T Cells Modified To Overexpress C-myb

Gautam; Sanjivan ;   et al.

Patent Application Summary

U.S. patent application number 15/754078 was filed with the patent office on 2018-09-13 for t cells modified to overexpress c-myb. This patent application is currently assigned to The USA, as represented by the Secretary Department of Health and Human Services. The applicant listed for this patent is The USA, as represented by the Secretary Department of Health and Human Services, The USA, as represented by the Secretary Department of Health and Human Services. Invention is credited to Luca Gattinoni, Sanjivan Gautam, Yun Ji.

Application Number20180258394 15/754078
Document ID /
Family ID56940360
Filed Date2018-09-13

United States Patent Application 20180258394
Kind Code A1
Gautam; Sanjivan ;   et al. September 13, 2018

T CELLS MODIFIED TO OVEREXPRESS C-MYB

Abstract

Provided is an isolated or purified T cell comprising an antigen-specific receptor, wherein the antigen-specific receptor is a T cell receptor (TCR) or a chimeric antigen receptor (CAR), wherein the T cell has been modified to express a transcription factor at a level that is higher than the level of the transcription factor expressed by a T cell that has not been modified to express the transcription factor, wherein the transcription factor is V-Myb Avian Myeloblastosis Viral Oncogene Homolog (c-Myb), a functional variant of c-Myb, or a functional fragment of c-Myb. Related populations of cells, pharmaceutical compositions, methods of treating a disease, and methods of inhibiting the differentiation of T cells are also provided.


Inventors: Gautam; Sanjivan; (Rockville, MD) ; Ji; Yun; (Germantown, MD) ; Gattinoni; Luca; (Washington, DC)
Applicant:
Name City State Country Type

The USA, as represented by the Secretary Department of Health and Human Services

Bethesda

MD

US
Assignee: The USA, as represented by the Secretary Department of Health and Human Services
Bethesda
MD

Family ID: 56940360
Appl. No.: 15/754078
Filed: August 24, 2016
PCT Filed: August 24, 2016
PCT NO: PCT/US2016/048435
371 Date: February 21, 2018

Related U.S. Patent Documents

Application Number Filing Date Patent Number
62209497 Aug 25, 2015

Current U.S. Class: 1/1
Current CPC Class: A61K 35/17 20130101; A61K 2035/124 20130101; A61P 35/00 20180101; C12N 5/0638 20130101; C07K 14/7051 20130101; C07K 14/82 20130101; A61P 31/12 20180101
International Class: C12N 5/0783 20060101 C12N005/0783; C07K 14/82 20060101 C07K014/82; C07K 14/725 20060101 C07K014/725; A61K 35/17 20060101 A61K035/17

Claims



1. An isolated or purified T cell comprising an antigen-specific receptor, wherein the antigen-specific receptor is a T cell receptor (TCR) or a chimeric antigen receptor (CAR), wherein the T cell has been modified to express a transcription factor at a level that is higher than the level of the transcription factor expressed by a T cell that has not been modified to express the transcription factor, wherein the transcription factor is V-Myb Avian Myeloblastosis Viral Oncogene Homolog (c-Myb), a functional variant of c-Myb, or a functional fragment of c-Myb.

2. The isolated or purified T cell according to claim 1, comprising a vector comprising (i) a nucleic acid encoding the transcription factor, and (ii) a heterologous nucleic acid sequence, wherein the level of the transcription factor expressed by the T cell is increased as compared to the level of the transcription factor expressed by a T cell that lacks the vector.

3. The isolated or purified T cell of claim 2, wherein the vector is a viral vector.

4. The isolated or purified T cell of claim 2, wherein the nucleic acid encodes a c-Myb amino acid sequence having at least 90% identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 3-4 and 13-20.

5. The isolated or purified T cell of claim 2, wherein the nucleic acid has at least 90% identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-2, 5-12, and 21.

6. The isolated or purified T cell according to claim 1, wherein the receptor has antigenic specificity for a cancer antigen.

7. The isolated or purified T cell according to claim 1, wherein the receptor has antigenic specificity for a viral antigen.

8. The isolated or purified T cell according to claim 1, wherein the T cell is CD62L.sup.+.

9. The isolated or purified T cell according to claim 1, wherein the T cell is KLRG1.sup.-.

10. The isolated or purified T cell of claim 1, wherein the c-Myb is human c-Myb.

11. The isolated or purified T cell of claim 1, wherein the T cell is CD8.sup.+.

12. The isolated or purified T cell of claim 1, wherein the receptor is a recombinant TCR.

13. The isolated or purified T cell of claim 1, wherein the receptor is a chimeric antigen receptor (CAR).

14. The isolated or purified T cell of claim 1, wherein the receptor is an endogenous TCR.

15. A population of T cells comprising at least two T cells of claim 1.

16. A pharmaceutical composition comprising the population of T cells of claim 15 and a pharmaceutically acceptable carrier.

17.-18. (canceled)

19. A method of inhibiting the differentiation of T cells, the method comprising introducing a nucleic acid encoding a transcription factor into isolated or purified T cells under conditions sufficient to obtain an increased expression of the transcription factor as compared to T cells that lack the introduced nucleic acid, wherein the transcription factor is c-Myb, a functional variant of c-Myb, or a functional fragment of c-Myb, and wherein the increased expression of the transcription factor inhibits differentiation of the T cells.

20. The method according to claim 19, comprising increasing CD62L expression by the T cells.

21. The method according to claim 19, comprising decreasing KLRG1 expression by the T cells.

22. A method of treating or preventing a disease in a mammal, the method comprising administering to the mammal the population of T cells of claim 15 in an amount effective to treat or prevent the disease in the mammal, wherein the disease is a cancer or a viral disease.

23. The method of claim 22, wherein the T cells of the population are autologous to the mammal.
Description



CROSS-REFERENCE TO RELATED APPLICATION

[0001] This patent application claims the benefit of U.S. Provisional Patent Application No, 62/209,497, filed Aug. 25, 2015, which is incorporated by reference in its entirety herein.

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY

[0002] Incorporated by reference in its entirety herein is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith and identified as follows: One 106,200 Byte ASCII (Text) file named "726282_ST25.txt" dated Aug. 24, 2016.

BACKGROUND OF THE INVENTION

[0003] Adoptive cell therapy can be an effective treatment for diseases (e,g., cancer) in some patients. However, obstacles to the overall success of adoptive cell therapy still exist. For example, the in vivo persistence, survival, and anti-tumor activity of T cells can, in some cases, decrease following adoptive transfer. Alternatively or additionally, in some cases, the increased differentiation of T cells can pose obstacles to the treatment of diseases.

[0004] In spite of considerable research into methods of producing cells for adoptive cell therapy and treatments for cancer and viral diseases, there still exists a need for improved methods for producing cells for adoptive cell therapy and treating and/or preventing cancer and viral diseases.

BRIEF SUMMARY OF THE INVENTION

[0005] An embodiment of the invention provides an isolated or purified T cell comprising an antigen-specific receptor, wherein the antigen-specific receptor is a T cell receptor (TCR) or a chimeric antigen receptor (CAR), wherein the T cell has been modified to express a transcription factor at a level that is higher than the level of the transcription factor expressed by a T cell that has not been modified to express the transcription factor, wherein the transcription factor is V-Myb Avian Myeloblastosis Viral Oncogene Homolog (c-Myb), a functional variant of c-Myb, or a functional fragment of c-Myb.

[0006] Another embodiment of the invention provides a method of inhibiting the differentiation of T cells, the method comprising introducing a nucleic acid encoding a transcription factor into isolated or purified T cells under conditions sufficient to obtain an increased expression of the transcription factor as compared to T cells that lack the introduced nucleic acid, wherein the transcription factor is c-Myb, a functional variant of c-Myb, or a functional fragment of c-Myb, and wherein the increased expression of the transcription factor inhibits differentiation of the T cells.

[0007] Further embodiments of the invention provide related populations of T cells, pharmaceutical compositions, and methods of treating a disease.

BRIEF DESCRIPTION OF THE. SEVERAL VIEWS OF THE DRAWINGS

[0008] FIG. 1A is a graph showing the quantity of Thy1.1.sup.+ pme1-1 CD8.sup.+ T cells measured at three and five days after adoptive transfer of wild-type (WT) CD8.sup.+ T (circles) or pme1-1 Myb.sup.-/- CD8.sup.+ T (squares) cells into WT mice infected with gp-100 vaccinia virus (VV).

[0009] FIG. 1B is a graph showing the percentage of KLRG1.sup.30 CD62L.sup.- cells obtained from the spleen on day five after adoptive transfer of WT CD8.sup.+T (circles) or pme1-1 Myb.sup.-/- CD8.sup.+ T (squares) cells into WT mice infected with gp-100 vaccinia virus (VV). There were four mice in each treatment group.

[0010] FIG. 2A is a graph showing the total number of Thy1.1.sup.+ pme1-1 CD8.sup.+ T cells in the spleen after adoptive transfer of Thy1.1 CD8.sup.+ (circles) or Thy1.1 Myb CD8.sup.+ T cells (squares) into WT mice infected with gp100-VV, assessed at 0-30 days after transfer. Data represent mean and error bars are S.E.M.

[0011] FIG. 2B is a graph showing the total number of Thy1.1.sup.+ pme1-1 CD8.sup.+ T cells in the spleen after adoptive transfer of Thy1.1 CD8.sup.+ (shaded bars) or Thy1.1 Myb CD8.sup.+ T cells (unshaded bars) into WT mice infected with gp100-VV, assessed at 5 days after heterologous reinfection (on day 30 of gp100-VV infection) with gp100 adenovirus. Data represent mean and error bars are S.E.M.

[0012] FIGS. 2C and 2E are graphs showing the total number of KLRG1.sup.+CD62L.sup.- cells (FIG. 2C) or KLRG1.sup.-CD62L.sup.+ cells (FIG. 2E) from spleen 3-30 days post transfer of Thy1.1 CD8.sup.+ (circles) or Thy1.1 Myb CD8.sup.+ T cells (squares) into WT mice infected with gp100-VV (after gating on Thy1.1.sup.+ Ly5.1.sup.-CD8.sup.+ cells or Thy1.1.sup.+ Ly5.1.sup.+ CD8.sup.+ T cells).

[0013] FIGS. 2D and 2F are graphs showing the total number of KLRG1.sup.+CD62L.sup.-cells (FIG. 2D) or KLRG1.sup.-CD62L.sup.+ cells (FIG. 2F) from spleen 5 days post transfer after heterologous reinfection (on day 30 of gp100-VV infection) with gp100 adenovirus (after gating on Thy1.1.sup.+ Ly5.1.sup.-CD8.sup.+ cells or Thy1.1.sup.+ Ly5.1.sup.+CD8.sup.+ T cells).

[0014] FIGS. 3A and 3B are graphs showing the percentage of Thy1.1.sup.+ cells from the lymph nodes (A) and lungs (B) after adoptive transfer of Thy1.1 CD8.sup.+ (shaded bars) or Thy1.1 Myb CD8.sup.+ T cells (unshaded bars) into WT mice infected with gp100-VV 5-30 days post-transfer.

[0015] FIGS. 3C and 3D are graphs showing the percentage of KLRG1- CD62L.sup.+Thy1.1.sup.+ cells (C) or KLRG1.sup.+CD62L.sup.- (D) cells from lymph node and lungs 5-30 days (C) or 5 days (D) post transfer of Thy1.1 CD8.sup.+ (shaded bars) or Thy1.1 Myb CD8.sup.+ T cells (unshaded bars) into WT mice infected with gp100-VV.

[0016] FIGS. 3E and 3F are graphs showing the percentage of Thy1.1.sup.+ cells from lymph nodes (E) and lungs (F) 5 days post transfer after heterologous reinfection with gp100 adenovirus (on day 30 of gp100-VV infection) after gating on Thy1.1.sup.+ Ly5.1.sup.-CD8.sup.+ cells or Thy1.1.sup.+ Ly5.1.sup.+ CD8.sup.+ T cells.

[0017] FIGS. 4A and 4B are graphs showing the percentage of KLRG1- CD62L.sup.+Thy1.1.sup.+ cells (A) or KLRG1.sup.+CD62L.sup.- (B) cells from lymph node and lungs 5 days post transfer after heterologous reinfection with gp100 adenovirus (on day 30 of gp100-VV infection) after gating on Thy1.1.sup.30 Ly5.1.sup.-CD8.sup.+ cells or Thy1.1.sup.+ Ly5.1.sup.+ CD8.sup.+ T cells.

[0018] FIG. 5A is a graph showing the percentage of BrdU-positive, Thy1.1.sup.+ pme1-1.sup.+ WT (circles) and BrdU-positive, Thy1.1.sup.+ pme1-1.sup.+ c-Myb.sup.-/- CD8.sup.+ T cells (squares) after transfer into gp-100VV-infected mice. Data were obtained from 3 or 4 mice per group. Data show mean and error bars are standard errors of mean. **P<0.01.

[0019] FIG. 5B is a graph showing the percentage of Annexin V-positive, Thy1.1.sup.+ pme1-1.sup.+ WT (circles) and Annexin V-positive, Thy1.1.sup.+ pme1-1.sup.+ c-Myb.sup.-/- CD8.sup.+ T cells (squares) after transfer into gp-100VV-infected mice. Data were obtained from 3 or 4 mice per group. Data show mean and error bars are standard errors of mean. *P<0.05.

[0020] FIG. 6A is a graph showing the expression of Zeb2 relative to the expression of Rp113 in WT or c-Myb.sup.-/- naive, CD62L.sup.+ and CD62L.sup.-populations of pme1-1 CD8.sup.+ T cells before (0) or 5 days after adoptive transfer into recipient wild-type mice infected with gp100-VV. WT naive (.box-solid.), c-Myb.sup.-/- naive (.quadrature.), WT CD62L.sup.HI (.tangle-solidup.), c-Myb.sup.-/- CD62L.sup.HI (.DELTA.), WT CD62L.sup.LO (.circle-solid.), c-Myb.sup.-/- CD62L.sup.LO (.smallcircle.).

[0021] FIG. 68 is a graph showing the expression of Tcf7 relative to the expression of beta-actin in WT or c-Myb.sup.-/- naive, CD62L.sup.+ and CD62L.sup.- populations of pme1-1 CD8.sup.+ T cells before (0) or 5 days after adoptive transfer into recipient wild-type mice infected with gp100-VV. WT naive (.box-solid.), c-Myb.sup.-/- naive (.quadrature.), WT CD62L.sup.HI (.tangle-solidup.), c-Myb.sup.-/- CD62L.sup.HI (.DELTA.), WT CD62L.sup.LO (.circle-solid.), c-Myb.sup.-/- CD62L.sup.LO (.smallcircle.).

[0022] FIG. 6C is a graph showing the expression of Zeb2 relative to the expression of Rp113 by CD62L.sup.- populations of Thy1.1 (.tangle-solidup.) or Thy1.1 c-Myb overexpressing () pme1-1 CD8.sup.+ T cells 5 days after adoptive transfer into recipient wild-type mice infected with gp100-VV. WT (circles) and MYB.sup.-/- (squares) T cells served as controls.

[0023] FIG. 6D is a graph showing the expression of Tcf7 relative to the expression of beta-actin by CD62L.sup.- populations of Thy1.1 (.tangle-solidup.) or Thy1.1 c-Myb overexpressing () pme1-1 CD8.sup.+ T cells 5 d after adoptive transfer into recipient wild-type mice infected with gp100-VV. WT (circles) and MYB.sup.-/- (squares) T cells served as controls.

[0024] FIG. 6E is a graph showing the expression pattern of c-Myb (circles) and Tcf7 (squares) in naive, CD62L.sup.+ and CD62L.sup.- populations 5 days after adoptive transfer into recipient wild-type mice infected with gp100-VV. Results are presented relative to Actb (encoding .beta.-actin).

[0025] FIG. 6F is a graph showing the expression pattern of c-Myb (circles) and Zeb2 (squares) in naive, CD62L.sup.+ and CD62L.sup.- populations 5 days after adoptive transfer into recipient wild-type mice infected with gp100-VV. Results are presented relative to Actb (encoding .beta.-actin) err Rp113 mRNA.

[0026] FIG. 6G is a graph showing the results or a quantitative PCR analysis of the promoter regions of Tcf7 and Zeb2 in chromatin immunoprecipitation with anti-IgG or anti-c-Myb. Error bars represent standard errors of mean. ***P<0.001, **P<0.1, *P<0.05.

[0027] FIG. 7 is a graph showing the mean fluorescence index (MFI) of GFP expression measured in Thy1.1 or Thy1.1 c-Myb CD8.sup.+ T cells from Tcf7 GFP reporter mice (p45 mice) on day 3 after in vitro activation of naive cells and on day 2 after retroviral transduction of either Thy1.1 (circles) or Thy1.1 c-Myb (squares).

[0028] FIG. 8 is a graph showing the percentage of KLRG1.sup.hi CD8 T cells five days after adoptive transfer of WT (circles) or c-Myb-/- CD8+ T cells transduced either with an empty vector control MIG (squares) or Tcf7 MIG (triangles) into recipient mice.

DETAILED DESCRIPTION OF THE INVENTION

[0029] V-Myb Avian Myeloblastosis Viral Oncogene Homolog (c-Myb) is a transcription factor that is a member of the MYB family of transcription factor genes. The c-Myb protein contains three domains: an N-terminal DNA-binding domain, a central transcriptional activation domain, and a C;-terminal transcriptional repression domain.

[0030] It has been discovered that c-Myb is involved i T cell differentiation. In particular, it has been discovered that T cells lacking c-Myb are more differentiated as compared to their wild-type counterparts, whereas T cells that are modified to overexpress c-Myb are less differentiated than their wild-type counterparts.

[0031] An embodiment of the invention provides an isolated or purified T cell comprising an antigen-specific receptor. The T cell has been modified to express a transcription factor at a level that is higher than the level of the transcription factor expressed by a T cell that has not been modified to express the transcription factor, wherein the transcription factor is c-Myb, a functional variant of c-Myb, or a functional fragment of c-Myb. Hereinafter, c-Myb, functional variants of c-Myb, and functional fragments of c-Myb are referred to collectively as "c-Myb," unless specified otherwise.

[0032] The inventive T cells have been modified to overexpress c-Myb. In this regard, the modified T cell expresses c-Myb at a level that is higher than the level of c-Myb expressed by a T cell that has not been modified with respect to c-Myb expression (e.g., wild-type T cells). For example, if the T cell has been modified to comprise a vector encoding c-Myb, as described in more detail below, the modified T cell including the vector expresses c-Myb at a level that is higher than the level of c-Myb expressed by a control T cell that does not contain the vector,

[0033] The inventive T cells may provide many advantages, for example, an increase of any one or more of in vivo proliferation, survival, persistence, anti-tumor activity, and anti-viral activity as compared to T cells that have not been modified to overexpress c-Myb (e.g., T cells that lack the vector). The inventive T cells may be less differentiated as compared to T cells that have not been modified to overexpress c-Myb T cells that lack the vector). The numbers of less differentiated T cells are believed to expand to greater numbers in vitro as compared to more differentiated T cells. Therefore, the inventive T cells may he suitable for adoptive cell therapy.

[0034] The T cell may be isolated or purified. The term "isolated," as used herein, means having been removed from its natural environment. The term "purified," as used herein, means having been increased in purity, wherein "purity" is a relative term, and not to be necessarily construed as absolute purity. A "purified" T cell refers to a T cell which has been separated from other natural components, such as tissues, cells, proteins, nucleic acids, etc.

[0035] The T cell can be any T cell, such as a cultured T e.g., a primary T cell, or a T cell from a cultured T cell line, e.g., Jurkat, SupT1 etc., or a T cell obtained from a mammal. If obtained from a mammal, the T cell can be obtained from numerous sources, including but not limited to blood, bone marrow, lymph node, thymus, spleen, or other tissues or fluids. Cells can also be enriched for or purified. Preferably, the T cell is a human T cell. The T cell can be any type of T cell and can be of any developmental stage, including but not limited to, CD4.sup.+/CD8.sup.+ double positive T cells, CD4.sup.+ helper T cells, e.g., Th.sub.1 and Th.sub.2 cells, CD4.sup.+ T cells, CD8.sup.+ T cells (e.g., cytotoxic T cells), peripheral blood mononuclear cells (PBMCs), peripheral blood leukocytes (PBLs), tumor infiltrating cells (TILs), memory T cells, naive T cells, and the like. Preferably, the cell is a CD8.sup.+ T cell.

[0036] The inventive compositions can comprise a single T cell or a population thereof. The population of T cells can be a heterogeneous population comprising the T cell that has been modified to overexpress c-Myb (e.g., a T cell comprising the vector), in addition to at least one other cell, e.g., a T cell, which has not been modified to overexpress c-Myb (e.g., T cell lacking the vector), or a cell other than a T cell, e.g., a B cell, a macrophage, a neutrophil, an erythrocyte, a melanocyte, a hepatocyte, an endothelial cell, an epithelial cell, a muscle cell, a brain cell, etc. Alternatively, the population of cells can be a substantially homogeneous population, in which the population mainly comprises T cells that have been modified to overexpress c-Myb. The population also can be a clonal population of T cells, in which all T cells of the population are clones of a single T cell that has been modified to overexpress c-Myb, such that all T cells of the population overexpress c-Myb and have genetically identical TCRs.

[0037] A T cell of the invention can be present in a population of cells or a composition in an amount of about 10% or more, e.g., about 30% or more, about 50% or more, about 60% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, or about 90% or more, based on the total number of cells in the population or composition. Alternatively, or in addition, the T cell of the invention can be present in a population of cells or a composition in an amount of about 95% or less, e.g., about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 60% or less, about 40% or less, or about 30% or less based on the total number of cells in the population or composition. Thus, the T cell of the invention can be present in a population of cells or a composition in an amount bounded by any two of the above endpoints. For example, the T cell of the invention can be present in a population of cells or a composition in an amount of about 30 to about 60%, about 50 to about 90%, about 60 to about 80%, about 80 to about 90%, or about 75 to about 85%.

[0038] In an embodiment of the invention, the T cell comprises an antigen-specific receptor. The phrases "antigen-specific" and "antigenic specificity," as used herein, mean that the receptor can specifically bind to and immunologically recognize an antigen, or an epitope thereof, such that binding of the receptor to antigen, or the epitope thereof, elicits an immune response. In an embodiment of the invention, the antigen-specific receptor is a T cell receptor (TCR). The antigen-specific TCR generally comprises two polypeptides (i.e., polypeptide chains), such as an .alpha.-chain of a TCR, a .beta.-chain of a TCR, a .gamma.-chain of a TCR, a .delta.-chain of a. TCR, or a combination thereof. Such polypeptide chains of TCR.s are known in the art. The antigen-specific receptor can comprise any amino acid sequence, provided that the receptor can specifically bind to and immunologically recognize an antigen, such as a disease-associated antigen or epitope thereof.

[0039] The antigen-specific receptor can be an endogenous TCR, i.e., the antigen-specific TCR that is endogenous or native to (naturally-occurring on) the T cell. In such a case, the T cell comprising the endogenous TCR can be a T cell that was isolated from a mammal which is known to express the particular disease-specific antigen. In certain embodiments, the T cell is a primary T cell isolated from a host afflicted with a cancer. In some embodiments, the T cell is a tumor infiltrating lymphocyte (TIL) or a peripheral blood lymphocyte (PBL) isolated from a human cancer patient.

[0040] In some embodiments, the mammal from which a T cell is isolated is immunized with an antigen of, or specific for, a disease. Desirably, the mammal is immunized prior to obtaining the T cell from the mammal, In this way, the isolated T cells can include T cells induced to have specificity for the disease to be treated, or can include a higher proportion of cells specific for the disease.

[0041] Alternatively, a T cell comprising an endogenous antigen-specific TCR can be a T cell within a mixed population of cells isolated from a mammal, and the mixed population can be exposed to the antigen which is recognized by the endogenous TCR while being cultured in vitro, in this manner, the T cell which comprises the TCR that recognizes the disease-specific antigen, expands or proliferates in vitro, thereby increasing the number of T cells having the endogenous antigen-specific receptor.

[0042] The antigen-specific TCR can be an exogenous TCR, i.e., an antigen-specific TCR that is not native to (not naturally-occurring on) the T cell. A recombinant TCR is a TCR which has been generated through recombinant expression of one or more exogenous TCR .alpha.-, .beta.-, .gamma.-, and/or .delta.-chain encoding genes, A recombinant TCR can comprise polypeptide chains derived entirely from a single mammalian species, or the antigen-specific TCR can be a chimeric or hybrid TCR comprised of amino acid sequences derived from TCRs from two different mammalian species. For example, the antigen-specific TCR can comprise a variable region derived from a murine TCR, and a constant region of a human TCR such that the TCR is "humanized." Methods of making recombinant TCRs are known in the art. See, for example, U.S. Pat. Nos. 7,820,174; 8,785,601; 8,216,565; and U.S. Patent Application Publication No. 2013/0274203.

[0043] A T cell of the invention comprising an endogenous antigen-specific TCR can also be transformed, e.g., transduced or transfected, with one or more nucleic acids encoding an exogenous (e.g., recombinant) TCR or other recombinant chimeric receptor. Such exogenous chimeric receptors, e.g., chimeric TCRs, can confer specificity for additional antigens to the transformed T cell beyond the antigens for which the endogenous TCR is naturally specific. This can, but need not, result in the production of T cell having dual antigen specificities.

[0044] In an embodiment of the invention, the antigen-specific receptor is a "chimeric antigen receptor" (CAR). Typically, a CAR comprises the antigen binding domain of an antibody, e.g., a single-chain variable fragment (scFv), fused to the transmembrane and intracellular domains of a TCR. Thus, the antigenic specificity of a TCR of the invention can be encoded by a scFv which specifically binds to the antigen, or an epitope thereof. Methods of making such chimeric TCRs are known in the art. See, for example, U.S. Pat. No. 8,465,743 and U.S. Patent Application Publication Nos. 2014/0037628 and 2014/0274909.

[0045] Any suitable nucleic acid encoding a CAR, TCR, or TCR-like protein or polypeptide can be used. In these embodiments, transformation with a nucleic acid encoding c-Myb, as discussed below, can occur before, after, or simultaneously with, antigen-specific receptor transformation. The antigen-specific receptor encoded by the transformed nucleic acids can be of any suitable form including for example, a single-chain TCR or a fusion with other proteins or polypeptides (e.g., without limitation co-stimulatory molecules).

[0046] The antigen which is recognized by the antigen-specific receptor can be any antigen which is characteristic of a disease. For example, the antigen may be, but is not limited to, a cancer antigen (also termed a tumor antigen or a tumor associated antigen) or a viral antigen. Viral antigens are known in the art and include, for example, any viral protein, e.g., env, gag, pol, gp120, thymidine kinase, and the like.

[0047] The term "cancer antigen," as used herein, refers to any molecule (e.g., protein, polypeptide, peptide, lipid, carbohydrate, etc.) solely or predominantly expressed or over-expressed by a tumor cell or cancer cell, such that the antigen is associated with the tumor or cancer. The cancer antigen can additionally be expressed by normal, non-tumor, or non-cancerous cells. However, in such cases, the expression of the cancer antigen by normal, non-tumor, or non-cancerous cells is not as robust as the expression by tumor or cancer cells. In this regard, the tumor or cancer cells can over-express the antigen or express the antigen at a significantly higher level, as compared to the expression of the antigen by normal, non-tumor, or non-cancerous cells. Also, the cancer antigen can additionally be expressed by cells of a different state of development or maturation. For instance, the cancer antigen can be additionally expressed by cells of the embryonic or fetal stage, which cells are not normally found in an adult host. Alternatively, the cancer antigen can be additionally expressed by stern cells or precursor cells, which cells are not normally found in an adult host. Cancer antigens are known in the art and include, for instance, mesothelin, CD19, CD22, CD276 (B7H3), gp100, MART-1, Epidermal Growth Factor Receptor Variant III (EGFRVIII), TRP-1, TRP-2, tyrosinase, NY-ESO-1 (also known as CAG-3), MAGE-1, MAGE-3, etc.

[0048] The cancer antigen can he an antigen expressed by any cell of any cancer or tumor, including the cancers and tumors described herein. The cancer antigen may be a cancer antigen of only one type of cancer or tumor, such that the cancer antigen is associated with or characteristic of only one type of cancer or tumor. Alternatively, the cancer antigen may be a cancer antigen (e.g., may be characteristic) of more than one type of cancer or tumor. For example, the cancer antigen may be expressed by both breast and prostate cancer cells and not expressed at all by normal, non-tumor, or non-cancer cells.

[0049] The disease which is associated with or is characterized by the antigen recognized by the antigen-specific receptor can be any disease. For instance, the disease can be a cancer or a viral disease, as discussed herein.

[0050] The cancer may be any cancer, including any of acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bone cancer, brain cancer, breast cancer, cancer of the anus, anal canal, or anorectum, cancer of the eye, cancer of the intrahepatic bile duct, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, chronic lymphocytic leukemia, chronic myeloid cancer, colon cancer, esophageal cancer, cervical cancer, gastrointestinal carcinoid tumor, Hodgkin lymphoma, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, lung cancer, malignant mesothelioma, melanoma, multiple myeloma, nasopharynx cancer, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, peritoneum, omentum, and mesentery cancer, pharynx cancer, prostate cancer, rectal cancer, renal cancer (e.g., renal cell carcinoma (RCC)), small intestine cancer, soft tissue cancer, stomach cancer, testicular cancer, thyroid cancer, ureter cancer, and urinary bladder cancer. In certain preferred embodiments, the antigen-specific receptor has specificity for an antigen derived from melanoma.

[0051] For purposes herein, "viral disease" means a disease that can be transmitted from person to person or from organism to organism, and is caused by a virus. In an embodiment of the invention, the viral disease is caused by a virus selected from the group consisting of herpes viruses, pox viruses, hepadnaviruses, papilloma viruses, adenoviruses, coronoviruses, orthomyxoviruses, paramyxoviruses, flaviviruses, and caliciviruses. For example, the viral disease may be caused by a virus selected from the group consisting of respiratory syncytial virus (RSV), influenza virus, herpes simplex virus, Epstein-Barr virus, varicella virus, cytomegalovirus, hepatitis A virus, hepatitis B virus, hepatitis C virus, human immunodeficiency virus (HIV), human T-lymphotropic virus, calicivirus, adenovirus, and Arena virus.

[0052] The viral disease may be, for example, influenza, pneumonia, herpes, hepatitis, hepatitis A, hepatitis B. hepatitis C, chronic fatigue syndrome, sudden acute respiratory syndrome (SARS), gastroenteritis, enteritis, carditis, encephalitis, bronchiolitis, respiratory papillomatosis, meningitis, HIV/AIDS, and mononucleosis.

[0053] A T cell comprising an antigen-specific receptor can be isolated or purified from a source using any suitable technique known in the art. For example, a T cell comprising an antigen-specific TCR present in a mammalian tissue, biological fluid (e.g., blood), or in vitro culture medium can be separated from impurities, e.g., other cell types, proteins, nucleic acids, etc. using flow cytometry, immunomagnetic separation, or a combination thereof.

[0054] An isolated or purified T cell may be modified to overexpress c-Myb. The T cell may be modified to overexpress c-Myb in any suitable manner. In an embodiment of the invention, the T cell may he modified to overexpress c-Myb using genome editing techniques. Genome editing techniques can modify gene expression in a target cell by inserting, replacing, or removing DNA in the genome using an artificially engineered nuclease. Examples of such nucleases may include zinc finger nucleases (ZFNs) (Gommans et al., J. Mol. Biol., 354(3): 507-519 (2005)), transcription activator-like effector nucleases (TALENs) (Zhang et al., Nature Biotechnol., 29: 149-153 (2011)), the CRISPR/Cas system (Cheng et al., Cell Res., 23: 1163-71 (2013)), and engineered meganucleases (Riviere et al., Gene Ther., 21(5): 529-32 (2014)). The nucleases create specific double-stranded breaks (DSBs) at targeted locations in the genome, and use endogenous mechanisms in the cell to repair the induced break by homologous recombination (HR) and nonhomologous end-joining (NHEJ). Such techniques may be used to achieve overexpression of c-Myb in T cells.

[0055] In another embodiment of the invention, the T cell may be modified (e.g., transduced or transfected) so as to comprise a nucleic acid encoding c-Myb. Preferably, the nucleic acid is a recombinant nucleic acid. As used herein, the term "recombinant" refers to (i) molecules that are constructed outside living cells by joining natural or synthetic nucleic acid segments to nucleic acid molecules that can replicate in a living cell, or (ii) molecules that result from the replication of those described in (i) above. For purposes herein, the replication can be in vitro replication or in viva replication.

[0056] The terms "nucleic acid" and "polynucleotide," as used herein, refer to a polymeric form of nucleotides of any length, either ribonucleotides (RNA) or deoxyribonucleotides (DNA). These terms refer to the primary structure of the molecule, and thus include double- and single-stranded DNA, double- and single-stranded RNA, and double-stranded DNA-RNA hybrids. The terms include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs and modified polynucleotides such as, though not limited to, methylated and/or capped polynucleotides. Suitable nucleotide analogs are known and are described in, e.g., U.S. Patent Application Publication 2012/0101148, and references cited therein. In an embodiment of the invention, the nucleic acid is complementary DNA (cDNA).

[0057] The term "nucleotide" as used herein refers to a monomeric subunit of a polynucleotide that consists of a heterocyclic base, a sugar, and one or more phosphate groups. The naturally occurring bases (guanine (G), adenine (A), cytosine (C), thymine (T), and uracil (U)) are typically derivatives of purine or pyrimidine, though the invention includes the use of naturally and non-naturally occurring base analogs. The naturally occurring sugar is the pentose (five-carbon sugar) deoxyribose (which forms DNA) or ribose (which forms RNA), though the invention includes the use of naturally and non-naturally occurring sugar analogs. Nucleic acids are typically linked via phosphate bonds to form nucleic acids or polynucleotides, though many other linkages are known in the art (e.g., phosphorothioates, boranophosphates and the like). Methods of preparing polynucleotides are within the ordinary skill in the art (Green and Sambrook, Molecular Cloning: A Laboratoty Manual, (4th Ed.) Cold Spring Harbor Laboratory Press, New York (2012)).

[0058] The nucleic acid may comprise any suitable c-Myb nucleotide sequence, which may encode any suitable c-Myb amino acid sequence from any mammal. In an embodiment of the invention, the c-Myb sequence is a mouse c-Myb sequence. Two mouse e-Myb transcriptional variants include mRNA Genbank Accession Nos.: NM_001198914.1 (SEQ NO: 1) and NM_010848.3 (SEQ ID NO: 2), with corresponding protein sequence Genbank Accession Nos. NP_001185843.1 (SEQ ID NO: 3) and NP_034978.3 (SEQ ID NO: 4), respectively. Mouse genomic c-Myb sequences include Genbank Accession Nos: NC_000076.6, CH466562.2, K03547.1, and AC_00032.1. Mouse c-Myb mRNA sequences also include Genbank Accession Nos: AA170760.1AK036518.1, AK038118.1 AK084390.1, and AK088020.1. Mouse c-Myb amino acid sequences also include Genbank Accession Nos: EDL03418.1, EDL03419.1AAA39786.1, AAA39787.1AAA39783.1, AAA39782.1, AAA37505.1, CAA27724.1, CAA34425.1, and CAA34426.1. Other mouse sequences, as well as other e-Myb species, can be employed in accordance with the invention.

[0059] In a preferred embodiment of the invention, the c-Myb sequence is a human c-Myb sequence. Eight human c-Myb transcriptional variants and their corresponding amino acid sequences are set forth in Table A.

TABLE-US-00001 TABLE A Isoform mRNA Amino acid sequence Number Genbank Accession No. Genbank Accession No. 1 NM_001130173.1 NP_001123645.1 (SEQ ID NO: 5) (SEQ ID NO: 13) 2 NM_005375.2 NP_005366.2 (SEQ ID NO: 6) (SEQ ID NO: 14) 3 NM_001130172.1 NP_001123644.1 (SEQ ID NO: 7) (SEQ ID NO: 15) 4 NM_001161656.1 NP_001155128.1 (SEQ ID NO: 8) (SEQ ID NO: 16) 5 NM_001161657.1 NP_001155129.1 (SEQ ID NO: 9) (SEQ ID NO: 17) 6 NM_001161658.1 NP_001155130.1 (SEQ ID NO: 10) (SEQ ID NO: 18) 7 NM_001161659.1 NP_001155131.1 (SEQ ID NO: 11) (SEQ ID NO: 19) 8 NM_001161660.1 NP_001155132.1 (SEQ ID NO: 12) (SEQ ID NO: 20)

Human genomic c-Myb sequences include Genbank Accession Nos: NG_012330.1, NC_900006.12, and NC_018917.2. Human c-Myb mRNA sequences also include Genbank Accession Nos: AJ606317.1, AJ606318.1, AJ606319.1, AJ606320.1, AJ606321.1AJ606322.1, AJ606323.1, AJ606324.1, AJ616235.1, and AJ616791.1. Human c-Myb amino acid sequences also include Genbank Accession Nos: EAW47968.1, CAS01767.1, ADL14499.1, CBX51725.1, AAA72118.1, AAB49034.1, AAB49035.1, AAC96326.1, CAE55168,1, CAE55169.1, CAE55170.1, CAE55171.1, CAE55172.1, CAE55173.1, CAE55174.1, CAE55175.1, CAE82649.1 and CAF04477.1. Other human sequences, as well as other c-Myb species can be employed in accordance with the invention.

[0060] In an embodiment of the invention, the nucleic acid comprises a codon-optimized nucleotide sequence encoding c-Myb. Without being bound to any particular theory or mechanism, it is believed that codon optimization of the nucleotide sequence increases the translation efficiency of the mRNA transcripts. Codon optimization of the nucleotide sequence may involve substituting a native codon for another codon that encodes the same amino acid, but can be translated by tRNA that is more readily available within a cell, thus increasing translation efficiency. Optimization of the nucleotide sequence may also reduce secondary mRNA structures that would interfere with translation, thus increasing translation efficiency. In this regard, the nucleic acid encoding c-Myb may comprise the codon-optimized nucleotide sequence of SEQ ID NO: 21, which encodes mouse c-Myb having the amino acid sequence of SEQ ID NO: 4.

[0061] In other embodiments, the nucleic acid comprises, consists essentially of, or consists of a nucleic acid sequence which is at least about 75%, e.g., at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of the nucleotide sequences described herein, e.g., any one of SEQ ID NOs: 1-2, 5-12, and 21. In an embodiment of the invention, the nucleic acid comprises, consists essentially of, or consists of the nucleotide sequence of any one of SEQ ID NOs: 1-2, 5-12, and 21.

[0062] In certain preferred embodiments, the nucleic acid encoding c-Myb is carried in a recombinant expression vector, Accordingly, an embodiment of the invention provides an isolated or purified T cell comprising a vector comprising (i) a nucleic acid encoding c-Myb and (ii) a heterologous nucleic acid sequence, The phrase "heterologous nucleic acid sequence," as used herein, means a nucleic acid sequence that does not naturally occur in the species that expresses the c-Myb encoded by the vector. For example, if the c-Myb encoded by the vector is mouse c-Myb, the heterologous nucleic acid sequence in the vector may be any sequence that does not naturally occur in a mouse. In an embodiment in which the c-Myb encoded by the vector is human c-Myb, the heterologous nucleic acid sequence in the vector may be any sequence that does not naturally occur in a human. The heterologous nucleic acid sequence may be a nucleic acid sequence from any species other than the species that expresses the c-Myb encoded by the vector.

[0063] The recombinant expression vector can comprise any type of nucleotides, including, but not limited to DNA and RNA, which can he single-stranded or double-stranded, synthesized or obtained in part from natural sources, and which can contain natural, non-natural or altered nucleotides. The recombinant expression vectors can comprise naturally-occurring or non-naturally-occurring intemucleotide linkages, or both types of linkages. The vector may contain regulatory nucleic acid sequences which provide for c-Myb expression.

[0064] The recombinant expression vector can be any suitable recombinant expression vector that contains a heterologous nucleic acid sequence as described above. Suitable vectors include those designed for propagation and expansion or for expression or both, such as plasmids and viruses. For example, the vector can be selected from the pUC series (Fermentas Life Sciences, Glen Burnie, Md.), the pBluescript series (Stratagene, LaJolla, Calif.), the pET series (Novagen, Madison, Wis.), the pGEX series (Pharmacia Biotech, Uppsala, Sweden), and the pEX series (Clontech, Palo Alto, Calif.). Bacteriophage vectors, such as .lamda.GT10, .lamda.GT11, .lamda.Zap11 (Stratagene), .lamda.EMBL4, and .lamda.NM1149, also can be used. Examples of plant expression vectors useful in the context of the invention include pBI01, pBI01.2, pBI101.3, pBI121 and pBIN19 (Clontech). Examples of animal expression vectors useful in the context of the invention include pEUK-C1, pMAM, and pMAMneo (Clontech).

[0065] In some embodiments, the recombinant expression vector is a viral vector. Suitable viral vectors include, without limitation, retroviral vectors, alphaviral, vaccinial, adenoviral, adenoassociated viral, herpes viral, and fowl pox viral vectors, and preferably have a native or engineered capacity to transform T cells.

[0066] The recombinant expression vectors can he prepared using standard recombinant DNA techniques described in, for example, Green and Sambrook, supra. Constructs of expression vectors, which are circular or linear, can be prepared to contain a replication system functional in a prokaryotic or eukaryotic host cell. Replication systems can be derived, e.g., from ColEl, 2.mu. plasmid, .lamda., SV40, bovine papilloma virus, and the like.

[0067] The recombinant expression vector can comprise regulatory sequences, such as transcription and translation initiation and termination codons, which are specific to the type of host (e.g., bacterium, fungus, plant, or animal) into which the vector is to be introduced, as appropriate, and taking into consideration whether the vector is DNA- or RNA-based,

[0068] The recombinant expression vector can include one or more marker genes, which allow for selection of transformed or transfected hosts. Marker genes include biocide resistance, e.g., resistance to antibiotics, heavy metals, etc., complementation in an auxotrophic host to provide prototrophy, and the like. Suitable marker genes for the recombinant expression vectors include, for instance, neomycin/G418 resistance genes, hygromycin resistance genes, histidinol resistance genes, tetracycline resistance genes, and ampicillin resistance genes.

[0069] The recombinant expression vector can comprise a native or nonnative promoter operably linked to the nucleic acid encoding c-Myb. Preferably, the promoter is functional in T cells. The selection of a promoter, e.g., strong, weak, inducible, tissue-specific and developmental-specific, is within the ordinary skill of the artisan. Similarly, the combining of a nucleotide sequence with a promoter is also within the skill of the artisan. The promoter can be a non-viral promoter or a viral promoter, e.g., a cytomegalovirus (CMV) promoter, an SV40 promoter, an RSV promoter, or a promoter found in the long-terminal repeat of the murine stem cell virus.

[0070] The recombinant expression vector can be designed for either transient expression, for stable expression, or for both. Also, the recombinant expression vectors can be made for constitutive expression or for inducible expression.

[0071] The vectors useful in the context of the invention can be "naked" nucleic acid vectors (i.e., vectors having little or no proteins, sugars, and/or lipids encapsulating them), or vectors complexed with other molecules. Other molecules that can be suitably combined with the vectors include without limitation viral coats, cationic lipids, liposomes, polyamines, gold particles, and targeting moieties such as ligands, receptors, or antibodies that target cellular molecules.

[0072] The nucleic acid may encode a polypeptide or protein comprising any of the c-Myb amino acid sequences described herein. In an embodiment of the invention, the nucleic acid encodes a c-Myb polypeptide or protein comprising, consisting, or consisting essentially of an amino acid sequence selected from the group consisting of SEQ ID NOs: 3-4 and 13-20.

[0073] In an embodiment of the invention, the nucleic acid encodes a functional fragment of any of the c-Myb proteins or polypeptides described herein. The functional fragment of the c-Myb protein or polypeptide can comprise any contiguous part of the c-Myb protein or polypeptide that retains a relevant biological activity of the c-Myb protein or polypeptide, e.g., any one or more of inhibiting the differentiation of T cells, binding to DNA, activating transcription, and repressing transcription. Any given fragment of a c-Myb protein or polypeptide can be tested for such biological activity using methods known in the art. For example, the functional fragment can comprise, consist essentially of, or consist of any one or two of the N-terminal DNA-binding domain, the central transcriptional activation domain, or the C-terminal transcriptional repression domain of any of the c-Myb proteins or polypeptides described herein. In reference to the parent c-Myb protein or polypeptide, the functional fragment preferably comprises, for instance, about 10% or more, 25% or more, 30% or more, 50% or more, 60% or more, 80% or more, 90% or more, or even 95% or more of the parent c-Myb protein or polypeptide.

[0074] In an embodiment of the invention, the nucleic acid encodes a functional variant of any of the c-Myb proteins or polypeptides described herein. The term "functional variant," as used herein, refers to a c-Myb protein or polypeptide having substantial or significant sequence identity or similarity to a parent c-Myb protein or polypeptide, which functional variant retains the biological activity of the c-Myb protein or polypeptide of which it is a variant. Functional variants encompass, for example, those variants of the c-Myb protein or polypeptide described herein (the parent c-Myb protein or polypeptide) that retain the ability to provide any one or more of inhibition of T cell differentiation, binding to DNA, activation of transcription, and repression of transcription to a similar extent, the same extent, or to a higher extent, as the parent c-Myb protein or polypeptide. In reference to the parent c-Myb protein or polypeptide, the functional variant can, for instance, be at least about 75%, e.g., at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical in amino acid sequence to any of the c,-Myb proteins or polypeptides described herein, e.g., any one of SEQ ID NOs: 3-4 and 13-20.

[0075] The functional variant can, for example, comprise the amino acid sequence of the parent c-Myb protein or polypeptide with at least one conservative amino acid substitution. Conservative amino acid substitutions are known in the art, and include amino acid substitutions in whiCh one amino acid having certain physical andlor chemical properties is exchanged for another amino acid that has the same chemical or physical properties. For instance, the conservative amino acid substitution can be an acidic amino acid substituted for another acidic amino acid (e.g., Asp or Glu), an amino acid with a nonpolar side chain substituted for another amino acid with a nonpolar side chain (e,g., Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Val, etc.), a basic amino acid substituted for another basic amino acid (Lys, Arg, etc.), an amino acid with a polar side chain substituted for another ammo acid with a polar side chain (Asn, Cys, Gln, Ser, Thr, Tyr, etc.), etc.

[0076] Alternatively or additionally, the functional variants can comprise the amino acid sequence of the parent c-Myb protein or polypeptide with at least one non-conservative amino acid substitution. In this case, it is preferable for the non-conservative amino acid substitution to not interfere with or inhibit the biological activity of the functional variant. Preferably, the non-conservative amino acid substitution enhances the biological activity of the functional variant, such that the biological activity of the functional variant is increased as compared to the parent c-Myb protein or polypeptide.

[0077] The c-Myb protein or polypeptide can consist essentially of the specified amino acid sequence or sequences described herein, such that other components of the functional variant, e.g., other amino acids, do not materially change the biological activity of the functional variant. In this regard, the c-Myb protein or polypeptide can, for example, consist essentially of the amino acid sequence of any of SEQ ID NOs: 3-4 and 13-20.

[0078] Preferably, a T cell comprising an antigen-specific receptor is isolated or purified as described herein, and then contacted with a nucleic acid encoding c-Myb ex vivo or in vitro using methods described herein or any other method known in the art. Examples of such methods include, but are not limited to, the use of a lipid, protein, particle, or other molecule capable of facilitating cell transformation with the nucleic acid. However, a T cell comprising an antigen-specific receptor also can he contacted with a nucleic acid encoding c-Myb in vivo, such as by way of a gene gun, for example.

[0079] T cells which have not been modified to overexpress c-Myb (including, e.g., T cells that lack the vector encoding c-Myb) may express a basil level of c-Myb mRNA, polypeptide, or protein. However, the isolated or purified T cell of the invention overexpresses c-Myb mRNA, polypeptide, or protein as compared to a control T cell that has not been modified to overexpress c-Myb. For example, without limiting the invention, a T cell or a population thereof overexpressing c-Myb can contain an amount of c-Myb (mRNA, protein, or polypeptide) that is 1.5-fold higher or more, e.g., 2-fold higher or more, 3-fold higher or more, 5-fold higher or more, 10-fold higher or more, 20-fold higher or more, or 50-fold higher or more, than the amount of c-Myb present in a control T cell or a population thereof that has not been modified to overexpress c-Myb. Thus, the c-Myb can be present in a T cell or population thereof in an amount bounded by any two of the above endpoints. For example, the T cell or a population thereof overexpressing c-Myb can contain an amount of c-Myb (mRNA, protein, or polypeptide) that is about 1.5-fold to about 20-fold higher, about 2-fold to about 5-fold higher, about 3-fold to about 50-fold higher, about 10-fold or higher, or about 20-fold to about 50-fold higher, than the amount of c-Myb present in a control T cell or a population thereof that has not been modified to overexpress c-Myb. Any suitable method known in the art can be utilized to determine the amount of c-Myb mRNA, protein, or polypeptide present in a T cell or a population thereof, such as quantitative reverse transcription polymerase chain reaction (RT-PCR.) or stem-loop quantitative RT-PCR.

[0080] The isolated or purified T cell of the invention may have a less differentiated phenotype as compared to a T cell that has not been modified to overexpress c-Myb. In an embodiment of the invention, the isolated or purified T cell invention may have a naive T cell (T.sub.N), T memory stem cell (T.sub.SCM), or central memory T cell (T.sub.CM) phenotype. Alternatively or additionally, the inventive T cell lacks an effector memory T cell (T.sub.EM) phenotype. For example, CCR7 and CD62L are expressed by T.sub.N, T.sub.SCM, and T.sub.CM cells, but are not expressed by T.sub.EM cells. The transcription factors LEF1, FOXP1, and KLF7 are expressed by T.sub.N, T.sub.SCM, and T.sub.CM cells, but are not expressed by T.sub.EM cells. CD45RO and KLRG1 are not expressed by T.sub.N or T.sub.SCM cells, but are expressed by T.sub.EM cells, Gattinoni et al., Nat. Rev. Cancer, 12: 671-84 (2012). In an embodiment of the invention, the isolated or purified T cell of the invention may be any one or more of CD62L.sup.+, KLRG1.sup.-, LEF1.sup.+, FOXP1.sup.+, and KLF7.sup.+, CCR7.sup.+, CD57.sup.-, and CD45RO.sup.-. Preferably, the T cell is one or both of CD62L and KLRG1.sup.-. In an especially preferred embodiment, the T cell is both CD62L.sup.+ and KLRG1.sup.-. Alternatively or additionally, T.sub.N, T.sub.SCM, and T.sub.CM cells may be characterized by longer telomeres as compared to those of T.sub.EM cells.

[0081] The invention also provides a method of treating or preventing a disease in a mammal. The method comprises administering to the mammal any of the T cells described herein, or a population thereof, or a composition comprising any of the T cells described herein, in an amount effective to treat or prevent the disease in the mammal. In an embodiment of the invention, the disease is cancer or a viral disease. The cancer and viral disease may be any of the cancers and viral diseases described herein with respect to other aspects of the invention.

[0082] The terms "treat," and "prevent" as well as words stemming therefrom, as used herein, do not necessarily imply 100% or complete treatment or prevention. Rather, there are varying degrees of treatment or prevention of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect. In this respect, the inventive methods can provide any amount of any level of treatment or prevention of cancer or a viral disease in a patient. Furthermore, the treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the cancer or viral disease being treated or prevented. For example, treatment or prevention can include promoting the regression of a tumor. Also, for purposes herein, "prevention" can encompass delaying the onset of the cancer or viral disease, or a symptom or condition thereof.

[0083] The term "mammal" as used herein refers to any mammal, including, but not limited to, mice, hamsters, rats, rabbits, cats, dogs, cows, pigs, horses, monkeys, apes, and humans. Preferably, the mammal is a human.

[0084] In the treatment or prevention of a disease in a mammal, the T cells that have been modified to overexpress c-Myb can be transferred into the same mammal from which T cells were obtained. In other words, the T cell used in the inventive method of treating or preventing can be an autologous T cell, i.e., can be obtained from the mammal in which the disease is treated or prevented. Alternatively, the T cell can he allogenically transferred into another mammal. Preferably, the T cell is autologous to the mammal in the inventive method of treating or preventing a disease in the mammal.

[0085] In the instance that the T cells are autologous to the mammal, the mammal can be immunologically naive, immunized, diseased, or in another condition prior to isolation of the T cells from the mammal, In some instances, it is preferable for the method to comprise immunizing the mammal with an antigen of the disease prior to isolating the T cell from the mammal, modifying the obtained T cell to overexpress c-Myb, and the administering of the T cell, or a population or composition thereof. As discussed herein, immunization of the mammal with the antigen of disease will allow the population of T cells having an endogenous TCR reactive with the disease-specific antigen to increase in numbers, which will increase the likelihood that the T cell obtained for being modified to overexpress c-Myb will have a desired antigen-specific TCR.

[0086] In accordance with the invention, a mammal with a disease can be therapeutically immunized with an antigen from, or associated with, that disease, including immunization via a vaccine. While not desiring to be bound by any particular theory, the vaccine or immunogen is provided to enhance the mammal's immune response to the disease antigen present in or on the infectious agent or diseased tissue. Such a therapeutic immunization includes, but is not limited to, the use of recombinant or natural disease proteins, peptides, or analogs thereof, or modified disease peptides, or analogs thereof that can be used as a vaccine therapeutically as part of adoptive immunotherapy. The vaccine or immunogen, can be a cell, cell lysate (e.g., from cells transfected with a recombinant expression vector), a recombinant expression vector, or antigenic protein or polypeptide. Alternatively, the vaccine, or immunogen, can be a partially or substantially purified recombinant disease protein, polypeptide, peptide or analog thereof, or modified proteins, polypeptides, peptides or analogs thereof. The protein, polypeptide, or peptide may be conjugated with lipoprotein or administered in liposomal form or with adjuvant. Preferably, the vaccine comprises one or more of (i) the disease-antigen for which the antigen-specific receptor of the T cell of the invention is specific, (ii) an epitope of the antigen, and (iii) a vector encoding the antigen or the epitope.

[0087] The inventive method of treating or preventing a disease in a mammal can comprise additional steps. For instance, a variety of procedures, as discussed below, can be performed on the T cells prior to, substantially simultaneously with, or after their isolation from a mammal. Similarly, a variety of procedures can be performed on the T cells prior to, substantially simultaneously with, or after modifying the T cells to over-express c-Myb.

[0088] In an embodiment of the invention, the T cells are expanded in vitro after modifying the T cells to over-express c-Myb, but prior to the administration to a mammal. Expansion of the numbers of T cells can be accomplished by any of a number of methods as are known in the art as described in, for example, U.S. Pat. No. 8,034,334; U.S. Pat. No. 8,383,099; and U.S. Patent Application Publication No, 2012/0244133. For example, expansion of the numbers of T cells may be carried out by culturing the T cells with OKT3 antibody, IL-2, and feeder PBMC (e.g., irradiated allogeneic PBMC). In another embodiment of the invention, the T cells are not expanded in vitro after modifying the T cells to over-express c-Myb and prior to the administration to a mammal.

[0089] An embodiment of the invention provides a pharmaceutical composition comprising the inventive T cell or a population thereof and a pharmaceutically acceptable carrier. The pharmaceutically acceptable carriers described herein, for example, vehicles, adjuvants, excipients, and diluents, are well-known and readily available to those skilled in the art. Preferably, the pharmaceutically acceptable carrier is chemically inert to the active agent(s), e.g., the T cell, and does not elicit any detrimental side effects or toxicity under the conditions of use.

[0090] The composition can be formulated for administration by any suitable route, such as, for example, an administration route selected from the group consisting of intravenous, intratumoral, intraarterial, intramuscular, intraperitoneal, intrathecal, epidural, and subcutaneous administration routes. Preferably, the composition is formulated for a. parenteral route of administration. An exemplary pharmaceutically acceptable carrier for cells for injection may include any isotonic carrier such as, for example, normal saline (about 0.90% w/v of NaCl in water, about 300 mOsm/L NaCl in water, or about 9.0 g NaCl per liter of water), NORMOSOL R electrolyte solution (Abbott, Chicago, Ill.), PLASMA-LYTE A (Baxter, Deerfield, Ill.), about 5% dextrose in water, or Ringer's lactate. In an embodiment, the pharmaceutically acceptable carrier is supplemented with human serum albumin.

[0091] For purposes of the invention, the amount or dose of the inventive population of cells or pharmaceutical composition administered (e.g., numbers of cells when the inventive population of cells is administered) should be sufficient to effect, e.g., a therapeutic or prophylactic response, in the patient over a reasonable time frame. For example, the dose of the inventive population of cells or pharmaceutical composition should be sufficient to treat or prevent cancer or a viral disease in a period of from about 2 hours or longer, e.g., 12 to 24 or more hours, from the time of administration. In certain embodiments, the time period could be even longer. The dose will be determined by the efficacy of the particular inventive population of cells or pharmaceutical composition administered and the condition of the patient, as well as the body weight of the patient to be treated.

[0092] Many assays for determining an administered dose are known in the art. For purposes of the invention, an assay, which comprises comparing the extent to which target cells are lysed upon administration of a given dose of such T cells to a mammal among a set of mammals of which is each given a different dose of the cells, could be used to determine a starting dose to be administered to a patient. The extent to which target cells are lysed upon administration of a certain dose can be assayed by methods known in the art.

[0093] The dose of the inventive population of cells or pharmaceutical composition also will be determined by the existence, nature and extent of any adverse side effects that might accompany the administration of a particular inventive population of cells or pharmaceutical composition. Typically, the attending physician will decide the dosage of the population of cells or pharmaceutical composition with which to treat each individual patient, taking into consideration a variety of factors, such as age, body weight, general health, diet, sex, inventive population of cells or pharmaceutical composition to be administered, route of administration, and the severity of the condition being treated.

[0094] Any suitable number of T cells of the invention can be administered to a mammal. While a single T cell of the invention theoretically is capable of expanding, and providing a therapeutic benefit, it is preferable to administer about 10.sup.2 or more, e.g., about 10.sup.3 or more, about 10.sup.4 or more, about 10.sup.5 or more, about 10.sup.8 or more, T cells of the invention. Alternatively, or additionally about 10.sup.12 or less, e.g., about 10.sup.11 or less, about 10.sup.9 or less, about 10.sup.7 or less, or about 10.sup.5 or less, T cells of the invention can be administered to a mammal. The number of T cells of the invention can be administered to a mammal in an amount bounded by any two of the above endpoints, e.g., about 10.sup.2 to about 10.sup.5, about 10.sup.3 to about 10.sup.7, about 10.sup.3 to about 10.sup.9, or about 10.sup.5 to about 10.sup.10.

[0095] As explained above, the isolated or purified T cell of the invention that is modified to over-express c-Myb may be less differentiated as compared to a control T cell that has not been modified to overexpress c-Myb. Accordingly, an embodiment of the invention provides a method of inhibiting the differentiation of T cells.

[0096] The method may comprise isolating or purifying a T cell from a source. The method may comprise introducing any of the nucleic acids encoding c-Myb described herein with respect to other aspects of the invention into the isolated or purified T cells under conditions sufficient to obtain an increased expression of c-Myb as compared to T cells that lack the introduced nucleic acid. The T cells may be isolated from a source, the nucleic acid may be introduced into the T cells, and the c-Myb expression may be increased as described herein with respect to other aspects of the invention.

[0097] The increased expression of c-Myb may inhibit differentiation of the T cells. In this regard, the T cells produced by the method may have a less differentiated phenotype as compared to a T cell that does not contain the introduced nucleic acid encoding c-Myb. In an embodiment of the invention, the T cell produced by the inventive method may have a T.sub.N, T.sub.SCM, or T.sub.CM phenotype. Alternatively or additionally, the T cell produced by the inventive method may lack a T.sub.EM phenotype. In an embodiment of the invention, the method may further comprise one or both of (i) increasing the expression of CD62L by the T cells and (ii) decreasing the expression of KLRG1 by the T cells. Preferably, the method comprises both (i) and (ii).

[0098] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

EXAMPLES

[0099] The following materials and methods were employed in the experiments described in Examples 1-9.

Mice.

[0100] Myb fl/fl (C57BL/6) mice were a generous gift from Tim Bender, Va. C57BL/6 mice, Ly5.1 (B6.SJL-PtprcaPepcb/BoyJ) mice and pme1-1 (B6.Cg-Thy1a/Cy Tg(TcraTerb)8Rest/J) mice were from the Jackson Laboratory (Bar Harbor, Me.); Cre-ERT2 (B6-Gt(ROSA)26Sortm9(cre/Esr1)Arte) mice were from Taconic (Hudson, N.Y.). The pme1-1 mice were crossed with myb fl/fl mice and Cre-ERT2 mice to generate pme1-1 Cre-ERT2 myb fl/fl mice. All mouse experiments were done with the approval of the National Cancer institute Animal Use and Care Committee.

Antibodies, Flow Cytometry and Cell Sorting.

[0101] Anti-Ly5.1, anti-Thy-1.1 (OX-7), anti-CD62L (MEL-14), anti-CD8.alpha. (53-6.7), anti-KLRG-1 (2F1) antibodies were from BD Biosciences (Franklin Lakes, N.J.). A LSRII flow cytometer (BD Biosciences) was used for flow cytometry acquisition. Samples were analyzed with FLOWJO software (TreeStar, Ashland, Oreg.). Naive CD8.sup.+ T cells were sorted with a FACSARIA cell sorter (BD Biosciences).

Retroviral Vector Construction and Virus Production.

[0102] A sequence composed of a codon-optimized myb cDNA (SEQ ID NO: 21) and a sequence encoding Thy-1.1 joined by a sequence encoding the picornavirus 2A ribosomal skip peptide21 was cloned into a MSGV-1 vector. The sequence encoded a mouse c-Myb protein having the amino acid sequence of SEQ ID NO: 4. PLATINUM ECO cell lines (Cell Biolabs, San Diego, Calif.) were used for gamma-retroviral production by transfection with DNA plasmids through the use of LIPOFECTAMINE 2000 reagent (Invitrogen, Waltham, Mass.). Virus was collected 36 hours (h) after transfection.

In Vitro Activation and Transduction of CD8.sup.+ T Cells.

[0103] CD8.sup.+ T cells were separated from non-CD8.sup.+ T cells using a MACS negative selection kit (Miltenyi Biotech, Bergisch Gladbach, Germany). CD8.sup.+ T cells were activated on plates coated with anti-CD3.epsilon. antibody (2 .mu.g/ml; 145-2C11; BD Biosciences) and soluble anti-CD28 antibody (1 .mu.g/ml; 37.51; BD Biosciences) in culture medium containing interleukin (IL)-2 (10 ng/ml; Chiron, Emeryville, Calif.). Virus was `spin-inoculated` at 2,000 g for 2 h at 32.degree. C. onto plates coated with RETRONECTIN reagent (Takara, Shiga, Japan). CD8+ T cells activated for 24 h were spun onto plates after aspiration of viral supernatants.

Adoptive Cell Transfer and Infection

[0104] Adoptive transfer of cells (50.times.10.sup.3 to 100.times.10.sup.3 cells) and infection with recombinant vaccinia virus or adenovorus virus expressing human gp100 (rFPhgp100; Therion Biologics, Cambridge, Mass.) were carried out.

[0105] Counting of Adoptively Transferred Cells.

[0106] Mice were sacrificed after infection. Samples were enriched for CD8.sup.+ T cells, (MACS negative selection kit) and cells were counted by trypan blue exclusion. The frequency of transferred T cells was determined by measuring the expression of CD8 and Thy-1.1 Ly5.2 or CFSE (carboxyfluorescein succinimidyl ester) by flow cytometry. The absolute number of pme1-1 cells was calculated by multiplying the total cell count by the percentage of CD8.sup.+Thy-1.1.sup.+ or CD8.sup.+Ly5.2.sup.+.

Example 1

[0107] This example demonstrates that deficiency of c-Myb impairs accumulation of the numbers of T cells.

[0108] The pme1-1 mouse model is a useful tool for modeling the treatment of malignant melanoma using adoptive cell therapy (Overwijk et al., J. Exp. Med., 198(4): 569-80 (2003)). Adoptive transfer of T cells expressing the anti-gp100 TCR from pme1-1 mice can effectively mediate the regression of tumors when administered in combination with a lymphodepleting pretreatment regimen, cytokine administration, and vaccination (Zeng et al., J. Exp. Med, 201: 139-148 (2005); Gattinoni et al., J. Exp. Med., 202: 907-912 (2005); Klebanoff et al., Proc. Natl. Acad. Sci. USA, 101:1969-1974 (2004)).

[0109] CD8.sup.+ T cells were isolated from pme1-1 wild-type (WT) mice and Myb knockout mice (Myb.sup.-/-). The isolated T cells were transduced with a retroviral vector encoding the Thy1.1 antigen in order to facilitate assessment of the T cells by flow cytometry upon transfer into host mice. The transduced CD8.sup.+ T cells (1.times.10.sup.5) were adoptively transferred into WT mice infected with gp100 vaccinia virus (VV). The expression of Thy1.1 by the pme1-1 CD8.sup.+ T cells was assessed by flow cytometry 0-5 days after infection. The percentage of Thy1.1.sup.+ T cells (after gating on CD8.sup.+ cells) on Day 3 or Day 5 after infection is shown in Table 1. The quantification of Thy1.1.sup.+ pme1-1 CD8.sup.+ T cells 3 and 5 days after infection is shown in FIG. 1A.

TABLE-US-00002 TABLE 1 Day 3 Day 5 WT 0.0997 2.12 Myb.sup.-/- 0.0205 0.365

[0110] As shown in Table 1 and FIG. 1A, deficiency of c-Myb impairs accumulation of the numbers of T cells.

Example 2

[0111] This example demonstrates that deficiency of c-Myb promotes differentiation.

[0112] Pme1-1 WT CD8.sup.+ T cells or pme1-1 Myb.sup.-/- CD8.sup.+ T cells were transduced and adoptively transferred into infected WT mice as described in Example 1. The expression of KLRG1 and CD62L by Thy1.1.sup.+ pme1-1 CD8.sup.+ T cells that were isolated from spleen was measured by flow cytometry on day 5 after adoptive transfer.

[0113] The percentages of cells expressing the indicated phenotypes are shown in Table 2. The percentage of KLRG1.sup.+CD26L.sup.- cells obtained from four mice is shown in FIG. 1B.

TABLE-US-00003 TABLE 2 WT Myb.sup.-/- KLRG1.sup.+/CD62L.sup.+ 4.64 8.94 KLRG1.sup.-/CD62L.sup.+ 48 34.1 KLRG1.sup.+/CD62L.sup.- 5.09 18.3 KLRG1.sup.-/CD62L.sup.- 42.3 38.7

[0114] As shown in Table 2 and FIG. 1B, deficiency of c-Myb promotes T cell differentiation.

Example 3

[0115] This example demonstrates that overexpression of c-Myb enhances T cell proliferation.

[0116] CD8.sup.+ T cells were isolated from pme1-1 WT mice. The isolated T cells were transduced with a retroviral vector encoding (i) Thy1.1 only ("Thy1.1") or (ii) Thy1.1 and c-Myb (SEQ ID NO: 4) ("Thy1.1 Myb").

[0117] Thy1.1 CD8.sup.+ T cells (5.times.10.sup.4) or Thy1.1 Myb CD8.sup.+ T cells (5.times.10.sup.4) were adoptively co-transferred into WT mice infected with gp100-VV. The expression of Thy1.1 and Ly5.1 by splenic T cells was measured by flow cytometry (after gating on CD8.sup.+ T cells) 3-30 days after infection and 5 days after heterologous infection with gp100 adenovirus (on day 30 of gp100-VV infection). The percentages of Thy1.1.sup.+ Ly5.1.sup.- or Thy1.1.sup.+ Ly5.1.sup.+ cells are shown in Table 3 and the abundance of Thy1.1.sup.+ T cells 0-30 days (FIG. 2A) and 5 days (FIG. 2B) after heterologous infection with gp100 adenovirus is shown in FIGS. 2A-2B.

TABLE-US-00004 TABLE 3 Thy1.1.sup.+ Ly5.1.sup.- Thy1.1.sup.+ Ly5.1.sup.+ Day 0 49.5 49.3 Day 3 after infection 0.0185 0.179 Day 5 after infection 0.332 1.23 Day 10 after infection 0.429 0.717 Day 30 after infection 0.0973 0.0836 Day 5 after 1.56 7.25 heterologous infection with gp100 adenovirus

[0118] As shown in Table 3 and FIGS. 2A and 2B, the overexpression of c-Myb enhances T cell proliferation.

Example 4

[0119] This example demonstrates that overexpression of c-Myb produces cells having a central memory phenotype.

[0120] Thy1.1 and Thy1.1 Myb CD8+ T cells were adoptively co-transferred into infected WT mice as described in Example 3. KLRG1 and CD62L expression by Thy1.1.sup.+ Ly5.1.sup.- and Thy1.1.sup.+ Ly5.1.sup.+ CD8.sup.+ T cells from spleen was measured by flow cytometry. The percentages of cells having the indicated phenotype after gating on Thy1.1.sup.+ Ly5.1.sup.-CD8.sup.+ cells or Thy1.1.sup.+ Ly5.1.sup.+ CD8.sup.+ T cells is shown in Table 4.

TABLE-US-00005 TABLE 4 Day 5 Day 30 Day 5 recall Thy1.1 Thy1.1 Thy1.1 Thy1.1 Myb Thy1.1 Myb Thy1.1 Myb KLRG1.sup.+/ 2.3 0.265 0 2.34 1.65 0.478 CD62L.sup.+ KLRG1.sup.-/ 22.5 80.2 28.9 52.3 10.2 39.3 CD62L.sup.+ KLRG1.sup.+/ 9.84 0.309 11.4 0.781 25.8 3.11 CD62L.sup.- KLRG1.sup.-/ 65.6 19.2 59.7 44.5 62.3 57.2 CD62L.sup.-

[0121] The total number of KLRG1.sup.+CD62L.sup.-cells (FIGS. 2C and 2D) and KLRG1.sup.- CD62L.sup.+ cells (FIGS. 2E and 2F) from spleen 3-5 days post transfer and 5 days after heterologous infection with gp100 adenovirus (after gating on Thy1.1.sup.+ Ly5.1.sup.-CD8.sup.+ cells or Thy1.1.sup.+ Ly5.1.sup.+ CD8.sup.+ T cells) is shown in FIGS. 2C-2F.

[0122] The percentage of Thy1.1.sup.+ cells from the lymph nodes and lungs after adoptive transfer of Thy1.1 CD8.sup.+ or Thy1.1 Myb CD8.sup.+ T cells into WT mice infected with gp100-VV 5-30 days post-transfer is shown in FIGS. 3A-3B and 3E-F.

[0123] The percentage of KLRG1-CD62L.sup.+Thy1.1.sup.+ cells and KLRG1.sup.+CD62L.sup.-cells from lymph node and lungs 5-30 days or 5 days post transfer of Thy1.1 CD8.sup.+ or Thy1.1 Myb CD8.sup.+ T cells into WT mice infected with gp100-VV is shown in FIGS. 3C-3D and 4A-4B.

[0124] As shown in Table 4, FIGS. 2C-2F, FIGS. 3A-3F, and 4A-4B, overexpression of c-Myb produces T cells having a central memory phenotype.

Example 5

[0125] This example demonstrates that c-Myb deficiency promotes proliferation and apoptosis.

[0126] Thy1.1.sup.+ pme1-1.sup.+ WT or Thy1.1.sup.+ pme1-1.sup.+ c-Myb.sup.-/-CD8.sup.+ T cells (1.times.10.sup.5 cells) were transferred into WT mice infected with gp-100VV. Three days after infection, the frequency of bromodeoxyuridine (BrdU)-positive cells was measured by flow cytometry. The results are shown in Table 5 and FIG. 5A. The numbers in Table 5 indicate the frequencies of BrdU-positive cells after gating on Thy1.1+ CD8+ T cells.

TABLE-US-00006 TABLE 5 WT c-Myb.sup.-/- 33 45

[0127] After cell transfer and 3 days after infection as described in this Example, the frequencies of Annexin V +/-, Propidium iodide +/- and Annexin V and Propidium iodide double positive WT and c-Myb.sup.-/- CD8.sup.+ T cells were also measured by flow cytometry after gating on Thy1.1.sup.+ CD8.sup.+ T cells. The results are shown in Table 6.

TABLE-US-00007 TABLE 6 WT Myb.sup.-/- Annexin V.sup.+Propidium iodide.sup.+ 0.698 4.16 Annexin V.sup.-Propidium iodide.sup.- 93.2 79.9 Annexin V.sup.+Propidium iodide.sup.- 4.47 13 Annexin V.sup.-Propidium iodide.sup.+ 1.68 2.89

[0128] As shown in Tables 5-6 and FIGS. 5A-5B, c-Myb deficiency promotes proliferation and apoptosis.

Example 6

[0129] This example demonstrates that c-Myb deficiency downregulates Tcf7 expression and upregulates Zeb2 expression.

[0130] Thy1.1.sup.+ pme1-1.sup.+ WT or Thy1.1.sup.+ pme1-1.sup.+ c-Myb.sup.-/- CD8.sup.+ T cells (3.times.10.sup.5 cells) were injected into WT mice infected with gp-100VV. RNA sequencing data were obtained from CD62L.sup.-KLRG1.sup.- Thy1.1.sup.+ WT and CD62L.sup.-KLRG1.sup.- Thy1.1.sup.+ Pme1 c-Myb.sup.-/- CD8.sup.+ T cells on day 5 post transfer. The results showed that c-Myb deficiency downregulates Tcf7 expression and upregulates Zeb2 expression.

Example 7

[0131] This example demonstrates that c-Myb binds to the Tcf7 and Zeb2 promoters activating Tcf7 expression and repressing Zeb2 expression.

[0132] Thy1.1.sup.+ pme1-1.sup.+ WT or Thy1.1.sup.+ pme1-1.sup.+ c-Myb.sup.-/- CD8.sup.+ T cells were transferred into WT mice infected with gp-100VV. A quantitative RT-PCR analysis was carried out before or 5 days after adoptive transfer to measure the expression of Zeb2 and Tcf7 mRNA in WT or c-Myb.sup.-/- naive, CD62L.sup.+ and CD62L.sup.- populations of pme1-1 CD8.sup.+ T cells. The results are shown in FIGS. 6A-6B.

[0133] A quantitative RT-PCR analysis of the expression of Zeb2 and Tcf7 mRNA by CD62L.sup.- populations of Thy1.1.sup.+ or Thy1.1 c-Myb overexpressing CD8.sup.+ T cells 5 days after adoptive transfer into recipient wild-type mice infected with gp100-VV. The results are shown in FIGS. 6C-6D.

[0134] The expression pattern of c-Myb, Tcf7 and Zeb2 in naive, CD62L.sup.+ and CD62L.sup.- populations was measured on Day 5 after adoptive transfer into recipient wild-type mice infected with gp100-VV. The results are shown in FIGS. 6E-6F.

[0135] A quantitative RT-PCR analysis of the promoter regions of Tcf7 and Zeb2 in chromatin immunoprecipitation with anti-IgG or anti-c-Myb was carried out. The results are shown in FIG. 6G.

[0136] As shown in FIGS. 6A-6G, c-Myb binds to the Tcf7 and Zeb2 promoters activating Tcf7 expression and repressing Zeb2 expression.

Example 8

[0137] This example demonstrates that Tcf7 protein expression is downregulated in c-Myb deficient CD8+ T cells and that enforced c-Myb expression enhances Tcf7 promoter activity in the reporter assay.

[0138] Thy1.1.sup.+ pme1-1.sup.+WT or Thy1.1.sup.+ pme1-1.sup.+ c-Myb.sup.-/- CD8.sup.+ T cells were transferred into WT mice infected with gp-100VV. The expression of Tcf7 in WT and c-Myb.sup.-/- CD62L.sup.+, CD62L.sup.- and KLRG1.sup.+ populations of pme1-1 CD8.sup.+ T cells from lungs was measured by flow cytometry 5 days after adoptive transfer. The percentages of cells expressing one or both of KLRG1 and CD62L are shown in. Table 7.

TABLE-US-00008 TABLE 7 WT Myb.sup.-/- KLRG1.sup.+CD62L.sup.+ 8.44 8 KLRG1.sup.-CD62L.sup.- 27.6 24.7 KLRG1.sup.+CD62L.sup.- 53.4 61 KLRG1.sup.-CD62L.sup.+ 10.6 6.33

[0139] The expression level of Tcf7 protein was measured by flow cytometry and compared between KLRG1+CD62L-, KLRG1-CD62L- and KLRG1-CD62L subpopulations of WT and c-Myb.sup.-/- cells. The results showed that TCF-7 protein expression is higher in WT as compared to c-Myb.sup.-/- cells.

[0140] GFP expression by Thy1.1 or Thy1.1 c-Myb CD8.sup.+ T cells from Tcf7 GFP reporter mice (p45 mice) on day 3 after in vitro activation of naive cells and day 2 after retroviral transduction of either Thy1.1 or Thy1.1 c-Myb was measured by flow cytometry. The results are shown in FIG. 7.

[0141] Taken together, these data show that Tcf7 protein expression is downregulated in c-Myb deficient CD8+ T cells and enforced c-Myb expression enhances Tcf7 promoter activity in the reporter assay.

Example 9

[0142] This example demonstrates that enforced Tcf7 expression rescues the phenotype of c-Myb deficient cells.

[0143] WT and c-Myb.sup.-/- CD8.sup.+ T cells were transduced either with an empty vector MIG (control) or Tcf7 MIG 5 and transferred into recipient wild-type mice infected with gp100-VV. Five days after transfer, KLRG1 and CD62L expression by WT and c-Myb.sup.-/- CD8.sup.+ T cells was measured by flow cytometry. The percentages of cells expressing one or both of KLRG1 and CD62L are shown in Table 8. The percentage of KLRG1.sup.hi CD8 T cells is shown in FIG. 8.

TABLE-US-00009 TABLE 8 WT MIG c-Myb.sup.-/- MIG c-Myb.sup.-/- Tcf7 MIG KLRG1.sup.+CD62L.sup.+ 0.799 0.97 1 KLRG1.sup.-CD62L.sup.- 64 31.5 55.9 KLRG1.sup.+CD62L.sup.- 24.3 65.7 37.9 KLRG1.sup.-CD62L.sup.+ 10.9 1.8 5.25

[0144] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

[0145] The use of the terms "a" and "an" and "the" and "at least one" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term "at least one" followed by a list of one or more items (for example, "at least one of A and B") is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0146] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Sequence CWU 1

1

2113777DNAMus musculus 1gggagtgtcc aaacctcttt gtttgatggc atctgtttac agagttacac tttaatatca 60acctgtttcc tcctcctcct tctcctcctt ctcctcctcc tcctcggtga cctccttctc 120ctcccctttc tccggagaaa cttcgccccg gcggtgcgga gcgccgctgc gcagccgggg 180gaggacgcag gcaaggcgga gggcagcggg aggcggcaac cggtgcggtc cccggggctc 240ttggcggagc cccggcccgc ctcgccatgg cccggagacc ccgacacagc atctacagta 300gcgatgaaga tgatgaagac attgagatgt gtgaccatga ctacgatggg ctgctgccca 360aatctggaaa gcgtcacttg gggaaaacta ggtggacaag ggaagaggat gagaagctga 420agaagctggt ggaacagaac ggaacagacg actggaaagt cattgccaat tatctgccca 480accggacaga tgtgcagtgc caacaccggt ggcagaaagt gctgaaccct gaactcatca 540aaggtccctg gaccaaagaa gaagatcaga gagtcataga gcttgtccag aaatatggtc 600cgaagcgttg gtctgttatt gccaagcact taaaagggag aattggaaag cagtgtcggg 660agaggtggca caaccatttg aatccagaag ttaagaaaac ctcctggaca gaagaggagg 720acagaatcat ttaccaggca cacaagcgtc tggggaacag atgggcagag atcgcaaagc 780tgctgcccgg acggactgat aatgctatca agaaccactg gaattccacc atgcgtcgca 840aggtggaaca ggaaggctac ctgcaggagc cttccaaagc cagccagacg ccagtggcca 900cgagcttcca gaagaacaat catttgatgg ggtttgggca tgcctcacct ccatctcagc 960tctctccaag tggccagtcc tccgtcaaca gcgaatatcc ctattaccac atcgccgaag 1020cacaaaacat ctccagtcac gttccctatc ctgtcgcatt gcatgttaat atagtcaacg 1080tccctcagcc ggctgcggca gccatccaga gacactataa cgacgaagac cctgagaagg 1140aaaagcgaat aaaggagctg gagttgctcc tgatgtcaac agagaacgag ctgaagggac 1200agcaggcatt accaacacag aaccacactt gcagctaccc cgggtggcac agcacctcca 1260ttgtggacca gaccagacct catggggata gtgcacctgt ttcctgtttg ggagaacacc 1320atgccacccc atctctgcct gcagatcccg gctccctacc tgaagaaagt gcctcaccag 1380caaggtgcat gatcgtccac cagggcacca ttctggacaa tgttaagaac ctcttagaat 1440ttgcagaaac actccagttt atagattctg attcttcgtg gtgtgatctc agcagttttg 1500aattctctga agaagcggca gctttttcac ctagccagca gcccacaggc aaagccttcc 1560agcttcagca aagagagggc catgggacta gatctgcagg agagcctagc ctgagggtga 1620ccaggcgagt gctgagcgag gcatccctcg gcccagactc accccaagcg aggcacagca 1680aggttccgct ggtcgtccta cgaaaaaggc ggggccaggc cagcccccta gccgctggag 1740agcctagccc ctccctcttt gctgacgtca tcagctcaac tctcaagcgt tcccctgtca 1800aaagcctacc cttctctccc tcgcagttct tgaacacttc cagcaaccat gaaagctcgg 1860gcttagatgc acctacctta ccctccactc ctctcattgg tcacaaactg acaccatgtc 1920gagaccagac tgtgaaaacc cagaaggaaa attccatctt tagaactcca gctatcaaaa 1980ggtcaatcct cgaaagctct cctcgaactc ccacaccatt caaacatgcc cttgcagctc 2040aagaaattaa atacggtccc ctgaagatgc tacctcagac cccctcccat gcagtggagg 2100acctacaaga tgtgattaag caggaatcgg atgaatctgg aattgtggct gagtttcaag 2160agagtggacc accgttactg aaaaaaatca agcaggaggt ggagtcgcca actgagaaat 2220cgggaaactt cttctgctca aaccactggg cagagaacag cctgagcacc cagctgttct 2280cgcaggcgtc tcctgtggca gatgccccaa atattcttac aagctctgtt ttaatgacac 2340ctgtatcaga agatgaagac aatgtcctca aagcctttac cgtacctaag aacaggcccc 2400tggtgggtcc cttgcagcca tgcagtggtg cctgggagcc agcatcctgt gggaagacag 2460aggaccagat gacggcctcc ggtccggctc ggaaatacgt gaacgcgttc tcagctcgaa 2520ctctggtcat gtgagacatt tccagaaaag cattatggtt ttcagaacac ttaaaagttg 2580actttcgaca catggctcct cagcgtggag cgctccatgg ctgagagaag agcctgattt 2640tgttgtggta caacagttga gagcagcacc aagtgcattt ttagttgctt gagatctcac 2700ttgatttcac acaactaaaa aggatttttt tttttaaaaa taataataat gaataacagt 2760cttacctaaa ttattaggta atgaattgtg accatttgtt aatatcataa tcagattttt 2820taaaaaaaat aaaatgattt atttgtattt tagaggatac aacagatcag tatttttgac 2880tgtggtgaat ttaaaaaaaa aatttacaca aagaaatatc ccagtattcc atgtatctca 2940gtcactaaac atacacagag agatttttaa aaaccaggag aagcattatt ttgaatgtta 3000gctaaatccc aagtaatact taatgcaacc ctctaggagc tcatttgtgg ctaataatct 3060tggaaatatc tttattatac taaaccattt catgaggaga attttgttgt cagcttgctt 3120gaaaagttat tactgtatga aatagtttta ttgaaaaaat tatattttta ttcagtaatt 3180taattttgta aatgccaaat ggagaaatgt gttcgctgct atggttttag cctgtagtca 3240tgctgctagc tagtgtcagg gggcaataga gcttagatgg aaaaaagaga aagagactcg 3300gtgttagata acggactatg cactagtatt ccagactttt ttatttttat atatatgtac 3360cttttccttt tgtaattgga aaacttattt gggagaattt tgcatttgtt gtacattttt 3420gttttttagg attttttttt tttgttgtta ttgtcgattt ataaaagcat tgcacttctt 3480tttctttttt tgggagattt gtgttgttta tgtcatatgt tttgttttga gttcagcctg 3540aatgttcatc cgtttgggcg tttttctgac ttggaagaac attctctgta ggtttctaag 3600tgtacagagc cggaactgcc tcgtggttcc tgggcttcag ggaagacaaa tatggaagtc 3660aacagccagt ttctgccttg agagcatttg caagaatgct ggccttgaat tctgaaatga 3720cagtgtatct actgccttgt agcaaaataa agctatcctc ttattttaca tacttcc 377723420DNAMus musculus 2gggagtgtcc aaacctcttt gtttgatggc atctgtttac agagttacac tttaatatca 60acctgtttcc tcctcctcct tctcctcctt ctcctcctcc tcctcggtga cctccttctc 120ctcccctttc tccggagaaa cttcgccccg gcggtgcgga gcgccgctgc gcagccgggg 180gaggacgcag gcaaggcgga gggcagcggg aggcggcaac cggtgcggtc cccggggctc 240ttggcggagc cccggcccgc ctcgccatgg cccggagacc ccgacacagc atctacagta 300gcgatgaaga tgatgaagac attgagatgt gtgaccatga ctacgatggg ctgctgccca 360aatctggaaa gcgtcacttg gggaaaacta ggtggacaag ggaagaggat gagaagctga 420agaagctggt ggaacagaac ggaacagacg actggaaagt cattgccaat tatctgccca 480accggacaga tgtgcagtgc caacaccggt ggcagaaagt gctgaaccct gaactcatca 540aaggtccctg gaccaaagaa gaagatcaga gagtcataga gcttgtccag aaatatggtc 600cgaagcgttg gtctgttatt gccaagcact taaaagggag aattggaaag cagtgtcggg 660agaggtggca caaccatttg aatccagaag ttaagaaaac ctcctggaca gaagaggagg 720acagaatcat ttaccaggca cacaagcgtc tggggaacag atgggcagag atcgcaaagc 780tgctgcccgg acggactgat aatgctatca agaaccactg gaattccacc atgcgtcgca 840aggtggaaca ggaaggctac ctgcaggagc cttccaaagc cagccagacg ccagtggcca 900cgagcttcca gaagaacaat catttgatgg ggtttgggca tgcctcacct ccatctcagc 960tctctccaag tggccagtcc tccgtcaaca gcgaatatcc ctattaccac atcgccgaag 1020cacaaaacat ctccagtcac gttccctatc ctgtcgcatt gcatgttaat atagtcaacg 1080tccctcagcc ggctgcggca gccatccaga gacactataa cgacgaagac cctgagaagg 1140aaaagcgaat aaaggagctg gagttgctcc tgatgtcaac agagaacgag ctgaagggac 1200agcaggcatt accaacacag aaccacactt gcagctaccc cgggtggcac agcacctcca 1260ttgtggacca gaccagacct catggggata gtgcacctgt ttcctgtttg ggagaacacc 1320atgccacccc atctctgcct gcagatcccg gctccctacc tgaagaaagt gcctcaccag 1380caaggtgcat gatcgtccac cagggcacca ttctggacaa tgttaagaac ctcttagaat 1440ttgcagaaac actccagttt atagattctt tcttgaacac ttccagcaac catgaaagct 1500cgggcttaga tgcacctacc ttaccctcca ctcctctcat tggtcacaaa ctgacaccat 1560gtcgagacca gactgtgaaa acccagaagg aaaattccat ctttagaact ccagctatca 1620aaaggtcaat cctcgaaagc tctcctcgaa ctcccacacc attcaaacat gcccttgcag 1680ctcaagaaat taaatacggt cccctgaaga tgctacctca gaccccctcc catgcagtgg 1740aggacctaca agatgtgatt aagcaggaat cggatgaatc tggaattgtg gctgagtttc 1800aagagagtgg accaccgtta ctgaaaaaaa tcaagcagga ggtggagtcg ccaactgaga 1860aatcgggaaa cttcttctgc tcaaaccact gggcagagaa cagcctgagc acccagctgt 1920tctcgcaggc gtctcctgtg gcagatgccc caaatattct tacaagctct gttttaatga 1980cacctgtatc agaagatgaa gacaatgtcc tcaaagcctt taccgtacct aagaacaggc 2040ccctggtggg tcccttgcag ccatgcagtg gtgcctggga gccagcatcc tgtgggaaga 2100cagaggacca gatgacggcc tccggtccgg ctcggaaata cgtgaacgcg ttctcagctc 2160gaactctggt catgtgagac atttccagaa aagcattatg gttttcagaa cacttaaaag 2220ttgactttcg acacatggct cctcagcgtg gagcgctcca tggctgagag aagagcctga 2280ttttgttgtg gtacaacagt tgagagcagc accaagtgca tttttagttg cttgagatct 2340cacttgattt cacacaacta aaaaggattt ttttttttaa aaataataat aatgaataac 2400agtcttacct aaattattag gtaatgaatt gtgaccattt gttaatatca taatcagatt 2460ttttaaaaaa aataaaatga tttatttgta ttttagagga tacaacagat cagtattttt 2520gactgtggtg aatttaaaaa aaaaatttac acaaagaaat atcccagtat tccatgtatc 2580tcagtcacta aacatacaca gagagatttt taaaaaccag gagaagcatt attttgaatg 2640ttagctaaat cccaagtaat acttaatgca accctctagg agctcatttg tggctaataa 2700tcttggaaat atctttatta tactaaacca tttcatgagg agaattttgt tgtcagcttg 2760cttgaaaagt tattactgta tgaaatagtt ttattgaaaa aattatattt ttattcagta 2820atttaatttt gtaaatgcca aatggagaaa tgtgttcgct gctatggttt tagcctgtag 2880tcatgctgct agctagtgtc agggggcaat agagcttaga tggaaaaaag agaaagagac 2940tcggtgttag ataacggact atgcactagt attccagact tttttatttt tatatatatg 3000taccttttcc ttttgtaatt ggaaaactta tttgggagaa ttttgcattt gttgtacatt 3060tttgtttttt aggatttttt ttttttgttg ttattgtcga tttataaaag cattgcactt 3120ctttttcttt ttttgggaga tttgtgttgt ttatgtcata tgttttgttt tgagttcagc 3180ctgaatgttc atccgtttgg gcgtttttct gacttggaag aacattctct gtaggtttct 3240aagtgtacag agccggaact gcctcgtggt tcctgggctt cagggaagac aaatatggaa 3300gtcaacagcc agtttctgcc ttgagagcat ttgcaagaat gctggccttg aattctgaaa 3360tgacagtgta tctactgcct tgtagcaaaa taaagctatc ctcttatttt acatacttcc 34203755PRTMus musculus 3Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Ile Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Pro Ser Lys Ala Ser Gln Thr 195 200 205 Pro Val Ala Thr Ser Phe Gln Lys Asn Asn His Leu Met Gly Phe Gly 210 215 220 His Ala Ser Pro Pro Ser Gln Leu Ser Pro Ser Gly Gln Ser Ser Val 225 230 235 240 Asn Ser Glu Tyr Pro Tyr Tyr His Ile Ala Glu Ala Gln Asn Ile Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Ala Leu Pro Thr Gln Asn His 305 310 315 320 Thr Cys Ser Tyr Pro Gly Trp His Ser Thr Ser Ile Val Asp Gln Thr 325 330 335 Arg Pro His Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His 340 345 350 Ala Thr Pro Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser 355 360 365 Ala Ser Pro Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp 370 375 380 Asn Val Lys Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp 385 390 395 400 Ser Asp Ser Ser Trp Cys Asp Leu Ser Ser Phe Glu Phe Ser Glu Glu 405 410 415 Ala Ala Ala Phe Ser Pro Ser Gln Gln Pro Thr Gly Lys Ala Phe Gln 420 425 430 Leu Gln Gln Arg Glu Gly His Gly Thr Arg Ser Ala Gly Glu Pro Ser 435 440 445 Leu Arg Val Thr Arg Arg Val Leu Ser Glu Ala Ser Leu Gly Pro Asp 450 455 460 Ser Pro Gln Ala Arg His Ser Lys Val Pro Leu Val Val Leu Arg Lys 465 470 475 480 Arg Arg Gly Gln Ala Ser Pro Leu Ala Ala Gly Glu Pro Ser Pro Ser 485 490 495 Leu Phe Ala Asp Val Ile Ser Ser Thr Leu Lys Arg Ser Pro Val Lys 500 505 510 Ser Leu Pro Phe Ser Pro Ser Gln Phe Leu Asn Thr Ser Ser Asn His 515 520 525 Glu Ser Ser Gly Leu Asp Ala Pro Thr Leu Pro Ser Thr Pro Leu Ile 530 535 540 Gly His Lys Leu Thr Pro Cys Arg Asp Gln Thr Val Lys Thr Gln Lys 545 550 555 560 Glu Asn Ser Ile Phe Arg Thr Pro Ala Ile Lys Arg Ser Ile Leu Glu 565 570 575 Ser Ser Pro Arg Thr Pro Thr Pro Phe Lys His Ala Leu Ala Ala Gln 580 585 590 Glu Ile Lys Tyr Gly Pro Leu Lys Met Leu Pro Gln Thr Pro Ser His 595 600 605 Ala Val Glu Asp Leu Gln Asp Val Ile Lys Gln Glu Ser Asp Glu Ser 610 615 620 Gly Ile Val Ala Glu Phe Gln Glu Ser Gly Pro Pro Leu Leu Lys Lys 625 630 635 640 Ile Lys Gln Glu Val Glu Ser Pro Thr Glu Lys Ser Gly Asn Phe Phe 645 650 655 Cys Ser Asn His Trp Ala Glu Asn Ser Leu Ser Thr Gln Leu Phe Ser 660 665 670 Gln Ala Ser Pro Val Ala Asp Ala Pro Asn Ile Leu Thr Ser Ser Val 675 680 685 Leu Met Thr Pro Val Ser Glu Asp Glu Asp Asn Val Leu Lys Ala Phe 690 695 700 Thr Val Pro Lys Asn Arg Pro Leu Val Gly Pro Leu Gln Pro Cys Ser 705 710 715 720 Gly Ala Trp Glu Pro Ala Ser Cys Gly Lys Thr Glu Asp Gln Met Thr 725 730 735 Ala Ser Gly Pro Ala Arg Lys Tyr Val Asn Ala Phe Ser Ala Arg Thr 740 745 750 Leu Val Met 755 4 636PRTMus musculus 4Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Ile Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Pro Ser Lys Ala Ser Gln Thr 195 200 205 Pro Val Ala Thr Ser Phe Gln Lys Asn Asn His Leu Met Gly Phe Gly 210 215 220 His Ala Ser Pro Pro Ser Gln Leu Ser Pro Ser Gly Gln Ser Ser Val 225 230 235 240 Asn Ser Glu Tyr Pro Tyr Tyr His Ile Ala Glu Ala Gln Asn Ile Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Ala Leu Pro Thr Gln Asn His 305 310 315 320 Thr Cys Ser Tyr Pro Gly Trp His Ser Thr Ser Ile Val Asp Gln Thr 325 330 335 Arg Pro His Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His 340 345 350 Ala Thr Pro Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser 355 360 365 Ala Ser Pro Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp 370 375 380 Asn Val Lys Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp 385 390 395 400 Ser Phe Leu Asn Thr Ser Ser Asn His Glu Ser Ser Gly Leu Asp Ala 405 410 415 Pro Thr Leu Pro Ser Thr Pro Leu Ile Gly His Lys Leu Thr Pro Cys 420 425 430 Arg Asp Gln Thr Val Lys Thr Gln

Lys Glu Asn Ser Ile Phe Arg Thr 435 440 445 Pro Ala Ile Lys Arg Ser Ile Leu Glu Ser Ser Pro Arg Thr Pro Thr 450 455 460 Pro Phe Lys His Ala Leu Ala Ala Gln Glu Ile Lys Tyr Gly Pro Leu 465 470 475 480 Lys Met Leu Pro Gln Thr Pro Ser His Ala Val Glu Asp Leu Gln Asp 485 490 495 Val Ile Lys Gln Glu Ser Asp Glu Ser Gly Ile Val Ala Glu Phe Gln 500 505 510 Glu Ser Gly Pro Pro Leu Leu Lys Lys Ile Lys Gln Glu Val Glu Ser 515 520 525 Pro Thr Glu Lys Ser Gly Asn Phe Phe Cys Ser Asn His Trp Ala Glu 530 535 540 Asn Ser Leu Ser Thr Gln Leu Phe Ser Gln Ala Ser Pro Val Ala Asp 545 550 555 560 Ala Pro Asn Ile Leu Thr Ser Ser Val Leu Met Thr Pro Val Ser Glu 565 570 575 Asp Glu Asp Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg Pro 580 585 590 Leu Val Gly Pro Leu Gln Pro Cys Ser Gly Ala Trp Glu Pro Ala Ser 595 600 605 Cys Gly Lys Thr Glu Asp Gln Met Thr Ala Ser Gly Pro Ala Arg Lys 610 615 620 Tyr Val Asn Ala Phe Ser Ala Arg Thr Leu Val Met 625 630 635 53681DNAHomo sapiens 5aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcaggt 1140gctaccaaca cagaaccaca catgcagcta ccccgggtgg cacagcacca ccattgccga 1200ccacaccaga cctcatggag acagtgcacc tgtttcctgt ttgggagaac accactccac 1260tccatctctg ccagcggatc ctggctccct acctgaagaa agcgcctcgc cagcaaggtg 1320catgatcgtc caccagggca ccattctgga taatgttaag aacctcttag aatttgcaga 1380aacactccaa tttatagatt ctgattcttc atcatggtgt gatctcagca gttttgaatt 1440ctttgaagaa gcagattttt cacctagcca acatcacaca ggcaaagccc tacagcttca 1500gcaaagagag ggcaatggga ctaaacctgc aggagaacct agcccaaggg tgaacaaacg 1560tatgttgagt gagagttcac ttgacccacc caaggtctta cctcctgcaa ggcacagcac 1620aattccactg gtcatccttc gaaaaaaacg gggccaggcc agccccttag ccactggaga 1680ctgtagctcc ttcatatttg ctgacgtcag cagttcaact cccaagcgtt cccctgtcaa 1740aagcctaccc ttctctccct cgcagttctt aaacacttcc agtaaccatg aaaactcaga 1800cttggaaatg ccttctttaa cttccacccc cctcattggt cacaaattga ctgttacaac 1860accatttcat agagaccaga ctgtgaaaac tcaaaaggaa aatactgttt ttagaacccc 1920agctatcaaa aggtcaatct tagaaagctc tccaagaact cctacaccat tcaaacatgc 1980acttgcagct caagaaatta aatacggtcc cctgaagatg ctacctcaga caccctctca 2040tctagtagaa gatctgcagg atgtgatcaa acaggaatct gatgaatctg gaattgttgc 2100tgagtttcaa gaaaatggac cacccttact gaagaaaatc aaacaagagg tggaatctcc 2160aactgataaa tcaggaaact tcttctgctc acaccactgg gaaggggaca gtctgaatac 2220ccaactgttc acgcagacct cgcctgtggc agatgcaccg aatattctta caagctccgt 2280tttaatggca ccagcatcag aagatgaaga caatgttctc aaagcattta cagtacctaa 2340aaacaggtcc ctggcgagcc ccttgcagcc ttgtagcagt acctgggaac ctgcatcctg 2400tggaaagatg gaggagcaga tgacatcttc cagtcaagct cgtaaatacg tgaatgcatt 2460ctcagcccgg acgctggtca tgtgagacat ttccagaaaa gcattatggt tttcagaaca 2520cttcaagttg acttgggata tatcattcct caacatgaaa cttttcatga atgggagaag 2580aacctatttt tgttgtggta caacagttga gagcagcacc aagtgcattt agttgaatga 2640agtcttcttg gatttcaccc aactaaaagg atttttaaaa ataaataaca gtcttaccta 2700aattattagg taatgaattg tagccagttg ttaatatctt aatgcagatt tttttaaaaa 2760aaacataaaa tgatttatct gtattttaaa ggatccaaca gatcagtatt ttttcctgtg 2820atgggttttt tgaaatttga cacattaaaa ggtactccag tatttcactt ttctcgatca 2880ctaaacatat gcatatattt ttaaaaatca gtaaaagcat tactctaagt gtagacttaa 2940taccatgtga catttaatcc agattgtaaa tgctcattta tggttaatga cattgaaggt 3000acatttattg taccaaacca ttttatgagt tttctgttag cttgctttaa aaattattac 3060tgtaagaaat agttttataa aaaattatat ttttattcag taatttaatt ttgtaaatgc 3120caaatgaaaa acgttttttg ctgctatggt cttagcctgt agacatgctg ctagtatcag 3180aggggcagta gagcttggac agaaagaaaa gaaacttggt gttaggtaat tgactatgca 3240ctagtatttc agacttttta attttatata tatatacatt ttttttcctt ctgcaataca 3300tttgaaaact tgtttgggag actctgcatt ttttattgtg gtttttttgt tattgttggt 3360ttatacaagc atgcgttgca cttctttttt gggagatgtg tgttgttgat gttctatgtt 3420ttgttttgag tgtagcctga ctgttttata atttgggagt tctgcatttg atccgcatcc 3480cctgtggttt ctaagtgtat ggtctcagaa ctgttgcatg gatcctgtgt ttgcaactgg 3540ggagacagaa actgtggttg atagccagtc actgccttaa gaacatttga tgcaagatgg 3600ccagcactga acttttgaga tatgacggtg tacttactgc cttgtagcaa aataaagatg 3660tgcccttatt ttacctacaa a 368163342DNAHomo sapiens 6aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcaggt 1140gctaccaaca cagaaccaca catgcagcta ccccgggtgg cacagcacca ccattgccga 1200ccacaccaga cctcatggag acagtgcacc tgtttcctgt ttgggagaac accactccac 1260tccatctctg ccagcggatc ctggctccct acctgaagaa agcgcctcgc cagcaaggtg 1320catgatcgtc caccagggca ccattctgga taatgttaag aacctcttag aatttgcaga 1380aacactccaa tttatagatt ctttcttaaa cacttccagt aaccatgaaa actcagactt 1440ggaaatgcct tctttaactt ccacccccct cattggtcac aaattgactg ttacaacacc 1500atttcataga gaccagactg tgaaaactca aaaggaaaat actgttttta gaaccccagc 1560tatcaaaagg tcaatcttag aaagctctcc aagaactcct acaccattca aacatgcact 1620tgcagctcaa gaaattaaat acggtcccct gaagatgcta cctcagacac cctctcatct 1680agtagaagat ctgcaggatg tgatcaaaca ggaatctgat gaatctggaa ttgttgctga 1740gtttcaagaa aatggaccac ccttactgaa gaaaatcaaa caagaggtgg aatctccaac 1800tgataaatca ggaaacttct tctgctcaca ccactgggaa ggggacagtc tgaataccca 1860actgttcacg cagacctcgc ctgtggcaga tgcaccgaat attcttacaa gctccgtttt 1920aatggcacca gcatcagaag atgaagacaa tgttctcaaa gcatttacag tacctaaaaa 1980caggtccctg gcgagcccct tgcagccttg tagcagtacc tgggaacctg catcctgtgg 2040aaagatggag gagcagatga catcttccag tcaagctcgt aaatacgtga atgcattctc 2100agcccggacg ctggtcatgt gagacatttc cagaaaagca ttatggtttt cagaacactt 2160caagttgact tgggatatat cattcctcaa catgaaactt ttcatgaatg ggagaagaac 2220ctatttttgt tgtggtacaa cagttgagag cagcaccaag tgcatttagt tgaatgaagt 2280cttcttggat ttcacccaac taaaaggatt tttaaaaata aataacagtc ttacctaaat 2340tattaggtaa tgaattgtag ccagttgtta atatcttaat gcagattttt ttaaaaaaaa 2400cataaaatga tttatctgta ttttaaagga tccaacagat cagtattttt tcctgtgatg 2460ggttttttga aatttgacac attaaaaggt actccagtat ttcacttttc tcgatcacta 2520aacatatgca tatattttta aaaatcagta aaagcattac tctaagtgta gacttaatac 2580catgtgacat ttaatccaga ttgtaaatgc tcatttatgg ttaatgacat tgaaggtaca 2640tttattgtac caaaccattt tatgagtttt ctgttagctt gctttaaaaa ttattactgt 2700aagaaatagt tttataaaaa attatatttt tattcagtaa tttaattttg taaatgccaa 2760atgaaaaacg ttttttgctg ctatggtctt agcctgtaga catgctgcta gtatcagagg 2820ggcagtagag cttggacaga aagaaaagaa acttggtgtt aggtaattga ctatgcacta 2880gtatttcaga ctttttaatt ttatatatat atacattttt tttccttctg caatacattt 2940gaaaacttgt ttgggagact ctgcattttt tattgtggtt tttttgttat tgttggttta 3000tacaagcatg cgttgcactt cttttttggg agatgtgtgt tgttgatgtt ctatgttttg 3060ttttgagtgt agcctgactg ttttataatt tgggagttct gcatttgatc cgcatcccct 3120gtggtttcta agtgtatggt ctcagaactg ttgcatggat cctgtgtttg caactgggga 3180gacagaaact gtggttgata gccagtcact gccttaagaa catttgatgc aagatggcca 3240gcactgaact tttgagatat gacggtgtac ttactgcctt gtagcaaaat aaagatgtgc 3300ccttatttta cctaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 334273309DNAHomo sapiens 7aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcagac 1140acagaaccac acatgcagct accccgggtg gcacagcacc accattgccg accacaccag 1200acctcatgga gacagtgcac ctgtttcctg tttgggagaa caccactcca ctccatctct 1260gccagcggat cctggctccc tacctgaaga aagcgcctcg ccagcaaggt gcatgatcgt 1320ccaccagggc accattctgg ataatgttaa gaacctctta gaatttgcag aaacactcca 1380atttatagat tctttcttaa acacttccag taaccatgaa aactcagact tggaaatgcc 1440ttctttaact tccacccccc tcattggtca caaattgact gttacaacac catttcatag 1500agaccagact gtgaaaactc aaaaggaaaa tactgttttt agaaccccag ctatcaaaag 1560gtcaatctta gaaagctctc caagaactcc tacaccattc aaacatgcac ttgcagctca 1620agaaattaaa tacggtcccc tgaagatgct acctcagaca ccctctcatc tagtagaaga 1680tctgcaggat gtgatcaaac aggaatctga tgaatctgga attgttgctg agtttcaaga 1740aaatggacca cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaatc 1800aggaaacttc ttctgctcac accactggga aggggacagt ctgaataccc aactgttcac 1860gcagacctcg cctgtggcag atgcaccgaa tattcttaca agctccgttt taatggcacc 1920agcatcagaa gatgaagaca atgttctcaa agcatttaca gtacctaaaa acaggtccct 1980ggcgagcccc ttgcagcctt gtagcagtac ctgggaacct gcatcctgtg gaaagatgga 2040ggagcagatg acatcttcca gtcaagctcg taaatacgtg aatgcattct cagcccggac 2100gctggtcatg tgagacattt ccagaaaagc attatggttt tcagaacact tcaagttgac 2160ttgggatata tcattcctca acatgaaact tttcatgaat gggagaagaa cctatttttg 2220ttgtggtaca acagttgaga gcagcaccaa gtgcatttag ttgaatgaag tcttcttgga 2280tttcacccaa ctaaaaggat ttttaaaaat aaataacagt cttacctaaa ttattaggta 2340atgaattgta gccagttgtt aatatcttaa tgcagatttt tttaaaaaaa acataaaatg 2400atttatctgt attttaaagg atccaacaga tcagtatttt ttcctgtgat gggttttttg 2460aaatttgaca cattaaaagg tactccagta tttcactttt ctcgatcact aaacatatgc 2520atatattttt aaaaatcagt aaaagcatta ctctaagtgt agacttaata ccatgtgaca 2580tttaatccag attgtaaatg ctcatttatg gttaatgaca ttgaaggtac atttattgta 2640ccaaaccatt ttatgagttt tctgttagct tgctttaaaa attattactg taagaaatag 2700ttttataaaa aattatattt ttattcagta atttaatttt gtaaatgcca aatgaaaaac 2760gttttttgct gctatggtct tagcctgtag acatgctgct agtatcagag gggcagtaga 2820gcttggacag aaagaaaaga aacttggtgt taggtaattg actatgcact agtatttcag 2880actttttaat tttatatata tatacatttt ttttccttct gcaatacatt tgaaaacttg 2940tttgggagac tctgcatttt ttattgtggt ttttttgtta ttgttggttt atacaagcat 3000gcgttgcact tcttttttgg gagatgtgtg ttgttgatgt tctatgtttt gttttgagtg 3060tagcctgact gttttataat ttgggagttc tgcatttgat ccgcatcccc tgtggtttct 3120aagtgtatgg tctcagaact gttgcatgga tcctgtgttt gcaactgggg agacagaaac 3180tgtggttgat agccagtcac tgccttaaga acatttgatg caagatggcc agcactgaac 3240ttttgagata tgacggtgta cttactgcct tgtagcaaaa taaagatgtg cccttatttt 3300acctacaaa 330983669DNAHomo sapiens 8aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcagac 1140acagaaccac acatgcagct accccgggtg gcacagcacc accattgccg accacaccag 1200acctcatgga gacagtgcac ctgtttcctg tttgggagaa caccactcca ctccatctct 1260gccagcggat cctggctccc tacctgaaga aagcgcctcg ccagcaaggt gcatgatcgt 1320ccaccagggc accattctgg ataatgttaa gaacctctta gaatttgcag aaacactcca 1380atttatagat tctgattctt catcatggtg tgatctcagc agttttgaat tctttgaaga 1440agcagatttt tcacctagcc aacatcacac aggcaaagcc ctacagcttc agcaaagaga 1500gggcaatggg actaaacctg caggagaacc tagcccaagg gtgaacaaac gtatgttgag 1560tgagagttca cttgacccac ccaaggtctt acctcctgca aggcacagca caattccact 1620ggtcatcctt cgaaaaaaac ggggccaggc cagcccctta gccactggag actgtagctc 1680cttcatattt gctgacgtca gcagttcaac tcccaagcgt tcccctgtca aaagcctacc 1740cttctctccc tcgcagttct taaacacttc cagtaaccat gaaaactcag acttggaaat 1800gccttcttta acttccaccc ccctcattgg tcacaaattg actgttacaa caccatttca 1860tagagaccag actgtgaaaa ctcaaaagga aaatactgtt tttagaaccc cagctatcaa 1920aaggtcaatc ttagaaagct ctccaagaac tcctacacca ttcaaacatg cacttgcagc 1980tcaagaaatt aaatacggtc ccctgaagat gctacctcag acaccctctc atctagtaga 2040agatctgcag gatgtgatca aacaggaatc tgatgaatct ggaattgttg ctgagtttca 2100agaaaatgga ccacccttac tgaagaaaat caaacaagag gtggaatctc caactgataa 2160atcaggaaac ttcttctgct cacaccactg ggaaggggac agtctgaata cccaactgtt 2220cacgcagacc tcgcctgtgg cagatgcacc gaatattctt acaagctccg ttttaatggc 2280accagcatca gaagatgaag acaatgttct caaagcattt acagtaccta aaaacaggtc 2340cctggcgagc cccttgcagc cttgtagcag tacctgggaa cctgcatcct gtggaaagat 2400ggaggagcag atgacatctt ccagtcaagc tcgtaaatac gtgaatgcat tctcagcccg 2460gacgctggtc atgtgagaca tttccagaaa agcattatgg ttttcagaac acttcaagtt 2520gacttgggat atatcattcc tcaacatgaa acttttcatg aatgggagaa gaacctattt 2580ttgttgtggt acaacagttg agagcagcac caagtgcatt tagttgaatg aagtcttctt 2640ggatttcacc caactaaaag gatttttaaa aataaataac agtcttacct aaattattag 2700gtaatgaatt gtagccagtt gttaatatct taatgcagat ttttttaaaa aaaacataaa 2760atgatttatc tgtattttaa aggatccaac agatcagtat tttttcctgt gatgggtttt 2820ttgaaatttg acacattaaa aggtactcca gtatttcact tttctcgatc actaaacata 2880tgcatatatt tttaaaaatc agtaaaagca ttactctaag tgtagactta ataccatgtg 2940acatttaatc cagattgtaa atgctcattt atggttaatg acattgaagg tacatttatt 3000gtaccaaacc attttatgag ttttctgtta gcttgcttta aaaattatta ctgtaagaaa 3060tagttttata aaaaattata tttttattca gtaatttaat tttgtaaatg ccaaatgaaa 3120aacgtttttt gctgctatgg tcttagcctg tagacatgct gctagtatca gaggggcagt 3180agagcttgga cagaaagaaa agaaacttgg tgttaggtaa ttgactatgc actagtattt

3240cagacttttt aattttatat atatatacat tttttttcct tctgcaatac atttgaaaac 3300ttgtttggga gactctgcat tttttattgt ggtttttttg ttattgttgg tttatacaag 3360catgcgttgc acttcttttt tgggagatgt gtgttgttga tgttctatgt tttgttttga 3420gtgtagcctg actgttttat aatttgggag ttctgcattt gatccgcatc ccctgtggtt 3480tctaagtgta tggtctcaga actgttgcat ggatcctgtg tttgcaactg gggagacaga 3540aactgtggtt gatagccagt cactgcctta agaacatttg atgcaagatg gccagcactg 3600aacttttgag atatgacggt gtacttactg ccttgtagca aaataaagat gtgcccttat 3660tttacctac 366993060DNAHomo sapiens 9aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcaggt 1140gctaccattc ttaaacactt ccagtaacca tgaaaactca gacttggaaa tgccttcttt 1200aacttccacc cccctcattg gtcacaaatt gactgttaca acaccatttc atagagacca 1260gactgtgaaa actcaaaagg aaaatactgt ttttagaacc ccagctatca aaaggtcaat 1320cttagaaagc tctccaagaa ctcctacacc attcaaacat gcacttgcag ctcaagaaat 1380taaatacggt cccctgaaga tgctacctca gacaccctct catctagtag aagatctgca 1440ggatgtgatc aaacaggaat ctgatgaatc tggaattgtt gctgagtttc aagaaaatgg 1500accaccctta ctgaagaaaa tcaaacaaga ggtggaatct ccaactgata aatcaggaaa 1560cttcttctgc tcacaccact gggaagggga cagtctgaat acccaactgt tcacgcagac 1620ctcgcctgtg gcagatgcac cgaatattct tacaagctcc gttttaatgg caccagcatc 1680agaagatgaa gacaatgttc tcaaagcatt tacagtacct aaaaacaggt ccctggcgag 1740ccccttgcag ccttgtagca gtacctggga acctgcatcc tgtggaaaga tggaggagca 1800gatgacatct tccagtcaag ctcgtaaata cgtgaatgca ttctcagccc ggacgctggt 1860catgtgagac atttccagaa aagcattatg gttttcagaa cacttcaagt tgacttggga 1920tatatcattc ctcaacatga aacttttcat gaatgggaga agaacctatt tttgttgtgg 1980tacaacagtt gagagcagca ccaagtgcat ttagttgaat gaagtcttct tggatttcac 2040ccaactaaaa ggatttttaa aaataaataa cagtcttacc taaattatta ggtaatgaat 2100tgtagccagt tgttaatatc ttaatgcaga tttttttaaa aaaaacataa aatgatttat 2160ctgtatttta aaggatccaa cagatcagta ttttttcctg tgatgggttt tttgaaattt 2220gacacattaa aaggtactcc agtatttcac ttttctcgat cactaaacat atgcatatat 2280ttttaaaaat cagtaaaagc attactctaa gtgtagactt aataccatgt gacatttaat 2340ccagattgta aatgctcatt tatggttaat gacattgaag gtacatttat tgtaccaaac 2400cattttatga gttttctgtt agcttgcttt aaaaattatt actgtaagaa atagttttat 2460aaaaaattat atttttattc agtaatttaa ttttgtaaat gccaaatgaa aaacgttttt 2520tgctgctatg gtcttagcct gtagacatgc tgctagtatc agaggggcag tagagcttgg 2580acagaaagaa aagaaacttg gtgttaggta attgactatg cactagtatt tcagactttt 2640taattttata tatatataca ttttttttcc ttctgcaata catttgaaaa cttgtttggg 2700agactctgca ttttttattg tggttttttt gttattgttg gtttatacaa gcatgcgttg 2760cacttctttt ttgggagatg tgtgttgttg atgttctatg ttttgttttg agtgtagcct 2820gactgtttta taatttggga gttctgcatt tgatccgcat cccctgtggt ttctaagtgt 2880atggtctcag aactgttgca tggatcctgt gtttgcaact ggggagacag aaactgtggt 2940tgatagccag tcactgcctt aagaacattt gatgcaagat ggccagcact gaacttttga 3000gatatgacgg tgtacttact gccttgtagc aaaataaaga tgtgccctta ttttacctac 3060103630DNAHomo sapiens 10aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcaggt 1140gctaccaaca cagaaccaca catgcagcta ccccgggtgg cacagcacca ccattgccga 1200ccacaccaga cctcatggag acagtgcacc tgtttcctgt ttgggagaac accactccac 1260tccatctctg ccagcggatc ctggctccct acctgaagaa agcgcctcgc cagcaaggtg 1320catgatcgtc caccagggca ccattctgga taatgattct tcatcatggt gtgatctcag 1380cagttttgaa ttctttgaag aagcagattt ttcacctagc caacatcaca caggcaaagc 1440cctacagctt cagcaaagag agggcaatgg gactaaacct gcaggagaac ctagcccaag 1500ggtgaacaaa cgtatgttga gtgagagttc acttgaccca cccaaggtct tacctcctgc 1560aaggcacagc acaattccac tggtcatcct tcgaaaaaaa cggggccagg ccagcccctt 1620agccactgga gactgtagct ccttcatatt tgctgacgtc agcagttcaa ctcccaagcg 1680ttcccctgtc aaaagcctac ccttctctcc ctcgcagttc ttaaacactt ccagtaacca 1740tgaaaactca gacttggaaa tgccttcttt aacttccacc cccctcattg gtcacaaatt 1800gactgttaca acaccatttc atagagacca gactgtgaaa actcaaaagg aaaatactgt 1860ttttagaacc ccagctatca aaaggtcaat cttagaaagc tctccaagaa ctcctacacc 1920attcaaacat gcacttgcag ctcaagaaat taaatacggt cccctgaaga tgctacctca 1980gacaccctct catctagtag aagatctgca ggatgtgatc aaacaggaat ctgatgaatc 2040tggaattgtt gctgagtttc aagaaaatgg accaccctta ctgaagaaaa tcaaacaaga 2100ggtggaatct ccaactgata aatcaggaaa cttcttctgc tcacaccact gggaagggga 2160cagtctgaat acccaactgt tcacgcagac ctcgcctgtg gcagatgcac cgaatattct 2220tacaagctcc gttttaatgg caccagcatc agaagatgaa gacaatgttc tcaaagcatt 2280tacagtacct aaaaacaggt ccctggcgag ccccttgcag ccttgtagca gtacctggga 2340acctgcatcc tgtggaaaga tggaggagca gatgacatct tccagtcaag ctcgtaaata 2400cgtgaatgca ttctcagccc ggacgctggt catgtgagac atttccagaa aagcattatg 2460gttttcagaa cacttcaagt tgacttggga tatatcattc ctcaacatga aacttttcat 2520gaatgggaga agaacctatt tttgttgtgg tacaacagtt gagagcagca ccaagtgcat 2580ttagttgaat gaagtcttct tggatttcac ccaactaaaa ggatttttaa aaataaataa 2640cagtcttacc taaattatta ggtaatgaat tgtagccagt tgttaatatc ttaatgcaga 2700tttttttaaa aaaaacataa aatgatttat ctgtatttta aaggatccaa cagatcagta 2760ttttttcctg tgatgggttt tttgaaattt gacacattaa aaggtactcc agtatttcac 2820ttttctcgat cactaaacat atgcatatat ttttaaaaat cagtaaaagc attactctaa 2880gtgtagactt aataccatgt gacatttaat ccagattgta aatgctcatt tatggttaat 2940gacattgaag gtacatttat tgtaccaaac cattttatga gttttctgtt agcttgcttt 3000aaaaattatt actgtaagaa atagttttat aaaaaattat atttttattc agtaatttaa 3060ttttgtaaat gccaaatgaa aaacgttttt tgctgctatg gtcttagcct gtagacatgc 3120tgctagtatc agaggggcag tagagcttgg acagaaagaa aagaaacttg gtgttaggta 3180attgactatg cactagtatt tcagactttt taattttata tatatataca ttttttttcc 3240ttctgcaata catttgaaaa cttgtttggg agactctgca ttttttattg tggttttttt 3300gttattgttg gtttatacaa gcatgcgttg cacttctttt ttgggagatg tgtgttgttg 3360atgttctatg ttttgttttg agtgtagcct gactgtttta taatttggga gttctgcatt 3420tgatccgcat cccctgtggt ttctaagtgt atggtctcag aactgttgca tggatcctgt 3480gtttgcaact ggggagacag aaactgtggt tgatagccag tcactgcctt aagaacattt 3540gatgcaagat ggccagcact gaacttttga gatatgacgg tgtacttact gccttgtagc 3600aaaataaaga tgtgccctta ttttacctac 3630113204DNAHomo sapiens 11aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agagacacta taatgatgaa gaccctgaga aggaaaagcg 1080aataaaggaa ttagaattgc tcctaatgtc aaccgagaat gagctaaaag gacagcaggt 1140gctaccaaca cagaaccaca catgcagcta ccccgggtgg cacagcacca ccattgccga 1200ccacaccaga cctcatggag acagtgcacc tgtttcctgt ttgggagaac accactccac 1260tccatctctg ccagcggatc ctggctccct acctgaagaa agcgcctcgc cagcaaggtg 1320catgatcgtc caccagggca ccattctgga taatgttaag aacctcttag aatttgcaga 1380aacactccaa tttatagatt ctttcttaaa cacttccagt aaccatgaaa actcagactt 1440ggaaatgcct tctttaactt ccacccccct cattggtcac aaattgactg ttacaacacc 1500atttcataga gaccagactg tgaaaactca aaaggaaaat actgttttta gaaccccagc 1560tatcaaaagg tcaatcttag aaagctctcc aagaactcct acaccattca aacatgcact 1620tgcagctcaa gaaattaaat acggtcccct gaagatgcta cctcagacac cctctcatct 1680agtagaagat ctgcaggatg tgatcaaaca ggaatctgat gaatctggaa ttgttgctga 1740gtttcaagaa aatggaccac ccttactgaa gaaaatcaaa caagagaata ttcttacaag 1800ctccgtttta atggcaccag catcagaaga tgaagacaat gttctcaaag catttacagt 1860acctaaaaac aggtccctgg cgagcccctt gcagccttgt agcagtacct gggaacctgc 1920atcctgtgga aagatggagg agcagatgac atcttccagt caagctcgta aatacgtgaa 1980tgcattctca gcccggacgc tggtcatgtg agacatttcc agaaaagcat tatggttttc 2040agaacacttc aagttgactt gggatatatc attcctcaac atgaaacttt tcatgaatgg 2100gagaagaacc tatttttgtt gtggtacaac agttgagagc agcaccaagt gcatttagtt 2160gaatgaagtc ttcttggatt tcacccaact aaaaggattt ttaaaaataa ataacagtct 2220tacctaaatt attaggtaat gaattgtagc cagttgttaa tatcttaatg cagatttttt 2280taaaaaaaac ataaaatgat ttatctgtat tttaaaggat ccaacagatc agtatttttt 2340cctgtgatgg gttttttgaa atttgacaca ttaaaaggta ctccagtatt tcacttttct 2400cgatcactaa acatatgcat atatttttaa aaatcagtaa aagcattact ctaagtgtag 2460acttaatacc atgtgacatt taatccagat tgtaaatgct catttatggt taatgacatt 2520gaaggtacat ttattgtacc aaaccatttt atgagttttc tgttagcttg ctttaaaaat 2580tattactgta agaaatagtt ttataaaaaa ttatattttt attcagtaat ttaattttgt 2640aaatgccaaa tgaaaaacgt tttttgctgc tatggtctta gcctgtagac atgctgctag 2700tatcagaggg gcagtagagc ttggacagaa agaaaagaaa cttggtgtta ggtaattgac 2760tatgcactag tatttcagac tttttaattt tatatatata tacatttttt ttccttctgc 2820aatacatttg aaaacttgtt tgggagactc tgcatttttt attgtggttt ttttgttatt 2880gttggtttat acaagcatgc gttgcacttc ttttttggga gatgtgtgtt gttgatgttc 2940tatgttttgt tttgagtgta gcctgactgt tttataattt gggagttctg catttgatcc 3000gcatcccctg tggtttctaa gtgtatggtc tcagaactgt tgcatggatc ctgtgtttgc 3060aactggggag acagaaactg tggttgatag ccagtcactg ccttaagaac atttgatgca 3120agatggccag cactgaactt ttgagatatg acggtgtact tactgccttg tagcaaaata 3180aagatgtgcc cttattttac ctac 3204123210DNAHomo sapiens 12aatatcaacc tgtttcctcc tcctccttct cctcctcctc cgtgacctcc tcctcctctt 60tctcctgaga aacttcgccc cagcggtgcg gagcgccgct gcgcagccgg ggagggacgc 120aggcaggcgg cgggcagcgg gaggcggcag cccggtgcgg tccccgcggc tctcggcgga 180gccccgcgcc cgccgcgcca tggcccgaag accccggcac agcatatata gcagtgacga 240ggatgatgag gactttgaga tgtgtgacca tgactatgat gggctgcttc ccaagtctgg 300aaagcgtcac ttggggaaaa caaggtggac ccgggaagag gatgaaaaac tgaagaagct 360ggtggaacag aatggaacag atgactggaa agttattgcc aattatctcc cgaatcgaac 420agatgtgcag tgccagcacc gatggcagaa agtactaaac cctgagctca tcaagggtcc 480ttggaccaaa gaagaagatc agagagtgat agagcttgta cagaaatacg gtccgaaacg 540ttggtctgtt attgccaagc acttaaaggg gagaattgga aaacaatgta gggagaggtg 600gcataaccac ttgaatccag aagttaagaa aacctcctgg acagaagagg aagacagaat 660tatttaccag gcacacaaga gactggggaa cagatgggca gaaatcgcaa agctactgcc 720tggacgaact gataatgcta tcaagaacca ctggaattct acaatgcgtc ggaaggtcga 780acaggaaggt tatctgcagg agtcttcaaa agccagccag ccagcagtgg ccacaagctt 840ccagaagaac agtcatttga tgggttttgc tcaggctccg cctacagctc aactccctgc 900cactggccag cccactgtta acaacgacta ttcctattac cacatttctg aagcacaaaa 960tgtctccagt catgttccat accctgtagc gttacatgta aatatagtca atgtccctca 1020gccagctgcc gcagccattc agacacagaa ccacacatgc agctaccccg ggtggcacag 1080caccaccatt gccgaccaca ccagacctca tggagacagt gcacctgttt cctgtttggg 1140agaacaccac tccactccat ctctgccagc ggatcctggc tccctacctg aagaaagcgc 1200ctcgccagca aggtgcatga tcgtccacca gggcaccatt ctggataatg ttaagaacct 1260cttagaattt gcagaaacac tccaatttat agattctttc ttaaacactt ccagtaacca 1320tgaaaactca gacttggaaa tgccttcttt aacttccacc cccctcattg gtcacaaatt 1380gactgttaca acaccatttc atagagacca gactgtgaaa actcaaaagg aaaatactgt 1440ttttagaacc ccagctatca aaaggtcaat cttagaaagc tctccaagaa ctcctacacc 1500attcaaacat gcacttgcag ctcaagaaat taaatacggt cccctgaaga tgctacctca 1560gacaccctct catctagtag aagatctgca ggatgtgatc aaacaggaat ctgatgaatc 1620tggaattgtt gctgagtttc aagaaaatgg accaccctta ctgaagaaaa tcaaacaaga 1680ggtggaatct ccaactgata aatcaggaaa cttcttctgc tcacaccact gggaagggga 1740cagtctgaat acccaactgt tcacgcagac ctcgcctgtg gcagatgcac cgaatattct 1800tacaagctcc gttttaatgg caccagcatc agaagatgaa gacaatgttc tcaaagcatt 1860tacagtacct aaaaacaggt ccctggcgag ccccttgcag ccttgtagca gtacctggga 1920acctgcatcc tgtggaaaga tggaggagca gatgacatct tccagtcaag ctcgtaaata 1980cgtgaatgca ttctcagccc ggacgctggt catgtgagac atttccagaa aagcattatg 2040gttttcagaa cacttcaagt tgacttggga tatatcattc ctcaacatga aacttttcat 2100gaatgggaga agaacctatt tttgttgtgg tacaacagtt gagagcagca ccaagtgcat 2160ttagttgaat gaagtcttct tggatttcac ccaactaaaa ggatttttaa aaataaataa 2220cagtcttacc taaattatta ggtaatgaat tgtagccagt tgttaatatc ttaatgcaga 2280tttttttaaa aaaaacataa aatgatttat ctgtatttta aaggatccaa cagatcagta 2340ttttttcctg tgatgggttt tttgaaattt gacacattaa aaggtactcc agtatttcac 2400ttttctcgat cactaaacat atgcatatat ttttaaaaat cagtaaaagc attactctaa 2460gtgtagactt aataccatgt gacatttaat ccagattgta aatgctcatt tatggttaat 2520gacattgaag gtacatttat tgtaccaaac cattttatga gttttctgtt agcttgcttt 2580aaaaattatt actgtaagaa atagttttat aaaaaattat atttttattc agtaatttaa 2640ttttgtaaat gccaaatgaa aaacgttttt tgctgctatg gtcttagcct gtagacatgc 2700tgctagtatc agaggggcag tagagcttgg acagaaagaa aagaaacttg gtgttaggta 2760attgactatg cactagtatt tcagactttt taattttata tatatataca ttttttttcc 2820ttctgcaata catttgaaaa cttgtttggg agactctgca ttttttattg tggttttttt 2880gttattgttg gtttatacaa gcatgcgttg cacttctttt ttgggagatg tgtgttgttg 2940atgttctatg ttttgttttg agtgtagcct gactgtttta taatttggga gttctgcatt 3000tgatccgcat cccctgtggt ttctaagtgt atggtctcag aactgttgca tggatcctgt 3060gtttgcaact ggggagacag aaactgtggt tgatagccag tcactgcctt aagaacattt 3120gatgcaagat ggccagcact gaacttttga gatatgacgg tgtacttact gccttgtagc 3180aaaataaaga tgtgccctta ttttacctac 321013761PRTHomo sapiens 13Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln

Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Val Leu Pro Thr Gln Asn His 305 310 315 320 Thr Cys Ser Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr 325 330 335 Arg Pro His Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His 340 345 350 Ser Thr Pro Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser 355 360 365 Ala Ser Pro Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp 370 375 380 Asn Val Lys Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp 385 390 395 400 Ser Asp Ser Ser Ser Trp Cys Asp Leu Ser Ser Phe Glu Phe Phe Glu 405 410 415 Glu Ala Asp Phe Ser Pro Ser Gln His His Thr Gly Lys Ala Leu Gln 420 425 430 Leu Gln Gln Arg Glu Gly Asn Gly Thr Lys Pro Ala Gly Glu Pro Ser 435 440 445 Pro Arg Val Asn Lys Arg Met Leu Ser Glu Ser Ser Leu Asp Pro Pro 450 455 460 Lys Val Leu Pro Pro Ala Arg His Ser Thr Ile Pro Leu Val Ile Leu 465 470 475 480 Arg Lys Lys Arg Gly Gln Ala Ser Pro Leu Ala Thr Gly Asp Cys Ser 485 490 495 Ser Phe Ile Phe Ala Asp Val Ser Ser Ser Thr Pro Lys Arg Ser Pro 500 505 510 Val Lys Ser Leu Pro Phe Ser Pro Ser Gln Phe Leu Asn Thr Ser Ser 515 520 525 Asn His Glu Asn Ser Asp Leu Glu Met Pro Ser Leu Thr Ser Thr Pro 530 535 540 Leu Ile Gly His Lys Leu Thr Val Thr Thr Pro Phe His Arg Asp Gln 545 550 555 560 Thr Val Lys Thr Gln Lys Glu Asn Thr Val Phe Arg Thr Pro Ala Ile 565 570 575 Lys Arg Ser Ile Leu Glu Ser Ser Pro Arg Thr Pro Thr Pro Phe Lys 580 585 590 His Ala Leu Ala Ala Gln Glu Ile Lys Tyr Gly Pro Leu Lys Met Leu 595 600 605 Pro Gln Thr Pro Ser His Leu Val Glu Asp Leu Gln Asp Val Ile Lys 610 615 620 Gln Glu Ser Asp Glu Ser Gly Ile Val Ala Glu Phe Gln Glu Asn Gly 625 630 635 640 Pro Pro Leu Leu Lys Lys Ile Lys Gln Glu Val Glu Ser Pro Thr Asp 645 650 655 Lys Ser Gly Asn Phe Phe Cys Ser His His Trp Glu Gly Asp Ser Leu 660 665 670 Asn Thr Gln Leu Phe Thr Gln Thr Ser Pro Val Ala Asp Ala Pro Asn 675 680 685 Ile Leu Thr Ser Ser Val Leu Met Ala Pro Ala Ser Glu Asp Glu Asp 690 695 700 Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg Ser Leu Ala Ser 705 710 715 720 Pro Leu Gln Pro Cys Ser Ser Thr Trp Glu Pro Ala Ser Cys Gly Lys 725 730 735 Met Glu Glu Gln Met Thr Ser Ser Ser Gln Ala Arg Lys Tyr Val Asn 740 745 750 Ala Phe Ser Ala Arg Thr Leu Val Met 755 760 14640PRTHomo sapiens 14Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Val Leu Pro Thr Gln Asn His 305 310 315 320 Thr Cys Ser Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr 325 330 335 Arg Pro His Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His 340 345 350 Ser Thr Pro Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser 355 360 365 Ala Ser Pro Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp 370 375 380 Asn Val Lys Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp 385 390 395 400 Ser Phe Leu Asn Thr Ser Ser Asn His Glu Asn Ser Asp Leu Glu Met 405 410 415 Pro Ser Leu Thr Ser Thr Pro Leu Ile Gly His Lys Leu Thr Val Thr 420 425 430 Thr Pro Phe His Arg Asp Gln Thr Val Lys Thr Gln Lys Glu Asn Thr 435 440 445 Val Phe Arg Thr Pro Ala Ile Lys Arg Ser Ile Leu Glu Ser Ser Pro 450 455 460 Arg Thr Pro Thr Pro Phe Lys His Ala Leu Ala Ala Gln Glu Ile Lys 465 470 475 480 Tyr Gly Pro Leu Lys Met Leu Pro Gln Thr Pro Ser His Leu Val Glu 485 490 495 Asp Leu Gln Asp Val Ile Lys Gln Glu Ser Asp Glu Ser Gly Ile Val 500 505 510 Ala Glu Phe Gln Glu Asn Gly Pro Pro Leu Leu Lys Lys Ile Lys Gln 515 520 525 Glu Val Glu Ser Pro Thr Asp Lys Ser Gly Asn Phe Phe Cys Ser His 530 535 540 His Trp Glu Gly Asp Ser Leu Asn Thr Gln Leu Phe Thr Gln Thr Ser 545 550 555 560 Pro Val Ala Asp Ala Pro Asn Ile Leu Thr Ser Ser Val Leu Met Ala 565 570 575 Pro Ala Ser Glu Asp Glu Asp Asn Val Leu Lys Ala Phe Thr Val Pro 580 585 590 Lys Asn Arg Ser Leu Ala Ser Pro Leu Gln Pro Cys Ser Ser Thr Trp 595 600 605 Glu Pro Ala Ser Cys Gly Lys Met Glu Glu Gln Met Thr Ser Ser Ser 610 615 620 Gln Ala Arg Lys Tyr Val Asn Ala Phe Ser Ala Arg Thr Leu Val Met 625 630 635 640 15637PRTHomo sapiens 15Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Thr Gln Asn His Thr Cys Ser 305 310 315 320 Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr Arg Pro His 325 330 335 Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His Ser Thr Pro 340 345 350 Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser Ala Ser Pro 355 360 365 Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp Asn Val Lys 370 375 380 Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp Ser Phe Leu 385 390 395 400 Asn Thr Ser Ser Asn His Glu Asn Ser Asp Leu Glu Met Pro Ser Leu 405 410 415 Thr Ser Thr Pro Leu Ile Gly His Lys Leu Thr Val Thr Thr Pro Phe 420 425 430 His Arg Asp Gln Thr Val Lys Thr Gln Lys Glu Asn Thr Val Phe Arg 435 440 445 Thr Pro Ala Ile Lys Arg Ser Ile Leu Glu Ser Ser Pro Arg Thr Pro 450 455 460 Thr Pro Phe Lys His Ala Leu Ala Ala Gln Glu Ile Lys Tyr Gly Pro 465 470 475 480 Leu Lys Met Leu Pro Gln Thr Pro Ser His Leu Val Glu Asp Leu Gln 485 490 495 Asp Val Ile Lys Gln Glu Ser Asp Glu Ser Gly Ile Val Ala Glu Phe 500 505 510 Gln Glu Asn Gly Pro Pro Leu Leu Lys Lys Ile Lys Gln Glu Val Glu 515 520 525 Ser Pro Thr Asp Lys Ser Gly Asn Phe Phe Cys Ser His His Trp Glu 530 535 540 Gly Asp Ser Leu Asn Thr Gln Leu Phe Thr Gln Thr Ser Pro Val Ala 545 550 555 560 Asp Ala Pro Asn Ile Leu Thr Ser Ser Val Leu Met Ala Pro Ala Ser 565 570 575 Glu Asp Glu Asp Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg 580 585 590 Ser Leu Ala Ser Pro Leu Gln Pro Cys Ser Ser Thr Trp Glu Pro Ala 595 600 605 Ser Cys Gly Lys Met Glu Glu Gln Met Thr Ser Ser Ser Gln Ala Arg 610 615 620 Lys Tyr Val Asn Ala Phe Ser Ala Arg Thr Leu Val Met 625 630 635 16758PRTHomo sapiens 16Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Thr Gln Asn His Thr Cys Ser 305 310 315 320 Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr Arg Pro His 325 330 335 Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His Ser Thr Pro 340 345 350 Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser Ala Ser Pro 355 360 365 Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp Asn Val Lys 370 375 380 Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp Ser Asp Ser 385 390 395 400 Ser Ser Trp Cys Asp Leu Ser Ser Phe Glu Phe Phe Glu Glu Ala Asp 405 410 415 Phe Ser Pro Ser Gln His His Thr Gly Lys Ala Leu Gln Leu Gln Gln 420 425 430 Arg Glu Gly Asn Gly Thr Lys Pro Ala Gly Glu Pro Ser Pro Arg Val 435 440 445 Asn Lys Arg Met Leu Ser Glu Ser Ser Leu Asp Pro Pro Lys Val Leu 450

455 460 Pro Pro Ala Arg His Ser Thr Ile Pro Leu Val Ile Leu Arg Lys Lys 465 470 475 480 Arg Gly Gln Ala Ser Pro Leu Ala Thr Gly Asp Cys Ser Ser Phe Ile 485 490 495 Phe Ala Asp Val Ser Ser Ser Thr Pro Lys Arg Ser Pro Val Lys Ser 500 505 510 Leu Pro Phe Ser Pro Ser Gln Phe Leu Asn Thr Ser Ser Asn His Glu 515 520 525 Asn Ser Asp Leu Glu Met Pro Ser Leu Thr Ser Thr Pro Leu Ile Gly 530 535 540 His Lys Leu Thr Val Thr Thr Pro Phe His Arg Asp Gln Thr Val Lys 545 550 555 560 Thr Gln Lys Glu Asn Thr Val Phe Arg Thr Pro Ala Ile Lys Arg Ser 565 570 575 Ile Leu Glu Ser Ser Pro Arg Thr Pro Thr Pro Phe Lys His Ala Leu 580 585 590 Ala Ala Gln Glu Ile Lys Tyr Gly Pro Leu Lys Met Leu Pro Gln Thr 595 600 605 Pro Ser His Leu Val Glu Asp Leu Gln Asp Val Ile Lys Gln Glu Ser 610 615 620 Asp Glu Ser Gly Ile Val Ala Glu Phe Gln Glu Asn Gly Pro Pro Leu 625 630 635 640 Leu Lys Lys Ile Lys Gln Glu Val Glu Ser Pro Thr Asp Lys Ser Gly 645 650 655 Asn Phe Phe Cys Ser His His Trp Glu Gly Asp Ser Leu Asn Thr Gln 660 665 670 Leu Phe Thr Gln Thr Ser Pro Val Ala Asp Ala Pro Asn Ile Leu Thr 675 680 685 Ser Ser Val Leu Met Ala Pro Ala Ser Glu Asp Glu Asp Asn Val Leu 690 695 700 Lys Ala Phe Thr Val Pro Lys Asn Arg Ser Leu Ala Ser Pro Leu Gln 705 710 715 720 Pro Cys Ser Ser Thr Trp Glu Pro Ala Ser Cys Gly Lys Met Glu Glu 725 730 735 Gln Met Thr Ser Ser Ser Gln Ala Arg Lys Tyr Val Asn Ala Phe Ser 740 745 750 Ala Arg Thr Leu Val Met 755 17555PRTHomo sapiens 17Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Val Leu Pro Phe Leu Asn Thr 305 310 315 320 Ser Ser Asn His Glu Asn Ser Asp Leu Glu Met Pro Ser Leu Thr Ser 325 330 335 Thr Pro Leu Ile Gly His Lys Leu Thr Val Thr Thr Pro Phe His Arg 340 345 350 Asp Gln Thr Val Lys Thr Gln Lys Glu Asn Thr Val Phe Arg Thr Pro 355 360 365 Ala Ile Lys Arg Ser Ile Leu Glu Ser Ser Pro Arg Thr Pro Thr Pro 370 375 380 Phe Lys His Ala Leu Ala Ala Gln Glu Ile Lys Tyr Gly Pro Leu Lys 385 390 395 400 Met Leu Pro Gln Thr Pro Ser His Leu Val Glu Asp Leu Gln Asp Val 405 410 415 Ile Lys Gln Glu Ser Asp Glu Ser Gly Ile Val Ala Glu Phe Gln Glu 420 425 430 Asn Gly Pro Pro Leu Leu Lys Lys Ile Lys Gln Glu Val Glu Ser Pro 435 440 445 Thr Asp Lys Ser Gly Asn Phe Phe Cys Ser His His Trp Glu Gly Asp 450 455 460 Ser Leu Asn Thr Gln Leu Phe Thr Gln Thr Ser Pro Val Ala Asp Ala 465 470 475 480 Pro Asn Ile Leu Thr Ser Ser Val Leu Met Ala Pro Ala Ser Glu Asp 485 490 495 Glu Asp Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg Ser Leu 500 505 510 Ala Ser Pro Leu Gln Pro Cys Ser Ser Thr Trp Glu Pro Ala Ser Cys 515 520 525 Gly Lys Met Glu Glu Gln Met Thr Ser Ser Ser Gln Ala Arg Lys Tyr 530 535 540 Val Asn Ala Phe Ser Ala Arg Thr Leu Val Met 545 550 555 18745PRTHomo sapiens 18Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Val Leu Pro Thr Gln Asn His 305 310 315 320 Thr Cys Ser Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr 325 330 335 Arg Pro His Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His 340 345 350 Ser Thr Pro Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser 355 360 365 Ala Ser Pro Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp 370 375 380 Asn Asp Ser Ser Ser Trp Cys Asp Leu Ser Ser Phe Glu Phe Phe Glu 385 390 395 400 Glu Ala Asp Phe Ser Pro Ser Gln His His Thr Gly Lys Ala Leu Gln 405 410 415 Leu Gln Gln Arg Glu Gly Asn Gly Thr Lys Pro Ala Gly Glu Pro Ser 420 425 430 Pro Arg Val Asn Lys Arg Met Leu Ser Glu Ser Ser Leu Asp Pro Pro 435 440 445 Lys Val Leu Pro Pro Ala Arg His Ser Thr Ile Pro Leu Val Ile Leu 450 455 460 Arg Lys Lys Arg Gly Gln Ala Ser Pro Leu Ala Thr Gly Asp Cys Ser 465 470 475 480 Ser Phe Ile Phe Ala Asp Val Ser Ser Ser Thr Pro Lys Arg Ser Pro 485 490 495 Val Lys Ser Leu Pro Phe Ser Pro Ser Gln Phe Leu Asn Thr Ser Ser 500 505 510 Asn His Glu Asn Ser Asp Leu Glu Met Pro Ser Leu Thr Ser Thr Pro 515 520 525 Leu Ile Gly His Lys Leu Thr Val Thr Thr Pro Phe His Arg Asp Gln 530 535 540 Thr Val Lys Thr Gln Lys Glu Asn Thr Val Phe Arg Thr Pro Ala Ile 545 550 555 560 Lys Arg Ser Ile Leu Glu Ser Ser Pro Arg Thr Pro Thr Pro Phe Lys 565 570 575 His Ala Leu Ala Ala Gln Glu Ile Lys Tyr Gly Pro Leu Lys Met Leu 580 585 590 Pro Gln Thr Pro Ser His Leu Val Glu Asp Leu Gln Asp Val Ile Lys 595 600 605 Gln Glu Ser Asp Glu Ser Gly Ile Val Ala Glu Phe Gln Glu Asn Gly 610 615 620 Pro Pro Leu Leu Lys Lys Ile Lys Gln Glu Val Glu Ser Pro Thr Asp 625 630 635 640 Lys Ser Gly Asn Phe Phe Cys Ser His His Trp Glu Gly Asp Ser Leu 645 650 655 Asn Thr Gln Leu Phe Thr Gln Thr Ser Pro Val Ala Asp Ala Pro Asn 660 665 670 Ile Leu Thr Ser Ser Val Leu Met Ala Pro Ala Ser Glu Asp Glu Asp 675 680 685 Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg Ser Leu Ala Ser 690 695 700 Pro Leu Gln Pro Cys Ser Ser Thr Trp Glu Pro Ala Ser Cys Gly Lys 705 710 715 720 Met Glu Glu Gln Met Thr Ser Ser Ser Gln Ala Arg Lys Tyr Val Asn 725 730 735 Ala Phe Ser Ala Arg Thr Leu Val Met 740 745 19603PRTHomo sapiens 19Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr 85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Arg His Tyr Asn Asp Glu Asp 275 280 285 Pro Glu Lys Glu Lys Arg Ile Lys Glu Leu Glu Leu Leu Leu Met Ser 290 295 300 Thr Glu Asn Glu Leu Lys Gly Gln Gln Val Leu Pro Thr Gln Asn His 305 310 315 320 Thr Cys Ser Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr 325 330 335 Arg Pro His Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His 340 345 350 Ser Thr Pro Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser 355 360 365 Ala Ser Pro Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp 370 375 380 Asn Val Lys Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp 385 390 395 400 Ser Phe Leu Asn Thr Ser Ser Asn His Glu Asn Ser Asp Leu Glu Met 405 410 415 Pro Ser Leu Thr Ser Thr Pro Leu Ile Gly His Lys Leu Thr Val Thr 420 425 430 Thr Pro Phe His Arg Asp Gln Thr Val Lys Thr Gln Lys Glu Asn Thr 435 440 445 Val Phe Arg Thr Pro Ala Ile Lys Arg Ser Ile Leu Glu Ser Ser Pro 450 455 460 Arg Thr Pro Thr Pro Phe Lys His Ala Leu Ala Ala Gln Glu Ile Lys 465 470 475 480 Tyr Gly Pro Leu Lys Met Leu Pro Gln Thr Pro Ser His Leu Val Glu 485 490 495 Asp Leu Gln Asp Val Ile Lys Gln Glu Ser Asp Glu Ser Gly Ile Val 500 505 510 Ala Glu Phe Gln Glu Asn Gly Pro Pro Leu Leu Lys Lys Ile Lys Gln 515 520 525 Glu Asn Ile Leu Thr Ser Ser Val Leu Met Ala Pro Ala Ser Glu Asp 530 535 540 Glu Asp Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg Ser Leu 545 550 555 560 Ala Ser Pro Leu Gln Pro Cys Ser Ser Thr Trp Glu Pro Ala Ser Cys 565 570 575 Gly Lys Met Glu Glu Gln Met Thr Ser Ser Ser Gln Ala Arg Lys Tyr 580 585 590 Val Asn Ala Phe Ser Ala Arg Thr Leu Val Met 595 600 20605PRTHomo sapiens 20Met Ala Arg Arg Pro Arg His Ser Ile Tyr Ser Ser Asp Glu Asp Asp 1 5 10 15 Glu Asp Phe Glu Met Cys Asp His Asp Tyr Asp Gly Leu Leu Pro Lys 20 25 30 Ser Gly Lys Arg His Leu Gly Lys Thr Arg Trp Thr Arg Glu Glu Asp 35 40 45 Glu Lys Leu Lys Lys Leu Val Glu Gln Asn Gly Thr Asp Asp Trp Lys 50 55 60 Val Ile Ala Asn Tyr Leu Pro Asn Arg Thr Asp Val Gln Cys Gln His 65 70 75 80 Arg Trp Gln Lys Val Leu Asn Pro Glu Leu Ile Lys Gly Pro Trp Thr

85 90 95 Lys Glu Glu Asp Gln Arg Val Ile Glu Leu Val Gln Lys Tyr Gly Pro 100 105 110 Lys Arg Trp Ser Val Ile Ala Lys His Leu Lys Gly Arg Ile Gly Lys 115 120 125 Gln Cys Arg Glu Arg Trp His Asn His Leu Asn Pro Glu Val Lys Lys 130 135 140 Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His Lys 145 150 155 160 Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly Arg 165 170 175 Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg Lys 180 185 190 Val Glu Gln Glu Gly Tyr Leu Gln Glu Ser Ser Lys Ala Ser Gln Pro 195 200 205 Ala Val Ala Thr Ser Phe Gln Lys Asn Ser His Leu Met Gly Phe Ala 210 215 220 Gln Ala Pro Pro Thr Ala Gln Leu Pro Ala Thr Gly Gln Pro Thr Val 225 230 235 240 Asn Asn Asp Tyr Ser Tyr Tyr His Ile Ser Glu Ala Gln Asn Val Ser 245 250 255 Ser His Val Pro Tyr Pro Val Ala Leu His Val Asn Ile Val Asn Val 260 265 270 Pro Gln Pro Ala Ala Ala Ala Ile Gln Thr Gln Asn His Thr Cys Ser 275 280 285 Tyr Pro Gly Trp His Ser Thr Thr Ile Ala Asp His Thr Arg Pro His 290 295 300 Gly Asp Ser Ala Pro Val Ser Cys Leu Gly Glu His His Ser Thr Pro 305 310 315 320 Ser Leu Pro Ala Asp Pro Gly Ser Leu Pro Glu Glu Ser Ala Ser Pro 325 330 335 Ala Arg Cys Met Ile Val His Gln Gly Thr Ile Leu Asp Asn Val Lys 340 345 350 Asn Leu Leu Glu Phe Ala Glu Thr Leu Gln Phe Ile Asp Ser Phe Leu 355 360 365 Asn Thr Ser Ser Asn His Glu Asn Ser Asp Leu Glu Met Pro Ser Leu 370 375 380 Thr Ser Thr Pro Leu Ile Gly His Lys Leu Thr Val Thr Thr Pro Phe 385 390 395 400 His Arg Asp Gln Thr Val Lys Thr Gln Lys Glu Asn Thr Val Phe Arg 405 410 415 Thr Pro Ala Ile Lys Arg Ser Ile Leu Glu Ser Ser Pro Arg Thr Pro 420 425 430 Thr Pro Phe Lys His Ala Leu Ala Ala Gln Glu Ile Lys Tyr Gly Pro 435 440 445 Leu Lys Met Leu Pro Gln Thr Pro Ser His Leu Val Glu Asp Leu Gln 450 455 460 Asp Val Ile Lys Gln Glu Ser Asp Glu Ser Gly Ile Val Ala Glu Phe 465 470 475 480 Gln Glu Asn Gly Pro Pro Leu Leu Lys Lys Ile Lys Gln Glu Val Glu 485 490 495 Ser Pro Thr Asp Lys Ser Gly Asn Phe Phe Cys Ser His His Trp Glu 500 505 510 Gly Asp Ser Leu Asn Thr Gln Leu Phe Thr Gln Thr Ser Pro Val Ala 515 520 525 Asp Ala Pro Asn Ile Leu Thr Ser Ser Val Leu Met Ala Pro Ala Ser 530 535 540 Glu Asp Glu Asp Asn Val Leu Lys Ala Phe Thr Val Pro Lys Asn Arg 545 550 555 560 Ser Leu Ala Ser Pro Leu Gln Pro Cys Ser Ser Thr Trp Glu Pro Ala 565 570 575 Ser Cys Gly Lys Met Glu Glu Gln Met Thr Ser Ser Ser Gln Ala Arg 580 585 590 Lys Tyr Val Asn Ala Phe Ser Ala Arg Thr Leu Val Met 595 600 605 21 1910DNAArtificial Sequencesynthetic 21atggctagac gacctcgaca ctccatctac tcctccgatg aggatgatga ggacatcgag 60atgtgtgacc acgattacga cggcctgctg ccaaaatctg gaaaacggca cctgggcaaa 120acacgctgga ctcgggagga ggacgaaaaa ctcaaaaaac tcgtcgaaca gaatggcacc 180gatgactgga aagtgatcgc caactacctg ccaaatcgaa ccgacgtcca gtgtcagcac 240cggtggcaga aagtcctgaa tcctgaactc attaagggcc cttggacaaa agaggaggat 300cagcgagtca ttgaactggt ccagaaatac ggccctaaac ggtggtctgt gattgctaaa 360cacctgaagg gacggattgg gaaacagtgt agggaacgat ggcataacca tctgaaccct 420gaggtgaaaa aaacttcttg gactgaggag gaggatcgga tcatctacca ggcccacaaa 480cgactgggga accgctgggc tgagattgcc aaactgctgc ccgggagaac cgataatgct 540atcaaaaacc attggaactc cactatgagg cggaaagtcg aacaggaggg atacctccag 600gaaccttcta aagcatccca gacacctgtg gctacaagct ttcagaaaaa caaccatctc 660atgggctttg gacatgctag tccccctagt cagctgtcac ccagtggaca gtctagtgtg 720aactctgaat acccctacta ccacattgct gaggctcaga acatttcctc tcacgtgcct 780taccctgtcg ctctccacgt caacattgtg aacgtgcccc agcctgccgc tgctgctatc 840cagagacact acaacgatga ggaccctgag aaagagaaac gaatcaagga gctggaactg 900ctgctcatgt ctaccgagaa tgagctgaag ggacagcagg ctctgcctac tcagaatcac 960acctgctcct accctggctg gcattcaacc tcaatcgtcg accagacacg acctcatggg 1020gatagtgccc ctgtgtcatg cctgggcgaa catcatgcta caccttccct gcctgccgac 1080cccggatctc tgcctgagga atctgcttct cctgcccgct gtatgatcgt ccatcagggc 1140acaattctcg ataacgtgaa aaacctgctc gaattcgccg aaacactcca gtttatcgat 1200tccttcctga acacctcttc caaccacgaa tcttccggac tggatgcccc aactctccca 1260tccacaccac tcattggcca caaactcacc ccttgtcggg atcagaccgt gaaaacccag 1320aaagaaaact ccattttccg gacacctgct atcaaacgga gcattctgga gagtagtcct 1380agaaccccca cccccttcaa acatgctctg gccgctcagg aaatcaaata cgggcccctg 1440aaaatgctgc ctcagacccc ttctcatgct gtggaggacc tccaggacgt gatcaaacag 1500gaatccgacg aatctggcat tgtcgctgag tttcaggagt ctggccctcc tctgctgaaa 1560aaaatcaaac aggaggtgga gtctcctacc gaaaaatccg gcaacttctt ctgctccaat 1620cattgggccg agaactcact gagcacccag ctgtttagtc aggcatctcc tgtggccgac 1680gctcccaata ttctcacttc ctccgtgctc atgacccccg tgagtgagga tgaggataac 1740gtgctgaagg cctttactgt gcctaaaaac cgccctctgg tgggaccact ccagccttgt 1800tccggagctt gggaacctgc ctcttgtgga aaaaccgagg accagatgac tgctagtgga 1860cccgctagaa aatacgtgaa cgccttctcc gctcgaactc tcgtgatggc 1910

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed