Inhibition Of Histone Methyltransferase For Cardiac Reprogramming

Dzau; Victor J. ;   et al.

Patent Application Summary

U.S. patent application number 16/195777 was filed with the patent office on 2019-06-27 for inhibition of histone methyltransferase for cardiac reprogramming. The applicant listed for this patent is Duke University. Invention is credited to Victor J. Dzau, Maria Mirotsou.

Application Number20190192533 16/195777
Document ID /
Family ID50628265
Filed Date2019-06-27

View All Diagrams
United States Patent Application 20190192533
Kind Code A1
Dzau; Victor J. ;   et al. June 27, 2019

INHIBITION OF HISTONE METHYLTRANSFERASE FOR CARDIAC REPROGRAMMING

Abstract

A method for promoting the reprogramming of a non-cardiomyocytic cell or tissue into cardiomyocytic cell or tissue comprising is carried out by contacting a non-cardiomyocytic cell or tissue with a modulator of histone methyltransferase activity or expression.


Inventors: Dzau; Victor J.; (Durham, NC) ; Mirotsou; Maria; (Durham, NC)
Applicant:
Name City State Country Type

Duke University

Durham

NC

US
Family ID: 50628265
Appl. No.: 16/195777
Filed: November 19, 2018

Related U.S. Patent Documents

Application Number Filing Date Patent Number
14440567 May 4, 2015 10130637
PCT/US13/68352 Nov 4, 2013
16195777
61721800 Nov 2, 2012

Current U.S. Class: 1/1
Current CPC Class: A61P 9/10 20180101; C12Y 201/01043 20130101; C12N 15/1137 20130101; C12Y 201/01125 20130101; A61K 31/437 20130101; A61K 31/551 20130101; C07D 401/14 20130101; C12Y 207/10002 20130101; C12Y 207/11001 20130101; A61K 45/06 20130101; A61K 35/34 20130101; A61P 9/12 20180101; C07D 487/04 20130101; C12N 2320/30 20130101; C12N 2310/141 20130101; A61P 9/00 20180101
International Class: A61K 31/551 20060101 A61K031/551; A61P 9/00 20060101 A61P009/00; C07D 487/04 20060101 C07D487/04; C07D 401/14 20060101 C07D401/14; A61K 45/06 20060101 A61K045/06; A61K 31/437 20060101 A61K031/437; A61P 9/12 20060101 A61P009/12; A61K 35/34 20060101 A61K035/34; A61P 9/10 20060101 A61P009/10; C12N 15/113 20060101 C12N015/113

Claims



1. A method for promoting the reprogramming of a non-cardiomyocytic cell or tissue into cardiomyocytic cell or tissue comprising contacting said non-cardiomyocytic cell or tissue with a composition comprising a modulator of histone methyltransferase activity or expression.

2. The method of claim 1, wherein said modulator comprises a small molecule, a polynucleotide, or a polypeptide.

3. The method of claim 1, wherein said modulator comprises an inhibitor of histone methyltransferase activity.

4. The method of claim 1, wherein said modulator inhibits or reduces the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb.

5. The method of claim 1, wherein said modulator inhibits or reduces methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3).

6. The method of claim 3, wherein the inhibitor of histone methyltransferase activity is 2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-dimethoxy-N-[1-(phenylmet- hyl)-4-piperidinyl]-4-quinazolinamine trihydrochloride hydrate (BIX-01294) or 3-Deazaneplanocin A hydrochloride (DZNep).

7. The method of claim 1, wherein said modulator comprises an enhancer of histone methyltransferase activity.

8. The method of claim 1, wherein said modulator enhances or increases methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3).

9. The method of claim 1, wherein said modulator enhances or increases the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb.

10. The method of claim 1, further comprising the administration of a JAK inhibitor or a histone deacetylase inhibitor.

11. The method of claim 10, wherein said JAK inhibitor inhibits or reduces the activity or expression of JAK-1, JAK-2, or JAK-3.

12. The method of claim 10, wherein the JAK inhibitor is JAK inhibitor-I.

13. The method of claim 1, wherein said non-cardiomyocytic cell or tissue comprises cardiac fibrotic tissue.

14. The method of claim 1, wherein said non-cardiomyocytice cell comprises a fibroblast, adipocyte, or a hematopoietic cell.

15. The method of claim 14, wherein said hematopoietic cell is a CD34.sup.+ umbilical cord blood cell.

16. The method of claim 1, wherein said non-cardiomyocytic cell is directly reprogrammed into cardiomyocytic tissue without a stem cell intermediary state.

17. The method of claim 1, wherein said cardiomyocytic tissue is characterized by an increased expression of a cardiomyocyte marker protein after said contacting step compared to the level of said marker protein before said contacting step.

18. The method of claim 17, wherein said marker protein is selected from the group consisting of sarcomeric actinin, L-type calcium channel, brachyury, Flk1, Islet1, Mesp1, Gata4, Mef2c, Hand2, TroponinT2, and Tbx-5.

19. The method of claim 13, wherein said fibrotic tissue is present in a heart diagnosed as comprising myocardial infarction, ischemic heart disease, hypertrophic cardiomyopathy, valvular heart disease, congenital cardiomyopathy, hypertension, or other cardiac disease or condition associated with fibrosis.

20. The method of claim 1, wherein contacting comprises intravenous administration or direct injection into cardiac tissue.

21. The method of claim 1, wherein said contacting occurs ex vivo.

22. The method of claim 21, further comprising delivering the reprogrammed cardiomyocyte cell or tissue to the heart of a subject in need thereof.

23. The method of claim 22, wherein said delivering comprises intravenous administration or direct injection into cardiac tissue.

24. A method for treating or reducing cardiac fibrosis comprising identifying a subject having or at risk of cardiac fibrosis and administering a modulator of histone methyltransferase activity or expression.

25. The method of claim 24, wherein said administering a modulator of histone methyltransferase activity or expression causes reprogramming of cardiac fibrotic tissue into cardiomyocytic cells or tissue.

26. The method of claim 24, wherein said modulator comprises a small molecule, a polynucleotide, or a polypeptide.

27. The method of claim 24, wherein said modulator comprises an inhibitor of histone methyltransferase activity.

28. The method of claim 24, wherein said modulator inhibits or reduces methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3).

29. The method of claim 24, wherein said modulator inhibits or reduces the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb.

30. The method of claim 24, wherein said modulator comprises an enhancer of histone methyltransferase activity.

31. The method of claim 24, wherein said modulator enhances or increases methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4

32. The method of claim 24, wherein said modulator enhances or increases the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb.

33. The method of claim 24, further comprising the administration of a JAK inhibitor, or a histone deacetylase inhibitor.

34. The method of claim 24, wherein said non-cardiomyocytic cell or tissue comprises cardiac fibrotic tissue.

35. The method of claim 24, wherein said non-cardiomyocytice cell comprises a fibroblast, adipocyte, or a hematopoietic cell.

36. The method of claim 33, wherein said hematopoietic cell is a CD34.sup.+ umbilical cord blood cell.

37. The method of claim 25, wherein said direct reprogramming occurs without a stem cell intermediary state.

38. The method of claim 24, wherein said cardiomyocytic tissue is characterized by an increased expression of a cardiomyocyte marker protein after said contacting step compared to the level of said marker protein before said contacting step.

39. The method of claim 38, wherein said marker protein is selected from the group consisting of sarcomeric actinin, L-type calcium channel, brachyury, Flk1, Islet1, Mesp1, Gata4, Mef2c, Hand2, TroponinT2, and Tbx-5.

40. The method of claim 24, wherein said subject has been diagnosed with or is at risk of developing a cardiac disease or condition comprising myocardial infarction, ischemic heart disease, hypertrophic cardiomyopathy, valvular heart disease, congenital cardiomyopathy, hypertension, or other cardiac disease or condition associated with fibrosis.

41. The method of claim 24, wherein said administering comprises intravenous administration or direct injection into cardiac tissue.

42. The method of claim 24, wherein said treating or reducing cardiac fibrosis comprises at least one selected from increasing exercise capacity, increasing cardiac ejection volume, decreasing left ventricular end diastolic pressure, decreasing pulmonary capillary wedge pressure, increasing cardiac output, increasing cardiac index, lowering pulmonary artery pressures, decreasing left ventricular end systolic and diastolic dimensions, decreasing collagen deposition in cardiac muscle or tissue, decreasing left and right ventricular wall stress, decreasing heart wall tension, increasing quality of life, decreasing disease related morbidity or mortality, or combinations thereof.

43. A method for regenerating cardiomyocytic cell or tissue comprising reprogramming of a non-cardiomyocytic cell or tissue into cardiomyocytic cell or tissue, wherein said reprogramming comprises contacting said non-cardiomyocytic cell or tissue with a modulator of histone methyltransferase activity or expression.

44. The method of claim 43, wherein said modulator comprises a small molecule, a polynucleotide, or a polypeptide.

45. The method of claim 43, wherein said modulator comprises an inhibitor of histone methyltransferase activity.

46. The method of claim 43, wherein said modulator inhibits or reduces methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3).

47. The method of claim 43, wherein said modulator inhibits or reduces the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb.

48. The method of claim 43, wherein said modulator comprises an enhancer of histone methyltransferase activity.

49. The method of claim 43, wherein said modulator enhances or increases methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4

50. The method of claim 43, wherein said modulator enhances or increases the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb.

51. The method of claim 43, further comprising administering a JAK inhibitor or a histone deacetylase inhibitor.

52. The method of claim 43, wherein said non-cardiomyocytice cell comprises a fibroblast, adipocyte, or a hematopoietic cell.

53. The method of claim 52, wherein said hematopoietic cell is a CD34.sup.+ umbilical cord blood cell.

54. The method of claim 43, wherein said non-cardiomyocytic cell is directly reprogrammed into cardiomyocytic cell or tissue without a stem cell intermediary state.

55. The method of claim 43, wherein said cardiomyocytic cell or tissue is characterized by an increased expression of a cardiomyocyte marker protein after said contacting step compared to the level of said marker protein before said contacting step.

56. The method of claim 55, wherein said marker protein is selected from the group consisting of sarcomeric actinin, L-type calcium channel, brachyury, Flk1, Islet1, Mesp1, Gata4, Mef2c, Hand2, TroponinT2, and Tbx-5.

57. The method of claim 43, wherein said contacting comprising intravenous administration or direct injection into damaged or injured cardiac tissue of a subject.

58. The method of claim 43, wherein said regenerating occurs in vitro or ex vivo.

59. The method of claim 58, further comprising transplanting said regenerated cardiomyocytic cell or tissue into damaged or injured cardiac tissue of a subject.

60. The method of claim 57 or 59, wherein said subject is suffering from a heart disease or condition comprising myocardial infarction, ischemic heart disease, hypertrophic cardiomyopathy, valvular heart disease, congenital cardiomyopathy, hypertension, physical trauma or injury to the heart, or complications from cardiac surgery.

61. The method of claim 58, wherein said non-cardiomyocytic cell or tissue is from the subject.

62. A composition promoting the reprogramming of a non-cardiomyocytic cell or tissue into cardiomyocytic cell or tissue comprising contacting said non-cardiomyocytic cell or tissue with a composition comprising a modulator of histone methyltransferase activity or expression.

63. The composition of claim 62, wherein said modulator comprises a small molecule, a polynucleotide, or a polypeptide.

64. The composition of claim 62, wherein said modulator comprises an inhibitor of histone methyltransferase activity.

65. The composition of claim 62, wherein said modulator inhibits or reduces the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aufkb.

66. The composition of claim 62, wherein said modulator inhibits or reduces methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H13 (H3K27), or arginine at position 3 on histone H4 (H4R3).

67. The composition of claim 64, wherein the inhibitor of histone methyltransferase activity is 2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-dimethoxy-N-[1-(phenylmet- hyl)-4-piperidinyl]-4-quinazolinamine trihydrochloride hydrate (BIX-01294) or 3-Deazaneplanocin A hydrochloride (DZNep).

68. A pharmaceutical composition comprising the composition of claim 62 and a pharmaceutically acceptable excipient.

69. The pharmaceutical composition of claim 68, suitable for intravenous injection or direct injection to the site of injured or damaged cardiac tissue.
Description



RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 14/440,567, filed on May 4, 2015, which is a U.S. National Phase entry under 35 U.S.C. .sctn. 371 of International Patent Application No. PCT/US2013/068352, filed on Nov. 4, 2013, which claims priority to and benefit of U.S. Provisional Application No. 61/721,800, filed on Nov. 2, 2012; the contents of which are hereby incorporated in its entirety.

FIELD OF THE DISCLOSURE

[0002] This invention relates to the field of cardiology.

BACKGROUND OF THE DISCLOSURE

[0003] Cardiovascular disease and its manifestations, including coronary artery disease, myocardial infarction, congestive heart failure and cardiac hypertrophy, is the number one cause of death globally. In response to pathological stress, such as injury to the heart or myocardial infarction, cardiac fibroblasts and extracellular matrix proteins accumulate disproportionately and excessively to form scar tissue. This process is known as myocardial fibrosis. Because fibrotic scar tissue is not contractile and fails to contribute to cardiac function, myocardial fibrosis can result in mechanical stiffness, diminished cardiac function, contractile dysfunction, cardiac hypertrophy, and arrhythmias

[0004] Heart tissue has a limited capacity for regeneration or self-renewal. Thus, repopulation of the injured or diseased heart with new, functional cardiomyocytes remains a daunting challenge. As such, there is a pressing need in the field of cardiology to develop new approaches for the regeneration of damaged or diseased cardiac tissue.

SUMMARY OF THE INVENTION

[0005] The present disclosure relates to a method for promoting conversion of cardiac fibrotic tissue into cardiomyocytic tissue is carried out by contacting non-cardiomyocytic cell or tissue into a cardiomycocytic cell or tissue with a composition comprising a modulator of histone methyltransferase (HMT) activity or expression. The methods lead to direct reprogramming of differentiated cells such as fibroblasts to cardiomyocytes or cardiomyocyte progenitors. A method for promoting the direct reprogramming of fibrotic tissue (i.e., scar tissue) into cardiomyocytic cell or tissue by contacting the fibrotic tissue with a modulator of histone methyltransferase activity or expression. The modulator comprises a small molecule, a polynucleotide, or a polypeptide.

[0006] For example, the modulator comprises an inhibitor of histone methyltransferase expression or activity. An inhibitor of HMT activity is characterized as inhibition or reduction of methylation of proteins, preferably histones. For example, the modulator inhibits or reduces the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb. The inhibitors disclosed herein inhibit or reduce methylation lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3). For example, the inhibition or reduction is 5%, 10%, 25%, 50%, 2-fold, 5-fold, 10-fold or less compared to the level of methylation or expression of the HMT before treatment. Preferably, the HMT inhibitors are BIX-01294 (trihydrochloride hydrate) (2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-dimethoxy-N-[1-(phenylme- thyl)-4-piperidinyl]-4-quinazolinamine trihydrochloride; Tocris Biosciences) or 3-Deazaneplanocin A hydrochloride (DZNep; Tocris Biosciences).

[0007] Alternatively, the modulator comprises an enhancer of histone methyltransferase expression or activity. An enhancer of HMT activity is characterized as enhancing or increasing methylation of proteins, preferably histones. For example, the modulator enhances or increases the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb. The inhibitors disclosed herein enhances or increases methylation lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3). For example, the enhancement or increase is 1%, 2%, 5%, 10%, 25%, 50%, 2-fold, 5-fold, 10-fold or less compared to the level of methylation or expression of the HMT before treatment.

[0008] One example of a non-cardiomyocytic cell or tissue to be treated or reprogrammed as described herein is cardiac fibrotic tissue or scar tissue, e.g., scar tissue that has formed after heart tissue has been injured or diseased. Other examples include fibroblasts, adipocytes, or hematopoietic cells. The hematopoietic cells include CD34.sup.+ umbilical cord blood cells. In preferred embodiments, non-cardiomyocytic cell is directly reprogrammed into a cardiomyocytic cell or cardiomyocytic progenitor cell without a stem cell intermediary state. The fibrotic tissue is present in a heart diagnosed as comprising myocardial infarction, ischemic heart disease, hypertrophic cardiomyopathy, valvular heart disease, congenital cardiomyopathy, or hypertension. The reprogramming methods are carried out by delivering the composition by local administration to the heart, preferably by intravenous administration or direct injection into cardiac tissue, for example at the site of the fibrotic tissue.

[0009] Administration is carried out using known methods of deliverying therapeutic compounds to the heart, e.g., needle, catheter, or stent. In the case of combination therapy, compounds are administered together or sequentially. For example, a composition comprising the modulator of a histone methyltransferase is administered prior to, concurrently with, or after composition comprising another modulator of a histone methyltransferase, a JAK inhibitor, a histone deacetylase inhibitor, or a cardiovascular disease therapeutic agent.

[0010] The compositions and methods described herein offer an approach to treating cardiac disease long after the initial symptoms have occurred by directly converting, or reprogramming fibrotic tissue (i.e., fibroblasts) to cardiomyocytic cells or tissue, thereby directly replacing fibrotic tissue with viable functional cardiomyocytes. The fibrotic tissue is contacted with a composition comprising a modulator of histone methyltransferase expression or activity after fibrosis has developed as a result of myocardial infarction or other cardiac disease or injury process, e.g., days (1, 2, 3, 4, 5, 6 days after), weeks (1, 2, 4, 6, 8), months (2, 4, 6, 8, 10, 12), or even a year or more after the primary cardiac insult.

[0011] The present disclosure also provides methods for treating or reducing cardiac fibrosis by identifying a subject having or at risk of cardiac fibrosis and administering a modulator of histone methyltransferase activity or expression, in which the modulator causes reprogramming of cardiac fibrotic tissue into cardiomyocytic cells or tissue. In some aspects, the reprogramming is direct, without a stem cell intermediary state. Cardiac fibrosis can be determined or detected using methods recognized in the art, for example, histopathological staining for increased fibroblast markers or extracellular matrix proteins (e.g., collagen I, collagen II, collagen IV), detection of excessive proliferation of fibroblasts. Other signs that indicate for cardiac fibrosis include decreased exercise capacity, decreased cardiac ejection volume, decreased cardiac output, decreased cardiac index, increased collagen deposition, increased heart wall tension, increased pulmonary pressure, and decreased diastolic pressure. Thus, the treating or reducing of cardiac fibrosis includes the method of claim 24, wherein said treating or reducing cardiac fibrosis comprises at least one selected from increasing exercise capacity, increasing cardiac ejection volume, decreasing left ventricular end diastolic pressure, decreasing pulmonary capillary wedge pressure, increasing cardiac output, increasing cardiac index, lowering pulmonary artery pressures, decreasing left ventricular end systolic and diastolic dimensions, decreasing collagen deposition in cardiac muscle or tissue, decreasing left and right ventricular wall stress, decreasing heart wall tension, increasing quality of life, decreasing disease related morbidity or mortality, or combinations thereof. These indications are measured by a clinician or physician using known methods in the clinical setting. As described herein, decreasing is 5%, 10%, 25%, 50%, 2-fold, 5-fold, 10-fold or less compared to before treatment. As described herein, increasing is 5%, 10%, 25%, 50%, 2-fold, 5-fold, 10-fold or more compared to before treatment.

[0012] An alternative method of restoring tissue specific function to fibrotic tissue in an organ is therefore carried out by providing patient-derived non-cardiomyocytic cells and contacting said non-cardiomyocytic cells with a histone methyltransferase inhibitor. Preferably, the non-cardiomyocytic cell is a fibroblast obtained from the subject to be treated. For example, the fibroblast is a cardiac fibroblast, an epidermal keratinocyte, or, preferably, a dermal fibroblast obtained from the skin of the patient to be treated. Cells can be cultured in vitro or ex vivo for 1 day, 1 week, 2 weeks, 3 weeks until the cells have a particular function, phenotype, or cell number. Cells can also be cultured under the appropriate conditions to enhance reprogramming efficiency, for example using particular growth medias (i.e., cardiomyocyte differentiation media) or treatment with additional agents known in the art to improve reprogramming efficiency, as disclosed herein). The cells are then harvested and, optionally, purified, before transplanting or injecting into the subject, preferably at the site for repair or regeneration. Cells directly reprogrammed in this manner are useful for cell replacement therapy, in which the reprogrammed cells are infused or injected into the cardiac tissue, for example, by intravenous injection or direct injection into the cardiac fibrotic tissue.

[0013] The invention therefore includes a purified population of primary fibroblasts treated with a histone methyltransferase modulator, as well as a purified population of cardiomyocytes or cardiomyocyte progenitors that were produced using the primary fibroblasts treated with a histone methyltransferase modulator. Each population is substantially free of stem cells, e.g., the population is at least 85%, 90%, 95%, 99%, or 100% transfected fibroblasts or at least 85%, 90%, 95%, 99%, or 100% reprogrammed myoblasts, cardiomyocytes, or cardiomyocyte progenitors. Cells are purified by virtue of selection based on cell surface markers as well as other cell selection techniques well known in the art.

[0014] As was discussed above, the cells are useful for therapeutic applications such as direct administration to a subject or as a component of another therapeutic intervention or device. For example, the invention encompasses a stent or catheter comprising the reprogrammed functional cardiomyocytic cells.

[0015] The composition and methods of the invention include several advantages over previous methods of reprogramming cells. For example, unlike methods that employ reprogramming to a stem cell phenotype and subsequent differentiation of this cell population, the direct reprogramming methods of the invention do not involve an intermediate stage of a stem cell phenotype. In addition, additional advantages of the use of small oligonucleotides, polypeptides, and small molecules rather than gene provides include ease of the production and development for biologic therapy.

[0016] The compositions are administered as pharmaceutically acceptable compositions, e.g., formulated with a pharmaceutically acceptable carrier or excipient. In general, dosage is from 0.01 .mu.g to 100 g per kg of body weight, from 0.1 .mu.g to 10 g per kg of body weight, from 1.0 .mu.g to 1 g per kg of body weight, from 10.0 .mu.g to 100 mg per kg of body weight, from 100 .mu.g to 10 mg per kg of body weight, or from 1 mg to 5 mg per kg of body weight, and may be given once or more daily, weekly, monthly or yearly. Examples of dosages based on small animal studies are in the range of 80 mg/kg for single or multiple dosages. However, it is expected with appropriate modification dosages 1-25 mg/kg for single to three repeated dosages will confer clinical benefit in human subjects.

[0017] Optionally, the modulator of histone methyltransferase is administered in combination with another compound such as a small molecule or recombinant protein to increase reprogramming efficiencies. Such molecules suitable for increasing the efficiency of conversion to cardiac myocytes include bone morphogenetic protein 4 (BMP4), cardiomyocyte transcription factors, Janus protein tyrosine kinase (JAK)-1 inhibitor, and histone deacetylase inhibitors (HDIs). Examples of JAK1 inhibitors include, but are not limited to 241,1-Dimethylethyl)-9-fluoro-3,6-dihydro-7H-benz [h] -imidaz [4,5-f]isoquinolin-7-one (CAS 457081-03-7; Millipore; EMD4 Biosciences) (also known as Pyridone 6); tofacitinib (CAS 540737-29-9; XELJANZ.RTM., Pfizer; Sigma Aldrich); tyrphostin AG 490 (CAS 133550-30-8; Sigma Aldrich); cucurbitacin B hydrate (CAS 6199-67-3; Sigma Aldrich); baricitinib (LY3009104 or INCB028050) (CAS 1187594-09-7; Selleck Chemicals). Other reprogramming efficiency agents include RG108 (CAS 48208-26-0; Tocris Biosciences), R(+)Bay K 8644 (CAS 71145-03-4; Tocris Biosciences), PS48 (CAS 1180676-32-7; Tocris Biosciences), and A83-01 (Stemgent) (CAS 909910-43-6; Tocris Biosciences). Examples of histone deacetylase inhibitors (HDIs) include, but are not limited to valproic acid (CAS 1069-66-5; Tocris Biosciences), apicidin (CAS 183506-66-3; Sigma-Aldrich), M344 (amide analog of trichostatin) (CAS 251456-60-7; Sigma-Aldrich), sodium 4-phenylbutuyrate (CAS 1716-12-7; Tocris Biosciences), splitomycin (CAS 5690-03-9; Sigma-Aldrich), trichostatin A (CAS 58880-19-6; Sigma Aldrich; Tocris Biosciences), SAHA (CAS 149647-78-9; Sigma-Aldrich; Cayman Chemical), SBHA (CAS 38937-66-5; Sigma Aldrich), Tubacin (CAS 537049-40-4; Enzo Life Sciences; Sigma-Aldrich), CI-994 (CAS 112522-64-2; Cayman Chemical; Tocris Biosciences), panobinostate (LBH589) (CAS 404950-80-7; BioVision Incorporated; LC Laboratories), APHA compound (CAS 676599-90-9; Sigma-Aldrich; Santa Cruz Biotechnologies), and BATCP (CAS 787549-23-9; Santa Cruz Biotechnologies; Sigma-Aldrich). Examples of cardiomyocyte transcription factors include, but are not limited to, GATA-4 and Mef2.

[0018] Pharmaceutical compositions are also provided herein, comprising a modulator of a histone methylatransferase and a pharmaceutically acceptable excipient. The modulator comprises an inhibitor or enhancer of histone methyltransferase expression or activity. The modulator inhibits or reduces, or enhances or increases the expression or activity of Setdb2, Prmt7, Setd7, Setd8, Ezh1, Ezh2, or Aurkb. The modulator inhibits or reduces, or enhances or increases methylation of lysine at position 9 on histone H3 (H3K9), lysine at position 27 on histone H3 (H3K27), or arginine at position 3 on histone H4 (H4R3). For example, the HMT inhibitors are BIX-01294 (trihydrochloride hydrate) or 3-Deazaneplanocin A hydrochloride (DZNep). The pharmaceutical compositions comprised herein are suitable for administration for local administration to the cardiac tissue, for example, by intravenous injection or direct injectious to the site of injury, damage, or fibrosis.

[0019] The subject is preferably a mammal in need of such treatment, e.g., a subject that has been diagnosed with cardiac fibrosis (e.g., scar tissue; excessive deposition of collagen or other extracellular matrix proteins; or excessive proliferation of cardiac fibroblasts) or a predisposition thereto. The mammal can be, e.g., any mammal, e.g., a human, a primate, a mouse, a rat, a dog, a cat, a horse, as well as livestock or animals grown for food consumption, e.g., cattle, sheep, pigs, chickens, and goats. In a preferred embodiment, the mammal is a human.

[0020] All compounds, polynucleotides, polypeptides, and small molecules of the invention are purified and/or isolated. Specifically, as used herein, an "isolated" or "purified" nucleic acid molecule, polynucleotide, polypeptide, or protein, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. Purified compounds, e.g., small molecules, are at least 60% by weight (dry weight) the compound of interest. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight the compound of interest. For example, a purified compound is one that is at least 90%, 91%, 92%, 93%, 94%, 95%, 98%, 99%, or 100% (w/w) of the desired compound by weight. Purity is measured by any appropriate standard method, for example, by column chromatography, thin layer chromatography, or high-performance liquid chromatography (HPLC) analysis. A purified or isolated polynucleotide (ribonucleic acid (RNA) or deoxyribonucleic acid (DNA)) is free of the genes or sequences that flank it in its naturally-occurring state. Purified also defines a degree of sterility that is safe for administration to a human subject, e.g., lacking infectious or toxic agents.

[0021] Similarly, by "substantially pure" is meant a compound that has been separated from the components that naturally accompany it. For example, the nucleotides and polypeptides are substantially pure when they are at least 60%, 70%, 80%, 90%, 95%, or even 99%, by weight, free from the proteins and naturally-occurring organic molecules with they are naturally associated and compounds such as small molecules are purified from starting reagents, intermediates, or other synthesis components. The transitional term "comprising," which is synonymous with "including," "containing," or "characterized by," is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. By contrast, the transitional phrase "consisting of" excludes any element, step, or ingredient not specified in the claim. The transitional phrase "consisting essentially of" limits the scope of a claim to the specified materials or steps "and those that do not materially affect the basic and novel characteristic(s)" of the claimed invention.

[0022] Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All published foreign patents and patent applications cited herein are incorporated herein by reference. Genbank and NCBI submissions indicated by accession number cited herein are incorporated herein by reference. All other published references, documents, manuscripts and scientific literature cited herein are incorporated herein by reference. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is a diagram showing an overview of experimental design and methods. Fibroblast transfections were performed using known methods, e.g., as described in Jayarwadena et al., 2012, Circ. Res. Microarray data analysis was performed using standard tools such as with Toppgene (www.toppgene.cchmc.org), STRING (http://string-db.org), as well as GeneGo Metacore (www.genego.com/metacore.php). Each of the references are hereby incorporated by reference.

[0024] FIG. 2A is a bar graph showing the results of a global gene expression analysis in miR reprogrammed cardiac fibroblasts. Gene affiliation analysis led to the identification of 22 significant terms for molecular function of genes found changed in microarray 9 days post miR transfection. 62 of these genes affect chromatin binding.

[0025] FIG. 2B is a diagram showing that gene enrichment, gene affiliation, and binding information indicated a central role for HDACs in miR mediated reprogramming turning fibroblasts into cardiomyocytes.

[0026] FIGS. 3A and 3B are bar graphs showing that HDACs are not affecting early stages of miR mediated cardiac reprogramming The graphs display gene expression fold changes normalized to NegmiR transfection. Data are shown as mean.+-.SEM. *P<0.05. FIG. 3A shows HDAC gene expression profile at 4d post transfection, and FIG. 3B shows the results of treatment with several different inhibitors against modifiers of histone acetylation (CPTH2 inhibitors all HAT activity, MC1568 affects HDAC class II, NaB mainly affects HDAC class I, OSU44 inhibits class I, II and IV, Tenovin-1 inhibits all class III Hdacs and XIX Compd2 selectively inhibits HDAC8). All inhibitors were administered 24 hours post treatment. Gene expression of cardiac transcription factors was measured 6d post transfection.

[0027] FIG. 4A is a bar graph showing that histone methyltransferases have an altered gene expression profile in miR treated cardiac fibroblasts. Fold changes normalized to NegmiR transfected cells are presented. Data are shown as mean.+-.SEM. * P<0.05. A=X; B=Prmt6; C=Dnmt3b, D=Dnmt1, E=Suv39h1; F=M115; G=Ehmt1; H=Smyd3; I=Prmt2; J=Prmt1; K=Prmt5; L=M113; M=Ehmt2; N=Carm1; O=Prmt3; P=Prmt8; Q=Dot11; R=Smyd1; S=Y; T=Z.

[0028] FIG. 4B is a three-dimensional dot plot showing cardiac transcription factor gene expression. RNAi screening for candidate genes. These results indicate that histone methyltransferase inhibition plays a role in miR mediated cardiac reprogramming The circled datapoints indicate histone methyltransferase genes.

[0029] FIG. 5 is a series of bar graphs showing that transfection of human dermal fibroblasts with a combination of miRs induces expression of mesodermal markers as early as 3d post treatment. Gene expression in fold change normalized to NegmiR transfection for markers of distinct cardiac differentiation stages. All graphs are displayed with SEM.

[0030] FIGS. 6A and 6B are two bar graphs showing that epigenetic modifiers expression is changed upon microRNA-mediated cardiac reprogramming Neonatal mouse cardiac fibroblasts were transfected with the microRNA combination and RNA was isolated 3-4 days afterwards for gene expression analysis by qRT-PCR. (FIG. 6A) Gene expression was analyzed for epigenetic modifiers Ezh1, Prmt7, Setd7. (FIG. 6B) Gene expression was analyzed for epigenetic modifiers Ezh2, Setd8, and Aurkb. The data are shown as Average +/-Standard deviation. Ut: Untreated; Neg: negative control scrambled microRNA, mc: microRNA combination (50 nM of a combination of miR-1, miR-133, miR-208, miR-499).

[0031] FIG. 7 is a graph showing how epigenetic modifiers affect cardiac reprogramming Neonatal mouse cardiac fibroblasts were transfected with the microRNA combination (50 nM) or with siRNAs against the indicated genes (40 nM), Setd7, Aurkb, and Prmt7. Gene expression analysis of cardiac markers Tbx5, Mef2c, and Gata-4 were determined by qRT-PCR. The data are shown as Avg+/Sdv. Neg: negative control scrambled microRNA, mc: microRNA combination, si-neg: negative control scrambled siRNA. Neg and mc serve as reference controls for reprogramming * P<0.05 vs si-neg.

[0032] FIGS. 8A and 8B are two bar graphs showing cardiomyocyte expression of alpha-myosin heavy chain (MHC)-CFP reporter. Neonatal cardiac fibroblasts transgenic for the reporter construct: alpha-myosin heavy chain (MHC) promoter linked to cyan fluorescent protein (CFP) under the control of the alpha-MHC promoter. (FIG. 8A) Cells were transfected with miRNAs (50 nM), siRNA (40 nM) against Setdb2 or both. Neg-siRNA was used as a control for Setdb2 siRNA. The cells were isolated 6 days after treatment and subjected to FACS analysis for alpha-MHC driven CFP expression. (FIG. 8B) Neg-siRNA control or miRNA-transfected cells were treated with BIX-01294 (used at a final concentration of 1 .mu.M) from day 2 to day 6.

[0033] FIGS. 9A and 9B are two bar graphs demonstrating that inhibition of histone methyltransferases affect cardiac markers expression. Neonatal cardiac fibroblasts were treated with 1 .mu.M of the H3K9me3 inhibitor BIX-01294 (BIX) or 1 .mu.M of the H3K27me3/H4K20me3 inhibitor 3-Deazaneplanocin A hydrochloride (DZNep) from day 1 to day 3 in the absence (FIG. 9A) or presence of microRNA combination (MC) (FIG. 9B). Gene expression of cardiac markers was assessed by qPCR. Data are shown as Avg+Sdv. * P<0.05.

[0034] FIGS. 10A, 10B, 10C, 10D, 10E and 10F are a series of six bar graphs showing the enhancement of microRNA mediated cardiac reprogramming as measured by cardiac transcription factor expression in human fibroblasts (BJ cells) by the addition of control (DMSO) or pan-JAK inhibitor I (1 .mu.M) (right bar values). Gene expression was determined by qPCR. (FIG. 10A) Isl-1 gene expression. (FIG. 10B) Mesp2 gene expression. (FIG. 10C) Tbx5 gene expression. (FIG. 10D) Mef2c gene expression. (FIG. 10E) Gata-4 gene expression. (FIG. 10F) Hand2 gene expression. unt: Untreated, neg: Negative microRNA control (50 .mu.M), mc: cells treated with the microRNA combination (50 .mu.M).

DETAILED DESCRIPTION

[0035] Direct conversion of injured cardiac tissue to functional cardiomyocytes in situ is clinically useful to induce cardiac repair and/or regeneration. Combinations of microRNAs (miRs), e.g., -1, -133, -208 and -499, were found to reprogram mouse cardiac fibroblasts in vitro and in vivo to cardiomyocyte and cardiomyocyte-like cells (Jayawardena et al., Circ Res, 2012, 110:1465-1473 and PCT/US2011/043438; both references are hereby incorporated by reference).

[0036] Studies were carried out to investigate the mechanisms involved in the process of miR mediated cardiac reprogramming as well as to explore the feasibility of this approach in converting human fibroblasts towards the cardiomyocyte fate. Histone methyltransferase activity was found to play a role in miR mediated cardiac reprogramming.

Cardiac Reprogramming

[0037] Somatic cells have been reprogrammed to an embryonic-like state via viral transfection of four pluripotency factors (Takahashi et al., 2006, Cell 126, 663-676). Transcription factors have also been used to induce cellular reprogramming A specific combination of three transcription factors (Zhou et al., 2008, Nature 455, 627-632) was employed to reprogram adult exocrine pancreatic cells in vivo to insulin-producing 13-cells representing the potential for switching gene expression in living organisms. Another study demonstrated that two cardiac transcription factors Gata4 and Tbx5 along with the chromatin-remodeling complex Baf60c, are capable of inducing programming and transdifferentiation of embryonic mouse mesoderm (Takeuchi et al., 2009, Nature 459, 708-711) to beating heart tissue. The central premise underlying the majority of these studies is the use of key transcription factors overexpression to redirect or control cell fate. The methods described herein preferably do not involve the use of transcription factors.

[0038] Alternative methods for reprogramming cells have been studied to identify viable methods for directly reprogramming cells without an intermediary stem cell-like state, to circumvent the potential complications associated with differentiating the reprogrammed stem cells to the appropriate differentiated cell type o tissue. A previous study elucidated the role for microRNAs as a therapeutic to activate key molecular programs for directly reprogramming non-cardiomyocytic cells, i.e., fibroblasts, to functional cardiomyocytic tissue (Jayawardena et al., Circ Res, 2012, 110:1465-1473; hereby incorporated by reference in its entirety). Transient overexpression of the combination of mir-1, mir-133, mir-208 and mir-499 results in early induction of cardiac mesoderm and committed cardiac progenitor markers in both murine and human fibroblasts, as well as increased cardiac function, thereby indicating reprogramming of the cells.

[0039] The compositions and methods described herein are based on the surprising discovery that histone methyltransferases play a critical role in miR-mediated cardiac reprogramming Modulators of histone methyltransferase activity were found to induce expression of cardiac markers and cardiac function in fibroblast cells.

[0040] The approaches described herein is particularly suitable for treatment of cardiovascular conditions where there is a significant need to improve cardiac repair and remodeling in acquired heart disease. For example, one application of the compositions described herein is administration of the present composition to the fibrotic tissue in diseased or damaged hearts for direct reprogramming of the cardiac fibroblasts or other cells in the fibrotic tissue to functional cardiomyocytes or cardiomyocytic progenitor cells. In this approach, fibrotic tissue that impairs cardiac function is converted to functional cardiac tissue, to improve cardiac function.

Histone Methyltransferases

[0041] Histone methylation plays an important role in inheritable changes in expression of genes that are not based on changes at the DNA level. Specifically, historic methylation plays an important role on the assembly of the heterochromatin mechanism and the maintenance of gene boundaries between genes that are transcribed and those that are not. This process is highly controlled because changes in gene expression patterns can profoundly affect fundamental cellular processes, such as differentiation, proliferation and apoptosis.

[0042] In eukaryotic cells, DNA is packaged with histones to form chromatin. Approximately 150 base pairs of DNA are wrapped twice around an octamer of histones (two each of histones FIGS. 2A, 2B, 3A, 3B, 4A and 4B) to form a nucleosome, the basic unit of chromatin. The histone tails (furthest from the nueosome core) is the N-terminal end, and residues are numbered starting on this end. Control of changes in chromatin structure (and hence of transcription) is mediated by covalent modifications to histones, most notably of their N-terminal tails. Histone modifications that result in changes in gene expression include methylation, acetylation, sumoylation, phosphorylation, and ubiquitination.

[0043] The compositions and methods disclosed herein are related to modulation histone methylation. The selective addition of methyl groups to specific amino acid sites on histones is controlled by the action of a unique family of enzymes known as hisione methyltransferases (HMTs). The level of expression of a particular gene is influenced by the presence or absence of one or more methyl groups at a relevant histone site. The specific effect of a methyl group at a particular histone site persists until the methyl group is removed by a histone demethylase, or until the modified histone is replaced through nucleosome turnover. Methylation of a hisione can be inherited. Methylation of histones can turn the genes in the adjacent DNA "off" and "on", respectively, either by loosening or encompassing their tails, thereby allowing or blocking transcription factors and other proteins to access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different portions of the genome, or specifically, tissue or cell-type specific genes.

[0044] Histones are methylated on lysine (K) and arginine (R) residues. Methylation is most commonly observed on lysine or arginine residues of histone tails of histone H3 and H4. Histones can be methylated as follows: lysine 26 on H1 (H1K26), lysine 4 on H3 (H3K4), arginine 8 on H3 (H3R8), lysine 9 on H3 (H3K9), arginine 17 on H3 (H3R17), lysine 27 on H3 (H3K27), lysine 36 on H3 (H3K36), lysine 79 on H3 (H3K79), arginine 3 on H4 (H4R3), lysine 20 on H4 (H4K20), and lysine 59 on H4 (H4K59). Preferably, the compositions and methods described herein modulate the methylation at H3K9, H3K27, and H4R3.

[0045] Histone methyltransferases are specific to either lysine or arginine. The lysine-specific transferases are further broken down into whether or not they have a SET domain or a non-SET domain. These domains specify how the enzyme catalyzes the transfer from S-adenosyl methionine to the histone residue. The methyltransferases can add 1, 2 or 3 methyls on the target residues. Examples of histone methyltransferases include, but are not limited to, Setdb2, Setd7, Setd8, Prmt7, Ezh1, Ezh2, G9a, Set 2, MLL, ALL-1, Prmt5, Prmt1, Suv38h, G9a, Setdb1, Ash1, Dot1 (Dot1L), Prmt1, Suv4-20h, Smyd3, SmydS, and Carm1. Preferably, the inhibitors or enhancers of histone methyltransferase include Setdb2, Setd7, Setd8, Prmt7, Ezh1 , and Ezh2.

[0046] Setd7 (also known as SET7, SET9, SET7/SET9, and KMT7) is a SET-domain containing lysine methyltransferase that is characterized by its methylation of lysine 4 on histone H3. The human mRNA sequence of Setd7 (Genbank Accession No. NM_030648.2) is as follows: (SEQ ID NO: 1)

TABLE-US-00001 GGAGAAAGTTGCAGCAGCGGCAGCGGCCAAGGCGGCACACCGGAGCCTCC GAGGCGAGGGGCAAGTGGGCGAAGGGAGGGGGGACGACGGCTGCTGCCGC AGCAGCTGAAGGCCAAGGAATTGAAAGGGCTGTAGGGGGAGGCAGTGCGA GCCAGCCCCGACTGCTCCTCCTCTTCCTCCTCCTCCTCCAAACTCGCGAG CCCCAGAGCTCGCTCAGCCGCCGGGAGCACCCAGAGGGACGGGAGGCAGC CGCGCAGCCCCGAGCTGGGCAGTGTCCCCAGCCGCCATGGATAGCGACGA CGAGATGGTGGAGGAGGCGGTGGAAGGGCACCTGGACGATGACGGATTAC CGCACGGGTTCTGCACAGTCACCTACTCCTCCACAGACAGATTTGAGGGG AACTTTGTTCACGGAGAAAAGAACGGACGGGGGAAGTTCTTCTTCTTTGA TGGCAGCACCCTGGAGGGGTATTATGTGGATGATGCCTTGCAGGGCCAGG GAGTTTACACTTACGAAGATGGGGGAGTTCTCCAGGGCACGTATGTAGAC GGAGAGCTGAACGGTCCAGCCCAGGAATATGACACAGATGGGAGACTGAT CTTCAAGGGGCAGTATAAAGATAACATTCGTCATGGAGTGTGCTGGATAT ATTACCCAGATGGAGGAAGCCTTGTAGGAGAAGTAAATGAAGATGGGGAG ATGACTGGAGAGAAGATAGCCTATGTGTACCCTGATGAGAGGACCGCACT TTATGGGAAATTTATTGATGGAGAGATGATAGAAGGCAAACTGGCTACCC TTATGTCCACTGAAGAAGGGAGGCCTCACTTTGAACTGATGCCTGGAAAT TCAGTGTACCACTTTGATAAGTCGACTTCATCTTGCATTTCTACCAATGC TCTTCTTCCAGATCCTTATGAATCAGAAAGGGTTTATGTTGCTGAATCTC TTATTTCCAGTGCTGGAGAAGGACTTTTTTCAAAGGTAGCTGTGGGACCT AATACTGTTATGTCTTTTTATAATGGAGTTCGAATTACACACCAAGAGGT TGACAGCAGGGACTGGGCCCTTAATGGGAACACCCTCTCCCTTGATGAAG AAACGGTCATTGATGTGCCTGAGCCCTATAACCACGTATCCAAGTACTGT GCCTCCTTGGGACACAAGGCAAATCACTCCTTCACTCCAAACTGCATCTA CGATATGTTTGTCCACCCCCGTTTTGGGCCCATCAAATGCATCCGCACCC TGAGAGCAGTGGAGGCCGATGAAGAGCTCACCGTTGCCTATGGCTATGAC CACAGCCCCCCCGGGAAGAGTGGGCCTGAAGCCCCTGAGTGGTACCAGGT GGAGCTGAAGGCCTTCCAGGCCACCCAGCAAAAGTGAAAGGCCTGGCTTT GGGGTTCAGAGACCTGGAATAGAAACTTGGATCTATGCACTACGTTTATC TGACAATGGGACAACCAGGGACTGCTCATGCTGTGACGTCACATCCTCTC ACCATGCGTTAGCAACGACTTTCTCGCATACTAACTAGGTTTGACTGTAT TACTCATACCAGATTTAAAATTAGCTAGCCTTGCAACAACGTCCTACTGA GAGGTATTGTCGAGCATTTGACATAAGACAGCGTGATGTTCTTTGGTGGT TCAAGTCTAAATCTGTACCACATTCGGAGATGCCAAATGATTAGACTGAA ACAGGGAAACGGGGTTTTTCAGTCATTTTTAGTCAGTGGTTTTTCCATAG TGCTTTTTTCCTATGGCCAGTGCAAATTGTGTTAGCACACTTGCATATGT GCCGTATTAAGGGTTGACAATTACTACATCTTTATTCTCTAAATGTAGTA TAATTTGCCTTTTAACCTTTGATCTGTATCTTGCAATAGAATGGCTTTGG TTTTTTTCTTAGTAAATAGGAGCCCACTTCTAAAGTCATTTCACCCCTCA GCCCTATTCTCTTTCTTAGATACCCTTTACAAGAGAAAACTTCCAAATGG ATTTTTGCATCAATAGCAGTGTGTAGGTCTCTCTGGTTCTTTCTATATCA TCATTTTATTATTATGTCCTAATATAAAGTACTGGCTCATAGGGCCAGGG TATTATTATAGAATATTATTCTCGCATGTAAACAAAGATATCTTTGCTTT AAGATGTGAGAAGAAATGAATTTACTTTGTTTGCATTAAGTTATGGAAGA GTTGTAATATATACTTTAAGAAAGAAGAGAAGAAAACTAGTATCTCTAAG CGGTAACTATGGCAATTTTGCAATATTTTCAGTAGTGCTAGTAATTTTTT CCTCCTTGAGTACACATTAAATGTACATAACATAGCGCGGTCAGGCTTGT GGCACAGTGCATTGAATTCAAAAGTCAAACAGCAAATTTGAATTCTAACA GAATTCAAAAAAAAATTTTTTTAGTCAGTACTACTAAGGCAGACACACTG ATTACTAGGTACAAATCAAACCTTGATGCTAAAACTCTTCATCATTGTAA TTTCAAAGCACTTACCTGCTTCAAAACATTGTAAACTAAGACTGAACACC TGTATAGTTTAAAAGCAACACTATCAATAGCATTTCAGCCATTTTGCCAG CCATGTGTAATCACAACTGCAGAAATAAGGAGAAAACCCCTGTTTTTTTA GTTTAGCTAATTAGATCTGTAACATCACTGGGATTGCTCTGAATGAATCC TGAGAGTTTTGTTTTTTATAAGCACCCTCACCACATGCCATAGCTTTGTC TCTTTTAGACACCTCGATGCAGCGGCTGGAAGGACTGGAGAGCAGCTGTT GTGCTGATCTGTAGCTGTCAGCTGTGATTCCTGTCACCTGAGTCAGTTTG GTCTGGAAAGCGAAGGCCTTCCAAGCTGTAGCAGATAGTGAGCTCCAGCT GATGAGAGAAGGCTTCAGTGGAAGAAGAGTGAGGACATAGGCAGAAGGAA GTTTGCTATTTCTTGTCAGTTGCACATTGCTTTATGAAGACTACAACAAA AGTGCTTAATCCCAGGCTGCTCATGACTTTCATTTCAGGTGGCCCTTGGG CACATTGACAGAGTTGCCCTTCCCTTCTTTGCAACACCAGGCTTCCTAGA GCACCCGGTTGCATGCTTTGCAGCTAGGTGGCAGTGGTTTCAGGGAGATC CAGTTGGATCCCTGCTTGAAAGCTTAAGCCAATGGTTCACCCATGAGAGG AAGTTGTCAGTGCTTCCAGGAAGATTGCCCACCAAAGGAACTGAATAGTT TTTAGATTTAAAGGCACCAGGATAGGGTCACTCTTACTCTGTAGAAAGAG ACCGTTCTATACACTGTGACGGATGGGCCAGGGCCTCTGGACTTGCATTC TGATAGGTGCTTTAATTTAAATGTGCCCAAAGGGAGTGACTGTCTTCAGG AGAAAGATGGCTTGCATTAACCTCGATCAAGTGGGTTGTGCAGCCAGGTC AGGGAATGCGGTCAGGGAGAGGATAGTGCTGGTCATGCCCCCGATGCAGC TATGCTCTGAATGATTTCATTCCTGAGAGTGATAGCATTCTGGTCCTGGC TGCAGTGGGGTACAATTTACGTCCTAAGTGGGGGCTACTCTAATTATCCC ATTCAAATGGAATTTTTTTCAAAATTGGATAGAAGGAATTGAAGAGTTGT AAGTAGTGATTAGTCTGCTAATCAGTTCTTCAGATGAGATATTGAATGGT AACACTCTGAGCTTAAAACTCAGCAGTGTGTCTGTGACCTCCACGCAAAT CAGAGGAAGCAATGCATCCACGCTGAGCCTCACCATGTCTTCCTCCCAAC TCTCTTCATACTCTCTGTGTCTTCCAGCTCTTCTTTCTCTGGCCGGCTCT CTTTCCTCTTCTCTCTGCATATGTGAGAACGCCTGGGCATCCTGGGTAAC AGCAGCCCCAGCTGCCCTCTCCTGTTCCCTGTTCCAAGTCCCCTGCACTG ACCTTTCTTGAGTCTCTCTGGCTCTGTGCATGTCTTTGGGACTCTGCTCA TCTGGCTTTTCCTCTGTGTGTGCCTCTCTGTTTGCTTATGTCTCTGGCTC TGTCTTCCCCACCCCTCCCCTCACACACACACATACTCCCAAATGTAAGG CTCTGTGGCAGGTTGGAATCGGAGTAAGGCTTGAGATTCACTGAGTTCTG TAGGTAGGGAAAGAAGTCAAGGGAGTGGAGGTTCTATAAGGAATTAACAG CTGAGGACGGAAGGGTTTGTTTCCCGTTTGAACCTAAACGCAAGTGGAAA AGAATACTCAGAATGTATTTTTCTACTTTACATCTGCTGGGGAAGGAAAT GTGTCAGGAAGCCGCTGCATCTGGTCATTTCATCGCATCAGAATCACAGC AGACGTGGAAGATTCCATGTGGTGGGGAATAAAGAAATAACTTTATGCTC TCCTGAAAAACAGCGGGAGCCTATGTGTGTGTGCGACACTGTAATCTCAA GGAGATTCACTCAGAGCTGTCTCAGTCCAACTCCTGCATGACCAGATCTT CCCTTAGCATCTTTTCTGTGATGAAATATTATCTTGTGTTAGAGTTAGGA ATAGGAACTAACCTGTAGGAGCATGTCCCCAAATGGACATTTGAATGGAC TAACAAAAACAACTGGAAAGACTGAATTTCCGACACAAAGGAATGATGGG ATCAAAAAGAAAGCAGTGAGGAGTTCTTGAGTCTTGTAGTACCTATTCTT ATTTTAACTTGCTTCATCCTTGATCTACCTGAGACACTAAGAAGGAAATT AGTTTTCCAAGAGCTCTTTGAACCTGTCTAGGACTGTAGTTAAACCTATT TGCCCTATGGGGGTTCTTCACACTCGAAAAACTATTTCCTTATCACCAAC GACCCACCCAGAAAGGCCAATGAGGCCAAATGTAACAATTTTTAACATTT AAATATAACTATTAAAATTGCATTAATTGTGAACAGTGAATTAAAGGGTT GTCTTCTCCAGGAGACAGTATGTGGCACTTTTCGTAAATTTCATTTAATA TATAAAAATTTAAATCACTCACTGCAACATGCATTTAAAATCTTCCAAGA AGGTAGAGGTATCATTTTCTGTTTTGCTTTGTTTTAAAACAGTTGCCTCA AGCTTCTGTCTTAAGAGTAGTGACTTAGAATCCAGATATCTTTTGTTTTA GAAAAACAAGCAAAACTATGTTGCAAGACTGACAGTTGTAATGTTTATTT GCCACAGATCAAAGGTTCACAAAGTATATCAAATTTACATCTACTTGGGG TACCTTGATAGATTATTATTGTTTTTCTTTTATCTTTCCCTTCAGGAATT TGGAAACTCGTTGTCACTTTTTTTAATTTTAAAAATACTAAATTGTAATA GTTTTCTTTTGCCAAATGTGTGCGTACATATTCAAAGCAATGAAACTATT TCAAGCCATACAACCACAGGGGTGGGAACCCTTTTCACAAATTTTAATGT GTTTGTATGTAAATAGATGTTTGTATGAAATATTTTCATGATAGAATGAA TATATTTAAATGAAGTTGAATTATTCCAGTGCTACTTAAACACATTACAA AAATTTTGGTGAGAATTATCTGAGTCTATTGAGATGTAATGCAGATCAAT TTTGATTTTTAAAAATCAAAAGCCTACAATAACTCTGACTCTCAGCAACT TCCTCGGCGTTGTTGCACCTGACGTGGAGAGAGCTCGTAGGCTTCCCCAG TGCCTCAGCCGCTTCCTGGTGGAAGTTAGGTGCTAATGGAGGTGTGTTCA CCTTTTAGTGATATCACTGCAGGCCTTTGAGGGGCCTGAGAGTGAATCAG AGGCATTAGAGACACCGGTGCAGTTATCTGGAGCACAATTTCTTTGCAGG GCAGCAGAATCAGAAGCCAGACTTGGCCATGTGAACCTCGAAACTCGGTT TCCCGGCCGCCATCAACCGCCACCCTTACTGCCTAGTCACACACGTCAGG GAGGCTGCCCTCAGTGGAGTTGGGGTTGAGACCCCAGGGTGGGACTTCAC AGTTTTGCCAGCAATCTCTACCTTCTGACTTCTGCCTCGCAGAGAGGAAG GAGAGGGGAGCATCTGGCAAGGGGCCCATTTCTCAGCACAGTACATTTCC TGTCTCAGCTCTGGAAGACTATGCACCCAAGCACCAAACTTCCAACCAGA GAGAGAGACGTCCTCCGATAACAAAAATCCTTGCTTCCTCTGTCTGTGAC TTTACACACAGTTGTTCAAAGTTGTTAAATGTCAAGAGTCAATCACATCC

CTAGGACATACCTCCCAACTCTCCTGACTCTTATGTTATTGAAAAAACAA ACAAACAAAAACTCCTTTATGATGATATTCAACTTGAGTGGGGTTTTTTT TCCACTTTGGTCCTGGATATAATGAAATGATACATATTAGGATAAATTTT CACTGTGTATAGTAGCAATACGAACACACATGCCAATGTATCAACATATC TACTTGGTTACATTTTGGTTTATGATAATTAACCTTGATTCATGTATTGG GAAGCTACAGGGACTACGTAATACCTGCTTATCACATAGGAAAATTATGT CCATGATTCTGAGCTCCCTTCTTCAAAAGTTTCCTCCTGGGTGTTCTATG TTCTCTCTTTATCCTGAAATACATTTATTAGGTTGTGAGGTATGTTGAAG AAGTAGAAGCCAGGGGTATGCTTTCAGCATTTATTGCAACCAAAAGTTAA CCCCATCACGGTTAACGAGCATCTTTGGTCTCTTGTGGAATTTGAACTAA AACTATGAGCCTTATTCAATATCTATAATTCTATGATTTTTTTAAATTAT GGGAAATTAATGAAAGATGTTTACATGAATAATGTTTGCCCTTACTGTGT TATGAATGAGTTTTTTGTAGTGTGTCTGGGTGCATGATGCAAGAGAGTAG GAAAAATGTTTCTGAAACAAAACTTGACAAATATTTGTAATGAAAGTAAA TTTAAAGATTGCTATAATTGCGCTATAGAAACAATGCAAGTATTAAACAA AATATACAATCA

[0047] The amino acid sequence of human Setd7 (Genbank Accession No. NP_085151.1) is as follows: (SEQ ID NO: 2)

TABLE-US-00002 MDSDDEMVEEAVEGHLDDDGLPHGFCTVTYSSTDRFEGNFVHGEKNGRGK FFFFDGSTLEGYYVDDALQGQGVYTYEDGGVLQGTYVDGELNGPAQEYDT DGRLIFKGQYKDNIRHGVCWIYYPDGGSLVGEVNEDGEMTGEKIAYVYPD ERTALYGKFIDGEMIEGKLATLMSTEEGRPHFELMPGNSVYHFDKSTSSC ISTNALLPDPYESERVYVAESLISSAGEGLFSKVAVGPNTVMSFYNGVRI THQEVDSRDWALNGNTLSLDEETVIDVPEPYNHVSKYCASLGHKANHSFT PNCIYDMFVHPRFGPIKCIRTLRAVEADEELTVAYGYDHSPPGKSGPEAP EWYQVELKAFQATQQK

[0048] Ezh1 (also known as Enhancer of Zeste (Drosophila) Homolog 1) is a lysine methyltransferase. Ezh1 is a component of the polycomb repressive complex-2 (PRC2) and mediates methylation of lysine 27 on histone H3. Ezh1 is able to mono-, di- and trimethylate lysine 27 of histone H3 to form H3K27me1, H3K27me2 and H3K27me3. The mRNA sequence for human Ezh1 (Genbank Accession No. NM_001991.3) is as follows: (SEQ ID NO: 3)

TABLE-US-00003 GCGCATGCGTCCTAGCAGCGGGACCCGCGGCTCGGGATGGAGGCTGGACA CCTGTTCTGCTGTTGTGTCCTGCCATTCTCCTGAAGAACAGAGGCACACT GTAAAACCCAACACTTCCCCTTGCATTCTATAAGATTACAGCAAGATGGA AATACCAAATCCCCCTACCTCCAAATGTATCACTTACTGGAAAAGAAAAG TGAAATCTGAATACATGCGACTTCGACAACTTAAACGGCTTCAGGCAAAT ATGGGTGCAAAGGCTTTGTATGTGGCAAATTTTGCAAAGGTTCAAGAAAA AACCCAGATCCTCAATGAAGAATGGAAGAAGCTTCGTGTCCAACCTGTTC AGTCAATGAAGCCTGTGAGTGGACACCCTTTTCTCAAAAAGTGTACCATA GAGAGCATTTTCCCGGGATTTGCAAGCCAACATATGTTAATGAGGTCACT GAACACAGTTGCATTGGTTCCCATCATGTATTCCTGGTCCCCTCTCCAAC AGAACTTTATGGTAGAAGATGAGACGGTTTTGTGCAATATTCCCTACATG GGAGATGAAGTGAAAGAAGAAGATGAGACTTTTATTGAGGAGCTGATCAA TAACTATGATGGGAAAGTCCATGGTGAAGAAGAGATGATCCCTGGATCCG TTCTGATTAGTGATGCTGTTTTTCTGGAGTTGGTCGATGCCCTGAATCAG TACTCAGATGAGGAGGAGGAAGGGCACAATGACACCTCAGATGGAAAGCA GGATGACAGCAAAGAAGATCTGCCAGTAACAAGAAAGAGAAAGCGACATG CTATTGAAGGCAACAAAAAGAGTTCCAAGAAACAGTTCCCAAATGACATG ATCTTCAGTGCAATTGCCTCAATGTTCCCTGAGAATGGTGTCCCAGATGA CATGAAGGAGAGGTATCGAGAACTAACAGAGATGTCAGACCCCAATGCAC TTCCCCCTCAGTGCACACCCAACATCGATGGCCCCAATGCCAAGTCTGTG CAGCGGGAGCAATCTCTGCACTCCTTCCACACACTTTTTTGCCGGCGCTG CTTTAAATACGACTGCTTCCTTCACCCTTTTCATGCCACCCCTAATGTAT ATAAACGCAAGAATAAAGAAATCAAGATTGAACCAGAACCATGTGGCACA GACTGCTTCCTTTTGCTGGAAGGAGCAAAGGAGTATGCCATGCTCCACAA CCCCCGCTCCAAGTGCTCTGGTCGTCGCCGGAGAAGGCACCACATAGTCA GTGCTTCCTGCTCCAATGCCTCAGCCTCTGCTGTGGCTGAGACTAAAGAA GGAGACAGTGACAGGGACACAGGCAATGACTGGGCCTCCAGTTCTTCAGA GGCTAACTCTCGCTGTCAGACTCCCACAAAACAGAAGGCTAGTCCAGCCC CACCTCAACTCTGCGTAGTGGAAGCACCCTCGGAGCCTGTGGAATGGACT GGGGCTGAAGAATCTCTTTTTCGAGTCTTCCATGGCACCTACTTCAACAA CTTCTGTTCAATAGCCAGGCTTCTGGGGACCAAGACGTGCAAGCAGGTCT TTCAGTTTGCAGTCAAAGAATCACTTATCCTGAAGCTGCCAACAGATGAG CTCATGAACCCCTCACAGAAGAAGAAAAGAAAGCACAGATTGTGGGCTGC ACACTGCAGGAAGATTCAGCTGAAGAAAGATAACTCTTCCACACAAGTGT ACAACTACCAACCCTGCGACCACCCAGACCGCCCCTGTGACAGCACCTGC CCCTGCATCATGACTCAGAATTTCTGTGAGAAGTTCTGCCAGTGCAACCC AGACTGTCAGAATCGTTTCCCTGGCTGTCGCTGTAAGACCCAGTGCAATA CCAAGCAATGTCCTTGCTATCTGGCAGTGCGAGAATGTGACCCTGACCTG TGTCTCACCTGTGGGGCCTCAGAGCACTGGGACTGCAAGGTGGTTTCCTG TAAAAACTGCAGCATCCAGCGTGGACTTAAGAAGCACCTGCTGCTGGCCC CCTCTGATGTGGCCGGATGGGGCACCTTCATAAAGGAGTCTGTGCAGAAG AACGAATTCATTTCTGAATACTGTGGTGAGCTCATCTCTCAGGATGAGGC TGATCGACGCGGAAAGGTCTATGACAAATACATGTCCAGCTTCCTCTTCA ACCTCAATAATGATTTTGTAGTGGATGCTACTCGGAAAGGAAACAAAATT CGATTTGCAAATCATTCAGTGAATCCCAACTGTTATGCCAAAGTGGTCAT GGTGAATGGAGACCATCGGATTGGGATCTTTGCCAAGAGGGCAATTCAAG CTGGCGAAGAGCTCTTCTTTGATTACAGGTACAGCCAAGCTGATGCTCTC AAGTACGTGGGGATCGAGAGGGAGACCGACGTCCTTTAGCCCTCCCAGGC CCCACGGCAGCACTTATGGTAGCGGCACTGTCTTGGCTTTCGTGCTCACA CCACTGCTGCTCGAGTCTCCTGCACTGTGTCTCCCACACTGAGAAACCCC CCAACCCACTCCCTCTGTAGTGAGGCCTCTGCCATGTCCAGAGGGCACAA AACTGTCTCAATGAGAGGGGAGACAGAGGCAGCTAGGGCTTGGTCTCCCA GGACAGAGAGTTACAGAAATGGGAGACTGTTTCTCTGGCCTCAGAAGAAG CGAGCACAGGCTGGGGTGGATGACTTATGCGTGATTTCGTGTCGGCTCCC CAGGCTGTGGCCTCAGGAATCAACTTAGGCAGTTCCCAACAAGCGCTAGC CTGTAATTGTAGCTTTCCACATCAAGAGTCCTTATGTTATTGGGATGCAG GCAAACCTCTGTGGTCCTAAGACCTGGAGAGGACAGGCTAAGTGAAGTGT GGTCCCTGGAGCCTACAAGTGGTCTGGGTTAGAGGCGAGCCTGGCAGGCA GCACAGACTGAACTCAGAGGTAGACAGGTCACCTTACTACCTCCTCCCTC GTGGCAGGGCTCAAACTGAAAGAGTGTGGGTTCTAAGTACAGGCATTCAA GGCTGGGGGAAGGAAAGCTACGCCATCCTTCCTTAGCCAGAGAGGGAGAA CCAGCCAGATGATAGTAGTTAAACTGCTAAGCTTGGGCCCAGGAGGCTTT GAGAAAGCCTTCTCTGTGTACTCTGGAGATAGATGGAGAAGTGTTTTCAG ATTCCTGGGAACAGACACCAGTGCTCCAGCTCCTCCAAAGTTCTGGCTTA GCAGCTGCAGGCAAGCATTATGCTGCTATTGAAGAAGCATTAGGGGTATG CCTGGCAGGTGTGAGCATCCTGGCTCGCTGGATTTGTGGGTGTTTTCAGG CCTTCCATTCCCCATAGAGGCAAGGCCCAATGGCCAGTGTTGCTTATCGC TTCAGGGTAGGTGGGCACAGGCTTGGACTAGAGAGGAGAAAGATTGGTGT AATCTGCTTTCCTGTCTGTAGTGCCTGCTGTTTGGAAAGGGTGAGTTAGA ATATGTTCCAAGGTTGGTGAGGGGCTAAATTGCACGCGTTTAGGCTGGCA CCCCGTGTGCAGGGCACACTGGCAGAGGGTATCTGAAGTGGGAGAAGAAG CAGGTAGACCACCTGTCCCAGGCTGTGGTGCCACCCTCTCTGGCATTCAT GCAGAGCAAAGCACTTTAACCATTTCTTTTAAAAGGTCTATAGATTGGGG TAGAGTTTGGCCTAAGGTCTCTAGGGTCCCTGCCTAAATCCCACTCCTGA GGGAGGGGGAAGAAGAGAGGGTGGGAGATTCTCCTCCAGTCCTGTCTCAT CTCCTGGGAGAGGCAGACGAGTGAGTTTCACACAGAAGAATTTCATGTGA ATGGGGCCAGCAAGAGCTGCCCTGTGTCCATGGTGGGTGTGCCGGGCTGG CTGGGAACAAGGAGCAGTATGTTGAGTAGAAAGGGTGTGGGCGGGTATAG ATTGGCCTGGGAGTGTTACAGTAGGGAGCAGGCTTCTCCCTTCTTTCTGG GACTCAGAGCCCCGCTTCTTCCCACTCCACTTGTTGTCCCATGAAGGAAG AAGTGGGGTTCCTCCTGACCCAGCTGCCTCTTACGGTTTGGTATGGGACA TGCACACACACTCACATGCTCTCACTCACCACACTGGAGGGCACACACGT ACCCCGCACCCAGCAACTCCTGACAGAAAGCTCCTCCCACCCAAATGGGC CAGGCCCCAGCATGATCCTGAAATCTGCATCCGCCGTGGTTTGTATTCAT TGTGCATATCAGGGATACCCTCAAGCTGGACTGTGGGTTCCAAATTACTC ATAGAGGAGAAAACCAGAGAAAGATGAAGAGGAGGAGTTAGGTCTATTTG AAATGCCAGGGGCTCGCTGTGAGGAATAGGTGAAAAAAAACTTTTCACCA GCCTTTGAGAGACTAGACTGACCCCACCCTTCCTTCAGTGAGCAGAATCA CTGTGGTCAGTCTCCTGTCCCAGCTTCAGTTCATGAATACTCCTGTTCCT CCAGTTTCCCATCCTTTGTCCCTGCTGTCCCCCACTTTTAAAGATGGGTC TCAACCCCTCCCCACCACGTCATGATGGATGGGGCAAGGTGGTGGGGACT AGGGGAGCCTGGTATACATGCGGCTTCATTGCCAATAAATTTCATGCACT TTAAAGTCCTGTGGCTTGTGACCTCTTAATAAAGTGTTAGAATCCAAAAA AAAA

[0049] The amino acid sequence for human Ezh1 (Genbank Accession No. NP_001982.2) is as follows: (SEQ ID NO: 4)

TABLE-US-00004 MEIPNPPTSKCITYWKRKVKSEYMRLRQLKRLQANMGAKALYVANFAKVQ EKTQILNEEWKKLRVQPVQSMKPVSGHPFLKKCTIESIFPGFASQHMLMR SLNTVALVPIMYSWSPLQQNFMVEDETVLCNIPYMGDEVKEEDETFIEEL INNYDGKVHGEEEMIPGSVLISDAVFLELVDALNQYSDEEEEGHNDTSDG KQDDSKEDLPVTRKRKRHAIEGNKKSSKKQFPNDMIFSAIASMFPENGVP DDMKERYRELTEMSDPNALPPQCTPNIDGPNAKSVQREQSLHSFHTLFCR RCFKYDCFLHPFHATPNVYKRKNKEIKIEPEPCGTDCFLLLEGAKEYAML HNPRSKCSGRRRRRHHIVSASCSNASASAVAETKEGDSDRDTGNDWASSS SEANSRCQTPTKQKASPAPPQLCVVEAPSEPVEWTGAEESLFRVFHGTYF NNFCSIARLLGTKTCKQVFQFAVKESLILKLPTDELMNPSQKKKRKHRLW AAHCRKIQLKKDNSSTQVYNYQPCDHPDRPCDSTCPCIMTQNFCEKFCQC NPDCQNRFPGCRCKTQCNTKQCPCYLAVRECDPDLCLTCGASEHWDCKVV SCKNCSIQRGLKKHLLLAPSDVAGWGTFIKESVQKNEFISEYCGELISQD EADRRGKVYDKYMSSFLFNLNNDFVVDATRKGNKIRFANHSVNPNCYAKV VMVNGDHRIGIFAKRAIQAGEELFFDYRYSQADALKYVGIERETDVL

[0050] Ezh2 (also known as Enhancer of Zeste (Drosophila) Homolog 2, ENX-1, KMT6A) is a lysine methyltransferase. Ezh2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2/EED-EZH2 complex) which methylates lysine 9 and lysine 27 on histone H3. Ezh2 is able to mono-, di- and trimethylate lysine 27 of histone H3 to form H3K27me1, H3K27me2 and H3K27me3. The PRC2 complex also plays a role in recruiting DNA methyltransferases. Multiple isoforms have been described, produced by alternative splicing. The compositions disclosed herein can modulate activity or expression of any of or all of the isoforms known for Ezh2. Isoform 1 is known as the canonical Ezh2 sequence. The mRNA sequence for human Ezh2 (Genbank Accession No. NM_004456.4) is as follows: (SEQ ID NO: 5)

TABLE-US-00005 GGCGGCGCTTGATTGGGCTGGGGGGGCCAAATAAAAGCGATGGCGATTGG GCTGCCGCGTTTGGCGCTCGGTCCGGTCGCGTCCGACACCCGGTGGGACT CAGAAGGCAGTGGAGCCCCGGCGGCGGCGGCGGCGGCGCGCGGGGGCGAC GCGCGGGAACAACGCGAGTCGGCGCGCGGGACGAAGAATAATCATGGGCC AGACTGGGAAGAAATCTGAGAAGGGACCAGTTTGTTGGCGGAAGCGTGTA AAATCAGAGTACATGCGACTGAGACAGCTCAAGAGGTTCAGACGAGCTGA TGAAGTAAAGAGTATGTTTAGTTCCAATCGTCAGAAAATTTTGGAAAGAA CGGAAATCTTAAACCAAGAATGGAAACAGCGAAGGATACAGCCTGTGCAC ATCCTGACTTCTGTGAGCTCATTGCGCGGGACTAGGGAGTGTTCGGTGAC CAGTGACTTGGATTTTCCAACACAAGTCATCCCATTAAAGACTCTGAATG CAGTTGCTTCAGTACCCATAATGTATTCTTGGTCTCCCCTACAGCAGAAT TTTATGGTGGAAGATGAAACTGTTTTACATAACATTCCTTATATGGGAGA TGAAGTTTTAGATCAGGATGGTACTTTCATTGAAGAACTAATAAAAAATT ATGATGGGAAAGTACACGGGGATAGAGAATGTGGGTTTATAAATGATGAA ATTTTTGTGGAGTTGGTGAATGCCCTTGGTCAATATAATGATGATGACGA TGATGATGATGGAGACGATCCTGAAGAAAGAGAAGAAAAGCAGAAAGATC TGGAGGATCACCGAGATGATAAAGAAAGCCGCCCACCTCGGAAATTTCCT TCTGATAAAATTTTTGAAGCCATTTCCTCAATGTTTCCAGATAAGGGCAC AGCAGAAGAACTAAAGGAAAAATATAAAGAACTCACCGAACAGCAGCTCC CAGGCGCACTTCCTCCTGAATGTACCCCCAACATAGATGGACCAAATGCT AAATCTGTTCAGAGAGAGCAAAGCTTACACTCCTTTCATACGCTTTTCTG TAGGCGATGTTTTAAATATGACTGCTTCCTACATCGTAAGTGCAATTATT CTTTTCATGCAACACCCAACACTTATAAGCGGAAGAACACAGAAACAGCT CTAGACAACAAACCTTGTGGACCACAGTGTTACCAGCATTTGGAGGGAGC AAAGGAGTTTGCTGCTGCTCTCACCGCTGAGCGGATAAAGACCCCACCAA AACGTCCAGGAGGCCGCAGAAGAGGACGGCTTCCCAATAACAGTAGCAGG CCCAGCACCCCCACCATTAATGTGCTGGAATCAAAGGATACAGACAGTGA TAGGGAAGCAGGGACTGAAACGGGGGGAGAGAACAATGATAAAGAAGAAG AAGAGAAGAAAGATGAAACTTCGAGCTCCTCTGAAGCAAATTCTCGGTGT CAAACACCAATAAAGATGAAGCCAAATATTGAACCTCCTGAGAATGTGGA GTGGAGTGGTGCTGAAGCCTCAATGTTTAGAGTCCTCATTGGCACTTACT ATGACAATTTCTGTGCCATTGCTAGGTTAATTGGGACCAAAACATGTAGA CAGGTGTATGAGTTTAGAGTCAAAGAATCTAGCATCATAGCTCCAGCTCC CGCTGAGGATGTGGATACTCCTCCAAGGAAAAAGAAGAGGAAACACCGGT TGTGGGCTGCACACTGCAGAAAGATACAGCTGAAAAAGGACGGCTCCTCT AACCATGTTTACAACTATCAACCCTGTGATCATCCACGGCAGCCTTGTGA CAGTTCGTGCCCTTGTGTGATAGCACAAAATTTTTGTGAAAAGTTTTGTC AATGTAGTTCAGAGTGTCAAAACCGCTTTCCGGGATGCCGCTGCAAAGCA CAGTGCAACACCAAGCAGTGCCCGTGCTACCTGGCTGTCCGAGAGTGTGA CCCTGACCTCTGTCTTACTTGTGGAGCCGCTGACCATTGGGACAGTAAAA ATGTGTCCTGCAAGAACTGCAGTATTCAGCGGGGCTCCAAAAAGCATCTA TTGCTGGCACCATCTGACGTGGCAGGCTGGGGGATTTTTATCAAAGATCC TGTGCAGAAAAATGAATTCATCTCAGAATACTGTGGAGAGATTATTTCTC AAGATGAAGCTGACAGAAGAGGGAAAGTGTATGATAAATACATGTGCAGC TTTCTGTTCAACTTGAACAATGATTTTGTGGTGGATGCAACCCGCAAGGG TAACAAAATTCGTTTTGCAAATCATTCGGTAAATCCAAACTGCTATGCAA AAGTTATGATGGTTAACGGTGATCACAGGATAGGTATTTTTGCCAAGAGA GCCATCCAGACTGGCGAAGAGCTGTTTTTTGATTACAGATACAGCCAGGC TGATGCCCTGAAGTATGTCGGCATCGAAAGAGAAATGGAAATCCCTTGAC ATCTGCTACCTCCTCCCCCCTCCTCTGAAACAGCTGCCTTAGCTTCAGGA ACCTCGAGTACTGTGGGCAATTTAGAAAAAGAACATGCAGTTTGAAATTC TGAATTTGCAAAGTACTGTAAGAATAATTTATAGTAATGAGTTTAAAAAT CAACTTTTTATTGCCTTCTCACCAGCTGCAAAGTGTTTTGTACCAGTGAA TTTTTGCAATAATGCAGTATGGTACATTTTTCAACTTTGAATAAAGAATA CTTGAACTTGTCCTTGTTGAATC

[0051] The amino acid sequence for human Ezh2 (Genbank Accession No. NP_004447.2) is as follows: (SEQ ID NO: 13)

TABLE-US-00006 MGQTGKKSEKGPVCWRKRVKSEYMRLRQLKRFRRADEVKSMFSSNRQKIL ERTEILNQEWKQRRIQPVHILTSVSSLRGTRECSVTSDLDFPTQVIPLKT LNAVASVPIMYSWSPLQQNFMVEDETVLHNIPYMGDEVLDQDGTFIEELI KNYDGKVHGDRECGFINDEIFVELVNALGQYNDDDDDDDGDDPEEREEKQ KDLEDHRDDKESRPPRKFPSDKIFEAISSMFPDKGTAEELKEKYKELTEQ QLPGALPPECTPNIDGPNAKSVQREQSLHSFHTLFCRRCFKYDCFLHRKC NYSFHATPNTYKRKNTETALDNKPCGPQCYQHLEGAKEFAAALTAERIKT PPKRPGGRRRGRLPNNSSRPSTPTINVLESKDTDSDREAGTETGGENNDK EEEEKKDETSSSSEANSRCQTPIKMKPNIEPPENVEWSGAEASMFRVLIG TYYDNFCAIARLIGTKTCRQVYEFRVKESSIIAPAPAEDVDTPPRKKKRK HRLWAAHCRKIQLKKDGSSNHVYNYQPCDHPRQPCDSSCPCVIAQNFCEK FCQCSSECQNRFPGCRCKAQCNTKQCPCYLAVRECDPDLCLTCGAADHWD SKNVSCKNCSIQRGSKKHLLLAPSDVAGWGIFIKDPVQKNEFISEYCGEI ISQDEADRRGKVYDKYMCSFLFNLNNDFVVDATRKGNKIRFANHSVNPNC YAKVMMVNGDHRIGIFAKRAIQTGEELFFDYRYSQADALKYVGIEREMEI P

[0052] Setd8 (also known as SET8, PR-Set7, SET07) is a lysine methyltransferase. Setd8 monomethylates both histones and non-histone proteins. For example, Setd8 monomethylates lysine 20 of histone H4 (H4K20me1). The mRNA sequence for human Setd8 (Genbank Accession No. NM_020382.3) is as follows: (SEQ ID NO: 14)

TABLE-US-00007 CTGGGTTTCCCGGGAGATCCCAGGCGGTGACAGAGTGGAGCCATGGCTAG AGGCAGGAAGATGTCCAAGCCCCGCGCGGTGGAGGCGGCGGCGGCGGCGG CGGCGGTGGCAGCGACGGCCCCGGGCCCGGAGATGGTGGAGCGGAGGGGC CCGGGGAGGCCCCGCACCGACGGGGAGAACGTATTTACCGGGCAGTCAAA GATCTATTCCTACATGAGCCCGAACAAATGCTCTGGAATGCGTTTCCCCC TTCAGGAAGAGAACTCAGTTACACATCACGAAGTCAAATGCCAGGGGAAA CCATTAGCCGGAATCTACAGGAAACGAGAAGAGAAAAGAAATGCTGGGAA CGCAGTACGGAGCGCCATGAAGTCCGAGGAACAGAAGATCAAAGACGCCA GGAAAGGTCCCCTGGTACCTTTTCCAAACCAAAAATCTGAAGCAGCAGAA CCTCCAAAAACTCCACCCTCATCTTGTGATTCCACCAATGCAGCCATCGC CAAGCAAGCCCTGAAAAAGCCCATCAAGGGCAAACAGGCCCCCCGAAAAA AAGCTCAAGGAAAAACGCAACAGAATCGCAAACTTACGGATTTCTACCCT GTCCGAAGGAGCTCCAGGAAGAGCAAAGCCGAGCTGCAGTCTGAAGAAAG GAAAAGAATAGATGAATTGATTGAAAGTGGGAAGGAAGAAGGAATGAAGA TTGACCTCATCGATGGCAAAGGCAGGGGTGTGATTGCCACCAAGCAGTTC TCCCGGGGTGACTTTGTGGTGGAATACCACGGGGACCTCATCGAGATCAC CGACGCCAAGAAACGGGAGGCTCTGTACGCACAGGACCCTTCCACGGGCT GCTACATGTACTATTTTCAGTATCTGAGCAAAACCTACTGCGTGGATGCA ACTAGAGAGACAAATCGCCTAGGAAGACTGATCAATCACAGCAAATGTGG GAACTGCCAAACCAAACTGCACGACATCGACGGCGTACCTCACCTCATCC TCATCGCCTCCCGAGACATCGCGGCTGGGGAGGAGCTCCTGTATGACTAT GGGGACCGCAGCAAGGCTTCCATTGAAGCCCACCCGTGGCTGAAGCATTA ACCGGTGGGCCCCGTGCCCTCCCCGCCCCACTTTCCCTTCTTCAAAGGAC AAAGTGCCCTCAAAGGGAATTGAATTTTTTTTTTACACACTTAATCTTAG CGGATTACTTCAGATGTTTTTAAAAAGTATATTAAGATGCCTTTTCACTG TAGTATTTAAATATCTGTTACAGGTTTCCAAGGTGGACTTGAACAGATGG CCTTATATTACCAAAACTTTTATATTCTAGTTGTTTTTGTACTTTTTTTG CATACAAGCCGAACGTTTGTGCTTCCCGTGCATGCAGTCAAAGACTCAGC ACAGGTTTTAGAGGAAATAGTCAAACATGAACTAGGAAGCCAGGTGAGTC TCCTTTCTCCAGTGGAAGAGCCGGGACCTTCCCCCTGCACCCCCGACATC CAGGGACGGGGTGTGAGGAAGACGCTGCCTCCCAATGGCCTGGACGGGAT GTTTCCAAGCTCTTGTTCCCCTAACGTCTCAACAGGCGCTCACTGAAGTG TATGAATATTTTTTAAAAAGGTTTTTGCAGTAAGCTAGTCTTCCCCTCTG CTTTCTCGAAAGCTTACTGAGCCCTGGGCCCCAAGCACGGGCCGGGCATA GATTTCCTCTTCCACAAGCTGCCGCTTTTCTGGGCACCTTGAAGCATCAG GGCGTGAAATCAAACTAGATGTGGGCAGGGAGAGGGTTGCTTACCTGCCC TGCTGGGGCAGGGTTTCCTGAAACTGGGTTAATTCTTTATAGAAATGTGA ACACTGAATTTATTTTAAAAAATAATAATAAAAATTTAAAAAAATTAAAA ATAAAAAAAACCACAGAAAACAACTTTACATGTATATAGGTCTTGAAGTG AGTGAAGTGGCTGCTTTTTTTTTTTTTTTTTTTTGCTTTTTTTTGCTTTT TGTAGAAGAGATTGAGAATGGTACTCTAATCAAAAATAAAGTTTTGTAGT GGGACCAGAAATTACTTACCTGACATCCACCCCCATTCCCCCTCATCCTG CTGGGGTTGAAAGTTCCAGACCTGCTGTCGAGGCCTTGTGTTTGTCAGAC ACCCAGTGTCCTCCTGCAAGGACGCAACTGTGAGCTGAGGTGTGAGCCTA GGAGCCCAGGACCCCTGACCCCGGCCGCTGCTGCCAGCCTCAGAAAGGCA CCCAGGTGTGCAGGGGAGCACACAGGGCCCGGCAGCCCCCAGGAATCAAG GATAGGGCTAAGGTTTTCACCTTAACTGTGAAGGCAGGAGGAATAGGTGA CTGCTTCCTCCCGCCCTTCACAGAACTGATTCTCACACACTGTCCCTTCA GTCCAGGGGGCCGGGGCTCAGGAGCCATGACCTGGTGTCTCCTGCCCACC CTGGTCCCAGGTAAATGTGAATGGAGACAGGTATGAGAGGCTGTCCTCGT CTTTGATTCCCCCCCAACCCCACCTCGGGCCTCACGACGGTGCTACCTAA GAAAGTCTTCCCTCCCACCCCCCGCTAGCCTGGTCAGTGGTCAGCAAATT GGAAGAGGATCCGATGGGAGTGTAAATGTGAGACACAATGTCTTGATTAT ACCTGTTTGTGGTTTAGCTTTGTATTTAAACAAGGAAATAAACTTGAAAA TTATTTGTCATCATAAAAATGAAACAAATTAAAATATTTATTGCCAGGCA AAAAAAAAAAAAAAA

[0053] The amino acid sequence for human Setd8 (Genbank Accession No. NP_065115.3) is as follows: (SEQ ID NO: 6)

TABLE-US-00008 MARGRKMSKPRAVEAAAAAAAVAATAPGPEMVERRGPGRPRTDGENVFTG QSKIYSYMSPNKCSGMRFPLQEENSVTHHEVKCQGKPLAGIYRKREEKRN AGNAVRSAMKSEEQKIKDARKGPLVPFPNQKSEAAEPPKTPPSSCDSTNA AIAKQALKKPIKGKQAPRKKAQGKTQQNRKLTDFYPVRRSSRKSKAELQS EERKRIDELIESGKEEGMKIDLIDGKGRGVIATKQFSRGDFVVEYHGDLI EITDAKKREALYAQDPSTGCYMYYFQYLSKTYCVDATRETNRLGRLINHS KCGNCQTKLHDIDGVPHLILIASRDIAAGEELLYDYGDRSKASIEAHPWL KH

[0054] Setdb2 (also known as SET domain bifurcated 2, CLLd8, KMT1F, CLLL8) is a lysine methyltransferase. Setdb2 methylates histone H3, for example at lysine 9 of histone H3. Setdb2 can trimethylate lysine 9 of H3 to produce H3K9me3. The amino acid sequence for human Setdb2 (Genbank Accession No. NM_031915.2) is as follows: (SEQ ID NO: 7)

TABLE-US-00009 ATCCCCGGTAGAGGCAGGGCGGGACTGTTGTGGTTGAGATGAAGGCTAGT AAATGGTGAAGTACTTCCCGGCCAGAGGGCACCTGCGCTCGGGAGGTTTG GGCGGCTTGGCGTCGGAGGAGAGCCCCACCCGCGGAGGAACCCAGCCTTG CCAACGGAGCTGGCGGAGCTCACTCCTCAGGTCAGGCGGGCGGCGTAGAA AACGCAGCGGAGCCAGGTGAAACCAAGGCACCGCCGTGGCTGGCCCCCGA CAGTTCCTCTAGCCGGGAGGTTGGAGGAGCTGAAAACGCCGCGGAGCCCT CGGCCGCCCGAGCAGGGGCTGGACCCCAGCCCTTGCAGCCTCCCTTCTCC TGGCACCCAAGTGCAGTCCTGGCTGCAGAAGGGGCCGCGGGCGCACTGAG TTTCCAACCTCCATTTCAGCCTGTCTGTCTCAGGGTGCAGCCTTAATGAG AGGTGATTCCTAAGCTGCTGGGAACCTGAGGTTGTCAAAGGGGCGGCAGG AAATGGACAGCAGTATAAAACCCAGAAGCAGAACTTGAAGGTTAAACCAC TAGCCCATTTCACAGAATGTTTCATCCATTTGTGGACCAAAAGATGGAGT TGGTTTTTATTTTTAAAAAGATAATGTTAATGATCTGATACCACTACAAA TATTTACGTGAGAAGATTCATGGACTTGTCTTTTGGTTGGACTGTCACTC ATTTCTGAAAGTTTCTTCAGCCACAATTTCTATTTGAAAATTCAAGTATC AAAGGATACCAGGTTTAGAATGGTATAATGATGTATTTTGTCTGAGGACT GCAAATTTTATAGAGACCACAGTTGGATTCCAGTGATATTCTGCAATCAA AGTGATTTGATAAACCTAATTTTGAAGCATTTTATATTTATAAGCGACAT CAAAAGATGGGAGAAAAAAATGGCGATGCAAAAACTTTCTGGATGGAGCT AGAAGATGATGGAAAAGTGGACTTCATTTTTGAACAAGTACAAAATGTGC TGCAGTCACTGAAACAAAAGATCAAAGATGGGTCTGCCACCAATAAAGAA TACATCCAAGCAATGATTCTAGTGAATGAAGCAACTATAATTAACAGTTC AACATCAATAAAGGGAGCATCACAGAAAGAAGTGAATGCCCAAAGCAGTG ATCCTATGCCTGTGACTCAGAAGGAACAGGAAAACAAATCCAATGCATTT CCCTCTACATCATGTGAAAACTCCTTTCCAGAAGACTGTACATTTCTAAC AACAGAAAATAAGGAAATTCTCTCTCTTGAAGATAAAGTTGTAGACTTTA GAGAAAAAGACTCATCTTCGAATTTATCTTACCAAAGTCATGACTGCTCT GGTGCTTGTCTGATGAAAATGCCACTGAACTTGAAGGGAGAAAACCCTCT GCAGCTGCCAATCAAATGTCACTTCCAAAGACGACATGCAAAGACAAACT CTCATTCTTCAGCACTCCACGTGAGTTATAAAACCCCTTGTGGAAGGAGT CTACGAAACGTGGAGGAAGTTTTTCGTTACCTGCTTGAGACAGAGTGTAA CTTTTTATTTACAGATAACTTTTCTTTCAATACCTATGTTCAGTTGGCTC GGAATTACCCAAAGCAAAAAGAAGTTGTTTCTGATGTGGATATTAGCAA TGGAGTGGAATCAGTGCCCATTTCTTTCTGTAATGAAATTGACAGTAGAA AGCTCCCACAGTTTAAGTACAGAAAGACTGTGTGGCCTCGAGCATATAAT CTAACCAACTTTTCCAGCATGTTTACTGATTCCTGTGACTGCTCTGAGGG CTGCATAGACATAACAAAATGTGCATGTCTTCAACTGACAGCAAGGAATG CCAAAACTTCCCCCTTGTCAAGTGACAAAATAACCACTGGATATAAATAT AAAAGACTACAGAGACAGATTCCTACTGGCATTTATGAATGCAGCCTTTT GTGCAAATGTAATCGACAATTGTGTCAAAACCGAGTTGTCCAACATGGTC CTCAAGTGAGGTTACAGGTGTTCAAAACTGAGCAGAAGGGATGGGGTGTA CGCTGTCTAGATGACATTGACAGAGGGACATTTGTTTGCATTTATTCAGG AAGATTACTAAGCAGAGCTAACACTGAAAAATCTTATGGTATTGATGAAA ACGGGAGAGATGAGAATACTATGAAAAATATATTTTCAAAAAAGAGGAAA TTAGAAGTTGCATGTTCAGATTGTGAAGTTGAAGTTCTCCCATTAGGATT GGAAACACATCCTAGAACTGCTAAAACTGAGAAATGTCCACCAAAGTTCA GTAATAATCCCAAGGAGCTTACTGTGGAAACGAAATATGATAATATTTCA AGAATTCAATATCATTCAGTTATTAGAGATCCTGAATCCAAGACAGCCAT TTTTCAACACAATGGGAAAAAAATGGAATTTGTTTCCTCGGAGTCTGTCA CTCCAGAAGATAATGATGGATTTAAACCACCCCGAGAGCATCTGAACTCT AAAACCAAGGGAGCACAAAAGGACTCAAGTTCAAACCATGTTGATGAGTT TGAAGATAATCTGCTGATTGAATCAGATGTGATAGATATAACTAAATATA GAGAAGAAACTCCACCAAGGAGCAGATGTAACCAGGCGACCACATTGGAT AATCAGAATATTAAAAAGGCAATTGAGGTTCAAATTCAGAAACCCCAAGA GGGACGATCTACAGCATGTCAAAGACAGCAGGTATTTTGTGATGAAGAGT TGCTAAGTGAAACCAAGAATACTTCATCTGATTCTCTAACAAAGTTCAAT AAAGGGAATGTGTTTTTATTGGATGCCACAAAAGAAGGAAATGTCGGCCG CTTCCTTAATCATAGTTGTTGCCCAAATCTCTTGGTACAGAATGTTTTTG TAGAAACACACAACAGGAATTTTCCATTGGTGGCATTCTTCACCAACAGG TATGTGAAAGCAAGAACAGAGCTAACATGGGATTATGGCTATGAAGCTGG GACTGTGCCTGAGAAGGAAATCTTCTGCCAATGTGGGGTTAATAAATGTA GAAAAAAAATATTATAAATATGTAACTAACGCCTGTTTGTGAAATTAGCT TATCAGGCTGAAATTAAAGCCATGCAAAAGAAGGTCTAGGTCCATCAAGG AAATTCCCCTCCGTTTTCCTTTGTCATGGGGTTTATGTTTTATTTCAGAT TTTATTTGTGTGACTTAGAAATTCCAGGAACACAATTAGGATATTTTCAT ACACATAGGGTATCTTGTTCACTGCTGTGCTACTTTACATGAGTAGGATG GAAGTGTATATTTTATATGAAATACCACTGTACAATTTATAATTTATTTA CAAATTATATATTAAGAGAAACAAATGTCATAACAGAACTCAGCTGTTTC TAATTGCTTTTGTGACTGTTACCTTTTAGTTCATGCCCCCCCAAAGAGCT AAATTTCACATTTTTACCTACAAAATTGATTTTTAATTCCTGGCAAATAA TTTACCATTATGAGCTACAAGGTGGGCAACAGCGCCTGAGGATCTAATTT TATGCATATTACTCCCAAGTATTTTAACACTTGTTGGAGAAGCAATATCT GGATCGATAAAACACTGTCCCATCAACCATTTGAGTGGGGAGAGGGAGAA GCTCTTCTGTAAGTAAGATTCTGGCAAGCTCTTTGAAATGAGTCTTCTTT CCCACAGATTTTCTCTACTCTTTCTATACAAACAGATAGGAGAAGAGGGA ATAGAAACCTGGAGGAACTTGAATATTTTTGTTCTAGATAGAGATACAGT TACTGAAAAGGAAACCTAGAAAGTAGTCACACGTTGCTTATTTAGGCCAG AAGTAATTGTACTGGGCAAAAATTTCACTTAAAAAACACAAGAAGTCCAG GTATGGTGGCTCAGACCTGTAATCCCAGCACTTTGAGAGGCCGAGGCAGG TGGATTACTTGAGCCTAGGGGTTCAAGACCAGCTTGGGCAACATGTCAAA ACCCTGTCTCTACAAAAAATACAAAAATTAGCCTGGCATGATGGCATGTG CCCGTAGTCTCAGCTACTCAGGAGTGAGGTGGGAGGATCATTTGAGCTCA GAAGGTCAAGGCTGCAATGAGACATAATTTCACCATAGTACTTCCAGCCT GGGCAATAGAGCAAGACTCTCTCTCAAAAAAAACAGCACACACACACACA CACGAAAACAATTCTGAACTATGAAATCTGAAACAGCCCCTTGGTATCTC CTGGGCATGATTTGCAAATCTTTTTTTTTTACAGAAAAAAGGCAAAGAGT AAGCACTTTGCCATAGGTTACTTGGCCGTGATCATCTATCTAGTGGAAAA GGGGACTGGGAAGCCCAAGCAGACTGGGAAACCAGACAGCTAGGAAAAGG AGCAAAACATAGCCCAGCAACCTACAGATGAAGAAAGTTGAGAAATCCAT TTATTCACCATAGAGACGCAGGAATTTCAGGCAATGCACTAAAATGAAAT GGGGGAAAAAAGCTTGATCAGTATGGGAACCATTTTTGTGCAAAAGGGAA TATTATGGATCAGCCAGTATTTCTTTGAGCTCTGCCTGTGGAGTCCATTT GACCTTTAGAAATATGAGGTATTCTGTCAGTTTTATCTTCTTGGAGAAAT TTCTCCTAAAATCTTGATTTGCTTTAGTCTGGACTGGTTCATAGCCATCA TCTTCCATCAGTACCCCAGAGATTCACTTTGTCTCTTATGTGGGATCTGT TTCCAGTTAGATGCCATTATTTTCCTTTTCCTTGGTTTACTCTTCCACAT ATTGGTAAAGCTCTTCCAATAGCTTTTGGAAAGGAAAAATGAAAAGTAAA TGTTTTGAATCTCTGTGTGTTTGACAATGTCTTTATTTTACCCTTATACC TGATTGCTGTTTTGGTTGGCAAGGTATAGGATTCTTTAGTGGTCTCCATG CCCAGTTTTGAAGACATCTGCTAGCTTTCAGTGCTGTTGCTGTGGAGTCT GAAAATCTGTCTTCTGGCTTCCAGGGTGACTACTGGAAATTGAATGCCAT TCTGTTCCTTCTCTTTTGCATATATAATCCATTTTTATCTCTCTTGAAGC TTATAGGTTTATCTTTGTCTCAATGTTCTGTCCCTGTTAAGAGTCCATTT TCATCCTTTGTACTAGGTGCCTGGTGGGATCATTCCGTCTGAAACTAATG ATTTCCCATCTCTTCACTGTTTCTGGAATTCCTGTTTTCCAGATGTTAGA CCTCCAGAATTTGATCTCTAATTTTCCTATCTTTTCTCTTAACTTTCAGC TCTGTCTTCTTGCTAGGACCTTTTCCTAGGAGCATTTCTCAATTTAATCT TCCAGTTCATCTGTTGCATTTTATTTTTCTAGTCTCATATTGTCTCATAT TTTTAATTTCTAAGAGCTCCCCTTCTCCGAATATTCTTTTTTTTTAATAG CATCCTATTTTGGCTCATGGTTGCAGTATTTTATCTCCTTGAAGATGTTT GTGTGTTTATGTATGTATATGCACACACGTATACATACACATACAGGCAT GCATCTCTGTATTCTTTCGGCATAATCTGTGTCCTCCAGGGTTTGTTTCT TTGTTTCCCCTGTATGTTTGTTTTGGTCGTTCACATTATAGGCTTTCCTC AGAGTTAATGGTCTTGGTAGTCTACTCATATTTAAGTGTGGAACACCAAA AAGCTTACTATAAGCTGAGAGTGTGGTAAAGGGCTCTTTGTTTTACTATG ACCTACCTGAGCTATCTTGCTGGGGAACACCCTAATGTCAGTCTCTTTAT AAAGGGCCTTTCATTTTGGCCTGGCAAGAAATACTCTTTCATCCTCCTGC ATGGAGGGCAAAAAAAAATTTAAAAATTGGCTGCTAGGGTCTGTCTGCTC ACTTCCCTGTTTTGCAGACCCCACACTCTTCTGCAATTCATTTCATAGTT GTCAAGACTATACAAATTGTCCTTTTTAATGTTCTCTCTTCTGCTATCCC TAGTTGGCAGTCTTCCTCTTTACAACCTGCTGAAAGTGGAAGACCTCCAG TTTTCCTTTAATTCCTCAGCAAACCACCAACTATTATATGTCTTTTTTCC AGAACAACTTATTTTTTAACTATAATTATATGCATTTATGTTAGATTCAC TGAAAACCTCATCTTGTATGGTGCTCTGTACCCTATGGGTGCTAAATAAA GGCTTGCTACTGGCAACTGGAAAAAAAAAAAAAAAAA

[0055] The amino acid sequence for human Setdb2 (Genbank Accession No. NP_114121.2) is as follows: (SEQ ID NO: 8)

TABLE-US-00010 MGEKNGDAKTFWMELEDDGKVDFIFEQVQNVLQSLKQKIKDGSATNKEYI QAMILVNEATIINSSTSIKGASQKEVNAQSSDPMPVTQKEQENKSNAFPS TSCENSFPEDCTFLTTENKEILSLEDKVVDFREKDSSSNLSYQSHDCSGA CLMKMPLNLKGENPLQLPIKCHFQRRHAKTNSHSSALHVSYKTPCGRSLR NVEEVFRYLLETECNFLFTDNFSFNTYVQLARNYPKQKEVVSDVDSINGV ESVPISFCNEIDSRKLPQFKYRKTVWPRAYNLTNFSSMFTDSCDCSEGCI DITKCACLQLTARNAKTSPLSSDKITTGYKYKRLQRQIPTGIYECSLLCK CNRQLCQNRVVQHGPQVRLQVFKTEQKGWGVRCLDDIDRGTFVCIYSGRL LSRANTEKSYGIDENGRDENTMKNIFSKKRKLEVACSDCEVEVLPLGLET HPRTAKTEKCPPKFSNNPKELTVETKYDNISRIQYHSVIRDPESKTAIFQ HNGKKMEFVSSESVTPEDNDGFKPPREHLNSKTKGAQKDSSSNHVDEFED NLLIESDVIDITKYREETPPRSRCNQATTLDNQNIKKAIEVQIQKPQEGR STACQRQQVFCDEELLSETKNTSSDSLTKFNKGNVFLLDATKEGNVGRFL NHSCCPNLLVQNVFVETHNRNFPLVAFFTNRYVKARTELTWDYGYEAGTV PEKEIFCQCGVNKCRKKIL

[0056] PRMT7 (also known as protein arginine methyltransferase 7, KIAA1933, and FLJ10640) is an arginine methyltransferase. PRMT7 can methylate arginine 3 on histone H4 (H4R3), for example dimethylation of arginine 3 on H4 to produce H4R3me2. The mRNA sequence for human PRMT7 (Genbank Accession No. NM_019023.2) is as follows: (SEQ ID NO: 9)

TABLE-US-00011 AGCTTTCCAGTTCTGCTTTAGGACCCGCCCCCCAGCACGCTCCTCGACGC TGCGAGGTCCCGCCCCGCGTGCTGGCCGCGGTAAAAGTGGTAGCAGCGGA GGCGAGCGGAGGGTTTCCCGCGGCGGAGTCTCACTCTGCTGCCTAGGCTG AGTGCAGTGGTGTGATCGAGGCGCACTGCAGCCTTGACCTCCTGGGCTCA AGCGATCCTCACCTCGGCCTACCGAGTAGCTGGGACTACAGGCACGCGCC ACTACACTCGGATTTCTGACAGTCAGACTTGTCCACAAGAACTCAACTGG CAAGGCTGCTTTTCTGTGCTAAAACTGGGGAGCTAGTGGGCACCATGAAG ATCTTCTGCAGTCGGGCCAATCCGACCACGGGGTCTGTGGAGTGGCTGGA GGAGGATGAACACTATGATTACCACCAGGAGATTGCAAGGTCATCTTATG CAGATATGCTACATGACAAAGACAGAAATGTAAAATACTACCAAGGTATC CGGGCTGCCGTGAGCAGGGTGAAGGACAGAGGACAGAAGGCCTTGGTTCT CGACATTGGCACTGGCACGGGACTCTTGTCAATGATGGCGGTCACAGCAG GTGCCGACTTCTGCTATGCCATCGAGGTTTTCAAGCCTATGGCTGATGCT GCTGTGAAGATTGTGGAGAAAAATGGCTTTAGTGATAAGATTAAGGTTAT CAACAAGCATTCCACCGAGGTGACTGTAGGTCCAGAGGGTGACATGCCAT GCCGTGCCAACATCCTGGTCACAGAGTTGTTTGACACAGAGCTGATCGGG GAGGGGGCGCTGCCCTCCTATGAGCACGCACACAGGCATCTCGTGGAGGA AAATTGTGAGGCCGTGCCCCACAGAGCCACCGTCTATGCACAGCTGGTGG AGTCCGGGAGGATGTGGTCGTGGAACAAGCTATTTCCCATCCACGTGCAG ACCAGCCTCGGAGAGCAGGTCATCGTCCCTCCCGTTGACGTGGAGAGCTG CCCTGGCGCACCCTCTGTCTGTGACATTCAGCTGAACCAGGTGTCACCAG CCGACTTTACAGTCCTCAGCGATGTGCTGCCCATGTTCAGCATAGACTTC AGCAAGCAAGTCAGTAGCTCAGCAGCCTGCCATAGCAGGCGGTTTGAACC TCTGACATCTGGCCGAGCTCAGGTGGTTCTCTCGTGGTGGGACATTGAAA TGGACCCTGAGGGGAAGATCAAGTGCACCATGGCCCCCTTCTGGGCACAC TCAGACCCAGAGGAGATGCAGTGGCGGGACCACTGGATGCAGTGTGTGTA CTTCCTGCCACAAGAGGAGCCTGTGGTGCAGGGCTCAGCGCTCTATCTGG TAGCCCACCACGATGACTACTGCGTATGGTACAGCCTGCAGAGGACCAGC CCTGAAAAGAATGAGAGAGTCCGCCAGATGCGCCCCGTGTGTGACTGCCA GGCTCACCTGCTCTGGAACCGGCCTCGGTTTGGAGAGATCAATGACCAGG ACAGAACTGATCGATACGTCCAGGCTCTGAGGACCGTGCTGAAGCCAGAC AGCGTGTGCCTGTGTGTCAGCGATGGCAGCCTGCTCTCCGTGCTGGCCCA TCACCTGGGGGTGGAGCAGGTGTTTACAGTCGAGAGTTCAGCAGCTTCTC ACAAACTGTTGAGAAAAATCTTCAAGGCTAACCACTTGGAAGATAAAATT AACATCATAGAGAAACGGCCGGAATTATTAACAAATGAGGACCTACAGGG CAGAAAGGTCTCTCTCCTCCTGGGCGAGCCGTTCTTCACTACCAGCCTGC TGCCGTGGCACAACCTCTACTTCTGGTACGTGCGGACCGCTGTGGACCAG CACCTGGGGCCAGGTGCCATGGTGATGCCCCAGGCAGCCTCGCTGCACGC TGTGGTTGTGGAGTTCAGGGACCTGTGGCGGATCCGGAGCCCCTGTGGTG ACTGCGAAGGCTTCGACGTGCACATCATGGACGACATGATTAAGCGTGCC CTGGACTTCAGGGAGAGCAGGGAAGCTGAGCCCCACCCGCTGTGGGAGTA CCCATGCCGCAGCCTCTCCGAGCCCTGGCAGATCCTGACCTTTGACTTCC AGCAGCCGGTGCCCCTGCAGCCCCTGTGTGCCGAGGGCACCGTGGAGCTC AGAAGGCCCGGGCAGAGCCACGCAGCGGTGCTATGGATGGAGTACCACCT GACCCCGGAGTGCACGCTCAGCACTGGCCTCCTGGAGCCTGCAGACCCCG AGGGGGGCTGCTGCTGGAACCCCCACTGCAAGCAGGCCGTCTACTTCTTC AGCCCTGCCCCAGATCCCAGAGCACTGCTGGGTGGCCCACGGACTGTCAG CTATGCAGTGGAGTTTCACCCCGACACAGGCGACATCATCATGGAGTTCA GGCATGCAGATACCCCAGACTGACCACTCTTGAGCAATAAAGTGGCCTGA GGGCTGGGGTTCTGAAAAAAAAAAAAAA

[0057] The amino acid sequence for human PRMT7 (Genbank Accession No. NP_061896.1) is as follows: (SEQ ID NO: 10)

TABLE-US-00012 MKIFCSRANPTTGSVEWLEEDEHYDYHQETARSSYADMLHDKDRNVKYYQ GIRAAVSRVKDRGQKALVLDIGTGTGLLSMMAVTAGADFCYAIEVFKPMA DAAVKIVEKNGFSDKIKVINKHSTEVTVGPEGDMPCRANILVTELFDTEL IGEGALPSYEHAHRHLVEENCEAVPHRATVYAQLVESGRMWSWNKLFPIH VQTSLGEQVIVPPVDVESCPGAPSVCDIQLNQVSPADFTVLSDVLPMFSI DFSKQVSSSAACHSRRFEPLTSGRAQVVLSWWDIEMDPEGKIKCTMAPFW AHSDPEEMQWRDHWMQCVYFLPQEEPVVQGSALYLVAHHDDYCVWYSLQR TSPEKNERVRQMRPVCDCQAHLLWNRPRFGEINDQDRTDRYVQALRTVLK PDSVCLCVSDGSLLSVLAHHLGVEQVFTVESSAASHKLLRKIFKANHLED KINIIEKRPELLTNEDLQGRKVSLLLGEPFFTTSLLPWHNLYFWYVRTAV DQHLGPGAMVMPQAASLHAVVVEFRDLWRIRSPCGDCEGFDVHIMDDMIK RALDFRESREAEPHPLWEYPCRSLSEPWQILTFDFQQPVPLQPLCAEGTV ELRRPGQSHAAVLWMEYHLTPECTLSTGLLEPADPEGGCCWNPHCKQAVY FFSPAPDPRALLGGPRTVSYAVEFHPDTGDIIMEFRHADTPD

[0058] Aurora kinase b (also known as Aurkb, STK5, STK12, AurB, Auror-1, Aurora-B) is a serine/threonine protein kinase that is known to have effect on histone methylation. Compositions and methods disclosed herein also include compositions that comprise inhibitors or enhancers of Aurkb. Multiple transcript variants encoding different isoforms have been found, and include Genbank Accession Nos. NM_001256834.1, NM.sub.-- NM_004217.3, NP_001243763, and NP_004208.2; each of which are hereby incorporated by reference). An exemplary mRNA sequence of human Aurkb (Genbank Accession Nos. NM.sub.-- NM_004217.3) is as follows: (SEQ ID NO: 11)

TABLE-US-00013 CGGGGCGGGAGATTTGAAAAGTCCTTGGCCAGGGCGCGGCGTGGCAGATT CAGTTGTTTGCGGGCGGCCGGGAGAGTAGCAGTGCCTTGGACCCCAGCTC TCCTCCCCCTTTCTCTCTAAGGATGGCCCAGAAGGAGAACTCCTACCCCT GGCCCTACGGCCGACAGACGGCTCCATCTGGCCTGAGCACCCTGCCCCAG CGAGTCCTCCGGAAAGAGCCTGTCACCCCATCTGCACTTGTCCTCATGAG CCGCTCCAATGTCCAGCCCACAGCTGCCCCTGGCCAGAAGGTGATGGAGA ATAGCAGTGGGACACCCGACATCTTAACGCGGCACTTCACAATTGATGAC TTTGAGATTGGGCGTCCTCTGGGCAAAGGCAAGTTTGGAAACGTGTACTT GGCTCGGGAGAAGAAAAGCCATTTCATCGTGGCGCTCAAGGTCCTCTTCA AGTCCCAGATAGAGAAGGAGGGCGTGGAGCATCAGCTGCGCAGAGAGATC GAAATCCAGGCCCACCTGCACCATCCCAACATCCTGCGTCTCTACAACTA TTTTTATGACCGGAGGAGGATCTACTTGATTCTAGAGTATGCCCCCCGCG GGGAGCTCTACAAGGAGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGA ACAGCCACGATCATGGAGGAGTTGGCAGATGCTCTAATGTACTGCCATGG GAAGAAGGTGATTCACAGAGACATAAAGCCAGAAAATCTGCTCTTAGGGC TCAAGGGAGAGCTGAAGATTGCTGACTTCGGCTGGTCTGTGCATGCGCCC TCCCTGAGGAGGAAGACAATGTGTGGCACCCTGGACTACCTGCCCCCAGA GATGATTGAGGGGCGCATGCACAATGAGAAGGTGGATCTGTGGTGCATTG GAGTGCTTTGCTATGAGCTGCTGGTGGGGAACCCACCCTTTGAGAGTGCA TCACACAACGAGACCTATCGCCGCATCGTCAAGGTGGACCTAAAGTTCCC CGCTTCCGTGCCCATGGGAGCCCAGGACCTCATCTCCAAACTGCTCAGGC ATAACCCCTCGGAACGGCTGCCCCTGGCCCAGGTCTCAGCCCACCCTTGG GTCCGGGCCAACTCTCGGAGGGTGCTGCCTCCCTCTGCCCTTCAATCTGT CGCCTGATGGTCCCTGTCATTCACTCGGGTGCGTGTGTTTGTATGTCTGT GTATGTATAGGGGAAAGAAGGGATCCCTAACTGTTCCCTTATCTGTTTTC TACCTCCTCCTTTGTTTAATAAAGGCTGAAGCTTTTTGTACTCATGAAAA AAAAAAAAAAAAAA

[0059] An exemplary amino acid sequence of human Aurkb (Genbank Accession Nos. NM_NM_004208.2) is as follows: (SEQ ID NO: 12)

TABLE-US-00014 MAQKENSYPWPYGRQTAPSGLSTLPQRVLRKEPVTPSALVLMSRSNVQPT AAPGQKVMENSSGTPDILTRHFTIDDFEIGRPLGKGKFGNVYLAREKKSH FIVALKVLFKSQIEKEGVEHQLRREIEIQAHLHHPNILRLYNYFYDRRRI YLILEYAPRGELYKELQKSCTFDEQRTATIMEELADALMYCHGKKVIHRD IKPENLLLGLKGELKIADFGWSVHAPSLRRKTMCGTLDYLPPEMIEGRMH NEKVDLWCIGVLCYELLVGNPPFESASHNETYRRIVKVDLKFPASVPMGA QDLISKLLRHNPSERLPLAQVSAHPWVRANSRRVLPPSALQSVA

Modulators of Histone Methyltransferases

[0060] Modulators of histone methylation include inhibitors of histone methyltransferases and enhancers of histone methyltransferases. Modulators disclosed herein can inhibit or enhance the activity of any of the histone methyltransferases disclosed herein, preferably Setdb2, Setd7, Setd8, Prmt7, Ezh1, Ezh2, or Aurkb. Modulators disclosed herein can increase or decreased expression of any of the histone methyltransferases disclosed herein, preferably Setdb2, Setd7, Setd8, Prmt7, Ezh1, Ezh2, or Aurkb.

[0061] Examples of small molecule inhibitors of histone methyltransferases are described below. Such inhibitors can target both lysine and arginine methyltransferases, for example, those disclosed in WO 2013/063417 (the contents of which are hereby incorporated by reference in its entirety). S-adenosyl-methionine (SAM) analog inhibitors are broadly inhibiting to methyltransferases, as they are analogs of the methyl substrate, and therefore competitively inhibit methyltransferases. Examples of SAM analogs include, but are not limited to EPZ004777 (CAS 1338466-77-5; BioVision Incoporated).

[0062] Small molecule inhibitors of lysine histone methyltransferases include BIX 01294 (also known as 2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-dimethoxy-N-[1-(phenylmet- hyl)-4-piperidinyl]-4-quinazolinamine trihydrochloride hydrate; Tocris Biosciences)) (and its derivative TM-115), 3-Dcazaneplanocin A hydrochloride (DZnep) (Tocris Biosciences), chaetocin (CAS 28094-03-2; Tocris Biosciences; Sigma-Aldrich), SOC 0946 (Tocris Biosciences, Selleck Chemicals), UNC 0224 (CAS 1197196-48-7; Tocris Biosciences, Cayman Chemical), UNC 0638 (CAS 1255517-77-1; Tocris Bioscience), UNC 0646 (CAS 1320288-17-2; Tocris Biosciences), 2-cyclohexyl-N-(1-isopropylpiperidin-4-yl)-6-methoxy-7-(3-(pyrrolidin-1-y- l)propoxy) quinazolin-4-amine, polyhydroxy derivatives of (2,3,7,8-tetrahydroxy[1] benzopyrano (5:4,3(de)[1]benzopyran5,10-dione) (for example, those disclosed in WO2008/001.391). Inhibitors of Ezh2 include S-adenosyl-L-homocysteine and analogs or derivatives thereof (for example, those disclosed in WO2012/034132; hereby incorporated by reference in its entirety).

[0063] BIX-01294 (trihydrochloride hydrate) (2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-dimethoxy-N-[1-(phenylme- thyl)-4-piperidinyl]-4-quinazolinamine trihydrochloride; Tocris Biosciences) is a diazepin-quinazolinamine derivative. This inhibitor is a lysine methyltransferase inhibitor, and does not compete with cofactor S-adenosyl-methionine. Specifically, BIX-01294 has been shown to inhibit methylation at lysine 9 of histone H3 (H3K9). Reported activity includes inhibition of dimethylation of H3K9 (H3K9me2), and inhibition of G9a-like protein and G9a histone lysine methytransferase. The chemical formula for BIX-01294 is as follows:

##STR00001##

[0064] 3-Deazaneplanocin A hydrochloride (DZNep; Tocris Biosciences) is a lysine methyltransferase inhibitor. Specifically, DZNep is an S-Adenosylhomocysteine Hydrolase inhibitor. For example, DZNep inhibits histone methyltransferase EZH2 inhibitor. The chemical formula for 3-Deazaneplanocin A hydrochloride is as follows:

##STR00002##

[0065] Inhibitors of arginine methyltransferase include AMI-1 (C.sub.21H.sub.12N.sub.2Na.sub.4O.sub.9S.sub.2) (Sigma-Aldrich).

[0066] Inhibitors of DNA methyltransferases include 5-aza-cytidine (CAS 320-67-2: Sigma-Aldrich) and 5-aza-2'deoxycytidine (CAS 2353-33-5; Sigma-Aldrich).

[0067] Examples of polynucleotides that inhibit histone methyltransferase activity and/or expression include RNA-interfering polynucleotides. For example, siRNAs that specifically bind and target any of the histone methyltransferases disclosed herein, preferably Setdb2, Setd7, Setd8, Prmt7, Ezh1, Ezh2, or Aurkb, for degradation, thereby inhibiting expression or function of the methyltransferase. siRNAs are commercially available and custom designed, synthesized, and purchased, for example, from Dharmacon, Inc. Alternatively, short hairpin RNA (shRNA) sequences can be designed by the skilled artisan using art-recognized techniques and the nucleotide sequences of the methyltransferases disclosed herein.

[0068] Examples of polypeptides that inhibit or reduce expression or activity of histone methyltransferases include dominant negative forms of the histone methyltransferase. In this approach, dominant negative mutations (i.e., deletions, substitutions, or truncations) can be designed using the sequences of the methyltransferases disclosed herein and recombinant DNA and protein expression methods well known in the art.

[0069] Methods for detecting histone methyltransferase activity are well known in the art. For example, in vitro experiments utilize a substrate (i.e., recombinant histone proteins, or a peptide fragment thereof, preferably containing a methylation site), a histone methyltransferase, and the tested modulator. An assay is then performed to detection of the methylation of the substrate, for example, a colorimetric assay or immunoblotting. Increased or presence of methylation of the substrateindicates that the modulator is an enhancer of histone methylation activity. Decreased or absence of methylation of the substrate indicates that the modulator is an inhibitor of histone methylation activity.

[0070] Detection of histone methyltransferase expression can be readily performed by the ordinary artisan. As described herein, RNA is isolated and is reverse-transcribed according to standard protocols. Quantitative RT-PCR expression is performed using target (i.e., histone methyltransferase) primers and/or probes to detect transcripts of the target gene. Protein expression can also be detected using immunoblotting methods known in the art, such as western blotting and ELISA.

Combination Therapy

[0071] The compositions disclosed herein can be used in combination with another therapeutic agent for cardiovascular diseases or disorders, or an agent to increase the efficacy of the cardiac reprogramming The methods disclosed herein further comprise administration of an additional therapeutic agent concurrently, or sequentially.

[0072] The combination therapy contemplated by the invention includes, for example, administration of the composition comprising a modulator of a histone methyltransferase as described herein and an additional therapeutic agent in a single pharmaceutical formulation as well as administration with the additional agent(s) in separate pharmaceutical formulations. In other words, co-administration shall mean the administration of at least two agents to a subject so as to provide the beneficial effects of the combination of both agents. For example, the agents may be administered simultaneously, concurrently, sequentially, or in alternative over a period of time.

[0073] The agents set forth below are for illustrative purposes and not intended to be limiting. The combinations, which are part of this invention, can be the compounds of the present invention and at least one additional agent selected from the lists below. The combination can also include more than one additional agent, e.g., two or three additional agents if the combination is such that the formed composition can perform its intended function.

[0074] The compositions provided herein include more than one histone methylation modulator. For example, the composition includes 2, 3, 4, or 5 histone methylation modulators. In some aspects, the composition includes at least one histone methylation inhibitor or at least one histone methylation enhancer. In other aspects, the composition includes at least one histone methylation inhibitor and at least one histone methylation enhancer.

[0075] The compositions provided herein are administered in combination with a second agent, such as a JAK inhibitor or a histone deacetylase inhibitor. The JAK inhibitor or histone deacetylase inhibitor may be administered in a separate or the same pharmaceutical composition as the modulator of histone methylation. When in separate pharmaceutical compositions, the compositions may be administering simultaneously, sequentially, or in alternating pattern.

[0076] Suitable JAK inhibitors that can be used in or with the compositions disclosed herein are pan-JAK inhibitors that inhibit JAK-1, JAK-2, and JAK-3 kinases, or any combination thereof. For example, the JAK inhibitor is JAK inhibitor I. In other embodiments, the JAK inhibitor may be an inhibitor that specifically or selectively inhibits at least one of the JAK kinases (JAK1, JAK2, or JAK3). Small molecule inhibitors of JAK-1 such as (INCB018424 (Ruxolitinib) and INCB028050; Incyte Corp.) have been shown to be effective in rheumatoid arthritis models when administered orally. For example INCB028050 is used at a dosage of 10 mg/kg in rodents. Both these inhibitors as well as JAK Inhibitor I (2-(1,1-Dimethylethyl)-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoqu- inolin-7-one, Pyridone 6, P6, DBI (catalog #420099 from EMD biosciences) have IC.sub.50 values in the nanomolar range. In the case of #420099, the IC.sub.50 values against JAK1 and JAK2 are reported to be 15 nM and InM respectively. In the case of INCB018424, the reported IC.sub.50 values for JAK1 and JAK2 are 3 and 5 nM respectively. INCB018424 and INCB028050 are currently being utilized in clinical trials (Fridman J S et al., (2010) Selective Inhibition of JAK1 and JAK2 Is Efficacious in Rodent Models of Arthritis: Preclinical Characterization of INCB028050. J Immunol. 184 (9) 5298-5307).

[0077] Other additional therapeutic agents useful for treatment in cardiovascular disease include, but are not limited to, cardiac glycosides, anti-arrhythmic agents, anti-hypertensive agents, anti-hypotensive agents, alpha-adrenergic blockers, beta-adrenergic blockers, calcium channel blockers, cardenolides, ACE inhibitors, diuretics, anti-inflammatory agents (i.e., NSAIDS), angiogenesis agents, anti-angiogenesis agents, vasoconstrictors, vasodilators, inotropic agents, anti-fibrotic agents, and hypolipidemic agents.

[0078] Additional agents useful to increase the efficacy or efficiency of reprogramming include, but are not limited to BMP4 (bone morphogenetic protein), valproic acid (histone deacetylase inhibitor), RG108 (DNA methyltransferase inhibitor), R(+) Bay K 8644 (Calcium channel blocker), PS48 (5-(4-Chloro-phenyl)-3-phenyl-pent-2-enoic acid; Ci.sub.7Hi.sub.5C10.sub.2) (PDK1 activator), and A83-01 (3-(6-Methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carboth- ioamide; C25H19N5S)) (TGFP kinase/activin receptor like kinase (ALK5) inhibitor).

Pharmaceutical Compositions

[0079] One or more modulators of histone methylatransferase (HMT) expression or activity can he administered alone to a subject or in pharmaceutical compositions where they are mixed with suitable carriers or excipient(s) at doses for cardiac repair and/or regeneration as described herein. Mixtures of HMT modulators can also be administered to the subject as a simple mixture or in suitable formulated pharmaceutical compositions. For example, one aspect of the invention relates to pharmaceutical composition comprising a therapeutically effective dose of an HMT modulator, or a pharmaceutically acceptable salt, hydrate, enantiomer or stereoisomer thereof; and a pharmaceutically acceptable diluent or carrier.

[0080] Techniques for formulation and administration of EZH2 antagonists may be found in references well known to one of ordinary skill in the art, such as Remington's "The Science and Practice of Pharmacy," 21st ed., Lippincott Williams & Wilkins 2005. Suitable routes of administration may, for example, include oral, rectal, or intestinal administration; parenteral delivery, including intravenous, intramuscular, intraperitoneal, subcutaneous, or intramedullary injections, as well as intrathecal, direct intraventricular, or intraocular injections; topical delivery, including eyedrop and transdermal; and intranasal and other transmucosal delivery. Preferably, the HMT modulator is administered in a local rather than systemic matter, for example, via direct intravenous injection, or direct injection to the cardiac tissue. Furthermore, one may administer an EZH2 antagonist in a targeted drug delivery system.

[0081] The pharmaceutical compositions of the present invention may be manufactured, e.g., by conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

[0082] Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active HMT moculators into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.

[0083] For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants are used in the formulation appropriate to the barrier to be permeated. Such penetrants are generally known in the art.

[0084] Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of the active HMT modulators in water-soluble form. Additionally, suspensions of the active HMT modulators may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the HMT modulators to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for reconstitution before use with a suitable vehicle, e.g., sterile pyrogen-free water.

[0085] Other delivery systems for hydrophobic pharmaceutical HMT modulators may be employed. Liposomes and emulsions are examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethysulfoxide also may be employed. Additionally, the HMT modulators may be delivered using a sustained-release system, such as semi-permeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the HMT modulators for a few weeks up to over 100 days.

[0086] Depending on the chemical nature and the biological stability of e therapeutic reagent, additional strategies for protein stabilization may be employed.

[0087] The pharmaceutical compositions may also comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers, such as polyethylene glycols.

EXAMPLE 1

MicroRNA-Mediated Reprogramming of Cardiac Fibroblasts

[0088] Mouse cardiac fibroblasts were transfected with specific combinations of distinct microRNAs significant, for example 50nm each of mir-1, mir-133, mir-208, and mir-499, to cardiac and/or muscle tissue. For all the following methods, the miRNA combination used included miRNAs mir-1, mir-133, mir-208, and mir-499. Quantitative real-time PCR (qRT-PCR) and immunocytochemistry (ICC) were employed to assess a switch in gene expression as early as 3 days following transfection. These techniques make use of specific primers (qRT-PCR) and antibodies (ICC) to detect the expression/upregulation of cardiac differentiation markers. Such markers include MADS box transcription enhancer factor 2, polypeptide C (MEF2C), NK2 transcription factor related, locus 5 (NKX2.5), GATA binding protein 4 (GATA4), heart and neural crest derivatives expressed 2 (HAND2), ISL1 transcription factor, LIM homeodomain (ISL1), troponin I type 3 (cardiac) (TNNI3). FIG. 5 shows that transfection of human dermal fibroblasts with a combination of miRs induces expression of mesodermal markers as early as 3d post treatment. Gene expression in fold change normalized to NegmiR transfection for markers of distinct cardiac differentiation stages. All graphs are displayed with SEM.

EXAMPLE 2

Chromatin Modification in Cardiac Reprogramming

[0089] Comparison of gene expression on fibroblasts converted to cardiomyocytes was performed to identify classes or types of genes that were critical for cardiac reprogramming Microarray analysis was performed using standard tools known in the art. FIG. 2A shows the results of the global gene expression analysis in miR reprogrammed cardiac fibroblasts. Gene affiliation analysis led to the identification of 22 significant terms for molecular function of genes found changed in microarray 9 days post miR transfection. These results showed that 62 of these genes affect chromatin binding. FIG. 2B shows a graphic representation clustering the gene enrichment, gene affiliation and binding information from the microarray analysis, which indicated that histone deacetylases (HDACs, such as HDAC2) play a central role in miR-mediated reprogramming for converting fibroblasts into cardiomyocytes.

[0090] Subsequent analysis of histone deacetylase gene expression in fibroblasts and reprogrammed cardiomyocytes showed that some HDAC expression significantly changed after reprogramming, as detected by qPCR and determined by fold change normalized to control NegmiR transfection. For example, Hdac7 and Hdac4 expression was reduced. In contrast, Hdac2, Hdac11, and Hdac9 gene expression was found to be significantly increased.

[0091] To confirm these results, fibroblasts transfected with cardiac reprogramming miRNAs or control non-targeting miRNAs (NegmiR) were also treated with different HDAC inhibitors. Several different inhibitors against modifiers of histone acetylation (CPTH2 inhibitors all HAT activity, MC1568 affects HDAC class II, NaB mainly affects HDAC class I, OSU44 inhibits class I, II and IV, Tenovin-1 inhibits all class III Hdacs and XIX Compd2 selectively inhibits HDAC8). All inhibitors were administered 24 hours post treatment. Gene expression of cardiac transcription factors was measured 6d post transfection. Cardiac markers, such as Hand2, Gata4 and Tbx5 were determined by qPCR. Some HDACs were shown to have some role in enhancing or inhibiting cardiac reprogramming

EXAMPLE 3

Histone Methyltransferases in Cardiac Reprogramming

[0092] Fibroblasts transfected with cardiac reprogramming miRNAs or control non-targeting miRNAs (NegmiR) were also treated with different HDAC inhibitors. Gene expression of many histone methyltransferases were determined using qPCR, for example, Prmt6, Dnmt3b, Dnmt1, Suv39h1, M115, Ehmt1, Smyd3, Prmt2, Prmt1, Prmt5, M113, Ehmt2, Carm1, Prmt3, Prmt8, Dot1L, and Smyd1. FIG. 4A shows that histone methyltransferases have an altered gene expression profile in miR treated cardiac fibroblasts.

[0093] Comparison of all the gene expression data for cardiac markers Hand2, Ets2, and Gata4 at 3 days after transfection (FIG. 4B, left) and 6 days after transfection (FIG. 4B right) showed that histone methyltransferase inhibition plays a role in miR mediated cardiac reprogramming. The circled datapoints represent histone methyltransferases and demonstrate that their expression and activity plays a critical role in cardiac reprogramming

[0094] Additional experiments were performed in neonatal mouse cardiac fibroblasts were transfected with the microRNA combination. RNA was isolated 3-4 days afterwards for gene expression analysis by qRT-PCR. In FIG. 6A, histone methylatransferases Ezh1, Prmt7, and Setd7 were shown to be significantly increased after miR-mediated cardiac reprogramming In contrast, histone methyltransferases Ezh2, Setd8, and protein Aurkb gene expression was shown to be significantly decreased after miR-mediated cardiac reprogramming when compared to both untreated and control negative control scrambled microRNA-treated cells. These results demonstrated that inhibition or enhancement of histone methyltransferase activity or expression plays a significant role in cardiac reprogramming of fibroblast cells.

EXAMPLE 4

Models of Cardiac Reprogramming

[0095] Animal models of cardiovascular diseases are well known in the art. For example, myocardial infarction mouse models have been developed, in which coronary artery ligation is performed to induce myocardial infarction. Transgenic models of hypertension have also been developed, for example, the TGR(mREN)27 transgenic rat. Also, hypertension can be induced in animal models using infusion of angiotensin II (AngII) or chronic oral administration of NO synthase inhibitor. Cardiac fibrosis or presence of fibrotic tissue are determined using methods known in the art, for example by biopsy, or histopathological analysis of the heart (i.e., staining sections of the heart with fibroblast markers, collagen I, II or IV, or using trichrome or picro Sirius red staining).

[0096] Animals that suffer from fibrotic tissue are administered a composition comprising a modulator of a histone methyltransferase, BIX-01294 or DZNep, or a control composition. Animals are monitored for morbidity, lethargy, appetite, and sleep cycles. Cardiac tissue is harvested at various timepoints for cardiac marker or fibroblast gene expression analysis by qPCR or immunohistochemistry to identify increase in the expression of cardiac markers, particularly at the site of the fibrotic tissue. Other factors regarding improved cardiac function are assessed, such as blood pressure, exercise capacity, and collagen deposition in cardiac muscle. Animals are also monitored over extended time for observation of reoccurrence of cardiovascular disease.

[0097] Cell replacement therapy is also tested in the animal models suffering from cardiac fibrosis. Fibrosis, cardiovascular disease, or injury to the heart is performed using methods known in the art or the mouse models described above. Fibroblasts isolated from the animal subject, such as the skin fibroblasts, or cardiac fibroblasts isolated from a biopsy, are treated with a composition comprising a modulator of histone methyltransferase and are subsequently cultured and expanded under the appropriate conditions to promote cardiac reprogramming Subsequent testing of the cultured reprogrammed cells for expression of cardiac cell markers or cardiac cell function (for example, pulsing or beating movement) is used to verify successful reprogramming. Cells are then collected, purified, and then transplanted into the subject animal. Animals are subsequently monitored for improvement in cardiac function and/or reduction in fibrotic tissue in the heart.

[0098] These models demonstrate that composition comprising modulators of histone methylation compounds convert fibrotic tissue or fibroblasts to repair or regenerate functional cardiac tissue.

EXAMPLE 5

Inhibition of Histone Methyltransferase Expression or Activity in Cardiac Reprogramming

[0099] Neonatal mouse cardiac fibroblasts were transfected with the microRNA combination (50 nM) or with siRNAs against the indicated genes (40 nM), Setd7, Aurkb, and Prmt7. Efficient knockdown (or reduction in protein expression) was verified by western blotting. Gene expression analysis of cardiac markers Tbx5, Mef2c, and Gata-4 were determined by qRT-PCR. Fold changes in the expression data were normalized to control NegmiR treated cells. Fibroblasts treated with the combination of cardiac reprogramming miRs (mir-1, mir-133, mir-208, and mir-499) were used a positive control to show successful cardiac reprogramming. SiRNAs against specific histone methyltransferases showed successful reprogramming for at least one cardiac marker. Inhibition of expression or activity of Prmt7 showed significant upregulation of all cardiac markers tested.

[0100] Inhibition of histone methyltransferase activity by small molecule compounds was investigated. Neonatal cardiac fibroblasts were treated with 1 .mu.M of the H3K9 methylation inhibitor BIX-01294 or 1 .mu.M of the H3K27/H4K20 methylation inhibitor 3-Deazaneplanocin A hydrochloride (DZNep). After 3 days, RNA was harvested using standard protocols known in the art, and cardiac gene expression was assessed by qPCR. The cardiac genes tested were Tbx5, Mef2C, Gata4, and Nkx2.5. As shown in FIG. 9A, treatment with BIX resulted in significant downregulation of Mef2C and Nkx2.5 cardiac markers. In contrast, treatment with DZNep resulted in significant upregulation of cardiac markers Tbx5 and Gata4. These results show that enhancement of H3K9 methylation is useful for expression of some cardiac markers. Alternatively, inhibition of H3K9 causes upregulation of other cardiac markers, such asTbx5, and therefore inhibition of H3K9 methylation also promotes the expression of at least one cardiac marker. These results indicate that inhibition of H3K27 methylation, and the methyltransferases that produce methylated H3K27, leads to reprogramming of fibroblasts into cardiomyocytes as evidenced by the induction of expression of cardiac marker in fibroblasts.

[0101] Neonatal cardiac fibroblasts that were transfected with miRNAs that induce cardiac reprogramming were also treated with 1 .mu.M of the H3K9 methylation inhibitor BIX-01294 or 1 .mu.M of the H3K27/H4K20 methylation inhibitor 3-Deazaneplanocin A hydrochloride (DZNep). Analysis was performed similarly as described above, and the cardiac gene expression was assessed by qPCR. As shown in FIG. 9B, miR-mediated reprogrammed cells that were also treated with DZNep had significantly increased expression of all three tested cardiac markers, Tbx5, Mef2c, and Gata4. Thus, inhibition of H3K27 methylation and the methyltransferases that confer methylated H3K27 synergizes with the reprogramming capacity of the miRNAs.

[0102] Genetic tools and cell sorting methods were utilized to determine the efficiencies of converting cardiac fibroblasts to cardiac myocytes using the methods described herein. Specifically, neonatal mouse cardiac fibroblasts were isolated from a transgenic model where the cyan fluorescent protein (CFP) reporter is driven by the myosin heavy chain alpha (alphaMHC) reporter, which is specifically "turned on" in cardiac myocytes. Thus, the starting cell population of cardiac fibroblasts is CFP negative. These cells were then transfected with the miRNA combination that induces cardiac reprogramming

[0103] Cells were also transfected either with siRNA targeting histone methyltransferase Setdb 1, or treated with histone methyltransferase inhibitor BIX-01294. CFP positive cell population was sorted, and the percentage of CFP positive cells is shown in FIGS. 8A and 8B. In both experiments, miRNA-mediated reprogramming consistently increased CFP-positive cells by 3-5% percent of the overall population. Inhibition of histone methylation without miRNA-mediated reprogramming also results in increased cardiomyocyte CFP-positive cells, between 2.5-3.5%. The results further indicate that inhibition of histone methyltransferases in addition to miRNA-mediated reprogramming increased cardiomyocyte conversion even further, such that 5-7% of the population were converted to cardiomyocytes.

[0104] This method is also used to test the increase in efficacy or efficiency of reprogramming for combination therapies, i.e., with two or more histone methylation modulators, or at least one histone methylation modulator in combination with a second therapeutic agent.

EXAMPLE 6

JAK Inhibition Enhances Cardiac Reprogramming

[0105] Human fibroblasts (BJ cells) were transfected with the combination of miRNAs that induce cardiac reprogramming Transfected cells were treated with either DMSO or JAK inhibitor I (a pan-JAK kinase inhibitor). RNA was harvested and prepared according to standard protocols for qPCR gene expression analysis. The expression of cardiac marker genes, such as Is11, Mesp1, Tbx5, Mef2c, Gata4, and Hand2 was assessed. The results as shown in FIGS. 10A-10F demonstrate that treatment with JAK inhibitors, such as JAK inhibitor I, causes increases in expression of cardiac markers when compared to cells that were transfected with the miRNAs alone. Thus, JAK inhibition enhances the cardiac reprogramming

Other Embodiments

[0106] While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

[0107] The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. Genbank and NCBI submissions indicated by accession number cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.

[0108] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Sequence CWU 1

1

1417012DNAHomo sapiens 1ggagaaagtt gcagcagcgg cagcggccaa ggcggcacac cggagcctcc gaggcgaggg 60gcaagtgggc gaagggaggg gggacgacgg ctgctgccgc agcagctgaa ggccaaggaa 120ttgaaagggc tgtaggggga ggcagtgcga gccagccccg actgctcctc ctcttcctcc 180tcctcctcca aactcgcgag ccccagagct cgctcagccg ccgggagcac ccagagggac 240gggaggcagc cgcgcagccc cgagctgggc agtgtcccca gccgccatgg atagcgacga 300cgagatggtg gaggaggcgg tggaagggca cctggacgat gacggattac cgcacgggtt 360ctgcacagtc acctactcct ccacagacag atttgagggg aactttgttc acggagaaaa 420gaacggacgg gggaagttct tcttctttga tggcagcacc ctggaggggt attatgtgga 480tgatgccttg cagggccagg gagtttacac ttacgaagat gggggagttc tccagggcac 540gtatgtagac ggagagctga acggtccagc ccaggaatat gacacagatg ggagactgat 600cttcaagggg cagtataaag ataacattcg tcatggagtg tgctggatat attacccaga 660tggaggaagc cttgtaggag aagtaaatga agatggggag atgactggag agaagatagc 720ctatgtgtac cctgatgaga ggaccgcact ttatgggaaa tttattgatg gagagatgat 780agaaggcaaa ctggctaccc ttatgtccac tgaagaaggg aggcctcact ttgaactgat 840gcctggaaat tcagtgtacc actttgataa gtcgacttca tcttgcattt ctaccaatgc 900tcttcttcca gatccttatg aatcagaaag ggtttatgtt gctgaatctc ttatttccag 960tgctggagaa ggactttttt caaaggtagc tgtgggacct aatactgtta tgtcttttta 1020taatggagtt cgaattacac accaagaggt tgacagcagg gactgggccc ttaatgggaa 1080caccctctcc cttgatgaag aaacggtcat tgatgtgcct gagccctata accacgtatc 1140caagtactgt gcctccttgg gacacaaggc aaatcactcc ttcactccaa actgcatcta 1200cgatatgttt gtccaccccc gttttgggcc catcaaatgc atccgcaccc tgagagcagt 1260ggaggccgat gaagagctca ccgttgccta tggctatgac cacagccccc ccgggaagag 1320tgggcctgaa gcccctgagt ggtaccaggt ggagctgaag gccttccagg ccacccagca 1380aaagtgaaag gcctggcttt ggggttcaga gacctggaat agaaacttgg atctatgcac 1440tacgtttatc tgacaatggg acaaccaggg actgctcatg ctgtgacgtc acatcctctc 1500accatgcgtt agcaacgact ttctcgcata ctaactaggt ttgactgtat tactcatacc 1560agatttaaaa ttagctagcc ttgcaacaac gtcctactga gaggtattgt cgagcatttg 1620acataagaca gcgtgatgtt ctttggtggt tcaagtctaa atctgtacca cattcggaga 1680tgccaaatga ttagactgaa acagggaaac ggggtttttc agtcattttt agtcagtggt 1740ttttccatag tgcttttttc ctatggccag tgcaaattgt gttagcacac ttgcatatgt 1800gccgtattaa gggttgacaa ttactacatc tttattctct aaatgtagta taatttgcct 1860tttaaccttt gatctgtatc ttgcaataga atggctttgg tttttttctt agtaaatagg 1920agcccacttc taaagtcatt tcacccctca gccctattct ctttcttaga taccctttac 1980aagagaaaac ttccaaatgg atttttgcat caatagcagt gtgtaggtct ctctggttct 2040ttctatatca tcattttatt attatgtcct aatataaagt actggctcat agggccaggg 2100tattattata gaatattatt ctcgcatgta aacaaagata tctttgcttt aagatgtgag 2160aagaaatgaa tttactttgt ttgcattaag ttatggaaga gttgtaatat atactttaag 2220aaagaagaga agaaaactag tatctctaag cggtaactat ggcaattttg caatattttc 2280agtagtgcta gtaatttttt cctccttgag tacacattaa atgtacataa catagcgcgg 2340tcaggcttgt ggcacagtgc attgaattca aaagtcaaac agcaaatttg aattctaaca 2400gaattcaaaa aaaaattttt ttagtcagta ctactaaggc agacacactg attactaggt 2460acaaatcaaa ccttgatgct aaaactcttc atcattgtaa tttcaaagca cttacctgct 2520tcaaaacatt gtaaactaag actgaacacc tgtatagttt aaaagcaaca ctatcaatag 2580catttcagcc attttgccag ccatgtgtaa tcacaactgc agaaataagg agaaaacccc 2640tgttttttta gtttagctaa ttagatctgt aacatcactg ggattgctct gaatgaatcc 2700tgagagtttt gttttttata agcaccctca ccacatgcca tagctttgtc tcttttagac 2760acctcgatgc agcggctgga aggactggag agcagctgtt gtgctgatct gtagctgtca 2820gctgtgattc ctgtcacctg agtcagtttg gtctggaaag cgaaggcctt ccaagctgta 2880gcagatagtg agctccagct gatgagagaa ggcttcagtg gaagaagagt gaggacatag 2940gcagaaggaa gtttgctatt tcttgtcagt tgcacattgc tttatgaaga ctacaacaaa 3000agtgcttaat cccaggctgc tcatgacttt catttcaggt ggcccttggg cacattgaca 3060gagttgccct tcccttcttt gcaacaccag gcttcctaga gcacccggtt gcatgctttg 3120cagctaggtg gcagtggttt cagggagatc cagttggatc cctgcttgaa agcttaagcc 3180aatggttcac ccatgagagg aagttgtcag tgcttccagg aagattgccc accaaaggaa 3240ctgaatagtt tttagattta aaggcaccag gatagggtca ctcttactct gtagaaagag 3300accgttctat acactgtgac ggatgggcca gggcctctgg acttgcattc tgataggtgc 3360tttaatttaa atgtgcccaa agggagtgac tgtcttcagg agaaagatgg cttgcattaa 3420cctcgatcaa gtgggttgtg cagccaggtc agggaatgcg gtcagggaga ggatagtgct 3480ggtcatgccc ccgatgcagc tatgctctga atgatttcat tcctgagagt gatagcattc 3540tggtcctggc tgcagtgggg tacaatttac gtcctaagtg ggggctactc taattatccc 3600attcaaatgg aatttttttc aaaattggat agaaggaatt gaagagttgt aagtagtgat 3660tagtctgcta atcagttctt cagatgagat attgaatggt aacactctga gcttaaaact 3720cagcagtgtg tctgtgacct ccacgcaaat cagaggaagc aatgcatcca cgctgagcct 3780caccatgtct tcctcccaac tctcttcata ctctctgtgt cttccagctc ttctttctct 3840ggccggctct ctttcctctt ctctctgcat atgtgagaac gcctgggcat cctgggtaac 3900agcagcccca gctgccctct cctgttccct gttccaagtc ccctgcactg acctttcttg 3960agtctctctg gctctgtgca tgtctttggg actctgctca tctggctttt cctctgtgtg 4020tgcctctctg tttgcttatg tctctggctc tgtcttcccc acccctcccc tcacacacac 4080acatactccc aaatgtaagg ctctgtggca ggttggaatc ggagtaaggc ttgagattca 4140ctgagttctg taggtaggga aagaagtcaa gggagtggag gttctataag gaattaacag 4200ctgaggacgg aagggtttgt ttcccgtttg aacctaaacg caagtggaaa agaatactca 4260gaatgtattt ttctacttta catctgctgg ggaaggaaat gtgtcaggaa gccgctgcat 4320ctggtcattt catcgcatca gaatcacagc agacgtggaa gattccatgt ggtggggaat 4380aaagaaataa ctttatgctc tcctgaaaaa cagcgggagc ctatgtgtgt gtgcgacact 4440gtaatctcaa ggagattcac tcagagctgt ctcagtccaa ctcctgcatg accagatctt 4500cccttagcat cttttctgtg atgaaatatt atcttgtgtt agagttagga ataggaacta 4560acctgtagga gcatgtcccc aaatggacat ttgaatggac taacaaaaac aactggaaag 4620actgaatttc cgacacaaag gaatgatggg atcaaaaaga aagcagtgag gagttcttga 4680gtcttgtagt acctattctt attttaactt gcttcatcct tgatctacct gagacactaa 4740gaaggaaatt agttttccaa gagctctttg aacctgtcta ggactgtagt taaacctatt 4800tgccctatgg gggttcttca cactcgaaaa actatttcct tatcaccaac gacccaccca 4860gaaaggccaa tgaggccaaa tgtaacaatt tttaacattt aaatataact attaaaattg 4920cattaattgt gaacagtgaa ttaaagggtt gtcttctcca ggagacagta tgtggcactt 4980ttcgtaaatt tcatttaata tataaaaatt taaatcactc actgcaacat gcatttaaaa 5040tcttccaaga aggtagaggt atcattttct gttttgcttt gttttaaaac agttgcctca 5100agcttctgtc ttaagagtag tgacttagaa tccagatatc ttttgtttta gaaaaacaag 5160caaaactatg ttgcaagact gacagttgta atgtttattt gccacagatc aaaggttcac 5220aaagtatatc aaatttacat ctacttgggg taccttgata gattattatt gtttttcttt 5280tatctttccc ttcaggaatt tggaaactcg ttgtcacttt ttttaatttt aaaaatacta 5340aattgtaata gttttctttt gccaaatgtg tgcgtacata ttcaaagcaa tgaaactatt 5400tcaagccata caaccacagg ggtgggaacc cttttcacaa attttaatgt gtttgtatgt 5460aaatagatgt ttgtatgaaa tattttcatg atagaatgaa tatatttaaa tgaagttgaa 5520ttattccagt gctacttaaa cacattacaa aaattttggt gagaattatc tgagtctatt 5580gagatgtaat gcagatcaat tttgattttt aaaaatcaaa agcctacaat aactctgact 5640ctcagcaact tcctcggcgt tgttgcacct gacgtggaga gagctcgtag gcttccccag 5700tgcctcagcc gcttcctggt ggaagttagg tgctaatgga ggtgtgttca ccttttagtg 5760atatcactgc aggcctttga ggggcctgag agtgaatcag aggcattaga gacaccggtg 5820cagttatctg gagcacaatt tctttgcagg gcagcagaat cagaagccag acttggccat 5880gtgaacctcg aaactcggtt tcccggccgc catcaaccgc cacccttact gcctagtcac 5940acacgtcagg gaggctgccc tcagtggagt tggggttgag accccagggt gggacttcac 6000agttttgcca gcaatctcta ccttctgact tctgcctcgc agagaggaag gagaggggag 6060catctggcaa ggggcccatt tctcagcaca gtacatttcc tgtctcagct ctggaagact 6120atgcacccaa gcaccaaact tccaaccaga gagagagacg tcctccgata acaaaaatcc 6180ttgcttcctc tgtctgtgac tttacacaca gttgttcaaa gttgttaaat gtcaagagtc 6240aatcacatcc ctaggacata cctcccaact ctcctgactc ttatgttatt gaaaaaacaa 6300acaaacaaaa actcctttat gatgatattc aacttgagtg gggttttttt tccactttgg 6360tcctggatat aatgaaatga tacatattag gataaatttt cactgtgtat agtagcaata 6420cgaacacaca tgccaatgta tcaacatatc tacttggtta cattttggtt tatgataatt 6480aaccttgatt catgtattgg gaagctacag ggactacgta atacctgctt atcacatagg 6540aaaattatgt ccatgattct gagctccctt cttcaaaagt ttcctcctgg gtgttctatg 6600ttctctcttt atcctgaaat acatttatta ggttgtgagg tatgttgaag aagtagaagc 6660caggggtatg ctttcagcat ttattgcaac caaaagttaa ccccatcacg gttaacgagc 6720atctttggtc tcttgtggaa tttgaactaa aactatgagc cttattcaat atctataatt 6780ctatgatttt tttaaattat gggaaattaa tgaaagatgt ttacatgaat aatgtttgcc 6840cttactgtgt tatgaatgag ttttttgtag tgtgtctggg tgcatgatgc aagagagtag 6900gaaaaatgtt tctgaaacaa aacttgacaa atatttgtaa tgaaagtaaa tttaaagatt 6960gctataattg cgctatagaa acaatgcaag tattaaacaa aatatacaat ca 70122366PRTHomo sapiens 2Met Asp Ser Asp Asp Glu Met Val Glu Glu Ala Val Glu Gly His Leu1 5 10 15Asp Asp Asp Gly Leu Pro His Gly Phe Cys Thr Val Thr Tyr Ser Ser 20 25 30Thr Asp Arg Phe Glu Gly Asn Phe Val His Gly Glu Lys Asn Gly Arg 35 40 45Gly Lys Phe Phe Phe Phe Asp Gly Ser Thr Leu Glu Gly Tyr Tyr Val 50 55 60Asp Asp Ala Leu Gln Gly Gln Gly Val Tyr Thr Tyr Glu Asp Gly Gly65 70 75 80Val Leu Gln Gly Thr Tyr Val Asp Gly Glu Leu Asn Gly Pro Ala Gln 85 90 95Glu Tyr Asp Thr Asp Gly Arg Leu Ile Phe Lys Gly Gln Tyr Lys Asp 100 105 110Asn Ile Arg His Gly Val Cys Trp Ile Tyr Tyr Pro Asp Gly Gly Ser 115 120 125Leu Val Gly Glu Val Asn Glu Asp Gly Glu Met Thr Gly Glu Lys Ile 130 135 140Ala Tyr Val Tyr Pro Asp Glu Arg Thr Ala Leu Tyr Gly Lys Phe Ile145 150 155 160Asp Gly Glu Met Ile Glu Gly Lys Leu Ala Thr Leu Met Ser Thr Glu 165 170 175Glu Gly Arg Pro His Phe Glu Leu Met Pro Gly Asn Ser Val Tyr His 180 185 190Phe Asp Lys Ser Thr Ser Ser Cys Ile Ser Thr Asn Ala Leu Leu Pro 195 200 205Asp Pro Tyr Glu Ser Glu Arg Val Tyr Val Ala Glu Ser Leu Ile Ser 210 215 220Ser Ala Gly Glu Gly Leu Phe Ser Lys Val Ala Val Gly Pro Asn Thr225 230 235 240Val Met Ser Phe Tyr Asn Gly Val Arg Ile Thr His Gln Glu Val Asp 245 250 255Ser Arg Asp Trp Ala Leu Asn Gly Asn Thr Leu Ser Leu Asp Glu Glu 260 265 270Thr Val Ile Asp Val Pro Glu Pro Tyr Asn His Val Ser Lys Tyr Cys 275 280 285Ala Ser Leu Gly His Lys Ala Asn His Ser Phe Thr Pro Asn Cys Ile 290 295 300Tyr Asp Met Phe Val His Pro Arg Phe Gly Pro Ile Lys Cys Ile Arg305 310 315 320Thr Leu Arg Ala Val Glu Ala Asp Glu Glu Leu Thr Val Ala Tyr Gly 325 330 335Tyr Asp His Ser Pro Pro Gly Lys Ser Gly Pro Glu Ala Pro Glu Trp 340 345 350Tyr Gln Val Glu Leu Lys Ala Phe Gln Ala Thr Gln Gln Lys 355 360 36534654DNAHomo sapiens 3gcgcatgcgt cctagcagcg ggacccgcgg ctcgggatgg aggctggaca cctgttctgc 60tgttgtgtcc tgccattctc ctgaagaaca gaggcacact gtaaaaccca acacttcccc 120ttgcattcta taagattaca gcaagatgga aataccaaat ccccctacct ccaaatgtat 180cacttactgg aaaagaaaag tgaaatctga atacatgcga cttcgacaac ttaaacggct 240tcaggcaaat atgggtgcaa aggctttgta tgtggcaaat tttgcaaagg ttcaagaaaa 300aacccagatc ctcaatgaag aatggaagaa gcttcgtgtc caacctgttc agtcaatgaa 360gcctgtgagt ggacaccctt ttctcaaaaa gtgtaccata gagagcattt tcccgggatt 420tgcaagccaa catatgttaa tgaggtcact gaacacagtt gcattggttc ccatcatgta 480ttcctggtcc cctctccaac agaactttat ggtagaagat gagacggttt tgtgcaatat 540tccctacatg ggagatgaag tgaaagaaga agatgagact tttattgagg agctgatcaa 600taactatgat gggaaagtcc atggtgaaga agagatgatc cctggatccg ttctgattag 660tgatgctgtt tttctggagt tggtcgatgc cctgaatcag tactcagatg aggaggagga 720agggcacaat gacacctcag atggaaagca ggatgacagc aaagaagatc tgccagtaac 780aagaaagaga aagcgacatg ctattgaagg caacaaaaag agttccaaga aacagttccc 840aaatgacatg atcttcagtg caattgcctc aatgttccct gagaatggtg tcccagatga 900catgaaggag aggtatcgag aactaacaga gatgtcagac cccaatgcac ttccccctca 960gtgcacaccc aacatcgatg gccccaatgc caagtctgtg cagcgggagc aatctctgca 1020ctccttccac acactttttt gccggcgctg ctttaaatac gactgcttcc ttcacccttt 1080tcatgccacc cctaatgtat ataaacgcaa gaataaagaa atcaagattg aaccagaacc 1140atgtggcaca gactgcttcc ttttgctgga aggagcaaag gagtatgcca tgctccacaa 1200cccccgctcc aagtgctctg gtcgtcgccg gagaaggcac cacatagtca gtgcttcctg 1260ctccaatgcc tcagcctctg ctgtggctga gactaaagaa ggagacagtg acagggacac 1320aggcaatgac tgggcctcca gttcttcaga ggctaactct cgctgtcaga ctcccacaaa 1380acagaaggct agtccagccc cacctcaact ctgcgtagtg gaagcaccct cggagcctgt 1440ggaatggact ggggctgaag aatctctttt tcgagtcttc catggcacct acttcaacaa 1500cttctgttca atagccaggc ttctggggac caagacgtgc aagcaggtct ttcagtttgc 1560agtcaaagaa tcacttatcc tgaagctgcc aacagatgag ctcatgaacc cctcacagaa 1620gaagaaaaga aagcacagat tgtgggctgc acactgcagg aagattcagc tgaagaaaga 1680taactcttcc acacaagtgt acaactacca accctgcgac cacccagacc gcccctgtga 1740cagcacctgc ccctgcatca tgactcagaa tttctgtgag aagttctgcc agtgcaaccc 1800agactgtcag aatcgtttcc ctggctgtcg ctgtaagacc cagtgcaata ccaagcaatg 1860tccttgctat ctggcagtgc gagaatgtga ccctgacctg tgtctcacct gtggggcctc 1920agagcactgg gactgcaagg tggtttcctg taaaaactgc agcatccagc gtggacttaa 1980gaagcacctg ctgctggccc cctctgatgt ggccggatgg ggcaccttca taaaggagtc 2040tgtgcagaag aacgaattca tttctgaata ctgtggtgag ctcatctctc aggatgaggc 2100tgatcgacgc ggaaaggtct atgacaaata catgtccagc ttcctcttca acctcaataa 2160tgattttgta gtggatgcta ctcggaaagg aaacaaaatt cgatttgcaa atcattcagt 2220gaatcccaac tgttatgcca aagtggtcat ggtgaatgga gaccatcgga ttgggatctt 2280tgccaagagg gcaattcaag ctggcgaaga gctcttcttt gattacaggt acagccaagc 2340tgatgctctc aagtacgtgg ggatcgagag ggagaccgac gtcctttagc cctcccaggc 2400cccacggcag cacttatggt agcggcactg tcttggcttt cgtgctcaca ccactgctgc 2460tcgagtctcc tgcactgtgt ctcccacact gagaaacccc ccaacccact ccctctgtag 2520tgaggcctct gccatgtcca gagggcacaa aactgtctca atgagagggg agacagaggc 2580agctagggct tggtctccca ggacagagag ttacagaaat gggagactgt ttctctggcc 2640tcagaagaag cgagcacagg ctggggtgga tgacttatgc gtgatttcgt gtcggctccc 2700caggctgtgg cctcaggaat caacttaggc agttcccaac aagcgctagc ctgtaattgt 2760agctttccac atcaagagtc cttatgttat tgggatgcag gcaaacctct gtggtcctaa 2820gacctggaga ggacaggcta agtgaagtgt ggtccctgga gcctacaagt ggtctgggtt 2880agaggcgagc ctggcaggca gcacagactg aactcagagg tagacaggtc accttactac 2940ctcctccctc gtggcagggc tcaaactgaa agagtgtggg ttctaagtac aggcattcaa 3000ggctggggga aggaaagcta cgccatcctt ccttagccag agagggagaa ccagccagat 3060gatagtagtt aaactgctaa gcttgggccc aggaggcttt gagaaagcct tctctgtgta 3120ctctggagat agatggagaa gtgttttcag attcctggga acagacacca gtgctccagc 3180tcctccaaag ttctggctta gcagctgcag gcaagcatta tgctgctatt gaagaagcat 3240taggggtatg cctggcaggt gtgagcatcc tggctcgctg gatttgtggg tgttttcagg 3300ccttccattc cccatagagg caaggcccaa tggccagtgt tgcttatcgc ttcagggtag 3360gtgggcacag gcttggacta gagaggagaa agattggtgt aatctgcttt cctgtctgta 3420gtgcctgctg tttggaaagg gtgagttaga atatgttcca aggttggtga ggggctaaat 3480tgcacgcgtt taggctggca ccccgtgtgc agggcacact ggcagagggt atctgaagtg 3540ggagaagaag caggtagacc acctgtccca ggctgtggtg ccaccctctc tggcattcat 3600gcagagcaaa gcactttaac catttctttt aaaaggtcta tagattgggg tagagtttgg 3660cctaaggtct ctagggtccc tgcctaaatc ccactcctga gggaggggga agaagagagg 3720gtgggagatt ctcctccagt cctgtctcat ctcctgggag aggcagacga gtgagtttca 3780cacagaagaa tttcatgtga atggggccag caagagctgc cctgtgtcca tggtgggtgt 3840gccgggctgg ctgggaacaa ggagcagtat gttgagtaga aagggtgtgg gcgggtatag 3900attggcctgg gagtgttaca gtagggagca ggcttctccc ttctttctgg gactcagagc 3960cccgcttctt cccactccac ttgttgtccc atgaaggaag aagtggggtt cctcctgacc 4020cagctgcctc ttacggtttg gtatgggaca tgcacacaca ctcacatgct ctcactcacc 4080acactggagg gcacacacgt accccgcacc cagcaactcc tgacagaaag ctcctcccac 4140ccaaatgggc caggccccag catgatcctg aaatctgcat ccgccgtggt ttgtattcat 4200tgtgcatatc agggataccc tcaagctgga ctgtgggttc caaattactc atagaggaga 4260aaaccagaga aagatgaaga ggaggagtta ggtctatttg aaatgccagg ggctcgctgt 4320gaggaatagg tgaaaaaaaa cttttcacca gcctttgaga gactagactg accccaccct 4380tccttcagtg agcagaatca ctgtggtcag tctcctgtcc cagcttcagt tcatgaatac 4440tcctgttcct ccagtttccc atcctttgtc cctgctgtcc cccactttta aagatgggtc 4500tcaacccctc cccaccacgt catgatggat ggggcaaggt ggtggggact aggggagcct 4560ggtatacatg cggcttcatt gccaataaat ttcatgcact ttaaagtcct gtggcttgtg 4620acctcttaat aaagtgttag aatccaaaaa aaaa 46544747PRTHomo sapiens 4Met Glu Ile Pro Asn Pro Pro Thr Ser Lys Cys Ile Thr Tyr Trp Lys1 5 10 15Arg Lys Val Lys Ser Glu Tyr Met Arg Leu Arg Gln Leu Lys Arg Leu 20 25 30Gln Ala Asn Met Gly Ala Lys Ala Leu Tyr Val Ala Asn Phe Ala Lys 35 40 45Val Gln Glu Lys Thr Gln Ile Leu Asn Glu Glu Trp Lys Lys Leu Arg 50 55 60Val Gln Pro Val Gln Ser Met Lys Pro Val Ser Gly His Pro Phe Leu65 70 75 80Lys Lys Cys Thr Ile Glu Ser Ile Phe Pro Gly Phe Ala Ser Gln His 85 90 95Met Leu Met Arg Ser Leu Asn Thr Val Ala Leu Val Pro Ile Met Tyr 100 105 110Ser Trp Ser Pro Leu Gln Gln Asn Phe Met Val Glu Asp Glu Thr Val 115 120 125Leu Cys Asn Ile Pro Tyr Met Gly Asp Glu Val Lys Glu Glu Asp Glu 130 135 140Thr Phe Ile Glu Glu Leu Ile Asn Asn Tyr Asp Gly Lys Val His Gly145 150 155 160Glu Glu Glu Met Ile Pro Gly Ser Val Leu Ile Ser Asp Ala Val Phe

165 170 175Leu Glu Leu Val Asp Ala Leu Asn Gln Tyr Ser Asp Glu Glu Glu Glu 180 185 190Gly His Asn Asp Thr Ser Asp Gly Lys Gln Asp Asp Ser Lys Glu Asp 195 200 205Leu Pro Val Thr Arg Lys Arg Lys Arg His Ala Ile Glu Gly Asn Lys 210 215 220Lys Ser Ser Lys Lys Gln Phe Pro Asn Asp Met Ile Phe Ser Ala Ile225 230 235 240Ala Ser Met Phe Pro Glu Asn Gly Val Pro Asp Asp Met Lys Glu Arg 245 250 255Tyr Arg Glu Leu Thr Glu Met Ser Asp Pro Asn Ala Leu Pro Pro Gln 260 265 270Cys Thr Pro Asn Ile Asp Gly Pro Asn Ala Lys Ser Val Gln Arg Glu 275 280 285Gln Ser Leu His Ser Phe His Thr Leu Phe Cys Arg Arg Cys Phe Lys 290 295 300Tyr Asp Cys Phe Leu His Pro Phe His Ala Thr Pro Asn Val Tyr Lys305 310 315 320Arg Lys Asn Lys Glu Ile Lys Ile Glu Pro Glu Pro Cys Gly Thr Asp 325 330 335Cys Phe Leu Leu Leu Glu Gly Ala Lys Glu Tyr Ala Met Leu His Asn 340 345 350Pro Arg Ser Lys Cys Ser Gly Arg Arg Arg Arg Arg His His Ile Val 355 360 365Ser Ala Ser Cys Ser Asn Ala Ser Ala Ser Ala Val Ala Glu Thr Lys 370 375 380Glu Gly Asp Ser Asp Arg Asp Thr Gly Asn Asp Trp Ala Ser Ser Ser385 390 395 400Ser Glu Ala Asn Ser Arg Cys Gln Thr Pro Thr Lys Gln Lys Ala Ser 405 410 415Pro Ala Pro Pro Gln Leu Cys Val Val Glu Ala Pro Ser Glu Pro Val 420 425 430Glu Trp Thr Gly Ala Glu Glu Ser Leu Phe Arg Val Phe His Gly Thr 435 440 445Tyr Phe Asn Asn Phe Cys Ser Ile Ala Arg Leu Leu Gly Thr Lys Thr 450 455 460Cys Lys Gln Val Phe Gln Phe Ala Val Lys Glu Ser Leu Ile Leu Lys465 470 475 480Leu Pro Thr Asp Glu Leu Met Asn Pro Ser Gln Lys Lys Lys Arg Lys 485 490 495His Arg Leu Trp Ala Ala His Cys Arg Lys Ile Gln Leu Lys Lys Asp 500 505 510Asn Ser Ser Thr Gln Val Tyr Asn Tyr Gln Pro Cys Asp His Pro Asp 515 520 525Arg Pro Cys Asp Ser Thr Cys Pro Cys Ile Met Thr Gln Asn Phe Cys 530 535 540Glu Lys Phe Cys Gln Cys Asn Pro Asp Cys Gln Asn Arg Phe Pro Gly545 550 555 560Cys Arg Cys Lys Thr Gln Cys Asn Thr Lys Gln Cys Pro Cys Tyr Leu 565 570 575Ala Val Arg Glu Cys Asp Pro Asp Leu Cys Leu Thr Cys Gly Ala Ser 580 585 590Glu His Trp Asp Cys Lys Val Val Ser Cys Lys Asn Cys Ser Ile Gln 595 600 605Arg Gly Leu Lys Lys His Leu Leu Leu Ala Pro Ser Asp Val Ala Gly 610 615 620Trp Gly Thr Phe Ile Lys Glu Ser Val Gln Lys Asn Glu Phe Ile Ser625 630 635 640Glu Tyr Cys Gly Glu Leu Ile Ser Gln Asp Glu Ala Asp Arg Arg Gly 645 650 655Lys Val Tyr Asp Lys Tyr Met Ser Ser Phe Leu Phe Asn Leu Asn Asn 660 665 670Asp Phe Val Val Asp Ala Thr Arg Lys Gly Asn Lys Ile Arg Phe Ala 675 680 685Asn His Ser Val Asn Pro Asn Cys Tyr Ala Lys Val Val Met Val Asn 690 695 700Gly Asp His Arg Ile Gly Ile Phe Ala Lys Arg Ala Ile Gln Ala Gly705 710 715 720Glu Glu Leu Phe Phe Asp Tyr Arg Tyr Ser Gln Ala Asp Ala Leu Lys 725 730 735Tyr Val Gly Ile Glu Arg Glu Thr Asp Val Leu 740 74552723DNAHomo sapiens 5ggcggcgctt gattgggctg ggggggccaa ataaaagcga tggcgattgg gctgccgcgt 60ttggcgctcg gtccggtcgc gtccgacacc cggtgggact cagaaggcag tggagccccg 120gcggcggcgg cggcggcgcg cgggggcgac gcgcgggaac aacgcgagtc ggcgcgcggg 180acgaagaata atcatgggcc agactgggaa gaaatctgag aagggaccag tttgttggcg 240gaagcgtgta aaatcagagt acatgcgact gagacagctc aagaggttca gacgagctga 300tgaagtaaag agtatgttta gttccaatcg tcagaaaatt ttggaaagaa cggaaatctt 360aaaccaagaa tggaaacagc gaaggataca gcctgtgcac atcctgactt ctgtgagctc 420attgcgcggg actagggagt gttcggtgac cagtgacttg gattttccaa cacaagtcat 480cccattaaag actctgaatg cagttgcttc agtacccata atgtattctt ggtctcccct 540acagcagaat tttatggtgg aagatgaaac tgttttacat aacattcctt atatgggaga 600tgaagtttta gatcaggatg gtactttcat tgaagaacta ataaaaaatt atgatgggaa 660agtacacggg gatagagaat gtgggtttat aaatgatgaa atttttgtgg agttggtgaa 720tgcccttggt caatataatg atgatgacga tgatgatgat ggagacgatc ctgaagaaag 780agaagaaaag cagaaagatc tggaggatca ccgagatgat aaagaaagcc gcccacctcg 840gaaatttcct tctgataaaa tttttgaagc catttcctca atgtttccag ataagggcac 900agcagaagaa ctaaaggaaa aatataaaga actcaccgaa cagcagctcc caggcgcact 960tcctcctgaa tgtaccccca acatagatgg accaaatgct aaatctgttc agagagagca 1020aagcttacac tcctttcata cgcttttctg taggcgatgt tttaaatatg actgcttcct 1080acatcgtaag tgcaattatt cttttcatgc aacacccaac acttataagc ggaagaacac 1140agaaacagct ctagacaaca aaccttgtgg accacagtgt taccagcatt tggagggagc 1200aaaggagttt gctgctgctc tcaccgctga gcggataaag accccaccaa aacgtccagg 1260aggccgcaga agaggacggc ttcccaataa cagtagcagg cccagcaccc ccaccattaa 1320tgtgctggaa tcaaaggata cagacagtga tagggaagca gggactgaaa cggggggaga 1380gaacaatgat aaagaagaag aagagaagaa agatgaaact tcgagctcct ctgaagcaaa 1440ttctcggtgt caaacaccaa taaagatgaa gccaaatatt gaacctcctg agaatgtgga 1500gtggagtggt gctgaagcct caatgtttag agtcctcatt ggcacttact atgacaattt 1560ctgtgccatt gctaggttaa ttgggaccaa aacatgtaga caggtgtatg agtttagagt 1620caaagaatct agcatcatag ctccagctcc cgctgaggat gtggatactc ctccaaggaa 1680aaagaagagg aaacaccggt tgtgggctgc acactgcaga aagatacagc tgaaaaagga 1740cggctcctct aaccatgttt acaactatca accctgtgat catccacggc agccttgtga 1800cagttcgtgc ccttgtgtga tagcacaaaa tttttgtgaa aagttttgtc aatgtagttc 1860agagtgtcaa aaccgctttc cgggatgccg ctgcaaagca cagtgcaaca ccaagcagtg 1920cccgtgctac ctggctgtcc gagagtgtga ccctgacctc tgtcttactt gtggagccgc 1980tgaccattgg gacagtaaaa atgtgtcctg caagaactgc agtattcagc ggggctccaa 2040aaagcatcta ttgctggcac catctgacgt ggcaggctgg gggattttta tcaaagatcc 2100tgtgcagaaa aatgaattca tctcagaata ctgtggagag attatttctc aagatgaagc 2160tgacagaaga gggaaagtgt atgataaata catgtgcagc tttctgttca acttgaacaa 2220tgattttgtg gtggatgcaa cccgcaaggg taacaaaatt cgttttgcaa atcattcggt 2280aaatccaaac tgctatgcaa aagttatgat ggttaacggt gatcacagga taggtatttt 2340tgccaagaga gccatccaga ctggcgaaga gctgtttttt gattacagat acagccaggc 2400tgatgccctg aagtatgtcg gcatcgaaag agaaatggaa atcccttgac atctgctacc 2460tcctcccccc tcctctgaaa cagctgcctt agcttcagga acctcgagta ctgtgggcaa 2520tttagaaaaa gaacatgcag tttgaaattc tgaatttgca aagtactgta agaataattt 2580atagtaatga gtttaaaaat caacttttta ttgccttctc accagctgca aagtgttttg 2640taccagtgaa tttttgcaat aatgcagtat ggtacatttt tcaactttga ataaagaata 2700cttgaacttg tccttgttga atc 27236352PRTHomo sapiens 6Met Ala Arg Gly Arg Lys Met Ser Lys Pro Arg Ala Val Glu Ala Ala1 5 10 15Ala Ala Ala Ala Ala Val Ala Ala Thr Ala Pro Gly Pro Glu Met Val 20 25 30Glu Arg Arg Gly Pro Gly Arg Pro Arg Thr Asp Gly Glu Asn Val Phe 35 40 45Thr Gly Gln Ser Lys Ile Tyr Ser Tyr Met Ser Pro Asn Lys Cys Ser 50 55 60Gly Met Arg Phe Pro Leu Gln Glu Glu Asn Ser Val Thr His His Glu65 70 75 80Val Lys Cys Gln Gly Lys Pro Leu Ala Gly Ile Tyr Arg Lys Arg Glu 85 90 95Glu Lys Arg Asn Ala Gly Asn Ala Val Arg Ser Ala Met Lys Ser Glu 100 105 110Glu Gln Lys Ile Lys Asp Ala Arg Lys Gly Pro Leu Val Pro Phe Pro 115 120 125Asn Gln Lys Ser Glu Ala Ala Glu Pro Pro Lys Thr Pro Pro Ser Ser 130 135 140Cys Asp Ser Thr Asn Ala Ala Ile Ala Lys Gln Ala Leu Lys Lys Pro145 150 155 160Ile Lys Gly Lys Gln Ala Pro Arg Lys Lys Ala Gln Gly Lys Thr Gln 165 170 175Gln Asn Arg Lys Leu Thr Asp Phe Tyr Pro Val Arg Arg Ser Ser Arg 180 185 190Lys Ser Lys Ala Glu Leu Gln Ser Glu Glu Arg Lys Arg Ile Asp Glu 195 200 205Leu Ile Glu Ser Gly Lys Glu Glu Gly Met Lys Ile Asp Leu Ile Asp 210 215 220Gly Lys Gly Arg Gly Val Ile Ala Thr Lys Gln Phe Ser Arg Gly Asp225 230 235 240Phe Val Val Glu Tyr His Gly Asp Leu Ile Glu Ile Thr Asp Ala Lys 245 250 255Lys Arg Glu Ala Leu Tyr Ala Gln Asp Pro Ser Thr Gly Cys Tyr Met 260 265 270Tyr Tyr Phe Gln Tyr Leu Ser Lys Thr Tyr Cys Val Asp Ala Thr Arg 275 280 285Glu Thr Asn Arg Leu Gly Arg Leu Ile Asn His Ser Lys Cys Gly Asn 290 295 300Cys Gln Thr Lys Leu His Asp Ile Asp Gly Val Pro His Leu Ile Leu305 310 315 320Ile Ala Ser Arg Asp Ile Ala Ala Gly Glu Glu Leu Leu Tyr Asp Tyr 325 330 335Gly Asp Arg Ser Lys Ala Ser Ile Glu Ala His Pro Trp Leu Lys His 340 345 35076236DNAHomo sapiens 7atccccggta gaggcagggc gggactgttg tggttgagat gaaggctagt aaatggtgaa 60gtacttcccg gccagagggc acctgcgctc gggaggtttg ggcggcttgg cgtcggagga 120gagccccacc cgcggaggaa cccagccttg ccaacggagc tggcggagct cactcctcag 180gtcaggcggg cggcgtagaa aacgcagcgg agccaggtga aaccaaggca ccgccgtggc 240tggcccccga cagttcctct agccgggagg ttggaggagc tgaaaacgcc gcggagccct 300cggccgcccg agcaggggct ggaccccagc ccttgcagcc tcccttctcc tggcacccaa 360gtgcagtcct ggctgcagaa ggggccgcgg gcgcactgag tttccaacct ccatttcagc 420ctgtctgtct cagggtgcag ccttaatgag aggtgattcc taagctgctg ggaacctgag 480gttgtcaaag gggcggcagg aaatggacag cagtataaaa cccagaagca gaacttgaag 540gttaaaccac tagcccattt cacagaatgt ttcatccatt tgtggaccaa aagatggagt 600tggtttttat ttttaaaaag ataatgttaa tgatctgata ccactacaaa tatttacgtg 660agaagattca tggacttgtc ttttggttgg actgtcactc atttctgaaa gtttcttcag 720ccacaatttc tatttgaaaa ttcaagtatc aaaggatacc aggtttagaa tggtataatg 780atgtattttg tctgaggact gcaaatttta tagagaccac agttggattc cagtgatatt 840ctgcaatcaa agtgatttga taaacctaat tttgaagcat tttatattta taagcgacat 900caaaagatgg gagaaaaaaa tggcgatgca aaaactttct ggatggagct agaagatgat 960ggaaaagtgg acttcatttt tgaacaagta caaaatgtgc tgcagtcact gaaacaaaag 1020atcaaagatg ggtctgccac caataaagaa tacatccaag caatgattct agtgaatgaa 1080gcaactataa ttaacagttc aacatcaata aagggagcat cacagaaaga agtgaatgcc 1140caaagcagtg atcctatgcc tgtgactcag aaggaacagg aaaacaaatc caatgcattt 1200ccctctacat catgtgaaaa ctcctttcca gaagactgta catttctaac aacagaaaat 1260aaggaaattc tctctcttga agataaagtt gtagacttta gagaaaaaga ctcatcttcg 1320aatttatctt accaaagtca tgactgctct ggtgcttgtc tgatgaaaat gccactgaac 1380ttgaagggag aaaaccctct gcagctgcca atcaaatgtc acttccaaag acgacatgca 1440aagacaaact ctcattcttc agcactccac gtgagttata aaaccccttg tggaaggagt 1500ctacgaaacg tggaggaagt ttttcgttac ctgcttgaga cagagtgtaa ctttttattt 1560acagataact tttctttcaa tacctatgtt cagttggctc ggaattaccc aaagcaaaaa 1620gaagttgttt ctgatgtgga tattagcaat ggagtggaat cagtgcccat ttctttctgt 1680aatgaaattg acagtagaaa gctcccacag tttaagtaca gaaagactgt gtggcctcga 1740gcatataatc taaccaactt ttccagcatg tttactgatt cctgtgactg ctctgagggc 1800tgcatagaca taacaaaatg tgcatgtctt caactgacag caaggaatgc caaaacttcc 1860cccttgtcaa gtgacaaaat aaccactgga tataaatata aaagactaca gagacagatt 1920cctactggca tttatgaatg cagccttttg tgcaaatgta atcgacaatt gtgtcaaaac 1980cgagttgtcc aacatggtcc tcaagtgagg ttacaggtgt tcaaaactga gcagaaggga 2040tggggtgtac gctgtctaga tgacattgac agagggacat ttgtttgcat ttattcagga 2100agattactaa gcagagctaa cactgaaaaa tcttatggta ttgatgaaaa cgggagagat 2160gagaatacta tgaaaaatat attttcaaaa aagaggaaat tagaagttgc atgttcagat 2220tgtgaagttg aagttctccc attaggattg gaaacacatc ctagaactgc taaaactgag 2280aaatgtccac caaagttcag taataatccc aaggagctta ctgtggaaac gaaatatgat 2340aatatttcaa gaattcaata tcattcagtt attagagatc ctgaatccaa gacagccatt 2400tttcaacaca atgggaaaaa aatggaattt gtttcctcgg agtctgtcac tccagaagat 2460aatgatggat ttaaaccacc ccgagagcat ctgaactcta aaaccaaggg agcacaaaag 2520gactcaagtt caaaccatgt tgatgagttt gaagataatc tgctgattga atcagatgtg 2580atagatataa ctaaatatag agaagaaact ccaccaagga gcagatgtaa ccaggcgacc 2640acattggata atcagaatat taaaaaggca attgaggttc aaattcagaa accccaagag 2700ggacgatcta cagcatgtca aagacagcag gtattttgtg atgaagagtt gctaagtgaa 2760accaagaata cttcatctga ttctctaaca aagttcaata aagggaatgt gtttttattg 2820gatgccacaa aagaaggaaa tgtcggccgc ttccttaatc atagttgttg cccaaatctc 2880ttggtacaga atgtttttgt agaaacacac aacaggaatt ttccattggt ggcattcttc 2940accaacaggt atgtgaaagc aagaacagag ctaacatggg attatggcta tgaagctggg 3000actgtgcctg agaaggaaat cttctgccaa tgtggggtta ataaatgtag aaaaaaaata 3060ttataaatat gtaactaacg cctgtttgtg aaattagctt atcaggctga aattaaagcc 3120atgcaaaaga aggtctaggt ccatcaagga aattcccctc cgttttcctt tgtcatgggg 3180tttatgtttt atttcagatt ttatttgtgt gacttagaaa ttccaggaac acaattagga 3240tattttcata cacatagggt atcttgttca ctgctgtgct actttacatg agtaggatgg 3300aagtgtatat tttatatgaa ataccactgt acaatttata atttatttac aaattatata 3360ttaagagaaa caaatgtcat aacagaactc agctgtttct aattgctttt gtgactgtta 3420ccttttagtt catgcccccc caaagagcta aatttcacat ttttacctac aaaattgatt 3480tttaattcct ggcaaataat ttaccattat gagctacaag gtgggcaaca gcgcctgagg 3540atctaatttt atgcatatta ctcccaagta ttttaacact tgttggagaa gcaatatctg 3600gatcgataaa acactgtccc atcaaccatt tgagtgggga gagggagaag ctcttctgta 3660agtaagattc tggcaagctc tttgaaatga gtcttctttc ccacagattt tctctactct 3720ttctatacaa acagatagga gaagagggaa tagaaacctg gaggaacttg aatatttttg 3780ttctagatag agatacagtt actgaaaagg aaacctagaa agtagtcaca cgttgcttat 3840ttaggccaga agtaattgta ctgggcaaaa atttcactta aaaaacacaa gaagtccagg 3900tatggtggct cagacctgta atcccagcac tttgagaggc cgaggcaggt ggattacttg 3960agcctagggg ttcaagacca gcttgggcaa catgtcaaaa ccctgtctct acaaaaaata 4020caaaaattag cctggcatga tggcatgtgc ccgtagtctc agctactcag gagtgaggtg 4080ggaggatcat ttgagctcag aaggtcaagg ctgcaatgag acataatttc accatagtac 4140ttccagcctg ggcaatagag caagactctc tctcaaaaaa aacagcacac acacacacac 4200acgaaaacaa ttctgaacta tgaaatctga aacagcccct tggtatctcc tgggcatgat 4260ttgcaaatct ttttttttta cagaaaaaag gcaaagagta agcactttgc cataggttac 4320ttggccgtga tcatctatct agtggaaaag gggactggga agcccaagca gactgggaaa 4380ccagacagct aggaaaagga gcaaaacata gcccagcaac ctacagatga agaaagttga 4440gaaatccatt tattcaccat agagacgcag gaatttcagg caatgcacta aaatgaaatg 4500ggggaaaaaa gcttgatcag tatgggaacc atttttgtgc aaaagggaat attatggatc 4560agccagtatt tctttgagct ctgcctgtgg agtccatttg acctttagaa atatgaggta 4620ttctgtcagt tttatcttct tggagaaatt tctcctaaaa tcttgatttg ctttagtctg 4680gactggttca tagccatcat cttccatcag taccccagag attcactttg tctcttatgt 4740gggatctgtt tccagttaga tgccattatt ttccttttcc ttggtttact cttccacata 4800ttggtaaagc tcttccaata gcttttggaa aggaaaaatg aaaagtaaat gttttgaatc 4860tctgtgtgtt tgacaatgtc tttattttac ccttatacct gattgctgtt ttggttggca 4920aggtatagga ttctttagtg gtctccatgc ccagttttga agacatctgc tagctttcag 4980tgctgttgct gtggagtctg aaaatctgtc ttctggcttc cagggtgact actggaaatt 5040gaatgccatt ctgttccttc tcttttgcat atataatcca tttttatctc tcttgaagct 5100tataggttta tctttgtctc aatgttctgt ccctgttaag agtccatttt catcctttgt 5160actaggtgcc tggtgggatc attccgtctg aaactaatga tttcccatct cttcactgtt 5220tctggaattc ctgttttcca gatgttagac ctccagaatt tgatctctaa ttttcctatc 5280ttttctctta actttcagct ctgtcttctt gctaggacct tttcctagga gcatttctca 5340atttaatctt ccagttcatc tgttgcattt tatttttcta gtctcatatt gtctcatatt 5400tttaatttct aagagctccc cttctccgaa tattcttttt ttttaatagc atcctatttt 5460ggctcatggt tgcagtattt tatctccttg aagatgtttg tgtgtttatg tatgtatatg 5520cacacacgta tacatacaca tacaggcatg catctctgta ttctttcggc ataatctgtg 5580tcctccaggg tttgtttctt tgtttcccct gtatgtttgt tttggtcgtt cacattatag 5640gctttcctca gagttaatgg tcttggtagt ctactcatat ttaagtgtgg aacaccaaaa 5700agcttactat aagctgagag tgtggtaaag ggctctttgt tttactatga cctacctgag 5760ctatcttgct ggggaacacc ctaatgtcag tctctttata aagggccttt cattttggcc 5820tggcaagaaa tactctttca tcctcctgca tggagggcaa aaaaaaattt aaaaattggc 5880tgctagggtc tgtctgctca cttccctgtt ttgcagaccc cacactcttc tgcaattcat 5940ttcatagttg tcaagactat acaaattgtc ctttttaatg ttctctcttc tgctatccct 6000agttggcagt cttcctcttt acaacctgct gaaagtggaa gacctccagt tttcctttaa 6060ttcctcagca aaccaccaac tattatatgt cttttttcca gaacaactta ttttttaact 6120ataattatat gcatttatgt tagattcact gaaaacctca tcttgtatgg tgctctgtac 6180cctatgggtg ctaaataaag gcttgctact ggcaactgga aaaaaaaaaa aaaaaa 62368719PRTHomo sapiens 8Met Gly Glu Lys Asn Gly Asp Ala Lys Thr Phe Trp Met Glu Leu Glu1 5 10 15Asp Asp Gly Lys Val Asp Phe Ile Phe Glu Gln Val Gln Asn Val Leu 20 25 30Gln Ser Leu Lys Gln Lys Ile Lys Asp Gly Ser Ala Thr Asn Lys Glu 35 40 45Tyr Ile Gln Ala Met Ile Leu Val Asn

Glu Ala Thr Ile Ile Asn Ser 50 55 60Ser Thr Ser Ile Lys Gly Ala Ser Gln Lys Glu Val Asn Ala Gln Ser65 70 75 80Ser Asp Pro Met Pro Val Thr Gln Lys Glu Gln Glu Asn Lys Ser Asn 85 90 95Ala Phe Pro Ser Thr Ser Cys Glu Asn Ser Phe Pro Glu Asp Cys Thr 100 105 110Phe Leu Thr Thr Glu Asn Lys Glu Ile Leu Ser Leu Glu Asp Lys Val 115 120 125Val Asp Phe Arg Glu Lys Asp Ser Ser Ser Asn Leu Ser Tyr Gln Ser 130 135 140His Asp Cys Ser Gly Ala Cys Leu Met Lys Met Pro Leu Asn Leu Lys145 150 155 160Gly Glu Asn Pro Leu Gln Leu Pro Ile Lys Cys His Phe Gln Arg Arg 165 170 175His Ala Lys Thr Asn Ser His Ser Ser Ala Leu His Val Ser Tyr Lys 180 185 190Thr Pro Cys Gly Arg Ser Leu Arg Asn Val Glu Glu Val Phe Arg Tyr 195 200 205Leu Leu Glu Thr Glu Cys Asn Phe Leu Phe Thr Asp Asn Phe Ser Phe 210 215 220Asn Thr Tyr Val Gln Leu Ala Arg Asn Tyr Pro Lys Gln Lys Glu Val225 230 235 240Val Ser Asp Val Asp Ile Ser Asn Gly Val Glu Ser Val Pro Ile Ser 245 250 255Phe Cys Asn Glu Ile Asp Ser Arg Lys Leu Pro Gln Phe Lys Tyr Arg 260 265 270Lys Thr Val Trp Pro Arg Ala Tyr Asn Leu Thr Asn Phe Ser Ser Met 275 280 285Phe Thr Asp Ser Cys Asp Cys Ser Glu Gly Cys Ile Asp Ile Thr Lys 290 295 300Cys Ala Cys Leu Gln Leu Thr Ala Arg Asn Ala Lys Thr Ser Pro Leu305 310 315 320Ser Ser Asp Lys Ile Thr Thr Gly Tyr Lys Tyr Lys Arg Leu Gln Arg 325 330 335Gln Ile Pro Thr Gly Ile Tyr Glu Cys Ser Leu Leu Cys Lys Cys Asn 340 345 350Arg Gln Leu Cys Gln Asn Arg Val Val Gln His Gly Pro Gln Val Arg 355 360 365Leu Gln Val Phe Lys Thr Glu Gln Lys Gly Trp Gly Val Arg Cys Leu 370 375 380Asp Asp Ile Asp Arg Gly Thr Phe Val Cys Ile Tyr Ser Gly Arg Leu385 390 395 400Leu Ser Arg Ala Asn Thr Glu Lys Ser Tyr Gly Ile Asp Glu Asn Gly 405 410 415Arg Asp Glu Asn Thr Met Lys Asn Ile Phe Ser Lys Lys Arg Lys Leu 420 425 430Glu Val Ala Cys Ser Asp Cys Glu Val Glu Val Leu Pro Leu Gly Leu 435 440 445Glu Thr His Pro Arg Thr Ala Lys Thr Glu Lys Cys Pro Pro Lys Phe 450 455 460Ser Asn Asn Pro Lys Glu Leu Thr Val Glu Thr Lys Tyr Asp Asn Ile465 470 475 480Ser Arg Ile Gln Tyr His Ser Val Ile Arg Asp Pro Glu Ser Lys Thr 485 490 495Ala Ile Phe Gln His Asn Gly Lys Lys Met Glu Phe Val Ser Ser Glu 500 505 510Ser Val Thr Pro Glu Asp Asn Asp Gly Phe Lys Pro Pro Arg Glu His 515 520 525Leu Asn Ser Lys Thr Lys Gly Ala Gln Lys Asp Ser Ser Ser Asn His 530 535 540Val Asp Glu Phe Glu Asp Asn Leu Leu Ile Glu Ser Asp Val Ile Asp545 550 555 560Ile Thr Lys Tyr Arg Glu Glu Thr Pro Pro Arg Ser Arg Cys Asn Gln 565 570 575Ala Thr Thr Leu Asp Asn Gln Asn Ile Lys Lys Ala Ile Glu Val Gln 580 585 590Ile Gln Lys Pro Gln Glu Gly Arg Ser Thr Ala Cys Gln Arg Gln Gln 595 600 605Val Phe Cys Asp Glu Glu Leu Leu Ser Glu Thr Lys Asn Thr Ser Ser 610 615 620Asp Ser Leu Thr Lys Phe Asn Lys Gly Asn Val Phe Leu Leu Asp Ala625 630 635 640Thr Lys Glu Gly Asn Val Gly Arg Phe Leu Asn His Ser Cys Cys Pro 645 650 655Asn Leu Leu Val Gln Asn Val Phe Val Glu Thr His Asn Arg Asn Phe 660 665 670Pro Leu Val Ala Phe Phe Thr Asn Arg Tyr Val Lys Ala Arg Thr Glu 675 680 685Leu Thr Trp Asp Tyr Gly Tyr Glu Ala Gly Thr Val Pro Glu Lys Glu 690 695 700Ile Phe Cys Gln Cys Gly Val Asn Lys Cys Arg Lys Lys Ile Leu705 710 71592478DNAHomo sapiens 9agctttccag ttctgcttta ggacccgccc cccagcacgc tcctcgacgc tgcgaggtcc 60cgccccgcgt gctggccgcg gtaaaagtgg tagcagcgga ggcgagcgga gggtttcccg 120cggcggagtc tcactctgct gcctaggctg agtgcagtgg tgtgatcgag gcgcactgca 180gccttgacct cctgggctca agcgatcctc acctcggcct accgagtagc tgggactaca 240ggcacgcgcc actacactcg gatttctgac agtcagactt gtccacaaga actcaactgg 300caaggctgct tttctgtgct aaaactgggg agctagtggg caccatgaag atcttctgca 360gtcgggccaa tccgaccacg gggtctgtgg agtggctgga ggaggatgaa cactatgatt 420accaccagga gattgcaagg tcatcttatg cagatatgct acatgacaaa gacagaaatg 480taaaatacta ccaaggtatc cgggctgccg tgagcagggt gaaggacaga ggacagaagg 540ccttggttct cgacattggc actggcacgg gactcttgtc aatgatggcg gtcacagcag 600gtgccgactt ctgctatgcc atcgaggttt tcaagcctat ggctgatgct gctgtgaaga 660ttgtggagaa aaatggcttt agtgataaga ttaaggttat caacaagcat tccaccgagg 720tgactgtagg tccagagggt gacatgccat gccgtgccaa catcctggtc acagagttgt 780ttgacacaga gctgatcggg gagggggcgc tgccctccta tgagcacgca cacaggcatc 840tcgtggagga aaattgtgag gccgtgcccc acagagccac cgtctatgca cagctggtgg 900agtccgggag gatgtggtcg tggaacaagc tatttcccat ccacgtgcag accagcctcg 960gagagcaggt catcgtccct cccgttgacg tggagagctg ccctggcgca ccctctgtct 1020gtgacattca gctgaaccag gtgtcaccag ccgactttac agtcctcagc gatgtgctgc 1080ccatgttcag catagacttc agcaagcaag tcagtagctc agcagcctgc catagcaggc 1140ggtttgaacc tctgacatct ggccgagctc aggtggttct ctcgtggtgg gacattgaaa 1200tggaccctga ggggaagatc aagtgcacca tggccccctt ctgggcacac tcagacccag 1260aggagatgca gtggcgggac cactggatgc agtgtgtgta cttcctgcca caagaggagc 1320ctgtggtgca gggctcagcg ctctatctgg tagcccacca cgatgactac tgcgtatggt 1380acagcctgca gaggaccagc cctgaaaaga atgagagagt ccgccagatg cgccccgtgt 1440gtgactgcca ggctcacctg ctctggaacc ggcctcggtt tggagagatc aatgaccagg 1500acagaactga tcgatacgtc caggctctga ggaccgtgct gaagccagac agcgtgtgcc 1560tgtgtgtcag cgatggcagc ctgctctccg tgctggccca tcacctgggg gtggagcagg 1620tgtttacagt cgagagttca gcagcttctc acaaactgtt gagaaaaatc ttcaaggcta 1680accacttgga agataaaatt aacatcatag agaaacggcc ggaattatta acaaatgagg 1740acctacaggg cagaaaggtc tctctcctcc tgggcgagcc gttcttcact accagcctgc 1800tgccgtggca caacctctac ttctggtacg tgcggaccgc tgtggaccag cacctggggc 1860caggtgccat ggtgatgccc caggcagcct cgctgcacgc tgtggttgtg gagttcaggg 1920acctgtggcg gatccggagc ccctgtggtg actgcgaagg cttcgacgtg cacatcatgg 1980acgacatgat taagcgtgcc ctggacttca gggagagcag ggaagctgag ccccacccgc 2040tgtgggagta cccatgccgc agcctctccg agccctggca gatcctgacc tttgacttcc 2100agcagccggt gcccctgcag cccctgtgtg ccgagggcac cgtggagctc agaaggcccg 2160ggcagagcca cgcagcggtg ctatggatgg agtaccacct gaccccggag tgcacgctca 2220gcactggcct cctggagcct gcagaccccg aggggggctg ctgctggaac ccccactgca 2280agcaggccgt ctacttcttc agccctgccc cagatcccag agcactgctg ggtggcccac 2340ggactgtcag ctatgcagtg gagtttcacc ccgacacagg cgacatcatc atggagttca 2400ggcatgcaga taccccagac tgaccactct tgagcaataa agtggcctga gggctggggt 2460tctgaaaaaa aaaaaaaa 247810692PRTHomo sapiens 10Met Lys Ile Phe Cys Ser Arg Ala Asn Pro Thr Thr Gly Ser Val Glu1 5 10 15Trp Leu Glu Glu Asp Glu His Tyr Asp Tyr His Gln Glu Ile Ala Arg 20 25 30Ser Ser Tyr Ala Asp Met Leu His Asp Lys Asp Arg Asn Val Lys Tyr 35 40 45Tyr Gln Gly Ile Arg Ala Ala Val Ser Arg Val Lys Asp Arg Gly Gln 50 55 60Lys Ala Leu Val Leu Asp Ile Gly Thr Gly Thr Gly Leu Leu Ser Met65 70 75 80Met Ala Val Thr Ala Gly Ala Asp Phe Cys Tyr Ala Ile Glu Val Phe 85 90 95Lys Pro Met Ala Asp Ala Ala Val Lys Ile Val Glu Lys Asn Gly Phe 100 105 110Ser Asp Lys Ile Lys Val Ile Asn Lys His Ser Thr Glu Val Thr Val 115 120 125Gly Pro Glu Gly Asp Met Pro Cys Arg Ala Asn Ile Leu Val Thr Glu 130 135 140Leu Phe Asp Thr Glu Leu Ile Gly Glu Gly Ala Leu Pro Ser Tyr Glu145 150 155 160His Ala His Arg His Leu Val Glu Glu Asn Cys Glu Ala Val Pro His 165 170 175Arg Ala Thr Val Tyr Ala Gln Leu Val Glu Ser Gly Arg Met Trp Ser 180 185 190Trp Asn Lys Leu Phe Pro Ile His Val Gln Thr Ser Leu Gly Glu Gln 195 200 205Val Ile Val Pro Pro Val Asp Val Glu Ser Cys Pro Gly Ala Pro Ser 210 215 220Val Cys Asp Ile Gln Leu Asn Gln Val Ser Pro Ala Asp Phe Thr Val225 230 235 240Leu Ser Asp Val Leu Pro Met Phe Ser Ile Asp Phe Ser Lys Gln Val 245 250 255Ser Ser Ser Ala Ala Cys His Ser Arg Arg Phe Glu Pro Leu Thr Ser 260 265 270Gly Arg Ala Gln Val Val Leu Ser Trp Trp Asp Ile Glu Met Asp Pro 275 280 285Glu Gly Lys Ile Lys Cys Thr Met Ala Pro Phe Trp Ala His Ser Asp 290 295 300Pro Glu Glu Met Gln Trp Arg Asp His Trp Met Gln Cys Val Tyr Phe305 310 315 320Leu Pro Gln Glu Glu Pro Val Val Gln Gly Ser Ala Leu Tyr Leu Val 325 330 335Ala His His Asp Asp Tyr Cys Val Trp Tyr Ser Leu Gln Arg Thr Ser 340 345 350Pro Glu Lys Asn Glu Arg Val Arg Gln Met Arg Pro Val Cys Asp Cys 355 360 365Gln Ala His Leu Leu Trp Asn Arg Pro Arg Phe Gly Glu Ile Asn Asp 370 375 380Gln Asp Arg Thr Asp Arg Tyr Val Gln Ala Leu Arg Thr Val Leu Lys385 390 395 400Pro Asp Ser Val Cys Leu Cys Val Ser Asp Gly Ser Leu Leu Ser Val 405 410 415Leu Ala His His Leu Gly Val Glu Gln Val Phe Thr Val Glu Ser Ser 420 425 430Ala Ala Ser His Lys Leu Leu Arg Lys Ile Phe Lys Ala Asn His Leu 435 440 445Glu Asp Lys Ile Asn Ile Ile Glu Lys Arg Pro Glu Leu Leu Thr Asn 450 455 460Glu Asp Leu Gln Gly Arg Lys Val Ser Leu Leu Leu Gly Glu Pro Phe465 470 475 480Phe Thr Thr Ser Leu Leu Pro Trp His Asn Leu Tyr Phe Trp Tyr Val 485 490 495Arg Thr Ala Val Asp Gln His Leu Gly Pro Gly Ala Met Val Met Pro 500 505 510Gln Ala Ala Ser Leu His Ala Val Val Val Glu Phe Arg Asp Leu Trp 515 520 525Arg Ile Arg Ser Pro Cys Gly Asp Cys Glu Gly Phe Asp Val His Ile 530 535 540Met Asp Asp Met Ile Lys Arg Ala Leu Asp Phe Arg Glu Ser Arg Glu545 550 555 560Ala Glu Pro His Pro Leu Trp Glu Tyr Pro Cys Arg Ser Leu Ser Glu 565 570 575Pro Trp Gln Ile Leu Thr Phe Asp Phe Gln Gln Pro Val Pro Leu Gln 580 585 590Pro Leu Cys Ala Glu Gly Thr Val Glu Leu Arg Arg Pro Gly Gln Ser 595 600 605His Ala Ala Val Leu Trp Met Glu Tyr His Leu Thr Pro Glu Cys Thr 610 615 620Leu Ser Thr Gly Leu Leu Glu Pro Ala Asp Pro Glu Gly Gly Cys Cys625 630 635 640Trp Asn Pro His Cys Lys Gln Ala Val Tyr Phe Phe Ser Pro Ala Pro 645 650 655Asp Pro Arg Ala Leu Leu Gly Gly Pro Arg Thr Val Ser Tyr Ala Val 660 665 670Glu Phe His Pro Asp Thr Gly Asp Ile Ile Met Glu Phe Arg His Ala 675 680 685Asp Thr Pro Asp 690111314DNAHomo sapiens 11cggggcggga gatttgaaaa gtccttggcc agggcgcggc gtggcagatt cagttgtttg 60cgggcggccg ggagagtagc agtgccttgg accccagctc tcctccccct ttctctctaa 120ggatggccca gaaggagaac tcctacccct ggccctacgg ccgacagacg gctccatctg 180gcctgagcac cctgccccag cgagtcctcc ggaaagagcc tgtcacccca tctgcacttg 240tcctcatgag ccgctccaat gtccagccca cagctgcccc tggccagaag gtgatggaga 300atagcagtgg gacacccgac atcttaacgc ggcacttcac aattgatgac tttgagattg 360ggcgtcctct gggcaaaggc aagtttggaa acgtgtactt ggctcgggag aagaaaagcc 420atttcatcgt ggcgctcaag gtcctcttca agtcccagat agagaaggag ggcgtggagc 480atcagctgcg cagagagatc gaaatccagg cccacctgca ccatcccaac atcctgcgtc 540tctacaacta tttttatgac cggaggagga tctacttgat tctagagtat gccccccgcg 600gggagctcta caaggagctg cagaagagct gcacatttga cgagcagcga acagccacga 660tcatggagga gttggcagat gctctaatgt actgccatgg gaagaaggtg attcacagag 720acataaagcc agaaaatctg ctcttagggc tcaagggaga gctgaagatt gctgacttcg 780gctggtctgt gcatgcgccc tccctgagga ggaagacaat gtgtggcacc ctggactacc 840tgcccccaga gatgattgag gggcgcatgc acaatgagaa ggtggatctg tggtgcattg 900gagtgctttg ctatgagctg ctggtgggga acccaccctt tgagagtgca tcacacaacg 960agacctatcg ccgcatcgtc aaggtggacc taaagttccc cgcttccgtg cccatgggag 1020cccaggacct catctccaaa ctgctcaggc ataacccctc ggaacggctg cccctggccc 1080aggtctcagc ccacccttgg gtccgggcca actctcggag ggtgctgcct ccctctgccc 1140ttcaatctgt cgcctgatgg tccctgtcat tcactcgggt gcgtgtgttt gtatgtctgt 1200gtatgtatag gggaaagaag ggatccctaa ctgttccctt atctgttttc tacctcctcc 1260tttgtttaat aaaggctgaa gctttttgta ctcatgaaaa aaaaaaaaaa aaaa 131412344PRTHomo sapiens 12Met Ala Gln Lys Glu Asn Ser Tyr Pro Trp Pro Tyr Gly Arg Gln Thr1 5 10 15Ala Pro Ser Gly Leu Ser Thr Leu Pro Gln Arg Val Leu Arg Lys Glu 20 25 30Pro Val Thr Pro Ser Ala Leu Val Leu Met Ser Arg Ser Asn Val Gln 35 40 45Pro Thr Ala Ala Pro Gly Gln Lys Val Met Glu Asn Ser Ser Gly Thr 50 55 60Pro Asp Ile Leu Thr Arg His Phe Thr Ile Asp Asp Phe Glu Ile Gly65 70 75 80Arg Pro Leu Gly Lys Gly Lys Phe Gly Asn Val Tyr Leu Ala Arg Glu 85 90 95Lys Lys Ser His Phe Ile Val Ala Leu Lys Val Leu Phe Lys Ser Gln 100 105 110Ile Glu Lys Glu Gly Val Glu His Gln Leu Arg Arg Glu Ile Glu Ile 115 120 125Gln Ala His Leu His His Pro Asn Ile Leu Arg Leu Tyr Asn Tyr Phe 130 135 140Tyr Asp Arg Arg Arg Ile Tyr Leu Ile Leu Glu Tyr Ala Pro Arg Gly145 150 155 160Glu Leu Tyr Lys Glu Leu Gln Lys Ser Cys Thr Phe Asp Glu Gln Arg 165 170 175Thr Ala Thr Ile Met Glu Glu Leu Ala Asp Ala Leu Met Tyr Cys His 180 185 190Gly Lys Lys Val Ile His Arg Asp Ile Lys Pro Glu Asn Leu Leu Leu 195 200 205Gly Leu Lys Gly Glu Leu Lys Ile Ala Asp Phe Gly Trp Ser Val His 210 215 220Ala Pro Ser Leu Arg Arg Lys Thr Met Cys Gly Thr Leu Asp Tyr Leu225 230 235 240Pro Pro Glu Met Ile Glu Gly Arg Met His Asn Glu Lys Val Asp Leu 245 250 255Trp Cys Ile Gly Val Leu Cys Tyr Glu Leu Leu Val Gly Asn Pro Pro 260 265 270Phe Glu Ser Ala Ser His Asn Glu Thr Tyr Arg Arg Ile Val Lys Val 275 280 285Asp Leu Lys Phe Pro Ala Ser Val Pro Met Gly Ala Gln Asp Leu Ile 290 295 300Ser Lys Leu Leu Arg His Asn Pro Ser Glu Arg Leu Pro Leu Ala Gln305 310 315 320Val Ser Ala His Pro Trp Val Arg Ala Asn Ser Arg Arg Val Leu Pro 325 330 335Pro Ser Ala Leu Gln Ser Val Ala 34013751PRTHomo sapiens 13Met Gly Gln Thr Gly Lys Lys Ser Glu Lys Gly Pro Val Cys Trp Arg1 5 10 15Lys Arg Val Lys Ser Glu Tyr Met Arg Leu Arg Gln Leu Lys Arg Phe 20 25 30Arg Arg Ala Asp Glu Val Lys Ser Met Phe Ser Ser Asn Arg Gln Lys 35 40 45Ile Leu Glu Arg Thr Glu Ile Leu Asn Gln Glu Trp Lys Gln Arg Arg 50 55 60Ile Gln Pro Val His Ile Leu Thr Ser Val Ser Ser Leu Arg Gly Thr65 70 75 80Arg Glu Cys Ser Val Thr Ser Asp Leu Asp Phe Pro Thr Gln Val Ile 85 90 95Pro Leu Lys Thr Leu Asn Ala Val Ala Ser Val Pro Ile Met Tyr Ser 100 105 110Trp Ser Pro Leu Gln Gln Asn Phe Met Val Glu Asp Glu Thr Val Leu 115 120 125His Asn

Ile Pro Tyr Met Gly Asp Glu Val Leu Asp Gln Asp Gly Thr 130 135 140Phe Ile Glu Glu Leu Ile Lys Asn Tyr Asp Gly Lys Val His Gly Asp145 150 155 160Arg Glu Cys Gly Phe Ile Asn Asp Glu Ile Phe Val Glu Leu Val Asn 165 170 175Ala Leu Gly Gln Tyr Asn Asp Asp Asp Asp Asp Asp Asp Gly Asp Asp 180 185 190Pro Glu Glu Arg Glu Glu Lys Gln Lys Asp Leu Glu Asp His Arg Asp 195 200 205Asp Lys Glu Ser Arg Pro Pro Arg Lys Phe Pro Ser Asp Lys Ile Phe 210 215 220Glu Ala Ile Ser Ser Met Phe Pro Asp Lys Gly Thr Ala Glu Glu Leu225 230 235 240Lys Glu Lys Tyr Lys Glu Leu Thr Glu Gln Gln Leu Pro Gly Ala Leu 245 250 255Pro Pro Glu Cys Thr Pro Asn Ile Asp Gly Pro Asn Ala Lys Ser Val 260 265 270Gln Arg Glu Gln Ser Leu His Ser Phe His Thr Leu Phe Cys Arg Arg 275 280 285Cys Phe Lys Tyr Asp Cys Phe Leu His Arg Lys Cys Asn Tyr Ser Phe 290 295 300His Ala Thr Pro Asn Thr Tyr Lys Arg Lys Asn Thr Glu Thr Ala Leu305 310 315 320Asp Asn Lys Pro Cys Gly Pro Gln Cys Tyr Gln His Leu Glu Gly Ala 325 330 335Lys Glu Phe Ala Ala Ala Leu Thr Ala Glu Arg Ile Lys Thr Pro Pro 340 345 350Lys Arg Pro Gly Gly Arg Arg Arg Gly Arg Leu Pro Asn Asn Ser Ser 355 360 365Arg Pro Ser Thr Pro Thr Ile Asn Val Leu Glu Ser Lys Asp Thr Asp 370 375 380Ser Asp Arg Glu Ala Gly Thr Glu Thr Gly Gly Glu Asn Asn Asp Lys385 390 395 400Glu Glu Glu Glu Lys Lys Asp Glu Thr Ser Ser Ser Ser Glu Ala Asn 405 410 415Ser Arg Cys Gln Thr Pro Ile Lys Met Lys Pro Asn Ile Glu Pro Pro 420 425 430Glu Asn Val Glu Trp Ser Gly Ala Glu Ala Ser Met Phe Arg Val Leu 435 440 445Ile Gly Thr Tyr Tyr Asp Asn Phe Cys Ala Ile Ala Arg Leu Ile Gly 450 455 460Thr Lys Thr Cys Arg Gln Val Tyr Glu Phe Arg Val Lys Glu Ser Ser465 470 475 480Ile Ile Ala Pro Ala Pro Ala Glu Asp Val Asp Thr Pro Pro Arg Lys 485 490 495Lys Lys Arg Lys His Arg Leu Trp Ala Ala His Cys Arg Lys Ile Gln 500 505 510Leu Lys Lys Asp Gly Ser Ser Asn His Val Tyr Asn Tyr Gln Pro Cys 515 520 525Asp His Pro Arg Gln Pro Cys Asp Ser Ser Cys Pro Cys Val Ile Ala 530 535 540Gln Asn Phe Cys Glu Lys Phe Cys Gln Cys Ser Ser Glu Cys Gln Asn545 550 555 560Arg Phe Pro Gly Cys Arg Cys Lys Ala Gln Cys Asn Thr Lys Gln Cys 565 570 575Pro Cys Tyr Leu Ala Val Arg Glu Cys Asp Pro Asp Leu Cys Leu Thr 580 585 590Cys Gly Ala Ala Asp His Trp Asp Ser Lys Asn Val Ser Cys Lys Asn 595 600 605Cys Ser Ile Gln Arg Gly Ser Lys Lys His Leu Leu Leu Ala Pro Ser 610 615 620Asp Val Ala Gly Trp Gly Ile Phe Ile Lys Asp Pro Val Gln Lys Asn625 630 635 640Glu Phe Ile Ser Glu Tyr Cys Gly Glu Ile Ile Ser Gln Asp Glu Ala 645 650 655Asp Arg Arg Gly Lys Val Tyr Asp Lys Tyr Met Cys Ser Phe Leu Phe 660 665 670Asn Leu Asn Asn Asp Phe Val Val Asp Ala Thr Arg Lys Gly Asn Lys 675 680 685Ile Arg Phe Ala Asn His Ser Val Asn Pro Asn Cys Tyr Ala Lys Val 690 695 700Met Met Val Asn Gly Asp His Arg Ile Gly Ile Phe Ala Lys Arg Ala705 710 715 720Ile Gln Thr Gly Glu Glu Leu Phe Phe Asp Tyr Arg Tyr Ser Gln Ala 725 730 735Asp Ala Leu Lys Tyr Val Gly Ile Glu Arg Glu Met Glu Ile Pro 740 745 750142765DNAHomo sapiens 14ctgggtttcc cgggagatcc caggcggtga cagagtggag ccatggctag aggcaggaag 60atgtccaagc cccgcgcggt ggaggcggcg gcggcggcgg cggcggtggc agcgacggcc 120ccgggcccgg agatggtgga gcggaggggc ccggggaggc cccgcaccga cggggagaac 180gtatttaccg ggcagtcaaa gatctattcc tacatgagcc cgaacaaatg ctctggaatg 240cgtttccccc ttcaggaaga gaactcagtt acacatcacg aagtcaaatg ccaggggaaa 300ccattagccg gaatctacag gaaacgagaa gagaaaagaa atgctgggaa cgcagtacgg 360agcgccatga agtccgagga acagaagatc aaagacgcca ggaaaggtcc cctggtacct 420tttccaaacc aaaaatctga agcagcagaa cctccaaaaa ctccaccctc atcttgtgat 480tccaccaatg cagccatcgc caagcaagcc ctgaaaaagc ccatcaaggg caaacaggcc 540ccccgaaaaa aagctcaagg aaaaacgcaa cagaatcgca aacttacgga tttctaccct 600gtccgaagga gctccaggaa gagcaaagcc gagctgcagt ctgaagaaag gaaaagaata 660gatgaattga ttgaaagtgg gaaggaagaa ggaatgaaga ttgacctcat cgatggcaaa 720ggcaggggtg tgattgccac caagcagttc tcccggggtg actttgtggt ggaataccac 780ggggacctca tcgagatcac cgacgccaag aaacgggagg ctctgtacgc acaggaccct 840tccacgggct gctacatgta ctattttcag tatctgagca aaacctactg cgtggatgca 900actagagaga caaatcgcct aggaagactg atcaatcaca gcaaatgtgg gaactgccaa 960accaaactgc acgacatcga cggcgtacct cacctcatcc tcatcgcctc ccgagacatc 1020gcggctgggg aggagctcct gtatgactat ggggaccgca gcaaggcttc cattgaagcc 1080cacccgtggc tgaagcatta accggtgggc cccgtgccct ccccgcccca ctttcccttc 1140ttcaaaggac aaagtgccct caaagggaat tgaatttttt ttttacacac ttaatcttag 1200cggattactt cagatgtttt taaaaagtat attaagatgc cttttcactg tagtatttaa 1260atatctgtta caggtttcca aggtggactt gaacagatgg ccttatatta ccaaaacttt 1320tatattctag ttgtttttgt actttttttg catacaagcc gaacgtttgt gcttcccgtg 1380catgcagtca aagactcagc acaggtttta gaggaaatag tcaaacatga actaggaagc 1440caggtgagtc tcctttctcc agtggaagag ccgggacctt ccccctgcac ccccgacatc 1500cagggacggg gtgtgaggaa gacgctgcct cccaatggcc tggacgggat gtttccaagc 1560tcttgttccc ctaacgtctc aacaggcgct cactgaagtg tatgaatatt ttttaaaaag 1620gtttttgcag taagctagtc ttcccctctg ctttctcgaa agcttactga gccctgggcc 1680ccaagcacgg gccgggcata gatttcctct tccacaagct gccgcttttc tgggcacctt 1740gaagcatcag ggcgtgaaat caaactagat gtgggcaggg agagggttgc ttacctgccc 1800tgctggggca gggtttcctg aaactgggtt aattctttat agaaatgtga acactgaatt 1860tattttaaaa aataataata aaaatttaaa aaaattaaaa ataaaaaaaa ccacagaaaa 1920caactttaca tgtatatagg tcttgaagtg agtgaagtgg ctgctttttt tttttttttt 1980ttttgctttt ttttgctttt tgtagaagag attgagaatg gtactctaat caaaaataaa 2040gttttgtagt gggaccagaa attacttacc tgacatccac ccccattccc cctcatcctg 2100ctggggttga aagttccaga cctgctgtcg aggccttgtg tttgtcagac acccagtgtc 2160ctcctgcaag gacgcaactg tgagctgagg tgtgagccta ggagcccagg acccctgacc 2220ccggccgctg ctgccagcct cagaaaggca cccaggtgtg caggggagca cacagggccc 2280ggcagccccc aggaatcaag gatagggcta aggttttcac cttaactgtg aaggcaggag 2340gaataggtga ctgcttcctc ccgcccttca cagaactgat tctcacacac tgtcccttca 2400gtccaggggg ccggggctca ggagccatga cctggtgtct cctgcccacc ctggtcccag 2460gtaaatgtga atggagacag gtatgagagg ctgtcctcgt ctttgattcc cccccaaccc 2520cacctcgggc ctcacgacgg tgctacctaa gaaagtcttc cctcccaccc cccgctagcc 2580tggtcagtgg tcagcaaatt ggaagaggat ccgatgggag tgtaaatgtg agacacaatg 2640tcttgattat acctgtttgt ggtttagctt tgtatttaaa caaggaaata aacttgaaaa 2700ttatttgtca tcataaaaat gaaacaaatt aaaatattta ttgccaggca aaaaaaaaaa 2760aaaaa 2765

* * * * *

References

Patent Diagrams and Documents
US20190192533A1 – US 20190192533 A1

uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed