Novel Vaccines Against Multiple Subtypes of Influenza Virus

Draghia-Akli; Ruxandra ;   et al.

Patent Application Summary

U.S. patent application number 16/051725 was filed with the patent office on 2018-11-22 for novel vaccines against multiple subtypes of influenza virus. The applicant listed for this patent is The Trustees of the University of Pennsylvania. Invention is credited to Ruxandra Draghia-Akli, Dominick Laddy, David B. Weiner, Jian Yan.

Application Number20180333480 16/051725
Document ID /
Family ID40718429
Filed Date2018-11-22

United States Patent Application 20180333480
Kind Code A1
Draghia-Akli; Ruxandra ;   et al. November 22, 2018

Novel Vaccines Against Multiple Subtypes of Influenza Virus

Abstract

An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.


Inventors: Draghia-Akli; Ruxandra; (Brussels, BE) ; Weiner; David B.; (Merion, PA) ; Yan; Jian; (Wallingford, PA) ; Laddy; Dominick; (Philadelphia, PA)
Applicant:
Name City State Country Type

The Trustees of the University of Pennsylvania

Philadelphia

PA

US
Family ID: 40718429
Appl. No.: 16/051725
Filed: August 1, 2018

Related U.S. Patent Documents

Application Number Filing Date Patent Number
15416604 Jan 26, 2017 10076565
16051725
12269824 Nov 12, 2008 9592285
15416604
60987284 Nov 12, 2007

Current U.S. Class: 1/1
Current CPC Class: A61K 47/34 20130101; C12N 2760/16034 20130101; A61K 2039/54 20130101; A61P 31/12 20180101; A61K 2039/58 20130101; A61K 39/145 20130101; A61K 38/208 20130101; A61P 31/16 20180101; A61K 2039/70 20130101; A61P 37/04 20180101; C12N 7/00 20130101; A61K 9/0019 20130101; A61K 38/2086 20130101; A61K 2300/00 20130101; C12N 2760/16122 20130101; A61K 38/2086 20130101; A61K 2300/00 20130101; A61K 39/12 20130101; C12N 2760/16134 20130101; C07K 14/005 20130101; A61K 2039/53 20130101; A61K 38/208 20130101
International Class: A61K 39/145 20060101 A61K039/145; C12N 7/00 20060101 C12N007/00; A61K 9/00 20060101 A61K009/00

Claims



1-53. (canceled)

54. A composition for inducing an immune response against influenza, comprising one or more nucleotide sequences selected from the group consisting of: a) a nucleotide sequence encoding a consensus neuraminidase (NA) antigen, and b) a nucleotide sequence encoding a consensus M2 ectodomain-nucleoprotein (M2e-NP) antigen .

55. The composition of claim 54, wherein the nucleotide sequence encoding the consensus NA antigen is selected from the group consisting of: a nucleotide sequence encoding SEQ ID NO: 4, a nucleotide sequence encoding an amino acid sequence having at least 90% homology to SEQ ID NO: 4, and a fragment of a nucleotide sequence encoding SEQ ID NO: 4. 56 (New) The composition of claim 54, wherein the nucleotide sequence encoding the consensus NA antigen encodes an amino acid sequence having at least 90% homology to SEQ ID NO: 4.

57. The composition of claim 54, wherein the nucleotide sequence encoding the consensus NA antigen encodes an amino acid sequence comprising SEQ ID NO: 4.

58. The composition of claim 54, wherein the nucleotide sequence encoding the consensus NA antigen is selected from the group consisting of: a nucleotide sequence comprising SEQ ID NO: 3, a nucleotide sequence having at least 90% homology to SEQ ID NO: 3, and a fragment of a nucleotide sequence comprising SEQ ID NO: 3.

59. The composition of claim 54, wherein the nucleotide sequence encoding the consensus NA antigen comprises a nucleotide sequence having at least 90% homology to SEQ ID NO: 3.

60. The composition of claim 54, wherein the nucleotide sequence encoding the consensus NA antigen comprises SEQ ID NO:3.

61. The composition of claim 54, wherein the nucleotide sequence encoding the consensus M2e-NP antigen is selected from the group consisting of: a nucleotide sequence encoding SEQ ID NO: 8, a nucleotide sequence encoding an amino acid sequence having at least 90% homology to SEQ ID NO: 8, and a fragment of a nucleotide sequence encoding SEQ ID NO: 8.

62. The composition of claim 54, wherein the nucleotide sequence encoding the consensus M2e-NP antigen encodes an amino acid sequence having at least 90% homology to SEQ ID NO: 8.

63. The composition of claim 54, wherein the nucleotide sequence encoding the consensus M2e-NP antigen encodes an amino acid sequence comprising SEQ ID NO: 8.

64. The composition of claim 54, wherein the nucleotide sequence encoding the consensus M2e-NP antigen is selected from the group consisting of: a nucleotide sequence comprising SEQ ID NO: 7, a nucleotide sequence having at least 90% homology to SEQ ID NO: 7, and a fragment of a nucleotide sequence comprising SEQ ID NO: 7.

65. The composition of claim 54, wherein the nucleotide sequence encoding the consensus M2e-NP antigen comprises a nucleotide sequence having at least 90% homology to SEQ ID NO: 7.

66. The composition of claim 54, wherein the nucleotide sequence encoding the consensus M2e-NP antigen comprises SEQ ID NO: 7.

67. The composition of claim 54, further comprising one or more nucleotide sequences encoding one or more consensus influenza antigens selected from the group consisting of: consensus H1, consensus H3, and consensus H5.

68. The composition of claim 54, wherein the composition comprises a DNA plasmid comprising the one or more nucleotide sequences.

69. The composition of claim 68, wherein the DNA plasmid comprises a promoter operably linked to the one or more nucleotide sequences.

70. The composition of claim 54, comprising a plurality of different DNA plasmids; Wherein one of the plurality of DNA plasmids comprises the nucleotide sequence that encodes the consensus NA, one of the plurality of DNA plasmids comprises the nucleotide sequence that encodes the consensus M2e-NP, and one of the plurality of DNA plasmids comprises a nucleotide sequence that encodes a consensus hemagglutinin (HA) antigen.

71. A method of eliciting an immune response against influenza comprising administering to a subject a composition comprising one or more nucleotide sequences selected from the group consisting of: a) a nucleotide sequence encoding a consensus neuraminidase (NA) antigen, and b) a nucleotide sequence encoding a consensus M2 ectodomain-nucleoprotein (M2e-NP) antigen.

72. The method of claim 71, further comprising electroporating cells of the subject with a pulse of energy at a constant current effective to permit entry of the composition in the cells.

73. The method of claim 71, wherein the administering step comprises injecting the composition intradermally, subcutaneously, or intramuscularly.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 60/987,284, filed Nov. 12, 1997, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to improved influenza vaccines, improved methods for inducing immune responses, and for prophylactically and/or therapeutically immunizing individuals against influenza.

BACKGROUND

[0003] The use of nucleic acid sequences to vaccinate against animal and human diseases has been studied. Studies have focused on effective and efficient means of delivery in order to yield necessary expression of the desired antigens, resulting immunogenic response and ultimately the success of this technique. One method for delivering nucleic acid sequences such as plasmid DNA is the electroporation (EP) technique. The technique has been used in human clinical trials to deliver anti-cancer drugs, such as bleomycin, and in many preclinical studies on a large number of animal species.

[0004] The influenza virus genome is contained on eight single (non-paired) RNA strands that code for eleven proteins (HA, NA, NP, M1, M2, NS1, NEP, PA, PB1, PB1-F2, PB2). The segmented nature of the genome allows for the exchange of entire genes between different viral strains during cellular cohabitation. The eight RNA segments are: HA, which encodes hemagglutinin (about 500 molecules of hemagglutinin are needed to make one virion); NA, which encodes neuraminidase (about 100 molecules of neuraminidase are needed to make one virion); NP, which encodes nucleoprotein; M, which encodes two matrix proteins (the M1 and the M2) by using different reading frames from the same RNA segment (about 3000 matrix protein molecules are needed to make one virion); NS, which encodes two distinct non-structural proteins (NS1 and NEP) by using different reading frames from the same RNA segment; PA, which encodes an RNA polymerase; PB1, which encodes an RNA polymerase and PB1-F2 protein (induces apoptosis) by using different reading frames from the same RNA segment; and PB2, which encodes an RNA polymerase.

[0005] Influenza hemagglutinin (HA) is expressed on the surface of influenza viral particles and is responsible for initial contact between the virus and its host cell. HA is a well-known immunogen. Influenza A strain H5N1, an avian influenza strain, particularly threatens the human population because of its HA protein (H5) which, if slightly genetically reassorted by natural mutation, has greatly increased infectivity of human cells as compared to other strains of the virus. Infection of infants and older or immunocompromised adult humans with the viral H5N1 strain is often correlated to poor clinical outcome. Therefore, protection against the H5N1 strain of influenza is a great need for the public.

[0006] There are two classes of anti-influenza agents available, inhibitors of influenza A cell entry/uncoating (such as antivirals amantadine and rimantadine) and neuraminidase inhibitors (such as antivirals oseltamivir, zanamivir). These antiviral agents inhibit the cellular release of both influenza A and B. Concerns over the use of these agents have been reported due to findings of strains of virus resistant to these agents.

[0007] Influenza vaccines are a popular seasonal vaccine and many people have experienced such vaccinations. However, the vaccinations are limited in their protective results because the vaccines are specific for certain subtypes of virus. The Centers for Disease Control and Prevention promote vaccination with a "flu shot" that is a vaccine that contains three influenza viruses (killed viruses): one A (H3N2) virus, one A (H1N1) virus, and one B virus. They also report that the viruses in the vaccine change each year based on international surveillance and scientists' estimations about which types and strains of viruses will circulate in a given year. Thus, it is apparent that vaccinations are limited to predictions of subtypes, and the availability of a specific vaccine to that subtype.

[0008] There still remains a need for effective influenza vaccines that are economical and effective across numerous subtypes. Further, there remains a need for an effective method of administering DNA vaccines to a mammal in order to provide immunization against influenza either prophylatically or therapeutically.

SUMMARY OF THE INVENTION

[0009] One aspect of the present invention relates to a DNA plasmid vaccine capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Preferably, the DNA plasmid vaccine is one having a concentration of total DNA plasmid of 1 mg/ml or greater.

[0010] Another aspect of the present invention relates to DNA plasmids capable of expressing a consensus influenza antigen in a cell of the mammal, the consensus influenza antigen comprising consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen.

[0011] Another aspect of the present invention relates to methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal. The methods include delivering a DNA plasmid vaccine to tissue of the mammal, the DNA plasmid vaccine comprising a DNA plasmid capable of expressing a consensus influenza antigen in a cell of the mammal to elicit an immune response in the mammal, the consensus influenza antigen comprising consensus HA, NA, M2e-NP or a combination thereof, and electroporating cells of the tissue with a pulse of energy at a constant current effective to permit entry of the DNA plasmids in the cells.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The numerous objects and advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures, in which:

[0013] FIG. 1 displays a schematic representation (plasmid maps) of the DNA plasmid constructs used in the studies described herein. Consensus HA, NA and M2e-NP constructs were generated by analyzing primary virus sequences from 16 H5 viruses that have proven fatal to humans in recent years, and over 40 human N1 viruses (Los Alamos National Laboratory's Influenza Sequence Database). After generating the consensus sequences, the constructs were optimized for mammalian expression, including the addition of a Kozak sequence, codon optimization, and RNA optimization. These constructs were then subcloned into the pVAX vector (Invitrogen, Carlsbad, CA). Plasmids pGX2001 (consensus HA), pGX2002 (consensus NA), pGX2003 (consensus M2e-NP) are shown. The plasmid pCMVSEAP, displayed, encodes the reporter protein secreted embryonic alkaline phosphatase (SEAP).

[0014] FIG. 2 displays a bar graph of the results of the HI titers in pig serum at Day 35 post-injection. The highest titers were found in the group administered 2 mg of HA-expressing plasmid at a current setting of 0.5 A (120.+-.40; *P=0.11 versus 2 mg/0.3 A and *P=0.02 versus 2 mg/0.1 A). The three groups administered descending doses of plasmid and electroporated at 0.5 A also demonstrated decreasing HI titers.

[0015] FIG. 3 displays a bar graph of the IFN-.gamma. ELISpot counts. The counts were highest in pigs administered 2 mg of HA and 2 mg of NA plasmid vaccine (for a total of 4 mg plasmid) and electroporated with 0.3 A of current (2000 spots) and in the group administered 0.8 mg of HA and 0.8 mg of NA plasmid vaccine (for a total of 1.6 mg plasmid) electroporated with 0.5 A of current (934 spots). For comparison purposes, the cellular immune responses of an unimmunized control group are depicted.

[0016] FIGS. 4A and 4B display bar graphs showing results from muscle biopsies from treated pigs at Day 14 and Day 35: FIG. 4A displays a bar graph showing the mean pathology scores for all groups. FIG. 4B displays a bar graph showing the muscle necrosis and fibrosis scores. The group injected with 6 mg total plasmid and electroporated at 0.5 A exhibited the highest mean pathology score (*P<0.0002 as compared to controls). The pathology scores were significantly reduced by Day 35 compared to Day 14 in all groups (P<0.05) except for the 0.3 mg/0.3 A group (P=0.057) and 2.4 mg/ 0.1 A group (P=1.0).

[0017] FIG. 5 displays the percent change in weight of ferrets after challenge with H5N1 virus (A/Viet/1203/2004(H5N1)/PR8-IBCDC-RG). Ferrets that were vaccinated with HA, HA+M2e-NP or HA+M2e-NP+NA lost significantly less weight than control animals (*P<0.005 versus controls) in the 9 days post-challenge period. One animal in the HA vaccine group actually gained weight post-challenge.

[0018] FIG. 6 displays a graph showing the body temperatures of ferrets during the 9 days post-challenge. Control animals showed higher body temperatures than the vaccinated animals. The body temperature on day 5 is not depicted as it was measured at a different time of day and all the temperatures regardless of group were lower.

[0019] FIG. 7 displays a bar graph of results from HI titers in ferrets after vaccination; the assay was performed using reassortant viruses obtained from the Center for Disease Control: A/Viet/1203/04 or Indo/05/2005 influenza strains.

[0020] FIG. 8 displays a bar graph of results from HI titers measured three weeks after the second immunization. Macaques immunized ID followed by EP showed significantly higher HI titers than all other groups (P<0.03). Non-treated controls did not exhibit any HI titers.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0021] The following abbreviated, or shortened, definitions are given to help the understanding of the preferred embodiments of the present invention. The abbreviated definitions given here are by no means exhaustive nor are they contradictory to the definitions as understood in the field or dictionary meaning. The abbreviated definitions are given here to supplement or more clearly define the definitions known in the art.

Definitions

[0022] Sequence homology for nucleotides and amino acids as used herein may be determined using FASTA, BLAST and Gapped BLAST (Altschul et al., Nuc. Acids Res., 1997, 25, 3389, which is incorporated herein by reference in its entirety) and PAUP* 4.0b10 software (D. L. Swofford, Sinauer Associates, Massachusetts). Briefly, the BLAST algorithm, which stands for Basic Local Alignment Search Tool is suitable for determining sequence similarity (Altschul et al., J. Mol. Biol., 1990, 215, 403-410, which is incorporated herein by reference in its entirety). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide sequences would occur by chance. For example, a nucleic acid is considered similar to another if the smallest sum probability in comparison of the test nucleic acid to the other nucleic acid is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001. "Percentage of similarity" can be calculated using PAUP*4.0b10 software (D. L. Swofford, Sinauer Associates, Massachusetts). The average similarity of the consensus sequence is calculated compared to all sequences in the phylogenic tree.

[0023] As used herein, the term "genetic construct" or "nucleic acid construct" is used interchangeably and refers to the DNA or RNA molecules that comprise a nucleotide sequence which encodes protein. The coding sequence, or "encoding nucleic acid sequence," includes initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal capable of directing expression in the cells of the individual to whom the nucleic acid molecule is administered.

[0024] As used herein, the term "expressible form" refers to nucleic acid constructs that contain the necessary regulatory elements operable linked to a coding sequence that encodes a protein such that when present in the cell of the individual, the coding sequence will be expressed.

[0025] The term "constant current" is used herein to define a current that is received or experienced by a tissue, or cells defining said tissue, over the duration of an electrical pulse delivered to same tissue. The electrical pulse is delivered from the electroporation devices described herein. This current remains at a constant amperage in said tissue over the life of an electrical pulse because the electroporation device provided herein has a feedback element, preferably having instantaneous feedback. The feedback element can measure the resistance of the tissue (or cells) throughout the duration of the pulse and cause the electroporation device to alter its electrical energy output (e.g., increase voltage) so current in same tissue remains constant throughout the electrical pulse (on the order of microseconds), and from pulse to pulse. In some embodiments, the feedback element comprises a controller.

[0026] The term "feedback" or "current feedback" is used interchangeably and means the active response of the provided electroporation devices, which comprises measuring the current in tissue between electrodes and altering the energy output delivered by the EP device accordingly in order to maintain the current at a constant level. This constant level is preset by a user prior to initiation of a pulse sequence or electrical treatment. Preferably, the feedback is accomplished by the electroporation component, e.g., controller, of the electroporation device, as the electrical circuit therein is able to continuously monitor the current in tissue between electrodes and compare that monitored current (or current within tissue) to a preset current and continuously make energy-output adjustments to maintain the monitored current at preset levels. In some embodiments, the feedback loop is instantaneous as it is an analog closed-loop feedback.

[0027] The terms "electroporation," "electro-permeabilization," or "electro-kinetic enhancement" ("EP") as used interchangeably herein refer to the use of a transmembrane electric field pulse to induce microscopic pathways (pores) in a bio-membrane; their presence allows biomolecules such as plasmids, oligonucleotides, siRNA, drugs, ions, and water to pass from one side of the cellular membrane to the other.

[0028] The term "decentralized current" is used herein to define the pattern of electrical currents delivered from the various needle electrode arrays of the electroporation devices described herein, wherein the patterns minimize, or preferably eliminate, the occurrence of electroporation related heat stress on any area of tissue being electroporated.

[0029] The term "feedback mechanism" as used herein refers to a process performed by either software or hardware (or firmware), which process receives and compares the impedance of the desired tissue (before, during, and/or after the delivery of pulse of energy) with a present value, preferably current, and adjusts the pulse of energy delivered to achieve the preset value. The term "impedance" is used herein when discussing the feedback mechanism and can be converted to a current value according to Ohm's law, thus enabling comparisons with the preset current. In a preferred embodiment, the "feedback mechanism" is performed by an analog closed loop circuit.

[0030] The term "immune response" is used herein to mean the activation of a host's immune system, e.g., that of a mammal, in response to the introduction of influenza consensus antigen via the provided DNA plasmid vaccines. The immune response can be in the form of a cellular or humoral response, or both.

[0031] The term "consensus" or "consensus sequence" is used herein to mean a synthetic nucleic acid sequence, or corresponding polypeptide sequence, constructed based on analysis of an alignment of multiple subtypes of a particular influenza antigen, that can be used to induce broad immunity against multiple subtypes or serotypes of a particular influenza antigen. Consensus influenza antigens include HA, including consensus H1, H2, H3, or H5, NA, NP, matrix protein, and nonstructural protein. Also, synthetic antigens such as fusion proteins, e.g., M2e-NP, can be manipulated to consensus sequences (or consensus antigens).

[0032] The term "adjuvant" is used herein to mean any molecule added to the DNA plasmid vaccines described herein to enhance antigenicity of the influenza antigen encoded by the DNA plasmids and encoding nucleic acid sequences described hereinafter.

[0033] The term "subtype" or "serotype" is used herein interchangeably and in reference to influenza viruses, and means genetic variants of an influenza virus antigen such that one subtype is recognized by an immune system apart from a different subtype (or, in other words, each subtype is different in antigenic character from a different subtype).

[0034] In some embodiments, there are DNA plasmids capable of expressing a consensus influenza antigen in a cell of the mammal, the consensus influenza antigen comprising consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen.

[0035] In some embodiments, the present invention provides DNA plasmid vaccines that are capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, the DNA plasmid vaccines comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. In some embodiments, the DNA plasmid vaccine is one having a concentration of total DNA plasmid of 1 mg/ml or greater. The immune response can be a cellular or humoral response, or both; preferably, the immune response is both cellular and humoral.

[0036] In some embodiments, the DNA plasmid can further include an IgG leader sequence attached to an N-terminal end of the coding sequence and operably linked to the promoter. In addition, in some embodiments, the DNA plasmid can further include a polyadenylation sequence attached to the C-terminal end of the coding sequence. In some embodiments, the DNA plasmid is codon optimized.

[0037] In some embodiments of the present invention, the DNA plasmid vaccines can further include an adjuvant. In some embodiments, the adjuvant is selected from the group consisting of: alpha-interferon, gamma-interferon, platelet derived growth factor (PDGF), TNF.alpha., TNF.beta., GM-CSF, epidermal growth factor (EGF), cutaneous T cell-attracting chemokine (CTACK), epithelial thymus-expressed chemokine (TECK), mucosae-associated epithelial chemokine (MEC), IL-12, IL-15, MHC, CD80,CD86 including IL-15 having the signal sequence deleted and optionally including the signal peptide from IgE. Other genes which may be useful adjuvants include those encoding: MCP-1, MIP-1a, MIP-1p, IL-8, RANTES, L-selectin, P-selectin, E-selectin, CD34, GlyCAM-1, MadCAM-1, LFA-1, VLA-1, Mac-1, p150.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF, G-CSF, IL-4, mutant forms of IL-18, CD40, CD40L, vascular growth factor, fibroblast growth factor, IL-7, nerve growth factor, vascular endothelial growth factor, Fas, TNF receptor, Flt, Apo-1, p55, WSL-1, DR3, TRAMP, Apo-3, AIR, LARD, NGRF, DR4, DRS, KILLER, TRAIL-R2, TRICK2, DR6, Caspase ICE, Fos, c-jun, Sp-1, Ap-1, Ap-2, p38, p65Rel, MyD88, IRAK, TRAF6, IkB, Inactive NIK, SAP K, SAP-1, .INK, interferon response genes, NFkB, Bax, TRAIL, TRAILrec, TRAILrecDRC5, TRAIL-R3, TRAIL-R4, RANK, RANK LIGAND, Ox40, Ox40 LIGAND, NKG2D, MICA, MICB, NKG2A, NKG2B, NKG2C, NKG2E, NKG2F, TAP1, TAP2 and functional fragments thereof. In some preferred embodiments, the adjuvant is selected from IL-12, IL-15, CTACK, TECK, or MEC.

[0038] In some embodiments, the pharmaceutically acceptable excipient is a transfection facilitating agent, which can include the following: surface active agents, such as immune-stimulating complexes (ISCOMS), Freunds incomplete adjuvant, LPS analog including monophosphoryl lipid A, muramyl peptides, quinone analogs, vesicles such as squalene and squalene, hyaluronic acid, lipids, liposomes, calcium ions, viral proteins, polyanions, polycations, or nanoparticles, or other known transfection facilitating agents. Preferably, the transfection facilitating agent is a polyanion, polycation, including poly-L-glutamate (LGS), or lipid. Preferably, the transfection facilitating agent is poly-L-glutamate, and more preferably, the poly-L-glutamate is present in the DNA plasmid vaccine at a concentration less than 6 mg/ml. In some embodiments, the concentration of poly-L-glutamate in the DNA plasmid vaccine is less than 4 mg/ml, less than 2 mg/ml, less than 1 mg/ml, less than 0.750 mg/ml, less than 0.500 mg/ml, less than 0.250 mg/ml, less than 0.100 mg/ml, less than 0.050 mg/ml, or less than 0.010 mg/ml.

[0039] In some embodiments, the DNA plasmid vaccine can include a plurality of different DNA plasmids. In some examples, the different DNA plasmids include a DNA plasmid comprising a nucleic acid sequence that encodes a consensus HA, a DNA plasmid comprising a sequence that encodes a consensus NA, and a DNA plasmid comprising a sequence that encodes a consensus M2e-NP. In some embodiments, the consensus HA is a consensus H1, consensus H2, consensus H3, or consensus H5. Preferably, the consensus HA is nucleotide sequence that is SEQ ID NO:1 (H5N1 HA consensus DNA), SEQ ID NO:9 (consensus H1 DNA), SEQ ID NO: 11 (consensus H3 DNA), or SEQ ID NO:13 (consensus H5). The consensus HA can also be a nucleotide sequence encoding a polypeptide of the sequence SEQ ID NO: 2, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO:14. In some embodiments, the consensus NA is a nucleotide sequence that is SEQ ID NO: 3, or a nucleotide sequence encoding a polypeptide of the sequence SEQ ID NO: 4. In some embodiments, the consensus M2e-NP is a nucleotide sequence that is SEQ ID NO:7, or a nucleotide sequence encoding a polypeptide of the sequence SEQ ID NO:8. In one preferred embodiment, the DNA plasmid vaccine includes a DNA plasmid comprising a sequence that encodes a consensus H1, a DNA plasmid comprising a sequence that encodes a consensus H2, a DNA plasmid comprising a sequence that encodes a consensus H3, a DNA plasmid comprising a sequence that encodes a consensus H5, a DNA plasmid comprising a sequence that encodes a consensus NA, and a DNA plasmid comprising a sequence that encodes a consensus M2e-NP.

[0040] In some embodiments, the DNA plasmid vaccine can include a plurality of different DNA plasmids, including at least one DNA plasmid that can express consensus influenza antigens and at least one that can express one influenza subtype antigen. In some examples, the different DNA plasmids that express consensus antigen include a DNA plasmid comprising a nucleic acid sequence that encodes a consensus HA, a DNA plasmid comprising a sequence that encodes a consensus NA, and a DNA plasmid comprising a sequence that encodes a consensus M2e-NP. In some embodiments, the DNA plasmid vaccine comprises a DNA plasmid that can express a consensus HA antigen, e.g., consensus H1, H3 or H5, and a DNA plasmid that can express any one of the following influenza A antigens: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, NP, M1, M2, NS1, or NEP, or a combination thereof. In some embodiments, the DNA plasmid vaccine comprises a DNA plasmid that can express a consensus NA antigen and a DNA plasmid that can express any one of the following influenza A antigens: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, NP, M1, M2, NS1, or NEP, or a combination thereof. In some embodiments, the DNA plasmid vaccine comprises a DNA plasmid that can express a consensus M2e-NP and a DNA plasmid that can express any one of the following influenza A antigens: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, N1, N2, N3, N4, N5, N6, N7, N8, N9, NP, M1, M2, NS1, or NEP, or a combination thereof.

[0041] In some embodiments, the DNA plasmid vaccine can be delivered to a mammal to elicit an immune response; preferably the mammal is a primate, including human and nonhuman primate, a cow, pig, chicken, dog, or ferret. More preferably, the mammal is a human primate.

[0042] One aspect of the present invention relates to methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal. The methods include delivering a DNA plasmid vaccine to tissue of the mammal, the DNA plasmid vaccine comprising a DNA plasmid capable of expressing a consensus influenza antigen in a cell of the mammal to elicit an immune response in the mammal, the consensus influenza antigen comprising consensus HA, NA, M2e-NP or a combination thereof, and electroporating cells of the tissue with a pulse of energy at a constant current effective to permit entry of the DNA plasmids in the cells.

[0043] In some embodiments, the methods of the present invention include the delivering step, which comprises injecting the DNA plasmid vaccine into intradermic, subcutaneous or muscle tissue. Preferably, these methods include using an in vivo electroporation device to preset a current that is desired to be delivered to the tissue; and electroporating cells of the tissue with a pulse of energy at a constant current that equals the preset current. In some embodiments, the electroporating step further comprises: measuring the impedance in the electroporated cells; adjusting energy level of the pulse of energy relative to the measured impedance to maintain a constant current in the electroporated cells; wherein the measuring and adjusting steps occur within a lifetime of the pulse of energy.

[0044] In some embodiments, the electroporating step comprises delivering the pulse of energy to a plurality of electrodes according to a pulse sequence pattern that delivers the pulse of energy in a decentralized pattern.

[0045] In some embodiments, the DNA plasmid influenza vaccines of the invention comprise nucleotide sequences that encode a consensus HA, or a consensus HA and a nucleic acid sequence encoding influenza proteins selected from the group consisting of: SEQ ID NOS: 4, 6, and 8. SEQ ID NOS:1 and 13 comprise the nucleic acid sequence that encodes consensus H5N1 HA and H5 of influenza virus, respectively. SEQ ID NOS:2 and 14 comprise the amino acid sequence for H5N1 HA and H5 of influenza virus, respectively. In some embodiments of the invention, the vaccines of the invention comprise SEQ ID NO:3 or SEQ ID NO:4. SEQ ID NO:3 comprises the nucleic acid sequence that encodes influenza H1N1 and H5N1 (H1N1/H5N1) NA consensus sequences. SEQ ID NO:4 comprises the amino acid sequence for influenza H1N1/H5N1 NA consensus sequences. In some embodiments of the invention, the vaccines of the invention comprise SEQ ID NO:5 or SEQ ID NO:6. SEQ ID NO:5 comprises the nucleic acid sequence that encodes influenza H1N1/H5N1 M1 consensus sequences. SEQ ID NO:6 comprises the amino acid sequence for influenza H1N1/H5N1 M1 consensus sequences. In some embodiments of the invention, the vaccines of the invention comprise SEQ ID NO:7 or SEQ ID NO:8. SEQ ID NO:7 comprises the nucleic acid sequence that encodes influenza H5N1 M2E-NP consensus sequence. SEQ ID NO:8 comprises the amino acid sequence for influenza H5N1 M2E-NP consensus sequence. In some embodiments of the invention, the vaccines of the invention comprise SEQ ID NO:9 or SEQ ID NO:10. SEQ ID NO:9 comprises the nucleic acid sequence that encodes influenza H1N1 HA consensus sequences. SEQ ID NO:4 comprises the amino acid sequence for influenza H1N1 HA consensus sequences. In some embodiments of the invention, the vaccines of the invention comprise SEQ ID NO:11 or SEQ ID NO:12. SEQ ID NO:11 comprises the nucleic acid sequence that encodes influenza H3N1 HA consensus sequences. SEQ ID NO:12 comprises the amino acid sequence for influenza H3N1 HA consensus sequences. The consensus sequence for influenza virus strain H5N1 HA includes the immunodominant epitope set forth in SEQ ID NO:1 or SEQ ID NO:13. The influenza virus H5N1 HA amino acid sequence encoded by SEQ ID NO:1 is SEQ ID NO:2, and that encoded by SEQ ID NO:13 is SEQ ID NO:14. The consensus sequence for influenza virus H1N1/H5N1 NA includes the immunodominant epitope set forth in SEQ ID NO:3. The influenza virus strains H1N1/H5N1 NA amino acid sequence encoded by SEQ ID NO:3 is SEQ ID NO:4. The consensus sequence for influenza virus strains H1N1/H5N1 M1 includes the immunodominant epitope set forth in SEQ ID NO:5. The influenza virus H1N1/H5N1 M1 amino acid sequence encoded by SEQ ID NO:5 is SEQ ID NO:6. The consensus sequence for influenza virus H5N1 M2E-NP includes the immunodominant epitope set forth in SEQ ID NO:7. The influenza virus H5N1 M2E-NP amino acid sequence encoded by SEQ ID NO:7 is SEQ ID NO:8. Vaccines of the present invention may include protein products encoded by the nucleic acid molecules defined above or any fragments of proteins.

[0046] The present invention also comprises DNA fragments that encode a polypeptide capable of eliciting an immune response in a mammal substantially similar to that of the non-fragment for at least one influenza subtype. The DNA fragments are fragments selected from at least one of the various encoding nucleotide sequences of the present invention, including SEQ ID NOS:1, 3, 5, 7, 9, 11, and 13, and can be any of the following described DNA fragments, as it applies to the specific encoding nucleic acid sequence provided herein. In some embodiments, DNA fragments can comprise 30 or more, 45 or more, 60 or more, 75 or more, 90 or more, 120 or more, 150 or more, 180 or more, 210 or more, 240 or more, 270 or more, 300 or more, 360 or more, 420 or more, 480 or more, 540 or more, 600 or more, 660 or more, 720 or more, 780 or more, 840 or more, 900 or more, 960 or more, 1020 or more, 1080 or more, 1140 or more, 1200 or more, 1260 or more, 1320 or more, 1380 or more, 1440 or more, 1500 or more, 1560 or more, 1620 or more, 1680 or more, or 1740 or more nucleotides. In some embodiments, DNA fragments can comprise coding sequences for the immunoglobulin E (IgE) leader sequences. In some embodiments, DNA fragments can comprise fewer than 60, fewer than 75, fewer than 90, fewer than 120, fewer than 150, fewer than 180, fewer than 210, fewer than 240, fewer than 270, fewer than 300, fewer than 360, fewer than 420, fewer than 480, fewer than 540, fewer than 600, fewer than 660, fewer than 720, fewer than 780, fewer than 840, fewer than 900, fewer than 960, fewer than 1020, fewer than 1080, fewer than 1140, fewer than 1200, fewer than 1260, fewer than 1320, fewer than 1380, fewer than 1440, fewer than 1500, fewer than 1560, fewer than 1620, fewer than 1680, or fewer than 1740 nucleotides. Preferably, the DNA fragments are fragments of SEQ ID NOS:1, 3, 7, 9, 11 or 13, and more preferably fragments of SEQ ID NOS:1, 5, 9, 11, or 13, and even more preferably fragments of SEQ ID NOS:1, 9, or 13.

[0047] The present invention also comprises polypeptide fragments that are capable of eliciting an immune response in a mammal substantially similar to that of the non-fragment for at least one influenza subtype. The polypeptide fragments are selected from at least one of the various polypeptide sequences of the present invention, including SEQ ID NOS:2, 4, 6, 8, 10, 12, and 14, and can be any of the following described polypeptide fragments, as it applies to the specific polypeptide sequence provided herein. In some embodiments, polypeptide fragments can comprise 15 or more, 30 or more, 45 or more, 60 or more, 75 or more, 90 or more, 105 or more, 120 or more, 150 or more, 180 or more, 210 or more, 240 or more, 270 or more, 300 or more, 360 or more, 420 or more, 480 or more, 540 or more, or 565 or more amino acids. In some embodiments, polypeptide fragments can comprise fewer than 30, fewer than 45, fewer than 60, fewer than 75, fewer than 90, fewer than 120, fewer than 150, fewer than 180, fewer than 210, fewer than 240, fewer than 270, fewer than 300, fewer than 360, fewer than 420, fewer than 480, fewer than 540, or fewer than 565 amino acids. Preferably, the polypeptide fragments are fragments of SEQ ID NOS:2, 4, 8, 10, 12, or 14, and more preferably fragments of SEQ ID NOS:2, 6, 10, 12, or 14, and even more preferably fragments of SEQ ID NOS:2, 10, or 14.

[0048] The determination of a fragment eliciting an immune response in a mammal substantially similar to that of the non-fragment for at least one influenza subtype can be readily determined by one of ordinary skill. The fragment can be analyzed to contain at least one, preferably more, antigenic epitopes as provided by a publicly available database, such as the Los Alamos National Laboratory's Influenza Sequence Database. In addition, immune response studies can be routinely assessed using mice and HI titers and ELISpots analysis, such as that shown in the Examples below.

[0049] According to some embodiments of the invention, methods of inducing or eliciting an immune response in mammals against a plurality of influenza viruses comprise administering to the mammals: a) the influenza strain H5N1 consensus HA protein, functional fragments thereof, or expressible coding sequences thereof; and b) one or more isolated encoding nucleic acid molecules provided herein, protein encoded by such nucleic acid molecules, or fragments thereof.

[0050] According to some embodiments of the invention, methods of inducing or eliciting an immune response in mammals against a plurality of influenza viruses comprise administering to the mammals: a) the influenza strain H1N1 and influenza strain H5N1 consensus NA protein, functional fragments thereof, or expressible coding sequences thereof and b) one or more isolated encoding nucleic acid molecules provided herein, protein encoded by such nucleic acid molecules, or fragments thereof.

[0051] According to some embodiments of the invention, methods of inducing or eliciting an immune response in mammals against a plurality of influenza viruses comprise administering to the mammals: a) the influenza strain H1N1 and influenza strain H5N1 consensus M1 protein, functional fragments thereof, or expressible coding sequences thereof and b) one or more isolated encoding nucleic acid molecules provided herein, protein encoded by such nucleic acid molecules, or fragments thereof.

[0052] According to some embodiments of the invention, methods of inducing or eliciting an immune response in mammals against a plurality of influenza viruses comprise administering to the mammals: a) the influenza strain H5N1 M2E-NP consensus protein, functional fragments thereof, or expressible coding sequences thereof and b) one or more isolated encoding nucleic acid molecules provided herein, protein encoded by such nucleic acid molecules, or fragments thereof.

[0053] According to some embodiments of the invention, methods of inducing or eliciting an immune response in mammals against a plurality of influenza viruses comprise administering to the mammals: a) the influenza strain H1N1 HA consensus protein, functional fragments thereof, or expressible coding sequences thereof and b) one or more isolated encoding nucleic acid molecules provided herein, protein encoded by such nucleic acid molecules, or fragments thereof.

[0054] According to some embodiments of the invention, methods of inducing or eliciting an immune response in mammals against a plurality of influenza viruses comprise administering to the mammals: a) the influenza strain H3N1 HA consensus protein, functional fragments thereof, or expressible coding sequences thereof; and b) one or more isolated encoding nucleic acid molecules provided herein, protein encoded by such nucleic acid molecules, or fragments thereof.

[0055] In some embodiments of the invention, the vaccines of the invention include at least two of the following sequences: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, and SEQ ID NO:14, or any combination of two or more sequences from the aforementioned list.

Vaccines

[0056] In some embodiments, the invention provides improved vaccines by providing proteins and genetic constructs that encode proteins with epitopes that make them particularly effective as immunogens against which immune responses can be induced. Accordingly, vaccines can be provided to induce a therapeutic or prophylactic immune response.

[0057] According to some embodiments of the invention, a vaccine according to the invention is delivered to an individual to modulate the activity of the individual's immune system and thereby enhance the immune response. When a nucleic acid molecule that encodes the protein is taken up by cells of the individual the nucleotide sequence is expressed in the cells and the protein are thereby delivered to the individual. Aspects of the invention provide methods of delivering the coding sequences of the protein on nucleic acid molecule such as plasmid.

[0058] According to some aspects of the present invention, compositions and methods are provided which prophylactically and/or therapeutically immunize an individual.

[0059] When taken up by a cell, the DNA plasmids can stay present in the cell as separate genetic material. Alternatively, RNA may be administered to the cell. It is also contemplated to provide the genetic construct as a linear minichromosome including a centromere, telomeres and an origin of replication. Genetic constructs include regulatory elements necessary for gene expression of a nucleic acid molecule. The elements include: a promoter, an initiation codon, a stop codon, and a polyadenylation signal. In addition, enhancers are often required for gene expression of the sequence that encodes the target protein or the immunomodulating protein. It is necessary that these elements be operable linked to the sequence that encodes the desired proteins and that the regulatory elements are operably in the individual to whom they are administered.

[0060] Initiation codons and stop codon are generally considered to be part of a nucleotide sequence that encodes the desired protein. However, it is necessary that these elements are functional in the mammals to whom the nucleic acid construct is administered. The initiation and termination codons must be in frame with the coding sequence.

[0061] Promoters and polyadenylation signals used must be functional within the cells of the individual.

[0062] Examples of promoters useful to practice the present invention, especially in the production of a genetic vaccine for humans, include but are not limited to promoters from simian virus 40 (SV40), mouse mammary tumor virus (MMTV) promoter, human immunodeficiency virus (HIV) such as the bovine immunodeficiency virus (BIV) long terminal repeat (LTR) promoter, Moloney virus, avian leukosis virus (ALV), cytomegalovirus (CMV) such as the CMV immediate early promoter, Epstein Barr virus (EBV), Rous sarcoma virus (RSV) as well as promoters from human genes such as human actin, human myosin, human hemoglobin, human muscle creatine and human metalothionein; in other embodiments, promoters can be tissue specific promoters, such as muscle or skin specific promoters, natural or synthetic. Examples of such promoters are described in US patent application publication no. US20040175727, which is incorporated hereby in its entirety.

[0063] Examples of polyadenylation signals useful to practice the present invention, especially in the production of a genetic vaccine for humans, include but are not limited to SV40 polyadenylation signals, LTR polyadenylation signals, bovine growth hormone (bGH) polyadenylation signals, human growth hormone (hGH) polyadenylation signals, and human .beta.-globin polyadenylation signals. In particular, the SV40 polyadenylation signal that is in pCEP4 plasmid (Invitrogen, San Diego, CA), referred to as the SV40 polyadenylation signal, can be used.

[0064] In addition to the regulatory elements required for DNA expression, other elements may also be included in the DNA molecule. Such additional elements include enhancers. The enhancer may be selected from the group including but not limited to: human actin, human myosin, human hemoglobin, human muscle creatine and viral enhancers such as those from CMV, RSV and EBV.

[0065] Genetic constructs can be provided with mammalian origin of replication in order to maintain the construct extrachromosomally and produce multiple copies of the construct in the cell. Plasmids pVAX1, pCEP4 and pREP4 from Invitrogen (San Diego, Calif.) contain the Epstein Barr virus origin of replication and nuclear antigen EBNA-1 coding region which produces high copy episomal replication without integration.

[0066] In order to maximize protein production, regulatory sequences may be selected which are well suited for gene expression in the cells the construct is administered into. Moreover, codons that encode said protein may be selected which are most efficiently transcribed in the host cell. One having ordinary skill in the art can produce DNA constructs that are functional in the cells.

[0067] In some embodiments, nucleic acid constructs may be provided in which the coding sequences for the proteins described herein are linked to IgE signal peptide. In some embodiments, proteins described herein are linked to IgE signal peptide.

[0068] In some embodiments for which protein is used, for example, one having ordinary skill in the art can, using well known techniques, can produce and isolate proteins of the invention using well known techniques. In some embodiments for which protein is used, for example, one having ordinary skill in the art can, using well known techniques, inserts DNA molecules that encode a protein of the invention into a commercially available expression vector for use in well known expression systems. For example, the commercially available plasmid pSE420 (Invitrogen, San Diego, Calif.) may be used for production of protein in Escherichia coli (E.coli). The commercially available plasmid pYES2 (Invitrogen, San Diego, Calif.) may, for example, be used for production in Saccharomyces cerevisiae strains of yeast. The commercially available MAXBAC.TM. complete baculovirus expression system (Invitrogen, San Diego, Calif.) may, for example, be used for production in insect cells. The commercially available plasmid pcDNA I or pcDNA3 (Invitrogen, San Diego, Calif.) may, for example, be used for production in mammalian cells such as Chinese hamster ovary (CHO) cells. One having ordinary skill in the art can use these commercial expression vectors and systems or others to produce protein by routine techniques and readily available starting materials. (See e.g., Sambrook et al., Molecular Cloning a Laboratory Manual, Second Ed. Cold Spring Harbor Press (1989)). Thus, the desired proteins can be prepared in both prokaryotic and eukaryotic systems, resulting in a spectrum of processed forms of the protein.

[0069] One having ordinary skill in the art may use other commercially available expression vectors and systems or produce vectors using well known methods and readily available starting materials. Expression systems containing the requisite control sequences, such as promoters and polyadenylation signals, and preferably enhancers are readily available and known in the art for a variety of hosts. See e.g., Sambrook et al., Molecular Cloning a Laboratory Manual, Second Ed. Cold Spring Harbor Press (1989). Genetic constructs include the protein coding sequence operably linked to a promoter that is functional in the cell line, or cells of targeted tissue, into which the constructs are transfected. Examples of constitutive promoters include promoters from cytomegalovirus (CMV) or SV40. Examples of inducible promoters include mouse mammary leukemia virus or metallothionein promoters. Those having ordinary skill in the art can readily produce genetic constructs useful for transfecting cells with DNA that encodes protein of the invention from readily available starting materials. The expression vector including the DNA that encodes the protein is used to transform the compatible host which is then cultured and maintained under conditions wherein expression of the foreign DNA takes place.

[0070] The protein produced is recovered from the culture, either by lysing the cells or from the culture medium as appropriate and known to those in the art. One having ordinary skill in the art can, using well known techniques, isolate protein that is produced using such expression systems. The methods of purifying protein from natural sources using antibodies which specifically bind to a specific protein as described above may be equally applied to purifying protein produced by recombinant DNA methodology.

[0071] In addition to producing proteins by recombinant techniques, automated peptide synthesizers may also be employed to produce isolated, essentially pure protein. Such techniques are well known to those having ordinary skill in the art and are useful if derivatives which have substitutions not provided for in DNA-encoded protein production.

[0072] The nucleic acid molecules may be delivered using any of several well known technologies including DNA injection (also referred to as DNA vaccination) with and without in vivo electroporation, liposome mediated, nanoparticle facilitated, recombinant vectors such as recombinant adenovirus, recombinant adenovirus associated virus and recombinant vaccinia. Preferably, the nucleic acid molecules such as the DNA plasmids described herein are delivered via DNA injection and along with in vivo electroporation.

[0073] Routes of administration include, but are not limited to, intramuscular, intransally, intraperitoneal, intradermal, subcutaneous, intravenous, intraarterially, intraoccularly and oral as well as topically, transdermally, by inhalation or suppository or to mucosal tissue such as by lavage to vaginal, rectal, urethral, buccal and sublingual tissue. Preferred routes of administration include intramuscular, intraperitoneal, intradermal and subcutaneous injection. Genetic constructs may be administered by means including, but not limited to, traditional syringes, needleless injection devices, "microprojectile bombardment gone guns", or other physical methods such as electroporation ("EP"), "hydrodynamic method", or ultrasound.

[0074] Examples of electroporation devices and electroporation methods preferred for facilitating delivery of the DNA vaccines of the present invention, include those described in U.S. Pat. No. 7,245,963 by Draghia-Akli, et al., U.S. Patent Pub. 2005/0052630 submitted by Smith, et al., the contents of which are hereby incorporated by reference in their entirety. Also preferred, are electroporation devices and electroporation methods for facilitating delivery of the DNA vaccines provided in co-pending and co-owned U.S. patent application, Ser. No. 11/874072, filed Oct. 17, 2007, which claims the benefit under 35 USC 119(e) to U.S. Provisional Applications Ser. Nos. 60/852,149, filed Oct. 17, 2006, and 60/978,982, filed Oct. 10, 2007, all of which are hereby incorporated in their entirety. Preferable, the electroporation device is the CELLECTRA.TM. device (VGX Pharmaceuticals, Blue Bell, Pa.), including the intramuscular (IM) and intradermal (ID) models.

[0075] U.S. Pat. No. 7,245,963 by Draghia-Akli, et al. describes modular electrode systems and their use for facilitating the introduction of a biomolecule into cells of a selected tissue in a body or plant. The modular electrode systems comprise a plurality of needle electrodes; a hypodermic needle; an electrical connector that provides a conductive link from a programmable constant-current pulse controller to the plurality of needle electrodes; and a power source. An operator can grasp the plurality of needle electrodes that are mounted on a support structure and firmly insert them into the selected tissue in a body or plant. The biomolecules are then delivered via the hypodermic needle into the selected tissue. The programmable constant-current pulse controller is activated and constant-current electrical pulse is applied to the plurality of needle electrodes. The applied constant-current electrical pulse facilitates the introduction of the biomolecule into the cell between the plurality of electrodes. The entire content of U.S. Pat. No. 7,245,963 is hereby incorporated by reference.

[0076] U.S. Patent Pub. 2005/0052630 submitted by Smith, et al. describes an electroporation device which may be used to effectively facilitate the introduction of a biomolecule into cells of a selected tissue in a body or plant. The electroporation device comprises an electro-kinetic device ("EKD device") whose operation is specified by software or firmware. The EKD device produces a series of programmable constant-current pulse patterns between electrodes in an array based on user control and input of the pulse parameters, and allows the storage and acquisition of current waveform data. The electroporation device also comprises a replaceable electrode disk having an array of needle electrodes, a central injection channel for an injection needle, and a removable guide disk. The entire content of U.S. Patent Pub. 2005/0052630 is hereby incorporated by reference.

[0077] The electrode arrays and methods described in U.S. Pat. No. 7,245,963 and U.S. Patent Pub. 2005/0052630 are adapted for deep penetration into not only tissues such as muscle, but also other tissues or organs. Because of the configuration of the electrode array, the injection needle (to deliver the biomolecule of choice) is also inserted completely into the target organ, and the injection is administered perpendicular to the target issue, in the area that is pre-delineated by the electrodes The electrodes described in U.S. Pat. No. 7,245,963 and U.S. Patent Pub. 2005/005263 are preferably 20 mm long and 21 gauge.

[0078] The following is an example of methods of the present invention, and is discussed in more detail in the patent references discussed above: electroporation devices can be configured to deliver to a desired tissue of a mammal a pulse of energy producing a constant current similar to a preset current input by a user. The electroporation device comprises an electroporation component and an electrode assembly or handle assembly. The electroporation component can include and incorporate one or more of the various elements of the electroporation devices, including: controller, current waveform generator, impedance tester, waveform logger, input element, status reporting element, communication port, memory component, power source, and power switch. The electroporation component can function as one element of the electroporation devices, and the other elements are separate elements (or components) in communication with the electroporation component. In some embodiments, the electroporation component can function as more than one element of the electroporation devices, which can be in communication with still other elements of the electroporation devices separate from the electroporation component. The present invention is not limited by the elements of the electroporation devices existing as parts of one electromechanical or mechanical device, as the elements can function as one device or as separate elements in communication with one another. The electroporation component is capable of delivering the pulse of energy that produces the constant current in the desired tissue, and includes a feedback mechanism. The electrode assembly includes an electrode array having a plurality of electrodes in a spatial arrangement, wherein the electrode assembly receives the pulse of energy from the electroporation component and delivers same to the desired tissue through the electrodes. At least one of the plurality of electrodes is neutral during delivery of the pulse of energy and measures impedance in the desired tissue and communicates the impedance to the electroporation component. The feedback mechanism can receive the measured impedance and can adjust the pulse of energy delivered by the electroporation component to maintain the constant current.

[0079] In some embodiments, the plurality of electrodes can deliver the pulse of energy in a decentralized pattern. In some embodiments, the plurality of electrodes can deliver the pulse of energy in the decentralized pattern through the control of the electrodes under a programmed sequence, and the programmed sequence is input by a user to the electroporation component. In some embodiments, the programmed sequence comprises a plurality of pulses delivered in sequence, wherein each pulse of the plurality of pulses is delivered by at least two active electrodes with one neutral electrode that measures impedance, and wherein a subsequent pulse of the plurality of pulses is delivered by a different one of at least two active electrodes with one neutral electrode that measures impedance.

[0080] In some embodiments, the feedback mechanism is performed by either hardware or software. Preferably, the feedback mechanism is performed by an analog closed-loop circuit. Preferably, this feedback occurs every 50 .mu.s, 20 .mu.s, 10 .mu.s or 1 .mu.s, but is preferably a real-time feedback or instantaneous (i.e., substantially instantaneous as determined by available techniques for determining response time). In some embodiments, the neutral electrode measures the impedance in the desired tissue and communicates the impedance to the feedback mechanism, and the feedback mechanism responds to the impedance and adjusts the pulse of energy to maintain the constant current at a value similar to the preset current. In some embodiments, the feedback mechanism maintains the constant current continuously and instantaneously during the delivery of the pulse of energy. A pharmaceutically acceptable excipient can include such functional molecules as vehicles, adjuvants, carriers or diluents, which are known and readily available to the public. Preferably, the pharmaceutically acceptable excipient is an adjuvant or transfection facilitating agent. In some embodiments, the nucleic acid molecule, or DNA plasmid, is delivered to the cells in conjunction with administration of a polynucleotide function enhancer or a genetic vaccine facilitator agent (or transfection facilitating agent).

[0081] Polynucleotide function enhancers are described in U.S. Pat. Nos. 5,593,972, 5,962,428 and International Application Serial Number PCT/US94/00899 filed Jan. 26, 1994, which are each incorporated herein by reference. Genetic vaccine facilitator agents are described in U.S. Ser. No. 021,579 filed Apr. 1, 1994, which is incorporated herein by reference. The transfection facilitating agent can be administered in conjunction with nucleic acid molecules as a mixture with the nucleic acid molecule or administered separately simultaneously, before or after administration of nucleic acid molecules. Examples of transfection facilitating agents includes surface active agents such as immune-stimulating complexes (ISCOMS), Freunds incomplete adjuvant, LPS analog including monophosphoryl lipid A, muramyl peptides, quinone analogs and vesicles such as squalene and squalene, and hyaluronic acid may also be used administered in conjunction with the genetic construct. In some embodiments, the DNA plasmid vaccines may also include a transfection facilitating agent such as lipids, liposomes, including lecithin liposomes or other liposomes known in the art, as a DNA-liposome mixture (see for example W09324640), calcium ions, viral proteins, polyanions, polycations, or nanoparticles, or other known transfection facilitating agents. Preferably, the transfection facilitating agent is a polyanion, polycation, including poly-L-glutamate (LGS), or lipid.

[0082] In some preferred embodiments, the DNA plasmids are delivered with an adjuvant that are genes for proteins which further enhance the immune response against such target proteins. Examples of such genes are those which encode other cytokines and lymphokines such as alpha-interferon, gamma-interferon, platelet derived growth factor (PDGF), TNF.alpha., TNF.beta., GM-CSF, epidermal growth factor (EGF), IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, MHC, CD80,CD86 and IL-15 including IL-15 having the signal sequence deleted and optionally including the signal peptide from IgE. Other genes which may be useful include those encoding: MCP-1, MIP-la, MIP-1p, IL-8, RANTES, L-selectin, P-selectin, E-selectin, CD34, GlyCAM-1, MadCAM-1, LFA-1, VLA-1, Mac-1, p150.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF, G-CSF, IL-4, mutant forms of IL-18, CD40, CD4OL, vascular growth factor, fibroblast growth factor, IL-7, nerve growth factor, vascular endothelial growth factor, Fas, TNF receptor, Flt, Apo-1, p55, WSL-1, DR3, TRAMP, Apo-3, AIR, LARD, NGRF, DR4, DRS, KILLER, TRAIL-R2, TRICK2, DR6, Caspase ICE, Fos, c-jun, Sp-1, Ap-1, Ap-2, p38, p65Rel, MyD88, IRAK, TRAF6, IkB, Inactive NIK, SAP K, SAP-1, .INK, interferon response genes, NFkB, Bax, TRAIL, TRAILrec, TRAILrecDRC5, TRAIL-R3, TRAIL-R4, RANK, RANK LIGAND, Ox40, Ox40 LIGAND, NKG2D, MICA, MICB, NKG2A, NKG2B, NKG2C, NKG2E, NKG2F, TAP1, TAP2 and functional fragments thereof.

[0083] The pharmaceutical compositions according to the present invention comprise DNA quantities of from about 1 nanogram to 100 milligrams; about 1 microgram to about 10 milligrams; or preferably about 0.1 microgram to about 10 milligrams; or more preferably about 1 milligram to about 2 milligram. In some preferred embodiments, pharmaceutical compositions according to the present invention comprise about 5 nanogram to about 1000 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 10 nanograms to about 800 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 0.1 to about 500 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 1 to about 350 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 25 to about 250 micrograms of DNA. In some preferred embodiments, the pharmaceutical compositions contain about 100 to about 200 microgram DNA.

[0084] The pharmaceutical compositions according to the present invention are formulated according to the mode of administration to be used. In cases where pharmaceutical compositions are injectable pharmaceutical compositions, they are sterile, pyrogen free and particulate free. An isotonic formulation is preferably used. Generally, additives for isotonicity can include sodium chloride, dextrose, mannitol, sorbitol and lactose. In some cases, isotonic solutions such as phosphate buffered saline are preferred. Stabilizers include gelatin and albumin. In some embodiments, a vasoconstriction agent is added to the formulation. In some embodiments, a stabilizing agent that allows the formulation to be stable at room or ambient temperature for extended periods of time, such as LGS or other polycations or polyanions is added to the formulation.

[0085] In some embodiments, methods of eliciting an immune response in mammals against a consensus influenza antigen include methods of inducing mucosal immune responses. Such methods include administering to the mammal one or more of CTACK protein, TECK protein, MEC protein and functional fragments thereof or expressible coding sequences thereof in combination with an DNA plasmid including a consensus influenza antigen, described above. The one or more of CTACK protein, TECK protein, MEC protein and functional fragments thereof may be administered prior to, simultaneously with or after administration of the DNA plasmid influenza vaccines provided herein. In some embodiments, an isolated nucleic acid molecule that encodes one or more proteins of selected from the group consisting of: CTACK, TECK, MEC and functional fragments thereof is administered to the mammal.

EXAMPLES

[0086] The present invention is further illustrated in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

[0087] Preferably the DNA formulations for use with a muscle or skin EP device described herein have high DNA concentrations, preferably concentrations that include milligram to tens of milligram quantities, and preferably tens of milligram quantities, of DNA in small volumes that are optimal for delivery to the skin, preferably small injection volume, ideally 25-200 microliters (.mu.L). In some embodiments, the DNA formulations have high DNA concentrations, such as 1 mg/mL or greater (mg DNA/volume of formulation). More preferably, the DNA formulation has a DNA concentration that provides for gram quantities of DNA in 200 .mu.L of formula, and more preferably gram quantities of DNA in 100 .mu.L of formula.

[0088] The DNA plasmids for use with the EP devices of the present invention can be formulated or manufactured using a combination of known devices and techniques, but preferably they are manufactured using an optimized plasmid manufacturing technique that is described in a commonly owned, co-pending U.S. provisional application U.S. Ser. No. 60/939,792, which was filed on May 23, 2007. In some examples, the DNA plasmids used in these studies can be formulated at concentrations greater than or equal to 10 mg/mL. The manufacturing techniques also include or incorporate various devices and protocols that are commonly known to those of ordinary skill in the art, in addition to those described in U.S. Ser. No. 60/939792, including those described in a commonly owned patent, U.S. Pat. No. 7,238,522, which issued on Jul. 3, 2007. The high concentrations of plasmids used with the skin EP devices and delivery techniques described herein allow for administration of plasmids into the ID/SC space in a reasonably low volume and aids in enhancing expression and immunization effects. The commonly owned application and patent, U.S. Ser. No. 60/939,792 and U.S. Pat. No. 7,238,522, respectively, are hereby incorporated in their entirety.

Example 1

Plasmid Constructs

[0089] A ubiquitous cytomegalovirus (CMV) promoter drives the expression of human secreted embryonic alkaline phosphatase (SEAP) reporter transgene product in the pCMV-SEAP vector. Plasmids were obtained using a commercially available kit (Qiagen Inc., Chatsworth, Calf.). Endotoxin levels were at less than 0.01 EU/.mu.g, as measured by Kinetic Chromagenic LAL (Endosafe, Charleston, S.C.). Consensus HA and NA constructs were generated by analyzing primary virus sequences from 16 H5 viruses that have proven fatal to humans in recent years, and over 40 human N1 viruses. These sequences were downloaded from the Los Alamos National Laboratory's Influenza Sequence Database. After generating the consensus sequences, the constructs were optimized for mammalian expression, including the addition of a Kozak sequence, codon optimization, and RNA optimization. These constructs were then subcloned into the pVAX vector (Invitrogen, Carlsbad, Calif.). Unless indicated otherwise, plasmid preparations were diluted in sterile water and formulated 1% weight/weight with poly-L-glutamate sodium salt (LGS) (MW=10.5 kDa average)(Sigma, St. Louis, Mo.), further HPLC purified at VGX Pharmaceuticals, Immune Therapeutics Division (The Woodlands, Tex.).

Example 2

Treatment of Pigs

[0090] Pigs were divided into 10 groups.times.4 pigs per group for a total of 40 pigs (Table 1). Pigs were acclimated for 4 days, weighed and ear-tagged. On Study Day 0, pigs were weighed, bled and anesthetized using a combination pre-anesthetic for pigs--ketamine--(20 mg/kg), xylazine--(2.2 mg/kg) and atropine (0.04 mg/kg), and then anesthetized using isoflurane (induction at 5%, maintenance at 2-3%). Pigs (n=4/group) were injected with 0.6 mL of CMV-HA (a pVAX based construct that expresses a consensus H5 antigen), CMV-NA (a pVAX based construct that expresses a consensus N1 antigen), and CMV-SEAP (a construct expressing the reporter gene secreated ambryonic alkaline phosphatase, SEAP) plasmid (the last one added to increase plasmid concentration, and viscosity of the solution for the "muscle damage" assessment)+1.0% wt/wt LGS at varying plasmid concentrations and current intensities. The plasmids were prepared according to the materials and methods provided in Example 1. After 4 s, animals were electroporated using the adaptive constant current CELLECTRA.TM. intramuscular (IM) system (VGX Pharmaceuticals, Blue Bell, Pa.) equipped with 5 needle electrodes and operated with the following pulse parameters: 52 millisecond pulses, 1 second between pulses, 3 pulses with varying current (0.1, 0.3 and 0.5 A).

TABLE-US-00001 TABLE 1 Groups for the pig vaccine experiment Total Conc Dose (mg/ Construct (mg/ Injection Group Plasmid mL) (mg)/pig pig) Volume A n 1 HA, NA, 10 2 6 600 .mu.l 0.5 4 SEAP 2 HA, NA, 4 0.8 2.4 600 .mu.l 0.5 4 SEAP 3 HA, NA, 1.5 0.1 0.3 600 .mu.l 0.5 4 SEAP 4 HA, NA, 10 2 6 600 .mu.l 0.3 4 SEAP 5 HA, NA, 4 0.8 2.4 600 .mu.l 0.3 4 SEAP 6 HA, NA, 1.5 0.1 0.3 600 .mu.l 0.3 4 SEAP 7 HA, NA, 10 2 6 600 .mu.l 0.1 4 SEAP 8 HA, NA, 4 0.8 2.4 600 .mu.l 0.1 4 SEAP 9 HA, NA, 1.5 0.1 0.3 600 .mu.l 0.1 4 SEAP 10 None N/A N/A N/A N/A N/A 4

The area surrounding each injection site was tattooed for rapid identification for biopsy at Days 14 and 35 post-injection.

[0091] Pigs were allowed to recover from anesthesia and were closely monitored for 24 hours to ensure full recovery. Any pigs that did not fully recover within 2 to 3 hours post-treatment were noted. Pigs were weighed and bled on Day 10, Day 21 and Day 35. The pigs were administered a second vaccination on Day 21. Blood was collected in 2 purple top tubes, 1.0 mL for CBC and differentials (Antech Diagnostics, Irvine, Calif.); 10 mL for IFN-.gamma. ELISpots against HA and NA antigens, and separate falcon tubes which were allowed to clot and centrifuged to isolate serum then aliquoted into tubes on ice. On Day 35, all pigs were exsanguinated under surgical plane of anesthesia and needle punch biopsies of the injection sites were taken for histology.

Hemagglutination Inhibition (HI) Assay

[0092] Pig sera were treated with receptor destroying enzyme (RDE) by diluting one part serum with three parts enzyme and incubated overnight in 37.degree. C. water bath. The enzyme was inactivated by 30 min incubation at 56.degree. C. followed by addition of six parts PBS for a final dilution of 1/10. HI assays were performed in V-bottom 96-well microtiter plates, using four HA units of virus and 1% horse red blood cells as previously described (Stephenson, I., et al., Virus Res., 103 (1-2): 91-5 (July 2004)).

[0093] The highest titers as demonstrated by the HI assay (FIG. 2) were found in sera from the group administered 2 mg of HA-expressing plasmid at a current setting of 0.5 A (120.+-.40; P=0.11 versus 2 mg/0.3 A and P=0.02 versus 2 mg/0.1 A); the titers decreased with the intensity of the electric field for the group that received 2 mg of each plasmid; if either plasmid quantity of current were decreased thereafter, the titers were more variable, and non-different between groups.

[0094] The HI titers were highest in the group administered 2 mg of HA-expressing plasmid and electroporated at 0.5 A. Furthermore, the titers decline with descending plasmid doses in the group electroporated at 0.5 A, and with the intensity of the electric field. The lower plasmid quantities or lower current intensities appeared to increase the intra-group variability.

HA and NA IFN-.gamma. ELISpots

[0095] ELISpot were performed as previously described using IFN-.gamma. capture and detection antibodies (MabTech, Sweden) (Boyer J D, et al., J Med Primatol, 34(5-6):262-70 (October 2005)). Antigen-specific responses were determined by subtracting the number of spots in the negative control wells from the wells containing peptides. Results are shown as the mean value (spots/million splenocytes) obtained for triplicate wells. The group administered 2 mg of each plasmid (for a total of 4 mg) at a current setting of 0.3 A attained the highest cellular immune response as measured by the IFN-.gamma. ELISpot of 537.+-.322 SFU per million cells. The average responses of all other groups were within background levels of the assay. The individual ELISpot responses of two animals attaining the highest cellular immune response are highlighted in FIG. 3.

CBC Results

[0096] Lymphocytes reached the highest levels at Day 21 of the study and in the groups administered the highest dose of vaccines, regardless of current setting, although the groups with the highest dose (4 mg of total plasmid, 2 mg each) and highest current setting (0.5 A) demonstrates highest lymphocyte response, 40% higher than controls (12670.+-.1412 vs. 7607.+-.1603 lymphocyte counts/100 blood, respectively; P<0.002).

Muscle Histopathology

[0097] The injection sites were identified and punch biopsies were taken at Days 14 and 35 post-treatment after the pigs were exsanguinated. The tissues were fixed in buffered formalin for 24 hours then washed 3.times. in PBS and stored in 70% alcohol. The biopsy samples were submitted to Antech Diagnostics where they were processed and sections stained with hematoxylin and eosin (H&E). All the slides were evaluated by a single board-certified pathologist who scored them 0 to 5 for pathological criteria (Table 2) in various tissue layers (Table 3). The mean score was calculated for each group at each time point.

TABLE-US-00002 TABLE 2 Biopsy pathology scoring parameters Score Criteria 0 Not present, no inflammatory cells 1 Minimal, 1-20 inflammatory cells/100 .times. high-powered field (HPF) 2 Mild, 21-40 inflammatory cells/100 .times. HPF 3 Moderate, 41-75 inflammatory cells/100 .times. HPF 4 Moderate to Marked/Severe, 76-100 inflammatory cells/100 .times. HPF 5 Marked Severe, >100 inflammatory cells/100 .times. HPF

TABLE-US-00003 TABLE 3 Biopsy tissue layers and pathological parameters Anatomy Location Pathology Parameter Dermal Superficial neovascularization Dermal Pylogranulomatous inflammation Dermal Overlying erosion & inflammatory crusting Dermal Focal fibrosis Subcutaneous Pylogranulomatous inflammation with intralesional collagen necrosis Subcutaneous Lymphacytic and plasmalytic inflammation Skeletal muscle Lymphacytic and plasmalytic and eosinophilic inflammation Skeletal muscle Myocyte degeneration/necrosis Skeletal muscle Fibrosis

[0098] The histopathology was scored from the muscle biopsy (FIG. 4A) at 14 and 35 days after plasmid injection and EP based on a 0 to 5 scale criteria (Table 2). Overall pathology scores following electroporation declined in the tissue layers (Table 3) from Day 14 to Day 35. The group that received 6 mg of total plasmid at 0.3 A settings exhibited the highest total pathology scores at Day 14 (18.3.+-.6.4, P<0.0002 versus control), correlating with the highest average lymphocyte responses. All pathology scores at Day 35 approached levels of non-treated control levels (range of 6.67 to 4.25). Nevertheless, when the muscle necrosis and fibrosis (typically associated with the EP procedure) (Gronevik E, et al., J Gene Med, 7(2):218-27 (2005 February)).were analyzed separately (FIG. 4B), the scores ranged between 1 and 2, with no difference between groups or between treated groups and controls, while the higher scores were associated with lymphatic, plasmacytic or eosinophilic inflammation due to immune responses. Significantly, these scores also declined from day 14 to day 35 post-treatment.

Data Analysis

[0099] Data were analyzed using Microsoft Excel Statistics package. Values shown in the figures are the mean.+-.SEM. Specific values were obtained by comparison using one-way ANOVA and subsequent t-test. A value of p <0.05 was set as the level of statistical significance.

Example 3

Treatment of Ferrets

[0100] Twenty male ferrets (Triple F Farms, Sayre, Pa.), 4-6 months of age or at least 1 kg body weight, were used in this study and housed at BIOQUAL, Inc. (Rockville, Md.). The ferret study design is in Table 4. Animals were allowed to acclimate for two weeks prior to the study. Animals were immunized (under anesthesia) at Week 0, 4, and 9. Blood was drawn every 2 weeks. After the third immunization, animals were moved into a BSL-3 facility and challenged at Week 13 with a very potent strain of avian influenza (H5N1) and then followed for two more weeks post-challenge. For two weeks after challenge, animals were monitored daily, and body weights, temperature and clinical scores were recorded. Activity level was monitored and recorded; death were documented.

[0101] This study tested the efficacy of HA, NA and M2e-NP DNA vaccine delivered IM followed by electroporation using the CELLECTRA.TM. adaptive constant current electroporation intramuscular (IM) system (VGX Pharmaceuticals, Blue Bell, Pa.) in an influenza challenge model in ferrets. The DNA plasmids were prepared according to the materials and methods provided in Example 1. As outlined in Table 4, animals in Groups 2, 3 and 4 received 0.2 mg of the respective influenza plasmid vaccine. In order to correct for dose, groups which received 1 plasmid vaccine (Groups 2 and 3) or no vaccine (control Group 1), the difference was made up by pVAX empty vector such that all animals in every group received a total dose of 0.6 mg of plasmid. The conditions of electroporation were, using a 5 needle electrode array: 0.5 Amps, 52 msec pulse width, 1 sec between pulses, 4 sec delay between injection and electroporation.

TABLE-US-00004 TABLE 4 Groups for the Influenza challenge experiment in ferrets Total Vaccine vaccine in Dose (mg) Total Group Plasmids/Antigens per Plasmid volume n 1 None (pVAX only) 0 mg 0.6 mg 4 in 0.6 mL 2 H5 + pVAX 0.2 mg 0.6 mg 4 in 0.6 mL 3 NA + pVAX 0.2 mg 0.6 mg 4 in 0.6 mL 4 H5, NA, M2e-NP 0.2 mg 0.6 mg 4 in 0.6 mL

Hemagglutination Inhibition (HI) Assay

[0102] Sera were treated with receptor destroying enzyme (RDE) by diluting one part serum with three parts enzyme and incubated overnight in 37.degree. C. water bath. The enzyme was inactivated by 30 min incubation at 56.degree. C. followed by addition of six parts PBS for a final dilution of 1/10. HI assays were performed in V-bottom 96-well microtiter plates, using four HA units of virus and 1% horse red blood cells as previously described (Stephenson, I., et al., Virus Res., 103(1-2):91-5 (July 2004)). The viruses used for the HI assay are reassortant strains we obtained from the Center for Disease Control: A/Viet/1203/2004(H5N1)/PR8-IBCDC-RG (clade 1 virus) and A/Indo/05/2005 (H5N1)/PR8-IBCDC-RG2 (clade 2 virus). The ferret model of influenza infection is considered to be more reflective of human disease and a more rigorous challenge model. Ferrets exhibit similar symptoms to humans infected with influenza and similar tissue tropism with regards to human and avian influenza viruses. Serum collected at different time points throughout the study was used to detect HI activity against H5N1 viruses. As shown in FIG. 7, both groups containing the consensus H5 specific HA construct attained protective levels of antibody (>1:40) after two immunizations and were also able to inhibit a clade 2 H5N1 virus. In other words, the HI assay was positive against both viral strains despite the consensus HA strain was based on clade 1 viruses.

Data Analysis

[0103] Data were analyzed using Microsoft Excel Statistics package. Values shown in the figures are the mean.+-.SEM. Specific values were obtained by comparison using one-way ANOVA and subsequent t-test. A value of p<0.05 was set as the level of statistical significance.

Ferret Influenza Challenge

[0104] The results of the influenza challenge are depicted in FIGS. 5 and 6. Control animals lost 25% of their body weight on average post-challenge (FIG. 5), while animals vaccinated with HA (Group 1) or HA+M2e-NP+NA (Group 4) lost between 9 and 10% (*P<0.004 versus controls). Body temperatures were elevated in control animals until all control animals were either found dead or euthanized by Day 8 (FIG. 6). All animals vaccinated, regardless of which vaccine regimen, survived the challenge and showed fewer signs of infection as compared to the control animals as evidenced by their clinical scores (Table 5). Control animals worsen as far as clinical scores (nasal discharge, cough, lethargy), and died between day 5 and day 7 post-challenge. As shown in Table 5, the severity of the clinical scores in vaccinated animals was inversely correlated with the antibody titers (higher antibody titers, lower clinical scores, better clinical outcome).

TABLE-US-00005 TABLE 5 Results for Challenged Ferrets Post-challenge Observations HI Titers 3 wks Vaccines Ferret Day 1 Day 2 Day 3 Day 5 Day 6 Day 7 Day 8 Day 9 Pre-challenge 891 0_1 1_1 1_1 0_1 0_1 1_1* <20 Control 890 0_1 0_1 1_1 0_1* <20 (pVAX) 877 0_1 0_1 1_1 0_2 2_3 FD <20 876 0_1 0_1 0_1 0_1 2_3 1_3* <20 878 0_1 0_1 1_1 0_1 0_1 0_1 0_1 0_1 40 H5 879 0_1 0_1 0_1 0_1 0_1 0_1 0_1 0_1 320 888 0_1 0_1 0_1 0_1 0_1 0_1 0_1 0_1 160 889 0_1 0_1 0_1 0_1 0_1 0_1 0_1 0_1 320 881 0_1 0_1 1_0 0_1 0_1 1_1 0_1 0_1 <20 M2-NP 880 0_1 0_1 0_0 0_1 0_1 0_1 0_1 0_1 <20 883 0_1 1_1 1_1 0_1 0_1 1_1 0_1 0_1 <20 882 0_1 0_1 1_1 0_1 0_1 1_2 0_2 0_1 <20 885 0_1 0_1 0_1 0_1 0_1 0_1 0_1 0_1 1280 H5 + M2- 884 0_1 0_1 0_1 0_1 0_1 0_1 0_1 0_1 320 NP + NA 886 1_1 1_1 0_1 0_1 0_1 1_1 0_1 1_1 160 887 0_1 1_1 0_0 0_1 0_1 1_1 0_1 0_1 640 Table 5 Note: Clinical scores are depicted for the post-challenge observation period. A "*" indicates the animal was euthanized; FD = found dead. The first clinical score in each column is for nasal symptoms: 0 = none; 1 = nasal discharge; 2 = breathing from mouth. The second score is for activity: 0 = sleeping; 1 = bright and alert; 2 = alert but non-responsive; 3 = lethargic. The HI titers for each animal measured 3 weeks pre-challenge are depicted for comparison purposes.

ExamplE 4

Intradermal Delivery Comparisons with Intramuscular Delivery in Primates

[0105] Rhesus macaques were immunized in these studies. Animals were acclimated for 2 months prior to the start of experiments. The study progressed as follows: Week 0--performed 1st immunization (plasmid dose administration) and baseline bleed; Week 2 performed bleed; Week 3 performed 2nd immunization (plasmid dose administration); Week 5 performed bleed; Week 6 performed 3rd immunization (plasmid dose administration) and bleed; Week 8 performed bleed.

TABLE-US-00006 TABLE 6 Total Study DNA DNA Group Constructs Nr. Route of Admin Dose (mg) A DNA 6 + 9 5 IM CELLECTRA .TM. EP 1 mg/ 2 Const B DNA 6 + 9 5 ID CELLECTRA .TM. EP 1 mg/ 2 Const C DNA 1 + 6 + 5 IM Syringe 1 mg/ 4 9 + 10 Const D Negative Control 5 N/A 0

TABLE-US-00007 DNA Construct # Encoding Antigen 1 Non-influenza antigen control plasmid 6 Influenza H5 consensus 9 Non-influenza antigen control plasmid 10 Non-influenza antigen control plasmid

[0106] All plasmids were formulated at 10 mg/mL in water for injection+1% LGS, as described in previous examples, above, and mixed into a single solution PER STUDY GROUP(S) (Groups C, D, G, and H, in above table, Table 6). The correct injection volume for each group designated IM CELLECTRA.TM. EP (VGX Pharmaceuticals), ID CELLECTRA.TM. EP (VGX Pharmaceuticals), and IM Syringe was calculated. For the ID administration, if the required injection volume surpassed 100 .mu.L per site, the formulation was split into a number of injection sites (2, 3, or 6 depending on how many total mg of vaccine were administered). The animals that received IM injection(s) were given the entire formulation in one single site.

[0107] The CELLECTRA.TM. adaptive constant current device used in the pigs experiments, ferret experiments and nonhuman experiments described in the Examples. The electroporation conditions were as following: for the IM injection and electroporation groups, the conditions were: 0.5 Amps, 52 msec/pulse, three pulses, 4 sec delay between plasmid injection and electroporation. For the ID injection and electroporation groups, the conditions were: 0.2 Amps, 52 msec/pulse, three pulses, 4 sec delay between plasmid injection and electroporation.

[0108] Hemagglutination Inhibition (HI) Assay--monkey sera were treated with receptor destroying enzyme (RDE) by diluting one part serum with three parts enzyme and incubated overnight in 37.degree. C. water bath. The enzyme was inactivated by 30 min incubation at 56.degree. C. followed by addition of six parts PBS for a final dilution of 1/10. HI assays were performed in V-bottom 96-well microtiter plates, using four HA units of virus and 1% horse red blood cells. The data presented herein are the results after the second immunization (bleed collected before the third immunization).

[0109] HI titers were measured three weeks after the second immunization. The results can be seen displayed in the graph in FIG. 8. Monkeys receiving the HA plasmid vaccine via ID injection followed by electroporation demonstrated more than twice the average titers of the IM +EP group and almost three times the average titers of the IM group alone (*P<0.03). Non-treated controls did not exhibit any HI titers.

Example 5

Cross Protection in Primates

[0110] Using Delivery method--ID injection followed by electroporation (EP)

[0111] Studies in non-human primates with the influenza vaccine (including H5, NA and M2e-NP consensus antigens, see above) indicated that ID injection followed by electroporation elicited higher antibody responses to the vaccine antigens than in IM injections. In one of our non-human primate studies (NHP) animals were vaccinated per Table 7.

TABLE-US-00008 TABLE 7 Study design and conditions. Rhesus macaques were immunized at weeks 0, 4, and 8. Concentration Group n/group Antigen Delivery (mg/plasmid) EP Conditions 1 5 pVax (sham) IM 1 mg/construct 0.5 Amps, 3 pulses, 52 msec, 1 sec between pulses 2 5 H5, NA, IM 1 mg/construct 0.5 Amps, 3 pulses, 52 msec, 1 sec M2e-NP between pulses 3 5 M2e-NP IM 1 mg/construct 0.5 Amps, 3 pulses, 52 msec, 1 sec between pulses 4 5 H5, NA, ID 1 mg/construct 0.2 Amps, 2 .times. 2 pulses, 52 msec, 1 sec M2e-NP between pulses

Each animal received three vaccinations, and HAI titers and microneutralization were performed for both the same clade and cross-clades. As shown, the consensus vaccine offered broad protection not only within the same clade, but also cross-clades. Results are included in Table 8.

TABLE-US-00009 TABLE 8 Results of hemagglutination (HAI) and microneutralization assays. Clade 1 Clade 2.1 Clade 2.2 Clade 2.3.4 A/Vietnam A/Indonesia A/Turkey A/Anhui HAI Assay 2nd immunization VGX-3400IM 160 (80-320) 36 (20-80) 110 (0-320).sup.4/5 80 (40-160) VGX-3400ID 664 (40-1280) 120 (20-320) 205 (0-320).sup.4/5 592 (40-1280) 3rd immunization VGX-3400IM 288 (160-640) 32 (0-80).sup.3/5 36 (20-80) 84 (20-160) VGX-3400ID 416 (160-640) 64 (0-160).sup.2/5 145 (20-320) 276 (20-640) Microneutralization 3rd immunization VGX-3400IM 144 (40-360) 8 (0-40).sup.1/5 32 (0-80).sup.2/5 88 (0-160).sup.4/5 VGX-3400ID 740 (20-2560) 96 (0-320).sup.3/5 296 (0-1280).sup.3/5 1172 (20-2560) Values presented indicate the mean titer, the range (in parenthesis) and the number of responders if less than 5/5 (in superscript). Note: HAI titers > 1:20 are generally considered seroprotective in the NHP model.

[0112] The needles in the ID electroporation device are much shorter (.about.5 mm), of a lower gauge, and do not elicit muscle contractions or visible pain responses in the animals tested to date. Furthermore, the required electric field for efficacious ID EP is lower than that required for an optimum IM delivery. ID injection has been shown to elicit better immune responses to influenza vaccine antigens. (Holland D, et. al. (2008). J Inf Dis. 198:650-58.) Usually, a lower dose is needed in vaccines delivered ID compared to IM delivery to achieve similar humoral responses.

Sequence CWU 1

1

1711707DNAArtificial SequenceInfluenza H5N1 HA consensus sequence 1atggaaaaga tcgtgctgct gttcgccatc gtgagcctgg tgaagagcga ccagatctgc 60atcggctacc acgccaacaa cagcaccgag caggtggaca ccatcatgga aaaaaacgtg 120accgtgaccc acgcccagga catcctggaa aagacccaca acggcaagct gtgcgacctg 180gacggcgtga agcccctgat cctgcgggac tgcagcgtgg ccggctggct gctgggcaac 240cccatgtgcg acgagttcat caacgtgccc gagtggagct acatcgtgga gaaggccaac 300cccgtgaacg acctgtgcta ccccggcgac ttcaacgact acgaggaact gaagcacctg 360ctgtcccgga tcaaccactt cgagaagatc cagatcatcc ccaagagcag ctggtccagc 420cacgaggcca gcctgggcgt gagcagcgcc tgcccatacc agggcaagtc cagcttcttc 480cggaacgtgg tgtggctgat caagaagaac agcacctacc ccaccatcaa gcggagctac 540aacaacacca accaggaaga tctgctggtc ctgtggggca tccaccaccc caacgacgcc 600gccgagcaga ccaagctgta ccagaacccc accacctaca tcagcgtggg caccagcacc 660ctgaaccagc ggctggtgcc ccggatcgcc acccggtcca aggtgaacgg ccagagcggc 720cggatggaat tcttctggac catcctgaag cccaacgatg ccatcaactt cgagagcaac 780ggcaacttca tcgcccccga gtacgcctac aagatcgtga agaagggcga cagcaccatc 840atgaagagcg agctggaata cggcaactgc aacaccaagt gccagacccc catgggcgcc 900atcaacagca gcatgccctt ccacaacatc caccccctga ccatcggcga gtgccccaag 960tacgtgaaga gcaacaggct ggtgctggcc accggcctgc ggaacagccc ccagcgggag 1020cggcgggccg ccgcccgggg cctgttcggc gccatcgccg gcttcatcga gggcggctgg 1080cagggcatgg tggacgggtg gtacggctac caccacagca atgagcaggg cagcggctac 1140gccgccgaca aagagagcac ccagaaggcc atcgacggcg tcaccaacaa ggtgaacagc 1200atcatcgaca agatgaacac ccagttcgag gccgtgggcc gggagttcaa caacctggaa 1260cggcggatcg agaacctgaa caagaaaatg gaagatggct tcctggacgt gtggacctac 1320aacgccgagc tgctggtgct gatggaaaac gagcggaccc tggacttcca cgacagcaac 1380gtgaagaacc tgtacgacaa agtgcggctg cagctgcggg acaacgccaa agagctgggc 1440aacggctgct tcgagttcta ccacaagtgc gacaacgagt gcatggaaag cgtgcggaac 1500ggcacctacg actaccccca gtacagcgag gaagcccggc tgaagcggga ggaaatcagc 1560ggcgtgaaac tggaaagcat cggcatctac cagatcctga gcatctacag caccgtggcc 1620agcagcctgg ccctggccat catggtggcc ggcctgagcc tgtggatgtg cagcaacggc 1680agcctgcagt gccggatctg catctag 17072568PRTArtificial SequenceInfluenza H5N1 HA consensus sequence 2Met Glu Lys Ile Val Leu Leu Phe Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15 Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30 Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile 35 40 45 Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys 50 55 60 Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn 65 70 75 80 Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val 85 90 95 Glu Lys Ala Asn Pro Val Asn Asp Leu Cys Tyr Pro Gly Asp Phe Asn 100 105 110 Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu 115 120 125 Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Ser His Glu Ala Ser 130 135 140 Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Lys Ser Ser Phe Phe 145 150 155 160 Arg Asn Val Val Trp Leu Ile Lys Lys Asn Ser Thr Tyr Pro Thr Ile 165 170 175 Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp 180 185 190 Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Lys Leu Tyr Gln 195 200 205 Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg 210 215 220 Leu Val Pro Arg Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly 225 230 235 240 Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn 245 250 255 Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile 260 265 270 Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly 275 280 285 Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser 290 295 300 Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys 305 310 315 320 Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser 325 330 335 Pro Gln Arg Glu Arg Arg Ala Ala Ala Arg Gly Leu Phe Gly Ala Ile 340 345 350 Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr 355 360 365 Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys 370 375 380 Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser 385 390 395 400 Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe 405 410 415 Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp 420 425 430 Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met 435 440 445 Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu 450 455 460 Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly 465 470 475 480 Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu 485 490 495 Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala 500 505 510 Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly 515 520 525 Ile Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala 530 535 540 Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly 545 550 555 560 Ser Leu Gln Cys Arg Ile Cys Ile 565 31466DNAArtificial SequenceInfluenza H1N1&H5N1 NA consensus sequence 3ggtaccgaat tcgccaccat ggactggacc tggatcctgt tcctggtggc cgctgccacc 60cgggtgcaca gcatgaaccc caaccagaag atcatcacca tcggcagcat ctgcatggtg 120atcggcatcg tgagcctgat gctgcagatc ggcaacatga tcagcatctg ggtgtcccac 180agcatccaga ccggcaacca gcaccaggcc gagcccatca gcaacaccaa ctttctgacc 240gagaaggccg tggccagcgt gaccctggcc ggcaacagca gcctgtgccc catcagcggc 300tgggccgtgt acagcaagga caacagcatc cggatcggca gcaagggcga cgtgttcgtg 360atccgggagc ccttcatcag ctgcagccac ctggaatgcc ggaccttctt cctgacccag 420ggggccctgc tgaacgacaa gcacagcaac ggcaccgtga aggacagaag cccctaccgg 480accctgatga gctgccccgt gggcgaggcc cccagcccct acaacagccg gttcgagagc 540gtggcctggt ccgccagcgc ctgccacgac ggcaccagct ggctgaccat cggcatcagc 600ggccctgaca acggcgccgt ggccgtgctg aagtacaacg gcatcatcac cgacaccatc 660aagagctggc ggaacaacat cctgcggacc caggaaagcg agtgcgcctg cgtgaacggc 720agctgcttca ccgtgatgac cgacggcccc agcaacggcc aggccagcta caagatcttc 780aagatggaaa agggcaaggt ggtgaagagc gtggagctgg acgcccccaa ctaccactac 840gaggaatgca gctgctaccc cgacgccggc gagatcacct gcgtgtgccg ggacaactgg 900cacggcagca accggccctg ggtgtccttc aaccagaacc tggaatacca gatcggctac 960atctgcagcg gcgtgttcgg cgacaacccc aggcccaacg atggcaccgg cagctgcggc 1020cctgtgagcg ccaacggcgc ctacggcgtg aagggcttca gcttcaagta cggcaacggc 1080gtgtggatcg gccggaccaa gagcaccaac agcagatccg gcttcgagat gatctgggac 1140cccaacggct ggaccgagac cgacagcagc ttcagcgtga agcaggacat cgtggccatc 1200accgactggt ccggctacag cggcagcttc gtgcagcacc ccgagctgac cggcctggac 1260tgcatccggc cctgcttttg ggtggagctg atcagaggca ggcccaaaga gagcaccatc 1320tggaccagcg gcagcagcat cagcttttgc ggcgtgaaca gcgacaccgt gagctggtcc 1380tggcccgacg gcgccgagct gcccttcacc atcgacaagt acccctacga cgtgcccgac 1440tacgcctgat gagcggccgc gagctc 14664476PRTArtificial SequenceInfluenza H1N1&H5N1 NA consensus sequence 4Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 5 10 15 His Ser Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Cys 20 25 30 Met Val Ile Gly Ile Val Ser Leu Met Leu Gln Ile Gly Asn Met Ile 35 40 45 Ser Ile Trp Val Ser His Ser Ile Gln Thr Gly Asn Gln His Gln Ala 50 55 60 Glu Pro Ile Ser Asn Thr Asn Phe Leu Thr Glu Lys Ala Val Ala Ser 65 70 75 80 Val Thr Leu Ala Gly Asn Ser Ser Leu Cys Pro Ile Ser Gly Trp Ala 85 90 95 Val Tyr Ser Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys Gly Asp Val 100 105 110 Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu Glu Cys Arg 115 120 125 Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His Ser Asn 130 135 140 Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Thr Leu Met Ser Cys Pro 145 150 155 160 Val Gly Glu Ala Pro Ser Pro Tyr Asn Ser Arg Phe Glu Ser Val Ala 165 170 175 Trp Ser Ala Ser Ala Cys His Asp Gly Thr Ser Trp Leu Thr Ile Gly 180 185 190 Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr Asn Gly 195 200 205 Ile Ile Thr Asp Thr Ile Lys Ser Trp Arg Asn Asn Ile Leu Arg Thr 210 215 220 Gln Glu Ser Glu Cys Ala Cys Val Asn Gly Ser Cys Phe Thr Val Met 225 230 235 240 Thr Asp Gly Pro Ser Asn Gly Gln Ala Ser Tyr Lys Ile Phe Lys Met 245 250 255 Glu Lys Gly Lys Val Val Lys Ser Val Glu Leu Asp Ala Pro Asn Tyr 260 265 270 His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Ala Gly Glu Ile Thr Cys 275 280 285 Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val Ser Phe 290 295 300 Asn Gln Asn Leu Glu Tyr Gln Ile Gly Tyr Ile Cys Ser Gly Val Phe 305 310 315 320 Gly Asp Asn Pro Arg Pro Asn Asp Gly Thr Gly Ser Cys Gly Pro Val 325 330 335 Ser Ala Asn Gly Ala Tyr Gly Val Lys Gly Phe Ser Phe Lys Tyr Gly 340 345 350 Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Thr Asn Ser Arg Ser Gly 355 360 365 Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Glu Thr Asp Ser Ser 370 375 380 Phe Ser Val Lys Gln Asp Ile Val Ala Ile Thr Asp Trp Ser Gly Tyr 385 390 395 400 Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp Cys Ile 405 410 415 Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Arg Pro Lys Glu Ser 420 425 430 Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly Val Asn Ser 435 440 445 Asp Thr Val Ser Trp Ser Trp Pro Asp Gly Ala Glu Leu Pro Phe Thr 450 455 460 Ile Asp Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 465 470 475 5875DNAArtificial SequenceInfluenza H1N1&H5N1 M1 consensus sequence 5ggtaccggat ccgccaccat ggactggacc tggattctgt tcctggtggc cgctgccacc 60cgggtgcaca gcatgagcct gctgaccgag gtggagacct acgtgctgtc catcatcccc 120agcggccctc tgaaggccga gatcgcccag cggctggaag atgtgttcgc cggcaagaac 180accgacctgg aagccctgat ggaatggctg aaaacccggc ccatcctgag ccccctgacc 240aagggcatcc tgggcttcgt gttcaccctg accgtgccca gcgagcgggg cctgcagcgg 300cggagattcg tgcagaacgc cctgaacggc aacggcgacc ccaacaacat ggaccgggcc 360gtgaagctgt acaagaagct gaagcgggag atcaccttcc acggcgccaa agaggtggcc 420ctgagctaca gcacaggcgc cctggccagc tgcatgggcc tgatctacaa ccggatgggc 480accgtgacca ccgaggtggc cttcggcctg gtgtgcgcca cctgcgagca gatcgccgac 540agccagcaca gatcccaccg gcagatggcc accaccacca accccctgat ccggcacgag 600aaccggatgg tcctggcctc caccaccgcc aaggccatgg aacagatggc cggcagcagc 660gagcaggccg ccgaagccat ggaagtggcc agccaggcca ggcagatggt gcaggccatg 720cggaccatcg gcacccaccc cagcagcagc gccggactgc gggacgacct gctggaaaac 780ctgcaggcct accagaaacg gatgggcgtg cagatgcagc ggttcaagta cccctacgac 840gtgcccgact acgcctgatg agcggccgcg agctc 8756279PRTArtificial SequenceInfluenza H1N1&H5N1 M1 consensus sequence 6Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 5 10 15 His Ser Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile 20 25 30 Ile Pro Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp 35 40 45 Val Phe Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu 50 55 60 Lys Thr Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe 65 70 75 80 Val Phe Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg 85 90 95 Phe Val Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp 100 105 110 Arg Ala Val Lys Leu Tyr Lys Lys Leu Lys Arg Glu Ile Thr Phe His 115 120 125 Gly Ala Lys Glu Val Ala Leu Ser Tyr Ser Thr Gly Ala Leu Ala Ser 130 135 140 Cys Met Gly Leu Ile Tyr Asn Arg Met Gly Thr Val Thr Thr Glu Val 145 150 155 160 Ala Phe Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln 165 170 175 His Arg Ser His Arg Gln Met Ala Thr Thr Thr Asn Pro Leu Ile Arg 180 185 190 His Glu Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu 195 200 205 Gln Met Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala 210 215 220 Ser Gln Ala Arg Gln Met Val Gln Ala Met Arg Thr Ile Gly Thr His 225 230 235 240 Pro Ser Ser Ser Ala Gly Leu Arg Asp Asp Leu Leu Glu Asn Leu Gln 245 250 255 Ala Tyr Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys Tyr Pro 260 265 270 Tyr Asp Val Pro Asp Tyr Ala 275 71700DNAArtificial SequenceInfluenza H5N1 M2E-NP consensus sequence 7ggtaccgaat tcgccaccat ggactggacc tggatcctgt tcctggtcgc tgccgccacc 60agggtgcaca gcagcctgct gaccgaggtg gagaccccca cccggaacga gtggggctgc 120cggtgcagcg acagcagcga ccggggcagg aagcggagaa gcgccagcca gggcaccaag 180cggagctacg agcagatgga aacaggcggc gagcggcaga acgccaccga gatccgggcc 240agcgtgggca gaatggtcgg cggcatcggc cggttctaca tccagatgtg caccgagctg 300aagctgtccg actacgaggg ccggctgatc cagaacagca tcaccatcga gcggatggtg 360ctgtccgcct tcgacgagcg gcggaacaga tacctggaag agcaccccag cgccggcaag 420gaccccaaga aaaccggcgg acccatctac cggcggaggg acggcaagtg ggtgcgggag 480ctgatcctgt acgacaaaga ggaaatccgg cggatctggc ggcaggccaa caacggcgag 540gacgccacag ccggcctgac ccacctgatg atctggcaca gcaacctgaa cgacgccacc 600taccagcgga caagggctct ggtccggacc ggcatggacc cccggatgtg cagcctgatg 660cagggcagca cactgcccag aagaagcgga gccgctggcg cagccgtgaa gggcgtgggc 720accatggtga tggaactgat ccggatgatc aagcggggca tcaacgaccg gaatttttgg 780aggggcgaga acggcaggcg gacccggatc gcctacgagc ggatgtgcaa catcctgaag 840ggcaagttcc agacagccgc ccagcgggcc atgatggacc aggtccggga gagccggaac 900cccggcaacg ccgagatcga ggacctgatc ttcctggcca gaagcgccct gatcctgcgg 960ggcagcgtgg cccacaagag ctgcctgccc gcctgcgtgt acggactggc cgtggccagc 1020ggctacgact tcgagcggga gggctacagc ctggtcggca tcgacccctt ccggctgctg 1080cagaactccc aggtgttcag cctgatccgg cccaacgaga accccgccca caagtcccag 1140ctggtctgga tggcctgcca cagcgccgcc ttcgaggatc tgagagtgag cagcttcatc 1200cggggcacca gagtggtgcc caggggccag ctgtccacca ggggcgtgca gatcgccagc 1260aacgagaaca tggaagccat ggacagcaac accctggaac tgcggagccg gtactgggcc 1320atccggacca gaagcggcgg caacaccaac cagcagcggg ccagcgccgg acagatcagc 1380gtgcagccca ccttctccgt gcagcggaac ctgcccttcg agagggccac catcatggcc 1440gccttcaccg gcaacaccga gggccggacc agcgacatgc ggaccgagat catcaggatg 1500atggaaagcg ccaggcccga ggacgtgagc ttccagggca ggggcgtgtt cgagctgtcc 1560gatgagaagg ccaccaaccc catcgtgccc agcttcgaca tgaacaacga gggcagctac 1620ttcttcggcg acaacgccga ggaatacgac aactacccct acgacgtgcc cgactacgcc 1680tgatgagcgg ccgcgagctc 17008554PRTArtificial SequenceInfluenza H5N1 M2E-NP consensus sequence 8Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 5

10 15 His Ser Ser Leu Leu Thr Glu Val Glu Thr Pro Thr Arg Asn Glu Trp 20 25 30 Gly Cys Arg Cys Ser Asp Ser Ser Asp Arg Gly Arg Lys Arg Arg Ser 35 40 45 Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Gly Gly 50 55 60 Glu Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Arg Met Val 65 70 75 80 Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys Leu 85 90 95 Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Ile Thr Ile Glu Arg 100 105 110 Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Arg Tyr Leu Glu Glu 115 120 125 His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile Tyr 130 135 140 Arg Arg Arg Asp Gly Lys Trp Val Arg Glu Leu Ile Leu Tyr Asp Lys 145 150 155 160 Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Glu Asp Ala 165 170 175 Thr Ala Gly Leu Thr His Leu Met Ile Trp His Ser Asn Leu Asn Asp 180 185 190 Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp Pro 195 200 205 Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser Gly 210 215 220 Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Met Val Met Glu Leu 225 230 235 240 Ile Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg Gly 245 250 255 Glu Asn Gly Arg Arg Thr Arg Ile Ala Tyr Glu Arg Met Cys Asn Ile 260 265 270 Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Arg Ala Met Met Asp Gln 275 280 285 Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu Ile Glu Asp Leu Ile 290 295 300 Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His Lys 305 310 315 320 Ser Cys Leu Pro Ala Cys Val Tyr Gly Leu Ala Val Ala Ser Gly Tyr 325 330 335 Asp Phe Glu Arg Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe Arg 340 345 350 Leu Leu Gln Asn Ser Gln Val Phe Ser Leu Ile Arg Pro Asn Glu Asn 355 360 365 Pro Ala His Lys Ser Gln Leu Val Trp Met Ala Cys His Ser Ala Ala 370 375 380 Phe Glu Asp Leu Arg Val Ser Ser Phe Ile Arg Gly Thr Arg Val Val 385 390 395 400 Pro Arg Gly Gln Leu Ser Thr Arg Gly Val Gln Ile Ala Ser Asn Glu 405 410 415 Asn Met Glu Ala Met Asp Ser Asn Thr Leu Glu Leu Arg Ser Arg Tyr 420 425 430 Trp Ala Ile Arg Thr Arg Ser Gly Gly Asn Thr Asn Gln Gln Arg Ala 435 440 445 Ser Ala Gly Gln Ile Ser Val Gln Pro Thr Phe Ser Val Gln Arg Asn 450 455 460 Leu Pro Phe Glu Arg Ala Thr Ile Met Ala Ala Phe Thr Gly Asn Thr 465 470 475 480 Glu Gly Arg Thr Ser Asp Met Arg Thr Glu Ile Ile Arg Met Met Glu 485 490 495 Ser Ala Arg Pro Glu Asp Val Ser Phe Gln Gly Arg Gly Val Phe Glu 500 505 510 Leu Ser Asp Glu Lys Ala Thr Asn Pro Ile Val Pro Ser Phe Asp Met 515 520 525 Asn Asn Glu Gly Ser Tyr Phe Phe Gly Asp Asn Ala Glu Glu Tyr Asp 530 535 540 Asn Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 545 550 91728DNAArtificial SequenceInfluenza H1 consensus sequence 9ggtaccaagc ttgccaccat gaaggtgaaa ctgctggtgc tgctgtgcac cttcaccgcc 60acctacgccg acaccatctg catcggctac cacgccaaca acagcaccga caccgtggat 120accgtgctgg aaaagaacgt gaccgtgacc cacagcgtga acctgctgga agatagccac 180aacggcaagc tgtgcctgct gaaaggcatc gcccccctgc agctgggcaa ctgcagcgtg 240gccggctgga tcctgggcaa ccccgagtgc gagctgctga tttccaaaga aagctggtcc 300tacatcgtgg agacccccaa ccccgagaac ggcacctgct accccggcta cttcgccgac 360tacgaggaac tgcgggagca gctgtccagc gtgagcagct tcgagcggtt cgagatcttc 420cccaaagaga gcagctggcc caaccacacc gtgaccggcg tgagcgccag ctgctcccac 480aatggcaaga gcagcttcta ccggaacctg ctgtggctga ccggcaagaa cggcctgtac 540cccaacctga gcaagagcta cgccaataac aaagaaaagg aagtgctggt gctgtggggc 600gtgcaccacc cccccaacat cggcgaccag cgggccctgt accacaccga gaacgcctac 660gtgagcgtgg tgtccagcca ctacagccgg cggttcaccc ccgagatcgc caagcggccc 720aaagtgcggg accaggaagg ccggatcaac tactactgga ccctgctgga acccggcgac 780accatcatct tcgaggccaa cggcaacctg atcgccccca gatacgcctt cgccctgagc 840cggggcttcg gcagcggcat catcaccagc aacgccccca tggacgagtg cgacgccaag 900tgccagaccc ctcagggagc tattaacagc agcctgccct tccagaacgt gcaccccgtg 960accatcggcg agtgccccaa gtacgtgcgg agcgccaagc tgcggatggt gaccggcctg 1020cggaacatcc ccagcatcca gagcaggggc ctgttcggcg ccatcgccgg cttcatcgag 1080ggcggctgga ccggcatggt ggacgggtgg tacggctacc accaccagaa cgagcagggc 1140agcggctacg ccgccgacca gaagagcacc cagaacgcca tcaacggcat caccaacaag 1200gtgaacagcg tgatcgagaa gatgaacacc cagttcaccg ccgtgggcaa agagttcaac 1260aagctggaac ggcggatgga aaacctgaac aagaaggtgg acgacggctt cctggacatc 1320tggacctaca acgccgagct gctggtgctg ctggaaaacg agcggaccct ggacttccac 1380gacagcaacg tgaagaacct gtacgagaag gtgaaaagcc agctgaagaa caacgccaaa 1440gagatcggca acggctgctt cgagttctac cacaagtgca acgacgagtg catggaaagc 1500gtgaagaatg gcacctacga ctaccccaag tacagcgagg aaagcaagct gaaccgggag 1560aagatcgacg gcgtgaagct ggaaagcatg ggcgtgtacc agatcctggc catctacagc 1620accgtcgctt ccagcctcgt cctgctcgtg tccctgggcg ccatctcctt ttggatgtgc 1680agcaacggca gcctgcagtg ccggatctgc atctgatgac tcgagctc 172810565PRTArtificial SequenceInfluenza H1 consensus sequence 10Met Lys Val Lys Leu Leu Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Asn Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Lys Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Ala Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Glu Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ala Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Gly Lys Asn Gly Leu Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Ala Asn Asn Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Pro Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asp Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Ala 260 265 270 Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Pro Met 275 280 285 Asp Glu Cys Asp Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Arg Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Gln 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565 111731DNAArtificial SequenceInfluenza H3 consensus sequence 11ggtaccaagc ttgccaccat gaaaaccatc atcgccctga gctacatcct gtgcctggtg 60ttcgcccaga agctgcccgg caacgacaac agcaccgcca ccctgtgtct gggccaccac 120gccgtgccca acggcaccat cgtgaaaaca atcaccaacg accagatcga ggtgaccaac 180gccaccgagc tggtgcagag cagcagcacc ggcggcatct gcgacagccc ccaccagatc 240ctggacggcg agaactgcac cctgatcgac gccctgctgg gcgaccctca gtgcgacggc 300ttccagaaca aaaagtggga cctgttcgtg gagcggagca aggcctacag caactgctac 360ccctacgacg tgcccgacta cgccagcctg cggagcctgg tggccagcag cggcaccctg 420gaattcaaca acgagagctt caactggacc ggcgtgaccc agaacggcac cagcagcgcc 480tgcaagcggc ggagcaacaa cagcttcttt tccagactga actggctgac ccacctgaag 540ttcaagtacc ccgccctgaa cgtgaccatg cccaacaatg agaagttcga caagctgtac 600atctggggcg tgcaccaccc cggcaccgac aatgaccaga tcagcctgta cgcccaggcc 660agcggccgga tcaccgtgag caccaagcgg agccagcaga ccgtgatccc caacatcggc 720agccggccca gagtgagaga catccccagc cggatcagca tctactggac aatcgtgaag 780cccggcgaca tcctgctgat caactccacc ggcaacctga tcgcccccag gggctacttc 840aagatcagaa gcggcaagag cagcatcatg cggagcgacg cccccatcgg caagtgcaac 900agcgagtgca tcacccccaa tggcagcatc cccaacgaca agcccttcca gaacgtgaac 960cggatcacct acggcgcctg ccccagatac gtgaagcaga acaccctgaa gctggccacc 1020ggcatgcgga acgtgcccga gaagcagacc cggggcatct tcggcgccat cgccggcttc 1080atcgagaacg gctgggaggg catggtggac gggtggtacg gcttccggca ccagaactcc 1140gagggcatcg gccaggccgc cgacctgaag agcacccagg ccgccatcaa ccagatcaac 1200ggcaagctga accggctgat cggcaagacc aacgagaagt tccaccagat cgaaaaagaa 1260ttcagcgagg tggagggccg gatccaggac ctggaaaagt acgtggagga caccaagatc 1320gacctgtgga gctacaacgc cgagctgctg gtcgccctgg aaaaccagca caccatcgac 1380ctgaccgaca gcgagatgaa caagctgttc gagcggacca agaagcagct gcgggagaac 1440gccgaggaca tgggcaacgg ctgctttaag atctaccaca agtgcgacaa cgcctgcatc 1500ggcagcatcc ggaacggcac ctacgaccac gacgtgtacc gggacgaggc cctgaacaac 1560cggttccaga tcaagggcgt ggagctgaag agcggctaca aggactggat cctgtggatc 1620agcttcgcca tcagctgctt tctgctgtgc gtggccctgc tgggattcat catgtgggcc 1680tgccagaagg gcaacatccg ctgcaacatc tgcatctgat gactcgagct c 173112566PRTArtificial SequenceInfluenza H3 consensus sequence 12Met Lys Thr Ile Ile Ala Leu Ser Tyr Ile Leu Cys Leu Val Phe Ala 1 5 10 15 Gln Lys Leu Pro Gly Asn Asp Asn Ser Thr Ala Thr Leu Cys Leu Gly 20 25 30 His His Ala Val Pro Asn Gly Thr Ile Val Lys Thr Ile Thr Asn Asp 35 40 45 Gln Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ser Ser Thr 50 55 60 Gly Gly Ile Cys Asp Ser Pro His Gln Ile Leu Asp Gly Glu Asn Cys 65 70 75 80 Thr Leu Ile Asp Ala Leu Leu Gly Asp Pro Gln Cys Asp Gly Phe Gln 85 90 95 Asn Lys Lys Trp Asp Leu Phe Val Glu Arg Ser Lys Ala Tyr Ser Asn 100 105 110 Cys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser Leu Val 115 120 125 Ala Ser Ser Gly Thr Leu Glu Phe Asn Asn Glu Ser Phe Asn Trp Thr 130 135 140 Gly Val Thr Gln Asn Gly Thr Ser Ser Ala Cys Lys Arg Arg Ser Asn 145 150 155 160 Asn Ser Phe Phe Ser Arg Leu Asn Trp Leu Thr His Leu Lys Phe Lys 165 170 175 Tyr Pro Ala Leu Asn Val Thr Met Pro Asn Asn Glu Lys Phe Asp Lys 180 185 190 Leu Tyr Ile Trp Gly Val His His Pro Gly Thr Asp Asn Asp Gln Ile 195 200 205 Ser Leu Tyr Ala Gln Ala Ser Gly Arg Ile Thr Val Ser Thr Lys Arg 210 215 220 Ser Gln Gln Thr Val Ile Pro Asn Ile Gly Ser Arg Pro Arg Val Arg 225 230 235 240 Asp Ile Pro Ser Arg Ile Ser Ile Tyr Trp Thr Ile Val Lys Pro Gly 245 250 255 Asp Ile Leu Leu Ile Asn Ser Thr Gly Asn Leu Ile Ala Pro Arg Gly 260 265 270 Tyr Phe Lys Ile Arg Ser Gly Lys Ser Ser Ile Met Arg Ser Asp Ala 275 280 285 Pro Ile Gly Lys Cys Asn Ser Glu Cys Ile Thr Pro Asn Gly Ser Ile 290 295 300 Pro Asn Asp Lys Pro Phe Gln Asn Val Asn Arg Ile Thr Tyr Gly Ala 305 310 315 320 Cys Pro Arg Tyr Val Lys Gln Asn Thr Leu Lys Leu Ala Thr Gly Met 325 330 335 Arg Asn Val Pro Glu Lys Gln Thr Arg Gly Ile Phe Gly Ala Ile Ala 340 345 350 Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Val Asp Gly Trp Tyr Gly 355 360 365 Phe Arg His Gln Asn Ser Glu Gly Ile Gly Gln Ala Ala Asp Leu Lys 370 375 380 Ser Thr Gln Ala Ala Ile Asn Gln Ile Asn Gly Lys Leu Asn Arg Leu 385 390 395 400 Ile Gly Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser 405 410 415 Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr Val Glu Asp Thr 420 425 430 Lys Ile Asp Leu Trp Ser Tyr Asn Ala Glu Leu Leu Val Ala Leu Glu 435 440 445 Asn Gln His Thr Ile Asp Leu Thr Asp Ser Glu Met Asn Lys Leu Phe 450 455 460 Glu Arg Thr Lys Lys Gln Leu Arg Glu Asn Ala Glu Asp Met Gly Asn 465 470 475 480 Gly Cys Phe Lys Ile Tyr His Lys Cys Asp Asn Ala Cys Ile Gly Ser 485 490 495 Ile Arg Asn Gly Thr Tyr Asp His Asp Val Tyr Arg Asp Glu Ala Leu 500 505 510 Asn Asn Arg Phe Gln Ile Lys Gly Val Glu Leu Lys Ser Gly Tyr Lys 515 520 525 Asp Trp Ile Leu Trp Ile Ser Phe Ala Ile Ser Cys Phe Leu Leu Cys 530 535 540 Val Ala Leu Leu Gly Phe Ile Met Trp Ala Cys Gln Lys Gly Asn Ile 545 550 555 560 Arg Cys Asn Ile Cys Ile 565 131791DNAArtificial SequenceInfluenza H5 consensus sequence 13atggactgga cctggatcct gttcctggtg gccgctgcca cccgggtgca cagcatggaa 60aagatcgtgc tgctgttcgc catcgtgagc ctggtgaaga gcgaccagat ctgcatcggc 120taccacgcca acaacagcac cgagcaggtg gacaccatca tggaaaaaaa cgtgaccgtg 180acccacgccc aggacatcct ggaaaagacc cacaacggca agctgtgcga cctggacggc 240gtgaagcccc tgatcctgcg ggactgcagc gtggccggct ggctgctggg caaccccatg 300tgcgacgagt tcatcaacgt gcccgagtgg agctacatcg tggagaaggc caaccccgtg 360aacgacctgt

gctaccccgg cgacttcaac gactacgagg aactgaagca cctgctgtcc 420cggatcaacc acttcgagaa gatccagatc atccccaaga gcagctggtc cagccacgag 480gccagcctgg gcgtgagcag cgcctgccca taccagggca agtccagctt cttccggaac 540gtggtgtggc tgatcaagaa gaacagcacc taccccacca tcaagcggag ctacaacaac 600accaaccagg aagatctgct ggtcctgtgg ggcatccacc accccaacga cgccgccgag 660cagaccaagc tgtaccagaa ccccaccacc tacatcagcg tgggcaccag caccctgaac 720cagcggctgg tgccccggat cgccacccgg tccaaggtga acggccagag cggccggatg 780gaattcttct ggaccatcct gaagcccaac gatgccatca acttcgagag caacggcaac 840ttcatcgccc ccgagtacgc ctacaagatc gtgaagaagg gcgacagcac catcatgaag 900agcgagctgg aatacggcaa ctgcaacacc aagtgccaga cccccatggg cgccatcaac 960agcagcatgc ccttccacaa catccacccc ctgaccatcg gcgagtgccc caagtacgtg 1020aagagcaaca ggctggtgct ggccaccggc ctgcggaaca gcccccagcg ggagcggcgg 1080aggaagaagc ggggcctgtt cggcgccatc gccggcttca tcgagggcgg ctggcagggc 1140atggtggacg ggtggtacgg ctaccaccac agcaatgagc agggcagcgg ctacgccgcc 1200gacaaagaga gcacccagaa ggccatcgac ggcgtcacca acaaggtgaa cagcatcatc 1260gacaagatga acacccagtt cgaggccgtg ggccgggagt tcaacaacct ggaacggcgg 1320atcgagaacc tgaacaagaa aatggaagat ggcttcctgg acgtgtggac ctacaacgcc 1380gagctgctgg tgctgatgga aaacgagcgg accctggact tccacgacag caacgtgaag 1440aacctgtacg acaaagtgcg gctgcagctg cgggacaacg ccaaagagct gggcaacggc 1500tgcttcgagt tctaccacaa gtgcgacaac gagtgcatgg aaagcgtgcg gaacggcacc 1560tacgactacc cccagtacag cgaggaagcc cggctgaagc gggaggaaat cagcggcgtg 1620aaactggaaa gcatcggcat ctaccagatc ctgagcatct acagcaccgt ggccagcagc 1680ctggccctgg ccatcatggt ggccggcctg agcctgtgga tgtgcagcaa cggcagcctg 1740cagtgccgga tctgcatcta cccctacgac gtgcccgact acgcctgatg a 179114595PRTArtificial SequenceInfluenza H5 consensus sequence 14Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 5 10 15 His Ser Met Glu Lys Ile Val Leu Leu Phe Ala Ile Val Ser Leu Val 20 25 30 Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu 35 40 45 Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln 50 55 60 Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly 65 70 75 80 Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu 85 90 95 Gly Asn Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr 100 105 110 Ile Val Glu Lys Ala Asn Pro Val Asn Asp Leu Cys Tyr Pro Gly Asp 115 120 125 Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His 130 135 140 Phe Glu Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Ser His Glu 145 150 155 160 Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Lys Ser Ser 165 170 175 Phe Phe Arg Asn Val Val Trp Leu Ile Lys Lys Asn Ser Thr Tyr Pro 180 185 190 Thr Ile Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val 195 200 205 Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Lys Leu 210 215 220 Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn 225 230 235 240 Gln Arg Leu Val Pro Arg Ile Ala Thr Arg Ser Lys Val Asn Gly Gln 245 250 255 Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala 260 265 270 Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr 275 280 285 Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu 290 295 300 Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn 305 310 315 320 Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys 325 330 335 Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg 340 345 350 Asn Ser Pro Gln Arg Glu Arg Arg Arg Lys Lys Arg Gly Leu Phe Gly 355 360 365 Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly 370 375 380 Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala 385 390 395 400 Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val 405 410 415 Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg 420 425 430 Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met 435 440 445 Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val 450 455 460 Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys 465 470 475 480 Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu 485 490 495 Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys 500 505 510 Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu 515 520 525 Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser 530 535 540 Ile Gly Ile Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser 545 550 555 560 Leu Ala Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser 565 570 575 Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile Tyr Pro Tyr Asp Val Pro 580 585 590 Asp Tyr Ala 595 154733DNAArtificial SequenceDNA plasmid having encoding sequence for influenza consensus H5N1 HA 15gctgcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta 60atagtaatca attacggggt cattagttca tagcccatat atggagttcc gcgttacata 120acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 180aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 240gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 300ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 360atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtgat 420gcggttttgg cagtacatca atgggcgtgg atagcggttt gactcacggg gatttccaag 480tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc 540aaaatgtcgt aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga 600ggtctatata agcagagctc tctggctaac tagagaaccc actgcttact ggcttatcga 660aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttggt 720accgccacca tggactggac ctggatcctg ttcctggtgg ccgctgccac ccgggtgcac 780agcatggaaa agatcgtgct gctgttcgcc atcgtgagcc tggtgaagag cgaccagatc 840tgcatcggct accacgccaa caacagcacc gagcaggtgg acaccatcat ggaaaaaaac 900gtgaccgtga cccacgccca ggacatcctg gaaaagaccc acaacggcaa gctgtgcgac 960ctggacggcg tgaagcccct gatcctgcgg gactgcagcg tggccggctg gctgctgggc 1020aaccccatgt gcgacgagtt catcaacgtg cccgagtgga gctacatcgt ggagaaggcc 1080aaccccgtga acgacctgtg ctaccccggc gacttcaacg actacgagga actgaagcac 1140ctgctgtccc ggatcaacca cttcgagaag atccagatca tccccaagag cagctggtcc 1200agccacgagg ccagcctggg cgtgagcagc gcctgcccat accagggcaa gtccagcttc 1260ttccggaacg tggtgtggct gatcaagaag aacagcacct accccaccat caagcggagc 1320tacaacaaca ccaaccagga agatctgctg gtcctgtggg gcatccacca ccccaacgac 1380gccgccgagc agaccaagct gtaccagaac cccaccacct acatcagcgt gggcaccagc 1440accctgaacc agcggctggt gccccggatc gccacccggt ccaaggtgaa cggccagagc 1500ggccggatgg aattcttctg gaccatcctg aagcccaacg atgccatcaa cttcgagagc 1560aacggcaact tcatcgcccc cgagtacgcc tacaagatcg tgaagaaggg cgacagcacc 1620atcatgaaga gcgagctgga atacggcaac tgcaacacca agtgccagac ccccatgggc 1680gccatcaaca gcagcatgcc cttccacaac atccaccccc tgaccatcgg cgagtgcccc 1740aagtacgtga agagcaacag gctggtgctg gccaccggcc tgcggaacag cccccagcgg 1800gagcggcgga ggaagaagcg gggcctgttc ggcgccatcg ccggcttcat cgagggcggc 1860tggcagggca tggtggacgg gtggtacggc taccaccaca gcaatgagca gggcagcggc 1920tacgccgccg acaaagagag cacccagaag gccatcgacg gcgtcaccaa caaggtgaac 1980agcatcatcg acaagatgaa cacccagttc gaggccgtgg gccgggagtt caacaacctg 2040gaacggcgga tcgagaacct gaacaagaaa atggaagatg gcttcctgga cgtgtggacc 2100tacaacgccg agctgctggt gctgatggaa aacgagcgga ccctggactt ccacgacagc 2160aacgtgaaga acctgtacga caaagtgcgg ctgcagctgc gggacaacgc caaagagctg 2220ggcaacggct gcttcgagtt ctaccacaag tgcgacaacg agtgcatgga aagcgtgcgg 2280aacggcacct acgactaccc ccagtacagc gaggaagccc ggctgaagcg ggaggaaatc 2340agcggcgtga aactggaaag catcggcatc taccagatcc tgagcatcta cagcaccgtg 2400gccagcagcc tggccctggc catcatggtg gccggcctga gcctgtggat gtgcagcaac 2460ggcagcctgc agtgccggat ctgcatctac ccctacgacg tgcccgacta cgcctgatga 2520ctcgagtcta gagggcccgt ttaaacccgc tgatcagcct cgactgtgcc ttctagttgc 2580cagccatctg ttgtttgccc ctcccccgtg ccttccttga ccctggaagg tgccactccc 2640actgtccttt cctaataaaa tgaggaaatt gcatcgcatt gtctgagtag gtgtcattct 2700attctggggg gtggggtggg gcaggacagc aagggggagg attgggaaga caatagcagg 2760catgctgggg atgcggtggg ctctatggct tctactgggc ggttttatgg acagcaagcg 2820aaccggaatt gccagctggg gcgccctctg gtaaggttgg gaagccctgc aaagtaaact 2880ggatggcttt cttgccgcca aggatctgat ggcgcagggg atcaagctct gatcaagaga 2940caggatgagg atcgtttcgc atgattgaac aagatggatt gcacgcaggt tctccggccg 3000cttgggtgga gaggctattc ggctatgact gggcacaaca gacaatcggc tgctctgatg 3060ccgccgtgtt ccggctgtca gcgcaggggc gcccggttct ttttgtcaag accgacctgt 3120ccggtgccct gaatgaactg caagacgagg cagcgcggct atcgtggctg gccacgacgg 3180gcgttccttg cgcagctgtg ctcgacgttg tcactgaagc gggaagggac tggctgctat 3240tgggcgaagt gccggggcag gatctcctgt catctcacct tgctcctgcc gagaaagtat 3300ccatcatggc tgatgcaatg cggcggctgc atacgcttga tccggctacc tgcccattcg 3360accaccaagc gaaacatcgc atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg 3420atcaggatga tctggacgaa gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc 3480tcaaggcgag catgcccgac ggcgaggatc tcgtcgtgac ccatggcgat gcctgcttgc 3540cgaatatcat ggtggaaaat ggccgctttt ctggattcat cgactgtggc cggctgggtg 3600tggcggaccg ctatcaggac atagcgttgg ctacccgtga tattgctgaa gagcttggcg 3660gcgaatgggc tgaccgcttc ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca 3720tcgccttcta tcgccttctt gacgagttct tctgaattat taacgcttac aatttcctga 3780tgcggtattt tctccttacg catctgtgcg gtatttcaca ccgcatcagg tggcactttt 3840cggggaaatg tgcgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat 3900ccgctcatga gacaataacc ctgataaatg cttcaataat agcacgtgct aaaacttcat 3960ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac caaaatccct 4020taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct 4080tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca 4140gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aactggcttc 4200agcagagcgc agataccaaa tactgttctt ctagtgtagc cgtagttagg ccaccacttc 4260aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc agtggctgct 4320gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt accggataag 4380gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga gcgaacgacc 4440tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg 4500agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg cacgagggag 4560cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cctctgactt 4620gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac 4680gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt ctt 4733164418DNAArtificial SequenceDNA plasmid having encoding sequence for influenza consensus NA 16gctgcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta 60atagtaatca attacggggt cattagttca tagcccatat atggagttcc gcgttacata 120acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 180aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 240gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 300ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 360atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtgat 420gcggttttgg cagtacatca atgggcgtgg atagcggttt gactcacggg gatttccaag 480tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc 540aaaatgtcgt aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga 600ggtctatata agcagagctc tctggctaac tagagaaccc actgcttact ggcttatcga 660aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttggt 720accgagctcg gatccactag tccagtgtgg tggaattcgc caccatggac tggacctgga 780tcctgttcct ggtggccgct gccacccggg tgcacagcat gaaccccaac cagaagatca 840tcaccatcgg cagcatctgc atggtgatcg gcatcgtgag cctgatgctg cagatcggca 900acatgatcag catctgggtg tcccacagca tccagaccgg caaccagcac caggccgagc 960ccatcagcaa caccaacttt ctgaccgaga aggccgtggc cagcgtgacc ctggccggca 1020acagcagcct gtgccccatc agcggctggg ccgtgtacag caaggacaac agcatccgga 1080tcggcagcaa gggcgacgtg ttcgtgatcc gggagccctt catcagctgc agccacctgg 1140aatgccggac cttcttcctg acccaggggg ccctgctgaa cgacaagcac agcaacggca 1200ccgtgaagga cagaagcccc taccggaccc tgatgagctg ccccgtgggc gaggccccca 1260gcccctacaa cagccggttc gagagcgtgg cctggtccgc cagcgcctgc cacgacggca 1320ccagctggct gaccatcggc atcagcggcc ctgacaacgg cgccgtggcc gtgctgaagt 1380acaacggcat catcaccgac accatcaaga gctggcggaa caacatcctg cggacccagg 1440aaagcgagtg cgcctgcgtg aacggcagct gcttcaccgt gatgaccgac ggccccagca 1500acggccaggc cagctacaag atcttcaaga tggaaaaggg caaggtggtg aagagcgtgg 1560agctggacgc ccccaactac cactacgagg aatgcagctg ctaccccgac gccggcgaga 1620tcacctgcgt gtgccgggac aactggcacg gcagcaaccg gccctgggtg tccttcaacc 1680agaacctgga ataccagatc ggctacatct gcagcggcgt gttcggcgac aaccccaggc 1740ccaacgatgg caccggcagc tgcggccctg tgagcgccaa cggcgcctac ggcgtgaagg 1800gcttcagctt caagtacggc aacggcgtgt ggatcggccg gaccaagagc accaacagca 1860gatccggctt cgagatgatc tgggacccca acggctggac cgagaccgac agcagcttca 1920gcgtgaagca ggacatcgtg gccatcaccg actggtccgg ctacagcggc agcttcgtgc 1980agcaccccga gctgaccggc ctggactgca tccggccctg cttttgggtg gagctgatca 2040gaggcaggcc caaagagagc accatctgga ccagcggcag cagcatcagc ttttgcggcg 2100tgaacagcga caccgtgagc tggtcctggc ccgacggcgc cgagctgccc ttcaccatcg 2160acaagtaccc ctacgacgtg cccgactacg cctgatgagc ggccgctcga gtctagaggg 2220cccgtttaaa cccgctgatc agcctcgact gtgccttcta gttgccagcc atctgttgtt 2280tgcccctccc ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt cctttcctaa 2340taaaatgagg aaattgcatc gcattgtctg agtaggtgtc attctattct ggggggtggg 2400gtggggcagg acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg 2460gtgggctcta tggcttctac tgggcggttt tatggacagc aagcgaaccg gaattgccag 2520ctggggcgcc ctctggtaag gttgggaagc cctgcaaagt aaactggatg gctttcttgc 2580cgccaaggat ctgatggcgc aggggatcaa gctctgatca agagacagga tgaggatcgt 2640ttcgcatgat tgaacaagat ggattgcacg caggttctcc ggccgcttgg gtggagaggc 2700tattcggcta tgactgggca caacagacaa tcggctgctc tgatgccgcc gtgttccggc 2760tgtcagcgca ggggcgcccg gttctttttg tcaagaccga cctgtccggt gccctgaatg 2820aactgcaaga cgaggcagcg cggctatcgt ggctggccac gacgggcgtt ccttgcgcag 2880ctgtgctcga cgttgtcact gaagcgggaa gggactggct gctattgggc gaagtgccgg 2940ggcaggatct cctgtcatct caccttgctc ctgccgagaa agtatccatc atggctgatg 3000caatgcggcg gctgcatacg cttgatccgg ctacctgccc attcgaccac caagcgaaac 3060atcgcatcga gcgagcacgt actcggatgg aagccggtct tgtcgatcag gatgatctgg 3120acgaagagca tcaggggctc gcgccagccg aactgttcgc caggctcaag gcgagcatgc 3180ccgacggcga ggatctcgtc gtgacccatg gcgatgcctg cttgccgaat atcatggtgg 3240aaaatggccg cttttctgga ttcatcgact gtggccggct gggtgtggcg gaccgctatc 3300aggacatagc gttggctacc cgtgatattg ctgaagagct tggcggcgaa tgggctgacc 3360gcttcctcgt gctttacggt atcgccgctc ccgattcgca gcgcatcgcc ttctatcgcc 3420ttcttgacga gttcttctga attattaacg cttacaattt cctgatgcgg tattttctcc 3480ttacgcatct gtgcggtatt tcacaccgca tcaggtggca cttttcgggg aaatgtgcgc 3540ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 3600taaccctgat aaatgcttca ataatagcac gtgctaaaac ttcattttta atttaaaagg 3660atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg 3720ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt 3780ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg 3840ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata 3900ccaaatactg ttcttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca 3960ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag 4020tcgtgtctta ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc 4080tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga 4140tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg 4200tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac 4260gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg 4320tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg 4380ttcctggcct tttgctggcc ttttgctcac atgttctt 4418174652DNAArtificial SequenceDNA plasmid having encoding sequence for influenza consensus M2e-NP 17gctgcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta 60atagtaatca attacggggt cattagttca tagcccatat atggagttcc gcgttacata 120acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 180aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc

aatgggtgga 240gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 300ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 360atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtgat 420gcggttttgg cagtacatca atgggcgtgg atagcggttt gactcacggg gatttccaag 480tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc 540aaaatgtcgt aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga 600ggtctatata agcagagctc tctggctaac tagagaaccc actgcttact ggcttatcga 660aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttggt 720accgagctcg gatccactag tccagtgtgg tggaattcgc caccatggac tggacctgga 780tcctgttcct ggtcgctgcc gccaccaggg tgcacagcag cctgctgacc gaggtggaga 840cccccacccg gaacgagtgg ggctgccggt gcagcgacag cagcgaccgg ggcaggaagc 900ggagaagcgc cagccagggc accaagcgga gctacgagca gatggaaaca ggcggcgagc 960ggcagaacgc caccgagatc cgggccagcg tgggcagaat ggtcggcggc atcggccggt 1020tctacatcca gatgtgcacc gagctgaagc tgtccgacta cgagggccgg ctgatccaga 1080acagcatcac catcgagcgg atggtgctgt ccgccttcga cgagcggcgg aacagatacc 1140tggaagagca ccccagcgcc ggcaaggacc ccaagaaaac cggcggaccc atctaccggc 1200ggagggacgg caagtgggtg cgggagctga tcctgtacga caaagaggaa atccggcgga 1260tctggcggca ggccaacaac ggcgaggacg ccacagccgg cctgacccac ctgatgatct 1320ggcacagcaa cctgaacgac gccacctacc agcggacaag ggctctggtc cggaccggca 1380tggacccccg gatgtgcagc ctgatgcagg gcagcacact gcccagaaga agcggagccg 1440ctggcgcagc cgtgaagggc gtgggcacca tggtgatgga actgatccgg atgatcaagc 1500ggggcatcaa cgaccggaat ttttggaggg gcgagaacgg caggcggacc cggatcgcct 1560acgagcggat gtgcaacatc ctgaagggca agttccagac agccgcccag cgggccatga 1620tggaccaggt ccgggagagc cggaaccccg gcaacgccga gatcgaggac ctgatcttcc 1680tggccagaag cgccctgatc ctgcggggca gcgtggccca caagagctgc ctgcccgcct 1740gcgtgtacgg actggccgtg gccagcggct acgacttcga gcgggagggc tacagcctgg 1800tcggcatcga ccccttccgg ctgctgcaga actcccaggt gttcagcctg atccggccca 1860acgagaaccc cgcccacaag tcccagctgg tctggatggc ctgccacagc gccgccttcg 1920aggatctgag agtgagcagc ttcatccggg gcaccagagt ggtgcccagg ggccagctgt 1980ccaccagggg cgtgcagatc gccagcaacg agaacatgga agccatggac agcaacaccc 2040tggaactgcg gagccggtac tgggccatcc ggaccagaag cggcggcaac accaaccagc 2100agcgggccag cgccggacag atcagcgtgc agcccacctt ctccgtgcag cggaacctgc 2160ccttcgagag ggccaccatc atggccgcct tcaccggcaa caccgagggc cggaccagcg 2220acatgcggac cgagatcatc aggatgatgg aaagcgccag gcccgaggac gtgagcttcc 2280agggcagggg cgtgttcgag ctgtccgatg agaaggccac caaccccatc gtgcccagct 2340tcgacatgaa caacgagggc agctacttct tcggcgacaa cgccgaggaa tacgacaact 2400acccctacga cgtgcccgac tacgcctgat gagcggccgc tcgagtctag agggcccgtt 2460taaacccgct gatcagcctc gactgtgcct tctagttgcc agccatctgt tgtttgcccc 2520tcccccgtgc cttccttgac cctggaaggt gccactccca ctgtcctttc ctaataaaat 2580gaggaaattg catcgcattg tctgagtagg tgtcattcta ttctgggggg tggggtgggg 2640caggacagca agggggagga ttgggaagac aatagcaggc atgctgggga tgcggtgggc 2700tctatggctt ctactgggcg gttttatgga cagcaagcga accggaattg ccagctgggg 2760cgccctctgg taaggttggg aagccctgca aagtaaactg gatggctttc ttgccgccaa 2820ggatctgatg gcgcagggga tcaagctctg atcaagagac aggatgagga tcgtttcgca 2880tgattgaaca agatggattg cacgcaggtt ctccggccgc ttgggtggag aggctattcg 2940gctatgactg ggcacaacag acaatcggct gctctgatgc cgccgtgttc cggctgtcag 3000cgcaggggcg cccggttctt tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc 3060aagacgaggc agcgcggcta tcgtggctgg ccacgacggg cgttccttgc gcagctgtgc 3120tcgacgttgt cactgaagcg ggaagggact ggctgctatt gggcgaagtg ccggggcagg 3180atctcctgtc atctcacctt gctcctgccg agaaagtatc catcatggct gatgcaatgc 3240ggcggctgca tacgcttgat ccggctacct gcccattcga ccaccaagcg aaacatcgca 3300tcgagcgagc acgtactcgg atggaagccg gtcttgtcga tcaggatgat ctggacgaag 3360agcatcaggg gctcgcgcca gccgaactgt tcgccaggct caaggcgagc atgcccgacg 3420gcgaggatct cgtcgtgacc catggcgatg cctgcttgcc gaatatcatg gtggaaaatg 3480gccgcttttc tggattcatc gactgtggcc ggctgggtgt ggcggaccgc tatcaggaca 3540tagcgttggc tacccgtgat attgctgaag agcttggcgg cgaatgggct gaccgcttcc 3600tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg 3660acgagttctt ctgaattatt aacgcttaca atttcctgat gcggtatttt ctccttacgc 3720atctgtgcgg tatttcacac cgcatcaggt ggcacttttc ggggaaatgt gcgcggaacc 3780cctatttgtt tatttttcta aatacattca aatatgtatc cgctcatgag acaataaccc 3840tgataaatgc ttcaataata gcacgtgcta aaacttcatt tttaatttaa aaggatctag 3900gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt ttcgttccac 3960tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc 4020gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat 4080caagagctac caactctttt tccgaaggta actggcttca gcagagcgca gataccaaat 4140actgttcttc tagtgtagcc gtagttaggc caccacttca agaactctgt agcaccgcct 4200acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga taagtcgtgt 4260cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg 4320gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta 4380cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg 4440gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg 4500tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc 4560tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt acggttcctg 4620gccttttgct ggccttttgc tcacatgttc tt 4652

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed