Advanced Energy Recovery Ventilator

Bahar; Bamdad ;   et al.

Patent Application Summary

U.S. patent application number 16/273097 was filed with the patent office on 2019-07-25 for advanced energy recovery ventilator. The applicant listed for this patent is Xergy Inc. Invention is credited to Bamdad Bahar, Jack Saltwick.

Application Number20190226703 16/273097
Document ID /
Family ID67299304
Filed Date2019-07-25

United States Patent Application 20190226703
Kind Code A1
Bahar; Bamdad ;   et al. July 25, 2019

ADVANCED ENERGY RECOVERY VENTILATOR

Abstract

A composite ion exchange membrane is made by combining ionomer with porous polyolefin, such as polyethylene or polypropylene. The composite ion exchange membrane may be used in the core of an energy recovery ventilator. The core of the energy recovery ventilator may comprise corrugated or pleated supports for supporting the composite ion exchange membrane. The air flow into the energy recovery ventilator may be modified to actively create non-laminar flow.


Inventors: Bahar; Bamdad; (Georgetown, DE) ; Saltwick; Jack; (Georgetown, DE)
Applicant:
Name City State Country Type

Xergy Inc

Harrington

DE

US
Family ID: 67299304
Appl. No.: 16/273097
Filed: February 11, 2019

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15800398 Nov 1, 2017
16273097
PCT/US16/63699 Nov 23, 2016
15800398
62258945 Nov 23, 2015
62300074 Feb 26, 2016
62353545 Jun 22, 2016
62373329 Aug 10, 2016
62385175 Sep 8, 2016
62416072 Nov 1, 2016
62629044 Feb 11, 2018

Current U.S. Class: 1/1
Current CPC Class: F24F 12/006 20130101; F24F 11/0008 20130101; F24F 11/30 20180101; G05B 15/02 20130101; F24F 2003/1435 20130101; C25B 1/10 20130101; F24F 3/147 20130101; F24F 12/002 20130101; Y02E 60/36 20130101; C25B 9/10 20130101; C25B 13/00 20130101; Y02E 60/366 20130101
International Class: F24F 11/00 20060101 F24F011/00; C25B 1/10 20060101 C25B001/10; F24F 12/00 20060101 F24F012/00

Claims



1. An advanced energy recovery ventilator comprising: a) a composite ion exchange membrane comprising: i) a porous polyolefin support layer having a thickness and comprising a plurality of pores that extend through the thickness; ii) an ionomer coupled to the porous support layer; iii) an intake side; iv) an extract side that is opposite the intake side; wherein the composite ion exchange membrane is non-permeable, having a Gurley Densometer reading of at least 500 seconds; b) an intake air inlet for receiving intake air c) an exhaust air outlet; wherein intake air enters the intake air inlet, passes by the intake side of said composite ion exchange membrane and exits the exhaust air outlet of the energy recovery ventilator as exhaust air; d) an extract air inlet for receiving extract air; e) a supply air outlet; wherein extract air enters the extract air inlet, passes by the extract side of said composite ion exchange membrane and exits the supply air outlet of the energy recovery ventilator as supply air.

2. The advanced energy recovery ventilator of claim 1, wherein the extract air is hotter than the supply air.

3. The advanced energy recovery ventilator of claim 1, wherein the exhaust air is hotter than the intake air.

4. The advanced energy recovery ventilator of claim 1, wherein the extract air comprises moisture and wherein said moisture in the extract air is transferred through the composite ion exchange membrane to the intake air.

5. The advanced energy recovery ventilator of claim 1, wherein the porous support layer comprises expanded porous polyethylene.

6. The advanced energy recovery ventilator of claim 5, wherein the ionomer is imbibed into the expanded porous polyethylene.

7. The advanced energy recovery ventilator of claim 6, wherein the ionomer is imbibed into the pores of the polyolefin layer.

8. The advanced energy recovery ventilator of claim 1, wherein the support layer is polyethylene.

9. The advanced energy recovery ventilator of claim 8, wherein the support layer is expanded Ultra-High Molecular Weight porous Polyethylene.

10. The advanced energy recovery ventilator of claim 1, wherein the support layer is polypropylene.

11. The advanced energy recovery ventilator of claim 1, wherein the ionomer is a styrene-based ion exchange ionomer.

12. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane is less than 25 microns thick.

13. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane is less than 15 microns thick.

14. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane is less than 10 microns thick.

15. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane is less than 5 microns thick.

16. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane comprises corrugations.

17. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane comprises corrugations.

18. The advanced energy recovery ventilator of claim 1, wherein the composite ion exchange membrane is configured in an exchange module comprising a plurality of flow channels configured from corrugated composite ion exchange membrane.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation in part of U.S. patent application Ser. No. 15/800,398, filed on Nov. 1, 2017 and currently pending, which is a continuation in part of International Patent Application no. PCT/US2016/063699, filed on Nov. 23, 2016 which claims the benefit of U.S. provisional patent application No. 62/258,945, filed on Nov. 23, 2015, U.S. provisional patent application No. 62/300,074, filed on Feb. 26, 2016, U.S. provisional patent application No. 62/353,545, filed on Jun. 22, 2016, U.S. provisional patent application No. 62/373,329, filed on Aug. 10, 2016 and U.S. provisional patent application No. 62/385,175, filed on Sep. 8, 2016; and U.S. application Ser. No. 15/800,398 claims the benefit of priority to U.S. provisional patent application No. 62/416,072, filed on Nov. 1, 2016, and U.S. application Ser. No. 15/800,398 claims the benefit of U.S. provisional patent application No. 62/629,044, filed on Feb. 11, 2018; the entirety of all applications listed are hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] This application is a novel composite ion exchange membrane comprising an ionomer coupled with a porous polymer and particularly a porous polyethylene or polypropylene, and the use of this novel composite ion exchange membrane in an energy recovery ventilator.

Background

[0003] Increased focus on energy efficiency in both for commercial and residential buildings has led to building envelopes becoming tighter against airflow into and out of structures. This is desirable from a heating/cooling standpoint, but requires attention be paid to ventilation of the space to ensure high indoor air quality for building occupants; air free from noxious buildup of volatile organic compounds VOCs (out-gassing carpet, furniture, etc.) cleaners, particulate (pet dander, dust etc.) and bioeffluents including carbon dioxide. To minimize the heating/cooling and (de)humidification costs associated with such ventilation, Energy Recovery Ventilators (ERVs), as generally show in FIG. 1, are designed to move heat and moisture between exhaust and fresh airstreams to pre-condition incoming air. Among various types of ERVs, fixed-plate ERVs--which transfer heat and moisture directly from one airstream to another through membranes arranged in a "core"--are uniquely advantageous in that such devices are passive (no moving parts), low maintenance, and can demonstrate negligible leakage from exhaust to fresh airstreams--enabling energy recovery from a wider range of exhaust air supplies (including bathroom exhaust) than other types of ERVs. Such advantages have made fixed-plate ERVs an increasingly popular form in the market. An analysis conducted with industry statistics.sup.1,2 market forecast.sup.3, and climate data.sup.4 estimates that total energy savings from fixed plate ERVs over a 20-year operational lifetime is 6.6 Quads. Performance enhancements will increase the rate of market uptake and energy savings

SUMMARY OF THE INVENTION

[0004] This application describes an advanced ion exchange membrane for integration into ERVs and redesigning the air-exchange core to significantly increase the energy recovery of the system. This system is anticipated to improve performance by at least 23% over conventional systems, enabling ERV systems to increase their energy benefit to 7.4 Quads nationally over a 20-year period i.e. energy savings would increase by 0.8 Quads over current, commercially available fixed-plate ERV exchangers.

[0005] It should be noted that ERVs, within standard ventilation systems, provide an opportunity to downsize heating and air-conditioning equipment due to load reductions by enabled by the ERV. An improved ERV system would therefore also allow for significant additional operational cost savings. It should also be noted that the U.S. market has been poorly penetrated. An improved ERV core would be transformational and disruptive, enabling significant expansion of the current market for ERVs by improving economic payback for buyers. This would yield further energy savings not captured in our calculations.

[0006] Fixed-plate ERVs are simple devices: exhaust air moves through a channel formed between two parallel membrane plates and maintained by a flow-field separator. Immediately opposite the ERV membrane from the exhaust air, supply air moves through a similar flow field separator.

[0007] Academic studies suggest that the airside boundary layer can account for as much as 95% of the overall heat transfer resistance (5,6). However, analysis of commercially available membrane ERV exchangers attribute most of the moisture transfer resistance to the membrane, with airside (boundary layer) moisture transfer resistance estimated at only 10-35% of the total moisture transfer resistance (7). To maximize the energy-saving potential of fixed-plate ERVs, both the airflow dynamics through the membrane exchanger as well as water permeability characteristics of the membranes must be improved.

[0008] Over the past 30 years, commercial ERV cores have been developed for low construction cost, and not for optimized performance. With much of the U.S. supply coming from overseas, margins are squeezed, and no-one in the U.S. is in the position to expend resources to do research to improve performance. Significant improvements are feasible, yet no single entity can address these developments without the formation of a consortium and grant support.

[0009] An exemplary energy recovery ventilator may be used in a wide variety of applications including, a desiccator, such as for an ionic liquid desiccant, as a component of a sensor, as a component of used in electrolysis, as a component of a battery, as a component of an ultracapacitor, as a component of an electrochemical compressor, or a pervaporation device.

[0010] The summary of the invention is provided as a general introduction to some of the embodiments of the invention, and is not intended to be limiting, Additional example embodiments including variations and alternative configurations of the invention are provided herein.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0011] The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.

[0012] FIG. 1 shows a perspective view of an exemplary energy recovery ventilator

[0013] FIG. 2 shows a perspective view of an exchange module of an exemplary energy recovery ventilator having a pleated transfer medium forming flow channels.

[0014] FIG. 3 shows diagrams of exemplary air twisters for an ERV.

[0015] FIG. 4 shows a cross-sectional diagram of an exemplary composite ion-exchange membrane

[0016] FIG. 5 shows a graph of water permeance vs. projected materials cost for various polymer membranes

[0017] FIG. 6 shows a graph of water permeability vs. ion exchange capacity for styrene-based ion exchange resins.

[0018] FIG. 7 shows the chemical structure of an exemplary novel styrene-based ion exchange resin structure, with maximum ion exchange capacity (IEC) of up to 6.2 meq/g.

[0019] The figures represent an illustration of some of the embodiments of the present invention and are not to be construed as limiting the scope of the invention in any manner. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

[0020] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, use of "a" or "an" are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.

[0021] Certain exemplary embodiments of the present invention are described herein and are illustrated in the accompanying figures. The embodiments described are only for purposes of illustrating the present invention and should not be interpreted as limiting the scope of the invention. Other embodiments of the invention, and certain modifications, combinations and improvements of the described embodiments, will occur to those skilled in the art and all such alternate embodiments, combinations, modifications, improvements are within the scope of the present invention.

[0022] Non-permeable, as used herein, is defined as a material having greater than a 500 second Gurley Densometer reading, as measured using an automatic Gurley Densometer 4340, from Gurley Precision Instruments, Inc., Troy, N.Y.

[0023] As shown in FIG. 1, an exemplary energy recovery ventilator 10 utilizes a composite ion exchange membrane 60 to transfer heat and humidity from extract air 30 to intake air 20. The intake air 20 enters through an intake air inlet 40 and flow past the intake side 66 of the composite ion exchange membrane before exiting through the exhaust air outlet as exhaust air 24. The exchange air 30 enters through the extract air inlet 50 and flows past the composite ion exchange membrane before exiting through the supply air outlet 54 as supply air 34. Heat and/or humidity are exchanged through the composite ion exchange membrane from the exchange air to the intake air. This system may be a low cost way to keep air fresh in a room or to reduce humidity in an enclosed space.

[0024] As shown in FIG. 2, the composite ion exchange membrane may be configured into an exchange module 80 having flow channels 82 formed from pleats 70 of the composite ion exchange membrane 60. A flow channel may be formed on one side by the pleated composite ion exchange membrane and on the opposing side by a flat sheet layer 84 of the composite ion exchange membrane.

Core Design

[0025] The core of an energy recovery ventilator may have pleated or corrugated supports for the transfer medium, or ion exchange membrane, as shown in FIG. 2.

Airflow Design

[0026] A twister 90 or 90', as generally shown in FIG. 3 may create turbulent flow through the energy recovery ventilator which may enhance exchange through the composite ion exchange membrane. A twister comprises a plurality of elongated members that extend into the flow of the intake air and/or extract air.

[0027] As shown in FIG. 4, a composite ion exchange membrane 60 comprises a porous polyolefin 62 and an ionomer 64. The porous polyolefin acts as a support layer for the ionomer and has pores that extend through the thickness. The ionomer may be coated on one or both sides of the porous polyolefin layer and/or may be imbibed into the pores of the porous polyolefin, as shown. The composite ion exchange membrane 60 has an intake side 66, exposed to the intake air, and an extract side 68, exposed to the extract air. The thickness 67 of the composite ion exchange membrane 60 may be very low, such as no more than about 50 microns, no more than about 25 microns, no more than about 15 microns, no more than about 10 microns and even no more than 5 microns, and any range between and including the values provided. The thinner the composite ion exchange membrane, the more transfer of heat and humidity through the layer.

New High-Performance Membranes

[0028] Ion exchange membranes, typically used for electrochemical applications, demonstrate the properties required for an enhanced ERV membrane. High water permeances (2.00.times.10.sup.-8 kg s.sup.-1 m.sup.-2 Pa.sup.-1, FIG. 5) can be achieved with both cation-exchange membranes (such as commercially-available perfluorosulfonic acid (PFSA) membranes) and novel anion exchange membranes, typically used for fuel cells. Traditional ion exchange resins are prohibitively expensive (generally, a bare minimum of $50/m.sup.2 when cast into a composite membrane suitable for ERVs).

[0029] Other ion exchange materials exist that demonstrate similar water transport properties to fuel cell membranes while being based on less expensive, commodity chemicals. For example, sulfonated polystyrene or sulfonated styrene-ethylene-butadiene (SEBS) copolymers offer high water permeance (2.00.times.10.sup.-8 kg s.sup.-1 m.sup.-2 Pa.sup.-1) at a low (approx. $5/m.sup.2) cost (FIG. 5). These materials are currently in use for ERV applications. However, none of them have ion exchange capacity (IEC) greater than 2.5 meq/g. There is a correlation between IEC (the degree to which the polymer is functionalized) and water permeability (the thickness-independent property of a material to transport water) (FIG. 6). With new synthesis techniques, ion exchange resins based on commodity SEBS polymers can be produced with an IEC up to 6.0 meq/g (FIG. 7), more than twice that of commercially-available resins. Although these copolymers retain some mechanical strength, they do need to be `composited` i.e. combined with a thin, porous support layer, to improve dimensional stability and provide additional mechanical reinforcement in operation.

[0030] One key element of this advanced composite material is the use of porous polyethylene or polypropylene as the support matrix versus expanded polytetrafluoroethylene (ePTFE) as patented by W. L. Gore and Associates. Polyolefins are more suited to many Non-fluorinated ionomers--such as SEBS, but also advanced phenyls-based systems as patented by Rensselaer Polytechnic Institute and University of Delaware. Porous Polyolefins can be produced in a number of different ways which is more commonly used as a separator for lithium-ion batteries. Its use as a base for composite ion exchange media is novel. These materials can be made via solvent extrusion or an expansion process similar to the production of ePTFE, by using Ultra-high-molecular-weight polyethylene (UHMWPE) i.e., producing a compressed puck from powders, then pultruding through a die (with temperature, and solvent) and then subsequent expansion to stretch out the pultruded film to many times the width of the slot die. Because they are not perfluorinated substrates, the physical compatibility of the ionomers and solutions is improved with these alternates substrates.

Novel Core Construction

[0031] Without fundamental changes in core design and construction, advanced membranes cannot operate to their full potential. It is well known that traditional construction methods employed to build ERV cores use corrugated triangular spacers between membrane sheets to enable air flow. This is a low cost, simple approach that provides for essentially-laminar flow across the membrane. To reduce resistance due to boundary layer formation in ERV cores, the present invention contemplates the integration of `air twisters` into the ERV core right at the inlet to air (see attached photograph). The degree of rotation (turbulence, as expressed by measured Reynolds number), the length of the air twisters, and overall width of the air slot are important parameters that must be optimized to obtain optimum energy recovery. A schematic of this design is provided.

[0032] The ionomer may be a styrene based ionomer or ion exchange material, as shown in FIG. 7, and may have a maximum exchange capacity of up to 6.2 meq/g.

REFERENCES

[0033] The entirety of all references listed below are hereby incorporated by reference herein.

[0034] 1. AHRI. Confidential Reports: Air-to-Air Energy Recovery Ventilation Equipment. 2017.

[0035] 2. Confidential Reports: Air-to-Air Energy Recovery Ventilation Equipment. 2016.

[0036] 3. MarketsandMarkets. Energy Recovery Ventilator Market--Global Forecast to 2021. 2016.

[0037] 4. Engineering Weather Data. [CD] Asheville, N.C.: National Climatic Data Center, 2000.

[0038] 5. Zhang LZ, Niu J L., Energy requirements for conditioning fresh air and the long-term savings with a membrane-based energy recovery ventilator in Hong Kong.Energy2001;26:119-35.

[0039] 6. Jason Woods, Membrane processes for heating, ventilation, and air conditioning, Renewable and Sustainable Energy Reviews33(2014)290-304

[0040] 7. Heat transfer and pressure drop in spacer-filled channels for membrane energy recovery ventilators. Jason Woods, Eric Kozubal. 2013, Applied Thermal Engineering, pp. 868-876.

[0041] It will be apparent to those skilled in the art that various modifications, combinations and variations can be made in the present invention without departing from the spirit or scope of the invention. Specific embodiments, features and elements described herein may be modified, and/or combined in any suitable manner. Thus, it is intended that the present invention cover the modifications, combinations and variations of this invention provided they come within the scope of the appended claims and their equivalents.

* * * * *

Patent Diagrams and Documents
D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
XML
US20190226703A1 – US 20190226703 A1

uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed