Diterpenoid Synthesis

King; Andrew ;   et al.

Patent Application Summary

U.S. patent application number 16/368195 was filed with the patent office on 2019-07-18 for diterpenoid synthesis. This patent application is currently assigned to The University of York. The applicant listed for this patent is The University of York. Invention is credited to Ian Graham, Andrew King.

Application Number20190218529 16/368195
Document ID /
Family ID50191224
Filed Date2019-07-18

View All Diagrams
United States Patent Application 20190218529
Kind Code A1
King; Andrew ;   et al. July 18, 2019

DITERPENOID SYNTHESIS

Abstract

The present disclosure relates to nucleic acids that encode polypeptides with cytochrome P450 activity involved in the biosynthesis of plant derived diterpenoids or diterpenes.


Inventors: King; Andrew; (Whitstable, GB) ; Graham; Ian; (York, GB)
Applicant:
Name City State Country Type

The University of York

York

GB
Assignee: The University of York
York
GB

Family ID: 50191224
Appl. No.: 16/368195
Filed: March 28, 2019

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15105502 Jun 16, 2016 10246688
PCT/GB2015/050035 Jan 9, 2015
16368195

Current U.S. Class: 1/1
Current CPC Class: C12N 15/8243 20130101; C12P 7/02 20130101; C12P 7/26 20130101; C12N 15/52 20130101; C12N 9/0071 20130101
International Class: C12N 9/02 20060101 C12N009/02; C12P 7/26 20060101 C12P007/26; C12N 15/82 20060101 C12N015/82; C12N 15/52 20060101 C12N015/52; C12P 7/02 20060101 C12P007/02

Foreign Application Data

Date Code Application Number
Jan 13, 2014 GB 1400512.8

Claims



1. A transgenic cell comprising an expression vector adapted to express a nucleic acid molecule comprising at least one nucleotide sequence which is at least 70% identical to SEQ ID NO: 1 and encodes a polypeptide that has casbene oxidase activity.

2. The transgenic cell of claim 1, wherein the vector comprises the nucleotide sequence shown in SEQ ID NO: 1, 2, 3, 4, 5, 7, or 8, wherein said nucleotide sequence encodes a casbene oxidase.

3. The transgenic cell of claim 1, wherein said transgenic cell further comprises another expression vector comprising one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenoids, or diterpenoid intermediates, wherein the one or more additional nucleotide sequences comprises: i) a nucleic acid molecule comprising a nucleotide sequence that is at least 71% identical over the full length sequence set forth in SEQ ID NO: 10 and encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity; and/or ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequence set forth in SEQ ID NO: 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.

4. The transgenic cell of claim 1, wherein said transgenic cell is a plant cell.

5. The transgenic cell of claim 1, wherein said transgenic cell is a microbial cell.

6. The microbial cell of claim 5, wherein said microbial cell is a bacterial or fungal cell.

7. The plant cell of claim 4, wherein said plant cell is adapted such that the nucleic acid molecule e is over-expressed when compared to a non-transgenic cell of the same species.

8. A plant comprising the plant cell of claim 4.

9. The plant of claim 8, wherein said plant is from the Euphorbiaceae family.

10. The plant of claim 8, wherein said plant is of the genus Nicotiana spp.

11. The fungal cell of claim 6, wherein said fungal cell is Saccharomyces cerevisiae.

12. A process for modifying of one or more diterpenoids or diterpenes, comprising: i) providing the transgenic plant cell according to claim 4; ii) cultivating said plant cell to produce a transgenic plant; and optionally iii) harvesting said transgenic plant, or part thereof.

13. A process for modifying one or more diterpenes or diterpenoids, comprising: i) providing the transgenic microbial cell according to claim 5 that expresses at least one diterpene and/or diterpenoid metabolite; ii) cultivating the microbial cell under conditions that modify one or more diterpenes or diterpenoids; and optionally iii) isolating said diterpenoid from the microbial cell or cell culture.

14. The transgenic cell of claim 1, wherein the expression vector further comprises one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenoids, or diterpenoid intermediates, wherein the one or more additional nucleotide sequences comprises: i) a nucleic acid molecule comprising a nucleotide sequence that is at least 71% identical over the full length sequence set forth in SEQ ID NO: 10 and encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity; and/or ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequence set forth in SEQ ID NO: 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This is a divisional of U.S. application Ser. No. 15/105,502, filed Jun. 16, 2016, now U.S. Pat. No. 10,246,688, which is the U.S. National Stage of International Application No. PCT/GB2015/050035, filed Jan. 9, 2015, which was published in English under PCT Article 21(2), which in turn claims the benefit of Great Britain Application No. 1400512.8, filed Jan. 13, 2014.

FIELD OF THE INVENTION

[0002] The present disclosure relates to nucleic acids that encode cytochrome P450 polypeptides involved in the biosynthesis of plant derived diterpenoids and including plants or microbes that express said cytochrome P450 polypeptides.

BACKGROUND TO THE INVENTION

[0003] Terpenes or terpenoids are a structurally diverse and a very large group of organic compounds commonly found in plants ranging from essential and universal primary metabolites such as sterols, carotenoids and hormones to more complex and unique secondary metabolites. Terpenes are hydrocarbons assembled of five carbon terpene or isoprene subunits providing the carbon skeleton. Terpenoids are modified terpenes which typically comprise also oxygen; however, terpenes and terpenoids are often used interchangeably. Terpenoids are classified accordingly to the length of the isoprene units as for example hemiterpenoids consisting of one, monoterpenoids consisting of two, sesquiterpenoids consisting of three and diterpenoids consisting of four isoprene units.

[0004] The early core steps in terpenoid biosynthesis are well characterised in both eukaryotes and prokaryotes. The primary building blocks are isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are used for the synthesis of the compounds geranyl diphosphate (GPP), farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP).

[0005] Geranylgeranyl diphosphate (GGPP) is the precursor for the synthesis of a variety of diterpenes, which first steps are catalysed by diterpene synthases. For the conversion of terpenes to terpenoids, a number of enzymes may be involved. Cytochrome P450s are typically required for the addition of oxygen, whereas BAHD acyltransferase are often involved in the addition of acyl groups. The enzymes involved in the biosynthesis of some diterpenes, for example paclitaxel, have been partially characterised, with sequences for a diterpene synthase (Wildung & Croteau, 1996. J. Biol. Chem. 271: 9201-9204) a number of cytochrome P450s (Schoendorf et al., 2001. PNAS 98: 1501-1506; Jennewein et al. 2001: PNAS 98: 13595-13600; Jennewein et al. 2003. Arch. Biochem. Biophys. 413: 262-270; Jennewein et al., 2004. Chem. Biol. 11: 379-387; Chau et al., 2004a: Chem. Biol. 11: 663-672; Chau et al. 2004b. Arch. Biochem. Biophys. 427: 48-57) and a number of acyltransferases (Walker & Croteau, 2000. PNAS 97: 583-587; Walker et al., 2000. Arch. Biochem. Biophys. 274: 371-380; Chau et al 2004c. Arch. Biochem. Biophys. 430: 237-246) being described. However, the enzymes involved in the synthesis of the vast majority of diterpenoids produced by other plant species remain unknown.

[0006] Diterpenes form the basis for many biologically important compounds such as retinol, retinal, and phytol and some compounds have shown antimicrobial and anti-inflammatory properties. A large number of diterpenes have been isolated from plants belonging to the family of Euphorbiaceae. The Euphorbiaceae or spurge family is a large family of flowering plants found all over the world, with some synthesising compounds of considerable biological activity such as ingenol mebutate (Euphorbia peplus), resiniferatoxin (E. resinifera), prostratin (E. cornigera), jatrophanes (Jatropha sp.) and jatrophone (Jatropha sp.).

[0007] Although the beneficial effects of some diterpenes are known such as ingenol mebutate which is licensed to treat actinic keratosis, or resiniferatoxin which is currently being tested in Phase II clinical trials for its analgesic effects, sufficient supply is still hampered by the lack of or inefficient chemical synthesis. Similarly, extraction of active compounds from the plant biomass is a complex process requiring several steps and various solvents, and moreover the yield is typically very low. Methods and processes enabling extraction of diterpenes from plants are disclosed in US patent U.S. Pat. Nos. 4,361,697 and 6,228,996.

[0008] Bacteria and yeast have been successfully used to engineer biosynthetic pathways for the production of some desired chemical compounds from inexpensive carbon sources. The terpenoid artemisinic acid, a precursor for the anti-malaria drug artemesinin, has been successfully synthesised in yeast using this approach. Bacterial or yeast expression systems are often advantageous over other expression systems as they are easily maintained and various methods are available allowing straightforward expression of transgenic genes. The biosynthesis of isoprenoids using a genetically modified bacterial host cell comprising one or more enzymes of the mevalonate pathway is disclosed in patent application WO2008/039499.

[0009] The applicants of the present application have identified a number of cytochrome P450 encoding genes involved in the biosynthesis of diterpenoids.

STATEMENTS OF INVENTION

[0010] According to an aspect of the invention there is provided a nucleic acid molecule that is isolated from a Euphorbiaceae plant wherein said isolated nucleic acid molecule encodes a cytochrome P450 polypeptide characterized in that said cytochrome P450 polypeptide is involved in the biosynthesis of diterpenoids or intermediates in the biosynthesis of diterpenoids.

[0011] In a preferred embodiment of the invention said isolated nucleic acid molecule that encodes a cytochrome P450 polypeptide is selected from the group consisting of: [0012] i) a nucleotide sequence as represented by the sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26; [0013] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i); [0014] iii) a nucleic acid molecule the complementary strand of which hybridizes under stringent hybridization conditions to the sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26, wherein said nucleic acid molecule encodes polypeptides involved in the biosynthesis of diterpenoids or intermediates in the biosynthesis of diterpenoids; [0015] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as represented in SEQ ID NO: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 or 52; [0016] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and which has retained or enhanced diterpenoid biosynthetic activity.

[0017] Hybridization of a nucleic acid molecule occurs when two complementary nucleic acid molecules undergo an amount of hydrogen bonding to each other. The stringency of hybridization can vary according to the environmental conditions surrounding the nucleic acids, the nature of the hybridization method, and the composition and length of the nucleic acid molecules used. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed in Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001); and Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes Part I, Chapter 2 (Elsevier, New York, 1993). The T.sub.m is the temperature at which 50% of a given strand of a nucleic acid molecule is hybridized to its complementary strand. The following is an exemplary set of hybridization conditions and is not limiting:

[0018] Very High Stringency (Allows Sequences that Share at Least 90% Identity to Hybridize) [0019] Hybridization: 5.times.SSC at 65.degree. C. for 16 hours [0020] Wash twice: 2.times.SSC at room temperature (RT) for 15 minutes each [0021] Wash twice: 0.5.times.SSC at 65.degree. C. for 20 minutes each

[0022] High Stringency (Allows Sequences that Share at Least 80% Identity to Hybridize) [0023] Hybridization: 5.times.-6.times.SSC at 65.degree. C.-70.degree. C. for 16-20 hours [0024] Wash twice: 2.times.SSC at RT for 5-20 minutes each [0025] Wash twice: 1.times.SSC at 55.degree. C.-70.degree. C. for 30 minutes each

[0026] Low Stringency (Allows Sequences that Share at Least 50% Identity to Hybridize) [0027] Hybridization: 6.times.SSC at RT to 55.degree. C. for 16-20 hours [0028] Wash at least twice: 2.times.-3.times.SSC at RT to 55.degree. C. for 20-30 minutes each.

[0029] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 1 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0030] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 2 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0031] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 3 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0032] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 4 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0033] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 5 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0034] In a preferred embodiment or aspect of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 6 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0035] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 7 wherein said nucleic acid molecule encodes a polypeptide with casbene-oxidase activity.

[0036] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 8 wherein said nucleic acid molecule encodes a polypeptide with casbene-5-oxidase activity.

[0037] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 9 wherein said nucleic acid molecule encodes a polypeptide with neocembrene-5-oxidase activity.

[0038] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 10 wherein said nucleic acid molecule encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity.

[0039] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 11 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0040] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 12 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0041] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 13 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0042] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 14 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0043] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 15 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0044] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 16 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0045] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 17 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0046] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 18 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0047] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 19 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0048] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 20 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0049] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 21 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0050] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 22 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0051] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 23 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0052] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 24 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0053] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 25 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0054] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as represented SEQ ID NO: 26 wherein said nucleic acid molecule encodes a polypeptide with cytochrome P450 activity.

[0055] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0056] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 27; or [0057] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 27 and which has retained or enhanced casbene-5-oxidase activity.

[0058] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0059] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 28; or [0060] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 28 and which has retained or enhanced casbene-oxidase activity.

[0061] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0062] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 29; or [0063] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 29 and which has retained or enhanced casbene-oxidase activity.

[0064] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0065] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 30; or [0066] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 30 and which has retained or enhanced casbene-oxidase activity.

[0067] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0068] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 31; or [0069] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 31 and which has retained or enhanced casbene-oxidase activity.

[0070] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0071] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 32; or [0072] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 32 and which has retained or enhanced casbene-oxidase activity.

[0073] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0074] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 33; or [0075] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 33 and which has retained or enhanced casbene-oxidase activity.

[0076] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0077] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 34; or [0078] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 34 and which has retained or enhanced casbene-5-oxidase activity.

[0079] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0080] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 35; or [0081] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 35 and which has retained or enhanced neocembrene-5-oxidase activity.

[0082] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0083] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 36; or [0084] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 36 and which has retained or enhanced 5-keto-casbene 7,8-epoxidase activity.

[0085] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0086] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 37; or [0087] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 37 and which has retained or enhanced cytochrome P450 activity.

[0088] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0089] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 38; or [0090] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 38 and which has retained or enhanced cytochrome P450 activity.

[0091] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0092] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 39; or [0093] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 39 and which has retained or enhanced cytochrome P450 activity.

[0094] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0095] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 40; or [0096] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 40 and which has retained or enhanced cytochrome P450 activity.

[0097] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0098] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 41; or [0099] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 41 and which has retained or enhanced cytochrome P450 activity.

[0100] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0101] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 42; or [0102] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 42 and which has retained or enhanced cytochrome P450 activity.

[0103] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0104] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 43; or [0105] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 43 and which has retained or enhanced cytochrome P450 activity.

[0106] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0107] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 44; or [0108] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 44 and which has retained or enhanced cytochrome P450 activity.

[0109] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0110] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 45; or [0111] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 45 and which has retained or enhanced cytochrome P450 activity.

[0112] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0113] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 46; or [0114] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 46 and which has retained or enhanced cytochrome P450 activity.

[0115] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0116] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 47; or [0117] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 47 and which has retained or enhanced cytochrome P450 activity.

[0118] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0119] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 48; or [0120] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 48 and which has retained or enhanced cytochrome P450 activity.

[0121] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0122] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 49; or [0123] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 49 and which has retained or enhanced cytochrome P450 activity.

[0124] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0125] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 50; or [0126] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 50 and which has retained or enhanced cytochrome P450 activity.

[0127] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0128] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 51; or [0129] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 51 and which has retained or enhanced cytochrome P450 activity.

[0130] According to a further aspect of the invention there is provided an isolated polypeptide selected from the group consisting of: [0131] i) a polypeptide comprising or consisting of an amino acid sequence as represented in SEQ ID NO: 52; or [0132] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence presented in SEQ ID NO: 52 and which has retained or enhanced cytochrome P450 activity.

[0133] A modified polypeptide as herein disclosed may differ in amino acid sequence by one or more substitutions, additions, deletions, truncations that may be present in any combination. Among preferred variants are those that vary from a reference polypeptide by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid by another amino acid of like characteristics. The following non-limiting list of amino acids are considered conservative replacements (similar): a) alanine, serine, and threonine; b) glutamic acid and aspartic acid; c) asparagine and glutamine d) arginine and lysine; e) isoleucine, leucine, methionine and valine and f) phenylalanine, tyrosine and tryptophan. Most highly preferred are variants that retain or enhance the same biological function and activity as the reference polypeptide from which it varies.

[0134] In a preferred embodiment of the invention the variant polypeptides have at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% identity, and at least 99% identity with the full length amino acid sequence illustrated herein.

[0135] According to a further aspect of the invention there is provided a vector comprising a nucleic acid molecule according to the invention.

[0136] Preferably the nucleic acid molecule in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell such as a microbial, (e.g. bacterial, yeast), or plant cell. The vector may be a bi-functional expression vector which functions in multiple hosts. In the case of genomic DNA this may contain its own promoter or other regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter or other regulatory elements for expression in the host cell.

[0137] By "promoter" is meant a nucleotide sequence upstream from the transcriptional initiation site and which contains all the regulatory regions required for transcription. Suitable promoters include constitutive, tissue-specific, inducible, developmental or other promoters for expression in plant cells comprised in plants depending on design. Such promoters include viral, fungal, bacterial, animal and plant-derived promoters capable of functioning in plant cells.

[0138] Constitutive promoters include, for example CaMV 35S promoter (Odell et al. (1985) Nature 313, 9810-812); rice actin (McElroy et al. (1990) Plant Cell 2: 163-171); ubiquitin (Christian et al. (1989) Plant Mol. Biol. 18 (675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81: 581-588); MAS (Velten et al. (1984) EMBO J. 3. 2723-2730); ALS promoter (U.S. application Ser. No. 08/409,297), and the like. Other constitutive promoters include those in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680, 5,268,463; and 5,608,142, each of which is incorporated by reference.

[0139] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induced gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88: 10421-10425 and McNellis et al. (1998) Plant J. 14(2): 247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227: 229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156, herein incorporated by reference.

[0140] Where enhanced expression in particular tissues is desired, tissue-specific promoters can be utilised. Tissue-specific promoters include those described by Yamamoto et al. (1997) Plant J. 12(2): 255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7): 792-803; Hansen et al. (1997) Mol. Gen. Genet. 254(3): 337-343; Russell et al. (1997) Transgenic Res. 6(2): 157-168; Rinehart et al. (1996) Plant Physiol. 112(3): 1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2): 525-535; Canevascni et al. (1996) Plant Physiol. 112(2): 513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5): 773-778; Lam (1994) Results Probl. Cell Differ. 20: 181-196; Orozco et al. (1993) Plant Mol. Biol. 23(6): 1129-1138; Mutsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90 (20): 9586-9590; and Guevara-Garcia et al (1993) Plant J. 4(3): 495-50.

[0141] "Operably linked" means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter. DNA operably linked to a promoter is "under transcriptional initiation regulation" of the promoter. In a preferred aspect, the promoter is a tissue specific promoter, an inducible promoter or a developmentally regulated promoter

[0142] Particular of interest in the present context are nucleic acid constructs which operate as plant vectors. Specific procedures and vectors previously used with wide success in plants are described by Guerineau and Mullineaux (1993) (Plant transformation and expression vectors. In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148. Suitable vectors may include plant viral-derived vectors (see e.g. EP194809). If desired, selectable genetic markers may be included in the construct, such as those that confer selectable phenotypes such as resistance to herbicides (e.g. kanamycin, hygromycin, phosphinothricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones and glyphosate).

[0143] According to a further aspect of the invention there is provided a transgenic cell transformed or transfected with a nucleic acid molecule or vector according to the invention.

[0144] According to an aspect of the invention there is provided a transgenic cell transformed or transfected with an expression vector adapted to express a nucleic acid molecule comprising at least one nucleotide sequence which is at least 70% identical to SEQ ID NO: 1 and encodes a polypeptide that has casbene oxidase activity.

[0145] In a preferred embodiment of the invention said transgenic cell is transformed or transfected with an expression vector comprising a nucleotide sequence that is at least 69%, 70%, 71%, 72%, 73%, 74%, 76%, 78%, 80%, 85%, 90%, 95%, 98% or 99% identical to SEQ ID NO 1.

[0146] In a further preferred embodiment of the invention said transgenic cell is transformed or transfected with a vector comprising a nucleotide sequence selected form the group consisting of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7 or 8.

[0147] In a further preferred embodiment of the invention said transgenic cell is transformed or transfected with an expression vector comprising one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenes and diterpenoids or intermediates selected from the group consisting of: [0148] i) a nucleic acid molecule comprising a nucleotide sequence that is at least 71% identical over the full length sequence set forth in SEQ ID NO: 10 and encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity; and/or [0149] ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequences set forth in SEQ ID NO 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.

[0150] According to a further aspect of the invention there is provided a transgenic cell is transformed or transfected with a vector comprising [0151] i) a nucleic acid molecule comprising a nucleotide sequence set forth in SEQ ID NO 9; or [0152] ii) a nucleic acid molecule comprising a nucleotide sequence that is at least 81% identical over the full length sequence set forth in SEQ ID NO: 9 and encodes a polypeptide with neocembrene-5-oxidase activity.

[0153] In a preferred embodiment of the invention said transgenic cell is transformed or transfected with an expression vector comprising one or more additional nucleotide sequences encoding one or more additional polypeptides involved in the biosynthesis of diterpenes and diterpenoids or intermediates selected from the group consisting of a nucleic acid molecule comprising a nucleotide sequence that is at least 75% identical over the full length sequences set forth in SEQ ID NO 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity.

[0154] In a preferred embodiment of the invention said cell is a plant cell.

[0155] According to a further aspect of the invention there is provided a plant comprising a plant cell according to the invention.

[0156] In a preferred embodiment of the invention said plant is from the Euphorbiaceae family.

[0157] In a preferred embodiment of the invention said plant is of the genus Nicotiana spp, for example Nicotiana benthamiana or Nicotiana tabacum.

[0158] In an alternative preferred embodiment of the invention said cell is a microbial cell; preferably a bacterial or fungal cell (e.g. yeast, Saccharomyces cerevisiae).

[0159] In a preferred embodiment of the invention said cell is adapted such that the nucleic acid molecule encoding one or more polypeptides according to the invention is over-expressed when compared to a non-transgenic cell of the same species.

[0160] According to a further aspect of the invention there is provided a nucleic acid molecule comprising a transcription cassette wherein said cassette includes one or more nucleotide sequences designed with reference to one or more nucleotide sequences selected from the group: SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and is adapted for expression by provision of at least one promoter operably linked to said nucleotide sequence such that both sense and antisense molecules are transcribed from said cassette.

[0161] In a preferred embodiment of the invention said cassette is adapted such that both sense and antisense ribonucleic acid molecules are transcribed from said cassette wherein said sense and antisense nucleic acid molecules are adapted to anneal over at least part or all of their length to form a inhibitory RNA or short hairpin RNA.

[0162] In a preferred embodiment of the invention said cassette is provided with at least two promoters adapted to transcribe both sense and antisense strands of said ribonucleic acid molecule.

[0163] In an alternative preferred embodiment of the invention said cassette comprises a nucleic acid molecule wherein said molecule comprises a first part linked to a second part wherein said first and second parts are complementary over at least part of their sequence and further wherein transcription of said nucleic acid molecule produces an ribonucleic acid molecule which forms a double stranded region by complementary base pairing of said first and second parts thereby forming an short hairpin RNA.

[0164] A technique to specifically ablate gene function is through the introduction of double stranded RNA, also referred to as small inhibitory/interfering RNA (siRNA) or short hairpin RNA [shRNA], into a cell which results in the destruction of mRNA complementary to the sequence included in the siRNA/shRNA molecule. The siRNA molecule comprises two complementary strands of RNA (a sense strand and an antisense strand) annealed to each other to form a double stranded RNA molecule. The siRNA molecule is typically derived from exons of the gene which is to be ablated. The mechanism of RNA interference is being elucidated. Many organisms respond to the presence of double stranded RNA by activating a cascade that leads to the formation of siRNA. The presence of double stranded RNA activates a protein complex comprising RNase III which processes the double stranded RNA into smaller fragments (siRNAs, approximately 21-29 nucleotides in length) which become part of a ribonucleoprotein complex. The siRNA acts as a guide for the RNase complex to cleave mRNA complementary to the antisense strand of the siRNA thereby resulting in destruction of the mRNA.

[0165] In a preferred embodiment of the invention said nucleic acid molecule is part of a vector adapted for expression in a plant cell.

[0166] According to a further aspect of the invention there is provided a plant cell transfected with a nucleic acid molecule or vector according to the invention wherein said cell has reduced expression of a polypeptide according to the invention.

[0167] According to an aspect of the invention there is provided a process for the modification of one or more diterpenes and diterpenoids comprising: [0168] i) providing a transgenic plant cell according to the invention; [0169] ii) cultivating said plant cell to produce a transgenic plant; and optionally [0170] i) harvesting said transgenic plant, or part thereof.

[0171] According to an alternative aspect of the invention there is provided a process for the modification of one or more diterpenes or diterpenoids comprising: [0172] i) providing a transgenic microbial cell according to the invention that expresses one or more nucleic acid molecules according to the invention in culture with at least one diterpene and/or diterpenoid metabolite; [0173] ii) cultivating the microbial cell under conditions that modify one or more diterpenes or diterpenoids; and optionally [0174] iii) isolating said diterpenoid from the microbial cell or cell culture.

[0175] In a preferred method of the invention said microbial cell is a bacterial cell or fungal/yeast cell.

[0176] If microbial cells are used as organisms in the process according to the invention they are grown or cultured in the manner with which the skilled worker is familiar, depending on the host organism. As a rule, microorganisms are grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as salts of iron, manganese and magnesium and, if appropriate, vitamins, at temperatures of between 0.degree. C. and 100.degree. C., preferably between 10.degree. C. and 60.degree. C., while gassing in oxygen.

[0177] The pH of the liquid medium can either be kept constant, that is to say regulated during the culturing period, or not. The cultures can be grown batchwise, semi-batchwise or continuously. Nutrients can be provided at the beginning of the fermentation or fed in semi-continuously or continuously. The diterpenoids produced can be isolated from the organisms as described above by processes known to the skilled worker, for example by extraction, distillation, crystallization, if appropriate precipitation with salt, and/or chromatography. To this end, the organisms can advantageously be disrupted beforehand. In this process, the pH value is advantageously kept between pH 4 and 12, preferably between pH 6 and 9, especially preferably between pH 7 and 8.

[0178] The culture medium to be used must suitably meet the requirements of the strains in question. Descriptions of culture media for various microorganisms can be found in the textbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

[0179] As described above, these media which can be employed in accordance with the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and/or trace elements.

[0180] Preferred carbon sources are sugars, such as mono-, di- or polysaccharides. Examples of carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugars can also be added to the media via complex compounds such as molasses or other by-products from sugar refining. The addition of mixtures of a variety of carbon sources may also be advantageous. Other possible carbon sources are oils and fats such as, for example, soya oil, sunflower oil, peanut oil and/or coconut fat, fatty acids such as, for example, palmitic acid, stearic acid and/or linoleic acid, alcohols and/or polyalcohols such as, for example, glycerol, methanol and/or ethanol, and/or organic acids such as, for example, acetic acid and/or lactic acid.

[0181] Nitrogen sources are usually organic or inorganic nitrogen compounds or materials comprising these compounds. Examples of nitrogen sources comprise ammonia in liquid or gaseous form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soya meal, soya protein, yeast extract, meat extract and others. The nitrogen sources can be used individually or as a mixture.

[0182] Inorganic salt compounds which may be present in the media comprise the chloride, phosphorus and sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.

[0183] Inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides, or else organic sulfur compounds such as mercaptans and thiols may be used as sources of sulfur for the production of sulfur-containing fine chemicals, in particular of methionine.

[0184] Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts may be used as sources of phosphorus.

[0185] Chelating agents may be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents comprise dihydroxyphenols such as catechol or protocatechuate and organic acids such as citric acid.

[0186] The fermentation media used according to the invention for culturing microorganisms usually also comprise other growth factors such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate and pyridoxine. Growth factors and salts are frequently derived from complex media components such as yeast extract, molasses, corn steep liquor and the like. It is moreover possible to add suitable precursors to the culture medium. The exact composition of the media compounds heavily depends on the particular experiment and is decided upon individually for each specific case. Information on the optimization of media can be found in the textbook "Applied Microbiol. Physiology, A Practical Approach" (Editors P. M. Rhodes, P. F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, for example Standard 1 (Merck) or BHI (brain heart infusion, DIFCO) and the like.

[0187] All media components are sterilized, either by heat (20 min at 1.5 bar and 121.degree. C.) or by filter sterilization. The components may be sterilized either together or, if required, separately. All media components may be present at the start of the cultivation or added continuously or batchwise, as desired.

[0188] The culture temperature is normally between 15.degree. C. and 45.degree. C., preferably at from 25.degree. C. to 40.degree. C., and may be kept constant or may be altered during the experiment. The pH of the medium should be in the range from 5 to 8.5, preferably around 7.0. The pH for cultivation can be controlled during cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia and aqueous ammonia or acidic compounds such as phosphoric acid or sulfuric acid. Foaming can be controlled by employing antifoams such as, for example, fatty acid polyglycol esters. To maintain the stability of plasmids it is possible to add to the medium suitable substances having a selective effect, for example antibiotics. Aerobic conditions are maintained by introducing oxygen or oxygen-containing gas mixtures such as, for example, ambient air into the culture. The temperature of the culture is normally 20.degree. C. to 45.degree. C. and preferably 25.degree. C. to 40.degree. C. The culture is continued until formation of the desired product is at a maximum. This aim is normally achieved within 10 to 160 hours.

[0189] The fermentation broth can then be processed further. The biomass may, according to requirement, be removed completely or partially from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods or be left completely in said broth. It is advantageous to process the biomass after its separation. However, the fermentation broth can also be thickened or concentrated without separating the cells, using known methods such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling-film evaporator, by reverse osmosis or by nanofiltration. Finally, this concentrated fermentation broth can be processed to obtain the diterpenoids present therein.

[0190] According to a further aspect of the invention there is provided the use of a gene encoded by a nucleic acid molecule as represented by the nucleic acid sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 or a nucleic acid molecule the complementary strand of which hybridizes under stringent hybridization conditions to the nucleotide sequence in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 and encodes a polypeptide with cytochrome P450 activity as a means to identify a locus wherein said locus is associated with altered expression or activity of diterpenoid and diterpene biosynthetic activity.

[0191] Mutagenesis as a means to induce phenotypic changes in organisms is well known in the art and includes but is not limited to the use of mutagenic agents such as chemical mutagens [e.g. base analogues, deaminating agents, DNA intercalating agents, alkylating agents, transposons, bromine, sodium azide] and physical mutagens [e.g. ionizing radiation, UV irradiation].

[0192] According to a further aspect of the invention there is provided a method to produce a plant of the Euphorbiaceae family that has altered expression of a polypeptide according to the invention comprising the steps of: [0193] i) mutagenesis of wild-type seed from a plant of the Euphorbiaceae family that does express said polypeptide; [0194] ii) cultivation of the seed in i) to produce first and subsequent generations of plants; [0195] iii) obtaining seed from the first generation plant and subsequent generations of plants; [0196] iv) determining if the seed from said first and subsequent generations of plants has altered nucleotide sequence and/or altered expression of said polypeptide; [0197] v) obtaining a sample and analysing the nucleic acid sequence of a nucleic acid molecule selected from the group consisting of: [0198] a) a nucleic acid molecule comprising a nucleotide sequence as represented in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 27; [0199] b) a nucleic acid molecule that hybridises to the nucleic acid molecule in a) under stringent hybridisation conditions and that encodes a polypeptide with casbene oxidase or cytochrome P450 activity; and optionally [0200] vi) comparing the nucleotide sequence of the nucleic acid molecule in said sample to a nucleotide sequence of a nucleic acid molecule of the original wild-type plant.

[0201] In a preferred method of the invention said nucleic acid molecule is analysed by a method comprising the steps of: [0202] i) extracting nucleic acid from said mutated plants; [0203] ii) amplification of a part of said nucleic acid molecule by a polymerase chain reaction; [0204] iii) forming a preparation comprising the amplified nucleic acid and nucleic acid extracted from wild-type seed to form heteroduplex nucleic acid; [0205] iv) incubating said preparation with a single stranded nuclease that cuts at a region of heteroduplex nucleic acid to identify the mismatch in said heteroduplex; and [0206] v) determining the site of the mismatch in said nucleic acid heteroduplex.

[0207] In a preferred method of the invention said plant of the Euphorbiaceae has enhanced diterpenoid and diterpene biosynthetic activity.

[0208] In an alternative preferred method of the invention said plant of the Euphorbiaceae has reduced or abrogated diterpenoid and diterpene biosynthetic activity.

[0209] According to a further aspect of the invention there is provided a plant of the Euphorbiaceae family obtained by the method according to the invention.

[0210] According to an aspect of the invention there is provided a plant of the Euphorbiaceae family wherein said plant comprises a viral vector that includes all or part of a gene comprising a nucleic acid molecule according to the invention.

[0211] In a preferred embodiment of the invention said gene or part is encoded by a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of: [0212] i) a nucleic acid molecule comprising a nucleotide sequence as represented in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26; [0213] ii) a nucleic acid molecule comprising a nucleotide sequence that hybridises under stringent hybridisation conditions to a nucleic acid molecule in (i) and which encodes a polypeptide with cytochrome P450 activity.

[0214] According to a further aspect of the invention there is provided a viral vector comprising all or part of a nucleic acid molecule according to the invention.

[0215] According to an aspect of the invention there is provided the use of a viral vector according to the invention in viral induced gene silencing in a plant of the Euphorbiaceae.

[0216] Virus induced gene silencing [VIGS] is known in the art and exploits a RNA mediated antiviral defence mechanism. Plants that are infected with an unmodified virus induce a mechanism that specifically targets the viral genome. However, viral vectors which are engineered to include nucleic acid molecules derived from host plant genes also induce specific inhibition of viral vector expression and additionally target host mRNA. This allows gene specific gene silencing without genetic modification of the plant genome and is essentially a non-transgenic modification.

[0217] Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to (and does not) exclude other moieties, additives, components, integers or steps. "Consisting essentially" means having the essential integers but including integers which do not materially affect the function of the essential integers.

[0218] Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.

[0219] Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.

BRIEF DESCRIPTION OF THE DRAWINGS

[0220] An embodiment of the invention will now be described by example only and with reference to the following figures:

[0221] FIGS. 1A-1E: GC-MS analysis of N. benthamiana leaf extracts transiently expressing casbene synthase and cytochrome P450 enzymes. A-GC chromatograph obtained with expression of casbene synthase only (lower, black), casbene synthase and CYP726A14 (SEQ ID NO 2) (middle, red) and casbene synthase plus CYP726A14 (SEQ ID NO 2) and CYP726A16 (SEQ ID NO 10) (upper, blue). The two insets display rescaled chromatographs containing the retention times at which the casbene synthase oxidation products eluted from the column. B-E--Election impact mass spectra for casbene (B), casbene oxidation products produced by CYP726A14 (SEQ ID NO 2) (C & D) and the product obtained from co-expression of proteins encoded CYP726A14 (SEQ ID NO 2) and CYP726A16 (SEQ ID NO 10).

[0222] FIG. 2: GC analysis of a chloroform extract of N. benthamiana leaves infiltrated with a p19 vector, a pFGC vector containing a casbene synthase ORF for J. curcas and pFGC vectors contain the ORF for a cytochrome P450 gene as indicated in the top right of each graph.

[0223] FIG. 3: GC analysis of a chloroform extract of N. benthamiana leaves infiltrated with a p19 vector, a pFGC vector containing the neocembrene synthase ORF for J. curcas and pFGC vectors contain the ORF for a cytochrome P450 gene as indicated in the top right of each graph.

[0224] FIG. 4: Structures of casbene (left), 5-hydroxycasbene (centre) and 5-ketocasbene (right) as established by 1D- and 2D-NMR. .sup.1H and .sup.13C assignments at each position are shown in black and red, respectively.

[0225] FIG. 5 provides cDNA sequences that encode polypeptides with casbene-oxidase activity from Ricinus communis (SEQ ID NOS: 1 and 2).

[0226] FIG. 6 provides cDNA sequences that encode polypeptides with casbene-oxidase activity from Ricinus communis (SEQ ID NOS: 3 and 4).

[0227] FIG. 7 provides cDNA sequences that encode polypeptides with casbene-oxidase activity from Euphorbia fischeriana (SEQ ID NO: 5) and Jatropha curcas (SEQ ID NO: 6).

[0228] FIG. 8 provides a cDNA sequence that encodes a polypeptide with casbene-oxidase activity from Jatropha gossypifolia (SEQ ID NO: 7) and a cDNA sequence that encodes a polypeptide with casbene-5-oxidase activity from Euphorbia peplus (SEQ ID NO: 8).

[0229] FIG. 9 provides a cDNA sequence that encodes a polypeptide with neocembrene-5-oxidase activity from Ricinus communis (SEQ ID NO: 9) and a cDNA sequence that encodes a polypeptide with 5-keto-casbene 7,8-epoxidase activity from Ricinus communis (SEQ ID NO: 10).

[0230] FIG. 10 provides a cDNA sequence that encodes a polypeptide with cytochrome P450 activity from Ricinus communis (SEQ ID NO: 11) and a cDNA sequence that encodes a polypeptide with cytochrome P450 activity from Ricinus communis (SEQ ID NO: 12).

[0231] FIG. 11 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Ricinus communis (SEQ ID NOS: 13 and 14).

[0232] FIG. 12 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Euphorbia peplus (SEQ ID NOS: 15, 16 and 17).

[0233] FIG. 13 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 18 and 19).

[0234] FIG. 14 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 20, 21 and 22).

[0235] FIG. 15 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 23 and 24).

[0236] FIG. 16 provides cDNA sequences that encode polypeptides with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 25 and 26).

[0237] FIG. 17 provides protein sequences with casbene-5-oxidase activity from Ricinus communis (SEQ ID NO: 27), casbene-oxidase activity from Ricinus communis (SEQ ID NOS: 28 and 29), casbene-oxidase activity from Euphorbia peplus (SEQ ID NO: 30), or casbene-oxidase activity from Euphorbia fischeriana (SEQ ID NO: 31).

[0238] FIG. 18 provides protein sequences with casbene-5-oxidase activity from Jatropha curcas (SEQ ID NO: 32), casbene-oxidase activity from Jatropha gossypifolia (SEQ ID NO: 33), casbene-5-oxidase activity from Euphorbia peplus (SEQ ID NO: 34), neocembrene-5-oxidase activity from Ricinus communis (SEQ ID NO: 35), or 5-keto-casbene 7,8-epoxidase activity from Ricinus communis (SEQ ID NO: 36).

[0239] FIG. 19 provides protein sequences with cytochrome P450 activity from Ricinus communis (SEQ ID NOS: 37, 38, 39, and 40) and from Euphorbia peplus (SEQ ID NO: 41).

[0240] FIG. 20 provides protein sequences with cytochrome P450 activity from Euphorbia peplus (SEQ ID NOS: 42 and 43), and from Jatropha curcas (SEQ ID NOS: 44, 45 and 46).

[0241] FIG. 21 provides protein sequences with cytochrome P450 activity from Jatropha curcas (SEQ ID NOS: 47, 48, 49, and 50).

[0242] FIG. 22 provides a protein sequence with cytochrome P450 activity from Jatropha curcas (SEQ ID NO: 52).

TABLE-US-00001 [0243] TABLE 1 Primers used for cloning genes Gene ID & annotation Primer name Species Sequence (SEQ ID NO:) Rc30169.m006273 Rc6273F (ID 53) R. communis 5'-ATGGACAAGCAAATCCTATCATATCC-3' (53) (CYP726A13) Rc6275R (ID 54) R. communis 5'-TCAGTCCGTTGTTGGTGAAGGG-3' (54) (SEQ ID NO 11) Rc30169.m006275 Rc6275F (ID 55) R. communis 5'-ATGGAGCAGCAATTGCTATCG-3' (55) (CYP726A14) Rc6275R (ID 56) R. communis 5'-CTATGGCAAAGTAGTGAATGGAATGG (56) (SEQ ID NO 2) Rc30169.m006276 Rc6276F (ID 57) R. communis 5'-ATGGCACTGCAATCACTACTATTC-3' (57) (Neocembrene synthase) Rc6276R (ID 58) R. communis 5'-TTACACATGTTTTGTTTTGGTTTCTCC-3' (58) (SEQ ID NO 85) Rc30169.m006277 Rc6277F (ID 59) R. communis 5'-ATGTCATTGCAACCTGCACCTG-3' (59) (CYP726A15) Rc6277R (ID60) R. communis 5'-TTAAGGATGAAATAGAACAGGAATC-3' (60) (SEQ ID NO 9) Rc30169.m006279 Rc6279F (ID 61) R. communis 5'-ATGGAAAGTGCTGCTCACCAATC-3' (61) (CYP726A16) Rc6279R (ID 62) R. communis 5'-TTATGGTAAAGGACTGACGGGAATGG-3 (62) (SEQ ID NO 10) Rc30169.m006282 Rc6282F (ID 63) R. communis 5'-ATGGAGAAACAAATCCTATCATTTCCAG-3' (63) (CYP726A17) Rc6282R (ID 64) R. communis 5'-CTAAGGAGTAAATGGAATGGGAATC-3' (64) (SEQ ID NO 3) Rc30169.m006285 Rc6285F (ID 65) R. communis 5'-ATGTCATCACAACCAGCAGTTTTAC-3' (65) (CYP726A18) Rc6285R (ID 66) R. communis 5'-TCAATGTGTAGGATATAGAACAGG-3' (66) (SEQ ID NO 1) JcCAS1 JcCAS1_F (ID 67) J. curcas 5'-TTCATATTTGTTGCTAATCCTC-3' (67) (Casbene synthase) JcCAS1_R (ID 68) J. curcas 5'-CAAGGTACAGGATTTATGCAAATCC-3' (68) (SEQ ID NO 86)

TABLE-US-00002 TABLE 2 Primers used for insertion of genes into pFGC5941 Gene ID & annotation Primer name Species Sequence Rc30169.m006273 Rc6273F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGACAAGCAAATCCTATC-3' (69) (CYP726A13) (ID 69) (SEQ ID NO 11) Rc6273R_PacI R. communis 5'-AAAATTAATTAATCAGTCCGTTGTTGGTGAAG-3' (70) (ID 70) Rc30169.m006275 Rc6275F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGAGCAGCAATTGCTATCG-3' (71) (CYP726A14) (ID 71) (SEQ ID NO 2) Rc6275R_PacI R. communis 5'-AAAATTAATTAACTATGGCAAAGTAGTGAATG-3' (72) (ID 72) Rc30169.m006276 Rc6276F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGCACTGCAATCACTACTATTC-3' (Neocembrene (ID 73) (73) synthase) Rc6276R_PacI R. communis 5'-AAAATTAATTAATTACACATGTTTTGTTTTGGTTTCTC-'3 (74) (SEQ ID NO 85) (ID 74) Rc30169.m006277 Rc6277F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGTCATTGCAACCTGCACCTG-3' (75) (CYP726A15) (ID 75) (SEQ ID NO 9) Rc6277R_PacI R. communis 5'-AAAATTAATTAATTAAGGATGAAATAGAACAG-3' (76) (ID 76) Rc30169.m006279 Rc6279F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGAAAGTGCTGCTCACCAATC-3' (CYP726A16) (ID 77) (77) (SEQ ID NO 10) Rc6279R_PacI R. communis 5'-AAAATTAATTAATTATGGTAAAGGACTGACG-3' (78) (ID 78) Rc30169.m006282 Rc6282F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGGAGAAACAAATCCTATCATTTC-3' (CYP726A17) (ID 79) (79) (SEQ ID NO 3) Rc6282R_PacI R. communis 5'-AAAATTAATTAACTAAGGAGTAAATGGAATG-3' (80) (ID 80) Rc30169.m006285 Rc6285F_AscI R. communis 5'-AAAAGGCGCGCCAAAAATGTCATCACAACCAGCAGTTTTAC-3' (CYP726A18) (ID 81) (81) (SEQ ID NO 1) Rc6285R_PacI R. communis 5'-AAAATTAATTAATCAATGTGTAGGATATAGAAC-3' (82) (ID 82) JcCAS1 JcCAS1_AscI_F J. curcas 5'-AAAAGGCGCGCCAAAAATGGCAATGCAACCTGCAATTG-3' (83) (Casbene (ID 83) synthase) JcCA51_PacI_R J. curcas 5'-AAAATTAATTAATCAAGTGGCAATAGGTTCAATGAAC-3' (84) (SEQ ID NO 86) (ID 84)

[0244] Materials and Methods

[0245] Plant Materials, Nucleic Acid Extraction and Cloning of cDNA Sequences.

[0246] Ricinus communis (var. Carmencita) seeds were obtained from Thompson & Morgan (Ipswich, UK). Jatropha curcas seeds were obtained from Diligent (Tanzania). Euphorbia peplus seeds were obtained from All Rare Herbs (Mapleton, Old, Australia). Total RNA was extracted from plants using the CTAB-lithium chloride method (Gasic et al., 2004. Plant. Mol. Bio. Rep. 22:437a-437g). RNA samples were DNase treated and further purified using the on-column digestion protocol for the QIAgen RNeasy miniprep kit. cDNA was then synthesised from 5 .mu.g of total RNA using Superscript II reverse transcriptase (Life Technologies, Carlsbad, Calif., USA) and a 5'-T(.sub.18)VN-3' oligonucleotides in a 20 .mu.l volume according to the manufacturer's protocol. The cDNA product was then diluted to 50 .mu.l with 10 mM Tris-HCl (pH 8.0). cDNA sequences were amplified with primers detailed in Table 1 using Phusion High-Fidelity Pfu DNA polymerase (Thermo Scientific, Waltham, Mass.) according to the manufacturer's recommended protocol and the subcloned in vector pJET 1.2 (Thermo Scientific). The cDNA sequences were the verified by dye-terminator sequencing.

[0247] Expression of Diterpenoid Biosynthetic Genes in Nicotiana benthamiana

[0248] AscI and PacI sites were added at the 5' and 3' end of the ORF by PCR using Phusion High Fidelity Pfu polymerase using the primers detailed a Table 2. For each ORF, a 5-AAAA-3' Kozak sequence was included immediately before each start codon. After restriction digestion, the ORF was then inserted into the 10 kb fragment obtained from digestion of pFGC5941 (Kerschen et al., 2004. FEBS Lett. 566: 223-228) with restriction enzymes AscI and PacI. The expression vectors were then transformed into Agrobacterium tumefaciens GV3101::pMP90 using the freeze-thaw method (Hofgen & Willmitzer 1988. Nucleic Acids. Res. 16: 9877). Infiltration of N. benthamiana plants was performed as described previously using an enhanced system which utilizes the p19 protein of tomato bushy stunt virus to reduce the effects of post-transcriptional gene silencing (Voinnet et al., 2003. Plant J. 33: 949-956).

[0249] Extraction of Terpenoids from N. benthamiana Leaves and GC-MS Analysis

[0250] Five days after Agrobacterium infiltration, three leaves were collected from each plant, ground in liquid nitrogen and then extracted with 10 ml of chloroform. The extracts were concentrated to <500 .mu.l under a stream of nitrogen, and then 5 .mu.l of the extract was analysed GC-MS. GC-MS analysis was performed using Thermofinnigan GCQ coupled to a Polaris MS and AS2000 autosampler. The GC was fitted with a Restek (Bellafonte, Pa., USA) RTX-551L MS capillary column (30 m, 0.25 mm ID, 0.25 .mu.M df). The oven temperature was set at 100.degree. C. for 2 minutes and then increased to 300.degree. C. at a rate of 5.degree. C. min-1. Mass spectral data was acquired for the m/z ranges of 50-450.

[0251] Purification of the Casbene and Two Oxidation Products Produced by CYP726A14 (SEQ ID NO 2)

[0252] 100 g of Agrobacterium infiltrated N. benthamiana leaves were dried by lyophilisation and then extracted twice with 200 ml of 60/40 hexane/isopropanol. The extract was dried over anhydrous sodium sulphate and the solvent was then removed by rotary evaporation to yield 520 mg of a green oily residue. This extract was dissolved in 10 ml of hexane fractionated by flash chromatography using 25 grams of silica gel 60 (particle size 35-70 .mu.M, 220-440 mesh) as a stationary phase. The mobile phases were (a) 250 ml of hexane, (b) 250 ml of 2% ethyl acetate in hexane, (c) 250 ml 10% ethyl acetate in hexane and (d) 50% ethyl acetate in hexane. Fractions of 25 ml were collected and an aliquot from each was analysed for the presence of casbene or casbene oxidation products by GC-MS (as above). Fractions containing the desired compounds were pooled then concentrated via rotary evaporation. The casbene fraction did not require further purification, but the two casbene oxidation products were further purified using reverse phased HPLC. The fractions were evaporated to dryness and then dissolved in 250 .mu.l of methanol. 10 .mu.l aliquots were separated on a Develosil C30-UG-S column (3 mm ID, 5 .mu.M particle size, Nomura Chemical Co. Ltd, Seto, Japan) using a three solvent gradient. Solvent A was 20 mM ammonium formate, 0.2% formic acid and 20% water in methanol. Solvent B was 0.2% formic acid in methanol. Solvent C was 0.2% formic acid in tetrahydrofuran. The gradient was ran as follows; at injection, 80% Solvent A and 20% solvent B ramping via a linear gradient to 40% solvent A and 60% solvent B over 16 minutes. After holding at this ratio for a further 1 minute, the solvents were switched to 40% solvent B and 60% solvent C for a further 8 minutes. The flow rate was 1 ml minute-1. Detection was performed using atmospheric pressure chemical ionization (+ve). The fractions were then pooled, evaporated to dryness in a GeneVac EZ-2 plus (Ipswich, UK) and dissolved in 500 .mu.l of CDCl.sub.3.

[0253] NMR Analysis of Casbene and Casbene Oxidation Products

[0254] All NMR data were recorded with a Bruker AVIII 700 MHz instrument, equipped with a TCI probe. 2D-NMR datasets were typically acquired with 2,048 points in F2 and 256 increments in F1 then Fourier transformed to give a spectral resolution of 4,096.times.1,024 data points.

EXAMPLE 1: MODIFICATION OF CASBENE BY CYP726A14 (SEQ ID NO 2), CYP726A17(SEQ ID NO 3) AND CYP726A18 (SEQ ID NO 1) FROM R. COMMUNIS

[0255] To determine whether any of the R. communis P450 genes were capable of modifying casbene, we used a transient expression system in Nicotiana benthamiana. A casbene synthase gene from J. curcas and each of the P450 genes were co-expressed via infiltration of young N. benthamiana plants by multiple combinations of Agrobacterium tumefaciens strains harbouring different expression vectors. Five days after infection, chloroform extracts of the leaves were analysed by GC-MS. Three of the P450 genes (CYP726A14 (SEQ ID NO 2), CYP726A17 (SEQ ID NO 3) and CYP726A18 (SEQ ID NO 1)) were able to use casbene as a substrate (FIG. 1 and FIG. 2).

EXAMPLE 2: MODIFICATION OF NEOCEMBRENE BY CYP726A15 (SEQ ID NO 9) FROM R. COMMUNIS

[0256] To determine whether any of the R. communis P450 genes were capable of modifying casbene, we used a transient expression system in Nicotiana benthamiana. A neocembrene synthase gene from R. communis and each of the P450 genes were co-expressed via infiltration of young N. benthamiana plants by multiple combinations of Agrobacterium tumefaciens strains harbouring different expression vectors. Five days after infection, chloroform extracts of the leaves were analysed by GC-MS. CYP726A15 (SEQ ID NO 9), was able to use neocembrene as a substrate (FIG. 3).

EXAMPLE 3: NMR ANALYSIS OF THE PRODUCTS OF CYP726A14 (SEQ ID NO 2) REVEALS IT IS A CASBENE 5-OXIDASE

[0257] To obtain structures of the two products of CYP726A14 (SEQ ID NO 2) (and therefore CYP726A17 (SEQ ID NO 3) and CYP726A18 (SEQ ID NO 1)), lyophilized material from 100 g of infiltrated leaf material was extracted. The two casbene oxidation products were purified using a combination of normal-phase flash chromatography and preparative reversed-phase HPLC to yield approximately 300 .mu.g of casbene, 30 .mu.g of 5-hydroxycasbene and 15 .mu.g of 5-ketocasbene. All three samples were dissolved separately in CDCl3 (500 .mu.l) and NMR data was recorded at 700 MHz. Following acquisition of both 1D-.sup.1H and .sup.13C NMR spectra, the 2D-experiment, edited-HSQC, was used to determine which protons and carbons were directly attached to one another via a single bond. Both HMBC and .sup.1H-.sup.1H COSY experiments were then used to connect these fragments of the molecule together through the observation, respectively, of 2- and 3-bond couplings between proton and carbon; and (predominantly) 3-bond couplings between protons. The .sup.1H and .sup.13O assignments resulting from these experiments are shown at each position on the structures appearing in FIG. 4. The perturbations to both 1H and 13C chemical shifts at and around the 5-position of the two oxygenated derivatives of casbene support the two functionalizations which are proposed.

EXAMPLE 4: MODIFICATION OF 5-KETOCASBENE BY CYP726A16 FROM R. COMMUNIS

[0258] To determine whether any of the R. communis P450 genes were capable of modifying 5-hydroxy- or 5-ketocasbene, we used a transient expression system in Nicotiana benthamiana. A casbene synthase gene from J. curcas, CYP726A16 (SEQ ID NO 10) from R. communis and each of the other R. communis P450 genes were co-expressed via infiltration of young N. benthamiana plants by multiple combinations of Agrobacterium tumefaciens strains harbouring different expression vectors. Five days after infection, chloroform extracts of the leaves were analysed by GC-MS. An additional product was observed when CYP726A16 was co-expressed, and the relative levels of 5-ketocasbene were decreased (retention time 27.08 minutes in FIG. 1). CYP726A16 (SEQ ID NO 10) was therefore identified as a 5-ketocasbene oxidase.

Sequence CWU 1

1

8611602DNARicinus communis 1atgtcatcac aaccagcagt tttacaatcc aacttcctta acagaaacgt ccagccattt 60ctaaccattc cctctgcttc taccaagtat agtggcaccg cttgtttctc ttcctttccc 120tcagttaaat taaatgctag accaccgcaa gcatgcttct ccttgaataa aaacaacgat 180cactctaccc ccacctccat ccttcctcca ggaccttggc agttacctct gataggtaac 240atacaccagc tcgtcggcca tttaccccat agccgcctga gagacttggg aaaaatttat 300ggacctgtga tgagtgttca actcggagaa gtttctgctg tggtggtatc atcagtagaa 360gcagccaaag aagtgctgag gatccaggat gtcatcttcg ctgaaagacc tcctgtcctc 420atggcagaaa ttgtgctcta caatcgtcat gatattgttt ttgggtctta tggagatcac 480tggagacaac ttagaaagat ttgcacattg gagttgctta gtcttaagcg cgtgcaatct 540ttcaaatcag tcagggaaga cgagttttca aattttatca aatacctttc ttccaaagcc 600ggaactccag tcaatcttac tcacgacttg ttttctttaa caaattctgt tatgttaaga 660acctccatag gcaagaaatg caaaaaccaa gaagcaattt taagaatcat cgacagtgtt 720gttgcggcag gaggaggttt cagtgttgct gatgtgtttc cttccttcaa attgctccat 780atgattagcg gagacaggtc aagtcttgag gccttacgtc gagacacaga cgagatactt 840gacgaaatca ttaatgaaca caaagccggc aggaaggctg gtgatgatca cgacgaagct 900gaaaatcttc tggatgttct tttggatctt caggaaaatg gagacctgga agtcccttta 960accaacgaca gcatcaaagc aacaattctg gatatgtttg gggctggtag cgacacgtcc 1020tcaaaaacag cagaatgggc gttgtcggag ttgatgagac acccagaaat aatgaaaaag 1080gcacaggagg aagtgagggg agtctttggt gatagcggag aagtcgatga aacacgcctt 1140catgaattaa aatacttgaa gttagtgatc aaagaaacat tgagattaca tcctgccatt 1200ccattaattc caagagaatg cagggaaagg actaagatta atggatatga cgtatatccc 1260aaaaccaagg tccttgtcaa tatttgggca atctcaagag atccaaatat atggagcgaa 1320gcagataaat tcaaaccaga aagattcttg aacagttcac ttgattacaa gggtaattat 1380ctggaattcg ctccgtttgg ttctgggaaa agggtatgtc ctggtatgac attaggtata 1440actaatctag agctcatcct tgcaaaatta ctatatcatt ttgactggaa acttcctgat 1500ggaataacgc ctgagacgct tgacatgact gaatctgttg gtggcgcaat taaaagaaga 1560acagacctta acttgattcc tgttctatat cctacacatt ga 160221506DNARicinus communis 2atggagcagc aattgctatc gtttccagcc cttttgagct ttctcctttt aatcttcgtg 60gtactaagga tctggaagca atacacatac aaaggaaaat ccaccccacc ccctggacca 120tggagattac ctctcctagg caactttcac cagctagttg gtgctctacc ccaccaccgc 180ctaaccgaat tggccaaaat ttatggacca gttatgggta ttcaacttgg tcagatttct 240gttgtcatca tttcctcagt agaaacagcc aaagaagtgc ttaaaaccca gggtgagcag 300ttcgctgata gaacccttgt cctcgcagca aaaatggtac tttataatcg caacgacatt 360gtgtttggat tatacggaga ccactggaga caactgagaa aattatgcac attggagctg 420cttagtgcaa aacgtgtcca atcattcaag tccgtcagag aagaagagct ctcaaatttt 480gtaaagttcc ttcattccaa agcaggaatg cccgtcaatc ttactcacac gttgtttgct 540ttgacaaaca atattatggc aagaacatct gtaggtaaaa aatgcaagaa ccaggaagcc 600ctcttaagta ttatagatgg catcattgat gcatcaggag gttttactat tgcggatgtg 660tttccttccg ttcccttcct ccacaacata tctaatatga aatcgagatt ggagaagttg 720catcaacaag cggacgatat tcttgaagac atcataaatg aacacagagc caccaggaat 780cgtgatgatc tggaagaagc tgaaaatctc cttgatgttc ttttggatct tcaggaaaat 840ggaaaccttg aagtcccttt gaccaatgac agcatcaagg gagccattct ggatatgttt 900ggagctggta gcgacacatc ctcaaaaaca gccgaatggg cattgtcgga gttgatgagg 960cacccagaag aaatgaaaaa ggcacaagaa gaggtgaggc gaatttttgg tgaagatgga 1020agaattgatg aagctcgatt tcaagaattg aagttcttga atttagttat caaagaaact 1080ctgagattac atcctccagt agcactgatt ccaagagaat gtagggaaaa aactaaggtt 1140aatggatacg atatctatcc taaaactaga acactcatta atgtttggtc tatgggaagg 1200gatcccagtg tttggactga agctgagaag ttctacccgg aaaggtttct ggatggcaca 1260attgattata gaggtactaa ttttgaacta attccatttg gtgcaggaaa aaggatatgt 1320cctggtatga cattagggat agttaacctt gagcttttcc ttgcgcacct attgtatcat 1380tttgactgga agcttgttga tggagtggct cctgacactc ttgacatgag tgaaggtttt 1440ggcggtgcac ttaaaaggaa aatggacctt aacttggttc ccattccatt cactactttg 1500ccatag 150631494DNARicinus communis 3atggagaaac aaatcctatc atttccagtc ttattaagct ttgtcctttt tatcttaatg 60atcttaagga tatggaagaa aagcaaccca cctccaggac catggaaatt acctctgtta 120ggcaacattc accagctggc tggtggtgct ctgccccatc accgcctaag ggacttggca 180aaaacttatg gaccagttat gagtattcaa ctcggccaga tttctgctgt cgtaatttct 240tcagtacaag gagccaaaga agtgctgaag actcagggtg aggtgttcgc tgaaagaccc 300ctcatcatcg cagctaaaat tgtgctttat aatcgtaagg atattgtatt tggttcctac 360ggagatcact ggagacaaat gagaaagatc tgcaccttag agctactgag tgccaaacgc 420gtccagtcct ttagatccgt cagggaagaa gaggtctcag aatttgtgag atttcttcaa 480tccaaagcag gaacgccagt caatcttacc aagaccctgt ttgctttaac aaattctatc 540atggcaagaa catccatagg taaaaaatgt gaaaaacaag aaacgttttc aagtgttata 600gacggtgtca ctgaggtatc aggaggtttt actgttgctg atgtgtttcc ttctttggga 660ttccttcacg tcatcactgg tatgaagtct agactagaga ggttgcaccg agtagcagat 720cagatatttg aagatataat agctgaacac aaagccacca gggcactctc caagaacgat 780gatccgaaag aagcagctaa tcttctagat gttcttttgg atcttcagga acacggaaat 840cttcaggtcc ctttaaccaa cgacagcatc aaagcagcca ttctggaaat gtttggtgct 900gggagcgaca catcctcaaa aaccacagaa tgggccatgt cagagttgat gaggaaccca 960acagaaatga gaaaagcaca agaagaagtg aggcgagtgt ttggtgaaac agggaaggtt 1020gatgaaacac gccttcatga attaaagttt ttgaagttgg ttgtcaaaga aactytgaga 1080ttacatcctg ccatagcatt aattccaaga gaatgcaggg agaggactaa ggttgacggg 1140tatgacataa aacccacagc tagagtcctc gtcaatgtat gggcgattgg aagggatcct 1200aatgtttgga gtgaacctga aaggtttcac ccagaaaggt ttgtcaatag ttcagttgat 1260ttcaagggta ctgatttcga actacttcca tttggtgcag gaaagagaat atgccctggt 1320attttagtgg gtataactaa tttagagctt gttttagctc acctattata tcattttgat 1380tggaaatttg ttgatggagt gacgagtgat agttttgata tgagagaagg ttttggtggg 1440gcacttcata gaaaatcaga ccttatcttg attcccattc catttactcc ttag 149441683DNAEuphorbia peplus 4atggcaacac ttcaacattc aatgcaagca aatttacaga aacaaaatct tcatccattg 60ttaaacaaat cctttggtac tccgaatcgt ccttccttcg tctattcctc gaaatctgca 120tcccgaagaa caatccaagc atgtttatct tcaaattcac agcctggagg agtttgcccc 180atggctaatc gctttgcttc ctcaactact aatcaatctg ttactgagtc cagttcaaaa 240ccagatgaag aggatgaaaa ttctccggtt aaacttcctc cgggaccgtg gaaattacct 300ttgctcggta atattctcca gctcgttgga gacctaccgc atagtcgcct acgagattta 360gcgacagaat acggacctgt tatgagtgtt caactcggtg aagtttacgc tgtggtaatt 420tcatctgttg aagcagctag agaaattctc agaaatcagg atgtaaattt tgctgataga 480ccgccggtct tagtatccga aattgttctt tacaatcgtc aggatatcgt tttcggtgcc 540tacggagttc attggcgaca aatgagaaga ctatgcacga cggaattgct tagtataaaa 600cgtgttcagt cattcaaatt agtccgtgaa gaagaggttt cgaatttcat caaatcgctt 660tactcgaaag caggaaagcc cgttaatctt accgagggtt tgttcacgtt gacgaattcg 720ataatgttga ggacgtcgat cggtaagaaa tgcagggatc aagatacact tttgagagta 780attgaaggag ttgtggcggc cggaggaggt tttagcatcg cggatgtgtt tccttctgcc 840gtgttccttc acgatatcaa tggagacaag tcgggcctcc agagtttgcg gcgagatgct 900gatttgatac tcgacgagat cattggtgaa catagagcta ttagaggtac tggtggggat 960caaggtgaag ctgataatct tttagatgtt cttctggatc ttcaggaaaa tggaaatctt 1020gaagtccctt tgaatgatga tagcatcaaa ggggcaattc tggacatgtt tggggcagga 1080agtgacacct catcaaaatc aacagaatgg gcgttatcag aattactacg acacccagaa 1140gaaatgaaaa aagcacaaga cgaagtaaga cgagtttttg caaagaaagg aaatgtagaa 1200gaatcacaac ttgaccaatt aaaatacctg aaattagtca tcaaagaaac tctgagacta 1260cacccagcag tccctttaat cccaagagaa tgcagagaaa aaaccaaggt caatggatat 1320gatattctcc caaaaactaa ggcacttgtg aatatttggg caatctctag ggaccccaaa 1380atttggcctg aagcagataa atttatacct gaaagattcg aaaatagttc aattgatttt 1440aagggaaata acttggaatt cgctccgttt ggttcaggaa aaagaatatg tccaggcatg 1500gccttgggga taactaattt ggagcttttt ctggcacaac ttttgtatca tttcgattgg 1560aaacttgccg acgggaaaga cggtagggat cttgacatgg gtgaagttgt tggtggtgct 1620attaaaagaa aagtagacct caatttgatt cctattccat tccatacttc acctgcaaac 1680tga 168351677DNAEuphorbia fischeriana 5atgtcaacac ttcaaccttt tctgcaagca aattttcaga agcaaaattc tcatccattg 60ttaagcaaac ctttaggtac taccaatcat ccttccttca tttcttcgtc taaatcaaca 120aaaagatcaa ctattcaagc atgtttatct tcaaattcgc agcctggtgg agtttgcccc 180atggctaatc gctttgcttc ttcttcaact actaatcaat ctgttactca gtccagttca 240aacccagatg aaaaggacgg aaattcacag gttcagcttc ctccggggcc gtggaaatta 300cctttcatcg gtaatattct ccagctcgtc ggagatctac cccatcgtcg cctaagagat 360ttggcgacag tgtacggacc tgttatgagt gttcaacttg gggaagttta cgctgtgata 420atttcatcag ttgaagcagc taaagaagtt ctcagaacac aggatgtgaa tttcgctgat 480agaccgcccg tcctagtatc cgaaatcgtt ctctacaatc gtcaggatat cgtatttggt 540tcctacggag atcattggcg acagatgaga agaatctgca caatggaatt gcttagtata 600aaacgtgttc aatcattcaa atctgtccgg gaagaagagg tttcgaattt tatcaaattg 660ctttattcgg aagcaggaca gccggtcaat cttacggaga agttgtttgc tttgacgaat 720tcgattatgt tgaggacttc aattggtaag aaatgcaaag atcaagagac ccttttgaga 780gtaattgaag gagttgtggc ggccggagga ggtttcagtg ttgctgatgt gtttccttcc 840gccgtgttcc ttcatgatat caccggagac aagtctggcc ttgagagttt gcgccgagat 900gcagatttgg tacttgatga gatcatcgga gaacatagag ctaatagatc aggtaatggt 960ggtgatgaag gcgaagctga aaatcttttg gatgttcttt tggatcttca ggaaaatgga 1020aatcttgaag tccctttaaa cgatgacagc atcaaagcta caattctgga tatgtttggg 1080gcaggaagtg acacatcctc caaatctaca gaatgggcat tatcagagtt actaagacac 1140ccagtagcaa tgaagaaagc acaagatgaa gtaaggaaag ttttcagtga aaatggaaat 1200gtagaagaag aaggacttaa ccaattaaaa tacttgaaat tagtcatcaa ggaaactctc 1260agattacacc cagcaatccc tttaattcca agagaatgca gagaaaagac taaagtcaat 1320ggatatgaca ttcttccaaa aactaaggca cttgtgaata tttgggcaat ttccagagat 1380ccaacaatat ggccagaagc agacaaattc atcccagaaa gatttgaaaa tagttcaatg 1440gatttcaaag gaaatcactg tgaatttgct ccatttggtt caggaaaaag gatatgccca 1500ggcatggctt tggggataac taatcttgaa cttttccttg cacaactgtt atatcatttt 1560gactggaaac ttaccgacgg aaaagaccct cgaaatcttg acatgagtga agtagtaggt 1620ggtgcaatta aaagaaaaat agatctcaat ttgattccta ttccattcca tccttaa 167761890DNAJatropha curcas 6atgtcgctgc aaccagcaat tttacaggga aatacctgta aacagtattt tcatccatta 60tcaagcatat cctctaccag atgggttggc aattgcaacc gtttcgcttt tctttctccg 120gctaagccaa ctgcaaacag agcaccgcaa gcgtctttat catcaaaact gcagccagta 180gttcgtctgc tgactaaatt ccctgcttct ggtttcttgg ccatgaatca atctgttgat 240caatttgctt caactaccac aagtcttacc aaaatattca acaaaatagg aaaacctatc 300caatcatctc catttcttgt aagcgttctt cttttgatgt ttatggcatc aaaaatacag 360aaccaacaag aagaagatga taactccata aatcttcctc caggaccatg gagattacct 420ttcataggta acattcacca acttgctggc cccggtctac cccatcaccg tctaacagac 480ttagccaaaa cttacggacc tgtaatgggt gttcaccttg gcgaagttta cgctgttgtt 540gtttcctccg cagaaacatc caaagaagta ttaagaacgc aggatacaaa tttcgctgaa 600agacctttag ttaatgcagc gaaaatggtc ctatataaca gaaacgacat tgtttttggg 660tcgtttggag atcaatggcg acaaatgaga aaaatctgca cattagaatt acttagtgta 720aaacgtgtgc agtcattcaa atcagtaaga gaagaagaga tgtcaagttt tattaaattt 780ctttcttcga aatctggttc gccggtaaat cttacccatc atctgtttgt tttgacaaac 840tatattattg caagaacttc cattggtaag aaatgtaaga atcaagaagc gcttcttaga 900attatagacg acgtcgttga ggcgggagct ggatttagtg ttactgatgt ctttccatcg 960tttgaagcgc ttcatgtgat tagtggagat aagcataaat ttgataaatt gcatagagaa 1020actgataaga tacttgaaga tatcataagt gaacataaag ccgacagggc agtatcttcc 1080aagaaaagtg atggtgaagt tgagaatctt cttgatgttc ttttggatct tcaagaaaat 1140ggaaaccttc aatttccctt aacaaatgat gccatcaaag gagccattct ggatacattt 1200ggcgcaggca gcgacacatc ctcaaaaaca gcagaatgga cattatcgga gctgatcagg 1260aacccagaag caatgagaaa agcacaagca gaaataagga gagttttcga tgaaacagga 1320tatgttgatg aagacaaatt tgaggaatta aaatacctga aactagttgt gaaggaaact 1380ttgagattac atcctgctgt gccattaatt ccaagagaat gcagaggaaa aactaagatt 1440aatgggtatg acattttccc caagaccaag gtattggtga acgtctgggc aatttcaaga 1500gatcctgcaa tttggccaga gcctgaaaag ttcaatccag aaagattcat cgataatccg 1560attgattata agagtattaa ctgcgagcta acaccttttg gtgcgggaaa gagaatttgc 1620cctggaatga cattagggat aacaaatctt gaacttttcc tggcaaattt gctatatcat 1680tttgattgga aacttcctga cgggaagatg ccagaggatc ttgatatgag tgaatcattt 1740ggtggagcaa ttaaaagaaa aacagatctg aagttgattc ctgttctggc gcgccctttg 1800actccaagaa acgccaacag tggcaacact ttcactacaa cagacgccga ctctcctgca 1860tcaatgtgcc cacacttaaa agcattatga 189071890DNAJatropha gossypifolia 7atgtcactgc aaccagcagt tttacaggca aatacctgta aacagtattt tcatccatta 60tcaagcatat cctctaccag atgggttggc aattgcaacc gtttcgcttt cctttctccg 120gctaagccaa ctgctaacag agcaccgcaa gcttctttat catcaaaact gcagccagta 180gttcgtctgc tgactagatt ccctgcttct ggtttcttgg ctatgaatca atctgtcaat 240caatttgctt caactacaac aagtcttgcc aaaatattcg acaaaatagg aaaacctatc 300caatcatctc catttcttct aagtgttctt cttttgatgt ttatggcatc aaaaatacag 360aaccaacaag aagaagataa taactccata aatcttcctc caggaccatg gagattacct 420ttcataggta acattcacca acttgctggc cccggtctac cccatcaccg tctaacagac 480ttggccaaaa cttatggacc tgtaatgggt gttcaccttg gcgaagttta cgctgttgtt 540gtttcctccg cagaaacatc taaagaagta ttaagaacac aggatacaaa tttcgctgaa 600agacctttgg ttaatgcagc gaaaatggtc ctatataaca gaaacgacat tgtttttggg 660tcgtatggag atcaatggcg acaaatgaga aaaatctgca cattggaatt acttagttta 720aaacgtgtgc agtcattcaa atcagtaaga gaagaagaga tgtcaagttt tattaaattt 780ctttgttcga aatctggttc gccggtaaat cttacccatc atctgtttgt tttgacaaac 840tatattattg caagaacttc cattggtaag aaatgtaaga atcaagaagc gcttcttaga 900gttatagacg acgtcgttga ggcaggagct ggatttagtg ttactgatgt ctttccatcg 960tttgaagccc ttcatgtgat tagtggagat aagcataaat ttgataaatt gcatagagaa 1020actgataaga tacttgaaga tatcataagt gaacataagg ccgacagggc agtatcttcc 1080aagaaaagtg atggtgaagc tgagaatctt cttgatgttc ttttggatct tcaagaaaat 1140ggaaatcttc aatttccctt aacaaatgat gccatcaaag gagccattct ggatacgttt 1200ggcgcaggca gcgacacatc ctcaaaaaca gcagaatgga cgttatcaga gttgatcagg 1260aacccaggag caatgagaaa agcacaagaa gaaataagga gagttttcga tgaaacagga 1320tatgttgatg aagacaaatt tgaggaatta aaatacctga aactagttgt gaaggaaact 1380ttgagattac atcctgctgt gccattaatt ccaagagaat gcagaggaaa aactaagatt 1440aatgggtatg acattttccc caagactaag gtcttggtga acgtctgggc aatttcaaga 1500gatcctgcaa tttggccaga gcctgaaaag ttcaatccag aaagattcat cgataatccg 1560attgattata agagtattaa ttgcgagcta acaccttttg gtgcaggaaa gagagtttgc 1620cctggaatga cattagggat aacaaatctt gaacttttcc tggcaaattt gctatatcat 1680tttgattgga aacttcctga cggaaagatg ccagaagatc ttgatatgag tgaatcattt 1740ggtggagcaa ttaaaagaaa aacagatctg aagttgattc ctgttctggc tcgtcctttc 1800aatccaacta acgccaacaa tggcaacact ttcactacaa cagacgccaa ctctccttca 1860tcaatgtgcc cacacttaaa agcattatga 189081503DNAEuphorbia peplus 8atggagcttc aatttcaaat cccctcttat ccagtccttt tctccttctt catcttcatc 60tttatactaa tcaaaatagt aaaaaaacaa actcaaaact ctatctcccc tccgggacca 120tggaaatatc ctattttggg aaacattcca caattagctg ccggcggaaa gcttcctcat 180caccggttaa gagatttagc aaaaatccat ggtccggtga tgaacattca actcgggcaa 240gtcaagtcca ttgtcatttc ctccccggaa actgccaaag aggtgttgaa aactcaggat 300atccagttcg ccaataggcc tcttcttctc gctggagaaa tggttcttta caaccggaaa 360gatatcttgt acggtcttta cggggatcaa tggcgacaaa tgaggaaaat atgcactttg 420gagttactaa gtgctaagcg aattcaatca ttcaagtcag tgagagaaca agaagtcgag 480agcttcattc ggttgctccg atcaaaggcg gggtccccag tgaatctcac gacagcggtg 540tttgagttga cgaatactat tatgatgatc acgacgattg gtgagaaatg caagaatcaa 600gaggcggtga tgagtgtgat tgatcgagtg agtgaggctg cagcggggtt tagtgttgcc 660gacgtatttc catcgctaaa atttcttcat tatctgagtg gagaaaaggg gaagttgcag 720aagttgcata aggagactga tgagatactt gaagagatta taagtgaaca taaagctaat 780gctaagattg gaagccaagc tgataatctt ttggatgttt tgttggatct tcagaaaaat 840gggaatcttc aagttccatt gactaatgat aatatcaaag ctgccactct ggaaatgttc 900ggagctggta gcgacacatc ctccaaaact acagactggg caatggcgca actaatgagg 960aagccatcag caatgaaaaa ggcacaagaa gaggtcaggc gcgtctttag cgacacggga 1020aaggtagagg aatcaagaat ccaagaacta aaatacttga aattaatcgt taaagaaaca 1080ttgagattac atcctgccgt ggcattgatt cctagagaat gccgagagaa aactaaaatc 1140gagggatttg atgtttatcc taaaacaaaa attcttgtga atccttgggc gattggaaga 1200gatccgaaag tttggagtga ccccgaaagt ttcaacccag aaagatttga agatagttca 1260atagactata agggtacaaa tttcgaacta attccgtttg gtgcaggaaa aagaatatgt 1320ccaggaatga ctttgggcat agtgaattta gagcttttcc ttgcaaattt gttatatcat 1380tttgattgga aattcccaaa tggagtcaca gctgagaatc ttgatatgac tgaagccatt 1440ggtggtgcta tcaagagaaa actagacctt gagttgattc ctattccata cacattaagt 1500taa 150391605DNARicinus communis 9atgtcattgc aacctgcacc tgtttcacaa tccaactttc tttacaaaaa agttccacca 60atattacgtg cacccactac caagtctagt ggtagcagtc gttcctcttt cttttcctca 120tcagttaagt tagctgctag accaccgcaa ccgcaagctt gcttatcgtt gaacaaaaac 180gatgactcca atacctccgc ctccagtctt cctccaggac catggaagtt gcctctgcta 240ggtaacattc accagctagt cggagctctt ccccatcacc gcctaagaga cttggctaaa 300gcttacgggc ctgtcatgtc tgttaaactc ggagaagttt ctgctgtcgt aatttcatca 360gtagatgctg ccaaagaggt actcaggact caggatgtca acttcgcaga tagacccctt 420gtcctggcag cagaaattgt gctatataat cgtcaggaca ttgtatttgg gtcatatgga 480gagcaatgga gacaaatgag aaagatttgc acactggagt tgcttagtat taagcgcgtt 540caatctttca aatcggtcag ggaagaagag ctttctaatt ttatcagata ccttcactca 600aaagctggaa ctcctgttaa ccttactcat cacttgtttt ctttaacaaa ttccattatg 660tttagaattt ccattggtaa gaaatacaaa aatcaagatg cacttttgag agtcatcgat 720ggcgtcattg aagctggagg aggtttcagt actgctgatg tgtttccttc ctttaaattc 780cttcaccaca ttagcggaga gaagtctagc cttgaggact tgcaccgaga agcagactat 840atactagaag atatcataaa tgaacgcaga gcctccaaga ttaatggtga tgatcgaaac 900caagctgata atctcttaga tgttctttta gatcttcagg aaaacggaaa tctcgaaatc 960gctctaacca atgacagcat caaagcagcc attctggaaa tgtttggtgc tggcagcgac 1020acatcctcaa aaaccgctga atgggcactg tcagagttga tgaggcaccc agaagaaatg 1080gaaaaggcac aaacagaagt aaggcaagtc tttggtaaag atggaaattt ggatgaaact 1140cgacttcatg aattaaaatt cttgaagtta gttatcaaag aaaccttaag attgcatcct 1200ccagtagcat tgattccaag agaatgcagg caaaggacta aggttaatgg atatgacata 1260gatcccaaaa ctaaggttct cgtcaatgtt tgggcaattt

caagggatcc aaatatatgg 1320actgaagcag agaaattcta cccggaaaga tttcttcaca gttccattga ttacaagggc 1380aatcattgtg aatttgctcc atttggatct ggaaaaagaa tatgccctgg tatgaactta 1440ggtttaacta atcttgaact cttccttgcc caattactgt atcactttaa ctgggaattt 1500cctgatggaa taacacctaa gactcttgat atgacagaat ctgttggtgc tgcaattaaa 1560agaaagatag atcttaaatt gattcctgtt ctatttcatc cttaa 1605101572DNARicinus communis 10atggaaagtg ctgctcacca atcctacttc catatgttcc tggctatgga gcagcaaatc 60ctttcatttc cagtcctttt aagctttctt cttttcattt tcatggtatt aaaggtgtgg 120aagaaaaaca aggacaatcc aaactcgcct ccggggccaa ggaagttgcc tatcataggc 180aacatgcacc agctagctgg tagtgatctg ccccatcacc ctgtaacaga attgtcaaaa 240acttacggac caataatgag cattcaactt ggccaaatat cggccatcgt tatttcttca 300gtagaaggag ccaaagaagt gctgaagacc caaggtgagc tgttcgctga aagacctctt 360ctcttggcag cagaggcagt gctttataat cgtatggaca ttatattcgg tgcatacggt 420gatcattgga ggcaattgag aaaattgtgc accttagagg tgcttagtgc aaaacgaatc 480caatcattca gttcactcag acaagaagaa ctttcacatt ttgtccgctt cgttcattcc 540aaagcaggaa gcccaatcaa tctttccaag gtgctgtttg ctttaacaaa ttctatcatt 600gcaagaatcg ccacaggtaa gaaatgcaaa aaccaagatg ccctcttaga tcttatcgaa 660gacgttattg aggtatctgg aggtttcagc attgccgatt tatttccttc gttgaaattc 720attcacgtca tcactggtat gaagtctaga ctggaaaaat tgcatcggat aacagatcag 780gtacttgaag acatcgtcaa tgaacataaa gccaccaggg cagcctccaa gaatggtggt 840ggtgacgatg ataaaaaaga agccaaaaat cttctagatg ttcttttgga tcttcaagaa 900gatggaagcc ttcttcaagt tcctttaacc gacgatagca tcaaagcagc cattctggaa 960atgcttggcg gtggaagtga cacatctgca aaaaccacag aatgggcaat gtccgagatg 1020atgaggtacc cagaaacaat gaaaaaagca caagaagaag tgaggcaagc gttcggtaac 1080gcgggaaaga ttgatgaagc acgcatccat gagttgaaat acttgagggc agttttcaaa 1140gagactttga gattacatcc cccgctagcg atgataccga gagaatgcag gcaaaagact 1200aagattaatg gatatgatat ctatcccaaa actaaaacgt tgatcaatgt atatgcaatc 1260ggaagggatc ccaatgtttg gagtgaacct gagaagttct atccggaaag acatcttgat 1320agtccaatcg acttcagagg cagtaacttt gaactaattc cattcggtgc agggaaaaga 1380atatgtcctg gcatgacatt agctataact actgtggagc tgtttctcgc tcatcttcta 1440tactattttg actggaagtt tgttgatgga atgacggctg atactcttga tatgactgaa 1500tccttcggag cttcaattaa aagaaaaata gatctcgccc tggttcccat tcccgtcagt 1560cctttaccat aa 1572111521DNARicinus communis 11atggacaagc aaatcctatc atatccagtg ctcctgctga gcttcctcct ttttatctta 60atggtgttaa ggatatggaa gaaaagcaag ggcagcttca actcacctcc gggaccatgg 120aagttacctc tcataggcaa catgcaccaa ctcattactc ctctgcccca tcaccgcctg 180agagaattgg ccaaaactca tgggccagtt atgagtattc aacttggcca agtttcggcc 240gtcgtcattt cctcagtaga agcagctaag caagtgctca aaacccaagg tgaattgttc 300gctgaaagac ccagcatcct ggcatcaaaa atagtgcttt ataatggtat ggacataata 360tttgggtcat acggtgacca ctggagacaa atgaggaaaa tttgcacctt cgagctgctc 420agtccaaaac gcgtccagtc cttcagttcg gtcaggcaag aagaactttc caattatgtc 480aggttcctcc attccaatgc cggaagccca gtcaatctgt ccaagacctt gtttgcttta 540acaaattctg ttatcgcaaa aatcgcagta ggtaaggaat gcaaaaacca ggaagccctc 600ttaaatctta tcgaagaagt ccttgtggca gcaggaggtt tcactgttgc tgattcattt 660ccatcctata atttccttca cgtcatcact ggtatgaagt ctaacctgga gagattgcac 720cggataacag ataagatcct tgaagacatc ataactgaac ataaagcccc cagggcactc 780ttcaagcgtg gtggcgatga ggataaaaaa gaagccgaaa atcttttaga tgttcttttg 840ggtcttcagg aacatggaaa ccttaaagtc cctttaacca atgagagtgt caagtcagcc 900attctggaaa tgctttccgg cgggagcgac acatctgcaa aaacaataga atgggcaatg 960tcagagttga tgaggagtcc agaagcaatg gaaaaggcac aagaagaagt gagaagagtg 1020tttggtgaat tgggaaagat cgaggaatca cgcctccatg aattaaagta cttgaaatta 1080gttatcaaag agacgttgag attacatccc gcactagcct tgattccaag agaatgcatg 1140aaaagaacta agattgatgg atatgatatt tctcccaaaa ctaaagcctt ggtcaatgta 1200tgggcaatcg gaagagatcc cagcgtttgg aatgaacctg aaaagttttt cccggaaagg 1260tttgtcgaca gttcgattga tttcagaggt aataattttg aactacttcc atttggttca 1320ggaaagagga tatgtcctgg tatgacattg ggtttagcca ctgtagagct tttcctctcc 1380tacctgctgt attattttga ttggaagctt gtcggtggag tgcctcttga catgaccgaa 1440gcttttgctg cttcacttaa aagaaaaata gacctcgttt taattcccat ttcagtcggc 1500ccttcaccaa caacggactg a 1521121503DNARicinus communis 12atggagctgc aaatcttttc ttttccagtt cttctgagct tcttcctttt tattttcatg 60gtcttgagga tatggaagaa ttccaacaaa aaattgaacc cccctccagg accctggaag 120ctacctcttc taggaaatat tcatcaacta gccaccccat taccccatca acgcctcaga 180gatttggcca aaagttttgg cccagtgatg agcatcaaac ttggggaaat ttcagctgtg 240ataatttcat cagcagaagc agctcaagaa gtactaaaat ctcaggatgt cacctttgct 300gaaaggcctg catctcttgc ttcgaaatta gtactttaca atcgcaacga tattgtcttt 360ggggcttatg gaccacaatg gagacaaacg agaaaactgt gcgtgctgga gctgctaagt 420gccaaacgca ttcaatcatt caaatctgta agggaagaag aggtagacga gtttgccaag 480ttcgtttatt cgaaaggtgg gacgccagtc aaccttactg ataagctgtt tgctttaaca 540aatactatca tggcaaggac caccataggt aagaaatgca gaagtgaaaa agatctcttg 600agatgtattg atggcatctt tgaagaagca ggggttttca atcttgccga tgcgtttcct 660tcctttactt tgcttcctgt aatcactgga gccaagttta gacttgagaa attgcataga 720gagacagaca agatacttga agacatctta cgtgaacaca tagcttccaa ggctgcttca 780gacaaagata cccggaatct tttacatgtt cttttggatc ttcaggaaag tggaaacctt 840gaagtcccta ttaccaacga cagcatcaaa gctactattc tggatatatt tatcgcaggg 900agcgacacat ctgcaaaaac tgtagagtgg gcaatgtcag agttgatgcg aaacccaaaa 960ttaatgaaaa gagcacaaga agaagtgagg caagtctttg gtgagaaggg gtttgttgat 1020gaagcagggc ttcaggattt aaaattcatg aagttgattg ttaaagaaac tttgagattg 1080catcctgtct ttgcaatgtt tccaagagaa tgtagggaaa agacaaaagt caatggatat 1140gacatttctc ctaagactac aatgctcatc aatgtgtggg caattggaag ggatcctaat 1200gtctggcctg atgcagagaa gttcaaccca gaaagatttc ttgatagttc aattgattac 1260aaaggtaata atgctgaaat gattccattt ggtgcaggaa aaaggatatg tcttgggatg 1320acattaggta cacttattct agagcatttc cttgcaaaac tactctatca ttttgattgg 1380aaatttcctg atggagtaac ccctgagaat ttcgacatga cagaacatta tagtgcttcg 1440atgagaaggg aaaccgacct tatcttaatt cctattccag tccatccttt gcctacacac 1500taa 1503131503DNARicinus communis 13atggagcagc agatcctctc attttctgtc ctttcatgtc tcattctttt tctcttaatg 60gtcattaata ttttgaaaaa ttacagtaaa gattttaccc ctcctccagg accatggaag 120ctaccctttc ttggtaatat tcaccagcta gctaccgcac tacctcatcg tcgcctacga 180gatttggcca aaacttatgg tcctgtaatg agcattaagc ttggagaaat ttcttctatc 240gtaatctcat cagcagaagc agctcaagaa gtactgaaaa ctcaggatgt catatttgca 300gaaagaccaa tagctcttgc agccaaaatg gtgctttaca atcgtgatgg cattgtcttt 360ggttcctatg gcgagcaact caggcagtca aggaaaattt gcatattgga gctgttaagt 420gcgaaacgca ttcagtcatt caaatcagta agggaagaag aggtatctaa ctttatcagt 480ttccttaatt cgaaagcggg gacgcctgtc aaccttactg acaagctgtt tgcattaact 540aattctatca tggcaagaac ctcaattggt aagaaatgca agaatcaaga agatctctta 600agatgtattg ataacatttt tgaggaagca acagttttca gccctgccga tgcgtttcct 660tcctttactt tgcttcatgt aatcaccgga gtcaagtcta gacttgagag attgcatcaa 720caaacagaca agatacttga agacattgta agtgaacaca aagctactat ggctgctacc 780gagaatggag accggaatct cttgcatgtt cttttggatc ttcagaaaaa tggaaatctt 840caagttcctt taaccaacaa catcatcaaa gcaattattc tgactatatt tatcggaggg 900agtgacacat cggcaaaaac tgtagaatgg gtaatgtcag agttgatgca taaccctgaa 960ctgatgaaaa aagcacaaga agaagtgagg caagtctttg gtgaaaaggg atttgttgat 1020gaaacagggc tgcatgaatt aaaatttctc aagtcagttg ttaaggagac tctgaggttg 1080catcctgttt tcccattagt tcctagagag tgtagggaag taactaaggt gaatggatac 1140gacatttatc ctaaaactaa ggtgctcatc aacgtgtggg ctattggaag ggatcctgat 1200atctggtccg acgcagaaaa gttcaatcct gaaagatttc ttgaaagttc gattgactac 1260aaagatactt cttctgaaat gatcccattt ggtgcaggaa agagggtatg tcctggcatg 1320tcattaggcc tactaattct tgagcttttt cttgcacagc tactctatca ttttgactgg 1380aaacttcctg atagagttac tccggagaat tttgacatga gcgaatatta tagttcttca 1440ttgagaagaa aacatgacct tatcttgatt cccattcctg tccttccttt gcctatagaa 1500taa 1503141515DNARicinus communis 14atggagcagc aaattctctc atttccagtc cttctaagct tcttcctttt tatcttcatg 60gtcttgaaaa tacggaagaa atacaacaag aatatcagcc ctcctccagg accatggaag 120ctacctatcc taggtaacat tcaccagcta attagcccac taccccatca tcgcctaaga 180gacttggcca aaatttatgg gcctgtgatg agtattaaac ttggcgaggt ttctgctgtg 240gtaatttctt ccgcggaagc agcaaaagaa gtactaagaa cccaggatgt cagtttcgct 300gatagacccc ttggcctctc agcgaaaatg gtgctttata atggtaacga tgttgttttt 360ggttcttatg gagaacaatg gagacaactg agaaaaattt gcatattgga gctgcttagt 420gcaaaacgtg ttcagtcttt caaatcgtta agggaagcag aggtatcaaa ttttattcgt 480tttctttatt cgaaagcagg gaagcctgtc aaccttactc gcaagctgtt tgctttaaca 540aatactatta tggcgagaac ctccgtaggt aaacaatgtg aaaatcaaga agttctctta 600acagttatag ataggatttt tgaagtatca ggaggtttca ctgttgctga tgtttttcct 660tcatttactt tgcttcattt aattactggg atcaagtctc gacttgagag gttgcatcaa 720gacacagatc agattcttga agacatcata aatgagcata gagcttgtaa ggccgtatcc 780aagaatggtg atcagaatga agctgacaat cttttagatg ttcttttgga tcttcaggaa 840gatggaaacc ttcgagtccc tttaaccaat gacagcatca aaggaacaat tctggatatg 900ttcgctggtg ggagtgatac aacttcaaaa actgcagaat gggcagtgtc agaattgatg 960ttcaacccaa aagcaatgaa aaaagcacaa gaagaagtga ggcgagtctt tggccaaaaa 1020gggattgttg atgaatcagg atttcatgaa ttgaaattct tgaagctggt tattaaagaa 1080actctgagat tgcatccagc attgccctta attccaagag agtgtatgaa caagtctaag 1140atcaatggat acaacattga tccaaaaacc aaggttctga tcaatgtgtg ggcaattgga 1200agagattcta atatctggcc tgaagcagag aaattctatc cagaaagatt tctggatagt 1260tcaatagatt ataagggcac tagttatgag ttcattccat ttggtgcagg aaagaggata 1320tgtcctggca tgatgttggg tacaactaat cttgagcttt ttcttgccca actactatat 1380cattttgact ggcaattccc tgatggagtg acacctgaga cttttgacat gacagaggct 1440tttagcggtt caattaacag aaaatatgat cttaatttaa ttcccattcc gttccatccc 1500ttgcgtgtag aatag 1515151485DNAEuphorbia peplus 15atggatcttg aaatgccctc ttttctcatc ctctttagct ttctcatttt aacatggatc 60atatggaaga agatgaattc caactcagtt cctcctccgg ggccttggaa gttgcctctt 120ctaggcaaca ttcttcaatt acgcggcggt ccagccaatc accgcctctg cgatttggct 180aaagtgtacg gtccggtgat gagcattcaa ctaggccaga atcctgcggt tgtgctttct 240tcacctgaag cagccgaaca agtcttcaaa attcagggcg acctatttaa caaccgtcca 300ccagccctct caggtaaaat tttgttttac aataacagcg acatgacatt cacgccatac 360ggagatcatt ggcgacaaat tagaaaaatt accgtgatgg aattccttag tccgaaacga 420gttttatcgt ttcgatcaat acgtgaagaa caagtatcaa atttcatcaa attccttcgt 480acgaaaggcg gatctgcgat caatttcccg aaagccctct ccgagttgac aagtaggatt 540atgctaataa ccttacttgg taacaaagat gaaaatgagg aaattgtatt accagcgata 600gaaagagtga tagagactgc aaataaaggt gctgcttcgg atacctttcc gacgttaaaa 660ttcttcctcg actttctcac cggagacaag tcaagaatgg aaaaagtgtt acaagagacg 720gatatcatac ttgaagccat cataaatgaa cacaaaaaaa aaggtacctc agaacacaat 780tatttagatt ttctgctgga taaacagaaa aagggagacc tccaattgcc attaacaaac 840gaagccatca aagcaaatct tatggctatg tatgcgggcg ggagtgagac atcatctaaa 900ctcatagaat ggacattcgc ggagatgatg aagaaccctg aaacgatgcg aaaagcgcaa 960gaggaggtga gaagagtttt tggtgacaaa ggaaaagttg aggaatcaag aattcaagaa 1020ttgaaatact tgaaattagt tcttaaagaa tctttcagaa tacatcctcc gtcgaccttg 1080attacaagag tatgccaaga aagaacaaaa atcaacggtt acgacattca tcccaaaact 1140acaattctta tcaatgtgtg gacgatggga agagatccga atctttggaa agaacccgaa 1200aagttccatc cagaaagatt tgaagatagt aaaattgatt tcagaggagc aaatatggaa 1260ttaacaccat ttggtgtagg aaaaagaatg tgtcctggaa ttactctatc tacaacttat 1320gtggagtttc tgctggcaaa tttattgtat cattttgatt ggaaacttcc tgacggagtc 1380acaccggcca ctctcgatat gactgaaact ctgcgtggca cgctcaaaaa agtacaagat 1440cttattttga ttcccattcc attctccccc catcaaattg cttga 1485161512DNAEuphorbia peplus 16atggagttca ctttatcact taaaaaaatg gagcttcaaa tcctatcttt tccaatcctc 60ttcccctttc tccttttcat ccttaccttc ctcacaatta tacgccggaa aaagcagaat 120caagactgca attttcctcc gggaccatgg cagtttccga tcatcggaaa cattccacag 180ttgctcggag gtctcttcca ccaccgtctt tccgatctag ccaaaattca cggcccgata 240atgagcattc aacaaggaca aatcccagct gttgtaatca cttcagttga actagccaaa 300gaagttctca aaacccaagg tgaaatattc gccggaaggc ctcaagcccc ggccggagat 360gttttgtatt acgattgcaa ggatatcgtg ttcgccccgt acggggatca ctggagacag 420atgagaaaga tctgcacact ggagtttctc agtctgaaaa gagttcagtc tttcagatcc 480ttgagggaag aaaacgtttc aggttttatt aaattcctca gtactaaagc aaattcgtcg 540gtaaatctga cgaaatccgt cggtaatttg acaagttcaa ttatgcttat taaaacttat 600ggaaaatgtg atgaaaaatt gttggctatg ttggagaaag tgaaacaagc agttttagag 660acgagtagtg gtacggatct gtttccgtcg ctgaaattta ttcaatatat taatggtgag 720aagtcaagaa tggcaagggt gcaaaaggaa atggataaaa tgcttgaaca gattattaaa 780gaacataaag ttcaatataa gtttggagat aataatcttt tgcaggtttt gttggatcaa 840cagcaaaatg gagatcttga acttccattg acaaatgaaa tcatcaaagc caacattatg 900gaaatatttt ttggtggaag ccatacttct tctaaaactg tggagtgggc aatgtcggag 960ctaatgaaga acccagaatc aatgacaaaa gcacaagcag aggtgagaca agtcttcggt 1020gagacgggaa atgttgagga atcaagaatg caagaagtga aatacctcaa gtcagttatc 1080aaagaaactc taagattgca ccctccggcg acctttgtca caagagaatg cagacaaaaa 1140acaaaagtca atggttatga tatttacccg aagacagttg ttcatgtcaa tacatatgca 1200atctgtagag atcctgatgt ttgggttgaa cctgaaaagt tttatcctga aaggtttgaa 1260gaaaatcaaa tagattataa gggtgcacat atggaactaa taccgtttgg tgcagggaaa 1320agaatatgtc caggaatctc attagccaca acatacgttg aggttctcct tgcaaacttg 1380ttatatcatt ttgactggaa acttccatat ggaatgactc ctgccaatct tgacatgacg 1440gaaatgcatt gcggtgccct ggctagaaaa catgaccttt gcttgattcc aattccgttt 1500tctaaaattt ga 1512171494DNAEuphorbia peplus 17atgaaaatgc ttgagcaaat tccctctctt ccaatcatct ttcccttgat cctcttcatt 60ttcatgctca taaagttatg gcagaaaaaa aatcacaact caatccgtcc acccggtcca 120agaaaatatc cattcatagg caatcttcct caattacttg gtgctccagt tcatcaaaga 180ctagcagatt tagccaaaac ctacggcccg gtaatgagca ttcaacaagg ccagatcccg 240tccgtcgtgc tttcatcagt cgaaacggcc aaagaagtcc tcaaaatcca gggcgaagag 300tttgctggaa gaccctccac tatggctctt gatataactt tttacgacgc ccaagatatt 360gcctatactg aatacggtga ttattggaga caaatgaaga aaatttcgac gctagagttt 420ctaagcgcga aacgagttca ttctttcaaa ccagtccggg aagaacgaat ttcgatattc 480ctcgattccc ttcgttcaaa aggcagatct ccggtgaacc tgacgaggac aatttacggg 540ttaacgaatt cgatcattca aataacggcg tttgggaaga actgtaaaac gagagagaaa 600ttgaatcttg ataagattcg agaggcagtt gtggatggaa ctattgctga tttgtttccg 660agatttaaat ttattgcgag tttgagtgga gctaaatcaa gaatgatgag ggctcataag 720gagattgatg tggttcttga tgaaatcttg gaagaacata aggctaataa aagcaccatt 780ggaaataatc ttatgcaagt tcttttggat tttcagaaaa atggtggcct tcaagttcca 840ttgacaactg atcagattaa agctaacatg ctggaaatgt ttctttcagg gagccatacg 900tcgtcaaaaa ttacagagtg gacaatggcg gagctaatgc gagcaccaga aacaatgaga 960aaagcacaag aagaggtgag gcgagtcttc agcgaaattg gaagagtcga cgaatcaaga 1020atccatgaat gtaaatacgt gaaaaatgtc cttaaggaag cttttagatt acatcctccg 1080gggccaatgg ttgtaaggca atgcagagaa ataactaaag tcaatggtta cgagattctt 1140cctggcacta cagttttcat caatgtctgg gcaataggaa gagatccgga ggtttggact 1200gaacccgaaa agttcaaccc tgacagattc gaagacagtg aaattgatta cagaggcgca 1260catatggaac taataccatt tggtgcaggg aaaaggatat gccctggctt gacgttagcc 1320gtagtttacg ttgagctttt gcttgccaac ttattatatc atttcgattg ggaatttcca 1380gatggagtca cacaaaagac tcttgatatg accgaatttt tccgtggtac actcaaccga 1440aaagaagacc tttacttgat tcccgttcca tcttcttcat tgccaaagaa ttaa 1494181512DNAJatropha curcas 18atggaacacc aaatcctctc atttccagtt cttttcagtt tgcttctttt tattctcgtc 60ttactaaaag tatccaagaa attatacaaa catgactcta aacctccgcc tggaccatgg 120aaattacctt tcataggtaa ccttatccag ctcgtcggtg acacacctca tcgccggtta 180acagccttgg ccaaaactta cggacctgta atgggtgttc aacttgggca agttcctttc 240cttgtcgtgt cctcgccgga aacagctaaa gaagtaatga aaatacaaga tcccgttttt 300gcagaacgac cgcttgtcct tgcaggagaa atagtgcttt ataaccgaaa tgacatcgtt 360tttgggtcgt acggagatca gtggaggcaa atgagaaaat tttgcacgtt ggaattactt 420agcacaaaac gagtacagtc gttccgaccc gtgagagaag aagaagttgc atcttttgta 480aaacttatgc gtacaaagaa aggaactcct gttaatctta ctcatgcttt atttgcttta 540acaaattcta tagttgcaag aaatgctgtt ggtcataaaa gcaaaaacca agaggcgttg 600ttagaagtta ttgatgacat agttgtatca ggaggaggtg ttagtatagt tgatatcttt 660ccttccctac aatggcttcc tactgccaag agggaaagat caagaatttg gaaattgcac 720caaaatacag atgagattct cgaagatatc ttacaagagc atagagctaa aagacaggcg 780acagcttcca agaattggga taggagcgaa gctgataatc ttcttgatgt tcttttggat 840cttcaacaga gcggaaatct tgatgttcct ttaactgatg tcgccatcaa agcagcaatt 900attgatatgt ttggtgctgg aagcgacaca tcctcaaaaa ctgcagaatg ggcaatggct 960gagttgatga ggaatccaga agtaatgaag aaagcacaag aagaattgcg gaatttcttt 1020ggtgaaaatg gaaaggttga ggaagcaaaa cttcacgaat taaaatggat aaagttaatt 1080attaaagaaa cattgagatt acatcctgca gtggctgtaa ttccaagggt ttgtagggaa 1140aagactaaag tttatggata tgacgttgag cctggcactc gggttttcat taacgtgtgg 1200tcaatcggaa gagatcctaa agtttggagt gaagctgaga gattcaagcc ggagagattt 1260attgatagcg caattgatta caggggtctt aattttgaac tgattccatt tggagcagga 1320aaaagaatat gccctggaat gaccttagga atggctaatc tggagatttt ccttgcaaac 1380ttgctatatc attttgactg gaaatttcct aaaggagtaa ctgcagaaaa tcttgacatg 1440aatgaagctt ttggaggagc tgtcaaaaga aaagtagacc ttgaattgat ccccattcca 1500ttccgtccct aa 1512191512DNAJatropha curcas 19atggaacaac aaatcctctc ttttccagtt cttttcagtt tccttctttt tcttctggtc 60ctattaaaag tatctaagaa attatccaaa catgattcca actctcctcc aggaccatgg 120aaattacctt tcttaggtaa tattctccag ctcgctggtg atctccctca ccgccgaata 180acggagttgg ccaaaaaata cggaccggta atgagtatta aacttggtca gcatccttat 240cttgttgttt cttcgccgga aacagccaaa gaagtaatga gaacccaaga tcccattttc 300gctgatcgac cgcttgtcct tgcgggagaa ttagtgcttt acaaccgaaa tgacataggt 360tttgggctgt acggagatca atggagacaa atgagaaaat tttgcgcatt ggaattactt 420agcacaaaac gagtacagtc gtttcgatcc

gtaagagaag aagaaattgc agagtttgta 480aaatctctgc gatcaaaaga aggaagttct gttaatctga gtcatacttt atttgcttta 540acaaactcta taattgcaag aaatactgtc ggccataaaa gcaaaaatca agaagcgttg 600ctgaaaatta ttgatgatat agttgagtca ctgggaggtc tcagtacagt tgatatcttt 660ccttccttaa aatggctacc ttcagtcaaa agggaaaggt caagaatttg gaaattgcat 720tgtgaaacag atgagattct tgaaggtatc ttagaagagc ataaagcgaa caggcaggcc 780gcagctttca agaacgacga tgggagccaa gctgataatc ttcttgatgt tcttttggat 840cttcagcaaa atggaaatct tgaagttcct ttaactgacg tcaacatcaa agcagtaatc 900cttggtatgt ttggcgctgg aagcgacaca tcctccaaaa caacagaatg ggcaatggcg 960gagttgatga aaaatccgga aataatgaaa aaggcacaag aagaattgcg gagtttgttt 1020ggtgaaagtg gatacgttga tgaagcaaaa cttcacgaaa taaaatggtt gaagttaatt 1080attaatgaaa cattgagatt acatcctgca gttacattaa ttccaaggct ttgcagggaa 1140aagaccaaag ttagtggata tgacgtttat cctaatacta gggttttcat aaatacatgg 1200gcaatcggaa gagatcctac aatttggagt gaacctgaga aattcgttcc ggagagattt 1260attgatagtt caattgatta taggggcaac cattttgaat atactccatt tggtgcagga 1320agaagaatat gccctggaat ggcattcggt atggttaatc tagagatttt ccttgcaaat 1380ttgctatatc attttgactg gaaacttcct aaaggaataa cttcggagaa tcttgacatg 1440actgagaatt ttggaggagt tatcaaaaga aaacaagacc ttgaattgat tcccgcacca 1500ttccgtcctt aa 1512201509DNAJatropha curcas 20atggaacagc aaatcctctc agtttcagtt ctttccagtt tcgttctttt tcttttcgtc 60ttattaaaag tatccaagaa attatacaaa catgattcta accctccgcc aggaccatgg 120aaattacctt tcttaggtaa tatcctccag ctcgccggcg acgcacctca tcaccggttt 180gcggagttgg ccagaactta tggaccggta atgggtatta aactcggtga aattcccttt 240cttgttgttt cctcgccgga agcagccaaa gaagtgatga aaatacaaga tcccatcttt 300gcagaacgag cgcttgtctt tgcaaatgat gtgttgaact ataaccgtaa cgttatggtt 360tttgggtcat acggatatca atggaggcaa ttgagaaaat tttgtacgtt ggcattactg 420agcgcaaaac gagtacagtc gtttcaatca gtaagaaaag aagaaatggc tgattttgta 480aactttctgc gttccaaaga aggaagttct gttaatctta ctcatactat atttgctttt 540acaaattcta taattgcaag aaatgctgtt ggtcataaaa ccaaaaatca agaaacgttg 600ttaacatgta ttgatggtat tatttatact ggaggagtaa atatagctga cgtgtttcct 660tccttaaaat ggcttccttc agtcaagagg gaaaaatcta gagttatgaa attgcattat 720gaaacagata agatcctgga agatatctta caagagcata aagcaaacaa gcaggcgtgg 780gtttccgagg atggcgatgg gaggaaagct ggcaatttcg ttgatgttct tctggacctt 840caacaaagtg gaaatcttga ttttccctta actgatgtca ccattaaagc atcaaccatc 900gatgcttttg tgggtggaag tgacacatcc tcaaaaacta cagaatgggc aatggcagag 960ttgatgagga aaccggaaat aatgaaaaaa gcgcaagaag aattgcggag tgtctttggt 1020gaaaaagggt acattgagga agcaaaactc caggaattaa aatggttgaa gttaattatt 1080aaagaaacaa tgagattaca tcctgtactt tcactacttc caagggtttg taagcaaaag 1140actaaagtta gtggatatga tgtttatcct ggtactcaag ttctggttaa tgtatgggca 1200ctcggaagag atcctaaaca ttggagtgaa cctgaaaaat tcaatcccga gagatttatt 1260gatagttcaa tcgattatct gggaaatcat tttgaatatc ttccatttgg tgcaggaaaa 1320agagtatgcc ctggaattgc attaggtatg gttcatatgg aaaatttcct cgcaaatttg 1380ctctttcatt ttgactggaa atttcctaaa ggaattactg cagagaatct tgacatgacc 1440gatgcttttg gaggagttat gaagagaaaa gtagaccttg aactgattcc cattccatac 1500catccttaa 1509211512DNAJatropha curcas 21atggaacatc aaatcctctc atttccagct cttttcagtt tccttctttt tcttctggtc 60ttattaaaag tatccaagaa attatacaaa catgattcta accctccacc cggaccatgg 120aaattacctt tcttaggtaa cattctccag cttgccggcg acacatttca tagacggtta 180acagagttgg ctaaaactca tggcccggta atgagtatta atgtcggtca gattccttat 240gttgtcgttt cttccccgga aacagccaaa gaagtaatga aaattcaaga tccagttttc 300gccgaccatc cggttgtcct tgcagcagaa gtaattcttt atagcccata cgacatcttt 360tttgcgccct acggagatca cttgaaacaa atgagaaaat tttgcacggt cgaattactt 420agcacaaaac gagtacagtc gtttcgatct gtgagagaag aagaagttgc agattttgta 480aaatttctgc gttcaaaaga gggaagttct gttaatctta ctcatacttt atttgctttg 540acaaattcta tagttgcaag aactgctgtt ggtcatagaa gcaaaaatca agaaggattg 600ttaaaagtta ttgatgaagc agttttagct tcatcaggtg ttaatatagc tgatatcttt 660ccttccttac aatggcttcc ttcagtcaaa agggaaaggt ctagaatttg gaaaacgcat 720cgtgaaacag ataagattct cgaagatgtt ttgcaagagc atagagctaa caggaaggcg 780gcagttccca agaatggaga tcagagccaa gctgataatc ttcttgatgt tcttttggat 840cttcaagaaa gtggaaatct tgatgttccc ttacctgatg ccgccatcaa aggaacaatc 900atggaaatgt ttggggctgg cagcgacacg tcctcaaaaa cagtagaatg ggcaatggca 960gagttgatga ggaatccaga agtaatgaga aaagcacaag aagaattgcg gagtttcttt 1020ggtgaaaatg gagaggttga ggatgcaaaa attcaggaat taaaatgttt aaagttaatt 1080attaaagaaa cattgagatt acatcctcca ggtgcagtaa ttccaaggct ttgtagggaa 1140agaactaaag tcgctggata cgacatttat cctaatacta agattttcgt taatacatgg 1200gcaattggaa gagatcctga aatttggagt gaagctgaga aattcaatcc cgacagattt 1260attgacagtt caattgatta taagggtaac aattttgaac tgattccatt tggtgcagga 1320agaagaatat gccccggaat tacattagct tcagctaata tggaactttt ccttgcaaac 1380ttgctatatc attttgactg gaaatttcct caaggaataa cagcagagaa tctcgacatg 1440aatgaatgtt ttggaggagc tgtcaaaaga aaagtagacc ttgaactcat tcctattcca 1500ttccgtactt aa 1512221500DNAJatropha curcas 22atgctctcat ttccagttat tttcagtttc cttcttttcc ttctcgtctt attaaaagta 60tccaaaaaat tatgcaaaga taattctatc cctccgccgg gaccatggca attacctttc 120ttgggtaaca ttttccagct cgcaggctac caatttcata tccggttaag cgagttgggc 180caaacttatg gaccagtaat gggtattaaa gtcggtcaag ttccttttct tatcgtttct 240tcgccggaaa tggccaaaga agtgttgaaa gtccaagatc ccactttcgt cgaccgaccg 300gttgtccttg cagcagaatt ggtgatgtat gggggccacg acatcgttta tgcgccatac 360ggagatcaat ggagacaaat gagaaaattt tgcacgttag agttacttag cacaaaacga 420gtgcaatcct ttcgatccgt aagagaagaa gaagctggag agtttgtaaa atttctactt 480tcaaaagagg gaagttctgt taaccttact catgctttat atgctttatc aaattctatg 540gttgcaagaa gtactgttgg tcataaaacc aaaaatcaag aagcgttatt aaacgttatt 600gatgatacag tttcaacagc ggcaggtact aatatagccg atatctttcc gtccttaaaa 660tggcttccta cagtcaaacg gcagatgtct agaatttgga aatctcattg tcaaacagat 720gagattcttg aaggtatctt aagagagcat agagctaaaa ggcagacggc agcttccaag 780aacggtgatc gggctgaagc cgataatctt cttgatgttc ttttggatct tcaacagaga 840ggagatcttg atgttccctt aactgatatc aacatcaaag gagcaatcct ggaaatgttt 900ggcgctggaa gcgacacatc tacaaaaact ttagaatggg caatgtcaga attgatgagg 960aacccaaaaa tgatgaaaaa agtacaacaa gaattgcgga gtttctttgg tgaaaatgga 1020aaagttgagg aagcaaaact tcaggaatta aaatggttaa agttaattat taaagaaaca 1080ttgagattac atcctccaat tgcagtaatt ccaaggcttt gtagggagag gactaaagtt 1140tgtggatatg acgtttatcc taataccagg gttttcgtta atgtctgggc aatgggaaga 1200gatcctaaaa tttggaatga agctgaaaaa ttcaatcctg agagatttat tgatagttca 1260attgattata ggggtaataa ttttgaactg attccatttg gtgcaggaaa aagaatatgc 1320cctggaatta cattagctat tgttcatgta gaaactgtcc ttgcaaactt gctatatcac 1380tttgactgga aatttcctga aggagtaact gcagagaatt ttgatatgaa tgaaactttt 1440gcaggaatta tccgaagaaa agtagacctt gaactgatcc ctgttgcatt ccgtccttaa 1500231488DNAJatropha curcas 23atggaccacc gaattctctc attcccattc ctaatgctaa gcttgcttct tcctttcgtt 60ttcgagttgt taaagatatg gaagaagagt aataataatc ctcctccagg accttggaga 120ttacctctga tcggtaacat tcaccagttg ggtgggcgtc atcaacccca tctccgcctt 180acagacttgg ccagaactta tggacccgtt atgcgcctgc agcttggcca aattgaagca 240gtagtcattt cctcagctga aacagccaaa caagttatga aaacccaaga aagccaattc 300cttggaagac cttctctttt agctgccgat atcatgcttt ataaccgtac agacatctct 360ttcgcccctt atggagatta ctggagacaa atgaaaaaaa ttgctgtcgt tgagctcctt 420agcgccaagc gtgtccaagc ctacaaatca gtcatggatg aggaagtttc caatttcatc 480aattttcttt attcaaaagc ggggtcgcct gtgaatctta ctaagacatt ctattcctta 540ggaaatggaa tcatcgcaaa aacatccatc ggcaaaaaat ttaagaaaca agaaaccttc 600ttaaaagtcg tagacaaagc cattagagta gcaggaggtt tcagtgtggg ggatgcgttt 660ccttccttta aattgattca cttgatcact ggaatcagct ccacactcca tacagctcat 720caagaggcag acgagattct tgaagaaatt ataagcgaac acagagccag taagactgct 780gatggtgatg actatgaagc cgataatatt cttggcgttc ttttggatat tcaagaacgt 840gggaaccttc aagtcccctt gaccacggac aatatcaaag ctatcattct ggacatgttt 900gccggtgcaa gtgacacatc gttaacaact gcagaatggg caatggcaga aatggtaaag 960catccaagaa taatgaagaa agcacaagac gaagttaggc ggactttgaa ccaagaagga 1020aacgtagcta atcttcttcc tgaactgaaa tatttgaaat tagttatcaa agaaaccttg 1080agattacatc ctccagtagc cttaattcct agagaatgtg atgggcgatg tgagcttaat 1140gggtacgatg ttaatcctaa aactaagatt cttgttaacg catgggcaat cggaagagat 1200cataatttat ggaatgatcc tgaaagattt gatccggaga gatttcttga caattcaagt 1260gatttcaggg gaaccgactt caaattcatt ccatttggcg ccggaaagag gatttgtcct 1320ggcataacca tggctataac tattattgag gtcctgcttg cacaattgct ctaccatttt 1380gattggaaac ttcctgatgg agctaaacca gaaagtcttg acatgtctga tacatttggt 1440ctcgtagtta agagaaggat agatctcaat ttgattccaa tcccatag 1488241497DNAJatropha curcas 24atggagtatc aaatcctctc atctccaacc cttatagcct tgttggtttt tgtggcgaca 60gtggtgataa aattatggaa gagacccaca atagctaaca acaatcctcc accaggacct 120tggaagttgc ctctgatagg caaccttcat aatttgtttg gccgtgatca gccacaccac 180cgcctccgag atttggccgg aaagtatgga gccgtaatgg gttttcagct tggacaggtt 240cccactgttg taatatcctc ggcagaaata gccaaacaag tcttaaaaac ccatgagttc 300caattcatcg acagaccctc tctcttggct gccgatatcg tgctttataa tcgttctgac 360attatatttg ccccttacgg agactactgg agacaaatca agaaaattgc catactcgag 420ctgcttagtt caaagcgcgt gcagtcattc aaatcagtga gagaagagga ggtctccagt 480ttcttcaagt tcttatattc aaaagctgga tcgcctgtca atcttagtcg gactctcttg 540tctttaacta atgggatcat agccaaaact tccataggta agaaatgcaa aagacaggaa 600gaaatcattg cagttataac ggatgccatt aaagcaacag gaggtttcag cgtcgccgat 660gtttttccct cctttaaatt tcttcacatt attaccggca tcagctctac tatccgcagg 720attcatcgag aggcagatac gattcttgaa gaaattatgg acgaacacaa agccaacaac 780gaatcaaaga atgaacccga taacattctg gatgttcttt tggatattca acagcgagga 840aaccttgaat tccccctcac cgctgacaac atcaaagcta tcattctgga aatgtttgga 900gctgcgagtg acacatcttc cgtgaccatt gaatgggcaa tgtctgaaat gatgaagaac 960ccatggacga tgaaaaaagc tcaagaagaa gtaagggagg tatttaatgg aacaggtgac 1020gtcagcgaag caagccttca agaattacaa tatttgaagt tagttatcaa agaaactcta 1080agattgcatc ctccgctcac cttaatccct agagaatgca atcagaaatg tcagattaat 1140gaatatgata tttatccaaa aaccagagtc cttgtcaatg catgggccat cggaagagat 1200cctaactggt ggactgatcc tgaaagattt gatccagaga gatttcgttg cggttcagtt 1260gatttcaaag gcactgactt tgagttcatc ccttttggtg ctggtaaaag aatgtgtccc 1320ggcataacca tggctatggc taacattgaa cttatacttg cacaactact gtaccatttt 1380aactgggaac ttcctggaaa agctaaacca gaaactctcg acatgtctga gagtttcggt 1440cttgcagtta aaagaaaagt cgagcttaac ttgattccga ccgcgtttaa tccttag 1497251512DNAJatropha curcas 25atggaacaac aaatcctctc ttttccagtt attttcaatt tccttctttt tcttctggtc 60ctattaaaag tatctaagaa attatccaaa catgattcga actctcctcc aggaccatgg 120aaattacctt tcttaggtaa ttttctccag ctcgctggtg atctccctca ccgccgaata 180acggagttgg ccaaaaaata cggaccggta atgagtatta aacttggtca gcatccttat 240cttgttgttt cttcgccgga aacagccaaa gaagtaatga gaacccaaga tcccattttc 300gctgatcgac cgcttgtcct tgctggagaa ttagtgcttt acaaccgaaa tgacataggt 360tttgggctgt acggagatca atggagacaa atgagaaaat tttgcgcatt ggaattactt 420agcacaaaac gaatacagtc gtttcgatcc gtaagggaag aagaaattgc agtgtttgta 480aaatctctgc gatcaaaaga aggaagttct gttaatctga gtcatacttt atttgcttta 540acaaactcta taattgcaag aaatactgtc ggccataaaa gcaaaaatca agaagcgttg 600ctgaaaatta ttgatgatat agttgagtca ctaggaggtc tcagcacagt tgatatcttt 660ccttccttaa aatggctacc ttcagtcaaa agggaaaggt caagaatttg gaaattgcat 720tgtgaaacag atgagattct tgaaggtatc ttagaagagc ataaagcgaa caggcaggcc 780gcagctttca agaacgacga tgggagccaa gctgataatc ttcttgatgt tcttttggat 840cttcaacaaa atggaaatct tcaagttcct ttaactgacg tcaacatcaa agcagtaatc 900cttggtatgt ttggcgctgg aagcgacaca tcctccaaaa ctacagaatg ggcaatggcg 960gagttgatga aaaatccgga aataatgaaa aacgcacaag aagaattgcg gagtttgttt 1020ggtgaaagtg gaaacgttga tgaagcaaaa cttcacgaaa taaaatggtt gaagttaatt 1080attaatgaaa cattgagatt acatcctgca gttacattaa ttccaaggct ttgcagggaa 1140aagactaaaa ttagtggata tgacgtctat cctaatacta gggttttcat aaatacatgg 1200gcaatcggaa gagatcctat aatttggact gaacctgaga aattcgttcc ggaaagattt 1260attgatagtt caattgatta caggggcaac cattttgaat atactccatt tggtgcagga 1320agaagaatat gccctggaat gacatttggt atggttaatc tagagatttt ccttgcaaat 1380ttgctatatc attttgactg gaaacttcct aaaggaataa cttcggagaa ccttgacatg 1440actgagaatt ttggaggagt tatcaaaaga aaacaagacc ttgaattgat tcccgtacca 1500ttccgtcctt aa 1512261512DNAJatropha curcas 26atggaagacc aaatcctctc atttcaagtt cttttcagtt tccttctttt tcttttcgtc 60ttattcaaag tatccaagaa attgtacaaa catggttcta accctccgcc cggaccactg 120aaattacctt tcttaggtaa tattctccag ctcgccggag atgtacctca ccgccggtta 180acagccttgg ccaaaactta cggacccgta atgggtatta aactcggtca gattcctttc 240cttgtcgtgt cctccccgga aacagctaaa gaagtaatga aaatacaaga tcccgttttc 300gcagaacgag cgcctctcct tgcaggagaa atagtgcttt ataaccgaaa cgacatcatt 360tttggattgt acggagatca gtggaggcaa atgagaaaaa tttgcacgtt ggaattactt 420agcgcgaaac gagtacagtc ctttcgatca gtgagagaag aagaagtcgc agatttagtc 480aaatttcttg gttcgaaaga gggaagtcct gttaatctta ctcatacttt attcgcttta 540gcaaattcta taattgcaag aaatacggtt ggtcagaaaa gcaaaaacca agaagcattg 600ctaagactta ttgatgatat aattgaatta acaggaagtg ttagtatagc tgatatattt 660ccttccttaa aatggcttcc ttcagtccaa agggataggt ctagaattag gaaattgcat 720tatgaaacag atgagatcct tgaagatatt ttacaagagc atagagctaa caggcaggct 780gcggcttcca ggaaaggcga tcggagggga gctgataatc ttcttgatgt tcttttgtat 840cttcaagaaa ctggaaatct tgatgttcct ttaactgatg tcgctatcaa agcagcaatc 900attgatatgt ttggagctgg aagcgacaca tcctcaaaaa ccgtagaatg ggcaatggct 960gagttgatga ggaatccaga aataatgaag aaagcacaag aagaattgcg gaatttcttt 1020ggtgaaaatg gaaaggttga cgaagcaaaa cttcaagaat taaaatggtt aaatttaatt 1080aataaagaaa cattgagatt acatcctgca gcagctgtag ttccaagggt ttgtagggaa 1140aggactaagg tgagtggata tgacgtttat cctggcactc gggttttcat taacgcatgg 1200gcaatcggaa gagatcctaa agtttggagt gaagctgaga aattcaaacc ggagagattt 1260attgatagtg caattgatta taggggtacc aattttgaac taattccatt tggagcagga 1320aaaagaatat gccctggaat gactctaggt atggctaatc tggagatttt cctggcaaac 1380ttgctatatc attttgactg gaaatttcct aaaggagtaa ctgcagaaaa tcttgacatg 1440aacgaagctt ttggagcagc tgtcaaaaga aaagtagacc ttgaattggt tcccattcca 1500ttccgtcctt aa 151227533PRTRicinus communis 27Met Ser Ser Gln Pro Ala Val Leu Gln Ser Asn Phe Leu Asn Arg Asn1 5 10 15Val Gln Pro Phe Leu Thr Ile Pro Ser Ala Ser Thr Lys Tyr Ser Gly 20 25 30Thr Ala Cys Phe Ser Ser Phe Pro Ser Val Lys Leu Asn Ala Arg Pro 35 40 45Pro Gln Ala Cys Phe Ser Leu Asn Lys Asn Asn Asp His Ser Thr Pro 50 55 60Thr Ser Ile Leu Pro Pro Gly Pro Trp Gln Leu Pro Leu Ile Gly Asn65 70 75 80Ile His Gln Leu Val Gly His Leu Pro His Ser Arg Leu Arg Asp Leu 85 90 95Gly Lys Ile Tyr Gly Pro Val Met Ser Val Gln Leu Gly Glu Val Ser 100 105 110Ala Val Val Val Ser Ser Val Glu Ala Ala Lys Glu Val Leu Arg Ile 115 120 125Gln Asp Val Ile Phe Ala Glu Arg Pro Pro Val Leu Met Ala Glu Ile 130 135 140Val Leu Tyr Asn Arg His Asp Ile Val Phe Gly Ser Tyr Gly Asp His145 150 155 160Trp Arg Gln Leu Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Leu Lys 165 170 175Arg Val Gln Ser Phe Lys Ser Val Arg Glu Asp Glu Phe Ser Asn Phe 180 185 190Ile Lys Tyr Leu Ser Ser Lys Ala Gly Thr Pro Val Asn Leu Thr His 195 200 205Asp Leu Phe Ser Leu Thr Asn Ser Val Met Leu Arg Thr Ser Ile Gly 210 215 220Lys Lys Cys Lys Asn Gln Glu Ala Ile Leu Arg Ile Ile Asp Ser Val225 230 235 240Val Ala Ala Gly Gly Gly Phe Ser Val Ala Asp Val Phe Pro Ser Phe 245 250 255Lys Leu Leu His Met Ile Ser Gly Asp Arg Ser Ser Leu Glu Ala Leu 260 265 270Arg Arg Asp Thr Asp Glu Ile Leu Asp Glu Ile Ile Asn Glu His Lys 275 280 285Ala Gly Arg Lys Ala Gly Asp Asp His Asp Glu Ala Glu Asn Leu Leu 290 295 300Asp Val Leu Leu Asp Leu Gln Glu Asn Gly Asp Leu Glu Val Pro Leu305 310 315 320Thr Asn Asp Ser Ile Lys Ala Thr Ile Leu Asp Met Phe Gly Ala Gly 325 330 335Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Ala Leu Ser Glu Leu Met 340 345 350Arg His Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Val Arg Gly Val 355 360 365Phe Gly Asp Ser Gly Glu Val Asp Glu Thr Arg Leu His Glu Leu Lys 370 375 380Tyr Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Ala Ile385 390 395 400Pro Leu Ile Pro Arg Glu Cys Arg Glu Arg Thr Lys Ile Asn Gly Tyr 405 410 415Asp Val Tyr Pro Lys Thr Lys Val Leu Val Asn Ile Trp Ala Ile Ser 420 425 430Arg Asp Pro Asn Ile Trp Ser Glu Ala Asp Lys Phe Lys Pro Glu Arg 435 440 445Phe Leu Asn Ser Ser Leu Asp Tyr Lys Gly Asn Tyr Leu Glu Phe Ala 450 455 460Pro Phe Gly Ser Gly Lys Arg Val Cys Pro Gly Met Thr Leu Gly Ile465 470 475 480Thr Asn Leu Glu Leu Ile Leu Ala Lys Leu Leu Tyr His Phe Asp Trp

485 490 495Lys Leu Pro Asp Gly Ile Thr Pro Glu Thr Leu Asp Met Thr Glu Ser 500 505 510Val Gly Gly Ala Ile Lys Arg Arg Thr Asp Leu Asn Leu Ile Pro Val 515 520 525Leu Tyr Pro Thr His 53028501PRTRicinus communis 28Met Glu Gln Gln Leu Leu Ser Phe Pro Ala Leu Leu Ser Phe Leu Leu1 5 10 15Leu Ile Phe Val Val Leu Arg Ile Trp Lys Gln Tyr Thr Tyr Lys Gly 20 25 30Lys Ser Thr Pro Pro Pro Gly Pro Trp Arg Leu Pro Leu Leu Gly Asn 35 40 45Phe His Gln Leu Val Gly Ala Leu Pro His His Arg Leu Thr Glu Leu 50 55 60Ala Lys Ile Tyr Gly Pro Val Met Gly Ile Gln Leu Gly Gln Ile Ser65 70 75 80Val Val Ile Ile Ser Ser Val Glu Thr Ala Lys Glu Val Leu Lys Thr 85 90 95Gln Gly Glu Gln Phe Ala Asp Arg Thr Leu Val Leu Ala Ala Lys Met 100 105 110Val Leu Tyr Asn Arg Asn Asp Ile Val Phe Gly Leu Tyr Gly Asp His 115 120 125Trp Arg Gln Leu Arg Lys Leu Cys Thr Leu Glu Leu Leu Ser Ala Lys 130 135 140Arg Val Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Leu Ser Asn Phe145 150 155 160Val Lys Phe Leu His Ser Lys Ala Gly Met Pro Val Asn Leu Thr His 165 170 175Thr Leu Phe Ala Leu Thr Asn Asn Ile Met Ala Arg Thr Ser Val Gly 180 185 190Lys Lys Cys Lys Asn Gln Glu Ala Leu Leu Ser Ile Ile Asp Gly Ile 195 200 205Ile Asp Ala Ser Gly Gly Phe Thr Ile Ala Asp Val Phe Pro Ser Val 210 215 220Pro Phe Leu His Asn Ile Ser Asn Met Lys Ser Arg Leu Glu Lys Leu225 230 235 240His Gln Gln Ala Asp Asp Ile Leu Glu Asp Ile Ile Asn Glu His Arg 245 250 255Ala Thr Arg Asn Arg Asp Asp Leu Glu Glu Ala Glu Asn Leu Leu Asp 260 265 270Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Glu Val Pro Leu Thr 275 280 285Asn Asp Ser Ile Lys Gly Ala Ile Leu Asp Met Phe Gly Ala Gly Ser 290 295 300Asp Thr Ser Ser Lys Thr Ala Glu Trp Ala Leu Ser Glu Leu Met Arg305 310 315 320His Pro Glu Glu Met Lys Lys Ala Gln Glu Glu Val Arg Arg Ile Phe 325 330 335Gly Glu Asp Gly Arg Ile Asp Glu Ala Arg Phe Gln Glu Leu Lys Phe 340 345 350Leu Asn Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Pro Val Ala 355 360 365Leu Ile Pro Arg Glu Cys Arg Glu Lys Thr Lys Val Asn Gly Tyr Asp 370 375 380Ile Tyr Pro Lys Thr Arg Thr Leu Ile Asn Val Trp Ser Met Gly Arg385 390 395 400Asp Pro Ser Val Trp Thr Glu Ala Glu Lys Phe Tyr Pro Glu Arg Phe 405 410 415Leu Asp Gly Thr Ile Asp Tyr Arg Gly Thr Asn Phe Glu Leu Ile Pro 420 425 430Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr Leu Gly Ile Val 435 440 445Asn Leu Glu Leu Phe Leu Ala His Leu Leu Tyr His Phe Asp Trp Lys 450 455 460Leu Val Asp Gly Val Ala Pro Asp Thr Leu Asp Met Ser Glu Gly Phe465 470 475 480Gly Gly Ala Leu Lys Arg Lys Met Asp Leu Asn Leu Val Pro Ile Pro 485 490 495Phe Thr Thr Leu Pro 50029497PRTRicinus communismisc_feature(359)..(359)Xaa can be any naturally occurring amino acid 29Met Glu Lys Gln Ile Leu Ser Phe Pro Val Leu Leu Ser Phe Val Leu1 5 10 15Phe Ile Leu Met Ile Leu Arg Ile Trp Lys Lys Ser Asn Pro Pro Pro 20 25 30Gly Pro Trp Lys Leu Pro Leu Leu Gly Asn Ile His Gln Leu Ala Gly 35 40 45Gly Ala Leu Pro His His Arg Leu Arg Asp Leu Ala Lys Thr Tyr Gly 50 55 60Pro Val Met Ser Ile Gln Leu Gly Gln Ile Ser Ala Val Val Ile Ser65 70 75 80Ser Val Gln Gly Ala Lys Glu Val Leu Lys Thr Gln Gly Glu Val Phe 85 90 95Ala Glu Arg Pro Leu Ile Ile Ala Ala Lys Ile Val Leu Tyr Asn Arg 100 105 110Lys Asp Ile Val Phe Gly Ser Tyr Gly Asp His Trp Arg Gln Met Arg 115 120 125Lys Ile Cys Thr Leu Glu Leu Leu Ser Ala Lys Arg Val Gln Ser Phe 130 135 140Arg Ser Val Arg Glu Glu Glu Val Ser Glu Phe Val Arg Phe Leu Gln145 150 155 160Ser Lys Ala Gly Thr Pro Val Asn Leu Thr Lys Thr Leu Phe Ala Leu 165 170 175Thr Asn Ser Ile Met Ala Arg Thr Ser Ile Gly Lys Lys Cys Glu Lys 180 185 190Gln Glu Thr Phe Ser Ser Val Ile Asp Gly Val Thr Glu Val Ser Gly 195 200 205Gly Phe Thr Val Ala Asp Val Phe Pro Ser Leu Gly Phe Leu His Val 210 215 220Ile Thr Gly Met Lys Ser Arg Leu Glu Arg Leu His Arg Val Ala Asp225 230 235 240Gln Ile Phe Glu Asp Ile Ile Ala Glu His Lys Ala Thr Arg Ala Leu 245 250 255Ser Lys Asn Asp Asp Pro Lys Glu Ala Ala Asn Leu Leu Asp Val Leu 260 265 270Leu Asp Leu Gln Glu His Gly Asn Leu Gln Val Pro Leu Thr Asn Asp 275 280 285Ser Ile Lys Ala Ala Ile Leu Glu Met Phe Gly Ala Gly Ser Asp Thr 290 295 300Ser Ser Lys Thr Thr Glu Trp Ala Met Ser Glu Leu Met Arg Asn Pro305 310 315 320Thr Glu Met Arg Lys Ala Gln Glu Glu Val Arg Arg Val Phe Gly Glu 325 330 335Thr Gly Lys Val Asp Glu Thr Arg Leu His Glu Leu Lys Phe Leu Lys 340 345 350Leu Val Val Lys Glu Thr Xaa Arg Leu His Pro Ala Ile Ala Leu Ile 355 360 365Pro Arg Glu Cys Arg Glu Arg Thr Lys Val Asp Gly Tyr Asp Ile Lys 370 375 380Pro Thr Ala Arg Val Leu Val Asn Val Trp Ala Ile Gly Arg Asp Pro385 390 395 400Asn Val Trp Ser Glu Pro Glu Arg Phe His Pro Glu Arg Phe Val Asn 405 410 415Ser Ser Val Asp Phe Lys Gly Thr Asp Phe Glu Leu Leu Pro Phe Gly 420 425 430Ala Gly Lys Arg Ile Cys Pro Gly Ile Leu Val Gly Ile Thr Asn Leu 435 440 445Glu Leu Val Leu Ala His Leu Leu Tyr His Phe Asp Trp Lys Phe Val 450 455 460Asp Gly Val Thr Ser Asp Ser Phe Asp Met Arg Glu Gly Phe Gly Gly465 470 475 480Ala Leu His Arg Lys Ser Asp Leu Ile Leu Ile Pro Ile Pro Phe Thr 485 490 495Pro30560PRTEuphorbia peplus 30Met Ala Thr Leu Gln His Ser Met Gln Ala Asn Leu Gln Lys Gln Asn1 5 10 15Leu His Pro Leu Leu Asn Lys Ser Phe Gly Thr Pro Asn Arg Pro Ser 20 25 30Phe Val Tyr Ser Ser Lys Ser Ala Ser Arg Arg Thr Ile Gln Ala Cys 35 40 45Leu Ser Ser Asn Ser Gln Pro Gly Gly Val Cys Pro Met Ala Asn Arg 50 55 60Phe Ala Ser Ser Thr Thr Asn Gln Ser Val Thr Glu Ser Ser Ser Lys65 70 75 80Pro Asp Glu Glu Asp Glu Asn Ser Pro Val Lys Leu Pro Pro Gly Pro 85 90 95Trp Lys Leu Pro Leu Leu Gly Asn Ile Leu Gln Leu Val Gly Asp Leu 100 105 110Pro His Ser Arg Leu Arg Asp Leu Ala Thr Glu Tyr Gly Pro Val Met 115 120 125Ser Val Gln Leu Gly Glu Val Tyr Ala Val Val Ile Ser Ser Val Glu 130 135 140Ala Ala Arg Glu Ile Leu Arg Asn Gln Asp Val Asn Phe Ala Asp Arg145 150 155 160Pro Pro Val Leu Val Ser Glu Ile Val Leu Tyr Asn Arg Gln Asp Ile 165 170 175Val Phe Gly Ala Tyr Gly Val His Trp Arg Gln Met Arg Arg Leu Cys 180 185 190Thr Thr Glu Leu Leu Ser Ile Lys Arg Val Gln Ser Phe Lys Leu Val 195 200 205Arg Glu Glu Glu Val Ser Asn Phe Ile Lys Ser Leu Tyr Ser Lys Ala 210 215 220Gly Lys Pro Val Asn Leu Thr Glu Gly Leu Phe Thr Leu Thr Asn Ser225 230 235 240Ile Met Leu Arg Thr Ser Ile Gly Lys Lys Cys Arg Asp Gln Asp Thr 245 250 255Leu Leu Arg Val Ile Glu Gly Val Val Ala Ala Gly Gly Gly Phe Ser 260 265 270Ile Ala Asp Val Phe Pro Ser Ala Val Phe Leu His Asp Ile Asn Gly 275 280 285Asp Lys Ser Gly Leu Gln Ser Leu Arg Arg Asp Ala Asp Leu Ile Leu 290 295 300Asp Glu Ile Ile Gly Glu His Arg Ala Ile Arg Gly Thr Gly Gly Asp305 310 315 320Gln Gly Glu Ala Asp Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Glu 325 330 335Asn Gly Asn Leu Glu Val Pro Leu Asn Asp Asp Ser Ile Lys Gly Ala 340 345 350Ile Leu Asp Met Phe Gly Ala Gly Ser Asp Thr Ser Ser Lys Ser Thr 355 360 365Glu Trp Ala Leu Ser Glu Leu Leu Arg His Pro Glu Glu Met Lys Lys 370 375 380Ala Gln Asp Glu Val Arg Arg Val Phe Ala Lys Lys Gly Asn Val Glu385 390 395 400Glu Ser Gln Leu Asp Gln Leu Lys Tyr Leu Lys Leu Val Ile Lys Glu 405 410 415Thr Leu Arg Leu His Pro Ala Val Pro Leu Ile Pro Arg Glu Cys Arg 420 425 430Glu Lys Thr Lys Val Asn Gly Tyr Asp Ile Leu Pro Lys Thr Lys Ala 435 440 445Leu Val Asn Ile Trp Ala Ile Ser Arg Asp Pro Lys Ile Trp Pro Glu 450 455 460Ala Asp Lys Phe Ile Pro Glu Arg Phe Glu Asn Ser Ser Ile Asp Phe465 470 475 480Lys Gly Asn Asn Leu Glu Phe Ala Pro Phe Gly Ser Gly Lys Arg Ile 485 490 495Cys Pro Gly Met Ala Leu Gly Ile Thr Asn Leu Glu Leu Phe Leu Ala 500 505 510Gln Leu Leu Tyr His Phe Asp Trp Lys Leu Ala Asp Gly Lys Asp Gly 515 520 525Arg Asp Leu Asp Met Gly Glu Val Val Gly Gly Ala Ile Lys Arg Lys 530 535 540Val Asp Leu Asn Leu Ile Pro Ile Pro Phe His Thr Ser Pro Ala Asn545 550 555 56031558PRTeuphorbia fischeriana 31Met Ser Thr Leu Gln Pro Phe Leu Gln Ala Asn Phe Gln Lys Gln Asn1 5 10 15Ser His Pro Leu Leu Ser Lys Pro Leu Gly Thr Thr Asn His Pro Ser 20 25 30Phe Ile Ser Ser Ser Lys Ser Thr Lys Arg Ser Thr Ile Gln Ala Cys 35 40 45Leu Ser Ser Asn Ser Gln Pro Gly Gly Val Cys Pro Met Ala Asn Arg 50 55 60Phe Ala Ser Ser Ser Thr Thr Asn Gln Ser Val Thr Gln Ser Ser Ser65 70 75 80Asn Pro Asp Glu Lys Asp Gly Asn Ser Gln Val Gln Leu Pro Pro Gly 85 90 95Pro Trp Lys Leu Pro Phe Ile Gly Asn Ile Leu Gln Leu Val Gly Asp 100 105 110Leu Pro His Arg Arg Leu Arg Asp Leu Ala Thr Val Tyr Gly Pro Val 115 120 125Met Ser Val Gln Leu Gly Glu Val Tyr Ala Val Ile Ile Ser Ser Val 130 135 140Glu Ala Ala Lys Glu Val Leu Arg Thr Gln Asp Val Asn Phe Ala Asp145 150 155 160Arg Pro Pro Val Leu Val Ser Glu Ile Val Leu Tyr Asn Arg Gln Asp 165 170 175Ile Val Phe Gly Ser Tyr Gly Asp His Trp Arg Gln Met Arg Arg Ile 180 185 190Cys Thr Met Glu Leu Leu Ser Ile Lys Arg Val Gln Ser Phe Lys Ser 195 200 205Val Arg Glu Glu Glu Val Ser Asn Phe Ile Lys Leu Leu Tyr Ser Glu 210 215 220Ala Gly Gln Pro Val Asn Leu Thr Glu Lys Leu Phe Ala Leu Thr Asn225 230 235 240Ser Ile Met Leu Arg Thr Ser Ile Gly Lys Lys Cys Lys Asp Gln Glu 245 250 255Thr Leu Leu Arg Val Ile Glu Gly Val Val Ala Ala Gly Gly Gly Phe 260 265 270Ser Val Ala Asp Val Phe Pro Ser Ala Val Phe Leu His Asp Ile Thr 275 280 285Gly Asp Lys Ser Gly Leu Glu Ser Leu Arg Arg Asp Ala Asp Leu Val 290 295 300Leu Asp Glu Ile Ile Gly Glu His Arg Ala Asn Arg Ser Gly Asn Gly305 310 315 320Gly Asp Glu Gly Glu Ala Glu Asn Leu Leu Asp Val Leu Leu Asp Leu 325 330 335Gln Glu Asn Gly Asn Leu Glu Val Pro Leu Asn Asp Asp Ser Ile Lys 340 345 350Ala Thr Ile Leu Asp Met Phe Gly Ala Gly Ser Asp Thr Ser Ser Lys 355 360 365Ser Thr Glu Trp Ala Leu Ser Glu Leu Leu Arg His Pro Val Ala Met 370 375 380Lys Lys Ala Gln Asp Glu Val Arg Lys Val Phe Ser Glu Asn Gly Asn385 390 395 400Val Glu Glu Glu Gly Leu Asn Gln Leu Lys Tyr Leu Lys Leu Val Ile 405 410 415Lys Glu Thr Leu Arg Leu His Pro Ala Ile Pro Leu Ile Pro Arg Glu 420 425 430Cys Arg Glu Lys Thr Lys Val Asn Gly Tyr Asp Ile Leu Pro Lys Thr 435 440 445Lys Ala Leu Val Asn Ile Trp Ala Ile Ser Arg Asp Pro Thr Ile Trp 450 455 460Pro Glu Ala Asp Lys Phe Ile Pro Glu Arg Phe Glu Asn Ser Ser Met465 470 475 480Asp Phe Lys Gly Asn His Cys Glu Phe Ala Pro Phe Gly Ser Gly Lys 485 490 495Arg Ile Cys Pro Gly Met Ala Leu Gly Ile Thr Asn Leu Glu Leu Phe 500 505 510Leu Ala Gln Leu Leu Tyr His Phe Asp Trp Lys Leu Thr Asp Gly Lys 515 520 525Asp Pro Arg Asn Leu Asp Met Ser Glu Val Val Gly Gly Ala Ile Lys 530 535 540Arg Lys Ile Asp Leu Asn Leu Ile Pro Ile Pro Phe His Pro545 550 55532629PRTJatropha curcas 32Met Ser Leu Gln Pro Ala Ile Leu Gln Gly Asn Thr Cys Lys Gln Tyr1 5 10 15Phe His Pro Leu Ser Ser Ile Ser Ser Thr Arg Trp Val Gly Asn Cys 20 25 30Asn Arg Phe Ala Phe Leu Ser Pro Ala Lys Pro Thr Ala Asn Arg Ala 35 40 45Pro Gln Ala Ser Leu Ser Ser Lys Leu Gln Pro Val Val Arg Leu Leu 50 55 60Thr Lys Phe Pro Ala Ser Gly Phe Leu Ala Met Asn Gln Ser Val Asp65 70 75 80Gln Phe Ala Ser Thr Thr Thr Ser Leu Thr Lys Ile Phe Asn Lys Ile 85 90 95Gly Lys Pro Ile Gln Ser Ser Pro Phe Leu Val Ser Val Leu Leu Leu 100 105 110Met Phe Met Ala Ser Lys Ile Gln Asn Gln Gln Glu Glu Asp Asp Asn 115 120 125Ser Ile Asn Leu Pro Pro Gly Pro Trp Arg Leu Pro Phe Ile Gly Asn 130 135 140Ile His Gln Leu Ala Gly Pro Gly Leu Pro His His Arg Leu Thr Asp145 150 155 160Leu Ala Lys Thr Tyr Gly Pro Val Met Gly Val His Leu Gly Glu Val 165 170 175Tyr Ala Val Val Val Ser Ser Ala Glu Thr Ser Lys Glu Val Leu Arg 180 185 190Thr Gln Asp Thr Asn Phe Ala Glu Arg Pro Leu Val Asn Ala Ala Lys 195 200 205Met Val Leu Tyr Asn Arg Asn Asp Ile Val Phe Gly Ser Phe Gly Asp 210 215 220Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Val225 230 235 240Lys Arg Val Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Met Ser Ser 245 250 255Phe Ile Lys Phe Leu Ser Ser Lys Ser Gly Ser Pro Val Asn Leu Thr 260 265 270His His Leu Phe Val Leu Thr Asn Tyr Ile Ile Ala Arg Thr Ser Ile 275 280 285Gly Lys Lys Cys Lys Asn Gln

Glu Ala Leu Leu Arg Ile Ile Asp Asp 290 295 300Val Val Glu Ala Gly Ala Gly Phe Ser Val Thr Asp Val Phe Pro Ser305 310 315 320Phe Glu Ala Leu His Val Ile Ser Gly Asp Lys His Lys Phe Asp Lys 325 330 335Leu His Arg Glu Thr Asp Lys Ile Leu Glu Asp Ile Ile Ser Glu His 340 345 350Lys Ala Asp Arg Ala Val Ser Ser Lys Lys Ser Asp Gly Glu Val Glu 355 360 365Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Gln 370 375 380Phe Pro Leu Thr Asn Asp Ala Ile Lys Gly Ala Ile Leu Asp Thr Phe385 390 395 400Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Thr Leu Ser 405 410 415Glu Leu Ile Arg Asn Pro Glu Ala Met Arg Lys Ala Gln Ala Glu Ile 420 425 430Arg Arg Val Phe Asp Glu Thr Gly Tyr Val Asp Glu Asp Lys Phe Glu 435 440 445Glu Leu Lys Tyr Leu Lys Leu Val Val Lys Glu Thr Leu Arg Leu His 450 455 460Pro Ala Val Pro Leu Ile Pro Arg Glu Cys Arg Gly Lys Thr Lys Ile465 470 475 480Asn Gly Tyr Asp Ile Phe Pro Lys Thr Lys Val Leu Val Asn Val Trp 485 490 495Ala Ile Ser Arg Asp Pro Ala Ile Trp Pro Glu Pro Glu Lys Phe Asn 500 505 510Pro Glu Arg Phe Ile Asp Asn Pro Ile Asp Tyr Lys Ser Ile Asn Cys 515 520 525Glu Leu Thr Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr 530 535 540Leu Gly Ile Thr Asn Leu Glu Leu Phe Leu Ala Asn Leu Leu Tyr His545 550 555 560Phe Asp Trp Lys Leu Pro Asp Gly Lys Met Pro Glu Asp Leu Asp Met 565 570 575Ser Glu Ser Phe Gly Gly Ala Ile Lys Arg Lys Thr Asp Leu Lys Leu 580 585 590Ile Pro Val Leu Ala Arg Pro Leu Thr Pro Arg Asn Ala Asn Ser Gly 595 600 605Asn Thr Phe Thr Thr Thr Asp Ala Asp Ser Pro Ala Ser Met Cys Pro 610 615 620His Leu Lys Ala Leu62533629PRTJatropha gossypifolia 33Met Ser Leu Gln Pro Ala Val Leu Gln Ala Asn Thr Cys Lys Gln Tyr1 5 10 15Phe His Pro Leu Ser Ser Ile Ser Ser Thr Arg Trp Val Gly Asn Cys 20 25 30Asn Arg Phe Ala Phe Leu Ser Pro Ala Lys Pro Thr Ala Asn Arg Ala 35 40 45Pro Gln Ala Ser Leu Ser Ser Lys Leu Gln Pro Val Val Arg Leu Leu 50 55 60Thr Arg Phe Pro Ala Ser Gly Phe Leu Ala Met Asn Gln Ser Val Asn65 70 75 80Gln Phe Ala Ser Thr Thr Thr Ser Leu Ala Lys Ile Phe Asp Lys Ile 85 90 95Gly Lys Pro Ile Gln Ser Ser Pro Phe Leu Leu Ser Val Leu Leu Leu 100 105 110Met Phe Met Ala Ser Lys Ile Gln Asn Gln Gln Glu Glu Asp Asn Asn 115 120 125Ser Ile Asn Leu Pro Pro Gly Pro Trp Arg Leu Pro Phe Ile Gly Asn 130 135 140Ile His Gln Leu Ala Gly Pro Gly Leu Pro His His Arg Leu Thr Asp145 150 155 160Leu Ala Lys Thr Tyr Gly Pro Val Met Gly Val His Leu Gly Glu Val 165 170 175Tyr Ala Val Val Val Ser Ser Ala Glu Thr Ser Lys Glu Val Leu Arg 180 185 190Thr Gln Asp Thr Asn Phe Ala Glu Arg Pro Leu Val Asn Ala Ala Lys 195 200 205Met Val Leu Tyr Asn Arg Asn Asp Ile Val Phe Gly Ser Tyr Gly Asp 210 215 220Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Leu225 230 235 240Lys Arg Val Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Met Ser Ser 245 250 255Phe Ile Lys Phe Leu Cys Ser Lys Ser Gly Ser Pro Val Asn Leu Thr 260 265 270His His Leu Phe Val Leu Thr Asn Tyr Ile Ile Ala Arg Thr Ser Ile 275 280 285Gly Lys Lys Cys Lys Asn Gln Glu Ala Leu Leu Arg Val Ile Asp Asp 290 295 300Val Val Glu Ala Gly Ala Gly Phe Ser Val Thr Asp Val Phe Pro Ser305 310 315 320Phe Glu Ala Leu His Val Ile Ser Gly Asp Lys His Lys Phe Asp Lys 325 330 335Leu His Arg Glu Thr Asp Lys Ile Leu Glu Asp Ile Ile Ser Glu His 340 345 350Lys Ala Asp Arg Ala Val Ser Ser Lys Lys Ser Asp Gly Glu Ala Glu 355 360 365Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Gln 370 375 380Phe Pro Leu Thr Asn Asp Ala Ile Lys Gly Ala Ile Leu Asp Thr Phe385 390 395 400Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Thr Leu Ser 405 410 415Glu Leu Ile Arg Asn Pro Gly Ala Met Arg Lys Ala Gln Glu Glu Ile 420 425 430Arg Arg Val Phe Asp Glu Thr Gly Tyr Val Asp Glu Asp Lys Phe Glu 435 440 445Glu Leu Lys Tyr Leu Lys Leu Val Val Lys Glu Thr Leu Arg Leu His 450 455 460Pro Ala Val Pro Leu Ile Pro Arg Glu Cys Arg Gly Lys Thr Lys Ile465 470 475 480Asn Gly Tyr Asp Ile Phe Pro Lys Thr Lys Val Leu Val Asn Val Trp 485 490 495Ala Ile Ser Arg Asp Pro Ala Ile Trp Pro Glu Pro Glu Lys Phe Asn 500 505 510Pro Glu Arg Phe Ile Asp Asn Pro Ile Asp Tyr Lys Ser Ile Asn Cys 515 520 525Glu Leu Thr Pro Phe Gly Ala Gly Lys Arg Val Cys Pro Gly Met Thr 530 535 540Leu Gly Ile Thr Asn Leu Glu Leu Phe Leu Ala Asn Leu Leu Tyr His545 550 555 560Phe Asp Trp Lys Leu Pro Asp Gly Lys Met Pro Glu Asp Leu Asp Met 565 570 575Ser Glu Ser Phe Gly Gly Ala Ile Lys Arg Lys Thr Asp Leu Lys Leu 580 585 590Ile Pro Val Leu Ala Arg Pro Phe Asn Pro Thr Asn Ala Asn Asn Gly 595 600 605Asn Thr Phe Thr Thr Thr Asp Ala Asn Ser Pro Ser Ser Met Cys Pro 610 615 620His Leu Lys Ala Leu62534500PRTEuphorbia peplus 34Met Glu Leu Gln Phe Gln Ile Pro Ser Tyr Pro Val Leu Phe Ser Phe1 5 10 15Phe Ile Phe Ile Phe Ile Leu Ile Lys Ile Val Lys Lys Gln Thr Gln 20 25 30Asn Ser Ile Ser Pro Pro Gly Pro Trp Lys Tyr Pro Ile Leu Gly Asn 35 40 45Ile Pro Gln Leu Ala Ala Gly Gly Lys Leu Pro His His Arg Leu Arg 50 55 60Asp Leu Ala Lys Ile His Gly Pro Val Met Asn Ile Gln Leu Gly Gln65 70 75 80Val Lys Ser Ile Val Ile Ser Ser Pro Glu Thr Ala Lys Glu Val Leu 85 90 95Lys Thr Gln Asp Ile Gln Phe Ala Asn Arg Pro Leu Leu Leu Ala Gly 100 105 110Glu Met Val Leu Tyr Asn Arg Lys Asp Ile Leu Tyr Gly Leu Tyr Gly 115 120 125Asp Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser 130 135 140Ala Lys Arg Ile Gln Ser Phe Lys Ser Val Arg Glu Gln Glu Val Glu145 150 155 160Ser Phe Ile Arg Leu Leu Arg Ser Lys Ala Gly Ser Pro Val Asn Leu 165 170 175Thr Thr Ala Val Phe Glu Leu Thr Asn Thr Ile Met Met Ile Thr Thr 180 185 190Ile Gly Glu Lys Cys Lys Asn Gln Glu Ala Val Met Ser Val Ile Asp 195 200 205Arg Val Ser Glu Ala Ala Ala Gly Phe Ser Val Ala Asp Val Phe Pro 210 215 220Ser Leu Lys Phe Leu His Tyr Leu Ser Gly Glu Lys Gly Lys Leu Gln225 230 235 240Lys Leu His Lys Glu Thr Asp Glu Ile Leu Glu Glu Ile Ile Ser Glu 245 250 255His Lys Ala Asn Ala Lys Ile Gly Ser Gln Ala Asp Asn Leu Leu Asp 260 265 270Val Leu Leu Asp Leu Gln Lys Asn Gly Asn Leu Gln Val Pro Leu Thr 275 280 285Asn Asp Asn Ile Lys Ala Ala Thr Leu Glu Met Phe Gly Ala Gly Ser 290 295 300Asp Thr Ser Ser Lys Thr Thr Asp Trp Ala Met Ala Gln Leu Met Arg305 310 315 320Lys Pro Ser Ala Met Lys Lys Ala Gln Glu Glu Val Arg Arg Val Phe 325 330 335Ser Asp Thr Gly Lys Val Glu Glu Ser Arg Ile Gln Glu Leu Lys Tyr 340 345 350Leu Lys Leu Ile Val Lys Glu Thr Leu Arg Leu His Pro Ala Val Ala 355 360 365Leu Ile Pro Arg Glu Cys Arg Glu Lys Thr Lys Ile Glu Gly Phe Asp 370 375 380Val Tyr Pro Lys Thr Lys Ile Leu Val Asn Pro Trp Ala Ile Gly Arg385 390 395 400Asp Pro Lys Val Trp Ser Asp Pro Glu Ser Phe Asn Pro Glu Arg Phe 405 410 415Glu Asp Ser Ser Ile Asp Tyr Lys Gly Thr Asn Phe Glu Leu Ile Pro 420 425 430Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr Leu Gly Ile Val 435 440 445Asn Leu Glu Leu Phe Leu Ala Asn Leu Leu Tyr His Phe Asp Trp Lys 450 455 460Phe Pro Asn Gly Val Thr Ala Glu Asn Leu Asp Met Thr Glu Ala Ile465 470 475 480Gly Gly Ala Ile Lys Arg Lys Leu Asp Leu Glu Leu Ile Pro Ile Pro 485 490 495Tyr Thr Leu Ser 50035534PRTRicinus communis 35Met Ser Leu Gln Pro Ala Pro Val Ser Gln Ser Asn Phe Leu Tyr Lys1 5 10 15Lys Val Pro Pro Ile Leu Arg Ala Pro Thr Thr Lys Ser Ser Gly Ser 20 25 30Ser Arg Ser Ser Phe Phe Ser Ser Ser Val Lys Leu Ala Ala Arg Pro 35 40 45Pro Gln Pro Gln Ala Cys Leu Ser Leu Asn Lys Asn Asp Asp Ser Asn 50 55 60Thr Ser Ala Ser Ser Leu Pro Pro Gly Pro Trp Lys Leu Pro Leu Leu65 70 75 80Gly Asn Ile His Gln Leu Val Gly Ala Leu Pro His His Arg Leu Arg 85 90 95Asp Leu Ala Lys Ala Tyr Gly Pro Val Met Ser Val Lys Leu Gly Glu 100 105 110Val Ser Ala Val Val Ile Ser Ser Val Asp Ala Ala Lys Glu Val Leu 115 120 125Arg Thr Gln Asp Val Asn Phe Ala Asp Arg Pro Leu Val Leu Ala Ala 130 135 140Glu Ile Val Leu Tyr Asn Arg Gln Asp Ile Val Phe Gly Ser Tyr Gly145 150 155 160Glu Gln Trp Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser 165 170 175Ile Lys Arg Val Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Leu Ser 180 185 190Asn Phe Ile Arg Tyr Leu His Ser Lys Ala Gly Thr Pro Val Asn Leu 195 200 205Thr His His Leu Phe Ser Leu Thr Asn Ser Ile Met Phe Arg Ile Ser 210 215 220Ile Gly Lys Lys Tyr Lys Asn Gln Asp Ala Leu Leu Arg Val Ile Asp225 230 235 240Gly Val Ile Glu Ala Gly Gly Gly Phe Ser Thr Ala Asp Val Phe Pro 245 250 255Ser Phe Lys Phe Leu His His Ile Ser Gly Glu Lys Ser Ser Leu Glu 260 265 270Asp Leu His Arg Glu Ala Asp Tyr Ile Leu Glu Asp Ile Ile Asn Glu 275 280 285Arg Arg Ala Ser Lys Ile Asn Gly Asp Asp Arg Asn Gln Ala Asp Asn 290 295 300Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Asn Gly Asn Leu Glu Ile305 310 315 320Ala Leu Thr Asn Asp Ser Ile Lys Ala Ala Ile Leu Glu Met Phe Gly 325 330 335Ala Gly Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Ala Leu Ser Glu 340 345 350Leu Met Arg His Pro Glu Glu Met Glu Lys Ala Gln Thr Glu Val Arg 355 360 365Gln Val Phe Gly Lys Asp Gly Asn Leu Asp Glu Thr Arg Leu His Glu 370 375 380Leu Lys Phe Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro385 390 395 400Pro Val Ala Leu Ile Pro Arg Glu Cys Arg Gln Arg Thr Lys Val Asn 405 410 415Gly Tyr Asp Ile Asp Pro Lys Thr Lys Val Leu Val Asn Val Trp Ala 420 425 430Ile Ser Arg Asp Pro Asn Ile Trp Thr Glu Ala Glu Lys Phe Tyr Pro 435 440 445Glu Arg Phe Leu His Ser Ser Ile Asp Tyr Lys Gly Asn His Cys Glu 450 455 460Phe Ala Pro Phe Gly Ser Gly Lys Arg Ile Cys Pro Gly Met Asn Leu465 470 475 480Gly Leu Thr Asn Leu Glu Leu Phe Leu Ala Gln Leu Leu Tyr His Phe 485 490 495Asn Trp Glu Phe Pro Asp Gly Ile Thr Pro Lys Thr Leu Asp Met Thr 500 505 510Glu Ser Val Gly Ala Ala Ile Lys Arg Lys Ile Asp Leu Lys Leu Ile 515 520 525Pro Val Leu Phe His Pro 53036523PRTRicinus communis 36Met Glu Ser Ala Ala His Gln Ser Tyr Phe His Met Phe Leu Ala Met1 5 10 15Glu Gln Gln Ile Leu Ser Phe Pro Val Leu Leu Ser Phe Leu Leu Phe 20 25 30Ile Phe Met Val Leu Lys Val Trp Lys Lys Asn Lys Asp Asn Pro Asn 35 40 45Ser Pro Pro Gly Pro Arg Lys Leu Pro Ile Ile Gly Asn Met His Gln 50 55 60Leu Ala Gly Ser Asp Leu Pro His His Pro Val Thr Glu Leu Ser Lys65 70 75 80Thr Tyr Gly Pro Ile Met Ser Ile Gln Leu Gly Gln Ile Ser Ala Ile 85 90 95Val Ile Ser Ser Val Glu Gly Ala Lys Glu Val Leu Lys Thr Gln Gly 100 105 110Glu Leu Phe Ala Glu Arg Pro Leu Leu Leu Ala Ala Glu Ala Val Leu 115 120 125Tyr Asn Arg Met Asp Ile Ile Phe Gly Ala Tyr Gly Asp His Trp Arg 130 135 140Gln Leu Arg Lys Leu Cys Thr Leu Glu Val Leu Ser Ala Lys Arg Ile145 150 155 160Gln Ser Phe Ser Ser Leu Arg Gln Glu Glu Leu Ser His Phe Val Arg 165 170 175Phe Val His Ser Lys Ala Gly Ser Pro Ile Asn Leu Ser Lys Val Leu 180 185 190Phe Ala Leu Thr Asn Ser Ile Ile Ala Arg Ile Ala Thr Gly Lys Lys 195 200 205Cys Lys Asn Gln Asp Ala Leu Leu Asp Leu Ile Glu Asp Val Ile Glu 210 215 220Val Ser Gly Gly Phe Ser Ile Ala Asp Leu Phe Pro Ser Leu Lys Phe225 230 235 240Ile His Val Ile Thr Gly Met Lys Ser Arg Leu Glu Lys Leu His Arg 245 250 255Ile Thr Asp Gln Val Leu Glu Asp Ile Val Asn Glu His Lys Ala Thr 260 265 270Arg Ala Ala Ser Lys Asn Gly Gly Gly Asp Asp Asp Lys Lys Glu Ala 275 280 285Lys Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Asp Gly Ser Leu 290 295 300Leu Gln Val Pro Leu Thr Asp Asp Ser Ile Lys Ala Ala Ile Leu Glu305 310 315 320Met Leu Gly Gly Gly Ser Asp Thr Ser Ala Lys Thr Thr Glu Trp Ala 325 330 335Met Ser Glu Met Met Arg Tyr Pro Glu Thr Met Lys Lys Ala Gln Glu 340 345 350Glu Val Arg Gln Ala Phe Gly Asn Ala Gly Lys Ile Asp Glu Ala Arg 355 360 365Ile His Glu Leu Lys Tyr Leu Arg Ala Val Phe Lys Glu Thr Leu Arg 370 375 380Leu His Pro Pro Leu Ala Met Ile Pro Arg Glu Cys Arg Gln Lys Thr385 390 395 400Lys Ile Asn Gly Tyr Asp Ile Tyr Pro Lys Thr Lys Thr Leu Ile Asn 405 410 415Val Tyr Ala Ile Gly Arg Asp Pro Asn Val Trp Ser Glu Pro Glu Lys 420 425 430Phe Tyr Pro Glu Arg His Leu Asp Ser Pro Ile Asp Phe Arg Gly Ser 435 440 445Asn Phe Glu Leu Ile Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly 450 455 460Met Thr Leu Ala Ile Thr Thr Val

Glu Leu Phe Leu Ala His Leu Leu465 470 475 480Tyr Tyr Phe Asp Trp Lys Phe Val Asp Gly Met Thr Ala Asp Thr Leu 485 490 495Asp Met Thr Glu Ser Phe Gly Ala Ser Ile Lys Arg Lys Ile Asp Leu 500 505 510Ala Leu Val Pro Ile Pro Val Ser Pro Leu Pro 515 52037506PRTRicinus communis 37Met Asp Lys Gln Ile Leu Ser Tyr Pro Val Leu Leu Leu Ser Phe Leu1 5 10 15Leu Phe Ile Leu Met Val Leu Arg Ile Trp Lys Lys Ser Lys Gly Ser 20 25 30Phe Asn Ser Pro Pro Gly Pro Trp Lys Leu Pro Leu Ile Gly Asn Met 35 40 45His Gln Leu Ile Thr Pro Leu Pro His His Arg Leu Arg Glu Leu Ala 50 55 60Lys Thr His Gly Pro Val Met Ser Ile Gln Leu Gly Gln Val Ser Ala65 70 75 80Val Val Ile Ser Ser Val Glu Ala Ala Lys Gln Val Leu Lys Thr Gln 85 90 95Gly Glu Leu Phe Ala Glu Arg Pro Ser Ile Leu Ala Ser Lys Ile Val 100 105 110Leu Tyr Asn Gly Met Asp Ile Ile Phe Gly Ser Tyr Gly Asp His Trp 115 120 125Arg Gln Met Arg Lys Ile Cys Thr Phe Glu Leu Leu Ser Pro Lys Arg 130 135 140Val Gln Ser Phe Ser Ser Val Arg Gln Glu Glu Leu Ser Asn Tyr Val145 150 155 160Arg Phe Leu His Ser Asn Ala Gly Ser Pro Val Asn Leu Ser Lys Thr 165 170 175Leu Phe Ala Leu Thr Asn Ser Val Ile Ala Lys Ile Ala Val Gly Lys 180 185 190Glu Cys Lys Asn Gln Glu Ala Leu Leu Asn Leu Ile Glu Glu Val Leu 195 200 205Val Ala Ala Gly Gly Phe Thr Val Ala Asp Ser Phe Pro Ser Tyr Asn 210 215 220Phe Leu His Val Ile Thr Gly Met Lys Ser Asn Leu Glu Arg Leu His225 230 235 240Arg Ile Thr Asp Lys Ile Leu Glu Asp Ile Ile Thr Glu His Lys Ala 245 250 255Pro Arg Ala Leu Phe Lys Arg Gly Gly Asp Glu Asp Lys Lys Glu Ala 260 265 270Glu Asn Leu Leu Asp Val Leu Leu Gly Leu Gln Glu His Gly Asn Leu 275 280 285Lys Val Pro Leu Thr Asn Glu Ser Val Lys Ser Ala Ile Leu Glu Met 290 295 300Leu Ser Gly Gly Ser Asp Thr Ser Ala Lys Thr Ile Glu Trp Ala Met305 310 315 320Ser Glu Leu Met Arg Ser Pro Glu Ala Met Glu Lys Ala Gln Glu Glu 325 330 335Val Arg Arg Val Phe Gly Glu Leu Gly Lys Ile Glu Glu Ser Arg Leu 340 345 350His Glu Leu Lys Tyr Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu 355 360 365His Pro Ala Leu Ala Leu Ile Pro Arg Glu Cys Met Lys Arg Thr Lys 370 375 380Ile Asp Gly Tyr Asp Ile Ser Pro Lys Thr Lys Ala Leu Val Asn Val385 390 395 400Trp Ala Ile Gly Arg Asp Pro Ser Val Trp Asn Glu Pro Glu Lys Phe 405 410 415Phe Pro Glu Arg Phe Val Asp Ser Ser Ile Asp Phe Arg Gly Asn Asn 420 425 430Phe Glu Leu Leu Pro Phe Gly Ser Gly Lys Arg Ile Cys Pro Gly Met 435 440 445Thr Leu Gly Leu Ala Thr Val Glu Leu Phe Leu Ser Tyr Leu Leu Tyr 450 455 460Tyr Phe Asp Trp Lys Leu Val Gly Gly Val Pro Leu Asp Met Thr Glu465 470 475 480Ala Phe Ala Ala Ser Leu Lys Arg Lys Ile Asp Leu Val Leu Ile Pro 485 490 495Ile Ser Val Gly Pro Ser Pro Thr Thr Asp 500 50538500PRTRicinus communis 38Met Glu Leu Gln Ile Phe Ser Phe Pro Val Leu Leu Ser Phe Phe Leu1 5 10 15Phe Ile Phe Met Val Leu Arg Ile Trp Lys Asn Ser Asn Lys Lys Leu 20 25 30Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Leu Leu Gly Asn Ile His 35 40 45Gln Leu Ala Thr Pro Leu Pro His Gln Arg Leu Arg Asp Leu Ala Lys 50 55 60Ser Phe Gly Pro Val Met Ser Ile Lys Leu Gly Glu Ile Ser Ala Val65 70 75 80Ile Ile Ser Ser Ala Glu Ala Ala Gln Glu Val Leu Lys Ser Gln Asp 85 90 95Val Thr Phe Ala Glu Arg Pro Ala Ser Leu Ala Ser Lys Leu Val Leu 100 105 110Tyr Asn Arg Asn Asp Ile Val Phe Gly Ala Tyr Gly Pro Gln Trp Arg 115 120 125Gln Thr Arg Lys Leu Cys Val Leu Glu Leu Leu Ser Ala Lys Arg Ile 130 135 140Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Val Asp Glu Phe Ala Lys145 150 155 160Phe Val Tyr Ser Lys Gly Gly Thr Pro Val Asn Leu Thr Asp Lys Leu 165 170 175Phe Ala Leu Thr Asn Thr Ile Met Ala Arg Thr Thr Ile Gly Lys Lys 180 185 190Cys Arg Ser Glu Lys Asp Leu Leu Arg Cys Ile Asp Gly Ile Phe Glu 195 200 205Glu Ala Gly Val Phe Asn Leu Ala Asp Ala Phe Pro Ser Phe Thr Leu 210 215 220Leu Pro Val Ile Thr Gly Ala Lys Phe Arg Leu Glu Lys Leu His Arg225 230 235 240Glu Thr Asp Lys Ile Leu Glu Asp Ile Leu Arg Glu His Ile Ala Ser 245 250 255Lys Ala Ala Ser Asp Lys Asp Thr Arg Asn Leu Leu His Val Leu Leu 260 265 270Asp Leu Gln Glu Ser Gly Asn Leu Glu Val Pro Ile Thr Asn Asp Ser 275 280 285Ile Lys Ala Thr Ile Leu Asp Ile Phe Ile Ala Gly Ser Asp Thr Ser 290 295 300Ala Lys Thr Val Glu Trp Ala Met Ser Glu Leu Met Arg Asn Pro Lys305 310 315 320Leu Met Lys Arg Ala Gln Glu Glu Val Arg Gln Val Phe Gly Glu Lys 325 330 335Gly Phe Val Asp Glu Ala Gly Leu Gln Asp Leu Lys Phe Met Lys Leu 340 345 350Ile Val Lys Glu Thr Leu Arg Leu His Pro Val Phe Ala Met Phe Pro 355 360 365Arg Glu Cys Arg Glu Lys Thr Lys Val Asn Gly Tyr Asp Ile Ser Pro 370 375 380Lys Thr Thr Met Leu Ile Asn Val Trp Ala Ile Gly Arg Asp Pro Asn385 390 395 400Val Trp Pro Asp Ala Glu Lys Phe Asn Pro Glu Arg Phe Leu Asp Ser 405 410 415Ser Ile Asp Tyr Lys Gly Asn Asn Ala Glu Met Ile Pro Phe Gly Ala 420 425 430Gly Lys Arg Ile Cys Leu Gly Met Thr Leu Gly Thr Leu Ile Leu Glu 435 440 445His Phe Leu Ala Lys Leu Leu Tyr His Phe Asp Trp Lys Phe Pro Asp 450 455 460Gly Val Thr Pro Glu Asn Phe Asp Met Thr Glu His Tyr Ser Ala Ser465 470 475 480Met Arg Arg Glu Thr Asp Leu Ile Leu Ile Pro Ile Pro Val His Pro 485 490 495Leu Pro Thr His 50039500PRTRicinus communis 39Met Glu Gln Gln Ile Leu Ser Phe Ser Val Leu Ser Cys Leu Ile Leu1 5 10 15Phe Leu Leu Met Val Ile Asn Ile Leu Lys Asn Tyr Ser Lys Asp Phe 20 25 30Thr Pro Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Ile His 35 40 45Gln Leu Ala Thr Ala Leu Pro His Arg Arg Leu Arg Asp Leu Ala Lys 50 55 60Thr Tyr Gly Pro Val Met Ser Ile Lys Leu Gly Glu Ile Ser Ser Ile65 70 75 80Val Ile Ser Ser Ala Glu Ala Ala Gln Glu Val Leu Lys Thr Gln Asp 85 90 95Val Ile Phe Ala Glu Arg Pro Ile Ala Leu Ala Ala Lys Met Val Leu 100 105 110Tyr Asn Arg Asp Gly Ile Val Phe Gly Ser Tyr Gly Glu Gln Leu Arg 115 120 125Gln Ser Arg Lys Ile Cys Ile Leu Glu Leu Leu Ser Ala Lys Arg Ile 130 135 140Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Val Ser Asn Phe Ile Ser145 150 155 160Phe Leu Asn Ser Lys Ala Gly Thr Pro Val Asn Leu Thr Asp Lys Leu 165 170 175Phe Ala Leu Thr Asn Ser Ile Met Ala Arg Thr Ser Ile Gly Lys Lys 180 185 190Cys Lys Asn Gln Glu Asp Leu Leu Arg Cys Ile Asp Asn Ile Phe Glu 195 200 205Glu Ala Thr Val Phe Ser Pro Ala Asp Ala Phe Pro Ser Phe Thr Leu 210 215 220Leu His Val Ile Thr Gly Val Lys Ser Arg Leu Glu Arg Leu His Gln225 230 235 240Gln Thr Asp Lys Ile Leu Glu Asp Ile Val Ser Glu His Lys Ala Thr 245 250 255Met Ala Ala Thr Glu Asn Gly Asp Arg Asn Leu Leu His Val Leu Leu 260 265 270Asp Leu Gln Lys Asn Gly Asn Leu Gln Val Pro Leu Thr Asn Asn Ile 275 280 285Ile Lys Ala Ile Ile Leu Thr Ile Phe Ile Gly Gly Ser Asp Thr Ser 290 295 300Ala Lys Thr Val Glu Trp Val Met Ser Glu Leu Met His Asn Pro Glu305 310 315 320Leu Met Lys Lys Ala Gln Glu Glu Val Arg Gln Val Phe Gly Glu Lys 325 330 335Gly Phe Val Asp Glu Thr Gly Leu His Glu Leu Lys Phe Leu Lys Ser 340 345 350Val Val Lys Glu Thr Leu Arg Leu His Pro Val Phe Pro Leu Val Pro 355 360 365Arg Glu Cys Arg Glu Val Thr Lys Val Asn Gly Tyr Asp Ile Tyr Pro 370 375 380Lys Thr Lys Val Leu Ile Asn Val Trp Ala Ile Gly Arg Asp Pro Asp385 390 395 400Ile Trp Ser Asp Ala Glu Lys Phe Asn Pro Glu Arg Phe Leu Glu Ser 405 410 415Ser Ile Asp Tyr Lys Asp Thr Ser Ser Glu Met Ile Pro Phe Gly Ala 420 425 430Gly Lys Arg Val Cys Pro Gly Met Ser Leu Gly Leu Leu Ile Leu Glu 435 440 445Leu Phe Leu Ala Gln Leu Leu Tyr His Phe Asp Trp Lys Leu Pro Asp 450 455 460Arg Val Thr Pro Glu Asn Phe Asp Met Ser Glu Tyr Tyr Ser Ser Ser465 470 475 480Leu Arg Arg Lys His Asp Leu Ile Leu Ile Pro Ile Pro Val Leu Pro 485 490 495Leu Pro Ile Glu 50040504PRTRicinus communis 40Met Glu Gln Gln Ile Leu Ser Phe Pro Val Leu Leu Ser Phe Phe Leu1 5 10 15Phe Ile Phe Met Val Leu Lys Ile Arg Lys Lys Tyr Asn Lys Asn Ile 20 25 30Ser Pro Pro Pro Gly Pro Trp Lys Leu Pro Ile Leu Gly Asn Ile His 35 40 45Gln Leu Ile Ser Pro Leu Pro His His Arg Leu Arg Asp Leu Ala Lys 50 55 60Ile Tyr Gly Pro Val Met Ser Ile Lys Leu Gly Glu Val Ser Ala Val65 70 75 80Val Ile Ser Ser Ala Glu Ala Ala Lys Glu Val Leu Arg Thr Gln Asp 85 90 95Val Ser Phe Ala Asp Arg Pro Leu Gly Leu Ser Ala Lys Met Val Leu 100 105 110Tyr Asn Gly Asn Asp Val Val Phe Gly Ser Tyr Gly Glu Gln Trp Arg 115 120 125Gln Leu Arg Lys Ile Cys Ile Leu Glu Leu Leu Ser Ala Lys Arg Val 130 135 140Gln Ser Phe Lys Ser Leu Arg Glu Ala Glu Val Ser Asn Phe Ile Arg145 150 155 160Phe Leu Tyr Ser Lys Ala Gly Lys Pro Val Asn Leu Thr Arg Lys Leu 165 170 175Phe Ala Leu Thr Asn Thr Ile Met Ala Arg Thr Ser Val Gly Lys Gln 180 185 190Cys Glu Asn Gln Glu Val Leu Leu Thr Val Ile Asp Arg Ile Phe Glu 195 200 205Val Ser Gly Gly Phe Thr Val Ala Asp Val Phe Pro Ser Phe Thr Leu 210 215 220Leu His Leu Ile Thr Gly Ile Lys Ser Arg Leu Glu Arg Leu His Gln225 230 235 240Asp Thr Asp Gln Ile Leu Glu Asp Ile Ile Asn Glu His Arg Ala Cys 245 250 255Lys Ala Val Ser Lys Asn Gly Asp Gln Asn Glu Ala Asp Asn Leu Leu 260 265 270Asp Val Leu Leu Asp Leu Gln Glu Asp Gly Asn Leu Arg Val Pro Leu 275 280 285Thr Asn Asp Ser Ile Lys Gly Thr Ile Leu Asp Met Phe Ala Gly Gly 290 295 300Ser Asp Thr Thr Ser Lys Thr Ala Glu Trp Ala Val Ser Glu Leu Met305 310 315 320Phe Asn Pro Lys Ala Met Lys Lys Ala Gln Glu Glu Val Arg Arg Val 325 330 335Phe Gly Gln Lys Gly Ile Val Asp Glu Ser Gly Phe His Glu Leu Lys 340 345 350Phe Leu Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Ala Leu 355 360 365Pro Leu Ile Pro Arg Glu Cys Met Asn Lys Ser Lys Ile Asn Gly Tyr 370 375 380Asn Ile Asp Pro Lys Thr Lys Val Leu Ile Asn Val Trp Ala Ile Gly385 390 395 400Arg Asp Ser Asn Ile Trp Pro Glu Ala Glu Lys Phe Tyr Pro Glu Arg 405 410 415Phe Leu Asp Ser Ser Ile Asp Tyr Lys Gly Thr Ser Tyr Glu Phe Ile 420 425 430Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Met Leu Gly Thr 435 440 445Thr Asn Leu Glu Leu Phe Leu Ala Gln Leu Leu Tyr His Phe Asp Trp 450 455 460Gln Phe Pro Asp Gly Val Thr Pro Glu Thr Phe Asp Met Thr Glu Ala465 470 475 480Phe Ser Gly Ser Ile Asn Arg Lys Tyr Asp Leu Asn Leu Ile Pro Ile 485 490 495Pro Phe His Pro Leu Arg Val Glu 50041494PRTEuphorbia peplus 41Met Asp Leu Glu Met Pro Ser Phe Leu Ile Leu Phe Ser Phe Leu Ile1 5 10 15Leu Thr Trp Ile Ile Trp Lys Lys Met Asn Ser Asn Ser Val Pro Pro 20 25 30Pro Gly Pro Trp Lys Leu Pro Leu Leu Gly Asn Ile Leu Gln Leu Arg 35 40 45Gly Gly Pro Ala Asn His Arg Leu Cys Asp Leu Ala Lys Val Tyr Gly 50 55 60Pro Val Met Ser Ile Gln Leu Gly Gln Asn Pro Ala Val Val Leu Ser65 70 75 80Ser Pro Glu Ala Ala Glu Gln Val Phe Lys Ile Gln Gly Asp Leu Phe 85 90 95Asn Asn Arg Pro Pro Ala Leu Ser Gly Lys Ile Leu Phe Tyr Asn Asn 100 105 110Ser Asp Met Thr Phe Thr Pro Tyr Gly Asp His Trp Arg Gln Ile Arg 115 120 125Lys Ile Thr Val Met Glu Phe Leu Ser Pro Lys Arg Val Leu Ser Phe 130 135 140Arg Ser Ile Arg Glu Glu Gln Val Ser Asn Phe Ile Lys Phe Leu Arg145 150 155 160Thr Lys Gly Gly Ser Ala Ile Asn Phe Pro Lys Ala Leu Ser Glu Leu 165 170 175Thr Ser Arg Ile Met Leu Ile Thr Leu Leu Gly Asn Lys Asp Glu Asn 180 185 190Glu Glu Ile Val Leu Pro Ala Ile Glu Arg Val Ile Glu Thr Ala Asn 195 200 205Lys Gly Ala Ala Ser Asp Thr Phe Pro Thr Leu Lys Phe Phe Leu Asp 210 215 220Phe Leu Thr Gly Asp Lys Ser Arg Met Glu Lys Val Leu Gln Glu Thr225 230 235 240Asp Ile Ile Leu Glu Ala Ile Ile Asn Glu His Lys Lys Lys Gly Thr 245 250 255Ser Glu His Asn Tyr Leu Asp Phe Leu Leu Asp Lys Gln Lys Lys Gly 260 265 270Asp Leu Gln Leu Pro Leu Thr Asn Glu Ala Ile Lys Ala Asn Leu Met 275 280 285Ala Met Tyr Ala Gly Gly Ser Glu Thr Ser Ser Lys Leu Ile Glu Trp 290 295 300Thr Phe Ala Glu Met Met Lys Asn Pro Glu Thr Met Arg Lys Ala Gln305 310 315 320Glu Glu Val Arg Arg Val Phe Gly Asp Lys Gly Lys Val Glu Glu Ser 325 330 335Arg Ile Gln Glu Leu Lys Tyr Leu Lys Leu Val Leu Lys Glu Ser Phe 340 345 350Arg Ile His Pro Pro Ser Thr Leu Ile Thr Arg Val Cys Gln Glu Arg 355 360 365Thr Lys Ile Asn Gly Tyr Asp Ile His Pro Lys Thr Thr Ile Leu Ile 370 375 380Asn Val Trp Thr Met Gly Arg Asp Pro Asn

Leu Trp Lys Glu Pro Glu385 390 395 400Lys Phe His Pro Glu Arg Phe Glu Asp Ser Lys Ile Asp Phe Arg Gly 405 410 415Ala Asn Met Glu Leu Thr Pro Phe Gly Val Gly Lys Arg Met Cys Pro 420 425 430Gly Ile Thr Leu Ser Thr Thr Tyr Val Glu Phe Leu Leu Ala Asn Leu 435 440 445Leu Tyr His Phe Asp Trp Lys Leu Pro Asp Gly Val Thr Pro Ala Thr 450 455 460Leu Asp Met Thr Glu Thr Leu Arg Gly Thr Leu Lys Lys Val Gln Asp465 470 475 480Leu Ile Leu Ile Pro Ile Pro Phe Ser Pro His Gln Ile Ala 485 49042503PRTEuphorbia peplus 42Met Glu Phe Thr Leu Ser Leu Lys Lys Met Glu Leu Gln Ile Leu Ser1 5 10 15Phe Pro Ile Leu Phe Pro Phe Leu Leu Phe Ile Leu Thr Phe Leu Thr 20 25 30Ile Ile Arg Arg Lys Lys Gln Asn Gln Asp Cys Asn Phe Pro Pro Gly 35 40 45Pro Trp Gln Phe Pro Ile Ile Gly Asn Ile Pro Gln Leu Leu Gly Gly 50 55 60Leu Phe His His Arg Leu Ser Asp Leu Ala Lys Ile His Gly Pro Ile65 70 75 80Met Ser Ile Gln Gln Gly Gln Ile Pro Ala Val Val Ile Thr Ser Val 85 90 95Glu Leu Ala Lys Glu Val Leu Lys Thr Gln Gly Glu Ile Phe Ala Gly 100 105 110Arg Pro Gln Ala Pro Ala Gly Asp Val Leu Tyr Tyr Asp Cys Lys Asp 115 120 125Ile Val Phe Ala Pro Tyr Gly Asp His Trp Arg Gln Met Arg Lys Ile 130 135 140Cys Thr Leu Glu Phe Leu Ser Leu Lys Arg Val Gln Ser Phe Arg Ser145 150 155 160Leu Arg Glu Glu Asn Val Ser Gly Phe Ile Lys Phe Leu Ser Thr Lys 165 170 175Ala Asn Ser Ser Val Asn Leu Thr Lys Ser Val Gly Asn Leu Thr Ser 180 185 190Ser Ile Met Leu Ile Lys Thr Tyr Gly Lys Cys Asp Glu Lys Leu Leu 195 200 205Ala Met Leu Glu Lys Val Lys Gln Ala Val Leu Glu Thr Ser Ser Gly 210 215 220Thr Asp Leu Phe Pro Ser Leu Lys Phe Ile Gln Tyr Ile Asn Gly Glu225 230 235 240Lys Ser Arg Met Ala Arg Val Gln Lys Glu Met Asp Lys Met Leu Glu 245 250 255Gln Ile Ile Lys Glu His Lys Val Gln Tyr Lys Phe Gly Asp Asn Asn 260 265 270Leu Leu Gln Val Leu Leu Asp Gln Gln Gln Asn Gly Asp Leu Glu Leu 275 280 285Pro Leu Thr Asn Glu Ile Ile Lys Ala Asn Ile Met Glu Ile Phe Phe 290 295 300Gly Gly Ser His Thr Ser Ser Lys Thr Val Glu Trp Ala Met Ser Glu305 310 315 320Leu Met Lys Asn Pro Glu Ser Met Thr Lys Ala Gln Ala Glu Val Arg 325 330 335Gln Val Phe Gly Glu Thr Gly Asn Val Glu Glu Ser Arg Met Gln Glu 340 345 350Val Lys Tyr Leu Lys Ser Val Ile Lys Glu Thr Leu Arg Leu His Pro 355 360 365Pro Ala Thr Phe Val Thr Arg Glu Cys Arg Gln Lys Thr Lys Val Asn 370 375 380Gly Tyr Asp Ile Tyr Pro Lys Thr Val Val His Val Asn Thr Tyr Ala385 390 395 400Ile Cys Arg Asp Pro Asp Val Trp Val Glu Pro Glu Lys Phe Tyr Pro 405 410 415Glu Arg Phe Glu Glu Asn Gln Ile Asp Tyr Lys Gly Ala His Met Glu 420 425 430Leu Ile Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Ile Ser Leu 435 440 445Ala Thr Thr Tyr Val Glu Val Leu Leu Ala Asn Leu Leu Tyr His Phe 450 455 460Asp Trp Lys Leu Pro Tyr Gly Met Thr Pro Ala Asn Leu Asp Met Thr465 470 475 480Glu Met His Cys Gly Ala Leu Ala Arg Lys His Asp Leu Cys Leu Ile 485 490 495Pro Ile Pro Phe Ser Lys Ile 50043497PRTEuphorbia peplus 43Met Lys Met Leu Glu Gln Ile Pro Ser Leu Pro Ile Ile Phe Pro Leu1 5 10 15Ile Leu Phe Ile Phe Met Leu Ile Lys Leu Trp Gln Lys Lys Asn His 20 25 30Asn Ser Ile Arg Pro Pro Gly Pro Arg Lys Tyr Pro Phe Ile Gly Asn 35 40 45Leu Pro Gln Leu Leu Gly Ala Pro Val His Gln Arg Leu Ala Asp Leu 50 55 60Ala Lys Thr Tyr Gly Pro Val Met Ser Ile Gln Gln Gly Gln Ile Pro65 70 75 80Ser Val Val Leu Ser Ser Val Glu Thr Ala Lys Glu Val Leu Lys Ile 85 90 95Gln Gly Glu Glu Phe Ala Gly Arg Pro Ser Thr Met Ala Leu Asp Ile 100 105 110Thr Phe Tyr Asp Ala Gln Asp Ile Ala Tyr Thr Glu Tyr Gly Asp Tyr 115 120 125Trp Arg Gln Met Lys Lys Ile Ser Thr Leu Glu Phe Leu Ser Ala Lys 130 135 140Arg Val His Ser Phe Lys Pro Val Arg Glu Glu Arg Ile Ser Ile Phe145 150 155 160Leu Asp Ser Leu Arg Ser Lys Gly Arg Ser Pro Val Asn Leu Thr Arg 165 170 175Thr Ile Tyr Gly Leu Thr Asn Ser Ile Ile Gln Ile Thr Ala Phe Gly 180 185 190Lys Asn Cys Lys Thr Arg Glu Lys Leu Asn Leu Asp Lys Ile Arg Glu 195 200 205Ala Val Val Asp Gly Thr Ile Ala Asp Leu Phe Pro Arg Phe Lys Phe 210 215 220Ile Ala Ser Leu Ser Gly Ala Lys Ser Arg Met Met Arg Ala His Lys225 230 235 240Glu Ile Asp Val Val Leu Asp Glu Ile Leu Glu Glu His Lys Ala Asn 245 250 255Lys Ser Thr Ile Gly Asn Asn Leu Met Gln Val Leu Leu Asp Phe Gln 260 265 270Lys Asn Gly Gly Leu Gln Val Pro Leu Thr Thr Asp Gln Ile Lys Ala 275 280 285Asn Met Leu Glu Met Phe Leu Ser Gly Ser His Thr Ser Ser Lys Ile 290 295 300Thr Glu Trp Thr Met Ala Glu Leu Met Arg Ala Pro Glu Thr Met Arg305 310 315 320Lys Ala Gln Glu Glu Val Arg Arg Val Phe Ser Glu Ile Gly Arg Val 325 330 335Asp Glu Ser Arg Ile His Glu Cys Lys Tyr Val Lys Asn Val Leu Lys 340 345 350Glu Ala Phe Arg Leu His Pro Pro Gly Pro Met Val Val Arg Gln Cys 355 360 365Arg Glu Ile Thr Lys Val Asn Gly Tyr Glu Ile Leu Pro Gly Thr Thr 370 375 380Val Phe Ile Asn Val Trp Ala Ile Gly Arg Asp Pro Glu Val Trp Thr385 390 395 400Glu Pro Glu Lys Phe Asn Pro Asp Arg Phe Glu Asp Ser Glu Ile Asp 405 410 415Tyr Arg Gly Ala His Met Glu Leu Ile Pro Phe Gly Ala Gly Lys Arg 420 425 430Ile Cys Pro Gly Leu Thr Leu Ala Val Val Tyr Val Glu Leu Leu Leu 435 440 445Ala Asn Leu Leu Tyr His Phe Asp Trp Glu Phe Pro Asp Gly Val Thr 450 455 460Gln Lys Thr Leu Asp Met Thr Glu Phe Phe Arg Gly Thr Leu Asn Arg465 470 475 480Lys Glu Asp Leu Tyr Leu Ile Pro Val Pro Ser Ser Ser Leu Pro Lys 485 490 495Asn44503PRTJatropha curcas 44Met Glu His Gln Ile Leu Ser Phe Pro Val Leu Phe Ser Leu Leu Leu1 5 10 15Phe Ile Leu Val Leu Leu Lys Val Ser Lys Lys Leu Tyr Lys His Asp 20 25 30Ser Lys Pro Pro Pro Gly Pro Trp Lys Leu Pro Phe Ile Gly Asn Leu 35 40 45Ile Gln Leu Val Gly Asp Thr Pro His Arg Arg Leu Thr Ala Leu Ala 50 55 60Lys Thr Tyr Gly Pro Val Met Gly Val Gln Leu Gly Gln Val Pro Phe65 70 75 80Leu Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Lys Ile Gln 85 90 95Asp Pro Val Phe Ala Glu Arg Pro Leu Val Leu Ala Gly Glu Ile Val 100 105 110Leu Tyr Asn Arg Asn Asp Ile Val Phe Gly Ser Tyr Gly Asp Gln Trp 115 120 125Arg Gln Met Arg Lys Phe Cys Thr Leu Glu Leu Leu Ser Thr Lys Arg 130 135 140Val Gln Ser Phe Arg Pro Val Arg Glu Glu Glu Val Ala Ser Phe Val145 150 155 160Lys Leu Met Arg Thr Lys Lys Gly Thr Pro Val Asn Leu Thr His Ala 165 170 175Leu Phe Ala Leu Thr Asn Ser Ile Val Ala Arg Asn Ala Val Gly His 180 185 190Lys Ser Lys Asn Gln Glu Ala Leu Leu Glu Val Ile Asp Asp Ile Val 195 200 205Val Ser Gly Gly Gly Val Ser Ile Val Asp Ile Phe Pro Ser Leu Gln 210 215 220Trp Leu Pro Thr Ala Lys Arg Glu Arg Ser Arg Ile Trp Lys Leu His225 230 235 240Gln Asn Thr Asp Glu Ile Leu Glu Asp Ile Leu Gln Glu His Arg Ala 245 250 255Lys Arg Gln Ala Thr Ala Ser Lys Asn Trp Asp Arg Ser Glu Ala Asp 260 265 270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Gln Ser Gly Asn Leu Asp 275 280 285Val Pro Leu Thr Asp Val Ala Ile Lys Ala Ala Ile Ile Asp Met Phe 290 295 300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Ala Glu Trp Ala Met Ala305 310 315 320Glu Leu Met Arg Asn Pro Glu Val Met Lys Lys Ala Gln Glu Glu Leu 325 330 335Arg Asn Phe Phe Gly Glu Asn Gly Lys Val Glu Glu Ala Lys Leu His 340 345 350Glu Leu Lys Trp Ile Lys Leu Ile Ile Lys Glu Thr Leu Arg Leu His 355 360 365Pro Ala Val Ala Val Ile Pro Arg Val Cys Arg Glu Lys Thr Lys Val 370 375 380Tyr Gly Tyr Asp Val Glu Pro Gly Thr Arg Val Phe Ile Asn Val Trp385 390 395 400Ser Ile Gly Arg Asp Pro Lys Val Trp Ser Glu Ala Glu Arg Phe Lys 405 410 415Pro Glu Arg Phe Ile Asp Ser Ala Ile Asp Tyr Arg Gly Leu Asn Phe 420 425 430Glu Leu Ile Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr 435 440 445Leu Gly Met Ala Asn Leu Glu Ile Phe Leu Ala Asn Leu Leu Tyr His 450 455 460Phe Asp Trp Lys Phe Pro Lys Gly Val Thr Ala Glu Asn Leu Asp Met465 470 475 480Asn Glu Ala Phe Gly Gly Ala Val Lys Arg Lys Val Asp Leu Glu Leu 485 490 495Ile Pro Ile Pro Phe Arg Pro 50045503PRTJatropha curcas 45Met Glu Gln Gln Ile Leu Ser Phe Pro Val Leu Phe Ser Phe Leu Leu1 5 10 15Phe Leu Leu Val Leu Leu Lys Val Ser Lys Lys Leu Ser Lys His Asp 20 25 30Ser Asn Ser Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Ile 35 40 45Leu Gln Leu Ala Gly Asp Leu Pro His Arg Arg Ile Thr Glu Leu Ala 50 55 60Lys Lys Tyr Gly Pro Val Met Ser Ile Lys Leu Gly Gln His Pro Tyr65 70 75 80Leu Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Arg Thr Gln 85 90 95Asp Pro Ile Phe Ala Asp Arg Pro Leu Val Leu Ala Gly Glu Leu Val 100 105 110Leu Tyr Asn Arg Asn Asp Ile Gly Phe Gly Leu Tyr Gly Asp Gln Trp 115 120 125Arg Gln Met Arg Lys Phe Cys Ala Leu Glu Leu Leu Ser Thr Lys Arg 130 135 140Val Gln Ser Phe Arg Ser Val Arg Glu Glu Glu Ile Ala Glu Phe Val145 150 155 160Lys Ser Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Ser His Thr 165 170 175Leu Phe Ala Leu Thr Asn Ser Ile Ile Ala Arg Asn Thr Val Gly His 180 185 190Lys Ser Lys Asn Gln Glu Ala Leu Leu Lys Ile Ile Asp Asp Ile Val 195 200 205Glu Ser Leu Gly Gly Leu Ser Thr Val Asp Ile Phe Pro Ser Leu Lys 210 215 220Trp Leu Pro Ser Val Lys Arg Glu Arg Ser Arg Ile Trp Lys Leu His225 230 235 240Cys Glu Thr Asp Glu Ile Leu Glu Gly Ile Leu Glu Glu His Lys Ala 245 250 255Asn Arg Gln Ala Ala Ala Phe Lys Asn Asp Asp Gly Ser Gln Ala Asp 260 265 270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Gln Asn Gly Asn Leu Glu 275 280 285Val Pro Leu Thr Asp Val Asn Ile Lys Ala Val Ile Leu Gly Met Phe 290 295 300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Thr Glu Trp Ala Met Ala305 310 315 320Glu Leu Met Lys Asn Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Leu 325 330 335Arg Ser Leu Phe Gly Glu Ser Gly Tyr Val Asp Glu Ala Lys Leu His 340 345 350Glu Ile Lys Trp Leu Lys Leu Ile Ile Asn Glu Thr Leu Arg Leu His 355 360 365Pro Ala Val Thr Leu Ile Pro Arg Leu Cys Arg Glu Lys Thr Lys Val 370 375 380Ser Gly Tyr Asp Val Tyr Pro Asn Thr Arg Val Phe Ile Asn Thr Trp385 390 395 400Ala Ile Gly Arg Asp Pro Thr Ile Trp Ser Glu Pro Glu Lys Phe Val 405 410 415Pro Glu Arg Phe Ile Asp Ser Ser Ile Asp Tyr Arg Gly Asn His Phe 420 425 430Glu Tyr Thr Pro Phe Gly Ala Gly Arg Arg Ile Cys Pro Gly Met Ala 435 440 445Phe Gly Met Val Asn Leu Glu Ile Phe Leu Ala Asn Leu Leu Tyr His 450 455 460Phe Asp Trp Lys Leu Pro Lys Gly Ile Thr Ser Glu Asn Leu Asp Met465 470 475 480Thr Glu Asn Phe Gly Gly Val Ile Lys Arg Lys Gln Asp Leu Glu Leu 485 490 495Ile Pro Ala Pro Phe Arg Pro 50046502PRTJatropha curcas 46Met Glu Gln Gln Ile Leu Ser Val Ser Val Leu Ser Ser Phe Val Leu1 5 10 15Phe Leu Phe Val Leu Leu Lys Val Ser Lys Lys Leu Tyr Lys His Asp 20 25 30Ser Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Ile 35 40 45Leu Gln Leu Ala Gly Asp Ala Pro His His Arg Phe Ala Glu Leu Ala 50 55 60Arg Thr Tyr Gly Pro Val Met Gly Ile Lys Leu Gly Glu Ile Pro Phe65 70 75 80Leu Val Val Ser Ser Pro Glu Ala Ala Lys Glu Val Met Lys Ile Gln 85 90 95Asp Pro Ile Phe Ala Glu Arg Ala Leu Val Phe Ala Asn Asp Val Leu 100 105 110Asn Tyr Asn Arg Asn Val Met Val Phe Gly Ser Tyr Gly Tyr Gln Trp 115 120 125Arg Gln Leu Arg Lys Phe Cys Thr Leu Ala Leu Leu Ser Ala Lys Arg 130 135 140Val Gln Ser Phe Gln Ser Val Arg Lys Glu Glu Met Ala Asp Phe Val145 150 155 160Asn Phe Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Thr His Thr 165 170 175Ile Phe Ala Phe Thr Asn Ser Ile Ile Ala Arg Asn Ala Val Gly His 180 185 190Lys Thr Lys Asn Gln Glu Thr Leu Leu Thr Cys Ile Asp Gly Ile Ile 195 200 205Tyr Thr Gly Gly Val Asn Ile Ala Asp Val Phe Pro Ser Leu Lys Trp 210 215 220Leu Pro Ser Val Lys Arg Glu Lys Ser Arg Val Met Lys Leu His Tyr225 230 235 240Glu Thr Asp Lys Ile Leu Glu Asp Ile Leu Gln Glu His Lys Ala Asn 245 250 255Lys Gln Ala Trp Val Ser Glu Asp Gly Asp Gly Arg Lys Ala Gly Asn 260 265 270Phe Val Asp Val Leu Leu Asp Leu Gln Gln Ser Gly Asn Leu Asp Phe 275 280 285Pro Leu Thr Asp Val Thr Ile Lys Ala Ser Thr Ile Asp Ala Phe Val 290 295 300Gly Gly Ser Asp Thr Ser Ser Lys Thr Thr Glu Trp Ala Met Ala Glu305 310 315 320Leu Met Arg Lys Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Leu Arg 325 330 335Ser Val Phe Gly Glu Lys Gly Tyr Ile Glu Glu Ala Lys Leu Gln Glu 340

345 350Leu Lys Trp Leu Lys Leu Ile Ile Lys Glu Thr Met Arg Leu His Pro 355 360 365Val Leu Ser Leu Leu Pro Arg Val Cys Lys Gln Lys Thr Lys Val Ser 370 375 380Gly Tyr Asp Val Tyr Pro Gly Thr Gln Val Leu Val Asn Val Trp Ala385 390 395 400Leu Gly Arg Asp Pro Lys His Trp Ser Glu Pro Glu Lys Phe Asn Pro 405 410 415Glu Arg Phe Ile Asp Ser Ser Ile Asp Tyr Leu Gly Asn His Phe Glu 420 425 430Tyr Leu Pro Phe Gly Ala Gly Lys Arg Val Cys Pro Gly Ile Ala Leu 435 440 445Gly Met Val His Met Glu Asn Phe Leu Ala Asn Leu Leu Phe His Phe 450 455 460Asp Trp Lys Phe Pro Lys Gly Ile Thr Ala Glu Asn Leu Asp Met Thr465 470 475 480Asp Ala Phe Gly Gly Val Met Lys Arg Lys Val Asp Leu Glu Leu Ile 485 490 495Pro Ile Pro Tyr His Pro 50047503PRTJatropha curcas 47Met Glu His Gln Ile Leu Ser Phe Pro Ala Leu Phe Ser Phe Leu Leu1 5 10 15Phe Leu Leu Val Leu Leu Lys Val Ser Lys Lys Leu Tyr Lys His Asp 20 25 30Ser Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Ile 35 40 45Leu Gln Leu Ala Gly Asp Thr Phe His Arg Arg Leu Thr Glu Leu Ala 50 55 60Lys Thr His Gly Pro Val Met Ser Ile Asn Val Gly Gln Ile Pro Tyr65 70 75 80Val Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Lys Ile Gln 85 90 95Asp Pro Val Phe Ala Asp His Pro Val Val Leu Ala Ala Glu Val Ile 100 105 110Leu Tyr Ser Pro Tyr Asp Ile Phe Phe Ala Pro Tyr Gly Asp His Leu 115 120 125Lys Gln Met Arg Lys Phe Cys Thr Val Glu Leu Leu Ser Thr Lys Arg 130 135 140Val Gln Ser Phe Arg Ser Val Arg Glu Glu Glu Val Ala Asp Phe Val145 150 155 160Lys Phe Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Thr His Thr 165 170 175Leu Phe Ala Leu Thr Asn Ser Ile Val Ala Arg Thr Ala Val Gly His 180 185 190Arg Ser Lys Asn Gln Glu Gly Leu Leu Lys Val Ile Asp Glu Ala Val 195 200 205Leu Ala Ser Ser Gly Val Asn Ile Ala Asp Ile Phe Pro Ser Leu Gln 210 215 220Trp Leu Pro Ser Val Lys Arg Glu Arg Ser Arg Ile Trp Lys Thr His225 230 235 240Arg Glu Thr Asp Lys Ile Leu Glu Asp Val Leu Gln Glu His Arg Ala 245 250 255Asn Arg Lys Ala Ala Val Pro Lys Asn Gly Asp Gln Ser Gln Ala Asp 260 265 270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Glu Ser Gly Asn Leu Asp 275 280 285Val Pro Leu Pro Asp Ala Ala Ile Lys Gly Thr Ile Met Glu Met Phe 290 295 300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Val Glu Trp Ala Met Ala305 310 315 320Glu Leu Met Arg Asn Pro Glu Val Met Arg Lys Ala Gln Glu Glu Leu 325 330 335Arg Ser Phe Phe Gly Glu Asn Gly Glu Val Glu Asp Ala Lys Ile Gln 340 345 350Glu Leu Lys Cys Leu Lys Leu Ile Ile Lys Glu Thr Leu Arg Leu His 355 360 365Pro Pro Gly Ala Val Ile Pro Arg Leu Cys Arg Glu Arg Thr Lys Val 370 375 380Ala Gly Tyr Asp Ile Tyr Pro Asn Thr Lys Ile Phe Val Asn Thr Trp385 390 395 400Ala Ile Gly Arg Asp Pro Glu Ile Trp Ser Glu Ala Glu Lys Phe Asn 405 410 415Pro Asp Arg Phe Ile Asp Ser Ser Ile Asp Tyr Lys Gly Asn Asn Phe 420 425 430Glu Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Pro Gly Ile Thr 435 440 445Leu Ala Ser Ala Asn Met Glu Leu Phe Leu Ala Asn Leu Leu Tyr His 450 455 460Phe Asp Trp Lys Phe Pro Gln Gly Ile Thr Ala Glu Asn Leu Asp Met465 470 475 480Asn Glu Cys Phe Gly Gly Ala Val Lys Arg Lys Val Asp Leu Glu Leu 485 490 495Ile Pro Ile Pro Phe Arg Thr 50048499PRTJatropha curcas 48Met Leu Ser Phe Pro Val Ile Phe Ser Phe Leu Leu Phe Leu Leu Val1 5 10 15Leu Leu Lys Val Ser Lys Lys Leu Cys Lys Asp Asn Ser Ile Pro Pro 20 25 30Pro Gly Pro Trp Gln Leu Pro Phe Leu Gly Asn Ile Phe Gln Leu Ala 35 40 45Gly Tyr Gln Phe His Ile Arg Leu Ser Glu Leu Gly Gln Thr Tyr Gly 50 55 60Pro Val Met Gly Ile Lys Val Gly Gln Val Pro Phe Leu Ile Val Ser65 70 75 80Ser Pro Glu Met Ala Lys Glu Val Leu Lys Val Gln Asp Pro Thr Phe 85 90 95Val Asp Arg Pro Val Val Leu Ala Ala Glu Leu Val Met Tyr Gly Gly 100 105 110His Asp Ile Val Tyr Ala Pro Tyr Gly Asp Gln Trp Arg Gln Met Arg 115 120 125Lys Phe Cys Thr Leu Glu Leu Leu Ser Thr Lys Arg Val Gln Ser Phe 130 135 140Arg Ser Val Arg Glu Glu Glu Ala Gly Glu Phe Val Lys Phe Leu Leu145 150 155 160Ser Lys Glu Gly Ser Ser Val Asn Leu Thr His Ala Leu Tyr Ala Leu 165 170 175Ser Asn Ser Met Val Ala Arg Ser Thr Val Gly His Lys Thr Lys Asn 180 185 190Gln Glu Ala Leu Leu Asn Val Ile Asp Asp Thr Val Ser Thr Ala Ala 195 200 205Gly Thr Asn Ile Ala Asp Ile Phe Pro Ser Leu Lys Trp Leu Pro Thr 210 215 220Val Lys Arg Gln Met Ser Arg Ile Trp Lys Ser His Cys Gln Thr Asp225 230 235 240Glu Ile Leu Glu Gly Ile Leu Arg Glu His Arg Ala Lys Arg Gln Thr 245 250 255Ala Ala Ser Lys Asn Gly Asp Arg Ala Glu Ala Asp Asn Leu Leu Asp 260 265 270Val Leu Leu Asp Leu Gln Gln Arg Gly Asp Leu Asp Val Pro Leu Thr 275 280 285Asp Ile Asn Ile Lys Gly Ala Ile Leu Glu Met Phe Gly Ala Gly Ser 290 295 300Asp Thr Ser Thr Lys Thr Leu Glu Trp Ala Met Ser Glu Leu Met Arg305 310 315 320Asn Pro Lys Met Met Lys Lys Val Gln Gln Glu Leu Arg Ser Phe Phe 325 330 335Gly Glu Asn Gly Lys Val Glu Glu Ala Lys Leu Gln Glu Leu Lys Trp 340 345 350Leu Lys Leu Ile Ile Lys Glu Thr Leu Arg Leu His Pro Pro Ile Ala 355 360 365Val Ile Pro Arg Leu Cys Arg Glu Arg Thr Lys Val Cys Gly Tyr Asp 370 375 380Val Tyr Pro Asn Thr Arg Val Phe Val Asn Val Trp Ala Met Gly Arg385 390 395 400Asp Pro Lys Ile Trp Asn Glu Ala Glu Lys Phe Asn Pro Glu Arg Phe 405 410 415Ile Asp Ser Ser Ile Asp Tyr Arg Gly Asn Asn Phe Glu Leu Ile Pro 420 425 430Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Ile Thr Leu Ala Ile Val 435 440 445His Val Glu Thr Val Leu Ala Asn Leu Leu Tyr His Phe Asp Trp Lys 450 455 460Phe Pro Glu Gly Val Thr Ala Glu Asn Phe Asp Met Asn Glu Thr Phe465 470 475 480Ala Gly Ile Ile Arg Arg Lys Val Asp Leu Glu Leu Ile Pro Val Ala 485 490 495Phe Arg Pro49495PRTJatropha curcas 49Met Asp His Arg Ile Leu Ser Phe Pro Phe Leu Met Leu Ser Leu Leu1 5 10 15Leu Pro Phe Val Phe Glu Leu Leu Lys Ile Trp Lys Lys Ser Asn Asn 20 25 30Asn Pro Pro Pro Gly Pro Trp Arg Leu Pro Leu Ile Gly Asn Ile His 35 40 45Gln Leu Gly Gly Arg His Gln Pro His Leu Arg Leu Thr Asp Leu Ala 50 55 60Arg Thr Tyr Gly Pro Val Met Arg Leu Gln Leu Gly Gln Ile Glu Ala65 70 75 80Val Val Ile Ser Ser Ala Glu Thr Ala Lys Gln Val Met Lys Thr Gln 85 90 95Glu Ser Gln Phe Leu Gly Arg Pro Ser Leu Leu Ala Ala Asp Ile Met 100 105 110Leu Tyr Asn Arg Thr Asp Ile Ser Phe Ala Pro Tyr Gly Asp Tyr Trp 115 120 125Arg Gln Met Lys Lys Ile Ala Val Val Glu Leu Leu Ser Ala Lys Arg 130 135 140Val Gln Ala Tyr Lys Ser Val Met Asp Glu Glu Val Ser Asn Phe Ile145 150 155 160Asn Phe Leu Tyr Ser Lys Ala Gly Ser Pro Val Asn Leu Thr Lys Thr 165 170 175Phe Tyr Ser Leu Gly Asn Gly Ile Ile Ala Lys Thr Ser Ile Gly Lys 180 185 190Lys Phe Lys Lys Gln Glu Thr Phe Leu Lys Val Val Asp Lys Ala Ile 195 200 205Arg Val Ala Gly Gly Phe Ser Val Gly Asp Ala Phe Pro Ser Phe Lys 210 215 220Leu Ile His Leu Ile Thr Gly Ile Ser Ser Thr Leu His Thr Ala His225 230 235 240Gln Glu Ala Asp Glu Ile Leu Glu Glu Ile Ile Ser Glu His Arg Ala 245 250 255Ser Lys Thr Ala Asp Gly Asp Asp Tyr Glu Ala Asp Asn Ile Leu Gly 260 265 270Val Leu Leu Asp Ile Gln Glu Arg Gly Asn Leu Gln Val Pro Leu Thr 275 280 285Thr Asp Asn Ile Lys Ala Ile Ile Leu Asp Met Phe Ala Gly Ala Ser 290 295 300Asp Thr Ser Leu Thr Thr Ala Glu Trp Ala Met Ala Glu Met Val Lys305 310 315 320His Pro Arg Ile Met Lys Lys Ala Gln Asp Glu Val Arg Arg Thr Leu 325 330 335Asn Gln Glu Gly Asn Val Ala Asn Leu Leu Pro Glu Leu Lys Tyr Leu 340 345 350Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Pro Val Ala Leu 355 360 365Ile Pro Arg Glu Cys Asp Gly Arg Cys Glu Leu Asn Gly Tyr Asp Val 370 375 380Asn Pro Lys Thr Lys Ile Leu Val Asn Ala Trp Ala Ile Gly Arg Asp385 390 395 400His Asn Leu Trp Asn Asp Pro Glu Arg Phe Asp Pro Glu Arg Phe Leu 405 410 415Asp Asn Ser Ser Asp Phe Arg Gly Thr Asp Phe Lys Phe Ile Pro Phe 420 425 430Gly Ala Gly Lys Arg Ile Cys Pro Gly Ile Thr Met Ala Ile Thr Ile 435 440 445Ile Glu Val Leu Leu Ala Gln Leu Leu Tyr His Phe Asp Trp Lys Leu 450 455 460Pro Asp Gly Ala Lys Pro Glu Ser Leu Asp Met Ser Asp Thr Phe Gly465 470 475 480Leu Val Val Lys Arg Arg Ile Asp Leu Asn Leu Ile Pro Ile Pro 485 490 49550498PRTJatropha curcas 50Met Glu Tyr Gln Ile Leu Ser Ser Pro Thr Leu Ile Ala Leu Leu Val1 5 10 15Phe Val Ala Thr Val Val Ile Lys Leu Trp Lys Arg Pro Thr Ile Ala 20 25 30Asn Asn Asn Pro Pro Pro Gly Pro Trp Lys Leu Pro Leu Ile Gly Asn 35 40 45Leu His Asn Leu Phe Gly Arg Asp Gln Pro His His Arg Leu Arg Asp 50 55 60Leu Ala Gly Lys Tyr Gly Ala Val Met Gly Phe Gln Leu Gly Gln Val65 70 75 80Pro Thr Val Val Ile Ser Ser Ala Glu Ile Ala Lys Gln Val Leu Lys 85 90 95Thr His Glu Phe Gln Phe Ile Asp Arg Pro Ser Leu Leu Ala Ala Asp 100 105 110Ile Val Leu Tyr Asn Arg Ser Asp Ile Ile Phe Ala Pro Tyr Gly Asp 115 120 125Tyr Trp Arg Gln Ile Lys Lys Ile Ala Ile Leu Glu Leu Leu Ser Ser 130 135 140Lys Arg Val Gln Ser Phe Lys Ser Val Arg Glu Glu Glu Val Ser Ser145 150 155 160Phe Phe Lys Phe Leu Tyr Ser Lys Ala Gly Ser Pro Val Asn Leu Ser 165 170 175Arg Thr Leu Leu Ser Leu Thr Asn Gly Ile Ile Ala Lys Thr Ser Ile 180 185 190Gly Lys Lys Cys Lys Arg Gln Glu Glu Ile Ile Ala Val Ile Thr Asp 195 200 205Ala Ile Lys Ala Thr Gly Gly Phe Ser Val Ala Asp Val Phe Pro Ser 210 215 220Phe Lys Phe Leu His Ile Ile Thr Gly Ile Ser Ser Thr Ile Arg Arg225 230 235 240Ile His Arg Glu Ala Asp Thr Ile Leu Glu Glu Ile Met Asp Glu His 245 250 255Lys Ala Asn Asn Glu Ser Lys Asn Glu Pro Asp Asn Ile Leu Asp Val 260 265 270Leu Leu Asp Ile Gln Gln Arg Gly Asn Leu Glu Phe Pro Leu Thr Ala 275 280 285Asp Asn Ile Lys Ala Ile Ile Leu Glu Met Phe Gly Ala Ala Ser Asp 290 295 300Thr Ser Ser Val Thr Ile Glu Trp Ala Met Ser Glu Met Met Lys Asn305 310 315 320Pro Trp Thr Met Lys Lys Ala Gln Glu Glu Val Arg Glu Val Phe Asn 325 330 335Gly Thr Gly Asp Val Ser Glu Ala Ser Leu Gln Glu Leu Gln Tyr Leu 340 345 350Lys Leu Val Ile Lys Glu Thr Leu Arg Leu His Pro Pro Leu Thr Leu 355 360 365Ile Pro Arg Glu Cys Asn Gln Lys Cys Gln Ile Asn Glu Tyr Asp Ile 370 375 380Tyr Pro Lys Thr Arg Val Leu Val Asn Ala Trp Ala Ile Gly Arg Asp385 390 395 400Pro Asn Trp Trp Thr Asp Pro Glu Arg Phe Asp Pro Glu Arg Phe Arg 405 410 415Cys Gly Ser Val Asp Phe Lys Gly Thr Asp Phe Glu Phe Ile Pro Phe 420 425 430Gly Ala Gly Lys Arg Met Cys Pro Gly Ile Thr Met Ala Met Ala Asn 435 440 445Ile Glu Leu Ile Leu Ala Gln Leu Leu Tyr His Phe Asn Trp Glu Leu 450 455 460Pro Gly Lys Ala Lys Pro Glu Thr Leu Asp Met Ser Glu Ser Phe Gly465 470 475 480Leu Ala Val Lys Arg Lys Val Glu Leu Asn Leu Ile Pro Thr Ala Phe 485 490 495Asn Pro51503PRTJathropha curcas 51Met Glu Gln Gln Ile Leu Ser Phe Pro Val Ile Phe Asn Phe Leu Leu1 5 10 15Phe Leu Leu Val Leu Leu Lys Val Ser Lys Lys Leu Ser Lys His Asp 20 25 30Ser Asn Ser Pro Pro Gly Pro Trp Lys Leu Pro Phe Leu Gly Asn Phe 35 40 45Leu Gln Leu Ala Gly Asp Leu Pro His Arg Arg Ile Thr Glu Leu Ala 50 55 60Lys Lys Tyr Gly Pro Val Met Ser Ile Lys Leu Gly Gln His Pro Tyr65 70 75 80Leu Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Arg Thr Gln 85 90 95Asp Pro Ile Phe Ala Asp Arg Pro Leu Val Leu Ala Gly Glu Leu Val 100 105 110Leu Tyr Asn Arg Asn Asp Ile Gly Phe Gly Leu Tyr Gly Asp Gln Trp 115 120 125Arg Gln Met Arg Lys Phe Cys Ala Leu Glu Leu Leu Ser Thr Lys Arg 130 135 140Ile Gln Ser Phe Arg Ser Val Arg Glu Glu Glu Ile Ala Val Phe Val145 150 155 160Lys Ser Leu Arg Ser Lys Glu Gly Ser Ser Val Asn Leu Ser His Thr 165 170 175Leu Phe Ala Leu Thr Asn Ser Ile Ile Ala Arg Asn Thr Val Gly His 180 185 190Lys Ser Lys Asn Gln Glu Ala Leu Leu Lys Ile Ile Asp Asp Ile Val 195 200 205Glu Ser Leu Gly Gly Leu Ser Thr Val Asp Ile Phe Pro Ser Leu Lys 210 215 220Trp Leu Pro Ser Val Lys Arg Glu Arg Ser Arg Ile Trp Lys Leu His225 230 235 240Cys Glu Thr Asp Glu Ile Leu Glu Gly Ile Leu Glu Glu His Lys Ala 245 250 255Asn Arg Gln Ala Ala Ala Phe Lys Asn Asp Asp Gly Ser Gln Ala Asp 260 265 270Asn Leu Leu Asp Val Leu Leu Asp Leu Gln Gln Asn Gly Asn Leu Gln 275 280 285Val Pro Leu Thr Asp Val Asn Ile Lys Ala Val Ile Leu Gly Met Phe 290 295 300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Thr

Glu Trp Ala Met Ala305 310 315 320Glu Leu Met Lys Asn Pro Glu Ile Met Lys Asn Ala Gln Glu Glu Leu 325 330 335Arg Ser Leu Phe Gly Glu Ser Gly Asn Val Asp Glu Ala Lys Leu His 340 345 350Glu Ile Lys Trp Leu Lys Leu Ile Ile Asn Glu Thr Leu Arg Leu His 355 360 365Pro Ala Val Thr Leu Ile Pro Arg Leu Cys Arg Glu Lys Thr Lys Ile 370 375 380Ser Gly Tyr Asp Val Tyr Pro Asn Thr Arg Val Phe Ile Asn Thr Trp385 390 395 400Ala Ile Gly Arg Asp Pro Ile Ile Trp Thr Glu Pro Glu Lys Phe Val 405 410 415Pro Glu Arg Phe Ile Asp Ser Ser Ile Asp Tyr Arg Gly Asn His Phe 420 425 430Glu Tyr Thr Pro Phe Gly Ala Gly Arg Arg Ile Cys Pro Gly Met Thr 435 440 445Phe Gly Met Val Asn Leu Glu Ile Phe Leu Ala Asn Leu Leu Tyr His 450 455 460Phe Asp Trp Lys Leu Pro Lys Gly Ile Thr Ser Glu Asn Leu Asp Met465 470 475 480Thr Glu Asn Phe Gly Gly Val Ile Lys Arg Lys Gln Asp Leu Glu Leu 485 490 495Ile Pro Val Pro Phe Arg Pro 50052503PRTJatropha curcas 52Met Glu Asp Gln Ile Leu Ser Phe Gln Val Leu Phe Ser Phe Leu Leu1 5 10 15Phe Leu Phe Val Leu Phe Lys Val Ser Lys Lys Leu Tyr Lys His Gly 20 25 30Ser Asn Pro Pro Pro Gly Pro Leu Lys Leu Pro Phe Leu Gly Asn Ile 35 40 45Leu Gln Leu Ala Gly Asp Val Pro His Arg Arg Leu Thr Ala Leu Ala 50 55 60Lys Thr Tyr Gly Pro Val Met Gly Ile Lys Leu Gly Gln Ile Pro Phe65 70 75 80Leu Val Val Ser Ser Pro Glu Thr Ala Lys Glu Val Met Lys Ile Gln 85 90 95Asp Pro Val Phe Ala Glu Arg Ala Pro Leu Leu Ala Gly Glu Ile Val 100 105 110Leu Tyr Asn Arg Asn Asp Ile Ile Phe Gly Leu Tyr Gly Asp Gln Trp 115 120 125Arg Gln Met Arg Lys Ile Cys Thr Leu Glu Leu Leu Ser Ala Lys Arg 130 135 140Val Gln Ser Phe Arg Ser Val Arg Glu Glu Glu Val Ala Asp Leu Val145 150 155 160Lys Phe Leu Gly Ser Lys Glu Gly Ser Pro Val Asn Leu Thr His Thr 165 170 175Leu Phe Ala Leu Ala Asn Ser Ile Ile Ala Arg Asn Thr Val Gly Gln 180 185 190Lys Ser Lys Asn Gln Glu Ala Leu Leu Arg Leu Ile Asp Asp Ile Ile 195 200 205Glu Leu Thr Gly Ser Val Ser Ile Ala Asp Ile Phe Pro Ser Leu Lys 210 215 220Trp Leu Pro Ser Val Gln Arg Asp Arg Ser Arg Ile Arg Lys Leu His225 230 235 240Tyr Glu Thr Asp Glu Ile Leu Glu Asp Ile Leu Gln Glu His Arg Ala 245 250 255Asn Arg Gln Ala Ala Ala Ser Arg Lys Gly Asp Arg Arg Gly Ala Asp 260 265 270Asn Leu Leu Asp Val Leu Leu Tyr Leu Gln Glu Thr Gly Asn Leu Asp 275 280 285Val Pro Leu Thr Asp Val Ala Ile Lys Ala Ala Ile Ile Asp Met Phe 290 295 300Gly Ala Gly Ser Asp Thr Ser Ser Lys Thr Val Glu Trp Ala Met Ala305 310 315 320Glu Leu Met Arg Asn Pro Glu Ile Met Lys Lys Ala Gln Glu Glu Leu 325 330 335Arg Asn Phe Phe Gly Glu Asn Gly Lys Val Asp Glu Ala Lys Leu Gln 340 345 350Glu Leu Lys Trp Leu Asn Leu Ile Asn Lys Glu Thr Leu Arg Leu His 355 360 365Pro Ala Ala Ala Val Val Pro Arg Val Cys Arg Glu Arg Thr Lys Val 370 375 380Ser Gly Tyr Asp Val Tyr Pro Gly Thr Arg Val Phe Ile Asn Ala Trp385 390 395 400Ala Ile Gly Arg Asp Pro Lys Val Trp Ser Glu Ala Glu Lys Phe Lys 405 410 415Pro Glu Arg Phe Ile Asp Ser Ala Ile Asp Tyr Arg Gly Thr Asn Phe 420 425 430Glu Leu Ile Pro Phe Gly Ala Gly Lys Arg Ile Cys Pro Gly Met Thr 435 440 445Leu Gly Met Ala Asn Leu Glu Ile Phe Leu Ala Asn Leu Leu Tyr His 450 455 460Phe Asp Trp Lys Phe Pro Lys Gly Val Thr Ala Glu Asn Leu Asp Met465 470 475 480Asn Glu Ala Phe Gly Ala Ala Val Lys Arg Lys Val Asp Leu Glu Leu 485 490 495Val Pro Ile Pro Phe Arg Pro 5005326DNAartificial sequenceprimer 53atggacaagc aaatcctatc atatcc 265422DNAartificial sequenceprimer 54tcagtccgtt gttggtgaag gg 225521DNAartificial sequenceprimer 55atggagcagc aattgctatc g 215626DNAartificial sequenceprimer 56ctatggcaaa gtagtgaatg gaatgg 265724DNAartificial sequenceprimer 57atggcactgc aatcactact attc 245827DNAartificial sequenceprimer 58ttacacatgt tttgttttgg tttctcc 275922DNAartificial sequenceprimer 59atgtcattgc aacctgcacc tg 226025DNAartificial sequenceprimer 60ttaaggatga aatagaacag gaatc 256123DNAartificial sequenceprimer 61atggaaagtg ctgctcacca atc 236226DNAartificial sequenceprimer 62ttatggtaaa ggactgacgg gaatgg 266328DNAartificial sequenceprimer 63atggagaaac aaatcctatc atttccag 286425DNAartificial sequenceprimer 64ctaaggagta aatggaatgg gaatc 256525DNAartificial sequenceprimer 65atgtcatcac aaccagcagt tttac 256624DNAartificial sequenceprimer 66tcaatgtgta ggatatagaa cagg 246722DNAartificial sequenceprimer 67ttcatatttg ttgctaatcc tc 226825DNAartificial sequenceprimer 68caaggtacag gatttatgca aatcc 256936DNAartificial sequenceprimer 69aaaaggcgcg ccaaaaatgg acaagcaaat cctatc 367032DNAartificial sequenceprimer 70aaaattaatt aatcagtccg ttgttggtga ag 327137DNAartificial sequenceprimer 71aaaaggcgcg ccaaaaatgg agcagcaatt gctatcg 377232DNAartificial sequenceprimer 72aaaattaatt aactatggca aagtagtgaa tg 327340DNAartificial sequenceprimer 73aaaaggcgcg ccaaaaatgg cactgcaatc actactattc 407438DNAartificial sequenceprimer 74aaaattaatt aattacacat gttttgtttt ggtttctc 387538DNAartificial sequenceprimer 75aaaaggcgcg ccaaaaatgt cattgcaacc tgcacctg 387632DNAartificial sequenceprimer 76aaaattaatt aattaaggat gaaatagaac ag 327739DNAartificial sequenceprimer 77aaaaggcgcg ccaaaaatgg aaagtgctgc tcaccaatc 397831DNAartificial sequenceprimer 78aaaattaatt aattatggta aaggactgac g 317941DNAartificial sequenceprimer 79aaaaggcgcg ccaaaaatgg agaaacaaat cctatcattt c 418031DNAartificial sequenceprimer 80aaaattaatt aactaaggag taaatggaat g 318141DNAartificial sequenceprimer 81aaaaggcgcg ccaaaaatgt catcacaacc agcagtttta c 418233DNAartificial sequenceprimer 82aaaattaatt aatcaatgtg taggatatag aac 338338DNAartificial sequenceprimer 83aaaaggcgcg ccaaaaatgg caatgcaacc tgcaattg 388437DNAartificial sequenceprimer 84aaaattaatt aatcaagtgg caataggttc aatgaac 37851845DNARicinus communis 85atggcactgc aatcactact attcttacag gcaaactctc aaaatcgaaa tttttgtcaa 60ttcttaagca tgccctcaat caggtgctgt agctgtcgag tccctttttc ttcatggtct 120gctaaatcag tgactaataa gtcacctcaa gcctgtttat caacaaaatc ccagcaagaa 180ttccgtccac tggcaaactt tcctcccact gtatggggca gtcactttgc ttctccaacc 240tttagtgaat cggaatttgg gacttatgat agacaagcaa acgtcctgca gaaaaagatc 300cgagaactct taacgtcgtc cagaagtgat tcggtggaga aaattgcttt tatcgactta 360ctgtgtcgtc ttggtgtctc gtatcatttt gagaatgaca ttgaagagca actgagtcaa 420attttcagtt gccaacctgg tctccttgat gaaaaacaat acgatctcta tactgttgca 480cttgtatttc gagttttcag acagcatggt ttcaaaatgt cttctaatgt gttccacaaa 540ttcacggaca gccatggtaa attcaaggct tccctgctaa gcgatgccaa aggtatgctc 600agcctttttg aagctagcca tttaagcatg catggagaag acattcttga tgaagccttt 660gctttcacca aggattactt ggagtcctct gcagttgacc agtacttatg ccctaatctt 720caaaagcata taactaacgc cctggagcag cctttccaca aaggcatacc aagactagag 780gccaggaaat acattgacct atacgaaggc gacgaatgcc gaaatgaaac agtactcgag 840tttgcaaagt tggactataa tagagtacaa ttattacacc aacaagagct aagccagttc 900tcaacgtggt ggaaagacct caatcttgct tcggagattc cttatgcaag agacagaatg 960gcagaaattt tcttttgggc tgttgcaatg tattttgagc ctaagtatgc acaagctcga 1020atgattattg ctaaagttgt attgctcata tcacttgtag atgatacatt tgatgcatat 1080gccactattg aagaaaccca tcttcttgca gaagcattcg aaaggtggga taagagctgc 1140ctggatcagc tgccagatta catgaaagtt atctataaac tattgctaaa caccttttct 1200gaatttgaga atgatttggc aaaggaggga aagtcctata gtgtcagata tgggagggaa 1260gcgtttcaag aactagttag aggctactac ctggaggcta tgtggcgtga tgagggaaaa 1320ataccatcat tcgatgagta catacgcaat ggatcattgt caagcggatt acctcttgtc 1380gtgacagcat ctttcatggg agtcaaagaa attacaggga tcagagaatt tcagtggcta 1440aggactaaac ccaaattaaa tcatttttct ggtgcagtag gaaggattat gaatgacata 1500atgtctcatg tgagcgagca aaatagagga catgttgcat cttgcataga ttgctacatg 1560aaacaatatg aagtttccaa ggaggaagca attaaagaga tgcagaaaat ggctagcgat 1620gcttggaagg atataaacga aggatatatg aggccagcac aagtatcagt tagtgaacta 1680atgagagtgg tcaaccttgc acgactaaca gatgtgagct ataaatatgg cgatggttat 1740actgatccac aacacttgaa acagtttgtt aaaggattgt tcatagatcc ggttcctctt 1800ccaaatcaaa ttcgtaaagg agaaaccaaa acaaaacatg tgtaa 184586211DNAJatropha curcas 86atggcaatgc aacctgcaat tgttcaagca aactcccaaa aacaaatcct tactactccg 60ttcttattaa gcacacctag tactaagctt aacgacagtc gttttgcttc cttttccttg 120gctaagccaa caacttttag aaaacttaaa gcatgtgcat caacaaaatc tgagacagaa 180gctcgtccct tagcctactt tcctcctact g 211

* * * * *

Patent Diagrams and Documents
D00000
D00001
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009
D00010
D00011
D00012
D00013
D00014
D00015
D00016
D00017
D00018
D00019
D00020
D00021
D00022
S00001
XML
US20190218529A1 – US 20190218529 A1

uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed