact 60tcccgtcccg gcggctctgg cacccagggt ccggcctgcg ccttcccgcc aggcctggac 120actggttcaa cacctgtgac ttcatgtgtg cgcgccggcc acacctgcag tcacacctgt 180agccccctct gccaagagat ccataccgag gcagcgtcgg tggctacaag ccctcagtcc 240acacctgtgg acacctgtga cacctggcca cacgacctgt ggccgcggcc tggcgtctgc 300tgcgacagga gcccttacct cccctgttat aacacctgac cgccacctaa ctgcccctgc 360agaaggagca atggccttgg ctcctgagag ggcagcccca cgcgtgctgt tcggagagtg 420gctccttgga gagatcagca gcggctgcta tgaggggctg cagtggctgg acgaggcccg 480cacctgtttc cgcgtgccct ggaagcactt cgcgcgcaag gacctgagcg aggccgacgc 540gcgcatcttc aaggcctggg ctgtggcccg cggcaggtgg ccgcctagca gcaggggagg 600tggcccgccc cccgaggctg agactgcgga gcgcgccggc tggaaaacca acttccgctg 660cgcactgcgc agcacgcgtc gcttcgtgat gctgcgggat aactcggggg acccggccga 720cccgcacaag gtgtacgcgc tcagccggga gctgtgctgg cgagaaggcc caggcacgga 780ccagactgag gcagaggccc ccgcagctgt cccaccacca cagggtgggc ccccagggcc 840attcctggca cacacacatg ctggactcca agccccaggc cccctccctg ccccagctgg 900tgacaagggg gacctcctgc tccaggcagt gcaacagagc tgcctggcag accatctgct 960gacagcgtca tggggggcag atccagtccc aaccaaggct cctggagagg gacaagaagg 1020gcttcccctg actggggcct gtgctggagg cgaggccgcg gccccagagt ccccgcacca 1080ggcagagccg tacctgtcac cctccccaag cgcctgcacc gcggtgcaag agcccagccc 1140aggggcgctg gacgtgacca tcatgtacaa gggccgcacg gtgctgcaga aggtggtggg 1200acacccgagc tgcacgttcc tatacggccc cccagaccca gctgtccggg ccacagaccc 1260ccagcaggta gcattcccca gccctgccga gctcccggac cagaagcagc tgcgctacac 1320ggaggaactg ctgcggcacg tggcccctgg gttgcacctg gagcttcggg ggccacagct 1380gtgggcccgg cgcatgggca agtgcaaggt gtactgggag gtgggcggac ccccaggctc 1440cgccagcccc tccaccccag cctgcctgct gcctcggaac tgtgacaccc ccatcttcga 1500cttcagagtc ttcttccaag agctggtgga attccgggca cggcagcgcc gtggctcccc 1560acgctatacc atctacctgg gcttcgggca ggacctgtca gctgggaggc ccaaggagaa 1620gagcctggtc ctggtgaagc tggaaccctg gctgtgccga gtgcacctag agggcacgca 1680gcgtgagggt gtgtcttccc tggatagcag cagcctcagc ctctgcctgt ccagcgccaa 1740cagcctctat gacgacatcg agtgcttcct tatggagctg gagcagcccg cctagaaccc 1800agtctaatga gaactccaga aagctggagc agcccaccta gagctggccg cggccgccca 1860gtctaataaa aagaactcca gaaca 188596474PRTHomo sapiens 96Met Ala Leu Ala Pro Glu Arg Ala Ala Pro Arg Val Leu Phe Gly Glu1 5 10 15Trp Leu Leu Gly Glu Ile Ser Ser Gly Cys Tyr Glu Gly Leu Gln Trp 20 25 30Leu Asp Glu Ala Arg Thr Cys Phe Arg Val Pro Trp Lys His Phe Ala 35 40 45Arg Lys Asp Leu Ser Glu Ala Asp Ala Arg Ile Phe Lys Ala Trp Ala 50 55 60Val Ala Arg Gly Arg Trp Pro Pro Ser Ser Arg Gly Gly Gly Pro Pro65 70 75 80Pro Glu Ala Glu Thr Ala Glu Arg Ala Gly Trp Lys Thr Asn Phe Arg 85 90 95Cys Ala Leu Arg Ser Thr Arg Arg Phe Val Met Leu Arg Asp Asn Ser 100 105 110Gly Asp Pro Ala Asp Pro His Lys Val Tyr Ala Leu Ser Arg Glu Leu 115 120 125Cys Trp Arg Glu Gly Pro Gly Thr Asp Gln Thr Glu Ala Glu Ala Pro 130 135 140Ala Ala Val Pro Pro Pro Gln Gly Gly Pro Pro Gly Pro Phe Leu Ala145 150 155 160His Thr His Ala Gly Leu Gln Ala Pro Gly Pro Leu Pro Ala Pro Ala 165 170 175Gly Asp Lys Gly Asp Leu Leu Leu Gln Ala Val Gln Gln Ser Cys Leu 180 185 190Ala Asp His Leu Leu Thr Ala Ser Trp Gly Ala Asp Pro Val Pro Thr 195 200 205Lys Ala Pro Gly Glu Gly Gln Glu Gly Leu Pro Leu Thr Gly Ala Cys 210 215 220Ala Gly Gly Glu Ala Ala Ala Pro Glu Ser Pro His Gln Ala Glu Pro225 230 235 240Tyr Leu Ser Pro Ser Pro Ser Ala Cys Thr Ala Val Gln Glu Pro Ser 245 250 255Pro Gly Ala Leu Asp Val Thr Ile Met Tyr Lys Gly Arg Thr Val Leu 260 265 270Gln Lys Val Val Gly His Pro Ser Cys Thr Phe Leu Tyr Gly Pro Pro 275 280 285Asp Pro Ala Val Arg Ala Thr Asp Pro Gln Gln Val Ala Phe Pro Ser 290 295 300Pro Ala Glu Leu Pro Asp Gln Lys Gln Leu Arg Tyr Thr Glu Glu Leu305 310 315 320Leu Arg His Val Ala Pro Gly Leu His Leu Glu Leu Arg Gly Pro Gln 325 330 335Leu Trp Ala Arg Arg Met Gly Lys Cys Lys Val Tyr Trp Glu Val Gly 340 345 350Gly Pro Pro Gly Ser Ala Ser Pro Ser Thr Pro Ala Cys Leu Leu Pro 355 360 365Arg Asn Cys Asp Thr Pro Ile Phe Asp Phe Arg Val Phe Phe Gln Glu 370 375 380Leu Val Glu Phe Arg Ala Arg Gln Arg Arg Gly Ser Pro Arg Tyr Thr385 390 395 400Ile Tyr Leu Gly Phe Gly Gln Asp Leu Ser Ala Gly Arg Pro Lys Glu 405 410 415Lys Ser Leu Val Leu Val Lys Leu Glu Pro Trp Leu Cys Arg Val His 420 425 430Leu Glu Gly Thr Gln Arg Glu Gly Val Ser Ser Leu Asp Ser Ser Ser 435 440 445Leu Ser Leu Cys Leu Ser Ser Ala Asn Ser Leu Tyr Asp Asp Ile Glu 450 455 460Cys Phe Leu Met Glu Leu Glu Gln Pro Ala465 47097860DNAHomo sapiens 97ccagccttca gccggagaac cgtttactcg ctgctgtgcc catctatcag caggctccgg 60gctgaagatt gcttctcttc tctcctccaa ggtctagtga cggagcccgc gcgcggcgcc 120accatgcggc agaaggcggt atcgcttttc ttgtgctacc tgctgctctt cacttgcagt 180ggggtggagg caggtgagaa tgcgggtaag gatgcaggta agaaaaagtg ctcggagagc 240tcggacagcg gctccgggtt ctggaaggcc ctgaccttca tggccgtcgg aggaggactc 300gcagtcgccg ggctgcccgc gctgggcttc accggcgccg gcatcgcggc caactcggtg 360gctgcctcgc tgatgagctg gtctgcgatc ctgaatgggg gcggcgtgcc cgccgggggg 420ctagtggcca cgctgcagag cctcggggct ggtggcagca gcgtcgtcat aggtaatatt 480ggtgccctga tgggctacgc cacccacaag tatctcgata gtgaggagga tgaggagtag 540ccagcagctc ccagaacctc ttcttccttc ttggcctaac tcttccagtt aggatctaga 600actttgcctt tttttttttt tttttttttt tgagatgggt tctcactata ttgtccaggc 660tagagtgcag tggctattca cagatgcgaa catagtacac tgcagcctcc aactcctagc 720ctcaagtgat cctcctgtct caacctccca agtaggatta caagcatgcg ccgacgatgc 780ccagaatcca gaactttgtc tatcactctc cccaacaacc tagatgtgaa aacagaataa 840acttcaccca gaaaacactt 86098138PRTHomo sapiens 98Met Arg Gln Lys Ala Val Ser Leu Phe Leu Cys Tyr Leu Leu Leu Phe1 5 10 15Thr Cys Ser Gly Val Glu Ala Gly Glu Asn Ala Gly Lys Asp Ala Gly 20 25 30Lys Lys Lys Cys Ser Glu Ser Ser Asp Ser Gly Ser Gly Phe Trp Lys 35 40 45Ala Leu Thr Phe Met Ala Val Gly Gly Gly Leu Ala Val Ala Gly Leu 50 55 60Pro Ala Leu Gly Phe Thr Gly Ala Gly Ile Ala Ala Asn Ser Val Ala65 70 75 80Ala Ser Leu Met Ser Trp Ser Ala Ile Leu Asn Gly Gly Gly Val Pro 85 90 95Ala Gly Gly Leu Val Ala Thr Leu Gln Ser Leu Gly Ala Gly Gly Ser 100 105 110Ser Val Val Ile Gly Asn Ile Gly Ala Leu Met Gly Tyr Ala Thr His 115 120 125Lys Tyr Leu Asp Ser Glu Glu Asp Glu Glu 130 13599848DNAHomo sapiens 99ccagccttca gccggagaac cgtttactcg ctgctgtgcc catctatcag caggctccgg 60gctgaagatt gcttctcttc tctcctccaa ggtctagtga cggagcccgc gcgcggcgcc 120accatgcggc agaaggcggt atcgcttttc ttgtgctacc tgctgctctt cacttgcagt 180ggggtggagg caggtgagaa tgcgggtaag aaaaagtgct cggagagctc ggacagcggc 240tccgggttct ggaaggccct gaccttcatg gccgtcggag gaggactcgc agtcgccggg 300ctgcccgcgc tgggcttcac cggcgccggc atcgcggcca actcggtggc tgcctcgctg 360atgagctggt ctgcgatcct gaatgggggc ggcgtgcccg ccggggggct agtggccacg 420ctgcagagcc tcggggctgg tggcagcagc gtcgtcatag gtaatattgg tgccctgatg 480ggctacgcca cccacaagta tctcgatagt gaggaggatg aggagtagcc agcagctccc 540agaacctctt cttccttctt ggcctaactc ttccagttag gatctagaac tttgcctttt 600tttttttttt tttttttttg agatgggttc tcactatatt gtccaggcta gagtgcagtg 660gctattcaca gatgcgaaca tagtacactg cagcctccaa ctcctagcct caagtgatcc 720tcctgtctca acctcccaag taggattaca agcatgcgcc gacgatgccc agaatccaga 780actttgtcta tcactctccc caacaaccta gatgtgaaaa cagaataaac ttcacccaga 840aaacactt 848100134PRTHomo sapiens 100Met Arg Gln Lys Ala Val Ser Leu Phe Leu Cys Tyr Leu Leu Leu Phe1 5 10 15Thr Cys Ser Gly Val Glu Ala Gly Glu Asn Ala Gly Lys Lys Lys Cys 20 25 30Ser Glu Ser Ser Asp Ser Gly Ser Gly Phe Trp Lys Ala Leu Thr Phe 35 40 45Met Ala Val Gly Gly Gly Leu Ala Val Ala Gly Leu Pro Ala Leu Gly 50 55 60Phe Thr Gly Ala Gly Ile Ala Ala Asn Ser Val Ala Ala Ser Leu Met65

70 75 80Ser Trp Ser Ala Ile Leu Asn Gly Gly Gly Val Pro Ala Gly Gly Leu 85 90 95Val Ala Thr Leu Gln Ser Leu Gly Ala Gly Gly Ser Ser Val Val Ile 100 105 110Gly Asn Ile Gly Ala Leu Met Gly Tyr Ala Thr His Lys Tyr Leu Asp 115 120 125Ser Glu Glu Asp Glu Glu 130101836DNAHomo sapiens 101ccagccttca gccggagaac cgtttactcg ctgctgtgcc catctatcag caggctccgg 60gctgaagatt gcttctcttc tctcctccaa ggtctagtga cggagcccgc gcgcggcgcc 120accatgcggc agaaggcggt atcgcttttc ttgtgctacc tgctgctctt cacttgcagt 180ggggtggagg caggtaagaa aaagtgctcg gagagctcgg acagcggctc cgggttctgg 240aaggccctga ccttcatggc cgtcggagga ggactcgcag tcgccgggct gcccgcgctg 300ggcttcaccg gcgccggcat cgcggccaac tcggtggctg cctcgctgat gagctggtct 360gcgatcctga atgggggcgg cgtgcccgcc ggggggctag tggccacgct gcagagcctc 420ggggctggtg gcagcagcgt cgtcataggt aatattggtg ccctgatggg ctacgccacc 480cacaagtatc tcgatagtga ggaggatgag gagtagccag cagctcccag aacctcttct 540tccttcttgg cctaactctt ccagttagga tctagaactt tgcctttttt tttttttttt 600tttttttgag atgggttctc actatattgt ccaggctaga gtgcagtggc tattcacaga 660tgcgaacata gtacactgca gcctccaact cctagcctca agtgatcctc ctgtctcaac 720ctcccaagta ggattacaag catgcgccga cgatgcccag aatccagaac tttgtctatc 780actctcccca acaacctaga tgtgaaaaca gaataaactt cacccagaaa acactt 836102130PRTHomo sapiens 102Met Arg Gln Lys Ala Val Ser Leu Phe Leu Cys Tyr Leu Leu Leu Phe1 5 10 15Thr Cys Ser Gly Val Glu Ala Gly Lys Lys Lys Cys Ser Glu Ser Ser 20 25 30Asp Ser Gly Ser Gly Phe Trp Lys Ala Leu Thr Phe Met Ala Val Gly 35 40 45Gly Gly Leu Ala Val Ala Gly Leu Pro Ala Leu Gly Phe Thr Gly Ala 50 55 60Gly Ile Ala Ala Asn Ser Val Ala Ala Ser Leu Met Ser Trp Ser Ala65 70 75 80Ile Leu Asn Gly Gly Gly Val Pro Ala Gly Gly Leu Val Ala Thr Leu 85 90 95Gln Ser Leu Gly Ala Gly Gly Ser Ser Val Val Ile Gly Asn Ile Gly 100 105 110Ala Leu Met Gly Tyr Ala Thr His Lys Tyr Leu Asp Ser Glu Glu Asp 115 120 125Glu Glu 1301034326DNAHomo sapiens 103gctgagcgcg gagccgcccg gtgattggtg ggggcggaag ggggccgggc gccagcgctg 60ccttttctcc tgccgggtag tttcgctttc ctgcgcagag tctgcggagg ggctcggctg 120caccgggggg atcgcgcctg gcagacccca gaccgagcag aggcgaccca gcgcgctcgg 180gagaggctgc accgccgcgc ccccgcctag cccttccgga tcctgcgcgc agaaaagttt 240catttgctgt atgccatcct cgagagctgt ctaggttaac gttcgcactc tgtgtatata 300acctcgacag tcttggcacc taacgtgctg tgcgtagctg ctcctttggt tgaatcccca 360ggcccttgtt ggggcacaag gtggcaggat gtctcagtgg tacgaacttc agcagcttga 420ctcaaaattc ctggagcagg ttcaccagct ttatgatgac agttttccca tggaaatcag 480acagtacctg gcacagtggt tagaaaagca agactgggag cacgctgcca atgatgtttc 540atttgccacc atccgttttc atgacctcct gtcacagctg gatgatcaat atagtcgctt 600ttctttggag aataacttct tgctacagca taacataagg aaaagcaagc gtaatcttca 660ggataatttt caggaagacc caatccagat gtctatgatc atttacagct gtctgaagga 720agaaaggaaa attctggaaa acgcccagag atttaatcag gctcagtcgg ggaatattca 780gagcacagtg atgttagaca aacagaaaga gcttgacagt aaagtcagaa atgtgaagga 840caaggttatg tgtatagagc atgaaatcaa gagcctggaa gatttacaag atgaatatga 900cttcaaatgc aaaaccttgc agaacagaga acacgagacc aatggtgtgg caaagagtga 960tcagaaacaa gaacagctgt tactcaagaa gatgtattta atgcttgaca ataagagaaa 1020ggaagtagtt cacaaaataa tagagttgct gaatgtcact gaacttaccc agaatgccct 1080gattaatgat gaactagtgg agtggaagcg gagacagcag agcgcctgta ttggggggcc 1140gcccaatgct tgcttggatc agctgcagaa ctggttcact atagttgcgg agagtctgca 1200gcaagttcgg cagcagctta aaaagttgga ggaattggaa cagaaataca cctacgaaca 1260tgaccctatc acaaaaaaca aacaagtgtt atgggaccgc accttcagtc ttttccagca 1320gctcattcag agctcgtttg tggtggaaag acagccctgc atgccaacgc accctcagag 1380gccgctggtc ttgaagacag gggtccagtt cactgtgaag ttgagactgt tggtgaaatt 1440gcaagagctg aattataatt tgaaagtcaa agtcttattt gataaagatg tgaatgagag 1500aaatacagta aaaggattta ggaagttcaa cattttgggc acgcacacaa aagtgatgaa 1560catggaggag tccaccaatg gcagtctggc ggctgaattt cggcacctgc aattgaaaga 1620acagaaaaat gctggcacca gaacgaatga gggtcctctc atcgttactg aagagcttca 1680ctcccttagt tttgaaaccc aattgtgcca gcctggtttg gtaattgacc tcgagacgac 1740ctctctgccc gttgtggtga tctccaacgt cagccagctc ccgagcggtt gggcctccat 1800cctttggtac aacatgctgg tggcggaacc caggaatctg tccttcttcc tgactccacc 1860atgtgcacga tgggctcagc tttcagaagt gctgagttgg cagttttctt ctgtcaccaa 1920aagaggtctc aatgtggacc agctgaacat gttgggagag aagcttcttg gtcctaacgc 1980cagccccgat ggtctcattc cgtggacgag gttttgtaag gaaaatataa atgataaaaa 2040ttttcccttc tggctttgga ttgaaagcat cctagaactc attaaaaaac acctgctccc 2100tctctggaat gatgggtgca tcatgggctt catcagcaag gagcgagagc gtgccctgtt 2160gaaggaccag cagccgggga ccttcctgct gcggttcagt gagagctccc gggaaggggc 2220catcacattc acatgggtgg agcggtccca gaacggaggc gaacctgact tccatgcggt 2280tgaaccctac acgaagaaag aactttctgc tgttactttc cctgacatca ttcgcaatta 2340caaagtcatg gctgctgaga atattcctga gaatcccctg aagtatctgt atccaaatat 2400tgacaaagac catgcctttg gaaagtatta ctccaggcca aaggaagcac cagagccaat 2460ggaacttgat ggccctaaag gaactggata tatcaagact gagttgattt ctgtgtctga 2520agttcaccct tctagacttc agaccacaga caacctgctc cccatgtctc ctgaggagtt 2580tgacgaggtg tctcggatag tgggctctgt agaattcgac agtatgatga acacagtata 2640gagcatgaat ttttttcatc ttctctggcg acagttttcc ttctcatctg tgattccctc 2700ctgctactct gttccttcac atcctgtgtt tctagggaaa tgaaagaaag gccagcaaat 2760tcgctgcaac ctgttgatag caagtgaatt tttctctaac tcagaaacat cagttactct 2820gaagggcatc atgcatctta ctgaaggtaa aattgaaagg cattctctga agagtgggtt 2880tcacaagtga aaaacatcca gatacaccca aagtatcagg acgagaatga gggtcctttg 2940ggaaaggaga agttaagcaa catctagcaa atgttatgca taaagtcagt gcccaactgt 3000tataggttgt tggataaatc agtggttatt tagggaactg cttgacgtag gaacggtaaa 3060tttctgtggg agaattctta catgttttct ttgctttaag tgtaactggc agttttccat 3120tggtttacct gtgaaatagt tcaaagccaa gtttatatac aattatatca gtcctctttc 3180aaaggtagcc atcatggatc tggtaggggg aaaatgtgta ttttattaca tctttcacat 3240tggctattta aagacaaaga caaattctgt ttcttgagaa gagaatatta gctttactgt 3300ttgttatggc ttaatgacac tagctaatat caatagaagg atgtacattt ccaaattcac 3360aagttgtgtt tgatatccaa agctgaatac attctgcttt catcttggtc acatacaatt 3420atttttacag ttctcccaag ggagttaggc tattcacaac cactcattca aaagttgaaa 3480ttaaccatag atgtagataa actcagaaat ttaattcatg tttcttaaat gggctacttt 3540gtcctttttg ttattagggt ggtatttagt ctattagcca caaaattggg aaaggagtag 3600aaaaagcagt aactgacaac ttgaataata caccagagat aatatgagaa tcagatcatt 3660tcaaaactca tttcctatgt aactgcattg agaactgcat atgtttcgct gatatatgtg 3720tttttcacat ttgcgaatgg ttccattctc tctcctgtac tttttccaga cacttttttg 3780agtggatgat gtttcgtgaa gtatactgta tttttacctt tttccttcct tatcactgac 3840acaaaaagta gattaagaga tgggtttgac aaggttcttc ccttttacat actgctgtct 3900atgtggctgt atcttgtttt tccactactg ctaccacaac tatattatca tgcaaatgct 3960gtattcttct ttggtggaga taaagatttc ttgagttttg ttttaaaatt aaagctaaag 4020tatctgtatt gcattaaata taatatgcac acagtgcttt ccgtggcact gcatacaatc 4080tgaggcctcc tctctcagtt tttatataga tggcgagaac ctaagtttca gttgatttta 4140caattgaaat gactaaaaaa caaagaagac aacattaaaa caatattgtt tctaattgct 4200gaggtttagc tgtcagttct ttttgccctt tgggaattcg gcatggtttc attttactgc 4260actagccaag agactttact tttaagaagt attaaaattc taaaattcaa aaaaaaaaaa 4320aaaaaa 43261042798DNAHomo sapiens 104gctgagcgcg gagccgcccg gtgattggtg ggggcggaag ggggccgggc gccagcgctg 60ccttttctcc tgccgggtag tttcgctttc ctgcgcagag tctgcggagg ggctcggctg 120caccgggggg atcgcgcctg gcagacccca gaccgagcag aggcgaccca gcgcgctcgg 180gagaggctgc accgccgcgc ccccgcctag cccttccgga tcctgcgcgc agaaaagttt 240catttgctgt atgccatcct cgagagctgt ctaggttaac gttcgcactc tgtgtatata 300acctcgacag tcttggcacc taacgtgctg tgcgtagctg ctcctttggt tgaatcccca 360ggcccttgtt ggggcacaag gtggcaggat gtctcagtgg tacgaacttc agcagcttga 420ctcaaaattc ctggagcagg ttcaccagct ttatgatgac agttttccca tggaaatcag 480acagtacctg gcacagtggt tagaaaagca agactgggag cacgctgcca atgatgtttc 540atttgccacc atccgttttc atgacctcct gtcacagctg gatgatcaat atagtcgctt 600ttctttggag aataacttct tgctacagca taacataagg aaaagcaagc gtaatcttca 660ggataatttt caggaagacc caatccagat gtctatgatc atttacagct gtctgaagga 720agaaaggaaa attctggaaa acgcccagag atttaatcag gctcagtcgg ggaatattca 780gagcacagtg atgttagaca aacagaaaga gcttgacagt aaagtcagaa atgtgaagga 840caaggttatg tgtatagagc atgaaatcaa gagcctggaa gatttacaag atgaatatga 900cttcaaatgc aaaaccttgc agaacagaga acacgagacc aatggtgtgg caaagagtga 960tcagaaacaa gaacagctgt tactcaagaa gatgtattta atgcttgaca ataagagaaa 1020ggaagtagtt cacaaaataa tagagttgct gaatgtcact gaacttaccc agaatgccct 1080gattaatgat gaactagtgg agtggaagcg gagacagcag agcgcctgta ttggggggcc 1140gcccaatgct tgcttggatc agctgcagaa ctggttcact atagttgcgg agagtctgca 1200gcaagttcgg cagcagctta aaaagttgga ggaattggaa cagaaataca cctacgaaca 1260tgaccctatc acaaaaaaca aacaagtgtt atgggaccgc accttcagtc ttttccagca 1320gctcattcag agctcgtttg tggtggaaag acagccctgc atgccaacgc accctcagag 1380gccgctggtc ttgaagacag gggtccagtt cactgtgaag ttgagactgt tggtgaaatt 1440gcaagagctg aattataatt tgaaagtcaa agtcttattt gataaagatg tgaatgagag 1500aaatacagta aaaggattta ggaagttcaa cattttgggc acgcacacaa aagtgatgaa 1560catggaggag tccaccaatg gcagtctggc ggctgaattt cggcacctgc aattgaaaga 1620acagaaaaat gctggcacca gaacgaatga gggtcctctc atcgttactg aagagcttca 1680ctcccttagt tttgaaaccc aattgtgcca gcctggtttg gtaattgacc tcgagacgac 1740ctctctgccc gttgtggtga tctccaacgt cagccagctc ccgagcggtt gggcctccat 1800cctttggtac aacatgctgg tggcggaacc caggaatctg tccttcttcc tgactccacc 1860atgtgcacga tgggctcagc tttcagaagt gctgagttgg cagttttctt ctgtcaccaa 1920aagaggtctc aatgtggacc agctgaacat gttgggagag aagcttcttg gtcctaacgc 1980cagccccgat ggtctcattc cgtggacgag gttttgtaag gaaaatataa atgataaaaa 2040ttttcccttc tggctttgga ttgaaagcat cctagaactc attaaaaaac acctgctccc 2100tctctggaat gatgggtgca tcatgggctt catcagcaag gagcgagagc gtgccctgtt 2160gaaggaccag cagccgggga ccttcctgct gcggttcagt gagagctccc gggaaggggc 2220catcacattc acatgggtgg agcggtccca gaacggaggc gaacctgact tccatgcggt 2280tgaaccctac acgaagaaag aactttctgc tgttactttc cctgacatca ttcgcaatta 2340caaagtcatg gctgctgaga atattcctga gaatcccctg aagtatctgt atccaaatat 2400tgacaaagac catgcctttg gaaagtatta ctccaggcca aaggaagcac cagagccaat 2460ggaacttgat ggccctaaag gaactggata tatcaagact gagttgattt ctgtgtctga 2520agtgtaagtg aacacagaag agtgacatgt ttacaaacct caagccagcc ttgctcctgg 2580ctggggcctg ttgaagatgc ttgtatttta cttttccatt gtaattgcta tcgccatcac 2640agctgaactt gttgagatcc ccgtgttact gcctatcagc attttactac tttaaaaaaa 2700aaaaaaaagc caaaaaccaa atttgtattt aaggtatata aattttccca aaactgatac 2760cctttgaaaa agtataaata aaatgagcaa aagttgat 2798105750PRTHomo sapiens 105Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu Glu1 5 10 15Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg Gln 20 25 30Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala Asn 35 40 45Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln Leu 50 55 60Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu Gln65 70 75 80His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln Glu 85 90 95Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu Glu 100 105 110Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser Gly 115 120 125Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp Ser 130 135 140Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu Ile145 150 155 160Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys Thr 165 170 175Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser Asp Gln 180 185 190Lys Gln Glu Gln Leu Leu Leu Lys Lys Met Tyr Leu Met Leu Asp Asn 195 200 205Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val Thr 210 215 220Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp Lys225 230 235 240Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys Leu 245 250 255Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu Gln Gln 260 265 270Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys Tyr Thr 275 280 285Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp Asp Arg 290 295 300Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val Val Glu305 310 315 320Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu Lys 325 330 335Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys Leu Gln 340 345 350Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys Asp Val 355 360 365Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu Gly 370 375 380Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly Ser Leu385 390 395 400Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn Ala Gly 405 410 415Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu His Ser 420 425 430Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile Asp Leu 435 440 445Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser Gln Leu 450 455 460Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn Met Leu Val Ala Glu465 470 475 480Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg Trp Ala 485 490 495Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys Arg 500 505 510Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu Leu Gly 515 520 525Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys Lys 530 535 540Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu Ser545 550 555 560Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp Gly 565 570 575Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu Lys 580 585 590Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser Arg 595 600 605Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly Gly 610 615 620Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu Leu Ser625 630 635 640Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala Ala 645 650 655Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile Asp 660 665 670Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro 675 680 685Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys Thr 690 695 700Glu Leu Ile Ser Val Ser Glu Val His Pro Ser Arg Leu Gln Thr Thr705 710 715 720Asp Asn Leu Leu Pro Met Ser Pro Glu Glu Phe Asp Glu Val Ser Arg 725 730 735Ile Val Gly Ser Val Glu Phe Asp Ser Met Met Asn Thr Val 740 745 750106712PRTHomo sapiens 106Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu Glu1 5 10 15Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg Gln 20 25 30Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala Asn 35 40 45Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln Leu 50 55 60Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu Gln65 70 75 80His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln Glu 85 90 95Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu Glu 100 105 110Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser Gly 115 120 125Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp Ser 130 135 140Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu Ile145 150 155 160Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys Thr 165 170 175Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser Asp Gln 180 185 190Lys

Gln Glu Gln Leu Leu Leu Lys Lys Met Tyr Leu Met Leu Asp Asn 195 200 205Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val Thr 210 215 220Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp Lys225 230 235 240Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys Leu 245 250 255Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu Gln Gln 260 265 270Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys Tyr Thr 275 280 285Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp Asp Arg 290 295 300Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val Val Glu305 310 315 320Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu Lys 325 330 335Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys Leu Gln 340 345 350Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys Asp Val 355 360 365Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu Gly 370 375 380Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly Ser Leu385 390 395 400Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn Ala Gly 405 410 415Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu His Ser 420 425 430Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile Asp Leu 435 440 445Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser Gln Leu 450 455 460Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn Met Leu Val Ala Glu465 470 475 480Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg Trp Ala 485 490 495Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys Arg 500 505 510Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu Leu Gly 515 520 525Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys Lys 530 535 540Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu Ser545 550 555 560Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp Gly 565 570 575Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu Lys 580 585 590Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser Arg 595 600 605Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly Gly 610 615 620Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu Leu Ser625 630 635 640Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala Ala 645 650 655Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile Asp 660 665 670Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro 675 680 685Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys Thr 690 695 700Glu Leu Ile Ser Val Ser Glu Val705 7101071742DNAHomo sapiens 107tctttgaagc ttcaaggctg ctgaataatt tccttctccc attttgtgcc tgcctagcta 60tccagacaga gcagctaccc tcagctctag ctgatactac agacagtaca acagatcaag 120aagtatggca gtgacaactc gtttgacatg gttgcacgaa aagatcctgc aaaatcattt 180tggagggaag cggcttagcc ttctctataa gggtagtgtc catggattcc gtaatggagt 240tttgcttgac agatgttgta atcaagggcc tactctaaca gtgatttata gtgaagatca 300tattattgga gcatatgcag aagagagtta ccaggaagga aagtatgctt ccatcatcct 360ttttgcactt caagatacta aaatttcaga atggaaacta ggactatgta caccagaaac 420actgttttgt tgtgatgtta caaaatataa ctccccaact aatttccaga tagatggaag 480aaatagaaaa gtgattatgg acttaaagac aatggaaaat cttggacttg ctcaaaattg 540tactatctct attcaggatt atgaagtttt tcgatgcgaa gattcactgg atgaaagaaa 600gataaaaggg gtcattgagc tcaggaagag cttactgtct gccttgagaa cttatgaacc 660atatggatcc ctggttcaac aaatacgaat tctgctgctg ggtccaattg gagctgggaa 720gtccagcttt ttcaactcag tgaggtctgt tttccaaggg catgtaacgc atcaggcttt 780ggtgggcact aatacaactg ggatatctga gaagtatagg acatactcta ttagagacgg 840gaaagatggc aaatacctgc cgtttattct gtgtgactca ctggggctga gtgagaaaga 900aggcggcctg tgcagggatg acatattcta tatcttgaac ggtaacattc gtgatagata 960ccagtttaat cccatggaat caatcaaatt aaatcatcat gactacattg attccccatc 1020gctgaaggac agaattcatt gtgtggcatt tgtatttgat gccagctcta ttcaatactt 1080ctcctctcag atgatagtaa agatcaaaag aattcgaagg gagttggtaa acgctggtgt 1140ggtacatgtg gctttgctca ctcatgtgga tagcatggat ttgattacaa aaggtgacct 1200tatagaaata gagagatgtg agcctgtgag gtccaagcta gaggaagtcc aaagaaaact 1260tggatttgct ctttctgaca tctcggtggt tagcaattat tcctctgagt gggagctgga 1320ccctgtaaag gatgttctaa ttctttctgc tctgagacga atgctatggg ctgcagatga 1380cttcttagag gatttgcctt ttgagcaaat agggaatcta agggaggaaa ttatcaactg 1440tgcacaagga aaaaaataga tatgtgaaag gttcacgtaa atttcctcac atcacagaag 1500attaaaattc agaaaggaga aaacacagac caaagagaag tatctaagac caaagggatg 1560tgttttatta atgtctagga tgaagaaatg catagaacat tgtagtactt gtaaataact 1620agaaataaca tgatttagtc ataattgtga aaaataataa taatttttct tggatttatg 1680ttctgtatct gtgaaaaaat aaatttctta taaaactcgg gtctaaaaaa aaaaaaaaaa 1740aa 1742108444PRTHomo sapiens 108Met Ala Val Thr Thr Arg Leu Thr Trp Leu His Glu Lys Ile Leu Gln1 5 10 15Asn His Phe Gly Gly Lys Arg Leu Ser Leu Leu Tyr Lys Gly Ser Val 20 25 30His Gly Phe Arg Asn Gly Val Leu Leu Asp Arg Cys Cys Asn Gln Gly 35 40 45Pro Thr Leu Thr Val Ile Tyr Ser Glu Asp His Ile Ile Gly Ala Tyr 50 55 60Ala Glu Glu Ser Tyr Gln Glu Gly Lys Tyr Ala Ser Ile Ile Leu Phe65 70 75 80Ala Leu Gln Asp Thr Lys Ile Ser Glu Trp Lys Leu Gly Leu Cys Thr 85 90 95Pro Glu Thr Leu Phe Cys Cys Asp Val Thr Lys Tyr Asn Ser Pro Thr 100 105 110Asn Phe Gln Ile Asp Gly Arg Asn Arg Lys Val Ile Met Asp Leu Lys 115 120 125Thr Met Glu Asn Leu Gly Leu Ala Gln Asn Cys Thr Ile Ser Ile Gln 130 135 140Asp Tyr Glu Val Phe Arg Cys Glu Asp Ser Leu Asp Glu Arg Lys Ile145 150 155 160Lys Gly Val Ile Glu Leu Arg Lys Ser Leu Leu Ser Ala Leu Arg Thr 165 170 175Tyr Glu Pro Tyr Gly Ser Leu Val Gln Gln Ile Arg Ile Leu Leu Leu 180 185 190Gly Pro Ile Gly Ala Gly Lys Ser Ser Phe Phe Asn Ser Val Arg Ser 195 200 205Val Phe Gln Gly His Val Thr His Gln Ala Leu Val Gly Thr Asn Thr 210 215 220Thr Gly Ile Ser Glu Lys Tyr Arg Thr Tyr Ser Ile Arg Asp Gly Lys225 230 235 240Asp Gly Lys Tyr Leu Pro Phe Ile Leu Cys Asp Ser Leu Gly Leu Ser 245 250 255Glu Lys Glu Gly Gly Leu Cys Arg Asp Asp Ile Phe Tyr Ile Leu Asn 260 265 270Gly Asn Ile Arg Asp Arg Tyr Gln Phe Asn Pro Met Glu Ser Ile Lys 275 280 285Leu Asn His His Asp Tyr Ile Asp Ser Pro Ser Leu Lys Asp Arg Ile 290 295 300His Cys Val Ala Phe Val Phe Asp Ala Ser Ser Ile Gln Tyr Phe Ser305 310 315 320Ser Gln Met Ile Val Lys Ile Lys Arg Ile Arg Arg Glu Leu Val Asn 325 330 335Ala Gly Val Val His Val Ala Leu Leu Thr His Val Asp Ser Met Asp 340 345 350Leu Ile Thr Lys Gly Asp Leu Ile Glu Ile Glu Arg Cys Glu Pro Val 355 360 365Arg Ser Lys Leu Glu Glu Val Gln Arg Lys Leu Gly Phe Ala Leu Ser 370 375 380Asp Ile Ser Val Val Ser Asn Tyr Ser Ser Glu Trp Glu Leu Asp Pro385 390 395 400Val Lys Asp Val Leu Ile Leu Ser Ala Leu Arg Arg Met Leu Trp Ala 405 410 415Ala Asp Asp Phe Leu Glu Asp Leu Pro Phe Glu Gln Ile Gly Asn Leu 420 425 430Arg Glu Glu Ile Ile Asn Cys Ala Gln Gly Lys Lys 435 4401092808DNAHomo sapiens 109gcggcggcgg cggcgcagtt tgctcatact ttgtgacttg cggtcacagt ggcattcagc 60tccacacttg gtagaaccac aggcacgaca agcatagaaa catcctaaac aatcttcatc 120gaggcatcga ggtccatccc aataaaaatc aggagaccct ggctatcata gaccttagtc 180ttcgctggta tactcgctgt ctgtcaacca gcggttgact ttttttaagc cttctttttt 240ctcttttacc agtttctgga gcaaattcag tttgccttcc tggatttgta aattgtaatg 300acctcaaaac tttagcagtt cttccatctg actcaggttt gcttctctgg cggtcttcag 360aatcaacatc cacacttccg tgattatctg cgtgcatttt ggacaaagct tccaaccagg 420atacgggaag aagaaatggc tggtgatctt tcagcaggtt tcttcatgga ggaacttaat 480acataccgtc agaagcaggg agtagtactt aaatatcaag aactgcctaa ttcaggacct 540ccacatgata ggaggtttac atttcaagtt ataatagatg gaagagaatt tccagaaggt 600gaaggtagat caaagaagga agcaaaaaat gccgcagcca aattagctgt tgagatactt 660aataaggaaa agaaggcagt tagtccttta ttattgacaa caacgaattc ttcagaagga 720ttatccatgg ggaattacat aggccttatc aatagaattg cccagaagaa aagactaact 780gtaaattatg aacagtgtgc atcgggggtg catgggccag aaggatttca ttataaatgc 840aaaatgggac agaaagaata tagtattggt acaggttcta ctaaacagga agcaaaacaa 900ttggccgcta aacttgcata tcttcagata ttatcagaag aaacctcagt gaaatctgac 960tacctgtcct ctggttcttt tgctactacg tgtgagtccc aaagcaactc tttagtgacc 1020agcacactcg cttctgaatc atcatctgaa ggtgacttct cagcagatac atcagagata 1080aattctaaca gtgacagttt aaacagttct tcgttgctta tgaatggtct cagaaataat 1140caaaggaagg caaaaagatc tttggcaccc agatttgacc ttcctgacat gaaagaaaca 1200aagtatactg tggacaagag gtttggcatg gattttaaag aaatagaatt aattggctca 1260ggtggatttg gccaagtttt caaagcaaaa cacagaattg acggaaagac ttacgttatt 1320aaacgtgtta aatataataa cgagaaggcg gagcgtgaag taaaagcatt ggcaaaactt 1380gatcatgtaa atattgttca ctacaatggc tgttgggatg gatttgatta tgatcctgag 1440accagtgatg attctcttga gagcagtgat tatgatcctg agaacagcaa aaatagttca 1500aggtcaaaga ctaagtgcct tttcatccaa atggaattct gtgataaagg gaccttggaa 1560caatggattg aaaaaagaag aggcgagaaa ctagacaaag ttttggcttt ggaactcttt 1620gaacaaataa caaaaggggt ggattatata cattcaaaaa aattaattca tagagatctt 1680aagccaagta atatattctt agtagataca aaacaagtaa agattggaga ctttggactt 1740gtaacatctc tgaaaaatga tggaaagcga acaaggagta agggaacttt gcgatacatg 1800agcccagaac agatttcttc gcaagactat ggaaaggaag tggacctcta cgctttgggg 1860ctaattcttg ctgaacttct tcatgtatgt gacactgctt ttgaaacatc aaagtttttc 1920acagacctac gggatggcat catctcagat atatttgata aaaaagaaaa aactcttcta 1980cagaaattac tctcaaagaa acctgaggat cgacctaaca catctgaaat actaaggacc 2040ttgactgtgt ggaagaaaag cccagagaaa aatgaacgac acacatgtta gagcccttct 2100gaaaaagtat cctgcttctg atatgcagtt ttccttaaat tatctaaaat ctgctaggga 2160atatcaatag atatttacct tttattttaa tgtttccttt aattttttac tatttttact 2220aatctttctg cagaaacaga aaggttttct tctttttgct tcaaaaacat tcttacattt 2280tactttttcc tggctcatct ctttattctt tttttttttt ttaaagacag agtctcgctc 2340tgttgcccag gctggagtgc aatgacacag tcttggctca ctgcaacttc tgcctcttgg 2400gttcaagtga ttctcctgcc tcagcctcct gagtagctgg attacaggca tgtgccaccc 2460acccaactaa tttttgtgtt tttaataaag acagggtttc accatgttgg ccaggctggt 2520ctcaaactcc tgacctcaag taatccacct gcctcggcct cccaaagtgc tgggattaca 2580gggatgagcc accgcgccca gcctcatctc tttgttctaa agatggaaaa accaccccca 2640aattttcttt ttatactatt aatgaatcaa tcaattcata tctatttatt aaatttctac 2700cgcttttagg ccaaaaaaat gtaagatcgt tctctgcctc acatagctta caagccagct 2760ggagaaatat ggtactcatt aaaaaaaaaa aaaaagtgat gtacaacc 2808110551PRTHomo sapiens 110Met Ala Gly Asp Leu Ser Ala Gly Phe Phe Met Glu Glu Leu Asn Thr1 5 10 15Tyr Arg Gln Lys Gln Gly Val Val Leu Lys Tyr Gln Glu Leu Pro Asn 20 25 30Ser Gly Pro Pro His Asp Arg Arg Phe Thr Phe Gln Val Ile Ile Asp 35 40 45Gly Arg Glu Phe Pro Glu Gly Glu Gly Arg Ser Lys Lys Glu Ala Lys 50 55 60Asn Ala Ala Ala Lys Leu Ala Val Glu Ile Leu Asn Lys Glu Lys Lys65 70 75 80Ala Val Ser Pro Leu Leu Leu Thr Thr Thr Asn Ser Ser Glu Gly Leu 85 90 95Ser Met Gly Asn Tyr Ile Gly Leu Ile Asn Arg Ile Ala Gln Lys Lys 100 105 110Arg Leu Thr Val Asn Tyr Glu Gln Cys Ala Ser Gly Val His Gly Pro 115 120 125Glu Gly Phe His Tyr Lys Cys Lys Met Gly Gln Lys Glu Tyr Ser Ile 130 135 140Gly Thr Gly Ser Thr Lys Gln Glu Ala Lys Gln Leu Ala Ala Lys Leu145 150 155 160Ala Tyr Leu Gln Ile Leu Ser Glu Glu Thr Ser Val Lys Ser Asp Tyr 165 170 175Leu Ser Ser Gly Ser Phe Ala Thr Thr Cys Glu Ser Gln Ser Asn Ser 180 185 190Leu Val Thr Ser Thr Leu Ala Ser Glu Ser Ser Ser Glu Gly Asp Phe 195 200 205Ser Ala Asp Thr Ser Glu Ile Asn Ser Asn Ser Asp Ser Leu Asn Ser 210 215 220Ser Ser Leu Leu Met Asn Gly Leu Arg Asn Asn Gln Arg Lys Ala Lys225 230 235 240Arg Ser Leu Ala Pro Arg Phe Asp Leu Pro Asp Met Lys Glu Thr Lys 245 250 255Tyr Thr Val Asp Lys Arg Phe Gly Met Asp Phe Lys Glu Ile Glu Leu 260 265 270Ile Gly Ser Gly Gly Phe Gly Gln Val Phe Lys Ala Lys His Arg Ile 275 280 285Asp Gly Lys Thr Tyr Val Ile Lys Arg Val Lys Tyr Asn Asn Glu Lys 290 295 300Ala Glu Arg Glu Val Lys Ala Leu Ala Lys Leu Asp His Val Asn Ile305 310 315 320Val His Tyr Asn Gly Cys Trp Asp Gly Phe Asp Tyr Asp Pro Glu Thr 325 330 335Ser Asp Asp Ser Leu Glu Ser Ser Asp Tyr Asp Pro Glu Asn Ser Lys 340 345 350Asn Ser Ser Arg Ser Lys Thr Lys Cys Leu Phe Ile Gln Met Glu Phe 355 360 365Cys Asp Lys Gly Thr Leu Glu Gln Trp Ile Glu Lys Arg Arg Gly Glu 370 375 380Lys Leu Asp Lys Val Leu Ala Leu Glu Leu Phe Glu Gln Ile Thr Lys385 390 395 400Gly Val Asp Tyr Ile His Ser Lys Lys Leu Ile His Arg Asp Leu Lys 405 410 415Pro Ser Asn Ile Phe Leu Val Asp Thr Lys Gln Val Lys Ile Gly Asp 420 425 430Phe Gly Leu Val Thr Ser Leu Lys Asn Asp Gly Lys Arg Thr Arg Ser 435 440 445Lys Gly Thr Leu Arg Tyr Met Ser Pro Glu Gln Ile Ser Ser Gln Asp 450 455 460Tyr Gly Lys Glu Val Asp Leu Tyr Ala Leu Gly Leu Ile Leu Ala Glu465 470 475 480Leu Leu His Val Cys Asp Thr Ala Phe Glu Thr Ser Lys Phe Phe Thr 485 490 495Asp Leu Arg Asp Gly Ile Ile Ser Asp Ile Phe Asp Lys Lys Glu Lys 500 505 510Thr Leu Leu Gln Lys Leu Leu Ser Lys Lys Pro Glu Asp Arg Pro Asn 515 520 525Thr Ser Glu Ile Leu Arg Thr Leu Thr Val Trp Lys Lys Ser Pro Glu 530 535 540Lys Asn Glu Arg His Thr Cys545 5501112613DNAHomo sapiens 111agtttcagtt tccatttctg atttctgctc tctgcgctga gcacagcggc accaggctga 60gctaagcagg gccgccttgg gcaggcctac gtggtggtgc aggcgagacc caggctgggc 120aaggcgcagt ttcagtttcc atcttgggtc tctgagctga gcagagtggc accaggctga 180gttaagtggg actgccctgg gcagacctac ctactagagc agaatggagc ttcggtccta 240ccaatgggag gtgatcatgc ctgccctgga gggcaagaat atcatcatct ggctgcccac 300gggtgccggg aagacccggg cggctgctta tgtggccaag cggcacctag agactgtgga 360tggagccaag gtggttgtat tggtcaacag ggtgcacctg gtgacccagc atggtgaaga 420gttcaggcgc atgctggatg gacgctggac cgtgacaacc ctgagtgggg acatgggacc 480acgtgctggc tttggccacc tggcccggtg ccatgacctg ctcatctgca cagcagagct 540tctgcagatg gcactgacca gccccgagga ggaggagcac gtggagctca ctgtcttctc 600cctgatcgtg gtggatgagt gccaccacac gcacaaggac accgtctaca acgtcatcat 660gagccagtac ctagaactta aactccagag ggcacagccg ctaccccagg tgctgggtct 720cacagcctcc ccaggcactg gcggggcctc caaactcgat ggggccatca accacgtcct 780gcagctctgt gccaacttgg acacgtggtg catcatgtca ccccagaact gctgccccca 840gctgcaggag cacagccaac agccttgcaa acagtacaac ctctgccaca ggcgcagcca 900ggatccgttt ggggacttgc tgaagaagct catggaccaa atccatgacc acctggagat 960gcctgagttg agccggaaat ttgggacgca aatgtatgag cagcaggtgg tgaagctgag 1020tgaggctgcg gctttggctg ggcttcagga gcaacgggtg tatgcgcttc acctgaggcg 1080ctacaatgac gcgctgctca tccatgacac cgtccgcgcc gtggatgcct tggctgcgct

1140gcaggatttc tatcacaggg agcacgtcac taaaacccag atcctgtgtg ccgagcgccg 1200gctgctggcc ctgttcgatg accgcaagaa tgagctggcc cacttggcaa ctcatggccc 1260agagaatcca aaactggaga tgctggaaaa gatcctgcaa aggcagttca gtagctctaa 1320cagccctcgg ggtatcatct tcacccgcac ccgccaaagc gcacactccc tcctgctctg 1380gctccagcag caacagggcc tgcagactgt ggacatccgg gcccagctac tgattggggc 1440tgggaacagc agccagagca cccacatgac ccagagggac cagcaagaag tgatccagaa 1500gttccaagat ggaaccctga accttctggt ggccacgagt gtggcggagg aggggctgga 1560catcccacat tgcaatgtgg tggtgcgtta tgggctcttg accaatgaaa tctccatggt 1620ccaggccagg ggccgtgcct gggccgatca gagtgtatac gcgtttgtag caactgaagg 1680tagccgggag ctgaagcggg agctgatcaa cgaggcgctg gagacgctaa tggagcaggc 1740agtggctgct gtgcagaaaa tggaccaggc cgagtaccag gccaagatcc gggatctgca 1800gcaggcagcc ttgaccaagc gggcggccca ggcagcccag cgggagaacc agcggcagca 1860gttcccagtg gagcacgtgc agctactctg catcaactgc atggtggctg tgggccatgg 1920cagcgacctg cggaaggtgg agggcaccca ccatgtcaat gtgaacccca acttctcgaa 1980ctactataat gtctccaggg atcctgtggt catcaacaaa gtcttcaagg actggaagcc 2040tgggggtgtc atcagctgca ggaactgtgg ggaggtctgg ggtctgcaga tgatctacaa 2100gtcagtgaag ctgccagtgc tcaaagtccg cagcatgctg ctggagaccc ctcaggggcg 2160gatccaggcc aaaaagtggt cccgcgtgcc cttctccgtg cctgactttg acttcctgca 2220gcattgtgcc gagaacttgt cggacctctc cctggactga ccacctcatt gctgcagtgc 2280ccggtttggg ctgtaggggg cgggagagtc tgcagcagac tccaggcccc tccttcctga 2340atcatcagct gtgggcatca ggcccaccag ccacacagga gtcctgggca ccctggctta 2400ggctcccgca atgggaaaac aaccggaggg ccagagctta gtccagacct accttgtacg 2460cacatagaca ttttcatatg cactggatgg agttagggaa actgaggcaa aagaatttgc 2520catactgtac tcagaatcac gacattcctt ccctaccaag gccacttcta ttttttgagg 2580ctcctcataa aaataaatga aaaaatggga tag 2613112678PRTHomo sapiens 112Met Glu Leu Arg Ser Tyr Gln Trp Glu Val Ile Met Pro Ala Leu Glu1 5 10 15Gly Lys Asn Ile Ile Ile Trp Leu Pro Thr Gly Ala Gly Lys Thr Arg 20 25 30Ala Ala Ala Tyr Val Ala Lys Arg His Leu Glu Thr Val Asp Gly Ala 35 40 45Lys Val Val Val Leu Val Asn Arg Val His Leu Val Thr Gln His Gly 50 55 60Glu Glu Phe Arg Arg Met Leu Asp Gly Arg Trp Thr Val Thr Thr Leu65 70 75 80Ser Gly Asp Met Gly Pro Arg Ala Gly Phe Gly His Leu Ala Arg Cys 85 90 95His Asp Leu Leu Ile Cys Thr Ala Glu Leu Leu Gln Met Ala Leu Thr 100 105 110Ser Pro Glu Glu Glu Glu His Val Glu Leu Thr Val Phe Ser Leu Ile 115 120 125Val Val Asp Glu Cys His His Thr His Lys Asp Thr Val Tyr Asn Val 130 135 140Ile Met Ser Gln Tyr Leu Glu Leu Lys Leu Gln Arg Ala Gln Pro Leu145 150 155 160Pro Gln Val Leu Gly Leu Thr Ala Ser Pro Gly Thr Gly Gly Ala Ser 165 170 175Lys Leu Asp Gly Ala Ile Asn His Val Leu Gln Leu Cys Ala Asn Leu 180 185 190Asp Thr Trp Cys Ile Met Ser Pro Gln Asn Cys Cys Pro Gln Leu Gln 195 200 205Glu His Ser Gln Gln Pro Cys Lys Gln Tyr Asn Leu Cys His Arg Arg 210 215 220Ser Gln Asp Pro Phe Gly Asp Leu Leu Lys Lys Leu Met Asp Gln Ile225 230 235 240His Asp His Leu Glu Met Pro Glu Leu Ser Arg Lys Phe Gly Thr Gln 245 250 255Met Tyr Glu Gln Gln Val Val Lys Leu Ser Glu Ala Ala Ala Leu Ala 260 265 270Gly Leu Gln Glu Gln Arg Val Tyr Ala Leu His Leu Arg Arg Tyr Asn 275 280 285Asp Ala Leu Leu Ile His Asp Thr Val Arg Ala Val Asp Ala Leu Ala 290 295 300Ala Leu Gln Asp Phe Tyr His Arg Glu His Val Thr Lys Thr Gln Ile305 310 315 320Leu Cys Ala Glu Arg Arg Leu Leu Ala Leu Phe Asp Asp Arg Lys Asn 325 330 335Glu Leu Ala His Leu Ala Thr His Gly Pro Glu Asn Pro Lys Leu Glu 340 345 350Met Leu Glu Lys Ile Leu Gln Arg Gln Phe Ser Ser Ser Asn Ser Pro 355 360 365Arg Gly Ile Ile Phe Thr Arg Thr Arg Gln Ser Ala His Ser Leu Leu 370 375 380Leu Trp Leu Gln Gln Gln Gln Gly Leu Gln Thr Val Asp Ile Arg Ala385 390 395 400Gln Leu Leu Ile Gly Ala Gly Asn Ser Ser Gln Ser Thr His Met Thr 405 410 415Gln Arg Asp Gln Gln Glu Val Ile Gln Lys Phe Gln Asp Gly Thr Leu 420 425 430Asn Leu Leu Val Ala Thr Ser Val Ala Glu Glu Gly Leu Asp Ile Pro 435 440 445His Cys Asn Val Val Val Arg Tyr Gly Leu Leu Thr Asn Glu Ile Ser 450 455 460Met Val Gln Ala Arg Gly Arg Ala Arg Ala Asp Gln Ser Val Tyr Ala465 470 475 480Phe Val Ala Thr Glu Gly Ser Arg Glu Leu Lys Arg Glu Leu Ile Asn 485 490 495Glu Ala Leu Glu Thr Leu Met Glu Gln Ala Val Ala Ala Val Gln Lys 500 505 510Met Asp Gln Ala Glu Tyr Gln Ala Lys Ile Arg Asp Leu Gln Gln Ala 515 520 525Ala Leu Thr Lys Arg Ala Ala Gln Ala Ala Gln Arg Glu Asn Gln Arg 530 535 540Gln Gln Phe Pro Val Glu His Val Gln Leu Leu Cys Ile Asn Cys Met545 550 555 560Val Ala Val Gly His Gly Ser Asp Leu Arg Lys Val Glu Gly Thr His 565 570 575His Val Asn Val Asn Pro Asn Phe Ser Asn Tyr Tyr Asn Val Ser Arg 580 585 590Asp Pro Val Val Ile Asn Lys Val Phe Lys Asp Trp Lys Pro Gly Gly 595 600 605Val Ile Ser Cys Arg Asn Cys Gly Glu Val Trp Gly Leu Gln Met Ile 610 615 620Tyr Lys Ser Val Lys Leu Pro Val Leu Lys Val Arg Ser Met Leu Leu625 630 635 640Glu Thr Pro Gln Gly Arg Ile Gln Ala Lys Lys Trp Ser Arg Val Pro 645 650 655Phe Ser Val Pro Asp Phe Asp Phe Leu Gln His Cys Ala Glu Asn Leu 660 665 670Ser Asp Leu Ser Leu Asp 675

* * * * *

References

Patent Diagrams and Documents
D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009
D00010
D00011
D00012
D00013
D00014
D00015
D00016
D00017
D00018
D00019
D00020
D00021
D00022
D00023
D00024
D00025
D00026
D00027
D00028
D00029
D00030
D00031
D00032
D00033
D00034
D00035
D00036
D00037
D00038
D00039
D00040
D00041
D00042
S00001
XML
US20210079475A1 – US 20210079475 A1

uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed