Renewable And Cost-effective Fillers For Polymeric Materials

ALSEWAILEM; Fares D. ;   et al.

Patent Application Summary

U.S. patent application number 16/438887 was filed with the patent office on 2019-09-26 for renewable and cost-effective fillers for polymeric materials. The applicant listed for this patent is King Abdulaziz City for Science and Technology. Invention is credited to Fares D. ALSEWAILEM, Yazeed A. BINKHEDER.

Application Number20190292354 16/438887
Document ID /
Family ID48086401
Filed Date2019-09-26

United States Patent Application 20190292354
Kind Code A1
ALSEWAILEM; Fares D. ;   et al. September 26, 2019

RENEWABLE AND COST-EFFECTIVE FILLERS FOR POLYMERIC MATERIALS

Abstract

Polymer composites are provided, and more particularly, polymer composites of ground date pits disposed in a polymer matrix. The composites can be formed by a process of preparing reinforced polymer composites having a fibril melt fracture surface, including blending a mixture of date pit particulate with a thermoplastic polymer; melting the mixture; and forcing the melt through a die to produce the polymer composite having a fibril containing surface.


Inventors: ALSEWAILEM; Fares D.; (Riyadh, SA) ; BINKHEDER; Yazeed A.; (Riyadh, SA)
Applicant:
Name City State Country Type

King Abdulaziz City for Science and Technology

Riyadh

SA
Family ID: 48086401
Appl. No.: 16/438887
Filed: June 12, 2019

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15870401 Jan 12, 2018
16438887
13275977 Oct 18, 2011 9902842
15870401

Current U.S. Class: 1/1
Current CPC Class: C08L 99/00 20130101; C08L 25/06 20130101; C08L 99/00 20130101; C08L 99/00 20130101; C08L 99/00 20130101; C08L 2205/14 20130101; C08L 77/00 20130101; C08L 99/00 20130101; C08L 23/06 20130101; C08L 99/00 20130101; C08J 5/045 20130101; C08L 69/00 20130101; C08L 27/06 20130101; C08K 5/0008 20130101; C08J 2323/06 20130101; C08L 99/00 20130101; C08L 25/06 20130101; C08L 99/00 20130101; C08J 2325/06 20130101; C08L 27/06 20130101; C08K 11/00 20130101; C08L 69/00 20130101; C08L 23/06 20130101; C08L 25/06 20130101; C08L 97/02 20130101; C08L 77/00 20130101; C08L 23/12 20130101; C08L 67/025 20130101; C08L 27/06 20130101; C08L 23/06 20130101; C08L 99/00 20130101; C08L 99/00 20130101; C08L 97/02 20130101; C08L 51/06 20130101; C08L 55/02 20130101; C08L 33/12 20130101
International Class: C08K 11/00 20060101 C08K011/00; C08J 5/04 20060101 C08J005/04; C08K 5/00 20060101 C08K005/00; C08L 99/00 20060101 C08L099/00; C08L 27/06 20060101 C08L027/06; C08L 25/06 20060101 C08L025/06; C08L 23/06 20060101 C08L023/06; C08L 69/00 20060101 C08L069/00; C08L 77/00 20060101 C08L077/00

Claims



1. A process of preparing a reinforced polymer composite, comprising: solution blending a mixture of date pit particulate, a solution of a thermosetting polymer, and a coupling agent of di-phenylmethane; and removing solvent from the solution.

2. The process of claim 1, wherein the reinforced polymer composite has a tensile strength varying no more than about 10% from that of the thermosetting polymer.

3. The process of claim 1, wherein the date pit particulate has an average size of between about 0.25 mm and 1.0 mm.

4. The process of claim 1, wherein the date pit particulate comprises particulate from fruit of Phoenix dactylifera L., variety khlaas or sekari.

5. The process of claim 1, wherein the date pit particulate is present in an amount of between about 1 and about 40 wt % based on a weight of the composition.

6. The process of claim 1, wherein the thermosetting polymer is selected from the group consisting of epoxies, vinyl esters, and polyesters.

7. The process of claim 1, wherein the date pit particulate comprises particulate from fruit of Phoenix dactylifera L., variety sekari, present in an amount from 5 wt % to 30 wt % based on a weight of the composition.

8. The process of claim 1, wherein the date pit particulate comprises particulate from fruit of Phoenix dactylifera L., variety khlaas, present in an amount from 10 wt % to 40 wt % based on a weight of the composition.

9. The process of claim 1, further comprising blending a toughness modifier including ethylene/propylene grafted with maleic anhydride with the mixture.

10. The process of claim 1, further comprising blending a toughness modifier including maleated polyolefins elastomers with the mixture.
Description



FIELD OF THE INVENTION

[0001] The invention relates to a polymer composite, and more particularly, to a polymer composite of ground date pits disposed in a polymer matrix.

BACKGROUND OF THE INVENTION

[0002] Fillers are routinely used by polymer and plastic industry to reduce the cost of end products and to enhance some desired properties, such as physical and mechanical properties. However, conventional filler materials can be costly and therefore need to be processed in an efficient manner, and conventional inorganic fillers, such as aluminium trihydroxide and the like may pose environment risks when used as polymer fillers.

[0003] Formulation of biocomposites has been an attractive endeavor for researchers in the last decade. There are several advantages, either environmental or economical, of using biocomposites over ordinary composites, especially those based on thermoplastics matrices, for various applications such as structural and food packaging. The biodegradability feature of such composites offers a solution for the problem of municipal waste management. Besides the biodegradability of polymers filled with biomaterials, the availability of these fillers, normally of agricultural residue origin, at very low cost levels makes the production of these composites economically feasible.

[0004] Several biocomposite systems of thermoplastic matrices and bio-fillers have been reported in the literature, wherein various bio-fillers, such as wheat straw, corncob, rice husk, and sugarcane bagasse were incorporated with polymer matrices, such as polypropylene, high-density polyethylene (HDPE), low-density polyethylene, and polyvinyl chloride. From an economic point of view, incorporating a cost-effective filler in a polymer will only be feasible if it does not drastically alter the main matrix-resin characteristics, such as mechanical properties.

[0005] Saudi Arabia is well recognized for its palm trees (Phoenix dactylifera L.). In addition, Saudi Arabia is among the largest world producers of date fruit, 4700,000 MT per year. On the consumption of date fruit as a main daily meal in almost each Saudi dwelling, date pits are usually discarded as materials with no use or value. Nevertheless, these presumably designated waste materials, i.e., date pits, contain important constituents such as oils (up to 10%), minerals (considerably rich in potassium), and fibers (46.4%) that may be utilized for specific purposes.

[0006] Ghazanfari et al. ("Thermal and Mechanical Properties of Blends and Composites from HDPE and Date Pits Particles", Journal of Composite Materials, 42(1) (2008); pp. 77-89) disclose formulating polymer-date pits composites based on HDPE as the hosting polymer, and conclude that incorporating date pit flour with HDPE tends to decrease the melt flow index (MFI), and at the same time increase the thermal conductivity of the resulting composites. The date pits investigated by Ghazanfari et al. are of the Abdoulahi cultivar, which demonstrate reductions in tensile strength as compared to non-composited (neat) polymer, on increasing weight percentages of date pit flour in the composites.

[0007] U.S. Pat. No. 4,011,130 to Worden discloses waterlaid sheets comprising essential solids consisting of (I) elastomeric (polyurethane) binder, and (II) nonelastomeric solids comprising inflexible, non-fibrous, rounded, particulate fillers (which may be vegetable flours prepared from peach pits, apricot pits and cherry pits) and a fibrous reinforcing component. The waterlaid sheets are useful as substitutes for leather in the manufacture of footwear, particularly as the outsole or insole portion of a shoe. However, no comparison of tensile strength between the neat polymer and the polymer composite is provided.

[0008] Accordingly, polymer and plastic industries would benefit from a demonstration of affordable, efficient bio-fillers which would reduce the cost of the final products and yet not diminish the strength characteristics of the polymer, as compared to the corresponding non-composited polymer.

SUMMARY OF THE INVENTION

[0009] In a first aspect of the invention, a process of preparing a reinforced polymer composite having a fibril melt fracture surface, comprises blending a mixture of date pit particulate with a thermoplastic polymer; melting the mixture; and forcing the melt through a die to produce the polymer composite having a fibril containing surface.

[0010] In another aspect the invention, composition comprises a mixture of date pit particulate from the fruit of Phoenix dactylifera L., variety khlaas or sekari, and a thermosetting polymer selected from the group consisting of epoxies, vinyl esters and polyesters.

[0011] In yet another aspect of the invention, a process of preparing a reinforced polymer composite, comprises solution blending a mixture of date pit particulate from the fruit of Phoenix dactylifera L., variety khlaas or sekari, and a solution of a thermosetting polymer, and removing solvent from the solution.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present invention is described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention.

[0013] FIGS. 1(a)-(c) show scanning electron micrographs of melt fracture surfaces of various loadings of date pit particulate in high density polyethylene matrices;

[0014] FIGS. 2(a) and (b) show scanning electron micrographs of melt fracture surfaces of various loadings of date pit particulate in polystyrene matrices;

[0015] FIGS. 3(a) and (b) show scanning electron micrographs of melt fracture surfaces of composites of polystyrene, date pit particulates and two different compounding modifiers; and

[0016] FIG. 4 shows a graph comparing the Tensile Strengths of various date pit particulate/high density polyethylene composites at various particulate loading levels.

DETAILED DESCRIPTION OF THE INVENTION

[0017] The invention relates to composites of polymers filled with naturally occurring fillers. More specifically, it has been found that the fruit of dates, i.e. the date pits, can be ground into particulate and blended with polymers to form composites having unique surface characteristics upon melt processing of the composites, without sacrificing the overall strength characteristics of the polymers, as compared to the corresponding non-composited polymers.

[0018] Advantageously, the processes and products of the present invention provide inexpensive, renewable sources for polymer fillers which can act to reduce the overall cost of polymeric articles made from the composites, but also provide an avenue for reducing waste from the consumption of dates, commonly an every-day occurrence in many Middle Eastern households.

[0019] In implementing the present invention a mixture of date pit particulate can be blended with a thermoplastic polymer, the mixture melted, in for example a melt extruder as is known in the art, and the melt is forced through an extrusion die to produce a polymer composite having a fibril containing surface. Upon examination of the surface using scanning electron microscopy (SEM), it is found that the surface of the melt processed composites demonstrate a unique, fibril-containing melt fracture surface, which can enhance physical characteristics of the extruded polymer compositions, such as toughness and stiffness, as compared to neat polymers.

[0020] In embodiments, the date pit particulate can be particulate from the fruit of Phoenix dactylifera L., variety khlaas or sekari, which varieties are commonly consumed in large quantities in Middle Eastern households, such as in Saudi Arabia. The date pits are advantageously ground or chopped to particulate of an average size of between about 0.25 mm and 1.0 mm.

[0021] The melt processing according to the present invention can be practiced with a number of different thermoplastic polymers to form the composite matrix, such as those selected from the group consisting of polystyrene, polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polymethylmethacrylate, polycarbonate, acrylonitrile-butadiene-styrene (ABS) and polyamide. Those skilled in the art will recognize that many other such thermoplastic polymers can be melt processed into date pit particulate/polymer composites and articles, such as molded articles, according to the present invention.

[0022] The concentration or loading of the date pit particulate in the composite is not particularly limited, and can advantageously be in an amount of between about 1 and about 40 wt % based on the weight of the composite. For example when the polymer is high density polyethylene, the composite can contain from 5 wt % to 30 wt % of date pit particulate from the variety sekari; or from 10 wt % to 40 wt % of date pit particulate from the variety khlaas. When the polymer is polystyrene, the composite can contain from 10 wt % to 40 wt % of date pit particulate from the variety khlaas, or from 5 wt % to 30 wt % of date pit particulate from the variety sekari.

[0023] In any event, the polymer composite demonstrates Tensile Strength varying no more than about 10% from that of the uncomposited polymer. Unexpectedly, date pit particulate/polymer composites can be successfully produced from thermosetting polymers too, such as from the group consisting of epoxies, vinyl esters and polyesters.

[0024] In this embodiment, a reinforced polymer composite is formed by solution blending a mixture of date pit particulate from the fruit of Phoenix dactylifera L., variety khlaas or sekari, and a solution of a thermosetting polymer, and removing solvent from the solution. Particulate loadings can advantageously be from about 5 wt % to about 40 wt %, depending on the date pit particulate/polymer combination.

EXAMPLES

Example 1--High Density Polyethylene (HDPE)/Sekari (S) Composites

[0025] Composites were formulated by melt extrusion where 10 to 40 wt % of date pit particulate was dispersed in a polymer matrix (HDPE). FIG. 1 shows the morphology of the fractured surface of the blends. It is clearly seen that some fibril morphology has developed. As far the mechanical properties, compounding polymer with date pits particulate did not affect important properties such as tensile strength (ASTM D-638), even at relatively high filler content, e.g 40 wt % (FIG. 4).

Example 2--Polystyrene (PS)/Date Pit Composites

[0026] Samples of PS/date pit particulate composites were prepared and the morphology of the blends' melt fracture surfaces was studied by scanning electron microscope (SEM). FIG. 2 shows the morphology of PS/date pit particulates at 30 wt % particulate loading. The morphology exhibited some fibril-like characteristics, and satisfactory adhesion between date pit particulates and polymer matrix.

Example 3--Coupling agent composites

[0027] Coupling agents and compatibilizers such as isocynate, silane, and di-phenylmethane were compounded with the polymer/date pit particulate composites to enhance the surface morphology. FIG. 3(a) shows effect of adding di-phenylmethane (DPHM) to the melt fracture surface morphology of the composite containing 30 wt % K and 70 wt % PS.

Example 4--Toughness Modifier Composites

[0028] Toughness modifiers were added to the composites to compensate for the reduction in some properties, such as impact strength using some melated polyolefins elastomers (e.g. ethyelene/propylene grafted with maleic anhydride, indicated as EP-g-MA). FIG. 3(b) shows the morphology of melt fracture surface of a composite containing 30 wt % K and 70 wt % PS.

[0029] The foregoing examples have been provided for the purpose of explanation and should not be construed as limiting the present invention. While the present invention has been described with reference to an exemplary embodiment, Changes may be made, within the purview of the appended claims, without departing from the scope and spirit of the present invention in its aspects. Also, although the present invention has been described herein with reference to particular materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.

* * * * *

Patent Diagrams and Documents
D00000
D00001
D00002
D00003
XML
US20190292354A1 – US 20190292354 A1

uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed