Staphylococcal Antigens

BANNOEHR; JEANETTE ;   et al.

Patent Application Summary

U.S. patent application number 15/861384 was filed with the patent office on 2018-08-23 for staphylococcal antigens. This patent application is currently assigned to THE UNIVERSITY OF EDINBURGH. The applicant listed for this patent is JEANETTE BANNOEHR, NOURI L. BEN ZAKOUR, J. Ross FITZGERALD. Invention is credited to JEANETTE BANNOEHR, NOURI L. BEN ZAKOUR, J. Ross FITZGERALD.

Application Number20180237480 15/861384
Document ID /
Family ID43567607
Filed Date2018-08-23

United States Patent Application 20180237480
Kind Code A1
BANNOEHR; JEANETTE ;   et al. August 23, 2018

STAPHYLOCOCCAL ANTIGENS

Abstract

The present invention provides novel sequences encoding Staphylococcus pseudintermedius proteins/nucleic acids potentially useful in the treatment and/or prevention of canine disorders. In particular, the various protein and/or nucleic acid sequences described herein may find application as vaccines for use in treating and/or preventing a variety of canine diseases and/or conditions caused or contributed to by Staphylococcus pseudintermedius.


Inventors: BANNOEHR; JEANETTE; (EDINBURGH, GB) ; FITZGERALD; J. Ross; (EDINBURGH, GB) ; BEN ZAKOUR; NOURI L.; (BRISBANE, AU)
Applicant:
Name City State Country Type

BANNOEHR; JEANETTE
FITZGERALD; J. Ross
BEN ZAKOUR; NOURI L.

EDINBURGH
EDINBURGH
BRISBANE

GB
GB
AU
Assignee: THE UNIVERSITY OF EDINBURGH
Edinburgh
GB

Family ID: 43567607
Appl. No.: 15/861384
Filed: January 3, 2018

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13446958 Apr 13, 2012 9879054
15861384
PCT/GB2010/001916 Oct 15, 2010
13446958
61252026 Oct 15, 2009

Current U.S. Class: 1/1
Current CPC Class: C07K 14/31 20130101; A61K 39/00 20130101; A61K 39/085 20130101; G01N 33/56938 20130101; A61K 2039/552 20130101; A61P 31/04 20180101
International Class: C07K 14/31 20060101 C07K014/31; A61K 39/085 20060101 A61K039/085; G01N 33/569 20060101 G01N033/569

Claims



1. A Staphylococcus pseudintermedius protein or nucleic acid comprising a sequence at least 65% homologous or identical to SEQ ID NOS: 1-38 or fragments, portions, mutants, derivatives and/or homologoues/orthologues thereof.

2. The Staphylococcus pseudintermedius protein or nucleic acid of claim 1, comprising a sequence at least 65% homologous or identical to (i) the nucleic acid of SEQ ID NO: 5 or a fragment thereof or (ii) the amino acid sequence of SEQ ID NO: 6 or an antigenic fragment thereof, for use in raising an immune response in a subject.

3. The Staphylococcus pseudintermedius protein of claim 2, comprising an antigenic fragment of the amino acid sequence of SEQ ID NO: 6, wherein said fragment comprises SEQ ID NO: 37.

4. The Staphylococcus pseudintermedius nucleic acid of claim 2, comprising a fragment of the nucleic acid, wherein said fragment comprises SEQ ID NO: 38.

5. The Staphylococcus pseudintermedius protein of claim 1, wherein the protein is a cell-wall anchored (CWA) or microbial surface components recognising adhesive matrix molecule (MSCRAMM).

6. The Staphylococcus pseudintermedius protein of claim 1, comprising a replicable expression vector and nucleic acid.

7. A host cell transformed with the nucleic acid of claim 6.

8. The Staphylococcus pseudintermedius protein of claim 1, comprising an amino acid sequence having at least 80% identity to SEQ ID NO: 5.

9. A Staphylococcus pseudintermedius protein comprising an amino acid sequence having at least 80% identity to SEQ ID NO: 37.

10. The Staphylococcus pseudintermedius protein of claim 9, comprising an amino acid sequence having at least 90% identity to SEQ ID NO: 37.

11. A method of raising an immune response to Staphylococcus pseudintermedius in a canine, said method comprising immunising said canine with, or administering said canine a Staphylococcus pseudintermedius protein according to claim 1.

12. An immunogenic composition comprising the protein of claim 1 and a pharmaceutically acceptable carrier.

13. The immunogenic composition of claim 12, further comprising one or more adjuvant(s) and/or antigens for use in treating or preventing other diseases and/or conditions.

14. A method of treating or preventing a Staphylococcus pseudintermedius infection or disease in a canine, said method comprising administering to the canine the immunogenic composition of claim 12.

15. A method of treating or preventing canine pyoderma comprising administering to a dog the immunogenic composition of claim 12.

16. A process for the recombinant production of a Staphylococcus pseudintermedius protein of claim 1, said process comprising the steps of: (a) transforming a host cell with the nucleic acid of claim 1; (b) culturing the cells obtained in (a) under conditions in which expression of a peptide/protein encoded by the nucleic acid occurs; and (c) isolating the expressed peptide/protein from the cell culture or/and a culture supernatant derived therefrom.

17. An antibody that selectively and/or specifically binds to the Staphylococcus pseudintermedius protein of claim 1.

18. An antibody that selectively and/or specifically binds to the Staphylococcus pseudintermedius protein of claim 9.

19. A method of diagnosing an S. pseudintermedius infection, said method comprising the steps of taking a sample from a canine, identifying in the sample a level of a protein or nucleic acid of claim 1, wherein the subject is diagnosed with S. pseudintermedius infection by identification of the protein, peptide or nucleic in the sample.

20. A kit for diagnosing, detecting and/or evaluating possible S. pseudintermedius infections, diseases and/or conditions, said kit comprising one or more components selected from the group consisting of: (i) a substrate having the Staphylococcus pseudintermedius protein of claim 1 bound thereto; (ii) antibodies which exhibit specificity and/or selectivity for the protein; (iii) and instructions for diagnosing, detecting and/or evaluating possible S. pseudintermedius infections, diseases and/or conditions.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. patent application Ser. No. 13/446,958, filed Apr. 13, 2012, which is a continuation-in-part of PCT/GB2010/001916, filed Oct. 15, 2010, which claims the benefit under 35 U.S.C. .sctn. 119(e) to U.S. Provisional Application No. 61/252,026, filed Oct. 15, 2009, each of which are hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

[0002] The present invention provides novel staphylococcal cell wall associated proteins, genes encoding the same and vaccines for use in treating/preventing Staphylococcal infections.

BACKGROUND OF THE INVENTION

[0003] Skin diseases are a major cause of morbidity in dogs and an important animal welfare issue (Hill et al, 2006). In particular, superficial bacterial folliculitis (pyoderma) caused by Staphylococcus pseudintermedius (formerly known as Staphylococcus intermedius) is one of the most common diseases seen in small animal veterinary practice, worldwide (Hill et al, 2006). Superficial pyoderma is characterized by the formation of follicular pustules and is often associated with pruritus, alopecia, erythema and swelling. This may develop into deep pyoderma which typically includes pain, crusting, odor, and exudation of blood and pus. The disease often occurs as a secondary infection in dogs with atopic dermatitis (AD) resulting from a type I hypersensitivity reaction (IgE antibody-associated) to environmental allergens (Hill et al, 2006). Treatment of canine pyoderma is often difficult without resorting to aggressive, medium-term administration of systemic antibacterial agents to prevent relapse of infection, and such therapy predisposes to the development of bacterial resistance that may be transferred to bacteria infecting humans (Guardabassi et al, 2004). Worringly, methicillin-resistant S. pseudintermedius has recently emerged as a major problem in veterinary clinics worldwide (Bannoehr et al, 2007). Although rare, several episodes of life-threatening infections of humans by S. pseudintermedius have been reported with the typical route of transmission being through dog bite wounds (Bannoehr et al, 2007). Previously, crude vaccine preparations based on Staphylococcus aureus phage lysate or S. pseudintermedius autogenous bacterin have shown promise as adjunctive therapies for treatment of pyoderma (Curtis et al, 2006), and a rationally-designed effective vaccine would be a highly desireable means to reducing or eliminating the suffering associated with the disease.

[0004] Accordingly, the present invention aims to obviate one or more of the problems associated with the prior art.

SUMMARY OF THE INVENTION

[0005] The present invention is based upon the identification of novel gene sequences encoding proteins potentially useful in the treatment and/or prevention of canine disorders. In particular, the proteins encoded by the genes described herein, may find application in the treatment and/or prevention of diseases caused or contributed to by the bacterial pathogen Staphylococcus pseudintermedius.

[0006] The inventors have identified a number of Staphylococcus pseudintermedius genes encoding proteins which may broadly be classed as members of the cell-wall anchored (CWA) family of proteins. In certain embodiments, these CWA proteins may be further grouped as surface proteins known as Microbial Surface Components Recognising Adhesive Matrix Molecules (MSCRAMM). It should be understood that while a number microbial organisms may be known to express MSCRAMM type proteins, the term "MSCRAMM" describes the phenotypic function of a wide range of diverse surface-associated proteins of Gram-positive bacteria. As such, while MSCRAMM proteins may all possess cell-wall anchor motifs and signal sequences for cell wall transportation, the proteins belonging to this group may otherwise be structurally diverse. Furthermore, bacterial species within a particular genus, for example the genus Staphylococcus, may possess unique MSCRAMM profiles.

[0007] In view of the above, the present invention relates to a group of surface expressed proteins derived from Staphylococcus pseudintermedius that may be referred to either as CWA or MSCRAMM proteins.

[0008] As such, a first aspect of this invention provides an isolated and/or substantially purified Staphylococcus pseudintermedius CWA or MSCRAMM nucleic acid or protein sequence comprising a nucleic acid or amino acid sequence homologous or identical to any one of the nucleic acid or amino acid sequences provided as SEQ ID NOS: 1-38 below.

TABLE-US-00001 SEQ ID NO: 1 atggaaaacaaaaacttttttagtattcgtaaactatctattggtgtagg ttcttgcttaatcgcgagttctttacttgtaaacacgccaagttttgctg aagaaacagataatgcgaacattaatgacgcacaacaaaacgccttttat gaaattttacatttgccaaacttaactgaagagcaacaaaatggattcat ccaaagtcttaaagatgatccaagtgtgagcaacgacattttagtagaag ctaagaaattaaatgacactcaagctaaacctgattacagtgaagcacaa caaaatgcattttatgaaattttacatttgtcaaacttaactgaagagca acaaaatggattcatccaaagtcttaaagatgatccaagtgtgagcaacg acattttagtagaagctaagaagttaaatgacactcaagctaaacctgat tacagtgaagcacaacaaaatgcattttatgaaattttacatttgtcaaa cttaactgaagagcaacaaaatgggttcatccaaagccttaaagatgatc caagtgtaagtaaagaaattttagcagaagctaagaagttaaatgatagt caagcacctaaagttgataaagctaaaaaaactgacaaagctgaagcgaa agcagatgataaagctaaaggtgaagaagccaaaaaatctgaagacaaaa aagatagcaaagcagataaggcaaaatcgaaaaacgctacacatgttgtt aaacctggtgaaactttagataatattgctaaagatcatcatacaactgt tgataaaattgctaaagataacaaaataaaagataaaaatgtgattaaac taggtcaaaaacttgttgttgataaacaaaaagcaactcaaggaaaacaa gaagctgtagcgaaaaatgaagtgaaggctttacctaatactggtgaaaa tgatgatatcgcattattcagcacaacagttgcgggtggcgtaagtatcg ctttaggttcattattattaggaagaaacagaaaaactagctaa

The protein sequence translated from SEQ ID NO 1 is designated SEQ ID NO: 2 and is shown below:

TABLE-US-00002 SEQ ID NO: 2 MENKNFFSIRKLSIGVGSCLIASSLLVNTPSFAEETDNANINDAQQNAFY EILHLPNLTEEQQNGFIQSLKDDPSVSNDILVEAKKLNDTQAKPDYSEAQ QNAFYEILHLSNLTEEQQNGFIQSLKDDPSVSNDILVEAKKLNDTQAKPD YSEAQQNAFYEILHLSNLTEEQQNGFIQSLKDDPSVSKEILAEAKKLNDS QAPKVDKAKKTDKAEAKADDKAKGEEAKKSEDKKDSKADKAKSKNATHVV KPGETLDNIAKDHHTTVDKIAKDNKIKDKNVIKLGQKLVVDKQKATQGKQ EAVAKNEVKALPNTGENDDIALFSTTVAGGVSIALGSLLLGRNRKTS SEQ ID NO: 3 atggaaaacaaaaactttttcagcattcgtaaattatcaattggggtggg ttcatgtttaatcgcgagctctttacttgtgaatacaccaagtttcgcag aagaaggagataataacgcagaagcgcaacaaaacgctttctctgaggta gtaaaattacctaaccttagcgaagaacaacgtaatggtttcattcaaag ccttaaagatgatccaagtacaagtcaagatgtgcttaatgaagctaaaa aattaaatgatagtcaagagggatctcaacctgctcctgattacagtgat gaacaacaaaatgcattttatgaaattttacaccttccaaacttaactga agaacaacgcaatggctatattcaaagtcttaaagatgacccaagtgtaa gcgctaatattcttgttgaagctaaaaatatgaatgttaaccaaacacct acacaacctgcgccaagtttcgatgaagcgcaacaaaatgcattctatga gattgtaaacttaccaaatcttactgaagagcaacgtaacggtttcatcc aaagccttaaagacgatccaagtgtaagtaaagatatccttgttgaagct aaaaagttaaatgacagccaagcaaaacctgattacagtgaagcgcaaca aaatgcattttatgaaattttacaccttccaaacttaactgaagaacaac gtaacggtttcatccaaagccttaaagacgatccgagtgtaagtagtgat attcttgctgaagctaagaaattaaatgacagccaagcgcctaaagaaga caacaacgtaaaagacaataattcaggtgaaaacaaagctgaagacaaag gcaacaaagaaaacaaagctgaagataaaggcagcaaagaagacaaagct gaagataaaggcagcaaagaagacaaagctgaagataaaggcagcaaaga agacaaagctgaagataaaggcagcaaagaagacaaagctgaagataaag gcagcatagaagataaagctaaagacaaagacaacaaagaaggcaaagct gcagacaaaggtatggacaaagcgaaagatgcaatgcatgtcgttcaacc tggtgaaacagtagaaaaaattgctaaagctaataacacaactgtagaac aaatcgctaaagataatcatttagaagataaaaacatgattttaccaggt caaaaacttgttgttgacaaccaaaaagcaatgaaagacagccaagaagc taaagcaaaccacgaaatgaaagctttacctgaaacaggtgaagaaaacg atatggcattattcggtacatcacttacaggtggtcttagcttagcatta ggtttatacatcttaggacgtggcagaaaaacaaactaa

The protein sequence translated from SEQ ID NO 3 is designated SEQ ID NO: 4 and is shown below:

TABLE-US-00003 SEQ ID NO: 4 MENKNFFSIRKLSIGVGSCLIASSLLVNTPSFAEEGDNNAEAQQNAFSEVVKLPNLSEEQRNGFIQSLKDD PSTSQDVLNEAKKLNDSQEGSQPAPDYSDEQQNAFYEILHLPNLTEEQRNGYIQSLKDDPSVSANILVEAK NMNVNQTPTQPAPSFDEAQQNAFYEIVNLPNLTEEQRNGFIQSLKDDPSVSKDILVEAKKLNDSQAKPDYS EAQQNAFYEILHLPNLTEEQRNGFIQSLKDDPSVSSDILAEAKKLNDSQAPKEDNNVKDNNSGENKAEDKG NKENKAEDKGSKEDKAEDKGSKEDKAEDKGSKEDKAEDKGSKEDKAEDKGSIEDKAKDKDNKEGKAADKGM DKAKDAMHVVQPGETVEKIAKANNTTVEQIAKDNHLEDKNMILPGQKLVVDNQKAMKDSQEAKANHEMKAL PETGEENDMALFGTSLTGGLSLALGLYILGRGRKTN SEQ ID NO: 5 gtgtacaaaaatgaagaagaaaagcattcaataagaaagttatctataggagccgcatct gtcattgttgggggactcatgtatggtgttttgggaaatgatgaagctcaagcgaatgaa gatgtcactgaaacaactgggagaaattcagtgacaacgcaagcttctgagcaacatttg caagtggaagcagtacctcaagaaggcaataatgtaaatgtatcctctgtaaaagtacct acgaatacggcaacgcaagcacaagaagatgttgcaagtgtatccgatgttaaagcacat gctgatgatgcattacaagtacaagaaagtagtcatactgatggtgtttcttcagaattc aagcaggagacagcttatgcgaatcctcaaacagctgagacagttaaacctaatagtgaa gcagtgcatcagtctgaatacgaggataagcaaaaacccgtatcatctagccgcaaagaa gatgagactatgcttcagcagcaacaagttgaagccaaaaatgttgtgagtgcggaggaa gtgtctaaagaagaaaatactcaagtgatgcaatcccctcaagacgttgaacaacatgta ggtggtaaagatatctctaatgaggttgtagtggataggagtgatatcaaaggatttaac agcgaaactactattcgacctcatcagggacaaggtggtaggttgaattatcaattaaag tttcctagcaatgtaaagccaggcgatcagtttactataaaattatctgacaatatcaat acacatggtgtttctgttgaaagaaccgcaccgagaatcatggctaaaaatactgaaggt gcgacggatgtaattgctgaaggtctagtgttggaagatggtaaaaccatcgtatataca tttaaagactatgtaaatggcaagcaaaatttgactgctgagttatcagtgagctatttc gtaagtccggaaaaagtcttgactactgggacacaaacattcacgacgatgatcggtaat cattcaacgcaatccaatattgacgtttattatgataatagtcattatgtagatggacgt atttcgcaagtgaacaaaaaagaagctaaatttcaacaaatagcatacattaaccctaat ggctatttaaatggcagggggacaattgcagttaatggtgaagtggtcagtggtacgact aaagacttaatgcaacctacagtgcgtgtatatcaatataaaggacaaggtgttcctcct gaaagtattactatagaccctaatatgtgggaagaaatcagcataaacgatactatggta agaaaatatgatggtggctatagcttgaatctggataccagcaagaatcaaaaatatgcc atctattatgaaggggcatatgatgcgcaagctgacacactgttgtatagaacatatata cagtcattaaacagttactatccgttcagttaccaaaaaatgaacggtgtgaagttttac gaaaacagtgcgagtggaagcggtgagttgaaaccgaaaccacctgaacaaccaaaacca gaacctgaaattcaagctgatgtagtagatattattgaagatagccatgtgattgatata ggatggaatacagcagttggagaagaaagtggagcaaaccaaggccctcaagaagaaatc acggaaaatcacgacatcgaagtcattgaggaaaacaacttggtggaaatgacagaagat acagcagttggagaagaaagtggagcaaaccaaggccctcaagaagaaatcacggaaaat cacgacatcgaagtcattgaagaaaacaacttagtggaaatgacagaagatacagcgttg gaagaagaaagtggagcaaatcaaggtcctcaagaagagatcacagaaaaccacgatatc gaagtcattgaagaaaacaacttggtggaaatgacagaagatacagcgttggaagaagaa agtggagcaaatcaaggtcctcaagaagagatcacagaaaaccacgacatcgaagtcatt gaagaaaataacttagtagaaatgacagaagatacagcagttggagaagaaagtggagca aatcaaggtcctcaagaagagatcacagaaaaccacgatatcgaagtcattgaggaaaac aacttagtggaaatgacagaagatacagcagttggagaagaaagtggagcaaaccaaggt cctcaagaagaaatcacggaaaatcacgacatcgaagtcattgaagaaaacaacttggtg gaaatgacagaagatacagcgttggaagaagaaagtggagcaaatcaaggtcctcaagaa gagatcacagaaaaccacaacatcgaagtcattgaagaaaacaacttggtggaaatgaca gaagatacagcagttggagaagaaagtggagcaaacccaggacctcaagaagaagtaaca gagaatcaacctcagcaagaagaaatcatggaaaaccaagaagtcgaaaagaaaggcgat agtaacttggtagaaagtacaaaaactccaaaggccgaagaatcagttagcgttcagcca actttagaagacaaaaacacaaagaaccacgttaacacagtagtagtgaatacgaaggta tctgaagttaaagaaaaggatccccaccatacaaaagcactaccagatacggggacaacc tctcgaagtcattccatgatgattcctctccttcttgttgctgggtcagtagtgttgtta cgtcgaaagaaaaagcatagtaaggtgaattaa The protein sequence translated from SEQ ID NO 5 is designated SEQ ID NO: 6 and is shown below: SEQ ID NO: 6 VYKNEEEKHSIRKLSIGAASVIVGGLMYGVLGNDEAQANEDVTETTGRNSVTTQASEQHLQVEAVPQEGNN VNVSSVKVPTNTATQAQEDVASVSDVKAHADDALQVQESSHTDGVSSEFKQETAYANPQTAETVKPNSEAV HQSEYEDKQKPVSSSRKEDETMLQQQQVEAKNVVSAEEVSKEENTQVMQSPQDVEQHVGGKDISNEVVVDR SDIKGFNSETTIRPHQGQGGRLNYQLKFPSNVKPGDQFTIKLSDNINTHGVSVERTAPRIMAKNTEGATDV IAEGLVLEDGKTIVYTFKDYVNGKQNLTAELSVSYFVSPEKVLTTGTQTFTTMIGNHSTQSNIDVYYDNSH YVDGRISQVNKKEAKFQQIAYINPNGYLNGRGTIAVNGEVVSGTTKDLMQPTVRVYQYKGQGVPPESITID PNMWEEISINDTMVRKYDGGYSLNLDTSKNQKYAIYYEGAYDAQADTLLYRTYIQSLNSYYPFSYQKMNGV KFYENSASGSGELKPKPPEQPKPEPEIQADVVDIIEDSHVIDIGWNTAVGEESGANQGPQEEITENHDIEV IEENNLVEMTEDTAVGEESGANQGPQEEITENHDIEVIEENNLVEMTEDTALEEESGANQGPQEEITENHD IEVIEENNLVEMTEDTALEEESGANQGPQEEITENHDIEVIEENNLVEMTEDTAVGEESGANQGPQEEITE NHDIEVIEENNLVEMTEDTAVGEESGANQGPQEEITENHDIEVIEENNLVEMTEDTALEEESGANQGPQEE ITENHNIEVIEENNLVEMTEDTAVGEESGANPGPQEEVTENQPQQEEIMENQEVEKKGDSNLVESTKTPKA EESVSVQPTLEDKNTKNHVNTVVVNTKVSEVKEKDPHHTKALPDTGTTSRSHSMMIPLLLVAGSVVLLRRK KKHSKVN SEQ ID NO: 7 atgaataaatcaagaactaaacattttaattttttatcaaaacgtcagaatcggtatgct attcgccacttttcagctggtactgtgtcagtgcttgtaggagcagctttcttgctaggt gtccatacgagtgatgcatctgctgcagaacaagatcaaacatctgaagcaaagcaaaac ctctttgatgcttccgctatttttggcgctttaacagagacgaacgaaaaggtagcacaa gtgacgccaacagaaaaaaatctttcatcagttgaagaaatgagagataaaggcgcaact ggaaatggaccatcaataacatcactacaaactgtagaacaaaataatgcagtacaacct acagcaacacctattaatgacacagaaaattcaaccgaagcccctatgaaagaacaatcg aatgatgcacaaacgactgacgaaagtaacaatgccactcagaaaaataatactgaaccc caagcaaacaatgaaatatcagcgcgtaatgcaaaaacaacagcatatttaacaagtgaa acctttacaacagcaacgtctacaactgatatgcctacacagaaacaagaatatccatct ttagaaaatccaacaaatcaatcgcaaacgaacagagcacaaccaccaacaatggaagca cccaaactggcagaaggattagacaatctattaaaaaaatcaactttcgaaagtatgtac gtgacaaaaagaaatcaatttgacaaagagacggcttctaaaacaaaagcatggccgagt gatgttgttccagaaaatcaagtagagatacttgctgatgcaattcaaaatggctatatc aaatctgtaaatgatgtgaccaataaagcacatacgttatctggacgtgcatggatgtta gaccacggaacaccaacgacaatagctaatggtttaacacctgttccagagggcactaaa gtttatttgcggtggatagatcaagatggtgccacttcgccaatgtatacagcaaaaacg acaagtagattaagcgctgcggatggtaatcaagtgggtccaggtgcttatgctttcgat ttacgcacaggttggatagatgctaaaggaaaacaccacgtatatagagcagtaaagggt caatattataaaatatggatcaatgattttagaactaaagacggtaatatcgctacaatg ttacgtgttgcaggaggatatgttccgggaacgtacgtggattctgtgacatacaacaat atgggccaatttccattaattggtacaaatatgcaacgtacaggtatctttatgacaacg ataccttcagaaaaatatttaatatcaaaacattacgtgaaagatacaaaaggtgctgca gcaaatccagccgtcacgataattgaaaataactttgtgagcggcaaagtttggatagaa acaggtgctggagattatgtgaactcagcgacaggtccaaaccacaatgcgaaagatgtc gttgcctctggatacaaagtggtcatgtcatcattaacagatcaaggtgctaaagcctac gatgcgcaagtcaatcgcttgccgaagaaagatcgagcagaagcagcacgtcaattatta ataaaacatccagaatatatcgcagcaactgtagaagggataacgaatgagtgggggaga tatacattgcgtttccctaaaggcacattcaacaaagaccatctttacggttacgtattg gattttgatggtgaaattgtaaaaacttattcaggttttacttcaccagagttccggaga ccgaattataatttgaccgttacaccgcaaacagctccctattatagacccgttcgacgt gcatgggtcaatgttaattttgcggttattgaagcaccacaatctcaaatcgaaataaaa gaatttgatgcaacctctaaccctgcgcatcgtgggcaaacagcaactattgatatcata ggtatgcctaaaacttcattacttacacgtgtacaatggaaagattcatcgggcagtatt gttgaggatagtggtcctgtttttacggaagaagaggctgaacatatagcggaatttgta ataccgtctagcgcaaaatcaggcgaagtgtatactgtacaactcgtggtaggtaatcat atcgtagcttcggactctcttattgtacatgtcaatgaagaagcggcgacatatcatccg atatacccatcgacaacagtagaatcaggtcaaagagtaacgattccagcacctaagaat atggatggcaaacctttactagatggcacaacttttgaaaaaggtcatcacgtaccaact tgggctttagtgaatggtgatggctcgattacagtaaaacctggagaaaaagtagcagag ggtgagtatgatattccagtgattgtgacatatccagatggttctaaaaacacaatcttt gcacctgtgaccgttgaagaaaaacaaccaatggcatcgcaatatgagccaataacaact ggagtatcgaaaccatttggaaacccagtaatgccaactgatgtaacagattcaattcaa gtaccgaactatccattggaagggcaacaaccgacagtaacagtggatgatgaaagtcaa ttaccagatggaacaacagaaggttacaaggatatagatgtaacagtgacatacccagac ggaacaaaggatcgtgtcaaagttccagtcgtaacggaacaacaattagatagtgataaa tatgatccggtcgcaacaggtatcttgaaaccgtttggtactccaacaacagaggaagac gttataaaattagtggagataccgaaatatccaacagacttaacacaaccaaaagtaaca gtgacggttccaaatactttaccggatgggcaaacgccaggtaaagtagacgttgatgtg acagtaacgtatccagatggttccacagatcacatttcagttccagtttggacaaacaag catctggataaagacaaatataacccaataacgactggggtatcgaaaccatttggaatc ccagtaacgccaactgatgtaacagattcaattcaagtaccgaactatccattggaaggg caacaactgacagtaacagtggatgatgaaacacaattaccagatggaacaacagaaggt cacaaggatatagatgtaacagtgacatacccagacggaacaaaggatcatatcaaagtt

ccagtcgtaacggaaaaacaatcagataatgaaaaatatgagccaacaactaacggaatc acgaaaaagtacggtatccctacgacagaggatgaagtgatagatatagttcgaattcca tattttccagtagatggcgtgcaacctattgtaacggtaaatgatcctagactattgcca aatggtcaaaaagaaggtcaaatcaatgttccagtcacagtgacgtatccggatggcaca aaagatctcatgacagttccggttattacaggtaagcaagcagaaaatgaaaaatacgat ccaatcacattaggagtaactaaagattatggtgatcctacaactgcaaacgatgtgaca aagtcaatccaaataccaacatatccagcaggtggcgaacaaccaatcgcaacagcggat gatgaaagtcaattaccggatggcacagtagaaggtaaagtggatattccagtcacagtg acgtatccggatggtactcaggatcatatcactgtcccagtatttaccaatcaacaacga gataatcaaaaagccagtaaagctgtgacgaaaatacatggtatatcggtaacaggcact gatatgacagatactaagaaaaatcataactatccagcaggtggtgaacaacctaaagtt actgtgaaagatgacgatcaattatcagagggtaaagtcgattcaacagtgggtgcggat aatgtgacaactacagatgatttatcaagcgtaactgcggtatctcatggtcatcaaaca agtgtacaaacaacaaaagagaaccaatcagtgcatgatgaagaggtgacgatcccaaca gttgcacatgtgtctacaataatgacaggtgtggtaaagggtgagcaagaagcgacggat atcgtggctagaccacatgttgaaacaactcaactcccatcaatttcagctcaagcaaca gttaaaaaactaccagaaacgggtgaaaacaatgaacaatcaggtgttttattaggtgga tttattgcgttcatgggtagcttacttttattcggcagacgtcgcaaaccaaagaaagat taa

The protein sequence translated from SEQ ID NO 7 is designated SEQ ID NO: 8 and is shown below:

TABLE-US-00004 SEQ ID NO: 8 MNKSRTKHFN FLSKRQNRYA IRHFSAGTVS VLVGAAFLLG VHTSDASAAE QDQTSEAKQN LFDASAIFGA LTETNEKVAQ VTPTEKNLSS VEEMRDKGAT GNGPSITSLQ TVEQNNAVQP TATPINDTEN STEAPMKEQS NDAQTTDESN NATQKNNTEP QANNEISARN AKTTAYLTSE TFTTATSTTD MPTQKQEYPS LENPTNQSQT NRAQPPTMEA PKLAEGLDNL LKKSTFESMY VTKRNQFDKE TASKTKAWPS DVVPENQVEI LADAIQNGYI KSVNDVTNKA HTLSGRAWML DHGTPTTIAN GLTPVPEGTK VYLRWIDQDG ATSPMYTAKT TSRLSAADGN QVGPGAYAFD LRTGWIDAKG KHHVYRAVKG QYYKIWINDF RTKDGNIATM LRVAGGYVPG TYVDSVTYNN MGQFPLIGTN MQRTGIFMTT IPSEKYLISK HYVKDTKGAA ANPAVTIIEN NFVSGKVWIE TGAGDYVNSA TGPNHNAKDV VASGYKVVMS SLTDQGAKAY DAQVNRLPKK DRAEAARQLL IKHPEYIAAT VEGITNEWGR YTLRFPKGTF NKDHLYGYVL DFDGEIVKTY SGFTSPEFRR PNYNLTVTPQ TAPYYRPVRR AWVNVNFAVI EAPQSQIEIK EFDATSNPAH RGQTATIDII GMPKTSLLTR VQWKDSSGSI VEDSGPVFTE EEAEHIAEFV IPSSAKSGEV YTVQLVVGNH IVASDSLIVH VNEEAATYHP IYPSTTVESG QRVTIPAPKN MDGKPLLDGT TFEKGHHVPT WALVNGDGSI TVKPGEKVAE GEYDIPVIVT YPDGSKNTIF APVTVEEKQP MASQYEPITT GVSKPFGNPV MPTDVTDSIQ VPNYPLEGQQ PTVTVDDESQ LPDGTTEGYK DIDVTVTYPD GTKDRVKVPV VTEQQLDSDK YDPVATGILK PFGTPTTEED VIKLVEIPKY PTDLTQPKVT VTVPNTLPDG QTPGKVDVDV TVTYPDGSTD HISVPVWTNK HLDKDKYNPI TTGVSKPFGI PVTPTDVTDS IQVPNYPLEG QQLTVTVDDE TQLPDGTTEG HKDIDVTVTY PDGTKDHIKV PVVTEKQSDN EKYEPTTNGI TKKYGIPTTE DEVIDIVRIP YFPVDGVQPI VTVNDPRLLP NGQKEGQINV PVTVTYPDGT KDLMTVPVIT GKQAENEKYD PITLGVTKDY GDPTTANDVT KSIQIPTYPA GGEQPIATAD DESQLPDGTV EGKVDIPVTV TYPDGTQDHI TVPVFTNQQR DNQKASKAVT KIHGISVTGT DMTDTKKNHN YPAGGEQPKV TVKDDDQLSE GKVDSTVGAD NVTTTDDLSS VTAVSHGHQT SVQTTKENQS VHDEEVTIPT VAHVSTIMTG VVKGEQEATD IVARPHVETT QLPSISAQAT VKKLPETGEN NEQSGVLLGG FIAFMGSLLL FGRRRKPKKD SEQ ID NO: 9 atgtttaatcaacaaaaacaacactatggtatccggaaatatgcaatcgggacttcatca gtattattaggcatgacattatttatcacacatgacgcaactgcatctgcagctgaaaac aatacaactgcaaagacagagacaaatcaagcagcaacaatttcttctcgcacttcgcca accgacgtcgctcaacctaatgcagacacgaatgctacaacggcgactaaagagacaaca ccacaatcagattcaacagcattaccgcaagcagcagcgcaacctcaaacgggccaaaca gcatcgaaagacacagtagatacaaataaaacgcaaacagcagattccacaaccgctcct cctgtgacagacgcgccaaaagctaatgacgacacaacacagccagaagctgcgactgta gccaaaaaagaagatgctcagacaccatcgactgcagaccctacaccacaagcgcaacaa ccgcctcagtcaaaagcacctcaagaaacgcaacaacaatcaacagttgaagatacaacg ccacaacaaaacgcatcaactgaagcacaccctaaaaatgtagataccgcttcaacaaaa caacaacaaacaacgccatcaaccgcaccgacaccttacacacaacaagcagacgaagca atgacagatgtcacaacaaccagtgtcgacagcaacgtacagccgttagcccctgcagaa gatcaacctaaaaatacgaacacagctgacaaagcaaccgttgcgacaccaccacgtgac aatgctaagactgctgatccgaacaaaaagatgacacgtgcagcaacgacacaacaagat gatgccgtcgatacattgaagtcaaaagaaatgacagcaacgatcgataaaagttttcca gccgttaaatattacacgttgaaaaatggtaaaaaagtcgatgcacaactgacggatgca cgtcaaatcatcgtcaatggtgaagtcattacaccaacagtcaaatacaacaaaattgat gatcatacggctgaatatgacttaacagcacaaaatgattcacgttcgattgatgccaat tttaaatttcgtttatcagttgaaggtaagaccgttgatttacaaatgacagattacacg aacaacaacacagatccacaaaacgtcattcgcaactttagctttgtaagtcaatcgctc gtatctgtaaacaatcaacagaaaaatgccaaactgcaaacatcgaaactgtctacaaat acaatgaaaagcggcgataaatcatatcatatcgatgaaaatttcaaaaacgacttcaac gactttatgatgtacggtttcgtgtcaaatgatgattacagtgcaggattgtggagtaac gcacaaattggcgtcggcattggtgaacaagacttcttacgtgtctacgcacagtctata caaacagatatcggggtcgctgtcggtttaggctcaatgccatggtttatccaaaaagac gctgcacatccagatgcgaaaaatcaaggactactcccacatgtcaaagttgcaattgcg gaagatgaaaatcaagatggtgaaattaactggcaagacggtgcaattgcttatcgtagc attatgaacaatccatatggtgccgaagaagtacctgaccttgttgggtaccgtatcgcg atgaactttggttctcaagcgcaaaacccatttttaaagacgttagatggtgtgaaaaaa ttctatctcaatacagatggtttagggcaatccattttattaaaaggttataacagtgaa ggccacgactctggtcatttagattacgcgaatattggtcaacgtataggtggcgtgaaa gactttaaaacgttacttcaaaaaggggcagattatggcgcacgtttcggtcttcatgtg aatgcatctgaaacatatccagagtctcaagcattcaatcctgccctcttacgtaaagat gcgaatggaaactatatgtatggctggaactggctcgatcaaggctttaacatcgatgca gattacgatttaatacacgggcgtaaagaacgcttcgaagcactcaaacaaattgtcggt gatgacctcgactttatttatgtcgatgtatgggggaatggacaatccggcgacaataca gcttggccatcacatcaattagccaaagaaatcaacgacttaggatggcgcgtcggtgtc gaatggggtcacggtatggaatatgactccacgttccaacattgggcagccgacttaacg tatggatcgtaccaaaataaagggattaactcagaggtagcacgcttcttacgcaaccat caaaaagattcatgggtcggtaactatccaaaatactcaggtgcagctgacttcccattg ctcggcggttatgacatgaaagattttgaaggttggcaaggtcgtaacgattactctgct tacattaaaaatattttcaatgttgatgtaccaacaaagtttttacaacattataaagtg atgcgtattgtcgatggtgagcctgttaaaatgactgccaatggtcaaacgattgactgg acaccagaaatgcaagtcgatttacaaaatgaagccggtgatcaagtcactgttaaacgt aaatctaacgactatgaaaacgacactgacaactaccgctcacgtacaatcgaattgaat ggtcgcacagtactcgatggcgattcataccttttaccatggaattgggatgcgaacggc caaccattaactggcgataacgaaaaattatatcactggaataaaaaaggcggttcaacg acttggacactgcctgaatcatgggatacagaccaagtcgtgctatacgaattatctgaa acgggtcgtaagtcaccacgtacagtggcagtgaaagaccatcaagtgacactcgataat attaaagcagacacaccgtatgtcgtttataaagtcgcacaaccagacaacacagatgtg aactggagcgaagacatgcacgtgaaagatgccggcttcaactcacaacaactgacacct tggacaatcgaaggcaatcgagataaagtgagcatcgaaaagtcgacaacatcaaatgaa atgctaaaaatcgatagtccaacaaaaacaacgcaattaacgcaacaattgacaggttta gtgccaggacaacgttacgctgtctatgttggcatcgataaccgcagtgatgcagcggcg catattgcagtgacacataacggtaaaacgctcgcaagtaacgaaacaggtcaatcgatc gcgaaaaactatgtgaaagcagatgcacatagtaacaatgctgcgacgtttaaaaatggc ggtagttacttccaaaacatgtacgtgtacttcgttgcgccagaagatggtaaagcagac ttgacgattcaacgcgacccaggtgaaggggccacttatttcgatgatattcgtgtgtta gaaaataacgcgaatctccttcaaaacggcacattcaaccaagacttcgaaaatgtacca caagggttattcccgttcgtcgtgtcagaagttgaaggcgttgaagataatcgcgttcac ttatctgaaaagcacgcaccgtatacacaacgcggatggaataataaacgtgtcgatgat gtcattgatggcaaatggtcacttaaagtaaacggtcaaacaggtaaagataaaatggtc atccaaacgattccgcaaaacttctacttcgaaccaggaaaaacgtatgaagtgtcattt gattatgaagcaggttctgatgatacgtatgcatttgcgacaggtagtggggacatttct aaaaatcgtaactttgaaaagacaccattgaaaaatacagtcgatggtggcaaagcgaaa cgggtgacatttaaagtgacgggtgatgaaaatggtcaaacttggatcggtatttactca acgaaaacacccaatgatccacgaggcgtgaaaaatggcaatcaaatcaacttcgaaggg acgaaagatttcattctagacaacctttctatccgtgaaattgacgcaccgaagcctgat gccacacaagaaagcggtgatagcgcaccaatgaatgaaacagatgagcgtaacgtcaat tcaaacggtacattagccgatcatagtgagacaactgatgtcaatgtcagtgcaacggca gatgatacagcagtcaaaggcgaaatgacgacaaacagaacagatgcaccaactgttaca ctgcctgaagcaacgatagtagatgaaggcacgtcaaatcctgtcactacaacaccaacg aatacaacacaagctatgacaaataaggctgatgagatgccacaaacgatgaacaatgtt cctttaactagcatcgctaccgatatgatgcagtctcatgcggtggattccatggcagca acactagcagctacaaatcaagtggcggcacctgtgcgtcaaacagcaggacctatgcaa catggtatggacagtgcttcaacgcaacacgcacccatacaagttgacaatgtcacagca ccaccattaccagatgaacagtttgccgaattacctaaaactggggatacgactccaaat acacgtggacctttaatggcgatgatagttggcgcagtcttaacagcattcggattcaga cgccaacgtaaagaaaaatag

The protein sequence translated from SEQ ID NO 9 is designated SEQ ID NO: 10 and is shown below:

TABLE-US-00005 SEQ ID NO: 10 MFNQQKQHYGIRKYAIGTSSVLLGMTLFITHDATASAAENNTTAKTETNQAATISSRTSPTDVAQPNADTN ATTATKETTPQSDSTALPQAAAQPQTGQTASKDTVDTNKTQTADSTTAPPVTDAPKANDDTTQPEAATVAK KEDAQTPSTADPTPQAQQPPQSKAPQETQQQSTVEDTTPQQNASTEAHPKNVDTASTKQQQTTPSTAPTPY TQQADEAMTDVTTTSVDSNVQPLAPAEDQPKNTNTADKATVATPPRDNAKTADPNKKMTRAATTQQDDAVD TLKSKEMTATIDKSFPAVKYYTLKNGKKVDAQLTDARQIIVNGEVITPTVKYNKIDDHTAEYDLTAQNDSR SIDANFKFRLSVEGKTVDLQMTDYTNNNTDPQNVIRNFSFVSQSLVSVNNQQKNAKLQTSKLSTNTMKSGD KSYHIDENFKNDFNDFMMYGFVSNDDYSAGLWSNAQIGVGIGEQDFLRVYAQSIQTDIGVAVGLGSMPWFI QKDAAHPDAKNQGLLPHVKVAIAEDENQDGEINWQDGAIAYRSIMNNPYGAEEVPDLVGYRIAMNFGSQAQ NPFLKTLDGVKKFYLNTDGLGQSILLKGYNSEGHDSGHLDYANIGQRIGGVKDFKTLLQKGADYGARFGLH VNASETYPESQAFNPALLRKDANGNYMYGWNWLDQGFNIDADYDLIHGRKERFEALKQIVGDDLDFIYVDV WGNGQSGDNTAWPSHQLAKEINDLGWRVGVEWGHGMEYDSTFQHWAADLTYGSYQNKGINSEVARFLRNHQ KDSWVGNYPKYSGAADFPLLGGYDMKDFEGWQGRNDYSAYIKNIFNVDVPTKFLQHYKVMRIVDGEPVKMT ANGQTIDWTPEMQVDLQNEAGDQVTVKRKSNDYENDTDNYRSRTIELNGRTVLDGDSYLLPWNWDANGQPL TGDNEKLYHWNKKGGSTTWTLPESWDTDQVVLYELSETGRKSPRTVAVKDHQVTLDNIKADTPYVVYKVAQ PDNTDVNWSEDMHVKDAGFNSQQLTPWTIEGNRDKVSIEKSTTSNEMLKIDSPTKTTQLTQQLTGLVPGQR YAVYVGIDNRSDAAAHIAVTHNGKTLASNETGQSIAKNYVKADAHSNNAATFKNGGSYFQNMYVYFVAPED GKADLTIQRDPGEGATYFDDIRVLENNANLLQNGTFNQDFENVPQGLFPFVVSEVEGVEDNRVHLSEKHAP YTQRGWNNKRVDDVIDGKWSLKVNGQTGKDKMVIQTIPQNFYFEPGKTYEVSFDYEAGSDDTYAFATGSGD ISKNRNFEKTPLKNTVDGGKAKRVTFKVTGDENGQTWIGIYSTKTPNDPRGVKNGNQINFEGTKDFILDNL SIREIDAPKPDATQESGDSAPMNETDERNVNSNGTLADHSETTDVNVSATADDTAVKGEMTTNRTDAPTVT LPEATIVDEGTSNPVTTTPTNTTQAMTNKADEMPQTMNNVPLTSIATDMMQSHAVDSMAATLAATNQVAAP VRQTAGPMQHGMDSASTQHAPIQVDNVTAPPLPDEQFAELPKTGDTTPNTRGPLMAMIVGAVLTAFGFRRQ RKEK SEQ ID NO: 11 atgacaagaaaatttagggaatttaagaaaagtttaagtgaagaaaaagcaagagtgaaa ctttacaagtcaggtaaaaactgggttaaagctggaattaaagaatttcagttattaaaa gcattaggcttatcttttttaagccatgacattgtaaaggatgaaaatggagaagtaacg acacaatttggggaacagttgaagaaaaatgcattaagaacaactgcttttgcgggtgga atgttcacagttaatatgttgcatgaccaacaagcatttgcggcgtcggatgcacctata acttctgaactggcaaccaaaagtcaaactattggcgatcaaacatcaattgttattgaa aagtctacatcgtcagatcaatcaacgaacccaataacagaaagtgaaagtaaacacgat tctgaaagtatctcattatctgagcatcaaacatcagagtcaacaagtctttcaacgtca acttccaaatcaatatcaacttcagtagaggaatcagaatcaacatcaaaagattctcat actaaaactcaagatagtcaatcagatagtcatcagtcaacaagtcaagaggtaaatggc tcttccaaccacgagcaatcaacaccacacactgcacaaagtcttacgagcctatctatt gagagccaaacgtcgacttcaaatacatcattgaaggaaactaaagaaggggaattgtca aaaaacctttcgaagttatctcaaaatcaaaacatcaaacttcatgaagaacatacgatg cgttcagcagatttgagctcaggttatacaggatttagagcggcttactatgtaccaaga tcaagaacaacaccaacgacaaaagtctacacagggcaaggaagcttcagaggtagaggt agaattaaatataatattttctacaaagttgtcgttacaagtaatggcaaagaaatgaag atccgctatacattgagtcaagatgatccaaacacgtctaatgttgaaaaacctaggtgg gcaggacagaaacgatttggtattcataatacttgggatgaaggtcctggtcgcgggcaa ttaaagttagggtcggcattcggcaaaccaacagttatacaaggagaaactagaccgaat tatggtagctgggttggcacacctataacgaaatatgtttcaggcgatcgtacaaatggt ttttactggcaagctgctgtacttgcaccgagacatggagagaagggagaaggaatcaca gcagaaattacagttcctattgttaacccttctggaagatttaattgggaattccatcct gtcggtcaacaggacggagttggtggcaaaactgactactttgaaaatgtatggattcga gactatgacccatattacaaatatattcaaactaaggaaggcagagcctcagtttcgcac tctatttctcaggtgaaagcaagtgaatcgagatcgacatcgctcatacaatcggagtct attagaagatcacagtccatatctgagagtgaatctattgtagccgcaagtcattcggca agtgtagcaaaatcgcaatccatctcgagaagtcaatctgtggcgaaatcacaatcgatc tcaagaagtcagtcgatcgcacacagccgatcagcaagtgtggcaaaatcgcaatccatc tcaagaagtcagtcgatcgcacacagccgatcagcaagtgtggcaaaatcacaatcgatt tcaagaagtcagtcgatcgcacacagccgatcagcaagtgtggcgaaatctcaatcgatt tcaagaagtcagtcaattgcgcagagccaatcagcaagtgtggcaaaatcacagtcgatt tcaagaagtcagtcaattgcgcagagccaatcagcaagtgtggcgaaatcgcaatcgatt tcaagaagtcagtcgattgcacatagccgatcagcaagtgtagcggaatcacagtcgatt tcaagaagtcagtcgattgcgaatagccaatctgtagcagcgagtgaatcagagagtcta tcaatatcattgtctaaaaagcagtcaatatcgatgagtaattctgaaagtgcagcaaaa tcacactcgctttcggtgaaaaggtctaactggattaaaaagtcaaaagcggcttcagta agaaagtcacattcactttcggtaagaaaatctaattcggcgaaaaggtcacatgctatt tcggtaagaaagtcaaagtcattatcagttaaaaagtcaatttcgcagagccaatcagca agtgtggcgaaatcgcaatcgatttcaagaagtcaatcagtagcagcgagtgagtcggca tcgctaagtaagtcgaagagcacatcgctcagtaactcagtgagtgcagagaaatcgacg tcattaagtcgttcagcaagtgtagcaaaatcgcaatcgatttcaagaagccaatcagta gtagcgagcgaatcggcatcgttaagtaagtcgaagagcacatcgctcagtaactcagtg agtgcagagaaatcgacgtcattaagtcgatcagcaagtgtagcaaaatcgcaatcgatt tcaagaagccaatcggtggcagcgagcgaatcggcatcgttaagtaagtcgaagagcaca tcgctcagtaactcagtgagtgcagagaaatcgacgtcattaagtcgatcagcaagtgta gcaaaatcgcaatcgatttcaagaagccaatcggtggcagcgagcgaatcggcatcgtta agtaagtcgaagagcacatcgctcagtaactcagtgagtgcagagaaatcgacgtcatta agtcgatcagcaagtgtggcaaaatcgcaatcgatttcaagaagccaatcagtagtagcg agcgaatcggcatcgttaagtaagtcgaagagcacatcgctcagtaactcagtgagtgca gagaaatcgacgtcattaagtcgatcagcaagtgtagcaaaatcgcaatcgatttcaaga agccaatcggtggcagcgagcgaatcggcatcgttaagtaagtcgaagagcacatcgctc agtaactcagtgagtgcagagaaatcgacgtcattaagtcgatcagcaagtgtggcaaaa tcgcaatcgatttcaagaagccagtcagtagcagcaagtgagtcggcatcattaagtaag tcgaagagcacatctttaagcaactcagtgagtgtagagaaatcgacgtcattaagtcga tcagcaagtgtggcgaaatcgcaatcgatttcaagaagtcaatcagtagcagcgagtgag tcggcatcgctaagtaagtcgaagagcacatcgctcagtaactcagtgagtgcagagaaa tcgacgtcattaagtcgttcagcaagtgtagcaaaatcgcaatcgatttcaagaagccag tcagtagcagcaagtgagtcggcatcattgagtaaatcaacaagtacgtcaacaagtgac tcagatagcgcgtcaacatcaacatctgtatcagatagcgattcagcttcattgagtaag tcgactagtacatcaacaagcgattcagacagcgcgtcagcatcattgagcaagtcaaca agtacatcaacgagcgactcagatagcgcatcgacatcaacatcagtatcagatagcgac tccgcatcgttgagtaaatcgacaagcacgtcaacaagtgattcagacagcacgtctact tcattgagtaagtcgacaagtacatcgacaagtgattcagatagtgcgtcaaaatcaacg tcagtatcagacagtacgtccgcatcattgagtaaatcgacaagcacgtcaacaagtgat tcagatagtgcatcaaaatcaacgtcggtatcagatagcacgtcagcatcattaagaaag tcggcaagtacgtcaacgagtgactcagacagcacgtctacttcattgagtaagtcgaca agtacatcgacaagtgattcagatagtgcatcaaaatcaacatcagtatcagatagcgat tcagcttcattgagtaagtcgactagtacatcaacaagcgattcagatagtgcgtcaaaa tcaacgtcggtatcagatagcgactccgcatcgttgagtaagtcgacaagtacgtcaaca agcgattcagacagtgcatcaaaatcaacgtcggtatcagacagtacgtcaacatcatta agtaagtcgacaagtacatcaacaagcgattcagatagtgcgtcaacatcgacatcagta tcggacagtacgtctgcatcattgagtaagtcgacaagcacatcgacaagtgattcagat agcgcatcaacatcagtgtcagatagcgattcagcatcactaagcaagtcaacaagtaca tcgacaagcgattcagacagcgtatcaacatcaacatcagtatcagatagtgattccgcg tcattaagtaagtcgacaagtacgtcaacaagcgattcagatagtgcgtcaaaatcaaca tcagtatcagatagcacgtcaacatcattgagtaaatcaacaagtacatcgacaagtgac tcagatagtgcgtcaacatcggtatcagacagtacgtccgcatcattgagtaaatcgaca agcacgtcaacaagtgattcagatagtgcatcaaaatcaacatcagtatcagatagcgat tcagcatcattaagcaagtcgacaagtacatcgacaagtgattcagatagtgcgtcaaca tcaacgtcagtgtcagatagcgattcagcttcattaagcaaatcaacaagtacgtcaaca agtgactcagatagcgcatcaacatcattaagcaagtcaacaagtacatcgacaagcgat tcagacagtacgtctacatcattaagtaagtcaacaagtacatcaacaagtgattcggat agtgcgtcaaaatcaacatcagtatcagatagcgactcagcttcattaagcaagtcgaca agtacgtcaacaagtgactcagacagtgcgtcaaaatcaacatctgtgtcagatagcgac tccgcatcgttgagtaagtcgacaagtacgtcaacgagcgattcggatagtgcgtcaaaa tcaacatcagtatcagatagtgaatccgcgtcattaagcaagtcgacaagcacatcgaca agtgactcagatagtgcgtcaacatcgacatcggtatcagacagcacatcagtttcatta agcaagtcgacaagcacgtcaacaagcgattcagacagtacgtctacttcattaagcaag tcgacaagcacgtcaacaagtgactcagatagtgactcagcttcgttgagtaaatcgaca agcacgtcaacgagcgattcagatagcgtgtcaacatcaacatctgtgtcagatagcgat tcagcttcattaagcaaatcgacaagtacatcaacaagcgattcagatagtgcgtcaaca tcaacgtcggtatcagatagcggctccgcatcgttgagtaagtcgacaagtacgtcaacg agcgattcagacagtgcatcaaaatcaacgtcggtatcagatagtgattcagcatcacta agcaaatcgacaagcacgtcaacaagtgactcagacagtgcgtcaacatcgacatcggta tcagatagcacatccgcgtcgttaagcaagtcgacaagtacgtcaacaagtgattcagac agcgcatcgacatcaacatcagtatcagatagcgactccgcatcgttgagtaaatcgaca agcacgtcaacaagtgattcggacagtgcgtcaaaatcaacatcagtgtcagatagcgat tcagcttcattgagtaagtcgacaagcacgtcaacaagcgaatcagacagcgcgtcaaaa tcaacgtcagtgtcagatagcgattccgcatcattaagtaaatcgacaagcacgtcaaca agtgactcagatagtgcatcgacatcaacgtcagtatcagatagtgattccgcgtcatta agcaagtcgacaagtacgtcaacaagtgactcagacagtgcgtcaaaatcaacatcagta

tcagatagcgattccgcatcattgagtaagtcgacaagcacgtcaacaagcgaatcagac agtgcgtcaacatcgacattagtatcggatagtacgtcggtttcattgagccaatcaaca agtgtggataaagatagtacagcgaagggatcgacagaattagtaaatgttgcatcactt tcaatcagtgcgagtcaatcaagtagtttatctgcttcaacatccacatcgattgaaaag tctgagtctacatcaacaagtggctcaaattcaactaatgcgtcgttaagtagctcatct tcacttagtacatcagcaagtacttctgtaagcgaagtgacatctgtcacacattctgaa aatgatttaagtgcatctaacgatagagatacatccggatcagtaagtcaatttgcttct gaaaatacatcattaagtgattctgcatcaattagtggcgaagtttctagtagtacgtcc gcgtcaacttcgaaatcatcatcactttcagcaagcgcgttacatgataagcatgtatca gaaagcacttctgcatcattaagtagtggagattcaagtcgtgcttcggcatcagtgtca acgtcattatcagaatcagatagtgcgttaatagactctgaatcaattagcgtttccgag cacacatcaacattacaatcaggtagtcattcactatcacaacaacaatcagcagaatta tcacaatcagagcaaacatcacaatcacaacgcatttcaacaagtgcgtcagtatcggct atgaaatcagaaagtgctgctaaggtatctgaatcgctatctacgtctcaatcaaaagta gatagtcaatcacaatcggtatctgaatcagcgagcaactcacgagtgtcaagagattca aaatcaacaagcgcttcaatgcatcgatcattgtcagagtcagtatctcaaagtatgtca cttattgatcagtcagaaagtgattcaacatctatatcgatttcgacgtcaatcagtgat gaagactctatgctgtattctatgagtgattccgcatcgatcagtactaaggcatcaagt agtatgtctacttcgacaagcgaagagcatgccaacagtcattctcagtctgaatcgaca gcatcggttgaagtatctcaagaaatgagtgcatcggcttcaacaagcaaatctgagtct caatcagagtcagtatcagtaagtaacgaagaatcaaatatctcatctatgcaagagtct tttgtagagagtgcaaaagcatcgcgtagtgcatctatgagcgttgcaaaatctgaagcc tctgaatcacagctattaagtgagtctaatgcttcggtaagccaatcagcaagcacaagt agtaaagcatcagcaagtacgtcagaatctatttcaacgtcactcagcgtatctgaagca actcatggaaaaccgagaaatcattcagaaagtgcatcagcaagtcaattattagaagaa aatgagtcattaagcgattcagcatcaacaagtgttgaagattcagaaagtgcatcagca tctctgtcggtgtatcaatcacaatcagcaagtgcattgaaatcaacacatgcatcagaa aaagcttcagtgaatacaagtgcaaacgcatcgaagcgtgcatcagcatcgacatctatc tctaactcgaaatctaaagtcattgcgagtgaatcgaagtcaacaagcatatcaacatat gaatcgttgtcaatatcgactagtaaagaacaatcaacgcgtgtatcagtgagtgagtcg acatcaacgtctaaagtgaagtcagaaagcgactcggcatcaacgtcgacatctgaatca atctcaattagcgcaaatcgttcaggttacacatcgtctaaacgttcggtacaaatgagt gaagcacaatcaacgagcgattcattatcagtaatgcaatctgaaggttcagtaagtgta tcgcaatctttaagtatatcagataagacatcacagtccttatcggaatcaatatcgcat tcagaaagtgactctgatagtaactcagtgtctattagtcaagagacatctgaacaacat tcggtgtcagacagtgactcgatgtcaatttcggaaagcgaatctattgcatatagtcaa tcagcgagtgaatcagaatcaacaagtatcgcaaaatctgatagtatttcgaactcatta tctgtttcattaagtgaatcagaaagtgaagcaagcacatcagcttcagtgagtacatct gaaagtacgtctgtaaagggttctctatcaacaagtatcttgaacagtcaatcagcatct actcatcaatcaacagaagcttctcaaagtacatcaacttcaaaagttgaggaagcatca ttgagtgactctgcttctgtatcagattcacaatcactttcaatgagtcatgagaaatca caaagtgcatcgacttcaaaatctacgagtctgtcaaaaactatttctgagtcagagtct gtgagtgcatcaacatcaacaagtgaagctgtaagtacagaagcaagcgaatttgtatca gcagtagactcattgagtcaagtaacttctaacggaagcacaacgaaagaagatgcgagt acatttgtatccacagtagattcattgaaagacaaagcatcaaataatggtacaccatca gagtttgcgtcagcagtgaaatcaacacacgcatcagtgagtgtgtcagcatcagaaagt acgtcagcatcaacatcaacaagtgaagctgtaagtacagaagcaagcgaatttgtatca gcagtgaattcgttgagtgaagcgacttctaacggaagcacaacgaaagaagatgcgagt acatttgtatccacagtagattcattgaaagacaaagcatcaaataatggtacaccatca gagtttgcgtcagcagtgaaatcaacacacgcatcagtgagtgtgtcagcatcagaaagt acatcagcatcaacatcaacaagtgaagctgtaagtacagaagcaagcgaatttgtatca gcagtagactcattgagtcaagtaacttctaacggaagcacaacgaaagaagatgcaagc acatttgtatccacagtagattcattgaaagataaagcatcaaacaatggtacaccatca gaatttgaatcagttgtgaaatcagtacacggatcaatgagtgcatcagcaagtgcgtca acatcagcatctacatcagcatctacatctacaagtgaagctgcaagtgcagaagcaagc gaattagaatcagtaaggaaatcattatccaatggagcatcaaacggtagcacagcaaga gaaggtgcaagcacatttgtatcaacggtagattcattgaaagataaagcatcaaacaat ggtacagcatcagaatttgaatcagttgtgaagtcagtacacggatcaacaagtgcatca gcaagtgcgtcaacgtcagcatcaacatcagcaagtgaatcagcaagtacagaagcaagt gaatttgtatcagcagtggcatcattaagcagttcagcatggaacggaagcactacagga gaaggtgcaagcacatttgtatcaacagttgattcatcgaaagattcagcgtcagacaaa gcttcaccatcagaatcagaatcagttgtgaagtcagtacacggatcaacgagtacatca gcaagtgtgtcagcgtcggcaagtacatcagcatcgacatcaacaagtgaagctgtaagc acagaagcaagtgagtttgtatcagcagtgaactcattaagcagtgaagcatcgaacggc agcacaacaagagaaggtgcaagcacatttgtatcaacagtagattcattgaaagacaaa gcatcaaacaatggtacagcatcagaatttgaatcagttgtgaagtcagtacacggatca atgagtacatcagcaagtgtgtcagcatcagaaagtacgtcggcatcgacatcgacaagt gaagctgtaagtacagaagcaagcgagtcagcatcgataagtgtatcaatgtcagtgagc gcatcaacaagtgcttcaatgagcgtatcagtgtcaaacagtgtgtcagtgagtgactct atttcagtaagtgcatcaacaagtgaacctaactcggtaagcacttctatgagtagttct ctttcaacatcggcatcaacgccatcagaaattacttcaagttcgtcatcaagcgattca gcgacagttcaaaaagtagtttctaaagatgaacagcacgctacaaataaagttgaaaaa ttacctgacacaggtcaatcaacgacacaaactggtttattgggtggagtaggtgcttta cttacaggccttggtttactcaaaaaatcaagaaaacaaaaagatgaagaaacatcatca catgaataa

The protein sequence translated from SEQ ID NO 11 is designated SEQ ID NO: 12 and is shown below:

TABLE-US-00006 SEQ ID NO: 12 MTRKFREFKK SLSEEKARVK LYKSGKNWVK AGIKEFQLLK ALGLSFLSHD IVKDENGEVT TQFGEQLKKN ALRTTAFAGG MFTVNMLHDQ QAFAASDAPI TSELATKSQT IGDQTSIVIE KSTSSDQSTN PITESESKHD SESISLSEHQ TSESTSLSTS TSKSISTSVE ESESTSKDSH TKTQDSQSDS HQSTSQEVNG SSNHEQSTPH TAQSLTSLSI ESQTSTSNTS LKETKEGELS KNLSKLSQNQ NIKLHEEHTM RSADLSSGYT GFRAAYYVPR SRTTPTTKVY TGQGSFRGRG RIKYNIFYKV VVTSNGKEMK IRYTLSQDDP NTSNVEKPRW AGQKRFGIHN TWDEGPGRGQ LKLGSAFGKP TVIQGETRPN YGSWVGTPIT KYVSGDRTNG FYWQAAVLAP RHGEKGEGIT AEITVPIVNP SGRFNWEFHP VGQQDGVGGK TDYFENVWIR DYDPYYKYIQ TKEGRASVSH SISQVKASES RSTSLIQSES IRRSQSISES ESIVAASHSA SVAKSQSISR SQSVAKSQSI SRSQSIAHSR SASVAKSQSI SRSQSIAHSR SASVAKSQSI SRSQSIAHSR SASVAKSQSI SRSQSIAQSQ SASVAKSQSI SRSQSIAQSQ SASVAKSQSI SRSQSIAHSR SASVAESQSI SRSQSIANSQ SVAASESESL SISLSKKQSI SMSNSESAAK SHSLSVKRSN WIKKSKAASV RKSHSLSVRK SNSAKRSHAI SVRKSKSLSV KKSISQSQSA SVAKSQSISR SQSVAASESA SLSKSKSTSL SNSVSAEKST SLSRSASVAK SQSISRSQSV VASESASLSK SKSTSLSNSV SAEKSTSLSR SASVAKSQSI SRSQSVAASE SASLSKSKST SLSNSVSAEK STSLSRSASV AKSQSISRSQ SVAASESASL SKSKSTSLSN SVSAEKSTSL SRSASVAKSQ SISRSQSVVA SESASLSKSK STSLSNSVSA EKSTSLSRSA SVAKSQSISR SQSVAASESA SLSKSKSTSL SNSVSAEKST SLSRSASVAK SQSISRSQSV AASESASLSK SKSTSLSNSV SVEKSTSLSR SASVAKSQSI SRSQSVAASE SASLSKSKST SLSNSVSAEK STSLSRSASV AKSQSISRSQ SVAASESASL SKSTSTSTSD SDSASTSTSV SDSDSASLSK STSTSTSDSD SASASLSKST STSTSDSDSA STSTSVSDSD SASLSKSTST STSDSDSTST SLSKSTSTST SDSDSASKST SVSDSTSASL SKSTSTSTSD SDSASKSTSV SDSTSASLRK SASTSTSDSD STSTSLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSDSDSASK STSVSDSDSA SLSKSTSTST SDSDSASKST SVSDSTSTSL SKSTSTSTSD SDSASTSTSV SDSTSASLSK STSTSTSDSD SASTSVSDSD SASLSKSTST STSDSDSVST STSVSDSDSA SLSKSTSTST SDSDSASKST SVSDSTSTSL SKSTSTSTSD SDSASTSVSD STSASLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSDSDSAST STSVSDSDSA SLSKSTSTST SDSDSASTSL SKSTSTSTSD SDSTSTSLSK STSTSTSDSD SASKSTSVSD SDSASLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSDSDSASK STSVSDSESA SLSKSTSTST SDSDSASTST SVSDSTSVSL SKSTSTSTSD SDSTSTSLSK STSTSTSDSD SDSASLSKST STSTSDSDSV STSTSVSDSD SASLSKSTST STSDSDSAST STSVSDSGSA SLSKSTSTST SDSDSASKST SVSDSDSASL SKSTSTSTSD SDSASTSTSV SDSTSASLSK STSTSTSDSD SASTSTSVSD SDSASLSKST STSTSDSDSA SKSTSVSDSD SASLSKSTST STSESDSASK STSVSDSDSA SLSKSTSTST SDSDSASTST SVSDSDSASL SKSTSTSTSD SDSASKSTSV SDSDSASLSK STSTSTSESD SASTSTLVSD STSVSLSQST SVDKDSTAKG STELVNVASL SISASQSSSL SASTSTSIEK SESTSTSGSN STNASLSSSS SLSTSASTSV SEVTSVTHSE NDLSASNDRD TSGSVSQFAS ENTSLSDSAS ISGEVSSSTS ASTSKSSSLS ASALHDKHVS ESTSASLSSG DSSRASASVS TSLSESDSAL IDSESISVSE HTSTLQSGSH SLSQQQSAEL SQSEQTSQSQ RISTSASVSA MKSESAAKVS ESLSTSQSKV DSQSQSVSES ASNSRVSRDS KSTSASMHRS LSESVSQSMS LIDQSESDST SISISTSISD EDSMLYSMSD SASISTKASS SMSTSTSEEH ANSHSQSEST ASVEVSQEMS ASASTSKSES QSESVSVSNE ESNISSMQES FVESAKASRS ASMSVAKSEA SESQLLSESN ASVSQSASTS SKASASTSES ISTSLSVSEA THGKPRNHSE SASASQLLEE NESLSDSAST SVEDSESASA SLSVYQSQSA SALKSTHASE KASVNTSANA SKRASASTSI SNSKSKVIAS ESKSTSISTY ESLSISTSKE QSTRVSVSES TSTSKVKSES DSASTSTSES ISISANRSGY TSSKRSVQMS EAQSTSDSLS VMQSEGSVSV SQSLSISDKT SQSLSESISH SESDSDSNSV SISQETSEQH SVSDSDSMSI SESESIAYSQ SASESESTSI AKSDSISNSL SVSLSESESE ASTSASVSTS ESTSVKGSLS TSILNSQSAS THQSTEASQS TSTSKVEEAS LSDSASVSDS QSLSMSHEKS QSASTSKSTS LSKTISESES VSASTSTSEA VSTEASEFVS AVDSLSQVTS NGSTTKEDAS TFVSTVDSLK DKASNNGTPS EFASAVKSTH ASVSVSASES TSASTSTSEA VSTEASEFVS AVNSLSEATS NGSTTKEDAS TFVSTVDSLK DKASNNGTPS EFASAVKSTH ASVSVSASES TSASTSTSEA VSTEASEFVS AVDSLSQVTS NGSTTKEDAS TFVSTVDSLK DKASNNGTPS EFESVVKSVH GSMSASASAS TSASTSASTS TSEAASAEAS ELESVRKSLS NGASNGSTAR EGASTFVSTV DSLKDKASNN GTASEFESVV KSVHGSTSAS ASASTSASTS ASESASTEAS EFVSAVASLS SSAWNGSTTG EGASTFVSTV DSSKDSASDK ASPSESESVV KSVHGSTSTS ASVSASASTS ASTSTSEAVS TEASEFVSAV NSLSSEASNG STTREGASTF VSTVDSLKDK ASNNGTASEF ESVVKSVHGS MSTSASVSAS ESTSASTSTS EAVSTEASES ASISVSMSVS ASTSASMSVS VSNSVSVSDS ISVSASTSEP NSVSTSMSSS LSTSASTPSE ITSSSSSSDS ATVQKVVSKD EQHATNKVEK LPDTGQSTTQ TGLLGGVGAL LTGLGLLKKS RKQKDEETSS HE SEQ ID NO: 13 atgaaaaagtctagaaaaaagcgtatcgattttttacctaaccgtcaaaatcgatatgcg atacgtcgtttttcagtaggcactgcgtcaattctcgttggagcaacattaatttttgga attcattcaaatgatgcatcggcagcagtagaagacgcaacatctcaagaagcaggaaca actaacgaaaattcaaatagtacagaagaagcaacaacaaacgaaagtacaactgttgaa gcaccaacaagtgaagaagcaacaacggaagagcaatcagtagaggcgccaacaagtgaa gaagtaacaacggaagagcaatcagtagaggcaccaacaagtgaagaagtaacaacggaa gagcaatcagtagaagcgccaacaagtgaagaagtaacaacggaagagcaatcagtagaa gcgccaacaagtgaagaagtaacaacggaagagcaatcagtagaggcaccaacaagtgaa gaagtaacaacggaagagcaatcagtagaggcaccaactagtgaagaagtaactacggaa gagcaatcagtagaagcaccaacaagtgaagaagcaacaacggaagagcaatcagtagaa gcaccaacaagtgaagaagcaactacaaaaactcctgtaaaagaagaaacatcctcaaca caagaaaattcacccacgactacactagaagaacaattttcaaatgaattcaatcagtta acatctacagaagataaaacaaactacacacgtgaatatttaactcaaaacacaaatctt tcggcagaacaagtggaagcaacagttgaacgcttgaatttaagtcaagaaaatgtaaca gcccaagatatctatttcgcattacttaaagatttagctgatcaacaagatgccttatta ccacgtgtaacacttttggccgctagagattctgagctcacaaacgaagcgtctatcgct ttaactgaaaatagtccaatgttccgcgcagcattagcgaatagtccttctggcaatgat gtggtgtcagaagaagataatattattgtggctgatgcactcgcaaatggatacatcaat tcacaaacagatgcaacaaatgcggcaaatacattgtctggtcgtgcatgggttgtggat acagggacaccagcgacaatgtcaaacggcttaacagctgttccagaaggcacaaaagtc tacatgcaatggattgatacagatggcgcggtttcaccagtgtatcaagcaagcacaaca aataaattgagttcaagtggtggtagccaagtaggtccaggtgcatatgcatttgattta cgtgaagcatggatagactcaaatggcaaagcgcacagatatgaagcgtcaagtggccaa tattatcgtttatggattgatgactacaaaacagtagatgggaatacggcaaccatgtta cgccaagcaggtggtttcttccctggttcatatgttaattcggtgacaggtaacaatatt ggtcaattcccacttatcggaacgaacatgcaacgtacaggtatctttatgggtgtgata ccaacgaacgattacatgactacagatacaagcaattggattcaagataatgaaggacct atttcaaacccagcagtaacgagcacaagtgaatttgtcagtggtaaagtatggtctgag acaggttcaggtgactatgcgaactctgcgacaggtccaaactttaactcaggtgatatt gcacgtgaaggttatcaagttgtcatgtcttcattaacaagtgctggtgcccaagcgtat aaagcacaagtcgaatcgttgccaacagaccaacaagcggcagcagcacaccaattattc aaagaccacccagaatttatttctgcgacagtgacgggtaaaactgatgcaaacggtgcg tatacattacgtttcccttcaggctcattgagtaaagattatctttatggttatgtgatg gataataagggcaacttggttaagggctattcatcattcacgtcacctttattccgttcg cctaacagtaacttatctttcgcgccacaaacagcgccatatcatagaccagccaaaaat gcttgggtgaatgtgaactttgcgcttgtagaaacaattgaaacaagtatagacatcacg aactttgatgtgacagccaacccagcgcaacgtggtgatacggctatcattgatgtgact tctacagcattgtcaccattacctacgcatgttgagtggagagattcaaaagggaatgtc gttcaaaaaagtggagatgtcactacggtagaagaagctgaaacggcaggcacatttact attcctgatgatgcgaaaacaggtgaaatctatacagtttatattgtttcaggaggcaat gaagttgcagcagactcactgattgtccaagtgcaagaaaatgcggcaacctatgaacct gtatatccaacaacaacagttgaacaagaccaaactgtaacaattcctacacctacaaat gaagatggtttagcattaccagacggaacaaagttcgaaggtggcaacaatgtacctgaa tgggcaactgtgaatgaagatggttctatttcaatttcaccaaatcaagatgtggaaaaa ggtaactataatgtgcctgttgtcgtcacatatccagatggttcaaaagaaacagtattt gcaccagttttagttcaagaagctgttccaactgcagaacaatacgatccaacaattgaa acaattaataaggaatatggtactactgcaacagaagatgaaattaaaggcgcaatcaca attccggattacccaacagatggagatcaaccaacaatcacgattgacgacccaactcaa attccaaatggaacagaagaaggcacagtgaatgtaggtgtcactgtcacttatccagat ggttcaacagacaaattaacagtaccagtcgttacaggtaagcaagcggataacgataag tacacaccagaaacaacaccaattacgaaagacttcggtacaggtgtaacagaagacgaa gtgaaaggtgcagtcactgttccggattacccaacagatggagaccaaccaacaattacg attgacgacccaagtcagttgcctgatggttcaaaagaaggaacaacggatgtcgacgta

acagtggaatatccagacggcacaacagatcacatcacagttccagtgactgttggaaag caagcggataatgataagtacacaccagaaacaacaccaattacgaaagacttcggtaca ggtgtaacagaagacgaagtgaaaggtgcagtcactgttccggattacccaacagacggt gaccaaccaacaattacaattgatgatccaaatcaattaccggacggttcacaagaaggt acgactgatgtaaatgtaacagtggaatatccagatggcacaacagatcacatcacagtt ccagtgactgttggaaagcaagcggataatgataagtacacaccagaaacaacaccaatt acgaaagacttcggtacaggtgtaacagaagacgaagtgaaaggtgcagtcactgttccg gattacccaacagatggagatcaaccaacggttacaattgatgatccaaatcaattaccg gacggttcacaagaaggtacgactgatgtaaatgtaacagtggaatatccagacggcaca acagatcacatcacagttccagtgactgttggaaagcaagcggataatgataagtacaca ccagaaacaacaccaattacgaaagacttcggtacaggtgtaacagaagacgaagtgaaa ggtgcagtcactgttccggattacccaacagacggtgaccaaccaacggttacaattgat gatccaaatcaattaccggacggttcacaagaaggtacgactgatgtaaatgtaacagtg gaatatccagatggcacaacagatcacatcacagttccagtgactgttggaaagcaagcg gataacgataagtacacaccagaaacaacaccaattacgaaagacttcggtacaggtgta acagaagacgaagtgaaaggtgcagtcactgttccggattacccaacagatggagatcaa ccaacggttacaattgacgatccgagtcagttaccagatggctcacaagaaggcacaaca gatgtgaatgtaacagtggaatatccagatggcacaacagaccacatcacagttccagtg actgttggtaagcaagcagataacgataagtacacgccagaaacaacaccaattacgaaa gacttcggtacaggtgtaacagaagacgaagtgaaaggtgcagtcactgttccggattac ccaacagatggagaccaaccaacaattacaattgacgatccgagtcagttaccagacggt tcacaagaaggtacgactgatgtaaatgtaacagtggaatatccagatggcacaacagat cacatcacagttccagtgactgttggtaagcaagcagataacgataagtacacaccagaa acaacaccaattacgaaagacttcggtacaggtgtaacagaagacgaagtgaaaggtgca gtcactgttccggattacccaacagatggagaccaaccaacaattacaattgacgatccg agtcagttaccagacggttcacaagaaggtacgactgatgtaaatgtaacagtggaatat ccagatggcacaacagatcacatcacagttccagtgactgttggaaagcaagcagataac gataagtacacaccagaaacaacaccaattacgaaagacttcggtacaggtgtaacagaa ggcgaagtgaaagattcaatcacaattcccggttacccaacagatggagaccaaccaaca attacaattgacgacccaagtcagttaccagatggttcacaagaaggtacgactgatgtc gatgtaacagtggaatatccagacggcacaacagatcacattacagttccagtgactgtt ggaaagcaagcagataacgataagtacacaccagaaacagaaggtgtcaacaaagatcat ggtacgtcagtaacagaagatgaagtgaaaggtgcagtcactgttccgggatacccaaca gatggagatcaaccaacggttacaattgatgatccaagtcaattgccggacggttcacaa gaaggtacgactgatgtaaatgtaacagtggaatatccagacggcacaacagaccacatt acagtcccagtaactgttggtaaacaacctactaaagataacggggctacagataatgat ggcgacatgaatcaaggcacagatgaaggaaatagtgctactgatcatggcgacaatgta aaacaagattcaaacggaaactatacgccggttgaacaacgtgacaatcatgcgacttca cctgcaacagatatggatccaatgccaagcaatagccaaacaacttttgatggcataaat gcaaaaggttcaacttcagagaaagcaaaccataaacaacagtctgagcaattaccagac acaggtgaaagcaatacacaaaatggtgcacttttaggcggattatttgcagcacttgga ggcttattcttaatcggcagacgtcgtaaagaaaaagaaggcaaataa

The protein sequence translated from SEQ ID NO 13 is designated SEQ ID NO: 14 and is shown below:

TABLE-US-00007 SEQ ID NO: 14 MKKSRKKRID FLPNRQNRYA IRRFSVGTAS ILVGATLIFG IHSNDASAAV EDATSQEAGT TNENSNSTEE ATTNESTTVE APTSEEATTE EQSVEAPTSE EVTTEEQSVE APTSEEVTTE EQSVEAPTSE EVTTEEQSVE APTSEEVTTE EQSVEAPTSE EVTTEEQSVE APTSEEVTTE EQSVEAPTSE EATTEEQSVE APTSEEATTK TPVKEETSST QENSPTTTLE EQFSNEFNQL TSTEDKTNYT REYLTQNTNL SAEQVEATVE RLNLSQENVT AQDIYFALLK DLADQQDALL PRVTLLAARD SELTNEASIA LTENSPMFRA ALANSPSGND VVSEEDNIIV ADALANGYIN SQTDATNAAN TLSGRAWVVD TGTPATMSNG LTAVPEGTKV YMQWIDTDGA VSPVYQASTT NKLSSSGGSQ VGPGAYAFDL REAWIDSNGK AHRYEASSGQ YYRLWIDDYK TVDGNTATML RQAGGFFPGS YVNSVTGNNI GQFPLIGTNM QRTGIFMGVI PTNDYMTTDT SNWIQDNEGP ISNPAVTSTS EFVSGKVWSE TGSGDYANSA TGPNFNSGDI AREGYQVVMS SLTSAGAQAY KAQVESLPTD QQAAAAHQLF KDHPEFISAT VTGKTDANGA YTLRFPSGSL SKDYLYGYVM DNKGNLVKGY SSFTSPLFRS PNSNLSFAPQ TAPYHRPAKN AWVNVNFALV ETIETSIDIT NFDVTANPAQ RGDTAIIDVT STALSPLPTH VEWRDSKGNV VQKSGDVTTV EEAETAGTFT IPDDAKTGEI YTVYIVSGGN EVAADSLIVQ VQENAATYEP VYPTTTVEQD QTVTIPTPTN EDGLALPDGT KFEGGNNVPE WATVNEDGSI SISPNQDVEK GNYNVPVVVT YPDGSKETVF APVLVQEAVP TAEQYDPTIE TINKEYGTTA TEDEIKGAIT IPDYPTDGDQ PTITIDDPTQ IPNGTEEGTV NVGVTVTYPD GSTDKLTVPV VTGKQADNDK YTPETTPITK DFGTGVTEDE VKGAVTVPDY PTDGDQPTIT IDDPSQLPDG SKEGTTDVDV TVEYPDGTTD HITVPVTVGK QADNDKYTPE TTPITKDFGT GVTEDEVKGA VTVPDYPTDG DQPTITIDDP NQLPDGSQEG TTDVNVTVEY PDGTTDHITV PVTVGKQADN DKYTPETTPI TKDFGTGVTE DEVKGAVTVP DYPTDGDQPT VTIDDPNQLP DGSQEGTTDV NVTVEYPDGT TDHITVPVTV GKQADNDKYT PETTPITKDF GTGVTEDEVK GAVTVPDYPT DGDQPTVTID DPNQLPDGSQ EGTTDVNVTV EYPDGTTDHI TVPVTVGKQA DNDKYTPETT PITKDFGTGV TEDEVKGAVT VPDYPTDGDQ PTVTIDDPSQ LPDGSQEGTT DVNVTVEYPD GTTDHITVPV TVGKQADNDK YTPETTPITK DFGTGVTEDE VKGAVTVPDY PTDGDQPTIT IDDPSQLPDG SQEGTTDVNV TVEYPDGTTD HITVPVTVGK QADNDKYTPE TTPITKDFGT GVTEDEVKGA VTVPDYPTDG DQPTITIDDP SQLPDGSQEG TTDVNVTVEY PDGTTDHITV PVTVGKQADN DKYTPETTPI TKDFGTGVTE GEVKDSITIP GYPTDGDQPT ITIDDPSQLP DGSQEGTTDV DVTVEYPDGT TDHITVPVTV GKQADNDKYT PETEGVNKDH GTSVTEDEVK GAVTVPGYPT DGDQPTVTID DPSQLPDGSQ EGTTDVNVTV EYPDGTTDHI TVPVTVGKQP TKDNGATDND GDMNQGTDEG NSATDHGDNV KQDSNGNYTP VEQRDNHATS PATDMDPMPS NSQTTFDGIN AKGSTSEKAN HKQQSEQLPD TGESNTQNGA LLGGLFAALG GLFLIGRRRK EKEGK SEQ ID NO: 15 atgacagaacgaaaatccccttcatctcaaaacatgcgtcatcgtttagtcaaagctggt actgtccttttattggttggtagtggactgcaaatgccttcaacattgtcacacgaaatg acagcgatagctcagacagatgcgactgatgatttgaaaacattacgtgaaaatgcagat aaaaaagtgaaagcgttacaatatttaaatacggattataaaaatgaatttcttgcgtta attcgtgaatatgatacgtcgtcaaaaaatattgaagtggttgttgacgaagcagaagca gccaatcgtctagctcatgacgctcaatcggacgatgaaatacaacctgaattagatgcc attgatgaaaaaattagcgcgttaaaggcaaaggttgatgaaggtcaacgagaatcaact gaagcgcgtcaagatgtaacgtcaacagagacaaagagtgctgaatcagaaggaagagag ccatccactgaaggcgagagcaaagtaaaggagtcatcttcagcacaaacgattgtagca cctcatcatggtcaacaagatgtgagcgcactgaaagaccatattaagaacgatgtcgat acacttaaacaagactatgcaacgcaagacaagcaagtgacaccactccagggcattgac agtgcaatcacacgcattgaccatttcgtttcagaaagcgtggatcacaagtctgacaat tattttgaagaaaaacgtcaacatttacaaaactttgaacaagacattaaaaaacgtacg gacatttctgggactgagaaggcgactttgcttgatgatgcgaaaacggtagccaaccaa ctgaacgcgcaaaatgatacgattttaactgaacttcaacagcatgacgataaacgtgca gcagttgaatcgatattaggtgagatttttaatgcacaagaagcggctgaacgtgcgaaa cagatagatgttaaaggtaaaacagatcaacaattggcaaacgaaattcatcaacaagcg gacggacttatcaaaacgtcgagtgatgatttattgttaggaatgttggaaaataattca aatacacaaggtctagtggaaagcattttacgaacacgctttgacaaacaagaagcgcac aaaattgccggcgaaatcatgcaaggcaagccttcaaatacagcgatactcgaccgcttg aaagaccattttaaagcgaatggtaaggcgagtggagatgatattttaaatgcgttaatt aataatacggatgcagatgctgaagtgattgaatcaattctagggggccgtcttaatgca gaaaatgcaaaattgattgccgatcgtgtacagcaagataaaaagaagacacatcaaaac ttaaaggcgattgaagacgaacttagtgcgcaagcgaatcgattgttaacgttacggaag caattgcaacaaatccgtcataatacgcaaacagatatgaatgacttgtttgcaccactg cgtcgtattgcaaatattctcggtggtggtttaaatcgtgacgacattcactcttcaggt cgtacgaatgacaaattgcagcaactgttaaatcgtgatcattcgttgttaggtcgtggt ggtgatttattcaaacatgattttgcgccaaagccgaatatcgatccatatcaagcgatt aatagtcaaacggcatcagaaggttttttagatggtttatttgatcaaaatggcgatttc aatttaccgaatacaggtgaaatagtgaagcggacttggctaccgttgggtattttagtc gttgcaatcggtgtactgatcttaacggtgagatttcataaaaaaacacgcaaacaataa

The protein sequence translated from SEQ ID NO 15 is designated SEQ ID NO: 16 and is shown below:

TABLE-US-00008 SEQ ID NO: 16 MTERKSPSSQ NMRHRLVKAG TVLLLVGSGL QMPSTLSHEM TAIAQTDATD DLKTLRENAD KKVKALQYLN TDYKNEFLAL IREYDTSSKN IEVVVDEAEA ANRLAHDAQS DDEIQPELDA IDEKISALKA KVDEGQREST EARQDVTSTE TKSAESEGRE PSTEGESKVK ESSSAQTIVA PHHGQQDVSA LKDHIKNDVD TLKQDYATQD KQVTPLQGID SAITRIDHFV SESVDHKSDN YFEEKRQHLQ NFEQDIKKRT DISGTEKATL LDDAKTVANQ LNAQNDTILT ELQQHDDKRA AVESILGEIF NAQEAAERAK QIDVKGKTDQ QLANEIHQQA DGLIKTSSDD LLLGMLENNS NTQGLVESIL RTRFDKQEAH KIAGEIMQGK PSNTAILDRL KDHFKANGKA SGDDILNALI NNTDADAEVI ESILGGRLNA ENAKLIADRV QQDKKKTHQN LKAIEDELSA QANRLLTLRK QLQQIRHNTQ TDMNDLFAPL RRIANILGGG LNRDDIHSSG RTNDKLQQLL NRDHSLLGRG GDLFKHDFAP KPNIDPYQAI NSQTASEGFL DGLFDQNGDF NLPNTGEIVK RTWLPLGILV VAIGVLILTV RFHKKTRKQ SEQ ID NO: 17 atgttaaaaaaattaattgttacaggtttgattgctacagcggcgacacaagtttatgcg catgacacgcaagcggcggaaaagggtgctacagatgctccgaatgtgatggttaaggat gaggcgaaaaaagaagtgacaccgataatccataaaccgacttgcatttacccgcatcta gaaggcgaagatgatgctgcgtatttaaaacgtatggcaacgaatccaccagaaggcgca gtgccgtacggtgtattgaataaagatggatcgattacagaaccgaatacaaatccacat tttgatgttttaaaaattgaagatccaaatgcgatgaaagatttggttgatacaccggca gatgatcaagatacggtaccgagtgatttacaaattgaaccaccagcattaataggacca gctactaaacatacggatggtacgggagacgcaaaatctaatgatgaccacaaagtaaca aaatcttcgggagcgtcagcccaagatatgaagaaaaaagacgtgacaacacaaactgca caaccaaaagcagataaaaagatggcgactgcaaaagtagcaccagcgaaacaacaagat aaagcagccaaaatgttaccagcagcaggggaaccacaagtgaatgcaatcagtcaaaca gcacttgcactttcaatgatcgcattaggtgtcatcgcgttctttacacgacgacgcaaa acaaattaa

The protein sequence translated from SEQ ID NO 17 is designated SEQ ID NO: 18 and is shown below:

TABLE-US-00009 SEQ ID NO: 18 MLKKLIVTGL IATAATQVYA HDTQAAEKGA TDAPNVMVKD EAKKEVTPII HKPTCIYPHL EGEDDAAYLK RMATNPPEGA VPYGVLNKDG SITEPNTNPH FDVLKIEDPN AMKDLVDTPA DDQDTVPSDL QIEPPALIGP ATKHTDGTGD AKSNDDHKVT KSSGASAQDM KKKDVTTQTA QPKADKKMAT AKVAPAKQQD KAAKMLPAAG EPQVNAISQT ALALSMIALG VIAFFTRRRK TN SEQ ID NO: 19 atggtagaatataaaaaagaacatagcgtaaagcgactattaaaattaggaatcggttca acgagtattttatgtgttgtatcacctcttttattaacacatgacgttgttcaagcagca gatatcaataacaggatgccagctttgaatacattgaagaccacttcttcatatgatcaa agggcacacatggatgaattacgaaacgccattacttcagatagtgacactactcaaaca ccatcattcaatgagataactgtgtcttcaactaatgaaacggatgcagcgtcaacggaa aatgtgaacccgagtgatgaggtcccggcaaaggatgaaagtgaatcaacgacaccgagt acagaacaagacacatctatagaagaaacgggtactgaagaagtgccatctcatgaagac aatcatcacaacaccccaagtcaagaagagcaaccgtctccgcctgatcaaccaggaaca aacaaagatgaagagagtggagaaaaaccgaataaagaaaatcatcggaagccgaatcaa ccgaacaaagaccaaccttcaaaagatgagaataaaaaacctgacaaaggaaacaaacca gcaccaccgtctaaaatgccaaatcgcccggatcaaaaggaagatggttcaaacaacacc ccaccacctgccactgataacggtggaaacagtaatgacggtacaacaacgggtcccaat ggtggaggtggcagtgaagcaagtccaccaccgaatgagcaaccgtcaaatggcaatgca agcgatacccatcaaaacggttcagtttcaagcaccaatcattcgaatcagtatggtaca tcggcttatgatgaatacgcaggtttattgaataataattataaatataatccattgttt aaagaagaggttgcgcgtttaagtcaatttggaagtcaagatcaacatgatattgcaagt ttgagtcgtaaagaacaattttctcaaaatgcatttttagatgacttgcaacaaagtaca gattattttagatatcaatattttaacccgctttccacagagcaatactatcatcgttta gataaacaagtattagcactcgttacgggggaatttggttcgatgccagatttcaagaaa agtggtgataagtcattggttaataagcatcagcaagataaagtgaagaaaattgaacag caaggagaaaatattaatacgcatcatatgaaaaatacgaaagaagatacaggaaaatca ttaagttacaagccgatgatatatattggcattgtcatggtcggttttgtcggcctgatc agtatgattttatggaaacgactgcatcatttttggaaataa

The protein sequence translated from SEQ ID NO 19 is designated SEQ ID NO: 20 and is shown below:

TABLE-US-00010 SEQ ID NO: 20 MVEYKKEHSV KRLLKLGIGS TSILCVVSPL LLTHDVVQAA DINNRMPALN TLKTTSSYDQ RAHMDELRNA ITSDSDTTQT PSFNEITVSS TNETDAASTE NVNPSDEVPA KDESESTTPS TEQDTSIEET GTEEVPSHED NHHNTPSQEE QPSPPDQPGT NKDEESGEKP NKENHRKPNQ PNKDQPSKDE NKKPDKGNKP APPSKMPNRP DQKEDGSNNT PPPATDNGGN SNDGTTTGPN GGGGSEASPP PNEQPSNGNA SDTHQNGSVS STNHSNQYGT SAYDEYAGLL NNNYKYNPLF KEEVARLSQF GSQDQHDIAS LSRKEQFSQN AFLDDLQQST DYFRYQYFNP LSTEQYYHRL DKQVLALVTG EFGSMPDFKK SGDKSLVNKH QQDKVKKIEQ QGENINTHHM KNTKEDTGKS LSYKPMIYIG IVMVGFVGLI SMILWKRLHH FWK SEQ ID NO: 21 gtgattacaaataaaaatatatatagtattcgaaagcataaacttggcgtggcatcattc ttattggggacattatttgttgtagggcatgcaaataatgctgaagcttcagaagtgagc gcaacaacacaagaacataatgtcgagactgagcaaacaaaaactgagggcgaactaaca actgaggtagcacaacaagcagtcagcgaatcagcacctatagctgaaaacatgcagaaa acaacatcagtggcaagtgaaaatgcgaaagaggttacagcttctgatagcacacaagaa gtcacaaaaactgaagcaaaagatacagcaacaatgaaagattcagaaattgcacaacct gtatcagaagtgaataaacctgttactcaaacagctgcacccgtagcagaaccatcaaca gcaaacaaacaaacttcaccacgacaagtacaagaacttactgcaccaatggacacaaaa gtaattaatgtagaaaacggaacagatgtgacaagtaaagtgaaagttgaaaaatcgtca attacagggcatcagaataaagataaaacatatcatcaatcgaacactgtaaatccacat aaagctgaacgtgtgacattaaattatgattggtcatttgaaaatggaattaaagctggt gattattttgacttccaattaagcgataatgtcgatacaaatggaatatcaacaataaaa aaagtcccacacattatggatagtcaaaatagcgaacaaattattgcttacggggaaatt aatgaaaacaaccgtgtccgttaccgatttatggactatgtaaatcaaaaagaaaattta aaaggtaaattgtcattaaacttatttattaaaccagataaagttcaagatgaaggaaaa atcactgtcacttcacaattgggcaaggaaatgacaagtcaggaatttgacattaaatat attgatggtgtaaaaagcccttcaggtatcacattaaacggtcgtcttgatgaattatca aaagcagatcaatcatttacgcattattctatatttaaacctaagcataataacttaact aatgtaactttaagaggcacagtttcaaataacgcacagcaaaatgaaaaaaatggtcaa gttaatgtttacgaatatattggtcaaggagaattgccacaaagtgcttatgccaatgta aatgatacgaagcagttcaatgacattactaagagtatgaaatcaatcaaaaataacagt aatggctatgaaattacttttgacatgaacaaagacaatcatccttatatcatagtatat caaggtcactttaacaataatgcaaaagactttgatttctcaacaaatgcgacaggttat caaaatttaaatcaatcggaatatagttattattggccttacaattattcattcaattta acatgggataatggtgttgctttctactctaataatgcaagtggggaagggaacgacaaa cctgtaccgccgacttatggatatagtccgacagtaaatacaattcaagatactcatgcg gattatcctgtaatgactttccaacaacctggaactctagaggagacagaagacagtatg ccaatcactacacttaccgaatctggtgaggatcgtggtgaaaatacttctccaattatc gagacaacagaagattcacagcctgttgagtttgaagaagagacaaatcatggcattcaa gacgtgacacttcatgcagatgctgttgattttgaggaagaaacaaaccatggtgaacaa gacacggtacaccactctgatgtcgttgaatacgacgaagatacgacaactggcatgtta acaggtgccatttctgaccatacaacagaagaaggcacgatggagtacacaactgatggc ttattgattgagtttgatgatgaaatgaatcctaatgtgagcggtcagtacgatgacatc acaacggatacgatagaggaatcatctcatattgacacattcactgaacttgaatctgaa tttggtcaacatgacggtatagtgacatttgaagaagatactatcgttgagaagccgaaa acagaaaagggtaaccgagtaccacttgtaattgatttatcaacaccaaaacataaccat cagttcaatattcaacctaccgatccaaatattgatacctctgctacgtatcgaattggc aattttgtatggcgcgatgaagatcacaatggcgtacaaaatgatggtgaacatggtctt gaaggtgttcttgtcacacttaaaacagctgatggtgtcgttttaaatacaacgacaagt gatgccaatggacactaccagttcactaatgttcaaaaaggaaaatatattgttgaattc actacacctgaaggttatgaagcaacaagcaaacatactacagcgaatactgaaaaagac tctgatgggttaatcgcaaatatcgatgttactcaagatgatatgtcaatcgatgctggt ttcttcccgttagaaaactggaatcctcagccagagccgaaaaaccctgatgatagagag aaaccggcacctgagcaacctgatgtacctcagccagaaccgaaaaaccctgatgataga gagaaaccggcacctgagcaacctgatgtacctcagccagaaccgaaaaatcctgatgat agagagaaaccggcacctgagcaacctgatgtacctcaaccagagccgaaaaatcctgat gataaagagaaaccggcacctgagcaacctgatgtacctcaaccagagccgaaaaatcct gatgataaagagaaaccggcacctgagcaacctgatgcacctcaaccaaagccgatgctc ccaggtgaaaaggtgaaacccaaaccaactcatcccggtgaagctatgcaaacaacacct caggacaaatcaacatctcaaacagatgaagcacttcctaaaacaggtgaatcatcatca caatcatctgctttaatcttcggtggtttactcagtctattaggacttggtttattacgt cgatcatctaaacaaaaccgttcttcaatgaaataa

The protein sequence translated from SEQ ID NO 21 is designated SEQ ID NO: 22 and is shown below:

TABLE-US-00011 SEQ ID NO: 22 VITNKNIYSI RKHKLGVASF LLGTLFVVGH ANNAEASEVS ATTQEHNVET EQTKTEGELT TEVAQQAVSE SAPIAENMQK TTSVASENAK EVTASDSTQE VTKTEAKDTA TMKDSEIAQP VSEVNKPVTQ TAAPVAEPST ANKQTSPRQV QELTAPMDTK VINVENGTDV TSKVKVEKSS ITGHQNKDKT YHQSNTVNPH KAERVTLNYD WSFENGIKAG DYFDFQLSDN VDTNGISTIK KVPHIMDSQN SEQIIAYGEI NENNRVRYRF MDYVNQKENL KGKLSLNLFI KPDKVQDEGK ITVTSQLGKE MTSQEFDIKY IDGVKSPSGI TLNGRLDELS KADQSFTHYS IFKPKHNNLT NVTLRGTVSN NAQQNEKNGQ VNVYEYIGQG ELPQSAYANV NDTKQFNDIT KSMKSIKNNS NGYEITFDMN KDNHPYIIVY QGHFNNNAKD FDFSTNATGY QNLNQSEYSY YWPYNYSFNL TWDNGVAFYS NNASGEGNDK PVPPTYGYSP TVNTIQDTHA DYPVMTFQQP GTLEETEDSM PITTLTESGE DRGENTSPII ETTEDSQPVE FEEETNHGIQ DVTLHADAVD FEEETNHGEQ DTVHHSDVVE YDEDTTTGML TGAISDHTTE EGTMEYTTDG LLIEFDDEMN PNVSGQYDDI TTDTIEESSH IDTFTELESE FGQHDGIVTF EEDTIVEKPK TEKGNRVPLV IDLSTPKHNH QFNIQPTDPN IDTSATYRIG NFVWRDEDHN GVQNDGEHGL EGVLVTLKTA DGVVLNTTTS DANGHYQFTN VQKGKYIVEF TTPEGYEATS KHTTANTEKD SDGLIANIDV TQDDMSIDAG FFPLENWNPQ PEPKNPDDRE KPAPEQPDVP QPEPKNPDDR EKPAPEQPDV PQPEPKNPDD REKPAPEQPD VPQPEPKNPD DKEKPAPEQP DVPQPEPKNP DDKEKPAPEQ PDAPQPKPML PGEKVKPKPT HPGEAMQTTP QDKSTSQTDE ALPKTGESSS QSSALIFGGL LSLLGLGLLR RSSKQNRSSM K SEQ ID NO: 23 atggcatttgatggtatgtttacaagaaaaatggtagaagatttacaatttctcgtttct gggcgtattcataaaatcaatcaaccggaaaacgatacaatcatcatggttataagacag caacgccaaaatcatcaattgttgttgtcgattcacccgaattttgcacggattcacctc actacaaaaaaatatgataatccatttgaaccgccgatgtttgcgcgcgtctttcgtaaa catttagaaggtggacgtatccttgccattcgccaaatcggaaatgaccgtcgcatcgaa atggacgtggaaagtaaagatgaaattggtgacacgattcatcgtacagtgattttagaa attatgggcaaacatagtaatctcattctcgttaatgaagaacgtaaaattttagaaggt tttaaacaccttacaccaaatacgaatcaatttagaaccgtgatgccaggttttcaatat gaagtgccgccaacacaacataaacagaacccttatgcatatactggtgcgcaagtgctc caacatattgatttcaatgcgggcaaaattgatcgccaactgcttcaaacgtttgaaggt ttttcaccgttaatcacaaaagaaatcacatcaagacgccattttatgaccacacaaact ttacctgaagcttttgacgaagtgatggccgaaacgaaagcgacaccccaaccggtattt cataaaaataacgaaacaggtaaagaagacttttattttatgaagttacatcagttttac gatgattgcgtcacatatgattcactccatgaactgctcgaccgtttttatgatgcacgc ggtgaacgtgaacgcgtcaaacaacgtgcaaacgatttagtcaaactcgtccaacaatta cttcaaaaatatcaaaataaattaagtaagctcgtcgatgaacaagcggggactgaagaa aaagaaaatcaacaattgtacggcgagttaatcacagcgaatatttatcaactcaaacct ggagatcgccagttagaaacagtaaattattatacaggagaaaacgtgactattccgtta aatccacaaaagtcacctgctgaaaatgcgcaatactattacaagcaatacaaccgaatg aaaacacgtgagcgcgaattgacccatcaaattactttaacggaagaaaatatcgcttat tttgaaaatatcgagcaacagttgtcacacattcaagttcatgaaattgacgatattcgt gaagaactagcagaacaaggctttatcaaacaaaagaaacagcagaaaaagaaaaagcaa caaaaaatccagttacaatcctacgtttcgactgatggcgatacgattttagtcggtaaa aataataagcaaaatgattatttaacgaataaacgtgcgcaaaaatcgcatttatggttc catacaaaagatatcccaggaagccatgtcgtgattttaaatgatgcgccaagtgacaaa acgattgaagaagcggcgatgattgcagcgtacttttcaaaggcggggcaatcgggacaa attccagtggattatacaacaattcgcaatgtgcataagccgagtggcagtaaacctgga tttgtaacgtacgataaccagaagacgctttacgcaacgccggattatgacatgattcgt cgattgaaagctgaagaagcgtaa

The protein sequence translated from SEQ ID NO 23 is designated SEQ ID NO: 24 and is shown below:

TABLE-US-00012 SEQ ID NO: 24 MAFDGMFTRK MVEDLQFLVS GRIHKINQPE NDTIIMVIRQ QRQNHQLLLS IHPNFARIHL TTKKYDNPFE PPMFARVFRK HLEGGRILAI RQIGNDRRIE MDVESKDEIG DTIHRTVILE IMGKHSNLIL VNEERKILEG FKHLTPNTNQ FRTVMPGFQY EVPPTQHKQN PYAYTGAQVL QHIDFNAGKI DRQLLQTFEG FSPLITKEIT SRRHFMTTQT LPEAFDEVMA ETKATPQPVF HKNNETGKED FYFMKLHQFY DDCVTYDSLH ELLDRFYDAR GERERVKQRA NDLVKLVQQL LQKYQNKLSK LVDEQAGTEE KENQQLYGEL ITANIYQLKP GDRQLETVNY YTGENVTIPL NPQKSPAENA QYYYKQYNRM KTRERELTHQ ITLTEENIAY FENIEQQLSH IQVHEIDDIR EELAEQGFIK QKKQQKKKKQ QKIQLQSYVS TDGDTILVGK NNKQNDYLTN KRAQKSHLWF HTKDIPGSHV VILNDAPSDK TIEEAAMIAA YFSKAGQSGQ IPVDYTTIRN VHKPSGSKPG FVTYDNQKTL YATPDYDMIR RLKAEEA SEQ ID NO: 25 atggtcaaaaaatttggttataaaacacctacaatcgttgcacttactttggctggaact gcattttctgcacaccaagccaatgccgctgaacaagttgcacctgaaaaaacacctacg aatgtacttgatgatcaatacgcattaaaacaagctgatgatgcgaaacaaacgacacaa ggaacaacacttgcaggttcaaaagaatacaaggatccttcacaaattgatacgactcaa gtcgatacagcagcacaaactgaaacgcccgtagaaggagggcaacaagacgcacaacaa cctactacaactgatgaagcgacatcaacagatcatactgtatcaaaaggtacaaacgaa agtgcatcacctgcaacagcttctatagatgaaggaacattaaacgcacaagtcaattca gatgaaacggctactaaccgtacacaagacgtcactgaaaatgtgacaaaatatccttat cattcaagtgaaatcgatacacatgaagacgcaactgtgtcaccagatacatatcatgca ctggacacgcatgcgcaacaaccttcagcaatggatgtaagcgattcaacatcagcacaa actgaagcgacgcaagtaaatacgtcaacaaatgtaaatgacaaagaggccgtttcgaca acagaagatgcacctactacacaacttcaagcagctgtacaatctgaagccaacaaagaa gcgaaggcaactactgaaacagctcaaaataaaacacctcaagttgaaaagaaagcaaca gcaactcaaaatacagcacagttagcaacggggcatcaggatattactgacaaagtctca aaacgcgtagcagtgacaaatgaaacgaaagcggatgccacaacagcgaaaacacaagca cctacttcagtgacacatcaagctgatacacaagcaaaaacgataacagacaagaaggca acaacttacagtgcacaaaccgcaactgaccaagacataaatgcgaatccggacggtcca acacctccacgcgttggcggtaaagggggtccccctgcttcactttcactccaatcgact ggtcaaacagcattccgttcagctgtcgctagtaaaccgagtgcatatcaacctaaagtg aaatcgtctattaatgactatattcgtaagcaaaactacaaagtgcctgtatatgaagaa gattattcaagttacttccctaaatacggttatcgtaatggtgtcggtaaacctgagggc atcatcgtgcatgatacagcaaatgacaactctacaattgatggcgaaatcagttacatg aaaagaaattatcaaaatgctttcgtacatggctttattaatggtcaacgtattgttgaa acgcaacctacagattatttagcatggggtgcaggtgcgattgcgaatgaacgctttatt catatcgaactcgttcatgttcacagtaaagaagatttcgcacgtcaaatgaacaatatg gcagattatgcggcgacgaacttacaatattatggcctttctccagatagtgcggaatat gatggtcgtgggacagtttggacacatgatgctgtttctagatttttaggtggtacagac cataccgatccgcacggctatttaaaacaacatggttattcctttgatgcgttgtatgat ttaatcaatgaaaaatatcaagtgaaaatgggttatgcctcacctgctaactcgtcttca aaaccatcaacaaatactggcttaacagttaaaaacacaacaggtttcggccgtattaac acaacaaatagcggtttatatacgaccgtttatgatcaaaaaggtaaagcgacgaatcaa acgaatcaaacgttaaaagttacaaaagaagcgacgttaaatggcaacaaattctattta atgagtgatgcaaaatctaatcaaacactcggttgggtcaaatcaaacgacgcaacatat caagctgcccaagctgagaaaaaagtaacgaaaacgtatactgtcaaaccaggaacaaca gtatatcaagtgccttggggtgcctcatctcaaacagtaggcaaagctccaggtacgtca aaccaatcattcaaatcaacgaaagaacaaactgttgcgaaaacgaaatggctttatggg acagttggcaaagtgacaggctggattaatgcaagtagtgttgtagcaaatgatcaaaaa ccatcgacgaataccgcactaaaagtaacaactgacactggtctcggtcgcattaaagac aaaaatagtggtttatacgcaacggtatatgataaaactggtaaaagcacttcagccact aaccaaacattaaaagtaacgaaaaaagcaagtgtcaatggccaatcattctatttagta tcagattatgctaaaggtacaaatgttggttgggtgaaacagtcagatgtcgaatatcaa acaagtaaagccccttctaaagtgaatcaaaattatacgattaaatcgggtgcgaaattg tatcaagtgccttggggtacaagtaaacaagttgccggtacagtgacaggtgctgcgaca caaacatttaaggcaacacaatctcaaactgtaggtaaagcaacatacttgtatgggaca gttggcaaattatctggttggattaattcaacagcattagcagctcaaaaaacaacaacg aatgttactaaaacaatttctcaaatcggtcaactgaacacgaaaaatagcggtgtcaaa gcttctatttatgacaaaacagcaaaagatgcatccaaatgggcaggtcaaacttataaa attactaaaacagcttctgccaataacgaagactatgtattactgcaaaatagtacagga ggcacgccactcggttggttcaatgttaaagacgtcacaacacgcaacttaggtgctgaa acagctgttaaagggcggtacactgttaatagtaaaacatctggactctacgctatgcct tggggtacaacgaagcaacgtgtcgatacattaaaaaatgccacaagtcgtttatttaca gcttcaaaatcagttaaagtcggtaatgatacattcttattcggtacagtgaatcaaaaa ttgggctggattaatcaaaaagacttaacagctgtagcagcaaaagttgcaaacatgaaa actgcatcgaatagcgcagtcaaaggtgccgcaatcacaactttgaaaaaagtagaagat tatgtgattacgaataaaaatggttattattacactaaagttggagattcaaaaacagct ggtgctttaaaaggtttttatcaacaaatttttaaagtcgaaaaaacatctttactgaac ggcattacttggtactatggcgcattccaaaacgggacgaaaggatggattaaagcagct gacatacgttcatcattcattcaacatactgcggtcagtagcacattgaaagcagcactc gataaacaaatggcgctgacttacccgcctcaagttcaacgtgtagccggtaaatgggtc aatgcgaatcgtgcagaaactgaaaaagcaatgaataccgcagcaattgaaaaagatccg actctcatttaccaatttttaaaacttgataaataccaaggtcttggcgtagaagaactt aataaattgttaagaggcaaaggcattttagaaggtcaaggtgccgcatttaaagaagcc gcacaaaaacacaatattaatgaggtttacttaatgtctcacgcatttttagaaacaggt aacgggacttctcaattagccaatggcggtcacgtagataaaaataataaagtcgtaaca aacggtaaaccgaagtattacaacatgttcggtatcggggcaattgatacagacgcttta cgcaatggctttaaaactgctgaaaaatatggttggaatacggtcagcaaagcgattatc ggtggcgcaaaattcatccgtgatcagtacatcggttcaggacaaaacacattgtatcgt atgcgttggaatccagaacaccctgccacacatcagtatgcgactgatattaattgggca aatgtaaacgcacaacgcatgaaatatttctatgatcaaattggtgaaacaggtaaatat ttcgacgtcgatgtatataagaagtag

The protein sequence translated from SEQ ID NO 25 is designated SEQ ID NO: 26 and is shown below:

TABLE-US-00013 SEQ ID NO: 26 MVKKFGYKTP TIVALTLAGT AFSAHQANAA EQVAPEKTPT NVLDDQYALK QADDAKQTTQ GTTLAGSKEY KDPSQIDTTQ VDTAAQTETP VEGGQQDAQQ PTTTDEATST DHTVSKGTNE SASPATASID EGTLNAQVNS DETATNRTQD VTENVTKYPY HSSEIDTHED ATVSPDTYHA LDTHAQQPSA MDVSDSTSAQ TEATQVNTST NVNDKEAVST TEDAPTTQLQ AAVQSEANKE AKATTETAQN KTPQVEKKAT ATQNTAQLAT GHQDITDKVS KRVAVTNETK ADATTAKTQA PTSVTHQADT QAKTITDKKA TTYSAQTATD QDINANPDGP TPPRVGGKGG PPASLSLQST GQTAFRSAVA SKPSAYQPKV KSSINDYIRK QNYKVPVYEE DYSSYFPKYG YRNGVGKPEG IIVHDTANDN STIDGEISYM KRNYQNAFVH GFINGQRIVE TQPTDYLAWG AGAIANERFI HIELVHVHSK EDFARQMNNM ADYAATNLQY YGLSPDSAEY DGRGTVWTHD AVSRFLGGTD HTDPHGYLKQ HGYSFDALYD LINEKYQVKM GYASPANSSS KPSTNTGLTV KNTTGFGRIN TTNSGLYTTV YDQKGKATNQ TNQTLKVTKE ATLNGNKFYL MSDAKSNQTL GWVKSNDATY QAAQAEKKVT KTYTVKPGTT VYQVPWGASS QTVGKAPGTS NQSFKSTKEQ TVAKTKWLYG TVGKVTGWIN ASSVVANDQK PSTNTALKVT TDTGLGRIKD KNSGLYATVY DKTGKSTSAT NQTLKVTKKA SVNGQSFYLV SDYAKGTNVG WVKQSDVEYQ TSKAPSKVNQ NYTIKSGAKL YQVPWGTSKQ VAGTVTGAAT QTFKATQSQT VGKATYLYGT VGKLSGWINS TALAAQKTTT NVTKTISQIG QLNTKNSGVK ASIYDKTAKD ASKWAGQTYK ITKTASANNE DYVLLQNSTG GTPLGWFNVK DVTTRNLGAE TAVKGRYTVN SKTSGLYAMP WGTTKQRVDT LKNATSRLFT ASKSVKVGND TFLFGTVNQK LGWINQKDLT AVAAKVANMK TASNSAVKGA AITTLKKVED YVITNKNGYY YTKVGDSKTA GALKGFYQQI FKVEKTSLLN GITWYYGAFQ NGTKGWIKAA DIRSSFIQHT AVSSTLKAAL DKQMALTYPP QVQRVAGKWV NANRAETEKA MNTAAIEKDP TLIYQFLKLD KYQGLGVEEL NKLLRGKGIL EGQGAAFKEA AQKHNINEVY LMSHAFLETG NGTSQLANGG HVDKNNKVVT NGKPKYYNMF GIGAIDTDAL RNGFKTAEKY GWNTVSKAII GGAKFIRDQY IGSGQNTLYR MRWNPEHPAT HQYATDINWA NVNAQRMKYF YDQIGETGKY FDVDVYKK SEQ ID NO: 27 gtgtcgacagaaaaacaagatgatacacaagcaaaagcgaatgcactttctacagatgat tcaacacctacaacagaacaatcaaaaagtgataccgaaccaacgcaaaatcaagaagtg aatgaaaaagaagcaacacaagttgagcaaactccagataatgcatcatcagaatttaaa gacagtgcagcacaagatgaaacaacatcgaaagacgctgacattgctcaaacaaaagaa gcaaaaaatgaagcattgcaaagtgactcatcagcaaacctatcaaatcaagaagcagaa aaagaaaacacaactaacagtgaatctcaagtaaatgaacaacctaaagcagatacaact tctgattcacaagtttcaaatacacctcaacaagatcctacatcgacagtaccttcacca gaaacatcagaagacaatcgaccttcaacagaattaaaaaatagtgaaacaactgcttct caaacaactttaaacgaacaacctactgaatcaacatccaatcaaactgaaacgacaaaa gcaccaacaaatacaacagtcgcaaacaaaaaagcacctgcacaattaaaagacattaaa ggtacaactcaacttcgcgcagtcagtgcaagtcaacctactgctgttgcagctggtggg acaaacgtaaatgacaaagtaacagcatcaaatatgaaaataactgaatcttatatcgag ccaaacaactcaggaaacttttatttaaaaagtaactttaacgtaaacgggactgttaaa gaaggtgactactttactgtaaaaatgcctgacactgtcaatacttttggtgacacgcgc cattcacctgactttagagaaaaaattacaaatcaaaaaggtgaagttgtggctttaggt gaatatgatgttgccaaccatactatgacatacacgttcactaatgtcgttaataattta gaaaatgtgtccggttcgtttaacttgactcaatttatggatcgtaaagtggcaacagat tctcaaacatatccattaaaatacgacattgcaggcgaatctttagatacacaaattaaa gtgaattacggtcaatattacagtgaaggtgattctaacttaaaatcaatgatcacttca gaagatcctaaaactggggaatatgatcaatacatttatgtcaacccattacaaaaaacg gcaaacggtacagttgtaagagttcaagggttccaagttgatccaactaagagtaatggg caagtgaaaccagatacaacgcagatcaagattttaaaagttgctgatggtcaaccactt aatagtagtttcggtgtgaatgacagtgaatatgaagatgtcacaaaacaatttaatatt gtttatcgtgataataatttggcagatatttactttggaaacttaaatgggcaacgctat atcgttaaagtgacgagcaaagaaaatttggattctaaagaggatttaaacttgcgtgct attatggccactcaaaaccgatatggtcaatataactatattacttgggataacgatatt gtgaaaagctcttctggtggtacagccgacggaaatgaagcatcatatcaattaggcgac aaagtttggaatgatgtgaataaaaatggtatccaagatcaaggtgaaactggtattgct gatgtaaaggttactttaaaagatcttgatggcaacattttggatacaacttatacaaac acgaatggtaaatatatctttgataatttaaaaaatggtaattatcaagtgggttttgaa acaccggaaggctatgctgcaagtccatccaaccaaggtaatgacgcccttgactctgat ggtcctacaaatgtacaagctgtcattagtgatgggaacaacttaactatcgaccaaggt ttttaccaaactgaaacaccaacacacaacgtcggcgacaaagtttgggaagacttaaat aaagatggcatccaagaccaaaatgaaccaggtatcgctaacgttaaggtcactttaaaa gacgcggatggtaacgttgtggatacacgtacgactgatgataaagggaattacttattc gaaaaagttaaagaaggcgaatatacaattgaatttgaaacgcctgaaggttatacaccg acacaaacaggccaaggcagagtcagcactgactctaatgggacatcttcccttatttta gtcgaaggtaacgatgacttaacaatcgatagcggtttctacaaagaacctgttacacac aaagttggcgacaaagtttgggatgacttaaataaagacggtatccaagatgacaatgaa ccaggcatctctgacgttaaagtcactttaaaagatgcggatggtaacgtcgtagataca cgtacaactgatgctaacggtaactatttatttgaaaacgtgaaagaaggcgactatacg attgaatttgaaacgcctgaaggttacacaccgactgttacaggtcaaggtacagctgat aatgactctaacggtacatctacaaaagttacagttaaagatggcgatgacttaacaatt gacagtggtttcactcaagttacacctgagccaccgacacataatgttggcgacaaagtt tgggatgacttaaataaagacggtatccaagatgacaatgaaccaggcatctctgacgtt aaagtcactttaaaagatgcggatggtaacgtcgtagatacacgtacaactgatgctaac ggtaactatttatttgaaaacgtgaaagaaggcgactatacgattgaatttgaaacgcct gaaggttacacaccgactgttacaggtcaaggtacagctgataatgactctaacggtaca tctacaaaagttacagttaaagatggcgatgacttaacaattgacagtggtttcactcaa gttacacctgagccaccgactgaacctgaaaaccctagtccagagcaaccttctgaaccg ggtcaacctgaaaatcctagtccagagcaaccttctgaaccaggtcaacctgaaaatcct agtccagagcaaccttctgaaccaggtcaacctgaaaatcctagtccagaacaaccttct gaaccgggtcaacctgaaaatcctagtccagaacagccttctgagccaggacaacctaaa aatcctagtccagaacagccaaataatccaagtgtgccaggtgttcaaaatcctgaaaaa ccaagcttaactccagtcacacaaccggttcattcaaacggcaataaagcaaaaccatct caacaacaaaaagctttacctgaaacaggtgaaactgaatcacatcaaggtacattattc ggtggtattttagctgctttaggcgcattactctttgcacgtaaaaaacgccacgataaa aaacaatcacactaa

The protein sequence translated from SEQ ID NO 27 is designated SEQ ID NO: 28 and is shown below:

TABLE-US-00014 SEQ ID NO: 28 VSTEKQDDTQ AKANALSTDD STPTTEQSKS DTEPTQNQEV NEKEATQVEQ TPDNASSEFK DSAAQDETTS KDADIAQTKE AKNEALQSDS SANLSNQEAE KENTTNSESQ VNEQPKADTT SDSQVSNTPQ QDPTSTVPSP ETSEDNRPST ELKNSETTAS QTTLNEQPTE STSNQTETTK APTNTTVANK KAPAQLKDIK GTTQLRAVSA SQPTAVAAGG TNVNDKVTAS NMKITESYIE PNNSGNFYLK SNFNVNGTVK EGDYFTVKMP DTVNTFGDTR HSPDFREKIT NQKGEVVALG EYDVANHTMT YTFTNVVNNL ENVSGSFNLT QFMDRKVATD SQTYPLKYDI AGESLDTQIK VNYGQYYSEG DSNLKSMITS EDPKTGEYDQ YIYVNPLQKT ANGTVVRVQG FQVDPTKSNG QVKPDTTQIK ILKVADGQPL NSSFGVNDSE YEDVTKQFNI VYRDNNLADI YFGNLNGQRY IVKVTSKENL DSKEDLNLRA IMATQNRYGQ YNYITWDNDI VKSSSGGTAD GNEASYQLGD KVWNDVNKNG IQDQGETGIA DVKVTLKDLD GNILDTTYTN TNGKYIFDNL KNGNYQVGFE TPEGYAASPS NQGNDALDSD GPTNVQAVIS DGNNLTIDQG FYQTETPTHN VGDKVWEDLN KDGIQDQNEP GIANVKVTLK DADGNVVDTR TTDDKGNYLF EKVKEGEYTI EFETPEGYTP TQTGQGRVST DSNGTSSLIL VEGNDDLTID SGFYKEPVTH KVGDKVWDDL NKDGIQDDNE PGISDVKVTL KDADGNVVDT RTTDANGNYL FENVKEGDYT IEFETPEGYT PTVTGQGTAD NDSNGTSTKV TVKDGDDLTI DSGFTQVTPE PPTHNVGDKV WDDLNKDGIQ DDNEPGISDV KVTLKDADGN VVDTRTTDAN GNYLFENVKE GDYTIEFETP EGYTPTVTGQ GTADNDSNGT STKVTVKDGD DLTIDSGFTQ VTPEPPTEPE NPSPEQPSEP GQPENPSPEQ PSEPGQPENP SPEQPSEPGQ PENPSPEQPS EPGQPENPSP EQPSEPGQPK NPSPEQPNNP SVPGVQNPEK PSLTPVTQPV HSNGNKAKPS QQQKALPETG ETESHQGTLF GGILAALGAL LFARKKRHDK KQSH SEQ ID NO: 29 atgaagaaaacaatttcagtacttggtctagggctattagcaacattttttgtaagtaac gaatcatatgccgcagaaacgattcaaaacaatacgtcatcaagtgaaacgaatcaaaat tcagatcagacgccgttagatcattatattcgaaaagcagatggcacactggttgaaccg aacgtgtacccacataaagattatgtagagaatgaaggacctttaccagagtttaaattt caagttgactctaagaaagattcatctgatccaaatcaagcaccgttagatcattatatt cgaaaagcggatggcacgttggttgaaccgaatgtatatccacacaaagattatgtcgaa aatgaagggcctttaccagagtttaaatttatgtatgctgacaaacaaaatcatcatgac caacagagtaaaaacaacaaggataagcagcgtgcaaattacagtgacaaaaagcataat gatcagccgggtcatccaaaagcagtcacgccagctgtacaacatgataaagcagtcact tcaaacgctactgtaaaagcattgccaaacacaggtgaatctgataaaacaacacaatta ccaatcgtattatcattgttatctgtggggattttagttttattaaaattgagaaaataa

The protein sequence translated from SEQ ID NO 29 is designated SEQ ID NO: 30 and is shown below:

TABLE-US-00015 SEQ ID NO: 30 MKKTISVLGL GLLATFFVSN ESYAAETIQN NTSSSETNQN SDQTPLDHYI RKADGTLVEP NVYPHKDYVE NEGPLPEFKF QVDSKKDSSD PNQAPLDHYI RKADGTLVEP NVYPHKDYVE NEGPLPEFKF MYADKQNHHD QQSKNNKDKQ RANYSDKKHN DQPGHPKAVT PAVQHDKAVT SNATVKALPN TGESDKTTQL PIVLSLLSVG ILVLLKLRK SEQ ID NO: 31 atgaaaagtaaatatgattttttacctaatagacttaataaattttctatacgaaaattt actgttggtagtgtatcagtgctaataggagccactttattattcgggtttgtagaagga gaagcatcagcatcagtaaaagaaggtcaacaaagtataaattctagtgagaaagaaagc gccgatcctacagtagttgatttaattagtaagaaagaaacaaatttagatggactagat gtatcaagagaagaaacgaccaaagtaccaataaatgaaaacaaaagaggtgaggaacaa agtatttctgataaagctataacagaaaaagctgatacaccagtaagcaatttatcaagt aaggaagttgaggagcaaggtgtttctgataaagctataacagaaaaagctgatacacca gtaaccaatttatcaagtaaggaagctaaggagcaaggtgcttctgatagagttataaca gaaaaagctgatacaccagtaagcaatttatcaagtaaggaagctaaggagcaaggtgct tctgatagagttataacagaaaaagctgatacaccagtaagcaatttatcaagtaaggaa gttgaggagcaaggtgtttctgataaagctatagagaaaatagctgatgcatcagctact gatttgtcaagtaaggaagaagtagaacaagatatatctacacaaggtaaagtaaaatca aaggaagcagtacaagtagaaagtagtcagttacaaaatttaaatagtgaaataaatgct gaacctaatgaaattaaggcaatagatagaagttcaatattacctttaaatttaaatgat gaagaaaataacaaaaaagttaataaagggactcgggttccagaagctacattaagaaat gcctctaataaccaactcaatacacgaatgagatcagtgagtttatttagagttgctaga ctaacagaaatcaatagaaatgttaatgataaagtaaaggtttcggatatcgacatcgca atagccccaccgcatactaaccctaaaactggaaaagaagaattttgggcgacatcttct tcagttttaaagttaaaggcaagctatgaattggataatagcatttctaaaggggatcaa tttactattcaatttggtcaaaatattcgtccaggtggattaaatttaccaagaccttat aattttttatatgataaggataaaaaattagttgcaactggccgttacaataaagaatca aatacaatcacatatacatttacggattatgtagataaacatcaaaacattaaaggtagt tttgagatgaatgcattttctagaaaggaaaatgctactactgacaaaacagcatatcca atggatgttactattgcgaatcaaaaatatagtgaaaatattattgtagactatggtaat aaaaagaatgctgctattatttcaagtacagaatatattgatttagatggtagtagaaaa atgacaacatatattaatcaaaatggtagtaaaaattccatctatcgtgctgatatgcaa attgatttgaacggttataaatttgatccatccaaaaacaattttaaaatttatgaagtg gaaaatagcagtgactttgtggatagcttttcaccagatgtgagcaagttaagggatgtt acgagtcaatttaatattcaatatacaaataataatacaatggcaaaagtggattttggt actaacctttggaggggtaaaaaatatattattcagcaagtggcgaatatagacgacagt aaattagtgaaaaatgcttcaatcaattatacattgaataaaatggattttaataataaa agaacggtagaaacacataacaatacttattctacagtgaaagataaatcaacagcacta ggtgacgtacaggaaagtcaatctattagtgagagccaatcagttagtgaaagcgagtca ctaagtgagagccaatcaatcagtgaaagcgaatcattaagtgagagccaatcaatcagt gaaagcgaatcattaagtgaaagtcaatcaatctcagagagcgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatctcagagagtgaatca ttaagtgaaagtcagtcaatttcagagagtgaatcactaagtgaaagtcagtcaatttca gaaagcgaatcattaagcgagagtcagtcaatttcagaaagcgaatcattaagcgagagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatca ctaagcgagagccaatcaatctcagagagtgaatcattaagcgagagtcaatcaatctca gagagcgaatcattaagtgagagtcaatcaatcagtgaaagcgagtcactaagtgagagt caatcaatttcagagagcgaatcattaagtgaaagccaatcaatctcagagagtgaatca ctaagtgagagccaatcaatctcagagagtgaatcattaagtgagagccaatcaatctca gagagcgagtcactaagcgagagccaatcaatttcagagagtgaatcactaagtgaaagt caatcaatttcagagagcgaatcactaagtgagagccaatcaatctcagagagcgaatca ctaagtgaaagtcaatcaatttcagagagtgaatcactaagcgagagccaatcaatctca gagagtgaatcattaagtgaaagtcagtcaatttcagagagtgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatca ctaagcgagagtcaatcaatctcagagagcgaatcattaagtgaaagtcaatcaatttca gaaagcgagtcattaagcgagagtcagtcaatctcagagagcgaatcactaagcgagagt caatcaatctcagagagtgaatcattaagtgagagccaatcagttagtgaaagcgaatca ctaagtgaaagtcagtcaatttcagaaagcgaatcattaagtgagagtcaatcaatttca gaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatcactaagcgagagc caatcaatcagtgaaagcgaatcattaagtgagagtcaatcaatctcagaaagcgaatca ttaagtgagagtcaatcaatcagtgaaagcgaatcactaagcgagagccaatcaatctca gagagcgaatcactaagcgagagccaatcaatctcagagagcgagtcactaagcgagagc caatcaatcagtgaaagcgaatcattaagtgagagtcaatcaatcagtgaaagcgagtca ctaagtgagagccaatcaatctcagagagtgaatcattgagtgagagccaatcaatctca gagagcgagtcactaagtgagagtcaatcaatttcagagagcgaatcattaagtgaaagc caatcaatctcagagagtgaatcattgagtgagagccaatcagttagtgaaagcgagtca ctaagtgagagtcaatcaatcagtgaaagcgagtcactaagtgagagtcaatcaatttca gagagcgaatcattaagcgagagtcagtcaatctcagagagtgaatcactaagtgagagc caatcaatctcagagagtgaatcattaagtgagagccaatcaatctcagagagtgaatca ctaagtgagagtcaatcaatcagtgaaagcgaatcactaagcgagagccaatcaatttca gagagtgaatcattaagtgagagccaatcagttagtgaaagcgaatcactaagcgagagc caatcaatctcagagagcgaatcattgagtgagagccaatcaatctcagagagtgaatca ttgagtgagagtcaatcaatcagtgaaagcgaatcactaagcgaaagtcaatcaatttca gagagtgaatcattgagtgagagccaatcaatttcagagagtgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcactaagcgagagccaatcaatctcagagagcgaatca ctaagtgaaagtcagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatctca gagagtgaatcattaagtgaaagtcagtcaatttcagagagtgaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagcgagagtcagtcaatttcagaaagcgaatca ttaagtgaaagccaatcaatcagtgaaagcgaatcactaagcgagagccaatcaatctca gagagcgaatcactaagcgagagccaatcaatctcagagagcgaatcactaagtgaaagt caatcaatttcagagagtgaatcattgagtgagagtcaatcaatttcagagagtgaatca ctaagtgaaagtcaatcaatttcagagagtgaatcactaagcgagagccaatcaatctca gagagtgaatcattaagtgaaagtcagtcaatttcagagagggaatcactaagtgaaagt cagtcaatttcagaaagcgaatcattaagtgaaagccaatcaatcagtgaaagcgaatca ctaagtgaaagtcaatcaatctcagagagtgaatcactaagtgagagccaatcaatctca gagagtgaatcattgagtgagagccaatcaatctcagagagcgaatcactaagtgaaagt caatcaatttcagaaagcgagtcattaagcgagagtcagtcaatctcagagagtgaatca ctaagtgagagccaatcaatctcagagagtgaatcactaagtgagagtcaatcaatcagt gaaagcgaatcactaagcgagagccaatcaatttcagagagtgaatcattaagtgagagc caatcagttagtgaaagcgaatcactaagcgagagccaatcaatctcagagagcgagtca ctaagcgagagtcaatcaatctcagagagtgaatcactaagtgaaagtcagtcaatttca gaaagcgagtcactaagcgagagtcaatcaatctcagagagtgaatcattgagtgagagc caatcaatctcagagagcgaatcattgagtgagagccaatcaatctcagagagtgaatca ttgagtgagagccaatcaatttcagagagcgaatcactaagcgagagccaatcaatcagt gaaagcgaatcattaagtgagagtcagtcaattagcgaaagcgaatcactaagtgagagt caatcaatctcagagagtgaatcactaagtgaaagtcagtcaatcagcgaaagcgaatct aaatctttacctaataccggtactggagaaaagatttctaattatccaggtattttagga ggattattaagcatattaggtataagtttgcttaaaagaaaagacagagagaaaaaatta ggacaaaaatctaataagtag

The protein sequence translated from SEQ ID NO 31 is designated SEQ ID NO: 32 and is shown below:

TABLE-US-00016 SEQ ID NO: 32 MKSKYDFLPN RLNKFSIRKF TVGSVSVLIG ATLLFGFVEG EASASVKEGQ QSINSSEKES ADPTVVDLIS KKETNLDGLD VSREETTKVP INENKRGEEQ SISDKAITEK ADTPVSNLSS KEVEEQGVSD KAITEKADTP VTNLSSKEAK EQGASDRVIT EKADTPVSNL SSKEAKEQGA SDRVITEKAD TPVSNLSSKE VEEQGVSDKA IEKIADASAT DLSSKEEVEQ DISTQGKVKS KEAVQVESSQ LQNLNSEINA EPNEIKAIDR SSILPLNLND EENNKKVNKG TRVPEATLRN ASNNQLNTRM RSVSLFRVAR LTEINRNVND KVKVSDIDIA IAPPHTNPKT GKEEFWATSS SVLKLKASYE LDNSISKGDQ FTIQFGQNIR PGGLNLPRPY NFLYDKDKKL VATGRYNKES NTITYTFTDY VDKHQNIKGS FEMNAFSRKE NATTDKTAYP MDVTIANQKY SENIIVDYGN KKNAAIISST EYIDLDGSRK MTTYINQNGS KNSIYRADMQ IDLNGYKFDP SKNNFKIYEV ENSSDFVDSF SPDVSKLRDV TSQFNIQYTN NNTMAKVDFG TNLWRGKKYI IQQVANIDDS KLVKNASINY TLNKMDFNNK RTVETHNNTY STVKDKSTAL GDVQESQSIS ESQSVSESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSVSESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSVSESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS VSESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISERESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSVSESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES LSESQSISES ESLSESQSIS ESESLSESQS ISESESLSES QSISESESLS ESQSISESES KSLPNTGTGE KISNYPGILG GLLSILGISL LKRKDREKKL GQKSNK SEQ ID NO: 33 atgttaagaacaaattataaactaagaaagcttaaagtaggtttagtatcgacaggtgtg gcgttgacttttgtgatggcaagtgggaatgcagaggcgtcggagaacgagcagactgaa gtaaaaggggaggcgcaagttgcttctgtgaatgaaaaagagagtgaagcagaattacct gtagcgcaacaagaagcatctattcaactagacaaagtacaaccaggcgatgcacagctt tcaggctatacacagccaaacaaagcgatttctgtaaagatcgacaataaagatattgtg tctgtagatgatggctatgaagaggtattatcggatgatacaggtaaatttgtatatgat ttgaaagggcgtcaaattgtttacaatcaaaaagttgatgttgaagcgatgacgccattt aattttgaagattttgatgaatcagcacttgagagcgaagaggcattggaggcgttaggt caattggaagacgaagaaacagcgacagcttctgtgacgacgcctagatatgaaggtgcg tatacagttcctgaagaacgcttgacacccattcaaggccaacagcaagtattcatcgaa cctattttagaaggggcaagtaaaatcaaaggacatacatctgtacaaggtaaagtcgcg ttagcaatcaatcaagaacatgtgcacctaggtgatacgttagaagaacaagcagcactc actgatcaagagtggcaaggtcgttatgacgggatttggcgccatattgatgatcaaggg tttttcgagtttgacttgaaccgtctttacaataaatcttacccattgaagtctggcgat ttagtgactttatcttttaaatctaatgacgaagtaggcccattattcaatgtgaacgtt gagcctttcgaacgtgtggcacaagctaaaacaaagtatgagcagaatgacagtccagta gtcaacaaattggatgatactaaaagtgacttggaggttcaacctatctatggagacctt acacaagcagcagtacatggcgagtcgaaagtgttgataccggggacgtcaaaagttgaa ggacgtacgaattatgcacatgcatggatagagatggcatctaatttaggggaatatcgt agtttccctaaattacaagctgatgcgacaggtgcgtttatatttgatttaaaagcggca gacatacaattgttaaacggagaacgtttgacattcagagccgttgacccacatacaaaa caacagttagctgaaactacatcagaagtacgcccagtagatatgcaagatgaagagtca gaggttgtgcagacttcaagcactgagaaatcagcacttgcggatgaaattcttcgttct atgacaattgacaaatcatttaatcctgaagttaccgagataccgggtcatgtatatcct aagaaaacagaggataaaggtgctgaaaatacagaacaagcctcagagaattctgagaag ccatctcagactacagaatctcaaaatgatgccgtacaagatgtagagaaatcctctgtt aatgaggaggttacgccaccttcaacagaatctgctcaagttgaaaaggggcaaaataca gaaggggctttgcttccaaaaaatgtagaacaacatgtagagagtataccataccaaaaa cgtaaagcgttgataggactgacaaaacatcaaggatcagggcacatgccgccattttct ttaagctttaataataaagaagatgacgtatccacaaaggttaacgaagcaaacgagcat gaacgtaagcagggtacagtttatccagagcaaatagaacaattacctcaaacaggttta actgaaaaatcgccattctgggcattgttatttgttgtatcaggcacaggtttattatta ttcaaacgttctagacgacaacgccaatcttaa

The protein sequence translated from SEQ ID NO 33 is designated SEQ ID NO: 34 and is shown below:

TABLE-US-00017 SEQ ID NO: 34 MLRTNYKLRKLKVGLVSTGVALTFVMASGNAEASENEQTEVKGEAQVASV NEKESEAELPVAQQEASIQLDKVQPGDAQLSGYTQPNKAISVKIDNKDIV SVDDGYEEVLSDDTGKFVYDLKGRQIVYNQKVDVEAMTPFNFEDFDESAL ESEEALEALGQLEDEETATASVTTPRYEGAYTVPEERLTPIQGQQQVFIE PILEGASKIKGHTSVQGKVALAINQEHVHLGDTLEEQAALTDQEWQGRYD GIWRHIDDQGFFEFDLNRLYNKSYPLKSGDLVTLSFKSNDEVGPLFNVNV EPFERVAQAKTKYEQNDSPVVNKLDDTKSDLEVQPIYGDLTQAAVHGESK VLIPGTSKVEGRTNYAHAWIEMASNLGEYRSFPKLQADATGAFIFDLKAA DIQLLNGERLTFRAVDPHTKQQLAETTSEVRPVDMQDEESEVVQTSSTEK SALADEILRSMTIDKSFNPEVTEIPGHVYPKKTEDKGAENTEQASENSEK PSQTTESQNDAVQDVEKSSVNEEVTPPSTESAQVEKGQNTEGALLPKNVE QHVESIPYQKRKALIGLTKHQGSGHMPPFSLSFNNKEDDVSTKVNEANEH ERKQGTVYPEQIEQLPQTGLTEKSPFWALLFVVSGTGLLLFKRSRRQRQS SEQ ID NO: 35 atgaaaactaaatacacagcaaaattattaattggggcagcaacaatatctttagcaaca tttatttcacaagggaacgcacatgcgagcgaacaaactacaggactcgcaccggcacaa cctgtcaactttgattcaatcaatgtaacgccagaccaaaaaacattctatcaagtctta catatggaaggcatttcagaagaccaacgtgaacaatatttgaaacaattgcacgaagac ccaagtagcgcacaaaatgttttttcagaatcaattaaagatgccatccacccggaacgt cgtgttgcgcaacaaaatgcgttttacagcgtattacacaacgatgacttatccgaagag caacgtgatgcatacattggtagaattaaagaagatccagatcaaagccaagaagtattt gttgagtctttaaatgtggcacctaaagcagaatcacatgaagatcgcctcattgaatta caaaacaaaaatttaatggaagcgaatgaagcacttaaagcgttacaacaagaagacagc attcagaatagacgtgcggctcaacgtgctgtcaacaaattgacgccggatagcgcgaac gcattccaaaaagaattagatcaaatcaatgccccacgcgacgctaaaattaaagctgac gctgaagcaaaaaaacaagcacctgaagtaagcgcaccacaaattgaagatgcacctact actgaagttgcaccatctccaaaacaagatatgccaaaagtagataaaaaagaagaagat aaagtagaaagtgatactgaggtcaaagaagtacctaaagctgatacagagaaaaaccct caatctaaagacacttctaaaactgaacaagctaaagaaacacctaaagtagagcaatca cctaaaacagaaaaggctgaagaagcacctaaagcagaaacacctcaaaatggaaataaa gcacaaactgaagaagctaaaccagaagtaaaagacaatgtgaaaaacactccatctgca cctgtgttacctgaaacaggaaaagcaacaacttcaacacttgaaagctactggaattct ttcaaagacagtgtgaataaaggttatacttacattaaacaaagcttagaaagtggttat caatatttaaaaggtcaatacgactatatcactaaaaaatacaatgatgcgaaatactat acaaaaatgtattcaaatcataagtctacaattgatcagtctgtattagctatattaggt aaaactggatctagcgcatatatcaagccattaaatatcgaagaaaattcaaacgtattt tacaaagcttatgcaaaaacaagaaactttgctacagaaagcattaacacaggaaaagta ttatacacattatatcaaaaccctactgtagttaaatctgctttcactgcaattgaaaca gcaaatacagtaaaaaatgcaataagcaatcttttctctctcttcaaataa

The protein sequence translated from SEQ ID NO 35 is designated SEQ ID NO: 36 and is shown below:

TABLE-US-00018 SEQ ID NO: 36 MKTKYTAKLLIGAATISLATFISQGNAHASEQTTGLAPAQPVNFDSINVT PDQKTFYQVLHMEGISEDQREQYLKQLHEDPSSAQNVFSESIKDAIHPER RVAQQNAFYSVLHNDDLSEEQRDAYIGRIKEDPDQSQEVFVESLNVAPKA ESHEDRLIELQNKNLMEANEALKALQQEDSIQNRRAAQRAVNKLTPDSAN AFQKELDQINAPRDAKIKADAEAKKQAPEVSAPQIEDAPTTEVAPSPKQD MPKVDKKEEDKVESDTEVKEVPKADTEKNPQSKDTSKTEQAKETPKVEQS PKTEKAEEAPKAETPQNGNKAQTEEAKPEVKDNVKNTPSAPVLPETGKAT TSTLESYWNSFKDSVNKGYTYIKQSLESGYQYLKGQYDYITKKYNDAKYY TKMYSNHKSTIDQSVLAILGKTGSSAYIKPLNIEENSNVFYKAYAKTRNF ATESINTGKVLYTLYQNPTVVKSAFTAIETANTVKNAISNLFSLFK

An active domain from the protein of SEQ ID NO: 6 is designated SEQ ID NO: 37

TABLE-US-00019 SEQ ID NO: 37 NEDVTETTGRNSVTTQASEQHLQVEAVPQEGNNVNVSSVKVPTNTATQAQ EDVASVSDVKAHADDALQVQESSHTDGVSSEFKQETAYANPQTAETVKPN SEAVHQSEYEDKQKPVSSSRKEDETMLQQQQVEAKNVVSAEEVSKEENTQ VMQSPQDVEQHVGGKDISNEVVVDRSDIKGFNSETTIRPHQGQGGRLNYQ LKFPSNVKPGDQFTIKLSDNINTHGVSVERTAPRIMAKNTEGATDVIAEG LVLEDGKTIVYTFKDYVNGKQNLTAELSVSYFVSPEKVLTTGTQTFTTMI GNHSTQSNIDVYYDNSHYVDGRISQVNKKEAKFQQIAYINPNGYLNGRGT IAVNGEVVSGTTKDLMQPTVRVYQYKGQGVPPESITIDPNMWEEISINDT MVRKYDGGYSLNLDTSKNQKYAIYYEGAYDAQADTLLYRTYIQSLNSYYP FSYQKMNGVKFYENSASGSGELKPKPPEQPKPEPEIQADVVDIIEDSHVI DIGW

An spsl gene fragment corresponding to A domain is designated SEQ ID NO: 38, which encodes the protein of SEQ ID NO: 37

TABLE-US-00020 SEQ ID NO: 38 AATGAAGATGTCACTGAAACAACTGGGAGAAATTCAGTGACAACGCAAGC TTCTGAGCAACATTTGCAAGTGGAAGCAGTACCTCAAGAAGGCAATAATG TAAATGTATCCTCTGTAAAAGTACCTACGAATACGGCAACGCAAGCACAA GAAGATGTTGCAAGTGTATCCGATGTTAAAGCACATGCTGATGATGCATT ACAAGTACAAGAAAGTAGTCATACTGATGGTGTTTCTTCAGAATTCAAGC AGGAGACAGCTTATGCGAATCCTCAAACAGCTGAGACAGTTAAACCTAAT AGTGAAGCAGTGCATCAGTCTGAATACGAGGATAAGCAAAAACCCGTATC ATCTAGCCGCAAAGAAGATGAGACTATGCTTCAGCAGCAACAAGTTGAAG CCAAAAATGTTGTGAGTGCGGAGGAAGTGTCTAAAGAAGAAAATACTCAA GTGATGCAATCCCCTCAAGACGTTGAACAACATGTAGGTGGTAAAGATAT CTCTAATGAGGTTGTAGTGGATAGGAGTGATATCAAAGGATTTAACAGCG AAACTACTATTCGACCTCATCAGGGACAAGGTGGTAGGTTGAATTATCAA TTAAAGTTTCCTAGCAATGTAAAGCCAGGCGATCAGTTTACTATAAAATT ATCTGACAATATCAATACACATGGTGTTTCTGTTGAAAGAACCGCACCGA GAATCATGGCTAAAAATACTGAAGGTGCGACGGATGTAATTGCTGAAGGT CTAGTGTTGGAAGATGGTAAAACCATCGTATATACATTTAAAGACTATGT AAATGGCAAGCAAAATTTGACTGCTGAGTTATCAGTGAGCTATTTCGTAA GTCCGGAAAAAGTCTTGACTACTGGGACACAAACATTCACGACGATGATC GGTAATCATTCAACGCAATCCAATATTGACGTTTATTATGATAATAGTCA TTATGTAGATGGACGTATTTCGCAAGTGAACAAAAAAGAAGCTAAATTTC AACAAATAGCATACATTAACCCTAATGGCTATTTAAATGGCAGGGGGACA ATTGCAGTTAATGGTGAAGTGGTCAGTGGTACGACTAAAGACTTAATGCA ACCTACAGTGCGTGTATATCAATATAAAGGACAAGGTGTTCCTCCTGAAA GTATTACTATAGACCCTAATATGTGGGAAGAAATCAGCATAAACGATACT ATGGTAAGAAAATATGATGGTGGCTATAGCTTGAATCTGGATACCAGCAA GAATCAAAAATATGCCATCTATTATGAAGGGGCATATGATGCGCAAGCTG ACACACTGTTGTATAGAACATATATACAGTCATTAAACAGTTACTATCCG TTCAGTTACCAAAAAATGAACGGTGTGAAGTTTTACGAAAACAGTGCGAG TGGAAGCGGTGAGTTGAAACCGAAACCACCTGAACAACCAAAACCAGAAC CTGAAATTCAAGCTGATGTAGTAGATATTATTGAAGATAGCCATGTGATT GATATAGGATGG

[0009] Since each of the abovementioned proteins/nucleic acid sequences is derived from Staphylococcus pseudintermedius, the inventors have designated these (and the corresponding protein sequences) Staphylococcus pseudintermedius surface genes/nucleic acids/proteins (Sps). For simplicity, the bulk of this specification will use the term "Sps" or "Sps genes" or "Sps nucleic acids" which are intended to encompass all of the nucleic acid sequences described above (i.e. SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35.

[0010] Furthermore, in addition to encompassing the entire or complete gene/nucleic sequences listed above, it is to be understood that the designation "Sps" also encompasses fragments, portions, mutants, derivatives and/or homologoues/orthologues of any of these genes.

[0011] In addition, the term "Sps" or "Sps proteins" encompasses the proteinaceous products of the Sps genes/nucleic acids or fragments, portions, analogues, variants or derivatives thereof (for example short peptide fragments). In particular, the term "Sps proteins" encompasses the sequences given as SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 and 37 above.

[0012] Typically, the gene/nucleic acid fragments, portions, mutants, variants, derivatives and/or homologues/orthologues of the invention are functional or active--that is, they retain the function and/or activity of the wild type or native Sps genes/nucleic acids. Advantageously, fragments, portions, mutants, variants, derivatives and/or homologues/orthologues of any of the Sps genes/nucleic acids provided by this invention, encode proteins (or peptides, peptide fragments) retaining the ability to bind to or associate with extracellular matrix proteins such as, for example, fibrinogen, fibronectin and/or collagen. In other embodiments, the proteins and/or peptides encoded by the nucleic acid sequences described herein are immunogenic or antigenic. Furthermore, fragments, portions, variants or derivatives of any of the proteins encoded by the nucleic acid sequences described herein may also retain the immunogenicity and/or antigenicity of a corresponding wild type Sps protein (for example the proteins listed above). Where the invention relates to immunogenic compositions and/or vaccines, the use of proteins and/or peptides which are immunogenic (or antigenic) is important.

[0013] The term "mutants" may encompass naturally occurring mutants or those artificially created by the introduction of one or more nucleic acid additions, deletions, substitutions or inversions.

[0014] Homologous or identical genes, nucleic acid or protein sequences may exhibit as little as approximately 20 or 30% sequence homology or identity to certain reference sequences, however, in other cases, homologous or identical genes/nucleic acids and/or proteins may exhibit at least 40, 50, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% homology or identity to the various sequences given above as SEQ ID NOS: 1-36 or 37-38. It should be understood that mutant, variant, derivative and/or orthologuous sequences may exhibit similar levels of homology/identity to each other and/or to the Sps genes/nucleic acids shown as SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 and/or 38 above.

[0015] One of skill in this field will readily understand that genes/nucleic acids homologous/identical to the Sps genes detailed herein may be found in other bacterial species. As such, homologous genes from other species may be included within the scope of this invention. Using the various nucleic acid and amino acid sequences described herein, one of skill in the art could readily identify related sequences in other microbial (particularly bacterial) species. For example, nucleic acid obtained from a particular bacterial species may be probed using the probes derived from the sequences of this invention, to identify homologous or closely related sequences.

[0016] It should be understood that Sps nucleic acid sequences of this invention may be single-stranded or double-stranded and a single-stranded nucleic acid molecule may include a polynucleotide fragment having a nucleotide sequence that is complementary to a nucleotide sequence that encodes a Sps protein or fragment thereof. As used herein, the term "complementary" refers to the ability of two single stranded polynucleotide fragments to base pair with each other.

[0017] A single-stranded nucleic acid molecule of the invention may further include a polynucleotide fragment having a nucleotide sequence that is substantially complementary to a nucleotide sequence that encodes a Sps protein or fragment thereof according to the invention, or to the complement of the nucleotide sequence that encodes said Sps protein or fragment thereof. Substantially complementary polynucleotide fragments can include at least one base pair mismatch, such that at least one nucleotide present on a first polynucleotide fragment will not base pair to at least one nucleotide present on a second polynucleotide fragment, however the two polynucleotide fragments will still have the capacity to hybridize. The present invention therefore encompasses polynucleotide fragments which are substantially complementary. Two polynucleotide fragments are substantially complementary if they hybridize under hybridization conditions exemplified by 2.times.SSC (SSC: 150 mM NaCl, 15 mM trisodium citrate, pH 7.6) at 55.degree. C. Substantially complementary polynucleotide fragments for purposes of the present invention may preferably share at least about 60, 65, 70, 75, 80 or 85% nucleotide identity, preferably at least about 90%, 95% or 99% nucleotide identity. Locations and levels of nucleotide sequence identity between two nucleotide sequences can be readily determined using, for example, CLUSTALW multiple sequence alignment software.

[0018] In addition, it should be understood that the present invention also relates to the products of the genes/nucleic acids encompassed by this invention and in particular to proteins or peptides homologous/identical to those having sequences provided by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 and 37. Furthermore, fragments, portions, analogues, variants, derivatives of any of these or homologous and/or identical or modified proteins are also within the scope of this invention. Typically, fragments, portions, derivatives, variants and/or homologous or modified proteins or peptides of the invention are functional or active--that is they retain the function of a wild type Sps protein. In certain embodiments fragments, portions, derivatives or variants of, and/or modified sequences or sequences with homology or identity to, the amino acid sequences provided by this invention, retain the ability to bind to or associate with extracellular matrix proteins such as, for example, fibrinogen, fibronectin and/or collagen.

[0019] Additionally or alternatively, fragments, portions, mutants, variants, derivatives and/or homologues/orthologues of the Sps genes provided by this invention, may encode proteins (or peptide fragments) that are antigenically similar or identical to the proteins encoded by the genes described herein. Similarly, fragments, portions, derivatives and/or variants of and/or modified sequences or sequences with homology or identity to, the amino acid sequences provided by this invention are also antigenically similar or identical to the proteins encoded by the genes described herein. It should be understood that the term "antigenically similar or identical" may encompass proteins or peptides eliciting an immune response similar or identical to the immune response elicited by any of the Sps proteins described herein. In certain embodiments fragments, portions, derivatives and/or variants of and/or modified sequences or sequences with homology or identity to, the amino acid sequences described herein, elicit immune responses which protect against Staphylococcus pseudintermedius infection and/or prevent, reduce or neutralise Staphylococcus pseudintermedius cell/tissue adhesion and/or colonisation. One of skill will readily understand that the antigenicity of a polypeptide can be evaluated in vitro by, for example, performing a Western blot on the purified polypeptide (for example, an affinity purified polypeptide) using polyclonal antisera from an animal, such as a rabbit that was vaccinated with at least an antigenic portion of an Sps protein of the present invention.

[0020] One of skill in this field will readily understand that for the various nucleic acid sequences and polypeptides described herein, natural variations due to, for example, polymorphisms, may exist between Sps genes and proteins isolated from different microbial species and even different strains of the same species. Gene or protein variants may manifest as proteins and/or genes that exhibit one or more amino acid/nucleic acid substitutions, additions, deletions and/or inversions relative to a reference sequence (for example any of the sequences described above). As such, it is to be understood that all such natural variants, especially those that are functional or display the desired activity, are to be included within the scope of this invention.

[0021] In another embodiment, the invention relates to derivatives of any of the Sps sequences described herein. The term "derivatives" may encompass Sps genes or peptide sequences which, relative to those described herein, comprise one or more amino acid substitutions, deletions, additions and/or inversions.

[0022] Additionally, or alternatively, analogues of the various peptides described herein may be produced by introducing one or more conservative amino acid substitutions into the primary sequence. One of skill in this field will understand that the term "conservative substitution" is intended to embrace the act of replacing one or more amino acids of a protein or peptide with an alternate amino acid with similar properties and which does not substantially alter the physcio-chemical properties and/or structure or function of the native (or wild type) protein. Analogues of this type are also encompassed with the scope of this invention. In one embodiment, substitute amino acids may be selected from other members of the class to which the amino acid belongs. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, praline, phenylalanine, tryptophan, and tyrosine. Polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Examples of preferred conservative substitutions include Lys for Arg and vice versa to maintain a positive charge; Glu for Asp and vice versa to maintain a negative charge; Ser for Thr so that a free --OH is maintained; and Gln for Asn to maintain a free NH.sub.2.

[0023] As is well known in the art, the degeneracy of the genetic code permits substitution of one or more bases in a codon without changing the primary amino acid sequence. Consequently, although the sequences described in this application are known to encode the Sps proteins described herein, the degeneracy of the code may be exploited to yield variant nucleic acid sequences which encode the same primary amino acid sequences.

[0024] The present invention may further provide modified Sps proteins. For example, a "modified" Sps protein may be chemically and/or enzymatically derivatised at one or more constituent amino acids, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, phosphorylation and the attachment of carbohydrate or lipid moieties, cofactors, and the like.

[0025] One of skill in this field will appreciate that the amino acid and/or nucleic acid sequences described herein may be used to generate recombinant Sps genes/proteins and as such, the present invention further contemplates methods of generating and/or expressing recombinant Sps genes and/or proteins, and products for use in such methods. Accordingly, in addition to providing substantially purified or isolated recombinant Sps sequences, a second aspect of this invention provides DNA constructs comprising a replicable expression vector and nucleic acid encoding one or more of the Sps protein(s) described herein.

[0026] Expression vectors for the production of the molecules of the invention include plasmids, phagemids, viruses, bacteriophages, integratable DNA fragments, and other vehicles, which enable the integration of DNA fragments into the genome of the host. Expression vectors are typically self-replicating DNA or RNA constructs containing the desired gene or its fragments, and operably linked genetic control elements that are recognised in a suitable host cell to effect expression of the desired genes.

[0027] Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system. Such systems typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of RNA expression, a sequence that encodes a suitable ribosome binding site, RNA splice junctions, sequences that terminate transcription and translation and so forth. Expression vectors usually contain an origin of replication that allows the vector to replicate independently of the host cell.

[0028] A vector may additionally include appropriate restriction sites, antibiotic resistance or other markers for selection of vector containing cells.

[0029] Plasmids are the most commonly used form of vector but other forms of vectors which serve an equivalent function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels et al. Cloning Vectors: a Laboratory Manual (1985 and supplements), Elsevier, N.Y.; and Rodriquez, et al. (ads.) Vectors: a Survey of Molecular Cloning Vectors and their Uses, Buttersworth, Boston, Mass. (1988).

[0030] In general, such vectors may contain specific genes, which are capable of providing phenotypic selection in transformed cells. The use of prokaryotic and eukaryotic viral expression vectors to express the nucleic acid sequences coding for the recombinant proteins of the present invention are also contemplated.

[0031] The vector is introduced into a host cell by methods known to those of skill in the art. Introduction of the vector into the host cell can be accomplished by any method that introduces the construct into the cell, including, for example, electroporation, heat shock, chemical compounds such, for example, calcium phosphate, stronitium phosphate, microinjection techniques and/or gene guns. See, e.g., Current Protocols in Molecular Biology, Ausuble, F. M., ea., John Wiley & Sons, N.Y. (1989).

[0032] Another aspect relates to a host cell transformed with any one of the nucleic acid constructs of the present invention. Suitable host cells include prokaryote cells, lower eukaryotic and higher eukaryotic cells. Prokaryotes include Gram negative and Gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeast, S. cerevisiae and Pichia, and species of the genus Diclyostelium.

[0033] "Host cell" as used herein refers to cell which can be recombinantly transformed with vectors constructed using recombinant DNA techniques.

[0034] A drug resistance or other selectable marker is intended in part to facilitate the selection of the transformants. Additionally, the presence of a selectable marker, such as a drug resistance marker may be of use in keeping contaminating microorganisms from multiplying in the culture medium. Such a pure culture of the transformed host cells would be obtained by culturing the cells under conditions which require the induced phenotype for survival.

[0035] PCR techniques may be exploited to selectively obtain Sps gene sequences from samples of Staphylococcal DNA. These amplified sequences may be introduced into any of the vectors described above. In one embodiment, the vector may further comprise a nucleotide sequence of a tag or label to assist in protein purification procedures.

[0036] Techniques used to purify recombinant proteins generated in this way are known and, where the recombinant protein is tagged or labelled, these may include the use of, for example, affinity chromatography techniques.

[0037] In view of the above, a fourth aspect of this invention provides a process for the production of recombinant Sps protein(s) or peptide(s) of the invention, said process comprising the steps of (a) transforming a host cell with the nucleotide sequence of the invention or transfecting a host cell with a nucleic acid construct of the invention; (b) culturing the cells obtained in (a) under conditions in which expression of the protein takes place; and (c) isolating the expressed recombinant protein or peptide from the cell culture or/and the culture supernatant.

[0038] The polypeptide may be partially purified from the host and where the polypeptide is secreted from the host cell, the cells may be separated from the media by centrifugation, the cells being pelleted. Alternatively, the polypeptide may be partially purified from this supernatant, for example using affinity chromatography.

[0039] A fifth aspect of this invention provides monoclonal or polyclonal antibodies, whether derived from rodents, mammals, avians, ungulates, or other organisms, that bind to the Sps proteins described herein. Production and isolation of monoclonal and polyclonal antibodies to a selected polypeptide sequence is routine in the art see for example "Basic methods in Antibody production and characterisation" Howard & Bethell, 2000, Taylor & Francis Ltd. Such antibodies may be used in diagnostic procedures, as well as for passive immunisation.

[0040] Staphylococcus pseudintermedius is known to cause cutaneous inflammatory diseases in a variety of animals. One such cutaneous inflammatory disease is canine pyoderma which is a major cause or morbidity in dogs. Pydoderma associated with Staphylococcus pseudintermedius infection is common among dogs and is often associated with puritis, alopecia, erythema and swelling. At present, the treatment of this infection is difficult, requiring the use of aggressive, systemically administered antibiotics. The present inventors have discovered that Sps genes (and their protein products) play a role in Staphylococcus pseudintermedius colonisation and pathogenesis. As such, the Sps genes and proteins described herein may find application in the treatment and/or prevention of cutaneous disorders such as canine pyoderma.

[0041] Accordingly, a sixth aspect of this invention provides an Sps protein or gene as substantially defined above, for use in raising an immune response in an organism. The proteins and genes described herein may find particular application as a vaccine, but could also be used to obtain an immune serum potentially useful in passive vaccination techniques.

[0042] Advantageously, the invention may provide a vaccine for use in preventing or controlling disease in canine species caused or contributed to by Staphylococcus pseudintermedius. In other embodiments, the vaccines provided by this invention may be used to protect against the development of infections caused or contributed to by Staphylococcus pseudintermedius. In other embodiments, the vaccines may be used to protect against instances of canine pyoderma.

[0043] In one embodiment, the vaccine may be a polypeptide and/or polynucleotide vaccine.

[0044] A polynucleotide vaccine may comprise a polynucleotide fragment, preferably a DNA fragment, having a nucleotide sequence encoding an antigenic polypeptide comprising at least an antigenic portion any one or more of the Sps proteins described herein. Vaccines of this type may otherwise be referred to as "DNA vaccines"--such vaccines may be introduced to host cells (such as mammalian, for example, canine cells) where they express antigens which elicit immune responses.

[0045] A polypeptide or protein vaccine may comprises one or more of the Sps proteins (or antigentic fragments or portions) described herein. One of skill will appreciate that the one or more Sps protein(s) may be naturally occurring and isolated from Staphylococcus pseudintermedius, or recombinant.

[0046] A protein vaccine may be administered by any suitable route. Advantageously, a protein vaccine may be administered orally (by ingestion), topically or by direct injection--preferably intraperitoneal or intramuscular injection. A protein subunit vaccine formulated for oral administration can contain the polypeptide encapsulated in for example, a biodegradable polymer as described hereinafter.

[0047] In view of the above, the invention further provides a method of immunising a dog against Staphylococcus pseudintermedius, said method comprising administering to the dog a DNA or protein vaccine of the invention.

[0048] Conveniently, the protein vaccines described herein may further include or comprise one or more adjuvant(s). Further, one or more booster vaccinations are preferably administered at time periods subsequent to the initial administration to create a higher level of immune response in the animal.

[0049] In yet another aspect, the vaccine of the invention may comprise a fusion protein comprising a carrier polypeptide and one or more Sps protein(s) of the invention. The Sps protein(s) for use in this aspect of the invention can itself be antigenic or non-antigenic; in embodiments wherein the protein is non-antigenic, the carrier polypeptide is antigenic, stimulating the immune system to react to the fusion protein thereby generating an immune response in an organism--such as, for example a canine immune response to Staphylococcus pseudintermedius. A non-antigenic protein thus functions as a hapten. An example of an antigenic carrier polypeptide is keyhole limpet hemocyanim (KLH). Conventional fusion constructs between carriers such as glutathione sulfotransferase (GST) and said Sps protein(s) of the invention are also included as protein vaccines according to the invention, as are fusions of the Sps protein(s) and an affinity tag such as a polyhistidine sequence. A fusion construct may be preferred for use as a protein vaccine when the antigenic Sps analog, fragment, or modification thereof is small.

[0050] In a seventh aspect, the present invention provides a method for immunising dogs against Staphylococcus pseudintermedius, said method comprising administering to the dog a vaccine of the invention.

[0051] A polynucleotide vaccine may further comprises a promoter, such as the CMV promoter, operably linked to the coding sequence for the Sps polypeptide or antigenic fragment thereof (e.g., U.S. Pat. No. 5,780,44, Davis). The polynucleotide may be cloned within a vector such as a plasmid. There are numerous plasmids known to those of ordinary skill in the art useful for the production of polynucleotide vaccines.

[0052] Other possible additions to the polynucleotide vaccine constructs include nucleotide sequences encoding cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-12 (IL-12) and co-stimulatory molecules such B7-1, B7-2, CD40. The cytokines can be used in various combinations to fine-tune the response of the animal's immune system, including both antibody and cytotoxic T lymphocyte responses, to bring out the specific level of response needed to affect the animal's reproductive system. A polynucleotide vaccine of the invention can also encode a fusion product containing the antigenic polypeptide and a molecule, such as CTLA-4, that directs the fusion product to antigen-presenting cells inside the host.

[0053] Plasmid DNA can also be delivered using attenuated bacteria as delivery system, a method that is suitable for DNA vaccines that are administered orally. Bacteria are transformed with an independently replicating plasmid, which becomes released into the host cell cytoplasm following the death of the attenuated bacterium in the host cell. An alternative approach to delivering the polynucleotide to an animal involves the use of a viral or bacterial vector. Examples of suitable viral vectors include adenovirus, polio virus, pox viruses such as vaccinia, canary pox, and fowl pox, herpes viruses, including catfish herpes virus, adenovirus-associated vector, retroviruses and bacteriophage. Exemplary bacterial vectors include attenuated forms of Salmonella, Shigella, Edwardsiella ictaluri, and Yersinia ruckeri. Preferably, the polynucleotide is a vector, such as a plasmid, that is capable of autologous expression of the nucleotide sequence encoding said Sps protein or fragment thereof.

[0054] In one embodiment, the vaccine may be a DNA vaccine comprising a DNA fragment having a nucleotide sequence that encodes a polypeptide having an amino acid sequence homologous or identic to a sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 37 or an antigenic analog, fragment, or modified version thereof.

[0055] Polynucleotide-based immunisation induces an immune response to an antigen expressed in vivo from a heterologous polynucleotide fragment introduced into a cell. DNA vaccine may be particularly useful as the heterologous nucleic acid expression may continue for a length of time sufficient to induce a relatively strong and sustained immune response without the need for subsequent "booster" vaccinations, as may be required when using protein based vaccines. A polynucleotide vaccine comprising a polynucleotide fragment having a nucleotide sequence encoding said Sps can be administered to dog (or rather to a particular tissue or cells thereof) using biolistic bombardment, ingestion or direct injection, as described for example, in U.S. Pat. No. 5,780,448 (Davis), preferably intraperitoneal or intramuscular injection. A preferred method of administration is biolistic bombardment, as with a "gene gun". A polynucleotide vaccine formulated for oral administration preferably contains DNA encapsulated in a biodegradable polymer. Examples of a suitable biodegradable polymer include chitosan and homo- or co-polyers of polylactic acid and polyglycolic acid. Accordingly, the present invention further provides a method for immunising dogs against Staphylococcus pseudintermedius by administering to the dog a polynucleotide vaccine of the invention, preferably a DNA vaccine.

[0056] Other methods of administering nucleic acid vaccines of the type described herein may include, for example, use of the technology described in WO02/076498.

[0057] The amount of protein/polynucleotide vaccine to be administered to an animal depends on the type and size of animal, the condition being treated, and the nature of the protein/polynucleotide, and can be readily determined by one of skill in the art. In some applications, one or more booster administrations of the protein/polynucleotide vaccine at time periods subsequent to the initial administration are useful to create a higher level of immune response in the animal.

[0058] In one embodiment of the vaccine of the invention and/or Sps proteins described herein (including antigenic fragments, analogs or modified version thereof) may be linked, for example, at its carboxy-terminus, to a further component. The further component may serve to facilitate uptake of the Sps protein, or enhance its immunogenicity/processing.

[0059] The immune-stimulating compositions of the invention may be optionally mixed with excipients or diluents that are pharmaceutically acceptable as carriers and compatible with the active component(s). The term "pharmaceutically acceptable carrier" refers to a carrier(s) that is "acceptable" in the sense of being compatible with the other ingredients of a composition and not deleterious to the recipient thereof. Suitable excipients are well known to the person skilled in the art. Examples include; water, saline (e.g. 0.85% sodium chloride; see Ph.Eur. monograph 2001:0062), buffered saline, fish oil with an emulsifier (e.g. a lecithin, Bolec MT), inactivant (e.g. formaldehyde; see Ph.Eur. monograph 1997:0193), mineral oils, such as light mineral oils, alhydrogel, aluminium hydroxide. Where used herein, the term "oil adjuvant" to embraces both mineral oils and synthetic oils. A preferred adjuvant is Montanide ISA 711 (SeppicQuai D'Orsay, 75321 Paris, France) which is a manide oleate in an oil suspension. In addition, if desired, the immune-stimulating composition (including vaccine) may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the immune-stimulating composition.

[0060] A vaccine composition may be administered as a course of a number of discrete doses over a period of time. For example it may be administered over a period of around 2-21 days.

[0061] Vaccination may be repeated at daily, twice-weekly, weekly or monthly intervals. For example a boost vaccination may be administered after the initial dose. For example a boost may be administered at around 4-14 weeks after the vaccination. The initial vaccination and any boost may be carried out using the same or different modes of administration. For example, the initial may be by injection and the boost may be by oral administration. An example regime includes a first vaccination by injection, followed by a course of orally administered boost vaccine, or a booster prior to an expected outbreak. However, it will be appreciated that any suitable route of administration(s) and/or regime(s) may be employed.

[0062] Additionally, knowledge of the Sps protein nucleotide and amino acid sequences set forth herein opens up new possibilities for detecting, diagnosing and characterising Staphylococcus pseudintermedius in canine populations. For example, an oligonucleotide probe or primer based on a conserved region of one or more of the Sps proteins described herein, may be used to detect the presence of the Sps protein in or on a canine host.

[0063] Vaccines may contain one or more of the Sps proteins/nucleic acids/genes described herein (i.e. those shown as SEQ ID NOS: 1-38). In one embodiment, the vaccine may comprise a cocktail of Sps proteins/peptides and or nucleic acids. Typically, a cocktail may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 or 38 Sps nucleic acid and/or protein/peptide components (for example (2 or more) components having sequences homologous or identical to any of SEQ ID NOS: 1-38).

[0064] Furthermore, the vaccines may contain bacterial antigens used to control other diseases, for example diseases caused by other Staphylococcal species and/or antigens to treat, prevent or control diseases and/or conditions with other aetiologies or caused or contributed to by other pathogens. As such, the vaccine compositions described herein may find application in multivalent vaccines including antigens against other canine diseases.

[0065] In addition to vaccines and/or immunogenic compositions comprising one or more of the Sps proteins described herein, the present invention further provides compounds for treating infections caused or contributed to by Staphylococcus pseudintermedius or compounds for the preparation of medicaments for treating the same.

[0066] In one embodiment, the compound may be a small organic molecule, antibody, peptide or carbohydrate which antagonises the interaction between the Sps protein and its ligand (an extracellular matrix (ECM) protein). For example, the compound may be a synthetic peptide comprising or based on, the sequence of an ECM protein known to interact with a particular Sps protein, or the sequence of a protein given above which may interfere with binding between the wild type S. psedintermedius protein and its ligand. Additionally or alternatively, binding agents, such as for example, antibodies with specificity or affinity for one or more Sps protein ligands, may also be used to antagonise the Sps/ligand interaction. Therapeutic approaches of this type may prevent Staphylococcus pseudintermedius colonising or binding/adhering to cells.

[0067] In view of the above, the invention may relate to methods of treating infections caused or contributed to by Staphylococcus pseudintermedius, said method comprising administering to an animal a therapeutically effective amount of a compound which antagonises Sps/ligand interactions.

[0068] In a further aspect, the present invention provides pharmaceutical compositions comprising a compound which antagonises Sps/ligand interactions together with a pharmaceutical excipient, carrier or diluent.

[0069] One of skill will appreciate that the vaccines, methods, uses or medicaments comprising any of the Sps genes/nucleic acids and/or proteins and/or antagonistic compounds (for example Sps protein/nucleic acid fragments and/or antibodies) described herein may be combined with one or more other compounds for treating one or more other conditions--in particular one or more other skin conditions. Said other skin condition may be, for example, atopic dermatitis.

[0070] In a further aspect, the present invention provides methods of diagnosing infections, diseases and/or conditions caused or contributed to by S. pseudintermedius, said methods comprising the steps of identifying in a sample provided by a subject suspected of suffering from an infection, disease and/or conditions S. pseudintermedius caused or contributed to by S. pseudintermedius, a level of a protein, peptide or nucleic acid (for example a gene) encoded by a sequence provided by SEQ ID NOS: 1-38 or a fragment, portion, mutant, derivative and/or homologoue/orthologue thereof.

[0071] It should be understood that all methods of diagnosis or detection described herein, may include an optional step in which the results are compared with the results of a control sample, which does not comprise sequences derived from S. pseudintermedius, in particular sequences corresponding to those provided as SEQ ID NOS: 1-38 disclosed herein.

[0072] The term "sample" may be taken to mean any sample comprising protein and/or nucleic acid. For example, a "sample" may comprise a bodily fluids such as whole blood, plasma, serum, saliva, sweat and/or semen. In other instances "samples" such as tissue biopsies and/or scrapings may be used. In particular, cutaneous (i.e. skin) tissue biopsies and/or scrapings may be used. Advantageously such biopsies may comprise cells obtained from lesions suspected of resulting from or being associated with a S. pseudintermedius. Specifically, a biopsy, tissue sample or scraping may comprise cells derived from lesions exhibiting pathology characteristic of the S. pseudintermedius disease, pyoderma (particularly caninine pyoderma).

[0073] In addition, a sample may comprise a tissue or gland secretion and washing protocols may be used to obtain samples of fluid secreted into or onto various tissues, including, for example, the skin. One of skill in this field will appreciate that the samples described above may yield or comprise quantities of nucleic acid (i.e. DNA or RNA) encoding all or part of the various proteins described herein as well as quantities of proteins or peptides (or fragments thereof) encoded thereby. In one embodiment, the sample may comprise quantities of nucleic acid/peptide having or comprising the sequences given as SEQ ID NOS: 1-38.

[0074] One of skill in the art will be familiar with the techniques that may be used to identify levels of certain nucleic acid sequences and/or proteins, such as, for example, levels of the sequences given as SEQ ID NOS: 1-38 described herein (or a fragment, portion, mutant, derivative and/or homologoue/orthologue thereof).

[0075] For example, PCR based techniques may be used to detect levels of gene expression or gene quantity in a sample. Useful techniques may include, for example, polymerase chain reaction (PCR) or reverse transcriptase (RT)-PCR based techniques in combination with real-time PCR (otherwise known as quantitative PCR).

[0076] Additionally, or alternatively, a level of gene/protein expression may be identified by way of microarray analysis. Such a method would involve the use of a DNA micro-array which comprises nucleic acid derived from one or more of the nucleic acid sequences described herein (for example SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38). To identify a level of gene expression, one of skill in the art may extract nucleic acid, preferably mRNA, from a sample and subject it to an amplification protocol such as, for example RT-PCR to generate cDNA. Preferably, primers specific for a certain mRNA sequence--in this case a S. pseudintermedius sequence comprised with any of, for example, SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38.

[0077] The amplified cDNA may be subjected to a further amplification step, optionally in the presence of labelled nucleotides (as described above). Thereafter, the optionally labelled amplified cDNA may be contacted with the microarray under conditions which permit binding with the DNA of the microarray. In this way, it may be possible to identify a level of S. pseudintermedius gene expression.

[0078] Further information regarding the PCR based techniques described herein may be found in, for example, PCR Primer: A Laboratory Manual, Second Edition Edited by Carl W. Dieffenbach & Gabriela S. Dveksler: Cold Spring Harbour Laboratory Press and Molecular Cloning: A Laboratory Manual by Joseph Sambrook & David Russell: Cold Spring Harbour Laboratory Press.

[0079] In addition, other techniques such as deep sequencing and/or pyrosequencing may be used to detect cSCC sequences in any of the samples described above. Further information on these techniques may be found in "Applications of next-generation sequencing technologies in functional genomics", Olena Morozovaa and Marco A. Marra, Genomics Volume 92, Issue 5, November 2008, Pages 255-264 and "Pyrosequencing sheds light on DNA sequencing", Ronaghi, Genome Research, Vol. 11, 2001, pages 3-11.

[0080] In addition to the molecular detection methods described above, one of skill will also appreciate that immunological detection techniques such as, for example, enzyme-linked immunosorbent assays (ELISAs) may be used to identify levels of S. pseudintermedius proteins in samples. In other embodiments, ELISPOT, dot blot and/or Western blot techniques may also be used. In this way, samples provided by subjects suffering from S. pseudintermedius related diseases and/or infections (for example canine subjects suffereing from canine pyoderma), may be probed for levels of one or more S. pseudintermedius proteins, particularly those encoded by SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, or 37 so as to detect the presence of such proteins in a sample which may indicate a S. pseudintermedius infection.

[0081] Immunological detection techniques, may require the use of a substrate to which an antibody and/or antigen may be bound, conjugated or otherwise immobilised.

[0082] Suitable substrates may comprise, for example, glass, nitrocellulose, paper, agarose and/or plastic. A substrate which comprises, for example, a plastic material, may take the form of a microtitre plate.

[0083] Further information regarding ELISA procedures and protocols relating to the other immunological techniques described herein may be found in Using Antibodies: A Laboratory Manual by Harlow & Lane (CSHLP: 1999) and Antibodies: A Laboratory Manual by Harlow & Lane (CSHLP: 1988).

[0084] The present invention also extends to kits comprising reagents and compositions suitable for diagnosing, detecting or evaluating possible S. pseudintermedius infections, diseases and/or conditions. Kits according to this invention may be used to identify and/or detect levels of S. pseudintermedius gene(s)/S. pseudintermedius protein(s) in samples. Depending on whether or not the kits are intended to be used to identify levels of S. pseudintermedius genes and/or S. pseudintermedius proteins in samples, the kits may comprise substrates having S. pseudintermedius proteins or agents capable of binding S. pseudintermedius proteins, bound thereto. In addition, the kits may comprise agents capable of binding S. pseudintermedius proteins--particularly where the kit is to be used to identify levels of one or more S. pseudintermedius proteins in samples. In other embodiments, the kit may comprise polyclonal antibodies or monoclonal antibodies which exhibit specificity and/or selectivity for one or more S. pseudintermedius proteins. Antibodies for inclusion in the kits provided by this invention may be conjugated to detectable moieties. Kits for use in detecting the expression of genes encoding S. pseudintermedius proteins may comprise one or more oligonucleotides/primers for detecting/amplifying/probing samples for S. pseudintermedius protein encoding sequences. The kits may also comprise other reagents to facilitate, for example, sequencing, PCR and/or RFLP analysis. In one embodiment, the kits may comprise one or more oligonucleotides/primers for detecting/amplifying/probing nucleic acid samples (for example nucleic acid derived from canine skin) for levels of sequences corresponding to all or part of those described as SEQ ID NOS: 1-38 herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0085] FIG. 1: Genomic location of the 17 genes encoding putative CWA proteins in S. pseudintermedius strain ED99.

[0086] FIG. 2: Distribution of the genes encoding putative CWA proteins among 20 S. pseudintermedius strains, representatives of the closely related S. delphini and S. intermedius, and other staphylococcal species associated with animal skin disease.

[0087] FIG. 3: SDS-PAGE analysis (A) and Western blot analysis (B) of cell wall-associated proteins of S. Pseudintermedius ED99 and L. lactis expressing SpsD, SpsL, and SpsO with sera from dogs diagnosed with pyoderma.

[0088] FIG. 4. Adherence of L. lactis expressing specified MSCRAMMs to human Fn.

[0089] FIG. 5. Adherence of L. lactis expressing specified MSCRAMMs to Fg from different animal sources.

[0090] FIG. 6. Adherence of L. lactis expressing specified MSCRAMMs to CK10.

[0091] FIG. 7. Adherence of L. lactis expressing different MSCRAMMs to canine corneocytes of five dogs.

[0092] FIG. 8: SDS-PAGE analysis (A) and Western blot analysis (B) of Sps D, Sps L and Sps O recombinant A domain with canine convalescent serum from pyoderma cases.

[0093] FIG. 9: Inhibition of adherence of L. lactis expressing SpsD (A) and SpsL (B), and S. aureus Newman (C) to fibrinogen by canine convalescent serum from pyoderma cases.

DETAILED DESCRIPTION

[0094] The invention will now be described in more detail with reference to the following Figures which show:

[0095] FIG. 1. Genomic location of the 17 genes encoding putative CWA proteins in S. pseudintermedius strain ED99. Eight genes are situated in the oriC environ, indicated in orange, and nine are located in the core genome. sps=S. pseudintermedius surface protein.

[0096] FIG. 2. Distribution of the genes encoding putative CWA proteins among 20 S. pseudintermedius strains, representatives of the closely related S. delphini and S. intermedius, and other staphylococcal species associated with animal skin disease. The diversity of strains is represented a phylogenetic tree; grey squares indicate that the gene is present, blank squares that the gene is absent based on Southern blot analysis (for spsA to spsO), or PCR amplification (for spsP and spsQ).

[0097] FIG. 3. Western blot analysis of cell wall-associated proteins of S. pseudintermedius ED99 and L. lactis expressing SpsD, SpsL, and SpsO with sera from dogs diagnosed with pyoderma. (A) SDS PAGE analysis and (B) Western blot analysis of protein fractions from S. pseudintermedius ED99 in exponential phase of growth (lane 1); L. lactis expressing SpsL (lane 2); L. lactis expressing SpsD (lane 3); L. lactis expressing SpsO (lane 4); and L. lactis with pOri23 alone (lane 5).

[0098] FIG. 4. Adherence of L. lactis expressing specified MSCRAMMs to human Fn. Plates were coated with 1 .mu.g of human Fn or 1 .mu.g of BSA per well. Absorbance was measured at 590 nm and results are expressed as mean values of triplicate samples. Error bars indicate standard deviation. L. lactis expressing FnbpA from S. aureus and PBS were included as controls.

[0099] FIG. 5. Adherence of L. lactis expressing specified MSCRAMMs to Fg from different animal sources. Plates were coated with 1 .mu.g of Fg or 1 .mu.g of BSA per well. Absorbance was measured at 590 nm and results are expressed as mean values of triplicate samples. Error bars indicate standard deviation. L. lactis expressing FnbpA from S. aureus and PBS were included as controls.

[0100] FIG. 6. Adherence of L. lactis expressing specified MSCRAMMs to CK10. Plates were coated with 1 .mu.g of recombinant CK10 or 1 .mu.g of BSA per well. Absorbance was measured at 590 nm and results are expressed as mean values of triplicate samples. Error bars indicate standard deviation. S. aureus strain SH1000 in exponential and stationary phases of growth and PBS were included as controls.

[0101] FIG. 7. Adherence of L. lactis expressing different MSCRAMMs to canine corneocytes of five dogs. Bacterial adherence is calculated as percentage area covered with bacterial cells per field of corneocytes (ROI=500 .mu.m.sup.2). Results are based on the arithmetic mean of duplicate experiments. The bottom of each box represents the first quartile (Q1), the top of the box the third quartile (Q3), the bold lines the median, and the black circles the mean values. The whiskers define the range of the data.

[0102] FIG. 8: Reactivity of canine convalescent serum from pyoderma cases to Sps D, Sps L and Sps O recombinant A domain. 1 ug aliquots of rSps D and rSps L, and 10 .mu.l volumes of purified rSps O were subjected to SDS-PAGE under standard conditions and Coomassie stained (A) or Western blot transferred onto a nitrocellulose membrane. Membranes were probed with a 1:1000 dilution of canine serum, followed by a 1:3000 dilution of HRP-conjugated sheep anti-canine IgG. Reactive bands were visualized on Chemi-luminescent Film (B). 5 .mu.l aliquots of recombinant ClfB and the superantigen SEI from S. aureus were included in the terminal lanes of each gel as negative controls.

[0103] FIG. 9: Inhibition of adherence of L. lactis expressing SpsD (A) and SpsL (B) to fibrinogen (2 .mu.g per well) by canine convalescent serum from pyoderma cases. Bacterial cultures, normalised to an OD600 of 1 in PBS were pre-incubated for 2 h with doubling dilutions of serum ranging from 2% to .about.0.01% (v/v), prior to inoculation into fibrinogen coated wells. Results (n=3, .+-.SD) are expressed as absorbance readings at 590 nm minus background levels of fluorescence. Background fluorescence was measured by inoculating control cultures, incubated for 2 h in the absence of serum, into wells coated with BSA (2 .mu.g per well). Incubations of S. aureus Newman (C) were included as a negative control.

EXAMPLES

Example 1

Materials and Methods

Genome-Wide Screen for Genes Encoding for Cell-Wall Anchored Proteins

[0104] The S. pseudintermedius strain ED99 draft genome was interrogated for homologous sequences using position specific iterative basic local alignment search tool (PSI-BLAST), available from the National Center for Biotechnology Information (NCBI), USA (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and for the presence of a LPX[TSA][GANS] motif pattern by pattern hit initiated basic local alignment search tool (PHI-BLAST), available from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Signal sequences were predicted by employing the SignalP server (http://www.cbs.dtu.dk/services/SignalP/), provided by the Center for Biological Sequence Analysis (CBS), Technical University of Denmark.

In Silico Structural Analysis of Cell-Wall Anchored Proteins

[0105] The predicted CWA proteins were searched for functional domains using EMBL-EBI InterPro Scan (http://www.ebi.ac.uk/interpro). Structural analysis was carried out with the PHYRE (Protein Homology/analogY Recognition Engine) fold recognition server, available from the Structural Bioinformatics Group, Imperial College London, UK (http://www.sbg.bio.ic.ac.uk/phyre/). Repeat sequences were predicted by generating nucleic acid dot plots, using software available from Colorado State University, USA (http://www.vivo.colostate.edu/molkit/dnadot/), applying tandem repeats finder software from Boston University, USA (http://tandem.bu.edu/trf/trf.html), and variable sequence tandem repeats extraction and architecture modelling (XSTREAM), available from the University of California, USA (http://jimcooperlab.mcdb.ucsb.edu/xstream/). Sequence alignments and pair-wise sequence comparisons were generated with ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2). Amino acid composition and molecular weight predictions were generated using ProtParam on the ExPASy Proteomics Server (http://www.expasy.ch/tools/protparam.html).

Cloning of Selected Genes Encoding Putative MSCRAMMs of S. pseudintermedius ED99 into L. lactis MG1363

[0106] Oligonucleotides were designed for PCR amplification of the full-length spsD, spsL and spsO genes and either PstI, SalI or BamHI specific restriction sites were inserted on both sides of the DNA fragments. 50 .mu.l PCR reactions contained 2 .mu.l (approximately 100 ng) genomic DNA template, 0.25 .mu.M forward primer, 0.25 .mu.M reverse primer, 1.times.PfuUltra.TM. II reaction buffer (Stratagene, USA), 0.25 mM dNTP's (Promega, USA) and 1 .mu.l PfuUltra.TM. II Fusion HS DNA polymerase (Stratagene, USA). The thermocycler programme included an initial denaturation step at 95.degree. C. for 2 min, followed by 30 cycles of denaturation at 95.degree. C. for 20 s, annealing at 50.degree. C. for 20 s and extension at 72.degree. C. for 2 min, followed by a final extension step at 72.degree. C. for 3 min. PCR products were visualised on 0.8% (w/v) agarose gels, gel extracted under avoidance of UV light exposure and purified using QIAquick Gel Extraction Kit (Qiagen, UK) according to the manufacturer's instructions. Purified DNA fragments were cloned into the StrataClone.TM. Blunt PCR cloning vector pSC-B (Stratagene, USA) using the StrataClone Ultra.TM. Blunt PCR Cloning Kit (Stratagene, USA) according to the manufacturer's instructions. Each cloning reaction consisted of 3 .mu.l Strataclone Buffer Blunt (Stratagene, USA), 2 .mu.l purified PCR product and 1 .mu.l Strataclone.TM. Blunt Vector Mix (Stratagene, USA). StrataClone.TM. SoloPack.RTM. competent cells (Stratagene, USA) were transformed according to the manufacturer's instructions and colonies selected using blue-white screening on LB-ampicillin (100 .mu.g/ml)-X-gal plates. White colonies were transferred into 5 ml LB-ampicillin (100 m/ml) broth and grown overnight at 37.degree. C. with shaking at 200 rpm. Plasmid was isolated using QIAprep Spin Miniprep Kit (Qiagen, UK) according to the manufacturer's instructions. Purified plasmids were digested using appropriate restriction endonucleases (New England Biolabs, UK), and diagnostic digests were analysed on 0.8% (w/v) agarose gels. For generating DNA constructs, the E. coli-L. lactis shuttle vector pOri23 (kindly provided by P. Moreillon, University of Lausanne, Switzerland) was used. The pOri23 vector carries the ermAM gene for erythromycin resistance, the high-copy-number oriColE1 replicon for autonomous replication in E. coli and the constitutive lactococcal promoter P23 (Que et al., 2000). The multiple cloning site of pOri23 consists of restriction sites for endonucleases PstI, SalI and BamHI (Que et al., 2000).

[0107] StrataClone.TM. plasmids containing the DNA inserts of interest and the E. coli-L. lactis shuttle vector pOri23 were each digested in a 100 .mu.l total reaction volume containing 10 .mu.l plasmid (approximately 2.5 .mu.g), 20 units appropriate restriction endonucleases (New England Biolabs, UK), and suitable buffers (New England Biolabs, UK) according to the manufacturer's instructions. Restriction digestions were performed at 37.degree. C. for 16 h. The restriction fragments to be cloned were extracted from 0.8% (w/v) agarose gels without UV exposure as described in the general Material and Methods and purified using QIAquick Gel Extraction Kit (Qiagen, UK) according to the manufacturer's instructions. DNA inserts and restriction-digested pOri23 plasmid were quantified using spectrophotometry (NanoDrop ND-1000, Thermo Scientific, USA) and ligation reactions were carried out with a plasmid to insert ratio of 1:3 in a 10 .mu.l total ligation reaction volume, consisting of 1 .mu.l vector (approximately 10 ng), 400 units T4 DNA ligase (New England Biolabs, UK), lx T4 DNA ligase reaction buffer (New England Biolabs, UK), x ill DNA insert (depending on DNA concentration), and x .mu.l sterile water (depending on the volume of DNA insert). Ligations were incubated at 16.degree. C. for 16 h.

[0108] One 50 .mu.l aliquot of electrocompetent L. lactis cells was thawed on ice and 2 .mu.l (.about.20 ng) pOri23 plasmid carrying the DNA insert of interest was added. Electroporation cuvettes (Sigma-Aldrich, UK) were pre-chilled and L. lactis cells plus plasmid were transferred into the cuvettes. Electroporation was performed at standard settings (25 .mu.F, 2.5 kV, 200 Ohm) and 1 ml GM17 was added immediately. Cells were incubated at 30.degree. C. in a static incubator for 2 h prior to spreading 250 .mu.l of cell suspension per plate onto GM17 plates containing 5 .mu.g/ml erythromycin. Plates were incubated overnight at 30.degree. C.

[0109] For screening of L. lactis transformants, plasmid was isolated using the Qiagen MiniPrep Kit (Qiagen, UK) with addition of 100 U/ml mutanolysin (Sigma-Aldrich, UK) and 100 m/ml lysozyme (Sigma-Aldrich, UK) to buffer P1. Diagnostic digests of purified plasmids were carried out with appropriate restriction enzymes and analysed on 0.8% (w/v) agarose gels.

[0110] Additionally, colony PCR was performed for pOri23 carrying spsD and spsO using gene-specific oligonucleotides (Table 5.3). L. lactis colonies were resuspended in 10 .mu.l 10% (v/v) IGEPAL (Sigma-Aldrich, UK) and incubated for 10 min at 95.degree. C. in a thermocycler machine. 40 .mu.l master mix containing 0.3 .mu.M forward primer, 0.3 .mu.M reverse primer, 0.2 mM dNTP's (Promega, USA), 1.times. reaction buffer (Promega, USA), 1.5 mM MgCl.sub.2 (Promega, USA) and 0.025 u/.mu.l taq polymerase (Promega, USA) was added. The thermocycler programme included an initial denaturation step at 95.degree. C. for 2 min, followed by 30 cycles of denaturation at 95.degree. C. for 1 min, annealing at 50.degree. C. for 1 min and extension at 72.degree. C. for 1 min, followed by a final extension step at 72.degree. C. for 7 min. PCR products were visualised on 0.8% (w/v) agarose gels.

Western Blot Analysis of L. lactis Constructs

[0111] Samples were dissolved in 1.times. Laemmli sample buffer (Sigma-Aldrich, UK), boiled for 10 min and resolved by SDS-PAGE in 10% polyacrylamide gels by standard procedures, and Western blot analysis was carried out as described in the general Materials and Methods. Three canine sera samples from pyoderma cases (obtained from patients at the Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh) were pooled and used as primary antibody in a 1:1000 dilution. HRP-conjugated sheep anti-dog antibody was used as a secondary antibody in a 1:5000 dilution (Bethyl Laboratories Inc., USA).

Canine Corneocyte Adherence Assay

[0112] For preliminary experiments to confirm adherence of S. pseudintermedius ED99 and non-adherence of L. lactis, corneocytes were obtained from a seven-year-old male neutered Border collie cross-breed with no history or physical signs of systemic or cutaneous disease. Corneocytes for the L. lactis adherence study were obtained from five dogs of different breeds (one Labrador retriever, two Border collies and two cross-breeds). Three dogs were ovariohysterectomised females and two were entire males. The median age was seven years (range one to twelve years). The dogs showed no abnormalities on general physical examination and had no history or physical signs of skin disease at the time of corneocyte collection. All dogs were privately owned by staff or students of the Royal (Dick) School of Veterinary Studies, The University of Edinburgh. None of the dogs had received topical or systemic drug treatments for at least three weeks prior to the day of corneocyte collection.

[0113] Samples were taken from the ventral abdomen and inner thigh. If necessary, sample sites were clipped with Oster clippers (Oster Cryotech, USA) using a number 40 blade. For collection of corneocytes, the method described by Forsythe et al. (2002) was used. Briefly, the area was cleaned of surface debris and commensal bacteria by applying four strips of single sided adhesive tape (Cellux, Henkel Consumer Adhesives, UK), using each strip once. To collect corneocytes, double-sided, clear, adhesive wig tape (Tropical Tape Super Grip, USA) was mounted onto a microscope slide in 1 cm.sup.2 pieces and applied to the same area of skin surface 10 times with gentle force. Slides were investigated by microscopic examination and only slides with at least 75% corneocyte coverage were used in the study.

[0114] The corneocyte slides were positioned in moisture chambers (Nunc.TM., Thermo Fisher Scientific, Denmark) as described by Forsythe et al. (2002). The moisture chambers consisted of 30 cm.times.30 cm plastic trays with lids and were prepared by lining the trays with moistened paper towels. S. pseudintermedius ED99 stationary or exponential (OD.sub.600 of 0.5) phase cultures and L. lactis exponential phase cultures (OD.sub.600 0.6 to 0.8) were centrifuged at 4000 rpm for 5 min, washed with PBS and resuspended in PBS to a final OD.sub.600 of 0.5. The moisture chambers were placed in a static incubator and 250 .mu.l of bacterial suspension was added to each 1 cm.sup.2 of tape, forming a meniscus on the tape. Slides incubated with 250 .mu.l of sterile PBS were included as a control. The slides were incubated at 37.degree. C. for 90 min and washed in PBS. Each slide was stained with 0.5% (w/v) crystal violet (Sigma-Aldrich, UK) for 90 s before rinsing off with PBS. The slides were air-dried and a drop of immersion oil (Cargille Laboratories Inc., USA) and a cover slip (Scientific Laboratory Supplies, UK) were added before microscopic quantification. All slides were prepared in duplicate on the same day and incubated at the same time. Prior to incubation with bacterial suspensions or PBS, each slide was labelled with a letter code to allow identification after the microscopic analysis. The identification code on each slide was hidden by a third party for subsequent image acquisition so that the investigator was blinded to the origin of the slide. For quantification of adherent bacteria, computerised image analysis was used as described previously by Forsythe et al. (2002) with minor modifications. For each slide, bright field images of 1000.times. oil-immersion fields were acquired with a Sony DXC-390P 3CCD colour video camera (Scion Corporation, USA) connected to a Leica Laborlux S microscope (Leica Microsystems UK Ltd., UK). The RGB video signal from the camera was digitised using Scion Image (Scion Corporation, USA) installed in a G4 Macintosh computer (Apple Computer, USA) fitted with a CG-7 frame grabber (Scion Corporation, USA). For image acquisition, fields equivalent to 14.4 mm.sup.2 were selected randomly by starting in the bottom left corner of each slide and moving through the slide in a defined way using the scale on the microscope stage. A field was discarded if the corneocyte layer was not confluent, the bacteria were poorly stained against the background or the field could not be focused properly. The software used for quantification of bacterial adherence was set to calculate the percentage area that was covered by bacteria per confluent layer of corneocytes in a defined region of interest (ROI) of 500 .mu.m.sup.2 within each image field acquired. Previous studies by Forsythe et al. (2002) using the same technique and software have demonstrated that 15 replicates of each duplicate slide resulted in acceptable coefficients of variation of approximately 10%. In this study, 25 replicates of each slide were acquired and the overall mean percentage area of adherence was determined by calculating the mean of all replicates.

Results

Identification of Genes Encoding 17 Putative Cell-Wall-Anchored Proteins in the S. Pseudintermedius ED99 Genome

[0115] The initial search for putative CWA proteins identified 34 sequences that fulfilled at least one of the search criteria (homology to characterised MSCRAMMs in the database, predicted LPXTG motif or variant near the C terminus, predicted signal peptide at the N terminus). After gap closure and combination of incomplete sequences, a total of 17 ORFs encoding putative CWA proteins with a predicted minimum length of approximately 250 amino acids was determined. The 17 predicted CWA proteins were designated `Sps` for Staphylococcus pseudintermedius surface proteins`, followed by a capital letter (SpsA to SpsQ). Their position in the S. pseudintermedius ED99 genome is indicated in FIG. 1. Of note, eight genes encoding putative CWA proteins are located near the oriC environ (FIG. 1). Homology searches in the database resulted in sequence identities with known staphylococcal proteins ranging from .about.30% to .about.80% (Table 1). Signal sequences, necessary for Sec-dependent protein secretion (Foster and Hook, 1998), were predicted for 14 putative Sps proteins, consisting of 29 aa for SpsC and SpsK, 33 aa for SpsN, SpsP, and SpsQ, 36 aa for SpsD, 37 for SpsG, 38 aa for SpsA, SpsB, and SpsL, 39 aa for SpsH, 44 aa for SpsO, and 48 aa for SpsF and SpsM. No signal sequence was predicted for SpsE, SpsI, and SpsJ (FIG. 4.3).

The Putative CWA Proteins SpsD, SpsL, and SpsO have Several MSCRAMM Features.

[0116] Out of the 17 putative CWA proteins of S. pseudintermedius ED99, SpsD, SpsL, and SpsO contained each of the MSCRAMM features screened for, including a signal sequence at the N-terminus, followed by a non-repeated A domain with two IgG-like folds, dividing the A domain into N1, N2, and N3 subdomains, a tandemly repeated domain at the C-terminus (and at the N-terminus for SpsO), and a C-terminal LPXTG-anchor motif. The main characteristics of SpsD, SpsL, and SpsO are summarised in Table 2. Of interest, a TYTFTDYVD motif or variant, important for the `dock, lock and latch` ligand-binding mechanism (Ponnuraj et al., 2003), was found in SpsD, SpsL, and SpsO, and putative latching sequences were identified (Table 2). Further, putative Fn-binding motifs with weak homology to FnbpA-10 of FnbpA in S. aureus were detected in the repeat region of SpsL (24% identity in pair-wise alignments for SpsL1-SpsL6, and 21% for SpsL-7). No homology to Fn-binding motifs of FnbpA was detected in the repeat regions of SpsD and SpsO. Of note, the genes encoding for SpsD, SpsL, and SpsO in the S. pseudintermedius ED99 genome are situated in different genomic contexts. While spsD is located in a well-conserved region of the core genome, spsL is part of the oriC environ (Takeuchi et al., 2005) (FIG. 1). The spsO gene appears to be species-specific as it is not present in the genomes of other staphylococcal species. The region contains two putative transposases, suggesting that the whole region might be subjected to horizontal gene transfer.

Distribution of the 17 Genes Encoding Putative Cell-Wall-Anchored Proteins Among the S. intermedius Group

[0117] In order to investigate the distribution of the 17 genes encoding putative CWA proteins identified in the S. pseudintermedius ED99 genome among other members of the SIG and closely related staphylococcal species, Southern blot analysis and PCR amplification were performed. A total of 20 S. pseudintermedius strains representing the breadth of diversity within the species, representatives of the closely related S. delphini and S. intermedius species, and other staphylococcal species associated with animal hosts (FIG. 2) were screened for the presence of the putative CWA encoding genes by Southern blot analysis (spsA to spsO). For the S. aureus spa orthologues spsP and spsQ, PCR amplification was employed, as the genes share 70% nucleotide identity which precluded design of gene-specific probes for Southern blot analysis. For similar reasons, the primers designed for PCR amplification were located upstream of spsP (spsP-F), in the non-repeated region of spsP (spsP-R), in the unique region between spsP and spsQ (spsQ-F), and in a region unique for spsQ (spsQ-R).

[0118] Of the 17 genes examined, 13 were found in all S. pseudintermedius strains investigated. The remaining 4 (spsF, spsO, and the S. aureus spa orthologues spsP and spsQ) were present in 11, 6, 7, and 11 of the 20 S. pseudintermedius strains, respectively. Furthermore, 8 of the 17 genes were detected in S. delphini and 6 in S. intermedius, and 9 genes were exclusive to S. pseudintermedius. None of the genes encoding putative CWA proteins was detected in the non-SIG staphylococcal species examined. Results are summarised in FIG. 2. Of note, it cannot be excluded at this point that DNA sequence variation in PCR primer annealing sites for spsP and spsQ, and weak homology (less than approximate 70%) for spsA to spsO among different strains have influenced the results.

Expression of CWA Proteins on the S. pseudintermedius Bacterial Cell Surface.

[0119] The in silico identification of 17 putative CWA proteins in S. pseudintermedius ED99 raises questions about the expression of these proteins and their role in colonisation and disease. Surface proteome analysis of early-, mid-, and late exponential phase S. pseudintermedius ED99 was performed in collaboration with the Moredun Research Institute, Penicuik, Scotland, UK, using liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS-MS). Six out of the 17 putative CWA proteins predicted in the S. pseudintermedius ED99 genome were detected on the bacterial surface, including SpsD, SpsK, SpsL, SpsN, SpsO, and SpsQ. The putative CWA proteins SpsL, SpsN, and SpsQ were identified in all three phases of growth; SpsK was lacking in early-, SpsO in mid-, and SpsD in late exponential phase. The 11 undetected CWA proteins might not have been expressed under the conditions tested, or the expression level might have been below the detection threshold of the LC-ESI-MS-MS method used.

Cloning and Expression of SpsD, SpsL, and SpsO in L. lactis.

[0120] In order to examine the role of putative selected MSCRAMMs independently on the bacterial cell surface, the full-length spsD (3096 bp), spsL (2793 bp) and spsO (5538 bp) genes were cloned into L. lactis using the shuttle vector pOri23 (Que et al., 2000). Positive clones were identified by restriction digestion of purified pOri23 plasmids from single colonies of transformed L. lactis cells (data not shown). The pOri23 construct inserts were verified by DNA sequencing for spsL and spsD. For spsO, DNA sequence was generated for approximately 3000 bp of the total length of 5538 bp. A segment of the repeat region corresponding to .about.2500 bp could not be determined due to the existence of identical tandem repeats which did not allow directed sequencing. As a negative control for subsequent MSCRAMM characterisation studies, L. lactis was transformed with the empty vector pOri23, confirmed by restriction digestion analysis. The predicted molecular weights were 115 kDa for SpsD, 103 kDa for SpsL, and 198 kDa for SpsO.

[0121] L. lactis Expressing SpsD and SpsL Demonstrated Seroreactivity with Canine Sera from Pyoderma Cases.

[0122] The potential antibody response to SpsD, SpsL, and SpsO in vivo was investigated by Western blot analysis employing canine sera from staphylococcal pyoderma cases. The pyoderma was clinically manifested at the time of blood sampling and the dogs were also diagnosed with AD (Neuber et al., 2008). Cell wall-associated protein fractions of the L. lactis constructs and of S. pseudintermedius ED99 were subjected to SDS-PAGE, transferred to nitrocellulose membrane and incubated with pooled canine sera from three pyoderma cases as described in Materials and Methods. An array of immunoreactive bands was detected for S. pseudintermedius ED99, ranging from 24 kDa to 102 kDa in molecular weight (FIG. 3). For L. lactis expressing SpsD and L. lactis expressing SpsL, multiple seroreactive bands in the range of 38 kDa to 225 kDa for SpsD, and 38 kDa and 52 kDa for SpsL were detected, which were absent in the protein fractions of L. lactis carrying pOri23 alone (FIG. 3). In contrast, L. lactis expressing SpsO did not demonstrate seroreactivity with sera from dogs diagnosed with pyoderma (FIG. 3).

Adherence of L. lactis Constructs to Extracellular Matrix Proteins.

[0123] L. lactis expressing SpsO, SpsD, SpsL, and L. lactis carrying the vector pOri23 alone were tested for their ability to adhere to human Fn, human, canine, feline, and bovine Fg, and to recombinant mouse CK10 in solid phase assays.

The Putative MSCRAMMs SpsD and SpsL Mediate Binding of L. lactis to Fibronectin.

[0124] L. lactis expressing SpsD and SpsL demonstrated adherence to human Fn, whereas L. lactis expressing SpsO demonstrated increased binding to Fn, but also to BSA, indicative of a non-specific interaction (FIG. 4).

The Putative MSCRAMMs SpsD and SpsL Mediate Binding of L. lactis to Fibrinogen, and SpsL Demonstrates Canine Host-Specificity.

[0125] L. lactis expressing SpsD strongly adhered to Fg from several animal sources (FIG. 5). In contrast, L. lactis expressing SpsL adhered to canine and feline Fg only, and did not bind to human and bovine Fg (FIG. 5), indicating a host-specific interaction. L. lactis expressing SpsO did not bind to Fg from any source compared to L. lactis with the pOri23 vector alone (FIG. 5).

The Putative MSCRAMM SpsD Mediates Binding of L. lactis to Cytokeratin 10.

[0126] L. lactis expressing SpsD demonstrated strong adherence to CK10, whereas L. lactis expressing SpsO and SpsL did not show increased binding compared to L. lactis with the vector pOri23 alone (FIG. 6).

The Putative MSCRAMMs SpsD and SpsO, but not SpsL, Mediate Adherence of L. lactis to Ex Vivo Canine Corneocytes.

[0127] L. lactis expressing SpsD, SpsL, and SpsO were tested for their ability to adhere to ex vivo canine corneocytes in comparison to L. lactis with the empty vector pOri23 and S. pseudintermedius ED99. L. lactis carrying the empty vector pOri23 adhered poorly to canine corneocytes (FIG. 7). For S. pseudintermedius ED99, the mean percentage adherence to canine corneocytes was 4.24% which was significantly different to L. lactis carrying pOri23 alone (P=0.001) (FIG. 7). L. lactis expressing SpsD and L. lactis expressing SpsO adhered to ex vivo canine corneocytes (FIG. 7). The increase in adherence was approaching significance for SpsD (P=0.050), and was significant for SpsO when expressed in L. lactis compared to L. lactis carrying pOri23 alone (P=0.004). Binding of L. lactis expressing SpsL was not significantly different to L. lactis carrying pOri23 alone (P=0.108), indicating that SpsL does not promote adherence to canine corneocytes (FIG. 7).

Purified Recombinant Sps D, Sps L and Sps O Demonstrate Reactivity with Canine Convalescent Serum.

[0128] Reactivity of recombinant A domain from Sps D, Sps L and Sps O with canine convalescent serum from pyoderma cases was examined by Western affinity blot analysis (FIG. 8). rSpsD, rSpsL and rSpsO all crossreacted with IgG present in the canine serum (FIG. 8).

Pre-Incubation with Canine Convalescent Serum Inhibits SpsL-Mediated Binding to Fibrinogen.

[0129] The ability of the reactive antibody present in convalescent serum to inhibit SpsD and SpsL ligand binding was investigated using a modified solid phase adherence assay. Prior to inoculation into fibrinogen coated wells, PBS normalised cultures of L. lactis expressing SpsD and SpsL were incubated for 2 h with doubling dilutions of convalescent serum at 28.degree. C. (FIG. 9). Convalescent serum inhibited binding of L. lactis expressing SpsL, but not SpsD to canine fibrinogen, with complete inhibition at a final concentration of 2% v/v (FIG. 9).

Discussion

[0130] In summary, genome-wide analysis of S. pseudintermedius ED99 revealed the presence of 17 genes encoding putative CWA proteins based on typical MSCRAMM features. All MSCRAMM characteristics searched for were identified for SpsD, SpsL, and SpsO, including a signal sequence, a non-repeated A domain with two IgG-like folds, tandemly repeated regions, and a C-terminal LPXTG-anchor motif. Interestingly, SpsD, SpsL, and SpsO belong to different groups based on Southern blot analysis, with SpsD being present in all SIG members, SpsL in S. pseudintermedius only, and SpsO in only six of the S. pseudintermedius strains investigated, and not in the other SIG species tested. Based on in silico analysis and in vitro expression data, SpsD, SpsL, and SpsO were selected for functional characterisation.

[0131] All CWA proteins and in particular, SpsD, SpsL, and SpsO could be employed in passive and active immunisation studies to test their antigenic properties, either singular or in combination, in a similar fashion as proposed for S. aureus ClfA (Josefsson et al., 2001; Hall et al., 2003; Patti, 2004; Nanra et al., 2009). Further, a combinatory vaccine of S. aureus surface proteins IsdA, iron-regulated surface determinant protein B (IsdB), SdrD, and SdrE has proven to be highly protective in a mouse infection model (Stranger-Jones et al., 2006), demonstrating the promising potential of vaccine preparations containing multiple staphylococcal CWA proteins.

[0132] In addition, MSCRAMMs with known ligands could be targets of anti-staphylococcal drug development, e.g. by generating synthetic peptides based on the interacting ECM proteins, which antagonise the MSCRAMM-host protein interaction, but do not interfere profoundly with physiological processes in the host. An excellent example is provided by Ganesh et al. (2008) who demonstrated that synthetic peptides, based on the Fg-binding site for ClfA, hinder the ClfA interaction, but do not block binding of the platelet integrin .alpha..sub.IIb.beta..sub.3 to Fg. Recently, Stranger-Jones et al screened the genome of the human pathogen S. aureus for all genes predicted to encode CWA proteins, and immunized mice with each protein to determine their capacity to protect against lethal or invasive infection (Stranger-Jones et al, 2006). Four of the proteins were combined into a multiple protein vaccine which induced high levels of protection against S. aureus invasive disease of mice. These data have stimulated renewed optimism in a vaccine for the prevention of human S. aureus infections. A similar approach could be used to design an effective vaccine for the prevention of S. pseudintermedius canine pyoderma.

Example 2

[0133] Staphylococcus pseudintermedius Surface Protein Vaccination Experiment.

[0134] S. pseudintermedius surface antigens were divided into 2 pools of 3 and 4 antigens, respectively. Vaccine pool 1 contained antigens SpsC, IsaA, and SpsN and vaccine pool 2 contained SpsD A domain, N2, N3 subdomains, SpsL A domain (SEQ ID NO: 37), and SpsA.

[0135] Groups of 8 or 9 BalbC mice were vaccinated subcutaneously with pool 1 or pool 2 or PBS, each with complete Freund's adjuvant, followed by additional vaccinations at day 8 and day 23 with incomplete Freund's adjuvant. On day 32, mice were challenged through a subcutaneous route with 10.sup.7 cfu S. pseudintermedius ED99. Mice were then examined for abscess formation, and weight loss.

[0136] Mice vaccinated with pool 2 (comprising the protein having amino acid sequence provided in SEQ ID NO: 37) had significantly reduced lesion size (.about.50% reduction), and significantly reduced weight loss (.about.50%) compared to PBS control mock vaccinated animals.

REFERENCES

[0137] Bannoehr J, Ben Zakour N L, Waller A S, Guardabassi L, Thoday K L, van den Broek A H, Fitzgerald J R. (2007). Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol. 189:8685-92 [0138] Ben Zakour, N. L., Guinane, C. M. & Fitzgerald, J. R. (2008) Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol Lett, 289, 1-12. [0139] Clarke, S. R. & Foster, S. J. (2006) Surface adhesins of Staphylococcus aureus. Adv Microb Physiol, 51, 187-224. [0140] Corrigan, R. M., Miajlovic, H. & Foster, T. J. (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol, 9, 22. [0141] Clarke, S. R., Andre, G., Walsh, E. J., Dufrene, Y. F., Foster, T. J. & Foster, S. J. (2009) Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun, 77, 2408-16. [0142] Curtis, C. F., et al (2006) Masked, controlled study to investigate the efficacy of a Staphylococcus intermedius autogenous bacterin for the control of canine idiopathic recurrent superficial pyoderma. Vet Dermatol 17, 163-8 (2006). [0143] Forsythe, P. J., Hill, P. B., Thoday, K. L. & Brown, J. (2002) Use of computerized image analysis to quantify staphylococcal adhesion to canine corneocytes: does breed and body site have any relevance to the pathogenesis of pyoderma? Vet Dermatol, 13, 29-36. [0144] Foster, T. J. & Hook, M. (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol, 6, 484-8. [0145] Ganesh, V. K., Rivera, J. J., Smeds, E., Ko, Y. P., Bowden, M. G., Wann, E. R., Gurusiddappa, S., Fitzgerald, J. R. & Hook, M. (2008) A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog, 4, e1000226 [0146] Guardabassi, L., Schwarz, S. & Lloyd, D. H. (2004b) Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother, 54, 321-32. [0147] Hall, A. E., Domanski, P. J., Patel, P. R., Vernachio, J. H., Syribeys, P. J., Gorovits, E. L., Johnson, M. A., Ross, J. M., Hutchins, J. T. & Patti, J. M. (2003) Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun, 71, 6864-70. [0148] Hill, P. B. et al. (2006) Survey of the prevalence, diagnosis and treatment of dermatological conditions in small animals in general practice Vet Rec 158, 533-9 (2006). [0149] Josefsson, E., Hartford, O., O'brien, L., Patti, J. M. & Foster, T. (2001) Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis, 184, 1572-80. [0150] Lindsay, J. A., Moore, C. E., Day, N. P., Peacock, S. J., Witney, A. A., Stabler, R. A., Husain, S. E., Butcher, P. D. & Hinds, J. (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol, 188, 669-76. [0151] Mazmanian, S. K., et al. (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760-3 (1999). [0152] Nanra, J. S., Timofeyeva, Y., Buitrago, S. M., Sellman, B. R., Dilts, D. A., Fink, P., Nunez, L., Hagen, M., Matsuka, Y. V., Mininni, T., Zhu, D., Pavliak, V., Green, B. A., Jansen, K. U. & Anderson, A. S. (2009) Heterogeneous in vivo expression of clumping factor A and capsular polysaccharide by Staphylococcus aureus: implications for vaccine design. Vaccine, 27, 3276-80. [0153] Otto, M. (2008) Targeted immunotherapy for staphylococcal infections: focus on anti-MSCRAMM antibodies. BioDrugs 22, 27-36 (2008) [0154] Patti, J. M. (2004) A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine, 22 Suppl 1, S39-43. [0155] Pizza, M. et al. (2008) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816-1820

TABLE-US-00021 [0155] TABLE 1 Sequence homology of the 17 predicted cell-wall-anchored proteins against known proteins in the public domain. Putative CWA Identity Similarity protein Best Hit (BLAST) (%) (%) SpsA LPXTG cell-wall surface anchor family protein of S. aureus COL 31.2 56.9 SpsB RodA, a rod shape determining protein of S. epidermidis ATCC 12228 69.7 87.8 SpsC bifunctional autolysin precursor of S. epidermidis ATCC 12228 50.7 65.9 SpsD Fnbp protein homolog of S. aureus Mu50 40.7 59.1 SpsE Fibrinogen binding protein of S. epidermidis ATCC 12228 78.6 90.1 SpsF hypothetical protein, similar to the putative cell-surface adhesin SdrF of S. haemolyticus JCSC1435 52.8 69.3 SpsG hypothetical protein, cell-wall surface anchor family of Streptococcus pneumoniae D39 47.7 63.6 SpsH Sdr-repeat family protein SdrH, S. aureus USA300 36.0 53.1 SpsI serine-aspartate rich, fibrinogen-binding, bone sialoprotein-binding protein S. epidermidis ATCC 12228 37.3 55.5 SpsJ precursor of a serine-rich adhesin for platelets of S. haemolyticus JCSC143S 52.2 61.2 SpsK IgG-binding protein of S. aureus COL 50.4 71.1 SpsL Fnbp protein homolog of S. aureus Mu50 33.4 51.7 SpsM hypothetical protein, similar to the putative cell-surface adhesin SdrF, S. haemolyticus JCSC1435 44.4 61.7 SpsN probable exported protein of S. aureus RF122 38.0 60.0 SpsO serine-aspartate repeat-containing protein C precursor of Staphylococcus warneri L37603 50.0 68 SpsP LPXTG-motif cell wall anchor domain of S. aureus JH9 60.6 74.3 SpsQ IgG-binding protein A precursor of S. aureus MRSA252 57.0 71.7

TABLE-US-00022 TABLE 2 Main characteristics of the predicted CWA proteins SpsD, SpsL, and SpsO of S. pseudintermedius ED99. TYTFTDYVD- Putative latching Repeat Copy Amino MW Signal LPXTG Ig-like fold.sup.b like motif sequence region number acids (kDa).sup.a peptide motif (position) (position).sup.b (position).sup.b (position) repeats SpsD 1031 115 36 aa LPDTG 167-320 aa RYRFMDYVN NNASGEG 867-959 aa 5 322-519 aa (267-275 aa) (491-497 aa) SpsL 930 103 38 aa LPKTG 220-363 aa VYTFKDYVN NSASGSG 543-818 aa 7 364-531 aa (298-306 aa) (502-508 aa) SpsO 1846 198 44 aa LPNTG 339-492 aa TYTFTDYVD DKSTALG 661-1800 aa 96 487-659 aa (424-432 aa) (635-641 aa) .sup. 97-216 aa.sup.c .sup. 4.sup.c aa = amino acids; .sup.aMW = predicted approximate molecular weight in kDa (kilo dalton); .sup.bwithin the A domain; .sup.cN-terminal repeats

Sequence CWU 1

1

3811044DNAStaphylococcus pseudintermedius 1atggaaaaca aaaacttttt tagtattcgt aaactatcta ttggtgtagg ttcttgctta 60atcgcgagtt ctttacttgt aaacacgcca agttttgctg aagaaacaga taatgcgaac 120attaatgacg cacaacaaaa cgccttttat gaaattttac atttgccaaa cttaactgaa 180gagcaacaaa atggattcat ccaaagtctt aaagatgatc caagtgtgag caacgacatt 240ttagtagaag ctaagaaatt aaatgacact caagctaaac ctgattacag tgaagcacaa 300caaaatgcat tttatgaaat tttacatttg tcaaacttaa ctgaagagca acaaaatgga 360ttcatccaaa gtcttaaaga tgatccaagt gtgagcaacg acattttagt agaagctaag 420aagttaaatg acactcaagc taaacctgat tacagtgaag cacaacaaaa tgcattttat 480gaaattttac atttgtcaaa cttaactgaa gagcaacaaa atgggttcat ccaaagcctt 540aaagatgatc caagtgtaag taaagaaatt ttagcagaag ctaagaagtt aaatgatagt 600caagcaccta aagttgataa agctaaaaaa actgacaaag ctgaagcgaa agcagatgat 660aaagctaaag gtgaagaagc caaaaaatct gaagacaaaa aagatagcaa agcagataag 720gcaaaatcga aaaacgctac acatgttgtt aaacctggtg aaactttaga taatattgct 780aaagatcatc atacaactgt tgataaaatt gctaaagata acaaaataaa agataaaaat 840gtgattaaac taggtcaaaa acttgttgtt gataaacaaa aagcaactca aggaaaacaa 900gaagctgtag cgaaaaatga agtgaaggct ttacctaata ctggtgaaaa tgatgatatc 960gcattattca gcacaacagt tgcgggtggc gtaagtatcg ctttaggttc attattatta 1020ggaagaaaca gaaaaactag ctaa 10442347PRTStaphylococcus pseudintermedius 2Met Glu Asn Lys Asn Phe Phe Ser Ile Arg Lys Leu Ser Ile Gly Val 1 5 10 15 Gly Ser Cys Leu Ile Ala Ser Ser Leu Leu Val Asn Thr Pro Ser Phe 20 25 30 Ala Glu Glu Thr Asp Asn Ala Asn Ile Asn Asp Ala Gln Gln Asn Ala 35 40 45 Phe Tyr Glu Ile Leu His Leu Pro Asn Leu Thr Glu Glu Gln Gln Asn 50 55 60 Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Val Ser Asn Asp Ile 65 70 75 80 Leu Val Glu Ala Lys Lys Leu Asn Asp Thr Gln Ala Lys Pro Asp Tyr 85 90 95 Ser Glu Ala Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu Ser Asn 100 105 110 Leu Thr Glu Glu Gln Gln Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp 115 120 125 Pro Ser Val Ser Asn Asp Ile Leu Val Glu Ala Lys Lys Leu Asn Asp 130 135 140 Thr Gln Ala Lys Pro Asp Tyr Ser Glu Ala Gln Gln Asn Ala Phe Tyr 145 150 155 160 Glu Ile Leu His Leu Ser Asn Leu Thr Glu Glu Gln Gln Asn Gly Phe 165 170 175 Ile Gln Ser Leu Lys Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala 180 185 190 Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Lys Ala 195 200 205 Lys Lys Thr Asp Lys Ala Glu Ala Lys Ala Asp Asp Lys Ala Lys Gly 210 215 220 Glu Glu Ala Lys Lys Ser Glu Asp Lys Lys Asp Ser Lys Ala Asp Lys 225 230 235 240 Ala Lys Ser Lys Asn Ala Thr His Val Val Lys Pro Gly Glu Thr Leu 245 250 255 Asp Asn Ile Ala Lys Asp His His Thr Thr Val Asp Lys Ile Ala Lys 260 265 270 Asp Asn Lys Ile Lys Asp Lys Asn Val Ile Lys Leu Gly Gln Lys Leu 275 280 285 Val Val Asp Lys Gln Lys Ala Thr Gln Gly Lys Gln Glu Ala Val Ala 290 295 300 Lys Asn Glu Val Lys Ala Leu Pro Asn Thr Gly Glu Asn Asp Asp Ile 305 310 315 320 Ala Leu Phe Ser Thr Thr Val Ala Gly Gly Val Ser Ile Ala Leu Gly 325 330 335 Ser Leu Leu Leu Gly Arg Asn Arg Lys Thr Ser 340 345 31389DNAStaphylococcus pseudintermedius 3atggaaaaca aaaacttttt cagcattcgt aaattatcaa ttggggtggg ttcatgttta 60atcgcgagct ctttacttgt gaatacacca agtttcgcag aagaaggaga taataacgca 120gaagcgcaac aaaacgcttt ctctgaggta gtaaaattac ctaaccttag cgaagaacaa 180cgtaatggtt tcattcaaag ccttaaagat gatccaagta caagtcaaga tgtgcttaat 240gaagctaaaa aattaaatga tagtcaagag ggatctcaac ctgctcctga ttacagtgat 300gaacaacaaa atgcatttta tgaaatttta caccttccaa acttaactga agaacaacgc 360aatggctata ttcaaagtct taaagatgac ccaagtgtaa gcgctaatat tcttgttgaa 420gctaaaaata tgaatgttaa ccaaacacct acacaacctg cgccaagttt cgatgaagcg 480caacaaaatg cattctatga gattgtaaac ttaccaaatc ttactgaaga gcaacgtaac 540ggtttcatcc aaagccttaa agacgatcca agtgtaagta aagatatcct tgttgaagct 600aaaaagttaa atgacagcca agcaaaacct gattacagtg aagcgcaaca aaatgcattt 660tatgaaattt tacaccttcc aaacttaact gaagaacaac gtaacggttt catccaaagc 720cttaaagacg atccgagtgt aagtagtgat attcttgctg aagctaagaa attaaatgac 780agccaagcgc ctaaagaaga caacaacgta aaagacaata attcaggtga aaacaaagct 840gaagacaaag gcaacaaaga aaacaaagct gaagataaag gcagcaaaga agacaaagct 900gaagataaag gcagcaaaga agacaaagct gaagataaag gcagcaaaga agacaaagct 960gaagataaag gcagcaaaga agacaaagct gaagataaag gcagcataga agataaagct 1020aaagacaaag acaacaaaga aggcaaagct gcagacaaag gtatggacaa agcgaaagat 1080gcaatgcatg tcgttcaacc tggtgaaaca gtagaaaaaa ttgctaaagc taataacaca 1140actgtagaac aaatcgctaa agataatcat ttagaagata aaaacatgat tttaccaggt 1200caaaaacttg ttgttgacaa ccaaaaagca atgaaagaca gccaagaagc taaagcaaac 1260cacgaaatga aagctttacc tgaaacaggt gaagaaaacg atatggcatt attcggtaca 1320tcacttacag gtggtcttag cttagcatta ggtttataca tcttaggacg tggcagaaaa 1380acaaactaa 13894462PRTStaphylococcus pseudintermedius 4Met Glu Asn Lys Asn Phe Phe Ser Ile Arg Lys Leu Ser Ile Gly Val 1 5 10 15 Gly Ser Cys Leu Ile Ala Ser Ser Leu Leu Val Asn Thr Pro Ser Phe 20 25 30 Ala Glu Glu Gly Asp Asn Asn Ala Glu Ala Gln Gln Asn Ala Phe Ser 35 40 45 Glu Val Val Lys Leu Pro Asn Leu Ser Glu Glu Gln Arg Asn Gly Phe 50 55 60 Ile Gln Ser Leu Lys Asp Asp Pro Ser Thr Ser Gln Asp Val Leu Asn 65 70 75 80 Glu Ala Lys Lys Leu Asn Asp Ser Gln Glu Gly Ser Gln Pro Ala Pro 85 90 95 Asp Tyr Ser Asp Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu 100 105 110 Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Tyr Ile Gln Ser Leu Lys 115 120 125 Asp Asp Pro Ser Val Ser Ala Asn Ile Leu Val Glu Ala Lys Asn Met 130 135 140 Asn Val Asn Gln Thr Pro Thr Gln Pro Ala Pro Ser Phe Asp Glu Ala 145 150 155 160 Gln Gln Asn Ala Phe Tyr Glu Ile Val Asn Leu Pro Asn Leu Thr Glu 165 170 175 Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Val 180 185 190 Ser Lys Asp Ile Leu Val Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala 195 200 205 Lys Pro Asp Tyr Ser Glu Ala Gln Gln Asn Ala Phe Tyr Glu Ile Leu 210 215 220 His Leu Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser 225 230 235 240 Leu Lys Asp Asp Pro Ser Val Ser Ser Asp Ile Leu Ala Glu Ala Lys 245 250 255 Lys Leu Asn Asp Ser Gln Ala Pro Lys Glu Asp Asn Asn Val Lys Asp 260 265 270 Asn Asn Ser Gly Glu Asn Lys Ala Glu Asp Lys Gly Asn Lys Glu Asn 275 280 285 Lys Ala Glu Asp Lys Gly Ser Lys Glu Asp Lys Ala Glu Asp Lys Gly 290 295 300 Ser Lys Glu Asp Lys Ala Glu Asp Lys Gly Ser Lys Glu Asp Lys Ala 305 310 315 320 Glu Asp Lys Gly Ser Lys Glu Asp Lys Ala Glu Asp Lys Gly Ser Ile 325 330 335 Glu Asp Lys Ala Lys Asp Lys Asp Asn Lys Glu Gly Lys Ala Ala Asp 340 345 350 Lys Gly Met Asp Lys Ala Lys Asp Ala Met His Val Val Gln Pro Gly 355 360 365 Glu Thr Val Glu Lys Ile Ala Lys Ala Asn Asn Thr Thr Val Glu Gln 370 375 380 Ile Ala Lys Asp Asn His Leu Glu Asp Lys Asn Met Ile Leu Pro Gly 385 390 395 400 Gln Lys Leu Val Val Asp Asn Gln Lys Ala Met Lys Asp Ser Gln Glu 405 410 415 Ala Lys Ala Asn His Glu Met Lys Ala Leu Pro Glu Thr Gly Glu Glu 420 425 430 Asn Asp Met Ala Leu Phe Gly Thr Ser Leu Thr Gly Gly Leu Ser Leu 435 440 445 Ala Leu Gly Leu Tyr Ile Leu Gly Arg Gly Arg Lys Thr Asn 450 455 460 52793DNAStaphylococcus pseudintermedius 5gtgtacaaaa atgaagaaga aaagcattca ataagaaagt tatctatagg agccgcatct 60gtcattgttg ggggactcat gtatggtgtt ttgggaaatg atgaagctca agcgaatgaa 120gatgtcactg aaacaactgg gagaaattca gtgacaacgc aagcttctga gcaacatttg 180caagtggaag cagtacctca agaaggcaat aatgtaaatg tatcctctgt aaaagtacct 240acgaatacgg caacgcaagc acaagaagat gttgcaagtg tatccgatgt taaagcacat 300gctgatgatg cattacaagt acaagaaagt agtcatactg atggtgtttc ttcagaattc 360aagcaggaga cagcttatgc gaatcctcaa acagctgaga cagttaaacc taatagtgaa 420gcagtgcatc agtctgaata cgaggataag caaaaacccg tatcatctag ccgcaaagaa 480gatgagacta tgcttcagca gcaacaagtt gaagccaaaa atgttgtgag tgcggaggaa 540gtgtctaaag aagaaaatac tcaagtgatg caatcccctc aagacgttga acaacatgta 600ggtggtaaag atatctctaa tgaggttgta gtggatagga gtgatatcaa aggatttaac 660agcgaaacta ctattcgacc tcatcaggga caaggtggta ggttgaatta tcaattaaag 720tttcctagca atgtaaagcc aggcgatcag tttactataa aattatctga caatatcaat 780acacatggtg tttctgttga aagaaccgca ccgagaatca tggctaaaaa tactgaaggt 840gcgacggatg taattgctga aggtctagtg ttggaagatg gtaaaaccat cgtatataca 900tttaaagact atgtaaatgg caagcaaaat ttgactgctg agttatcagt gagctatttc 960gtaagtccgg aaaaagtctt gactactggg acacaaacat tcacgacgat gatcggtaat 1020cattcaacgc aatccaatat tgacgtttat tatgataata gtcattatgt agatggacgt 1080atttcgcaag tgaacaaaaa agaagctaaa tttcaacaaa tagcatacat taaccctaat 1140ggctatttaa atggcagggg gacaattgca gttaatggtg aagtggtcag tggtacgact 1200aaagacttaa tgcaacctac agtgcgtgta tatcaatata aaggacaagg tgttcctcct 1260gaaagtatta ctatagaccc taatatgtgg gaagaaatca gcataaacga tactatggta 1320agaaaatatg atggtggcta tagcttgaat ctggatacca gcaagaatca aaaatatgcc 1380atctattatg aaggggcata tgatgcgcaa gctgacacac tgttgtatag aacatatata 1440cagtcattaa acagttacta tccgttcagt taccaaaaaa tgaacggtgt gaagttttac 1500gaaaacagtg cgagtggaag cggtgagttg aaaccgaaac cacctgaaca accaaaacca 1560gaacctgaaa ttcaagctga tgtagtagat attattgaag atagccatgt gattgatata 1620ggatggaata cagcagttgg agaagaaagt ggagcaaacc aaggccctca agaagaaatc 1680acggaaaatc acgacatcga agtcattgag gaaaacaact tggtggaaat gacagaagat 1740acagcagttg gagaagaaag tggagcaaac caaggccctc aagaagaaat cacggaaaat 1800cacgacatcg aagtcattga agaaaacaac ttagtggaaa tgacagaaga tacagcgttg 1860gaagaagaaa gtggagcaaa tcaaggtcct caagaagaga tcacagaaaa ccacgatatc 1920gaagtcattg aagaaaacaa cttggtggaa atgacagaag atacagcgtt ggaagaagaa 1980agtggagcaa atcaaggtcc tcaagaagag atcacagaaa accacgacat cgaagtcatt 2040gaagaaaata acttagtaga aatgacagaa gatacagcag ttggagaaga aagtggagca 2100aatcaaggtc ctcaagaaga gatcacagaa aaccacgata tcgaagtcat tgaggaaaac 2160aacttagtgg aaatgacaga agatacagca gttggagaag aaagtggagc aaaccaaggt 2220cctcaagaag aaatcacgga aaatcacgac atcgaagtca ttgaagaaaa caacttggtg 2280gaaatgacag aagatacagc gttggaagaa gaaagtggag caaatcaagg tcctcaagaa 2340gagatcacag aaaaccacaa catcgaagtc attgaagaaa acaacttggt ggaaatgaca 2400gaagatacag cagttggaga agaaagtgga gcaaacccag gacctcaaga agaagtaaca 2460gagaatcaac ctcagcaaga agaaatcatg gaaaaccaag aagtcgaaaa gaaaggcgat 2520agtaacttgg tagaaagtac aaaaactcca aaggccgaag aatcagttag cgttcagcca 2580actttagaag acaaaaacac aaagaaccac gttaacacag tagtagtgaa tacgaaggta 2640tctgaagtta aagaaaagga tccccaccat acaaaagcac taccagatac ggggacaacc 2700tctcgaagtc attccatgat gattcctctc cttcttgttg ctgggtcagt agtgttgtta 2760cgtcgaaaga aaaagcatag taaggtgaat taa 27936930PRTStaphylococcus pseudintermedius 6Val Tyr Lys Asn Glu Glu Glu Lys His Ser Ile Arg Lys Leu Ser Ile 1 5 10 15 Gly Ala Ala Ser Val Ile Val Gly Gly Leu Met Tyr Gly Val Leu Gly 20 25 30 Asn Asp Glu Ala Gln Ala Asn Glu Asp Val Thr Glu Thr Thr Gly Arg 35 40 45 Asn Ser Val Thr Thr Gln Ala Ser Glu Gln His Leu Gln Val Glu Ala 50 55 60 Val Pro Gln Glu Gly Asn Asn Val Asn Val Ser Ser Val Lys Val Pro 65 70 75 80 Thr Asn Thr Ala Thr Gln Ala Gln Glu Asp Val Ala Ser Val Ser Asp 85 90 95 Val Lys Ala His Ala Asp Asp Ala Leu Gln Val Gln Glu Ser Ser His 100 105 110 Thr Asp Gly Val Ser Ser Glu Phe Lys Gln Glu Thr Ala Tyr Ala Asn 115 120 125 Pro Gln Thr Ala Glu Thr Val Lys Pro Asn Ser Glu Ala Val His Gln 130 135 140 Ser Glu Tyr Glu Asp Lys Gln Lys Pro Val Ser Ser Ser Arg Lys Glu 145 150 155 160 Asp Glu Thr Met Leu Gln Gln Gln Gln Val Glu Ala Lys Asn Val Val 165 170 175 Ser Ala Glu Glu Val Ser Lys Glu Glu Asn Thr Gln Val Met Gln Ser 180 185 190 Pro Gln Asp Val Glu Gln His Val Gly Gly Lys Asp Ile Ser Asn Glu 195 200 205 Val Val Val Asp Arg Ser Asp Ile Lys Gly Phe Asn Ser Glu Thr Thr 210 215 220 Ile Arg Pro His Gln Gly Gln Gly Gly Arg Leu Asn Tyr Gln Leu Lys 225 230 235 240 Phe Pro Ser Asn Val Lys Pro Gly Asp Gln Phe Thr Ile Lys Leu Ser 245 250 255 Asp Asn Ile Asn Thr His Gly Val Ser Val Glu Arg Thr Ala Pro Arg 260 265 270 Ile Met Ala Lys Asn Thr Glu Gly Ala Thr Asp Val Ile Ala Glu Gly 275 280 285 Leu Val Leu Glu Asp Gly Lys Thr Ile Val Tyr Thr Phe Lys Asp Tyr 290 295 300 Val Asn Gly Lys Gln Asn Leu Thr Ala Glu Leu Ser Val Ser Tyr Phe 305 310 315 320 Val Ser Pro Glu Lys Val Leu Thr Thr Gly Thr Gln Thr Phe Thr Thr 325 330 335 Met Ile Gly Asn His Ser Thr Gln Ser Asn Ile Asp Val Tyr Tyr Asp 340 345 350 Asn Ser His Tyr Val Asp Gly Arg Ile Ser Gln Val Asn Lys Lys Glu 355 360 365 Ala Lys Phe Gln Gln Ile Ala Tyr Ile Asn Pro Asn Gly Tyr Leu Asn 370 375 380 Gly Arg Gly Thr Ile Ala Val Asn Gly Glu Val Val Ser Gly Thr Thr 385 390 395 400 Lys Asp Leu Met Gln Pro Thr Val Arg Val Tyr Gln Tyr Lys Gly Gln 405 410 415 Gly Val Pro Pro Glu Ser Ile Thr Ile Asp Pro Asn Met Trp Glu Glu 420 425 430 Ile Ser Ile Asn Asp Thr Met Val Arg Lys Tyr Asp Gly Gly Tyr Ser 435 440 445 Leu Asn Leu Asp Thr Ser Lys Asn Gln Lys Tyr Ala Ile Tyr Tyr Glu 450 455 460 Gly Ala Tyr Asp Ala Gln Ala Asp Thr Leu Leu Tyr Arg Thr Tyr Ile 465 470 475 480 Gln Ser Leu Asn Ser Tyr Tyr Pro Phe Ser Tyr Gln Lys Met Asn Gly 485 490 495 Val Lys Phe Tyr Glu Asn Ser Ala Ser Gly Ser Gly Glu Leu Lys Pro 500 505 510 Lys Pro Pro Glu Gln Pro Lys Pro Glu Pro Glu Ile Gln Ala Asp Val 515 520 525 Val Asp Ile Ile Glu Asp Ser His Val Ile Asp Ile Gly Trp Asn Thr 530 535 540 Ala Val Gly Glu Glu Ser Gly Ala Asn Gln Gly Pro Gln Glu Glu Ile 545 550 555 560 Thr Glu Asn His Asp Ile Glu Val Ile Glu Glu Asn Asn Leu Val Glu 565 570 575 Met Thr Glu Asp Thr Ala Val Gly Glu Glu Ser Gly Ala Asn Gln Gly 580 585 590 Pro Gln Glu Glu Ile Thr Glu Asn His Asp Ile Glu Val Ile Glu Glu 595 600 605 Asn Asn Leu Val Glu Met Thr Glu Asp Thr Ala Leu Glu Glu Glu Ser 610 615 620 Gly Ala Asn Gln Gly Pro Gln Glu Glu Ile Thr Glu Asn His Asp Ile 625 630 635 640 Glu Val Ile Glu Glu Asn Asn Leu Val Glu Met

Thr Glu Asp Thr Ala 645 650 655 Leu Glu Glu Glu Ser Gly Ala Asn Gln Gly Pro Gln Glu Glu Ile Thr 660 665 670 Glu Asn His Asp Ile Glu Val Ile Glu Glu Asn Asn Leu Val Glu Met 675 680 685 Thr Glu Asp Thr Ala Val Gly Glu Glu Ser Gly Ala Asn Gln Gly Pro 690 695 700 Gln Glu Glu Ile Thr Glu Asn His Asp Ile Glu Val Ile Glu Glu Asn 705 710 715 720 Asn Leu Val Glu Met Thr Glu Asp Thr Ala Val Gly Glu Glu Ser Gly 725 730 735 Ala Asn Gln Gly Pro Gln Glu Glu Ile Thr Glu Asn His Asp Ile Glu 740 745 750 Val Ile Glu Glu Asn Asn Leu Val Glu Met Thr Glu Asp Thr Ala Leu 755 760 765 Glu Glu Glu Ser Gly Ala Asn Gln Gly Pro Gln Glu Glu Ile Thr Glu 770 775 780 Asn His Asn Ile Glu Val Ile Glu Glu Asn Asn Leu Val Glu Met Thr 785 790 795 800 Glu Asp Thr Ala Val Gly Glu Glu Ser Gly Ala Asn Pro Gly Pro Gln 805 810 815 Glu Glu Val Thr Glu Asn Gln Pro Gln Gln Glu Glu Ile Met Glu Asn 820 825 830 Gln Glu Val Glu Lys Lys Gly Asp Ser Asn Leu Val Glu Ser Thr Lys 835 840 845 Thr Pro Lys Ala Glu Glu Ser Val Ser Val Gln Pro Thr Leu Glu Asp 850 855 860 Lys Asn Thr Lys Asn His Val Asn Thr Val Val Val Asn Thr Lys Val 865 870 875 880 Ser Glu Val Lys Glu Lys Asp Pro His His Thr Lys Ala Leu Pro Asp 885 890 895 Thr Gly Thr Thr Ser Arg Ser His Ser Met Met Ile Pro Leu Leu Leu 900 905 910 Val Ala Gly Ser Val Val Leu Leu Arg Arg Lys Lys Lys His Ser Lys 915 920 925 Val Asn 930 74323DNAStaphylococcus pseudintermedius 7atgaataaat caagaactaa acattttaat tttttatcaa aacgtcagaa tcggtatgct 60attcgccact tttcagctgg tactgtgtca gtgcttgtag gagcagcttt cttgctaggt 120gtccatacga gtgatgcatc tgctgcagaa caagatcaaa catctgaagc aaagcaaaac 180ctctttgatg cttccgctat ttttggcgct ttaacagaga cgaacgaaaa ggtagcacaa 240gtgacgccaa cagaaaaaaa tctttcatca gttgaagaaa tgagagataa aggcgcaact 300ggaaatggac catcaataac atcactacaa actgtagaac aaaataatgc agtacaacct 360acagcaacac ctattaatga cacagaaaat tcaaccgaag cccctatgaa agaacaatcg 420aatgatgcac aaacgactga cgaaagtaac aatgccactc agaaaaataa tactgaaccc 480caagcaaaca atgaaatatc agcgcgtaat gcaaaaacaa cagcatattt aacaagtgaa 540acctttacaa cagcaacgtc tacaactgat atgcctacac agaaacaaga atatccatct 600ttagaaaatc caacaaatca atcgcaaacg aacagagcac aaccaccaac aatggaagca 660cccaaactgg cagaaggatt agacaatcta ttaaaaaaat caactttcga aagtatgtac 720gtgacaaaaa gaaatcaatt tgacaaagag acggcttcta aaacaaaagc atggccgagt 780gatgttgttc cagaaaatca agtagagata cttgctgatg caattcaaaa tggctatatc 840aaatctgtaa atgatgtgac caataaagca catacgttat ctggacgtgc atggatgtta 900gaccacggaa caccaacgac aatagctaat ggtttaacac ctgttccaga gggcactaaa 960gtttatttgc ggtggataga tcaagatggt gccacttcgc caatgtatac agcaaaaacg 1020acaagtagat taagcgctgc ggatggtaat caagtgggtc caggtgctta tgctttcgat 1080ttacgcacag gttggataga tgctaaagga aaacaccacg tatatagagc agtaaagggt 1140caatattata aaatatggat caatgatttt agaactaaag acggtaatat cgctacaatg 1200ttacgtgttg caggaggata tgttccggga acgtacgtgg attctgtgac atacaacaat 1260atgggccaat ttccattaat tggtacaaat atgcaacgta caggtatctt tatgacaacg 1320ataccttcag aaaaatattt aatatcaaaa cattacgtga aagatacaaa aggtgctgca 1380gcaaatccag ccgtcacgat aattgaaaat aactttgtga gcggcaaagt ttggatagaa 1440acaggtgctg gagattatgt gaactcagcg acaggtccaa accacaatgc gaaagatgtc 1500gttgcctctg gatacaaagt ggtcatgtca tcattaacag atcaaggtgc taaagcctac 1560gatgcgcaag tcaatcgctt gccgaagaaa gatcgagcag aagcagcacg tcaattatta 1620ataaaacatc cagaatatat cgcagcaact gtagaaggga taacgaatga gtgggggaga 1680tatacattgc gtttccctaa aggcacattc aacaaagacc atctttacgg ttacgtattg 1740gattttgatg gtgaaattgt aaaaacttat tcaggtttta cttcaccaga gttccggaga 1800ccgaattata atttgaccgt tacaccgcaa acagctccct attatagacc cgttcgacgt 1860gcatgggtca atgttaattt tgcggttatt gaagcaccac aatctcaaat cgaaataaaa 1920gaatttgatg caacctctaa ccctgcgcat cgtgggcaaa cagcaactat tgatatcata 1980ggtatgccta aaacttcatt acttacacgt gtacaatgga aagattcatc gggcagtatt 2040gttgaggata gtggtcctgt ttttacggaa gaagaggctg aacatatagc ggaatttgta 2100ataccgtcta gcgcaaaatc aggcgaagtg tatactgtac aactcgtggt aggtaatcat 2160atcgtagctt cggactctct tattgtacat gtcaatgaag aagcggcgac atatcatccg 2220atatacccat cgacaacagt agaatcaggt caaagagtaa cgattccagc acctaagaat 2280atggatggca aacctttact agatggcaca acttttgaaa aaggtcatca cgtaccaact 2340tgggctttag tgaatggtga tggctcgatt acagtaaaac ctggagaaaa agtagcagag 2400ggtgagtatg atattccagt gattgtgaca tatccagatg gttctaaaaa cacaatcttt 2460gcacctgtga ccgttgaaga aaaacaacca atggcatcgc aatatgagcc aataacaact 2520ggagtatcga aaccatttgg aaacccagta atgccaactg atgtaacaga ttcaattcaa 2580gtaccgaact atccattgga agggcaacaa ccgacagtaa cagtggatga tgaaagtcaa 2640ttaccagatg gaacaacaga aggttacaag gatatagatg taacagtgac atacccagac 2700ggaacaaagg atcgtgtcaa agttccagtc gtaacggaac aacaattaga tagtgataaa 2760tatgatccgg tcgcaacagg tatcttgaaa ccgtttggta ctccaacaac agaggaagac 2820gttataaaat tagtggagat accgaaatat ccaacagact taacacaacc aaaagtaaca 2880gtgacggttc caaatacttt accggatggg caaacgccag gtaaagtaga cgttgatgtg 2940acagtaacgt atccagatgg ttccacagat cacatttcag ttccagtttg gacaaacaag 3000catctggata aagacaaata taacccaata acgactgggg tatcgaaacc atttggaatc 3060ccagtaacgc caactgatgt aacagattca attcaagtac cgaactatcc attggaaggg 3120caacaactga cagtaacagt ggatgatgaa acacaattac cagatggaac aacagaaggt 3180cacaaggata tagatgtaac agtgacatac ccagacggaa caaaggatca tatcaaagtt 3240ccagtcgtaa cggaaaaaca atcagataat gaaaaatatg agccaacaac taacggaatc 3300acgaaaaagt acggtatccc tacgacagag gatgaagtga tagatatagt tcgaattcca 3360tattttccag tagatggcgt gcaacctatt gtaacggtaa atgatcctag actattgcca 3420aatggtcaaa aagaaggtca aatcaatgtt ccagtcacag tgacgtatcc ggatggcaca 3480aaagatctca tgacagttcc ggttattaca ggtaagcaag cagaaaatga aaaatacgat 3540ccaatcacat taggagtaac taaagattat ggtgatccta caactgcaaa cgatgtgaca 3600aagtcaatcc aaataccaac atatccagca ggtggcgaac aaccaatcgc aacagcggat 3660gatgaaagtc aattaccgga tggcacagta gaaggtaaag tggatattcc agtcacagtg 3720acgtatccgg atggtactca ggatcatatc actgtcccag tatttaccaa tcaacaacga 3780gataatcaaa aagccagtaa agctgtgacg aaaatacatg gtatatcggt aacaggcact 3840gatatgacag atactaagaa aaatcataac tatccagcag gtggtgaaca acctaaagtt 3900actgtgaaag atgacgatca attatcagag ggtaaagtcg attcaacagt gggtgcggat 3960aatgtgacaa ctacagatga tttatcaagc gtaactgcgg tatctcatgg tcatcaaaca 4020agtgtacaaa caacaaaaga gaaccaatca gtgcatgatg aagaggtgac gatcccaaca 4080gttgcacatg tgtctacaat aatgacaggt gtggtaaagg gtgagcaaga agcgacggat 4140atcgtggcta gaccacatgt tgaaacaact caactcccat caatttcagc tcaagcaaca 4200gttaaaaaac taccagaaac gggtgaaaac aatgaacaat caggtgtttt attaggtgga 4260tttattgcgt tcatgggtag cttactttta ttcggcagac gtcgcaaacc aaagaaagat 4320taa 432381440PRTStaphylococcus pseudintermedius 8Met Asn Lys Ser Arg Thr Lys His Phe Asn Phe Leu Ser Lys Arg Gln 1 5 10 15 Asn Arg Tyr Ala Ile Arg His Phe Ser Ala Gly Thr Val Ser Val Leu 20 25 30 Val Gly Ala Ala Phe Leu Leu Gly Val His Thr Ser Asp Ala Ser Ala 35 40 45 Ala Glu Gln Asp Gln Thr Ser Glu Ala Lys Gln Asn Leu Phe Asp Ala 50 55 60 Ser Ala Ile Phe Gly Ala Leu Thr Glu Thr Asn Glu Lys Val Ala Gln 65 70 75 80 Val Thr Pro Thr Glu Lys Asn Leu Ser Ser Val Glu Glu Met Arg Asp 85 90 95 Lys Gly Ala Thr Gly Asn Gly Pro Ser Ile Thr Ser Leu Gln Thr Val 100 105 110 Glu Gln Asn Asn Ala Val Gln Pro Thr Ala Thr Pro Ile Asn Asp Thr 115 120 125 Glu Asn Ser Thr Glu Ala Pro Met Lys Glu Gln Ser Asn Asp Ala Gln 130 135 140 Thr Thr Asp Glu Ser Asn Asn Ala Thr Gln Lys Asn Asn Thr Glu Pro 145 150 155 160 Gln Ala Asn Asn Glu Ile Ser Ala Arg Asn Ala Lys Thr Thr Ala Tyr 165 170 175 Leu Thr Ser Glu Thr Phe Thr Thr Ala Thr Ser Thr Thr Asp Met Pro 180 185 190 Thr Gln Lys Gln Glu Tyr Pro Ser Leu Glu Asn Pro Thr Asn Gln Ser 195 200 205 Gln Thr Asn Arg Ala Gln Pro Pro Thr Met Glu Ala Pro Lys Leu Ala 210 215 220 Glu Gly Leu Asp Asn Leu Leu Lys Lys Ser Thr Phe Glu Ser Met Tyr 225 230 235 240 Val Thr Lys Arg Asn Gln Phe Asp Lys Glu Thr Ala Ser Lys Thr Lys 245 250 255 Ala Trp Pro Ser Asp Val Val Pro Glu Asn Gln Val Glu Ile Leu Ala 260 265 270 Asp Ala Ile Gln Asn Gly Tyr Ile Lys Ser Val Asn Asp Val Thr Asn 275 280 285 Lys Ala His Thr Leu Ser Gly Arg Ala Trp Met Leu Asp His Gly Thr 290 295 300 Pro Thr Thr Ile Ala Asn Gly Leu Thr Pro Val Pro Glu Gly Thr Lys 305 310 315 320 Val Tyr Leu Arg Trp Ile Asp Gln Asp Gly Ala Thr Ser Pro Met Tyr 325 330 335 Thr Ala Lys Thr Thr Ser Arg Leu Ser Ala Ala Asp Gly Asn Gln Val 340 345 350 Gly Pro Gly Ala Tyr Ala Phe Asp Leu Arg Thr Gly Trp Ile Asp Ala 355 360 365 Lys Gly Lys His His Val Tyr Arg Ala Val Lys Gly Gln Tyr Tyr Lys 370 375 380 Ile Trp Ile Asn Asp Phe Arg Thr Lys Asp Gly Asn Ile Ala Thr Met 385 390 395 400 Leu Arg Val Ala Gly Gly Tyr Val Pro Gly Thr Tyr Val Asp Ser Val 405 410 415 Thr Tyr Asn Asn Met Gly Gln Phe Pro Leu Ile Gly Thr Asn Met Gln 420 425 430 Arg Thr Gly Ile Phe Met Thr Thr Ile Pro Ser Glu Lys Tyr Leu Ile 435 440 445 Ser Lys His Tyr Val Lys Asp Thr Lys Gly Ala Ala Ala Asn Pro Ala 450 455 460 Val Thr Ile Ile Glu Asn Asn Phe Val Ser Gly Lys Val Trp Ile Glu 465 470 475 480 Thr Gly Ala Gly Asp Tyr Val Asn Ser Ala Thr Gly Pro Asn His Asn 485 490 495 Ala Lys Asp Val Val Ala Ser Gly Tyr Lys Val Val Met Ser Ser Leu 500 505 510 Thr Asp Gln Gly Ala Lys Ala Tyr Asp Ala Gln Val Asn Arg Leu Pro 515 520 525 Lys Lys Asp Arg Ala Glu Ala Ala Arg Gln Leu Leu Ile Lys His Pro 530 535 540 Glu Tyr Ile Ala Ala Thr Val Glu Gly Ile Thr Asn Glu Trp Gly Arg 545 550 555 560 Tyr Thr Leu Arg Phe Pro Lys Gly Thr Phe Asn Lys Asp His Leu Tyr 565 570 575 Gly Tyr Val Leu Asp Phe Asp Gly Glu Ile Val Lys Thr Tyr Ser Gly 580 585 590 Phe Thr Ser Pro Glu Phe Arg Arg Pro Asn Tyr Asn Leu Thr Val Thr 595 600 605 Pro Gln Thr Ala Pro Tyr Tyr Arg Pro Val Arg Arg Ala Trp Val Asn 610 615 620 Val Asn Phe Ala Val Ile Glu Ala Pro Gln Ser Gln Ile Glu Ile Lys 625 630 635 640 Glu Phe Asp Ala Thr Ser Asn Pro Ala His Arg Gly Gln Thr Ala Thr 645 650 655 Ile Asp Ile Ile Gly Met Pro Lys Thr Ser Leu Leu Thr Arg Val Gln 660 665 670 Trp Lys Asp Ser Ser Gly Ser Ile Val Glu Asp Ser Gly Pro Val Phe 675 680 685 Thr Glu Glu Glu Ala Glu His Ile Ala Glu Phe Val Ile Pro Ser Ser 690 695 700 Ala Lys Ser Gly Glu Val Tyr Thr Val Gln Leu Val Val Gly Asn His 705 710 715 720 Ile Val Ala Ser Asp Ser Leu Ile Val His Val Asn Glu Glu Ala Ala 725 730 735 Thr Tyr His Pro Ile Tyr Pro Ser Thr Thr Val Glu Ser Gly Gln Arg 740 745 750 Val Thr Ile Pro Ala Pro Lys Asn Met Asp Gly Lys Pro Leu Leu Asp 755 760 765 Gly Thr Thr Phe Glu Lys Gly His His Val Pro Thr Trp Ala Leu Val 770 775 780 Asn Gly Asp Gly Ser Ile Thr Val Lys Pro Gly Glu Lys Val Ala Glu 785 790 795 800 Gly Glu Tyr Asp Ile Pro Val Ile Val Thr Tyr Pro Asp Gly Ser Lys 805 810 815 Asn Thr Ile Phe Ala Pro Val Thr Val Glu Glu Lys Gln Pro Met Ala 820 825 830 Ser Gln Tyr Glu Pro Ile Thr Thr Gly Val Ser Lys Pro Phe Gly Asn 835 840 845 Pro Val Met Pro Thr Asp Val Thr Asp Ser Ile Gln Val Pro Asn Tyr 850 855 860 Pro Leu Glu Gly Gln Gln Pro Thr Val Thr Val Asp Asp Glu Ser Gln 865 870 875 880 Leu Pro Asp Gly Thr Thr Glu Gly Tyr Lys Asp Ile Asp Val Thr Val 885 890 895 Thr Tyr Pro Asp Gly Thr Lys Asp Arg Val Lys Val Pro Val Val Thr 900 905 910 Glu Gln Gln Leu Asp Ser Asp Lys Tyr Asp Pro Val Ala Thr Gly Ile 915 920 925 Leu Lys Pro Phe Gly Thr Pro Thr Thr Glu Glu Asp Val Ile Lys Leu 930 935 940 Val Glu Ile Pro Lys Tyr Pro Thr Asp Leu Thr Gln Pro Lys Val Thr 945 950 955 960 Val Thr Val Pro Asn Thr Leu Pro Asp Gly Gln Thr Pro Gly Lys Val 965 970 975 Asp Val Asp Val Thr Val Thr Tyr Pro Asp Gly Ser Thr Asp His Ile 980 985 990 Ser Val Pro Val Trp Thr Asn Lys His Leu Asp Lys Asp Lys Tyr Asn 995 1000 1005 Pro Ile Thr Thr Gly Val Ser Lys Pro Phe Gly Ile Pro Val Thr 1010 1015 1020 Pro Thr Asp Val Thr Asp Ser Ile Gln Val Pro Asn Tyr Pro Leu 1025 1030 1035 Glu Gly Gln Gln Leu Thr Val Thr Val Asp Asp Glu Thr Gln Leu 1040 1045 1050 Pro Asp Gly Thr Thr Glu Gly His Lys Asp Ile Asp Val Thr Val 1055 1060 1065 Thr Tyr Pro Asp Gly Thr Lys Asp His Ile Lys Val Pro Val Val 1070 1075 1080 Thr Glu Lys Gln Ser Asp Asn Glu Lys Tyr Glu Pro Thr Thr Asn 1085 1090 1095 Gly Ile Thr Lys Lys Tyr Gly Ile Pro Thr Thr Glu Asp Glu Val 1100 1105 1110 Ile Asp Ile Val Arg Ile Pro Tyr Phe Pro Val Asp Gly Val Gln 1115 1120 1125 Pro Ile Val Thr Val Asn Asp Pro Arg Leu Leu Pro Asn Gly Gln 1130 1135 1140 Lys Glu Gly Gln Ile Asn Val Pro Val Thr Val Thr Tyr Pro Asp 1145 1150 1155 Gly Thr Lys Asp Leu Met Thr Val Pro Val Ile Thr Gly Lys Gln 1160 1165 1170 Ala Glu Asn Glu Lys Tyr Asp Pro Ile Thr Leu Gly Val Thr Lys 1175 1180 1185 Asp Tyr Gly Asp Pro Thr Thr Ala Asn Asp Val Thr Lys Ser Ile 1190 1195 1200 Gln Ile Pro Thr Tyr Pro Ala Gly Gly Glu Gln Pro Ile Ala Thr 1205 1210 1215 Ala Asp Asp Glu Ser Gln Leu Pro Asp Gly Thr Val Glu Gly Lys 1220 1225 1230 Val Asp Ile Pro Val Thr Val Thr Tyr Pro Asp Gly Thr Gln Asp 1235 1240 1245 His Ile Thr Val Pro Val Phe Thr Asn Gln Gln Arg Asp Asn Gln 1250 1255 1260 Lys Ala Ser Lys Ala Val Thr Lys Ile His Gly Ile Ser Val Thr 1265 1270 1275 Gly Thr Asp Met Thr Asp Thr Lys Lys Asn His Asn Tyr Pro Ala 1280 1285 1290 Gly Gly Glu Gln Pro Lys Val Thr Val Lys Asp Asp Asp Gln Leu 1295 1300 1305 Ser Glu Gly Lys Val Asp Ser Thr Val Gly Ala Asp Asn Val Thr 1310 1315 1320

Thr Thr Asp Asp Leu Ser Ser Val Thr Ala Val Ser His Gly His 1325 1330 1335 Gln Thr Ser Val Gln Thr Thr Lys Glu Asn Gln Ser Val His Asp 1340 1345 1350 Glu Glu Val Thr Ile Pro Thr Val Ala His Val Ser Thr Ile Met 1355 1360 1365 Thr Gly Val Val Lys Gly Glu Gln Glu Ala Thr Asp Ile Val Ala 1370 1375 1380 Arg Pro His Val Glu Thr Thr Gln Leu Pro Ser Ile Ser Ala Gln 1385 1390 1395 Ala Thr Val Lys Lys Leu Pro Glu Thr Gly Glu Asn Asn Glu Gln 1400 1405 1410 Ser Gly Val Leu Leu Gly Gly Phe Ile Ala Phe Met Gly Ser Leu 1415 1420 1425 Leu Leu Phe Gly Arg Arg Arg Lys Pro Lys Lys Asp 1430 1435 1440 94701DNAStaphylococcus pseudintermedius 9atgtttaatc aacaaaaaca acactatggt atccggaaat atgcaatcgg gacttcatca 60gtattattag gcatgacatt atttatcaca catgacgcaa ctgcatctgc agctgaaaac 120aatacaactg caaagacaga gacaaatcaa gcagcaacaa tttcttctcg cacttcgcca 180accgacgtcg ctcaacctaa tgcagacacg aatgctacaa cggcgactaa agagacaaca 240ccacaatcag attcaacagc attaccgcaa gcagcagcgc aacctcaaac gggccaaaca 300gcatcgaaag acacagtaga tacaaataaa acgcaaacag cagattccac aaccgctcct 360cctgtgacag acgcgccaaa agctaatgac gacacaacac agccagaagc tgcgactgta 420gccaaaaaag aagatgctca gacaccatcg actgcagacc ctacaccaca agcgcaacaa 480ccgcctcagt caaaagcacc tcaagaaacg caacaacaat caacagttga agatacaacg 540ccacaacaaa acgcatcaac tgaagcacac cctaaaaatg tagataccgc ttcaacaaaa 600caacaacaaa caacgccatc aaccgcaccg acaccttaca cacaacaagc agacgaagca 660atgacagatg tcacaacaac cagtgtcgac agcaacgtac agccgttagc ccctgcagaa 720gatcaaccta aaaatacgaa cacagctgac aaagcaaccg ttgcgacacc accacgtgac 780aatgctaaga ctgctgatcc gaacaaaaag atgacacgtg cagcaacgac acaacaagat 840gatgccgtcg atacattgaa gtcaaaagaa atgacagcaa cgatcgataa aagttttcca 900gccgttaaat attacacgtt gaaaaatggt aaaaaagtcg atgcacaact gacggatgca 960cgtcaaatca tcgtcaatgg tgaagtcatt acaccaacag tcaaatacaa caaaattgat 1020gatcatacgg ctgaatatga cttaacagca caaaatgatt cacgttcgat tgatgccaat 1080tttaaatttc gtttatcagt tgaaggtaag accgttgatt tacaaatgac agattacacg 1140aacaacaaca cagatccaca aaacgtcatt cgcaacttta gctttgtaag tcaatcgctc 1200gtatctgtaa acaatcaaca gaaaaatgcc aaactgcaaa catcgaaact gtctacaaat 1260acaatgaaaa gcggcgataa atcatatcat atcgatgaaa atttcaaaaa cgacttcaac 1320gactttatga tgtacggttt cgtgtcaaat gatgattaca gtgcaggatt gtggagtaac 1380gcacaaattg gcgtcggcat tggtgaacaa gacttcttac gtgtctacgc acagtctata 1440caaacagata tcggggtcgc tgtcggttta ggctcaatgc catggtttat ccaaaaagac 1500gctgcacatc cagatgcgaa aaatcaagga ctactcccac atgtcaaagt tgcaattgcg 1560gaagatgaaa atcaagatgg tgaaattaac tggcaagacg gtgcaattgc ttatcgtagc 1620attatgaaca atccatatgg tgccgaagaa gtacctgacc ttgttgggta ccgtatcgcg 1680atgaactttg gttctcaagc gcaaaaccca tttttaaaga cgttagatgg tgtgaaaaaa 1740ttctatctca atacagatgg tttagggcaa tccattttat taaaaggtta taacagtgaa 1800ggccacgact ctggtcattt agattacgcg aatattggtc aacgtatagg tggcgtgaaa 1860gactttaaaa cgttacttca aaaaggggca gattatggcg cacgtttcgg tcttcatgtg 1920aatgcatctg aaacatatcc agagtctcaa gcattcaatc ctgccctctt acgtaaagat 1980gcgaatggaa actatatgta tggctggaac tggctcgatc aaggctttaa catcgatgca 2040gattacgatt taatacacgg gcgtaaagaa cgcttcgaag cactcaaaca aattgtcggt 2100gatgacctcg actttattta tgtcgatgta tgggggaatg gacaatccgg cgacaataca 2160gcttggccat cacatcaatt agccaaagaa atcaacgact taggatggcg cgtcggtgtc 2220gaatggggtc acggtatgga atatgactcc acgttccaac attgggcagc cgacttaacg 2280tatggatcgt accaaaataa agggattaac tcagaggtag cacgcttctt acgcaaccat 2340caaaaagatt catgggtcgg taactatcca aaatactcag gtgcagctga cttcccattg 2400ctcggcggtt atgacatgaa agattttgaa ggttggcaag gtcgtaacga ttactctgct 2460tacattaaaa atattttcaa tgttgatgta ccaacaaagt ttttacaaca ttataaagtg 2520atgcgtattg tcgatggtga gcctgttaaa atgactgcca atggtcaaac gattgactgg 2580acaccagaaa tgcaagtcga tttacaaaat gaagccggtg atcaagtcac tgttaaacgt 2640aaatctaacg actatgaaaa cgacactgac aactaccgct cacgtacaat cgaattgaat 2700ggtcgcacag tactcgatgg cgattcatac cttttaccat ggaattggga tgcgaacggc 2760caaccattaa ctggcgataa cgaaaaatta tatcactgga ataaaaaagg cggttcaacg 2820acttggacac tgcctgaatc atgggataca gaccaagtcg tgctatacga attatctgaa 2880acgggtcgta agtcaccacg tacagtggca gtgaaagacc atcaagtgac actcgataat 2940attaaagcag acacaccgta tgtcgtttat aaagtcgcac aaccagacaa cacagatgtg 3000aactggagcg aagacatgca cgtgaaagat gccggcttca actcacaaca actgacacct 3060tggacaatcg aaggcaatcg agataaagtg agcatcgaaa agtcgacaac atcaaatgaa 3120atgctaaaaa tcgatagtcc aacaaaaaca acgcaattaa cgcaacaatt gacaggttta 3180gtgccaggac aacgttacgc tgtctatgtt ggcatcgata accgcagtga tgcagcggcg 3240catattgcag tgacacataa cggtaaaacg ctcgcaagta acgaaacagg tcaatcgatc 3300gcgaaaaact atgtgaaagc agatgcacat agtaacaatg ctgcgacgtt taaaaatggc 3360ggtagttact tccaaaacat gtacgtgtac ttcgttgcgc cagaagatgg taaagcagac 3420ttgacgattc aacgcgaccc aggtgaaggg gccacttatt tcgatgatat tcgtgtgtta 3480gaaaataacg cgaatctcct tcaaaacggc acattcaacc aagacttcga aaatgtacca 3540caagggttat tcccgttcgt cgtgtcagaa gttgaaggcg ttgaagataa tcgcgttcac 3600ttatctgaaa agcacgcacc gtatacacaa cgcggatgga ataataaacg tgtcgatgat 3660gtcattgatg gcaaatggtc acttaaagta aacggtcaaa caggtaaaga taaaatggtc 3720atccaaacga ttccgcaaaa cttctacttc gaaccaggaa aaacgtatga agtgtcattt 3780gattatgaag caggttctga tgatacgtat gcatttgcga caggtagtgg ggacatttct 3840aaaaatcgta actttgaaaa gacaccattg aaaaatacag tcgatggtgg caaagcgaaa 3900cgggtgacat ttaaagtgac gggtgatgaa aatggtcaaa cttggatcgg tatttactca 3960acgaaaacac ccaatgatcc acgaggcgtg aaaaatggca atcaaatcaa cttcgaaggg 4020acgaaagatt tcattctaga caacctttct atccgtgaaa ttgacgcacc gaagcctgat 4080gccacacaag aaagcggtga tagcgcacca atgaatgaaa cagatgagcg taacgtcaat 4140tcaaacggta cattagccga tcatagtgag acaactgatg tcaatgtcag tgcaacggca 4200gatgatacag cagtcaaagg cgaaatgacg acaaacagaa cagatgcacc aactgttaca 4260ctgcctgaag caacgatagt agatgaaggc acgtcaaatc ctgtcactac aacaccaacg 4320aatacaacac aagctatgac aaataaggct gatgagatgc cacaaacgat gaacaatgtt 4380cctttaacta gcatcgctac cgatatgatg cagtctcatg cggtggattc catggcagca 4440acactagcag ctacaaatca agtggcggca cctgtgcgtc aaacagcagg acctatgcaa 4500catggtatgg acagtgcttc aacgcaacac gcacccatac aagttgacaa tgtcacagca 4560ccaccattac cagatgaaca gtttgccgaa ttacctaaaa ctggggatac gactccaaat 4620acacgtggac ctttaatggc gatgatagtt ggcgcagtct taacagcatt cggattcaga 4680cgccaacgta aagaaaaata g 4701101566PRTStaphylococcus pseudintermedius 10Met Phe Asn Gln Gln Lys Gln His Tyr Gly Ile Arg Lys Tyr Ala Ile 1 5 10 15 Gly Thr Ser Ser Val Leu Leu Gly Met Thr Leu Phe Ile Thr His Asp 20 25 30 Ala Thr Ala Ser Ala Ala Glu Asn Asn Thr Thr Ala Lys Thr Glu Thr 35 40 45 Asn Gln Ala Ala Thr Ile Ser Ser Arg Thr Ser Pro Thr Asp Val Ala 50 55 60 Gln Pro Asn Ala Asp Thr Asn Ala Thr Thr Ala Thr Lys Glu Thr Thr 65 70 75 80 Pro Gln Ser Asp Ser Thr Ala Leu Pro Gln Ala Ala Ala Gln Pro Gln 85 90 95 Thr Gly Gln Thr Ala Ser Lys Asp Thr Val Asp Thr Asn Lys Thr Gln 100 105 110 Thr Ala Asp Ser Thr Thr Ala Pro Pro Val Thr Asp Ala Pro Lys Ala 115 120 125 Asn Asp Asp Thr Thr Gln Pro Glu Ala Ala Thr Val Ala Lys Lys Glu 130 135 140 Asp Ala Gln Thr Pro Ser Thr Ala Asp Pro Thr Pro Gln Ala Gln Gln 145 150 155 160 Pro Pro Gln Ser Lys Ala Pro Gln Glu Thr Gln Gln Gln Ser Thr Val 165 170 175 Glu Asp Thr Thr Pro Gln Gln Asn Ala Ser Thr Glu Ala His Pro Lys 180 185 190 Asn Val Asp Thr Ala Ser Thr Lys Gln Gln Gln Thr Thr Pro Ser Thr 195 200 205 Ala Pro Thr Pro Tyr Thr Gln Gln Ala Asp Glu Ala Met Thr Asp Val 210 215 220 Thr Thr Thr Ser Val Asp Ser Asn Val Gln Pro Leu Ala Pro Ala Glu 225 230 235 240 Asp Gln Pro Lys Asn Thr Asn Thr Ala Asp Lys Ala Thr Val Ala Thr 245 250 255 Pro Pro Arg Asp Asn Ala Lys Thr Ala Asp Pro Asn Lys Lys Met Thr 260 265 270 Arg Ala Ala Thr Thr Gln Gln Asp Asp Ala Val Asp Thr Leu Lys Ser 275 280 285 Lys Glu Met Thr Ala Thr Ile Asp Lys Ser Phe Pro Ala Val Lys Tyr 290 295 300 Tyr Thr Leu Lys Asn Gly Lys Lys Val Asp Ala Gln Leu Thr Asp Ala 305 310 315 320 Arg Gln Ile Ile Val Asn Gly Glu Val Ile Thr Pro Thr Val Lys Tyr 325 330 335 Asn Lys Ile Asp Asp His Thr Ala Glu Tyr Asp Leu Thr Ala Gln Asn 340 345 350 Asp Ser Arg Ser Ile Asp Ala Asn Phe Lys Phe Arg Leu Ser Val Glu 355 360 365 Gly Lys Thr Val Asp Leu Gln Met Thr Asp Tyr Thr Asn Asn Asn Thr 370 375 380 Asp Pro Gln Asn Val Ile Arg Asn Phe Ser Phe Val Ser Gln Ser Leu 385 390 395 400 Val Ser Val Asn Asn Gln Gln Lys Asn Ala Lys Leu Gln Thr Ser Lys 405 410 415 Leu Ser Thr Asn Thr Met Lys Ser Gly Asp Lys Ser Tyr His Ile Asp 420 425 430 Glu Asn Phe Lys Asn Asp Phe Asn Asp Phe Met Met Tyr Gly Phe Val 435 440 445 Ser Asn Asp Asp Tyr Ser Ala Gly Leu Trp Ser Asn Ala Gln Ile Gly 450 455 460 Val Gly Ile Gly Glu Gln Asp Phe Leu Arg Val Tyr Ala Gln Ser Ile 465 470 475 480 Gln Thr Asp Ile Gly Val Ala Val Gly Leu Gly Ser Met Pro Trp Phe 485 490 495 Ile Gln Lys Asp Ala Ala His Pro Asp Ala Lys Asn Gln Gly Leu Leu 500 505 510 Pro His Val Lys Val Ala Ile Ala Glu Asp Glu Asn Gln Asp Gly Glu 515 520 525 Ile Asn Trp Gln Asp Gly Ala Ile Ala Tyr Arg Ser Ile Met Asn Asn 530 535 540 Pro Tyr Gly Ala Glu Glu Val Pro Asp Leu Val Gly Tyr Arg Ile Ala 545 550 555 560 Met Asn Phe Gly Ser Gln Ala Gln Asn Pro Phe Leu Lys Thr Leu Asp 565 570 575 Gly Val Lys Lys Phe Tyr Leu Asn Thr Asp Gly Leu Gly Gln Ser Ile 580 585 590 Leu Leu Lys Gly Tyr Asn Ser Glu Gly His Asp Ser Gly His Leu Asp 595 600 605 Tyr Ala Asn Ile Gly Gln Arg Ile Gly Gly Val Lys Asp Phe Lys Thr 610 615 620 Leu Leu Gln Lys Gly Ala Asp Tyr Gly Ala Arg Phe Gly Leu His Val 625 630 635 640 Asn Ala Ser Glu Thr Tyr Pro Glu Ser Gln Ala Phe Asn Pro Ala Leu 645 650 655 Leu Arg Lys Asp Ala Asn Gly Asn Tyr Met Tyr Gly Trp Asn Trp Leu 660 665 670 Asp Gln Gly Phe Asn Ile Asp Ala Asp Tyr Asp Leu Ile His Gly Arg 675 680 685 Lys Glu Arg Phe Glu Ala Leu Lys Gln Ile Val Gly Asp Asp Leu Asp 690 695 700 Phe Ile Tyr Val Asp Val Trp Gly Asn Gly Gln Ser Gly Asp Asn Thr 705 710 715 720 Ala Trp Pro Ser His Gln Leu Ala Lys Glu Ile Asn Asp Leu Gly Trp 725 730 735 Arg Val Gly Val Glu Trp Gly His Gly Met Glu Tyr Asp Ser Thr Phe 740 745 750 Gln His Trp Ala Ala Asp Leu Thr Tyr Gly Ser Tyr Gln Asn Lys Gly 755 760 765 Ile Asn Ser Glu Val Ala Arg Phe Leu Arg Asn His Gln Lys Asp Ser 770 775 780 Trp Val Gly Asn Tyr Pro Lys Tyr Ser Gly Ala Ala Asp Phe Pro Leu 785 790 795 800 Leu Gly Gly Tyr Asp Met Lys Asp Phe Glu Gly Trp Gln Gly Arg Asn 805 810 815 Asp Tyr Ser Ala Tyr Ile Lys Asn Ile Phe Asn Val Asp Val Pro Thr 820 825 830 Lys Phe Leu Gln His Tyr Lys Val Met Arg Ile Val Asp Gly Glu Pro 835 840 845 Val Lys Met Thr Ala Asn Gly Gln Thr Ile Asp Trp Thr Pro Glu Met 850 855 860 Gln Val Asp Leu Gln Asn Glu Ala Gly Asp Gln Val Thr Val Lys Arg 865 870 875 880 Lys Ser Asn Asp Tyr Glu Asn Asp Thr Asp Asn Tyr Arg Ser Arg Thr 885 890 895 Ile Glu Leu Asn Gly Arg Thr Val Leu Asp Gly Asp Ser Tyr Leu Leu 900 905 910 Pro Trp Asn Trp Asp Ala Asn Gly Gln Pro Leu Thr Gly Asp Asn Glu 915 920 925 Lys Leu Tyr His Trp Asn Lys Lys Gly Gly Ser Thr Thr Trp Thr Leu 930 935 940 Pro Glu Ser Trp Asp Thr Asp Gln Val Val Leu Tyr Glu Leu Ser Glu 945 950 955 960 Thr Gly Arg Lys Ser Pro Arg Thr Val Ala Val Lys Asp His Gln Val 965 970 975 Thr Leu Asp Asn Ile Lys Ala Asp Thr Pro Tyr Val Val Tyr Lys Val 980 985 990 Ala Gln Pro Asp Asn Thr Asp Val Asn Trp Ser Glu Asp Met His Val 995 1000 1005 Lys Asp Ala Gly Phe Asn Ser Gln Gln Leu Thr Pro Trp Thr Ile 1010 1015 1020 Glu Gly Asn Arg Asp Lys Val Ser Ile Glu Lys Ser Thr Thr Ser 1025 1030 1035 Asn Glu Met Leu Lys Ile Asp Ser Pro Thr Lys Thr Thr Gln Leu 1040 1045 1050 Thr Gln Gln Leu Thr Gly Leu Val Pro Gly Gln Arg Tyr Ala Val 1055 1060 1065 Tyr Val Gly Ile Asp Asn Arg Ser Asp Ala Ala Ala His Ile Ala 1070 1075 1080 Val Thr His Asn Gly Lys Thr Leu Ala Ser Asn Glu Thr Gly Gln 1085 1090 1095 Ser Ile Ala Lys Asn Tyr Val Lys Ala Asp Ala His Ser Asn Asn 1100 1105 1110 Ala Ala Thr Phe Lys Asn Gly Gly Ser Tyr Phe Gln Asn Met Tyr 1115 1120 1125 Val Tyr Phe Val Ala Pro Glu Asp Gly Lys Ala Asp Leu Thr Ile 1130 1135 1140 Gln Arg Asp Pro Gly Glu Gly Ala Thr Tyr Phe Asp Asp Ile Arg 1145 1150 1155 Val Leu Glu Asn Asn Ala Asn Leu Leu Gln Asn Gly Thr Phe Asn 1160 1165 1170 Gln Asp Phe Glu Asn Val Pro Gln Gly Leu Phe Pro Phe Val Val 1175 1180 1185 Ser Glu Val Glu Gly Val Glu Asp Asn Arg Val His Leu Ser Glu 1190 1195 1200 Lys His Ala Pro Tyr Thr Gln Arg Gly Trp Asn Asn Lys Arg Val 1205 1210 1215 Asp Asp Val Ile Asp Gly Lys Trp Ser Leu Lys Val Asn Gly Gln 1220 1225 1230 Thr Gly Lys Asp Lys Met Val Ile Gln Thr Ile Pro Gln Asn Phe 1235 1240 1245 Tyr Phe Glu Pro Gly Lys Thr Tyr Glu Val Ser Phe Asp Tyr Glu 1250 1255 1260 Ala Gly Ser Asp Asp Thr Tyr Ala Phe Ala Thr Gly Ser Gly Asp 1265 1270 1275 Ile Ser Lys Asn Arg Asn Phe Glu Lys Thr Pro Leu Lys Asn Thr 1280 1285 1290 Val Asp Gly Gly Lys Ala Lys Arg Val Thr Phe Lys Val Thr Gly 1295 1300 1305 Asp Glu Asn Gly Gln Thr Trp Ile Gly Ile Tyr Ser Thr Lys Thr 1310 1315 1320 Pro Asn Asp Pro Arg Gly Val Lys Asn Gly Asn Gln Ile Asn Phe 1325 1330 1335 Glu Gly Thr Lys Asp Phe Ile Leu Asp Asn Leu Ser Ile Arg Glu 1340 1345 1350 Ile Asp Ala Pro Lys Pro Asp Ala Thr Gln Glu Ser Gly Asp Ser 1355 1360 1365 Ala Pro Met Asn Glu Thr Asp Glu Arg Asn Val Asn Ser Asn Gly 1370 1375 1380 Thr Leu Ala Asp His Ser Glu Thr Thr Asp Val Asn Val Ser Ala 1385 1390 1395 Thr Ala Asp Asp Thr Ala Val Lys Gly Glu Met Thr Thr Asn Arg 1400 1405 1410 Thr Asp Ala Pro Thr Val Thr Leu Pro Glu Ala Thr Ile Val Asp 1415 1420

1425 Glu Gly Thr Ser Asn Pro Val Thr Thr Thr Pro Thr Asn Thr Thr 1430 1435 1440 Gln Ala Met Thr Asn Lys Ala Asp Glu Met Pro Gln Thr Met Asn 1445 1450 1455 Asn Val Pro Leu Thr Ser Ile Ala Thr Asp Met Met Gln Ser His 1460 1465 1470 Ala Val Asp Ser Met Ala Ala Thr Leu Ala Ala Thr Asn Gln Val 1475 1480 1485 Ala Ala Pro Val Arg Gln Thr Ala Gly Pro Met Gln His Gly Met 1490 1495 1500 Asp Ser Ala Ser Thr Gln His Ala Pro Ile Gln Val Asp Asn Val 1505 1510 1515 Thr Ala Pro Pro Leu Pro Asp Glu Gln Phe Ala Glu Leu Pro Lys 1520 1525 1530 Thr Gly Asp Thr Thr Pro Asn Thr Arg Gly Pro Leu Met Ala Met 1535 1540 1545 Ile Val Gly Ala Val Leu Thr Ala Phe Gly Phe Arg Arg Gln Arg 1550 1555 1560 Lys Glu Lys 1565 1110509DNAStaphylococcus pseudintermedius 11atgacaagaa aatttaggga atttaagaaa agtttaagtg aagaaaaagc aagagtgaaa 60ctttacaagt caggtaaaaa ctgggttaaa gctggaatta aagaatttca gttattaaaa 120gcattaggct tatctttttt aagccatgac attgtaaagg atgaaaatgg agaagtaacg 180acacaatttg gggaacagtt gaagaaaaat gcattaagaa caactgcttt tgcgggtgga 240atgttcacag ttaatatgtt gcatgaccaa caagcatttg cggcgtcgga tgcacctata 300acttctgaac tggcaaccaa aagtcaaact attggcgatc aaacatcaat tgttattgaa 360aagtctacat cgtcagatca atcaacgaac ccaataacag aaagtgaaag taaacacgat 420tctgaaagta tctcattatc tgagcatcaa acatcagagt caacaagtct ttcaacgtca 480acttccaaat caatatcaac ttcagtagag gaatcagaat caacatcaaa agattctcat 540actaaaactc aagatagtca atcagatagt catcagtcaa caagtcaaga ggtaaatggc 600tcttccaacc acgagcaatc aacaccacac actgcacaaa gtcttacgag cctatctatt 660gagagccaaa cgtcgacttc aaatacatca ttgaaggaaa ctaaagaagg ggaattgtca 720aaaaaccttt cgaagttatc tcaaaatcaa aacatcaaac ttcatgaaga acatacgatg 780cgttcagcag atttgagctc aggttataca ggatttagag cggcttacta tgtaccaaga 840tcaagaacaa caccaacgac aaaagtctac acagggcaag gaagcttcag aggtagaggt 900agaattaaat ataatatttt ctacaaagtt gtcgttacaa gtaatggcaa agaaatgaag 960atccgctata cattgagtca agatgatcca aacacgtcta atgttgaaaa acctaggtgg 1020gcaggacaga aacgatttgg tattcataat acttgggatg aaggtcctgg tcgcgggcaa 1080ttaaagttag ggtcggcatt cggcaaacca acagttatac aaggagaaac tagaccgaat 1140tatggtagct gggttggcac acctataacg aaatatgttt caggcgatcg tacaaatggt 1200ttttactggc aagctgctgt acttgcaccg agacatggag agaagggaga aggaatcaca 1260gcagaaatta cagttcctat tgttaaccct tctggaagat ttaattggga attccatcct 1320gtcggtcaac aggacggagt tggtggcaaa actgactact ttgaaaatgt atggattcga 1380gactatgacc catattacaa atatattcaa actaaggaag gcagagcctc agtttcgcac 1440tctatttctc aggtgaaagc aagtgaatcg agatcgacat cgctcataca atcggagtct 1500attagaagat cacagtccat atctgagagt gaatctattg tagccgcaag tcattcggca 1560agtgtagcaa aatcgcaatc catctcgaga agtcaatctg tggcgaaatc acaatcgatc 1620tcaagaagtc agtcgatcgc acacagccga tcagcaagtg tggcaaaatc gcaatccatc 1680tcaagaagtc agtcgatcgc acacagccga tcagcaagtg tggcaaaatc acaatcgatt 1740tcaagaagtc agtcgatcgc acacagccga tcagcaagtg tggcgaaatc tcaatcgatt 1800tcaagaagtc agtcaattgc gcagagccaa tcagcaagtg tggcaaaatc acagtcgatt 1860tcaagaagtc agtcaattgc gcagagccaa tcagcaagtg tggcgaaatc gcaatcgatt 1920tcaagaagtc agtcgattgc acatagccga tcagcaagtg tagcggaatc acagtcgatt 1980tcaagaagtc agtcgattgc gaatagccaa tctgtagcag cgagtgaatc agagagtcta 2040tcaatatcat tgtctaaaaa gcagtcaata tcgatgagta attctgaaag tgcagcaaaa 2100tcacactcgc tttcggtgaa aaggtctaac tggattaaaa agtcaaaagc ggcttcagta 2160agaaagtcac attcactttc ggtaagaaaa tctaattcgg cgaaaaggtc acatgctatt 2220tcggtaagaa agtcaaagtc attatcagtt aaaaagtcaa tttcgcagag ccaatcagca 2280agtgtggcga aatcgcaatc gatttcaaga agtcaatcag tagcagcgag tgagtcggca 2340tcgctaagta agtcgaagag cacatcgctc agtaactcag tgagtgcaga gaaatcgacg 2400tcattaagtc gttcagcaag tgtagcaaaa tcgcaatcga tttcaagaag ccaatcagta 2460gtagcgagcg aatcggcatc gttaagtaag tcgaagagca catcgctcag taactcagtg 2520agtgcagaga aatcgacgtc attaagtcga tcagcaagtg tagcaaaatc gcaatcgatt 2580tcaagaagcc aatcggtggc agcgagcgaa tcggcatcgt taagtaagtc gaagagcaca 2640tcgctcagta actcagtgag tgcagagaaa tcgacgtcat taagtcgatc agcaagtgta 2700gcaaaatcgc aatcgatttc aagaagccaa tcggtggcag cgagcgaatc ggcatcgtta 2760agtaagtcga agagcacatc gctcagtaac tcagtgagtg cagagaaatc gacgtcatta 2820agtcgatcag caagtgtggc aaaatcgcaa tcgatttcaa gaagccaatc agtagtagcg 2880agcgaatcgg catcgttaag taagtcgaag agcacatcgc tcagtaactc agtgagtgca 2940gagaaatcga cgtcattaag tcgatcagca agtgtagcaa aatcgcaatc gatttcaaga 3000agccaatcgg tggcagcgag cgaatcggca tcgttaagta agtcgaagag cacatcgctc 3060agtaactcag tgagtgcaga gaaatcgacg tcattaagtc gatcagcaag tgtggcaaaa 3120tcgcaatcga tttcaagaag ccagtcagta gcagcaagtg agtcggcatc attaagtaag 3180tcgaagagca catctttaag caactcagtg agtgtagaga aatcgacgtc attaagtcga 3240tcagcaagtg tggcgaaatc gcaatcgatt tcaagaagtc aatcagtagc agcgagtgag 3300tcggcatcgc taagtaagtc gaagagcaca tcgctcagta actcagtgag tgcagagaaa 3360tcgacgtcat taagtcgttc agcaagtgta gcaaaatcgc aatcgatttc aagaagccag 3420tcagtagcag caagtgagtc ggcatcattg agtaaatcaa caagtacgtc aacaagtgac 3480tcagatagcg cgtcaacatc aacatctgta tcagatagcg attcagcttc attgagtaag 3540tcgactagta catcaacaag cgattcagac agcgcgtcag catcattgag caagtcaaca 3600agtacatcaa cgagcgactc agatagcgca tcgacatcaa catcagtatc agatagcgac 3660tccgcatcgt tgagtaaatc gacaagcacg tcaacaagtg attcagacag cacgtctact 3720tcattgagta agtcgacaag tacatcgaca agtgattcag atagtgcgtc aaaatcaacg 3780tcagtatcag acagtacgtc cgcatcattg agtaaatcga caagcacgtc aacaagtgat 3840tcagatagtg catcaaaatc aacgtcggta tcagatagca cgtcagcatc attaagaaag 3900tcggcaagta cgtcaacgag tgactcagac agcacgtcta cttcattgag taagtcgaca 3960agtacatcga caagtgattc agatagtgca tcaaaatcaa catcagtatc agatagcgat 4020tcagcttcat tgagtaagtc gactagtaca tcaacaagcg attcagatag tgcgtcaaaa 4080tcaacgtcgg tatcagatag cgactccgca tcgttgagta agtcgacaag tacgtcaaca 4140agcgattcag acagtgcatc aaaatcaacg tcggtatcag acagtacgtc aacatcatta 4200agtaagtcga caagtacatc aacaagcgat tcagatagtg cgtcaacatc gacatcagta 4260tcggacagta cgtctgcatc attgagtaag tcgacaagca catcgacaag tgattcagat 4320agcgcatcaa catcagtgtc agatagcgat tcagcatcac taagcaagtc aacaagtaca 4380tcgacaagcg attcagacag cgtatcaaca tcaacatcag tatcagatag tgattccgcg 4440tcattaagta agtcgacaag tacgtcaaca agcgattcag atagtgcgtc aaaatcaaca 4500tcagtatcag atagcacgtc aacatcattg agtaaatcaa caagtacatc gacaagtgac 4560tcagatagtg cgtcaacatc ggtatcagac agtacgtccg catcattgag taaatcgaca 4620agcacgtcaa caagtgattc agatagtgca tcaaaatcaa catcagtatc agatagcgat 4680tcagcatcat taagcaagtc gacaagtaca tcgacaagtg attcagatag tgcgtcaaca 4740tcaacgtcag tgtcagatag cgattcagct tcattaagca aatcaacaag tacgtcaaca 4800agtgactcag atagcgcatc aacatcatta agcaagtcaa caagtacatc gacaagcgat 4860tcagacagta cgtctacatc attaagtaag tcaacaagta catcaacaag tgattcggat 4920agtgcgtcaa aatcaacatc agtatcagat agcgactcag cttcattaag caagtcgaca 4980agtacgtcaa caagtgactc agacagtgcg tcaaaatcaa catctgtgtc agatagcgac 5040tccgcatcgt tgagtaagtc gacaagtacg tcaacgagcg attcggatag tgcgtcaaaa 5100tcaacatcag tatcagatag tgaatccgcg tcattaagca agtcgacaag cacatcgaca 5160agtgactcag atagtgcgtc aacatcgaca tcggtatcag acagcacatc agtttcatta 5220agcaagtcga caagcacgtc aacaagcgat tcagacagta cgtctacttc attaagcaag 5280tcgacaagca cgtcaacaag tgactcagat agtgactcag cttcgttgag taaatcgaca 5340agcacgtcaa cgagcgattc agatagcgtg tcaacatcaa catctgtgtc agatagcgat 5400tcagcttcat taagcaaatc gacaagtaca tcaacaagcg attcagatag tgcgtcaaca 5460tcaacgtcgg tatcagatag cggctccgca tcgttgagta agtcgacaag tacgtcaacg 5520agcgattcag acagtgcatc aaaatcaacg tcggtatcag atagtgattc agcatcacta 5580agcaaatcga caagcacgtc aacaagtgac tcagacagtg cgtcaacatc gacatcggta 5640tcagatagca catccgcgtc gttaagcaag tcgacaagta cgtcaacaag tgattcagac 5700agcgcatcga catcaacatc agtatcagat agcgactccg catcgttgag taaatcgaca 5760agcacgtcaa caagtgattc ggacagtgcg tcaaaatcaa catcagtgtc agatagcgat 5820tcagcttcat tgagtaagtc gacaagcacg tcaacaagcg aatcagacag cgcgtcaaaa 5880tcaacgtcag tgtcagatag cgattccgca tcattaagta aatcgacaag cacgtcaaca 5940agtgactcag atagtgcatc gacatcaacg tcagtatcag atagtgattc cgcgtcatta 6000agcaagtcga caagtacgtc aacaagtgac tcagacagtg cgtcaaaatc aacatcagta 6060tcagatagcg attccgcatc attgagtaag tcgacaagca cgtcaacaag cgaatcagac 6120agtgcgtcaa catcgacatt agtatcggat agtacgtcgg tttcattgag ccaatcaaca 6180agtgtggata aagatagtac agcgaaggga tcgacagaat tagtaaatgt tgcatcactt 6240tcaatcagtg cgagtcaatc aagtagttta tctgcttcaa catccacatc gattgaaaag 6300tctgagtcta catcaacaag tggctcaaat tcaactaatg cgtcgttaag tagctcatct 6360tcacttagta catcagcaag tacttctgta agcgaagtga catctgtcac acattctgaa 6420aatgatttaa gtgcatctaa cgatagagat acatccggat cagtaagtca atttgcttct 6480gaaaatacat cattaagtga ttctgcatca attagtggcg aagtttctag tagtacgtcc 6540gcgtcaactt cgaaatcatc atcactttca gcaagcgcgt tacatgataa gcatgtatca 6600gaaagcactt ctgcatcatt aagtagtgga gattcaagtc gtgcttcggc atcagtgtca 6660acgtcattat cagaatcaga tagtgcgtta atagactctg aatcaattag cgtttccgag 6720cacacatcaa cattacaatc aggtagtcat tcactatcac aacaacaatc agcagaatta 6780tcacaatcag agcaaacatc acaatcacaa cgcatttcaa caagtgcgtc agtatcggct 6840atgaaatcag aaagtgctgc taaggtatct gaatcgctat ctacgtctca atcaaaagta 6900gatagtcaat cacaatcggt atctgaatca gcgagcaact cacgagtgtc aagagattca 6960aaatcaacaa gcgcttcaat gcatcgatca ttgtcagagt cagtatctca aagtatgtca 7020cttattgatc agtcagaaag tgattcaaca tctatatcga tttcgacgtc aatcagtgat 7080gaagactcta tgctgtattc tatgagtgat tccgcatcga tcagtactaa ggcatcaagt 7140agtatgtcta cttcgacaag cgaagagcat gccaacagtc attctcagtc tgaatcgaca 7200gcatcggttg aagtatctca agaaatgagt gcatcggctt caacaagcaa atctgagtct 7260caatcagagt cagtatcagt aagtaacgaa gaatcaaata tctcatctat gcaagagtct 7320tttgtagaga gtgcaaaagc atcgcgtagt gcatctatga gcgttgcaaa atctgaagcc 7380tctgaatcac agctattaag tgagtctaat gcttcggtaa gccaatcagc aagcacaagt 7440agtaaagcat cagcaagtac gtcagaatct atttcaacgt cactcagcgt atctgaagca 7500actcatggaa aaccgagaaa tcattcagaa agtgcatcag caagtcaatt attagaagaa 7560aatgagtcat taagcgattc agcatcaaca agtgttgaag attcagaaag tgcatcagca 7620tctctgtcgg tgtatcaatc acaatcagca agtgcattga aatcaacaca tgcatcagaa 7680aaagcttcag tgaatacaag tgcaaacgca tcgaagcgtg catcagcatc gacatctatc 7740tctaactcga aatctaaagt cattgcgagt gaatcgaagt caacaagcat atcaacatat 7800gaatcgttgt caatatcgac tagtaaagaa caatcaacgc gtgtatcagt gagtgagtcg 7860acatcaacgt ctaaagtgaa gtcagaaagc gactcggcat caacgtcgac atctgaatca 7920atctcaatta gcgcaaatcg ttcaggttac acatcgtcta aacgttcggt acaaatgagt 7980gaagcacaat caacgagcga ttcattatca gtaatgcaat ctgaaggttc agtaagtgta 8040tcgcaatctt taagtatatc agataagaca tcacagtcct tatcggaatc aatatcgcat 8100tcagaaagtg actctgatag taactcagtg tctattagtc aagagacatc tgaacaacat 8160tcggtgtcag acagtgactc gatgtcaatt tcggaaagcg aatctattgc atatagtcaa 8220tcagcgagtg aatcagaatc aacaagtatc gcaaaatctg atagtatttc gaactcatta 8280tctgtttcat taagtgaatc agaaagtgaa gcaagcacat cagcttcagt gagtacatct 8340gaaagtacgt ctgtaaaggg ttctctatca acaagtatct tgaacagtca atcagcatct 8400actcatcaat caacagaagc ttctcaaagt acatcaactt caaaagttga ggaagcatca 8460ttgagtgact ctgcttctgt atcagattca caatcacttt caatgagtca tgagaaatca 8520caaagtgcat cgacttcaaa atctacgagt ctgtcaaaaa ctatttctga gtcagagtct 8580gtgagtgcat caacatcaac aagtgaagct gtaagtacag aagcaagcga atttgtatca 8640gcagtagact cattgagtca agtaacttct aacggaagca caacgaaaga agatgcgagt 8700acatttgtat ccacagtaga ttcattgaaa gacaaagcat caaataatgg tacaccatca 8760gagtttgcgt cagcagtgaa atcaacacac gcatcagtga gtgtgtcagc atcagaaagt 8820acgtcagcat caacatcaac aagtgaagct gtaagtacag aagcaagcga atttgtatca 8880gcagtgaatt cgttgagtga agcgacttct aacggaagca caacgaaaga agatgcgagt 8940acatttgtat ccacagtaga ttcattgaaa gacaaagcat caaataatgg tacaccatca 9000gagtttgcgt cagcagtgaa atcaacacac gcatcagtga gtgtgtcagc atcagaaagt 9060acatcagcat caacatcaac aagtgaagct gtaagtacag aagcaagcga atttgtatca 9120gcagtagact cattgagtca agtaacttct aacggaagca caacgaaaga agatgcaagc 9180acatttgtat ccacagtaga ttcattgaaa gataaagcat caaacaatgg tacaccatca 9240gaatttgaat cagttgtgaa atcagtacac ggatcaatga gtgcatcagc aagtgcgtca 9300acatcagcat ctacatcagc atctacatct acaagtgaag ctgcaagtgc agaagcaagc 9360gaattagaat cagtaaggaa atcattatcc aatggagcat caaacggtag cacagcaaga 9420gaaggtgcaa gcacatttgt atcaacggta gattcattga aagataaagc atcaaacaat 9480ggtacagcat cagaatttga atcagttgtg aagtcagtac acggatcaac aagtgcatca 9540gcaagtgcgt caacgtcagc atcaacatca gcaagtgaat cagcaagtac agaagcaagt 9600gaatttgtat cagcagtggc atcattaagc agttcagcat ggaacggaag cactacagga 9660gaaggtgcaa gcacatttgt atcaacagtt gattcatcga aagattcagc gtcagacaaa 9720gcttcaccat cagaatcaga atcagttgtg aagtcagtac acggatcaac gagtacatca 9780gcaagtgtgt cagcgtcggc aagtacatca gcatcgacat caacaagtga agctgtaagc 9840acagaagcaa gtgagtttgt atcagcagtg aactcattaa gcagtgaagc atcgaacggc 9900agcacaacaa gagaaggtgc aagcacattt gtatcaacag tagattcatt gaaagacaaa 9960gcatcaaaca atggtacagc atcagaattt gaatcagttg tgaagtcagt acacggatca 10020atgagtacat cagcaagtgt gtcagcatca gaaagtacgt cggcatcgac atcgacaagt 10080gaagctgtaa gtacagaagc aagcgagtca gcatcgataa gtgtatcaat gtcagtgagc 10140gcatcaacaa gtgcttcaat gagcgtatca gtgtcaaaca gtgtgtcagt gagtgactct 10200atttcagtaa gtgcatcaac aagtgaacct aactcggtaa gcacttctat gagtagttct 10260ctttcaacat cggcatcaac gccatcagaa attacttcaa gttcgtcatc aagcgattca 10320gcgacagttc aaaaagtagt ttctaaagat gaacagcacg ctacaaataa agttgaaaaa 10380ttacctgaca caggtcaatc aacgacacaa actggtttat tgggtggagt aggtgcttta 10440cttacaggcc ttggtttact caaaaaatca agaaaacaaa aagatgaaga aacatcatca 10500catgaataa 10509123502PRTStaphylococcus pseudintermedius 12Met Thr Arg Lys Phe Arg Glu Phe Lys Lys Ser Leu Ser Glu Glu Lys 1 5 10 15 Ala Arg Val Lys Leu Tyr Lys Ser Gly Lys Asn Trp Val Lys Ala Gly 20 25 30 Ile Lys Glu Phe Gln Leu Leu Lys Ala Leu Gly Leu Ser Phe Leu Ser 35 40 45 His Asp Ile Val Lys Asp Glu Asn Gly Glu Val Thr Thr Gln Phe Gly 50 55 60 Glu Gln Leu Lys Lys Asn Ala Leu Arg Thr Thr Ala Phe Ala Gly Gly 65 70 75 80 Met Phe Thr Val Asn Met Leu His Asp Gln Gln Ala Phe Ala Ala Ser 85 90 95 Asp Ala Pro Ile Thr Ser Glu Leu Ala Thr Lys Ser Gln Thr Ile Gly 100 105 110 Asp Gln Thr Ser Ile Val Ile Glu Lys Ser Thr Ser Ser Asp Gln Ser 115 120 125 Thr Asn Pro Ile Thr Glu Ser Glu Ser Lys His Asp Ser Glu Ser Ile 130 135 140 Ser Leu Ser Glu His Gln Thr Ser Glu Ser Thr Ser Leu Ser Thr Ser 145 150 155 160 Thr Ser Lys Ser Ile Ser Thr Ser Val Glu Glu Ser Glu Ser Thr Ser 165 170 175 Lys Asp Ser His Thr Lys Thr Gln Asp Ser Gln Ser Asp Ser His Gln 180 185 190 Ser Thr Ser Gln Glu Val Asn Gly Ser Ser Asn His Glu Gln Ser Thr 195 200 205 Pro His Thr Ala Gln Ser Leu Thr Ser Leu Ser Ile Glu Ser Gln Thr 210 215 220 Ser Thr Ser Asn Thr Ser Leu Lys Glu Thr Lys Glu Gly Glu Leu Ser 225 230 235 240 Lys Asn Leu Ser Lys Leu Ser Gln Asn Gln Asn Ile Lys Leu His Glu 245 250 255 Glu His Thr Met Arg Ser Ala Asp Leu Ser Ser Gly Tyr Thr Gly Phe 260 265 270 Arg Ala Ala Tyr Tyr Val Pro Arg Ser Arg Thr Thr Pro Thr Thr Lys 275 280 285 Val Tyr Thr Gly Gln Gly Ser Phe Arg Gly Arg Gly Arg Ile Lys Tyr 290 295 300 Asn Ile Phe Tyr Lys Val Val Val Thr Ser Asn Gly Lys Glu Met Lys 305 310 315 320 Ile Arg Tyr Thr Leu Ser Gln Asp Asp Pro Asn Thr Ser Asn Val Glu 325 330 335 Lys Pro Arg Trp Ala Gly Gln Lys Arg Phe Gly Ile His Asn Thr Trp 340 345 350 Asp Glu Gly Pro Gly Arg Gly Gln Leu Lys Leu Gly Ser Ala Phe Gly 355 360 365 Lys Pro Thr Val Ile Gln Gly Glu Thr Arg Pro Asn Tyr Gly Ser Trp 370 375 380 Val Gly Thr Pro Ile Thr Lys Tyr Val Ser Gly Asp Arg Thr Asn Gly 385 390 395 400 Phe Tyr Trp Gln Ala Ala Val Leu Ala Pro Arg His Gly Glu Lys Gly 405 410 415 Glu Gly Ile Thr Ala Glu Ile Thr Val Pro Ile Val Asn Pro Ser Gly 420 425 430 Arg Phe Asn Trp Glu Phe His Pro Val Gly Gln Gln Asp Gly Val Gly 435 440 445 Gly Lys Thr Asp Tyr Phe Glu Asn Val Trp Ile Arg Asp Tyr Asp Pro 450 455 460 Tyr Tyr Lys Tyr Ile Gln Thr Lys Glu Gly Arg Ala Ser Val Ser His 465 470 475 480 Ser Ile Ser Gln Val Lys Ala Ser Glu Ser Arg Ser Thr Ser Leu Ile 485 490 495 Gln Ser Glu Ser Ile Arg Arg Ser Gln Ser Ile Ser Glu Ser Glu Ser 500 505 510 Ile Val Ala Ala Ser His Ser Ala Ser Val Ala Lys Ser Gln Ser Ile 515 520 525

Ser Arg Ser Gln Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln 530 535 540 Ser Ile Ala His Ser Arg Ser Ala Ser Val Ala Lys Ser Gln Ser Ile 545 550 555 560 Ser Arg Ser Gln Ser Ile Ala His Ser Arg Ser Ala Ser Val Ala Lys 565 570 575 Ser Gln Ser Ile Ser Arg Ser Gln Ser Ile Ala His Ser Arg Ser Ala 580 585 590 Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Ile Ala Gln 595 600 605 Ser Gln Ser Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln 610 615 620 Ser Ile Ala Gln Ser Gln Ser Ala Ser Val Ala Lys Ser Gln Ser Ile 625 630 635 640 Ser Arg Ser Gln Ser Ile Ala His Ser Arg Ser Ala Ser Val Ala Glu 645 650 655 Ser Gln Ser Ile Ser Arg Ser Gln Ser Ile Ala Asn Ser Gln Ser Val 660 665 670 Ala Ala Ser Glu Ser Glu Ser Leu Ser Ile Ser Leu Ser Lys Lys Gln 675 680 685 Ser Ile Ser Met Ser Asn Ser Glu Ser Ala Ala Lys Ser His Ser Leu 690 695 700 Ser Val Lys Arg Ser Asn Trp Ile Lys Lys Ser Lys Ala Ala Ser Val 705 710 715 720 Arg Lys Ser His Ser Leu Ser Val Arg Lys Ser Asn Ser Ala Lys Arg 725 730 735 Ser His Ala Ile Ser Val Arg Lys Ser Lys Ser Leu Ser Val Lys Lys 740 745 750 Ser Ile Ser Gln Ser Gln Ser Ala Ser Val Ala Lys Ser Gln Ser Ile 755 760 765 Ser Arg Ser Gln Ser Val Ala Ala Ser Glu Ser Ala Ser Leu Ser Lys 770 775 780 Ser Lys Ser Thr Ser Leu Ser Asn Ser Val Ser Ala Glu Lys Ser Thr 785 790 795 800 Ser Leu Ser Arg Ser Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg 805 810 815 Ser Gln Ser Val Val Ala Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys 820 825 830 Ser Thr Ser Leu Ser Asn Ser Val Ser Ala Glu Lys Ser Thr Ser Leu 835 840 845 Ser Arg Ser Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln 850 855 860 Ser Val Ala Ala Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr 865 870 875 880 Ser Leu Ser Asn Ser Val Ser Ala Glu Lys Ser Thr Ser Leu Ser Arg 885 890 895 Ser Ala Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val 900 905 910 Ala Ala Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu 915 920 925 Ser Asn Ser Val Ser Ala Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala 930 935 940 Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Val Ala 945 950 955 960 Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu Ser Asn 965 970 975 Ser Val Ser Ala Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala Ser Val 980 985 990 Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Ala Ala Ser Glu 995 1000 1005 Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu Ser Asn Ser 1010 1015 1020 Val Ser Ala Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala Ser Val 1025 1030 1035 Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Ala Ala Ser 1040 1045 1050 Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu Ser Asn 1055 1060 1065 Ser Val Ser Val Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala Ser 1070 1075 1080 Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Ala Ala 1085 1090 1095 Ser Glu Ser Ala Ser Leu Ser Lys Ser Lys Ser Thr Ser Leu Ser 1100 1105 1110 Asn Ser Val Ser Ala Glu Lys Ser Thr Ser Leu Ser Arg Ser Ala 1115 1120 1125 Ser Val Ala Lys Ser Gln Ser Ile Ser Arg Ser Gln Ser Val Ala 1130 1135 1140 Ala Ser Glu Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr 1145 1150 1155 Ser Asp Ser Asp Ser Ala Ser Thr Ser Thr Ser Val Ser Asp Ser 1160 1165 1170 Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp 1175 1180 1185 Ser Asp Ser Ala Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser 1190 1195 1200 Thr Ser Asp Ser Asp Ser Ala Ser Thr Ser Thr Ser Val Ser Asp 1205 1210 1215 Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser 1220 1225 1230 Asp Ser Asp Ser Thr Ser Thr Ser Leu Ser Lys Ser Thr Ser Thr 1235 1240 1245 Ser Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser 1250 1255 1260 Asp Ser Thr Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr 1265 1270 1275 Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser 1280 1285 1290 Thr Ser Ala Ser Leu Arg Lys Ser Ala Ser Thr Ser Thr Ser Asp 1295 1300 1305 Ser Asp Ser Thr Ser Thr Ser Leu Ser Lys Ser Thr Ser Thr Ser 1310 1315 1320 Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp 1325 1330 1335 Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser 1340 1345 1350 Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp 1355 1360 1365 Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser 1370 1375 1380 Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Thr Ser Thr 1385 1390 1395 Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser 1400 1405 1410 Ala Ser Thr Ser Thr Ser Val Ser Asp Ser Thr Ser Ala Ser Leu 1415 1420 1425 Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser 1430 1435 1440 Thr Ser Val Ser Asp Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr 1445 1450 1455 Ser Thr Ser Thr Ser Asp Ser Asp Ser Val Ser Thr Ser Thr Ser 1460 1465 1470 Val Ser Asp Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr 1475 1480 1485 Ser Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser 1490 1495 1500 Asp Ser Thr Ser Thr Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr 1505 1510 1515 Ser Asp Ser Asp Ser Ala Ser Thr Ser Val Ser Asp Ser Thr Ser 1520 1525 1530 Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp 1535 1540 1545 Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser 1550 1555 1560 Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala 1565 1570 1575 Ser Thr Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser Leu Ser 1580 1585 1590 Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Thr 1595 1600 1605 Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser 1610 1615 1620 Thr Ser Thr Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp 1625 1630 1635 Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser 1640 1645 1650 Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp 1655 1660 1665 Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser 1670 1675 1680 Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala 1685 1690 1695 Ser Lys Ser Thr Ser Val Ser Asp Ser Glu Ser Ala Ser Leu Ser 1700 1705 1710 Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Thr 1715 1720 1725 Ser Thr Ser Val Ser Asp Ser Thr Ser Val Ser Leu Ser Lys Ser 1730 1735 1740 Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Thr Ser Thr Ser Leu 1745 1750 1755 Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Asp Ser 1760 1765 1770 Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp 1775 1780 1785 Ser Val Ser Thr Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser 1790 1795 1800 Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala 1805 1810 1815 Ser Thr Ser Thr Ser Val Ser Asp Ser Gly Ser Ala Ser Leu Ser 1820 1825 1830 Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Lys 1835 1840 1845 Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser Leu Ser Lys Ser 1850 1855 1860 Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Thr Ser Thr 1865 1870 1875 Ser Val Ser Asp Ser Thr Ser Ala Ser Leu Ser Lys Ser Thr Ser 1880 1885 1890 Thr Ser Thr Ser Asp Ser Asp Ser Ala Ser Thr Ser Thr Ser Val 1895 1900 1905 Ser Asp Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser 1910 1915 1920 Thr Ser Asp Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp 1925 1930 1935 Ser Asp Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser 1940 1945 1950 Glu Ser Asp Ser Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp 1955 1960 1965 Ser Ala Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser 1970 1975 1980 Asp Ser Ala Ser Thr Ser Thr Ser Val Ser Asp Ser Asp Ser Ala 1985 1990 1995 Ser Leu Ser Lys Ser Thr Ser Thr Ser Thr Ser Asp Ser Asp Ser 2000 2005 2010 Ala Ser Lys Ser Thr Ser Val Ser Asp Ser Asp Ser Ala Ser Leu 2015 2020 2025 Ser Lys Ser Thr Ser Thr Ser Thr Ser Glu Ser Asp Ser Ala Ser 2030 2035 2040 Thr Ser Thr Leu Val Ser Asp Ser Thr Ser Val Ser Leu Ser Gln 2045 2050 2055 Ser Thr Ser Val Asp Lys Asp Ser Thr Ala Lys Gly Ser Thr Glu 2060 2065 2070 Leu Val Asn Val Ala Ser Leu Ser Ile Ser Ala Ser Gln Ser Ser 2075 2080 2085 Ser Leu Ser Ala Ser Thr Ser Thr Ser Ile Glu Lys Ser Glu Ser 2090 2095 2100 Thr Ser Thr Ser Gly Ser Asn Ser Thr Asn Ala Ser Leu Ser Ser 2105 2110 2115 Ser Ser Ser Leu Ser Thr Ser Ala Ser Thr Ser Val Ser Glu Val 2120 2125 2130 Thr Ser Val Thr His Ser Glu Asn Asp Leu Ser Ala Ser Asn Asp 2135 2140 2145 Arg Asp Thr Ser Gly Ser Val Ser Gln Phe Ala Ser Glu Asn Thr 2150 2155 2160 Ser Leu Ser Asp Ser Ala Ser Ile Ser Gly Glu Val Ser Ser Ser 2165 2170 2175 Thr Ser Ala Ser Thr Ser Lys Ser Ser Ser Leu Ser Ala Ser Ala 2180 2185 2190 Leu His Asp Lys His Val Ser Glu Ser Thr Ser Ala Ser Leu Ser 2195 2200 2205 Ser Gly Asp Ser Ser Arg Ala Ser Ala Ser Val Ser Thr Ser Leu 2210 2215 2220 Ser Glu Ser Asp Ser Ala Leu Ile Asp Ser Glu Ser Ile Ser Val 2225 2230 2235 Ser Glu His Thr Ser Thr Leu Gln Ser Gly Ser His Ser Leu Ser 2240 2245 2250 Gln Gln Gln Ser Ala Glu Leu Ser Gln Ser Glu Gln Thr Ser Gln 2255 2260 2265 Ser Gln Arg Ile Ser Thr Ser Ala Ser Val Ser Ala Met Lys Ser 2270 2275 2280 Glu Ser Ala Ala Lys Val Ser Glu Ser Leu Ser Thr Ser Gln Ser 2285 2290 2295 Lys Val Asp Ser Gln Ser Gln Ser Val Ser Glu Ser Ala Ser Asn 2300 2305 2310 Ser Arg Val Ser Arg Asp Ser Lys Ser Thr Ser Ala Ser Met His 2315 2320 2325 Arg Ser Leu Ser Glu Ser Val Ser Gln Ser Met Ser Leu Ile Asp 2330 2335 2340 Gln Ser Glu Ser Asp Ser Thr Ser Ile Ser Ile Ser Thr Ser Ile 2345 2350 2355 Ser Asp Glu Asp Ser Met Leu Tyr Ser Met Ser Asp Ser Ala Ser 2360 2365 2370 Ile Ser Thr Lys Ala Ser Ser Ser Met Ser Thr Ser Thr Ser Glu 2375 2380 2385 Glu His Ala Asn Ser His Ser Gln Ser Glu Ser Thr Ala Ser Val 2390 2395 2400 Glu Val Ser Gln Glu Met Ser Ala Ser Ala Ser Thr Ser Lys Ser 2405 2410 2415 Glu Ser Gln Ser Glu Ser Val Ser Val Ser Asn Glu Glu Ser Asn 2420 2425 2430 Ile Ser Ser Met Gln Glu Ser Phe Val Glu Ser Ala Lys Ala Ser 2435 2440 2445 Arg Ser Ala Ser Met Ser Val Ala Lys Ser Glu Ala Ser Glu Ser 2450 2455 2460 Gln Leu Leu Ser Glu Ser Asn Ala Ser Val Ser Gln Ser Ala Ser 2465 2470 2475 Thr Ser Ser Lys Ala Ser Ala Ser Thr Ser Glu Ser Ile Ser Thr 2480 2485 2490 Ser Leu Ser Val Ser Glu Ala Thr His Gly Lys Pro Arg Asn His 2495 2500 2505 Ser Glu Ser Ala Ser Ala Ser Gln Leu Leu Glu Glu Asn Glu Ser 2510 2515 2520 Leu Ser Asp Ser Ala Ser Thr Ser Val Glu Asp Ser Glu Ser Ala 2525 2530 2535 Ser Ala Ser Leu Ser Val Tyr Gln Ser Gln Ser Ala Ser Ala Leu 2540 2545 2550 Lys Ser Thr His Ala Ser Glu Lys Ala Ser Val Asn Thr Ser Ala 2555 2560 2565 Asn Ala Ser Lys Arg Ala Ser Ala Ser Thr Ser Ile Ser Asn Ser 2570 2575 2580 Lys Ser Lys Val Ile Ala Ser Glu Ser Lys Ser Thr Ser Ile Ser 2585 2590 2595 Thr Tyr Glu Ser Leu Ser Ile Ser Thr Ser Lys Glu Gln Ser Thr 2600 2605 2610 Arg Val Ser Val Ser Glu Ser Thr Ser Thr Ser Lys Val Lys Ser 2615 2620 2625 Glu Ser Asp Ser Ala Ser Thr Ser Thr Ser Glu Ser Ile Ser Ile 2630 2635 2640 Ser Ala Asn Arg Ser Gly Tyr Thr Ser Ser Lys Arg Ser Val Gln 2645 2650 2655 Met Ser Glu Ala Gln Ser Thr Ser Asp Ser Leu Ser Val Met Gln 2660 2665 2670 Ser Glu Gly Ser Val Ser Val Ser Gln Ser Leu Ser Ile Ser Asp 2675 2680 2685 Lys Thr Ser Gln Ser Leu Ser Glu Ser Ile Ser His Ser Glu Ser 2690 2695 2700 Asp Ser Asp Ser Asn Ser Val Ser Ile Ser Gln Glu Thr Ser Glu 2705 2710 2715 Gln His Ser Val Ser Asp Ser Asp Ser Met Ser Ile Ser Glu Ser 2720 2725 2730 Glu Ser Ile Ala Tyr Ser Gln Ser Ala Ser Glu Ser Glu Ser Thr 2735 2740

2745 Ser Ile Ala Lys Ser Asp Ser Ile Ser Asn Ser Leu Ser Val Ser 2750 2755 2760 Leu Ser Glu Ser Glu Ser Glu Ala Ser Thr Ser Ala Ser Val Ser 2765 2770 2775 Thr Ser Glu Ser Thr Ser Val Lys Gly Ser Leu Ser Thr Ser Ile 2780 2785 2790 Leu Asn Ser Gln Ser Ala Ser Thr His Gln Ser Thr Glu Ala Ser 2795 2800 2805 Gln Ser Thr Ser Thr Ser Lys Val Glu Glu Ala Ser Leu Ser Asp 2810 2815 2820 Ser Ala Ser Val Ser Asp Ser Gln Ser Leu Ser Met Ser His Glu 2825 2830 2835 Lys Ser Gln Ser Ala Ser Thr Ser Lys Ser Thr Ser Leu Ser Lys 2840 2845 2850 Thr Ile Ser Glu Ser Glu Ser Val Ser Ala Ser Thr Ser Thr Ser 2855 2860 2865 Glu Ala Val Ser Thr Glu Ala Ser Glu Phe Val Ser Ala Val Asp 2870 2875 2880 Ser Leu Ser Gln Val Thr Ser Asn Gly Ser Thr Thr Lys Glu Asp 2885 2890 2895 Ala Ser Thr Phe Val Ser Thr Val Asp Ser Leu Lys Asp Lys Ala 2900 2905 2910 Ser Asn Asn Gly Thr Pro Ser Glu Phe Ala Ser Ala Val Lys Ser 2915 2920 2925 Thr His Ala Ser Val Ser Val Ser Ala Ser Glu Ser Thr Ser Ala 2930 2935 2940 Ser Thr Ser Thr Ser Glu Ala Val Ser Thr Glu Ala Ser Glu Phe 2945 2950 2955 Val Ser Ala Val Asn Ser Leu Ser Glu Ala Thr Ser Asn Gly Ser 2960 2965 2970 Thr Thr Lys Glu Asp Ala Ser Thr Phe Val Ser Thr Val Asp Ser 2975 2980 2985 Leu Lys Asp Lys Ala Ser Asn Asn Gly Thr Pro Ser Glu Phe Ala 2990 2995 3000 Ser Ala Val Lys Ser Thr His Ala Ser Val Ser Val Ser Ala Ser 3005 3010 3015 Glu Ser Thr Ser Ala Ser Thr Ser Thr Ser Glu Ala Val Ser Thr 3020 3025 3030 Glu Ala Ser Glu Phe Val Ser Ala Val Asp Ser Leu Ser Gln Val 3035 3040 3045 Thr Ser Asn Gly Ser Thr Thr Lys Glu Asp Ala Ser Thr Phe Val 3050 3055 3060 Ser Thr Val Asp Ser Leu Lys Asp Lys Ala Ser Asn Asn Gly Thr 3065 3070 3075 Pro Ser Glu Phe Glu Ser Val Val Lys Ser Val His Gly Ser Met 3080 3085 3090 Ser Ala Ser Ala Ser Ala Ser Thr Ser Ala Ser Thr Ser Ala Ser 3095 3100 3105 Thr Ser Thr Ser Glu Ala Ala Ser Ala Glu Ala Ser Glu Leu Glu 3110 3115 3120 Ser Val Arg Lys Ser Leu Ser Asn Gly Ala Ser Asn Gly Ser Thr 3125 3130 3135 Ala Arg Glu Gly Ala Ser Thr Phe Val Ser Thr Val Asp Ser Leu 3140 3145 3150 Lys Asp Lys Ala Ser Asn Asn Gly Thr Ala Ser Glu Phe Glu Ser 3155 3160 3165 Val Val Lys Ser Val His Gly Ser Thr Ser Ala Ser Ala Ser Ala 3170 3175 3180 Ser Thr Ser Ala Ser Thr Ser Ala Ser Glu Ser Ala Ser Thr Glu 3185 3190 3195 Ala Ser Glu Phe Val Ser Ala Val Ala Ser Leu Ser Ser Ser Ala 3200 3205 3210 Trp Asn Gly Ser Thr Thr Gly Glu Gly Ala Ser Thr Phe Val Ser 3215 3220 3225 Thr Val Asp Ser Ser Lys Asp Ser Ala Ser Asp Lys Ala Ser Pro 3230 3235 3240 Ser Glu Ser Glu Ser Val Val Lys Ser Val His Gly Ser Thr Ser 3245 3250 3255 Thr Ser Ala Ser Val Ser Ala Ser Ala Ser Thr Ser Ala Ser Thr 3260 3265 3270 Ser Thr Ser Glu Ala Val Ser Thr Glu Ala Ser Glu Phe Val Ser 3275 3280 3285 Ala Val Asn Ser Leu Ser Ser Glu Ala Ser Asn Gly Ser Thr Thr 3290 3295 3300 Arg Glu Gly Ala Ser Thr Phe Val Ser Thr Val Asp Ser Leu Lys 3305 3310 3315 Asp Lys Ala Ser Asn Asn Gly Thr Ala Ser Glu Phe Glu Ser Val 3320 3325 3330 Val Lys Ser Val His Gly Ser Met Ser Thr Ser Ala Ser Val Ser 3335 3340 3345 Ala Ser Glu Ser Thr Ser Ala Ser Thr Ser Thr Ser Glu Ala Val 3350 3355 3360 Ser Thr Glu Ala Ser Glu Ser Ala Ser Ile Ser Val Ser Met Ser 3365 3370 3375 Val Ser Ala Ser Thr Ser Ala Ser Met Ser Val Ser Val Ser Asn 3380 3385 3390 Ser Val Ser Val Ser Asp Ser Ile Ser Val Ser Ala Ser Thr Ser 3395 3400 3405 Glu Pro Asn Ser Val Ser Thr Ser Met Ser Ser Ser Leu Ser Thr 3410 3415 3420 Ser Ala Ser Thr Pro Ser Glu Ile Thr Ser Ser Ser Ser Ser Ser 3425 3430 3435 Asp Ser Ala Thr Val Gln Lys Val Val Ser Lys Asp Glu Gln His 3440 3445 3450 Ala Thr Asn Lys Val Glu Lys Leu Pro Asp Thr Gly Gln Ser Thr 3455 3460 3465 Thr Gln Thr Gly Leu Leu Gly Gly Val Gly Ala Leu Leu Thr Gly 3470 3475 3480 Leu Gly Leu Leu Lys Lys Ser Arg Lys Gln Lys Asp Glu Glu Thr 3485 3490 3495 Ser Ser His Glu 3500 135688DNAStaphylococcus pseudintermedius 13atgaaaaagt ctagaaaaaa gcgtatcgat tttttaccta accgtcaaaa tcgatatgcg 60atacgtcgtt tttcagtagg cactgcgtca attctcgttg gagcaacatt aatttttgga 120attcattcaa atgatgcatc ggcagcagta gaagacgcaa catctcaaga agcaggaaca 180actaacgaaa attcaaatag tacagaagaa gcaacaacaa acgaaagtac aactgttgaa 240gcaccaacaa gtgaagaagc aacaacggaa gagcaatcag tagaggcgcc aacaagtgaa 300gaagtaacaa cggaagagca atcagtagag gcaccaacaa gtgaagaagt aacaacggaa 360gagcaatcag tagaagcgcc aacaagtgaa gaagtaacaa cggaagagca atcagtagaa 420gcgccaacaa gtgaagaagt aacaacggaa gagcaatcag tagaggcacc aacaagtgaa 480gaagtaacaa cggaagagca atcagtagag gcaccaacta gtgaagaagt aactacggaa 540gagcaatcag tagaagcacc aacaagtgaa gaagcaacaa cggaagagca atcagtagaa 600gcaccaacaa gtgaagaagc aactacaaaa actcctgtaa aagaagaaac atcctcaaca 660caagaaaatt cacccacgac tacactagaa gaacaatttt caaatgaatt caatcagtta 720acatctacag aagataaaac aaactacaca cgtgaatatt taactcaaaa cacaaatctt 780tcggcagaac aagtggaagc aacagttgaa cgcttgaatt taagtcaaga aaatgtaaca 840gcccaagata tctatttcgc attacttaaa gatttagctg atcaacaaga tgccttatta 900ccacgtgtaa cacttttggc cgctagagat tctgagctca caaacgaagc gtctatcgct 960ttaactgaaa atagtccaat gttccgcgca gcattagcga atagtccttc tggcaatgat 1020gtggtgtcag aagaagataa tattattgtg gctgatgcac tcgcaaatgg atacatcaat 1080tcacaaacag atgcaacaaa tgcggcaaat acattgtctg gtcgtgcatg ggttgtggat 1140acagggacac cagcgacaat gtcaaacggc ttaacagctg ttccagaagg cacaaaagtc 1200tacatgcaat ggattgatac agatggcgcg gtttcaccag tgtatcaagc aagcacaaca 1260aataaattga gttcaagtgg tggtagccaa gtaggtccag gtgcatatgc atttgattta 1320cgtgaagcat ggatagactc aaatggcaaa gcgcacagat atgaagcgtc aagtggccaa 1380tattatcgtt tatggattga tgactacaaa acagtagatg ggaatacggc aaccatgtta 1440cgccaagcag gtggtttctt ccctggttca tatgttaatt cggtgacagg taacaatatt 1500ggtcaattcc cacttatcgg aacgaacatg caacgtacag gtatctttat gggtgtgata 1560ccaacgaacg attacatgac tacagataca agcaattgga ttcaagataa tgaaggacct 1620atttcaaacc cagcagtaac gagcacaagt gaatttgtca gtggtaaagt atggtctgag 1680acaggttcag gtgactatgc gaactctgcg acaggtccaa actttaactc aggtgatatt 1740gcacgtgaag gttatcaagt tgtcatgtct tcattaacaa gtgctggtgc ccaagcgtat 1800aaagcacaag tcgaatcgtt gccaacagac caacaagcgg cagcagcaca ccaattattc 1860aaagaccacc cagaatttat ttctgcgaca gtgacgggta aaactgatgc aaacggtgcg 1920tatacattac gtttcccttc aggctcattg agtaaagatt atctttatgg ttatgtgatg 1980gataataagg gcaacttggt taagggctat tcatcattca cgtcaccttt attccgttcg 2040cctaacagta acttatcttt cgcgccacaa acagcgccat atcatagacc agccaaaaat 2100gcttgggtga atgtgaactt tgcgcttgta gaaacaattg aaacaagtat agacatcacg 2160aactttgatg tgacagccaa cccagcgcaa cgtggtgata cggctatcat tgatgtgact 2220tctacagcat tgtcaccatt acctacgcat gttgagtgga gagattcaaa agggaatgtc 2280gttcaaaaaa gtggagatgt cactacggta gaagaagctg aaacggcagg cacatttact 2340attcctgatg atgcgaaaac aggtgaaatc tatacagttt atattgtttc aggaggcaat 2400gaagttgcag cagactcact gattgtccaa gtgcaagaaa atgcggcaac ctatgaacct 2460gtatatccaa caacaacagt tgaacaagac caaactgtaa caattcctac acctacaaat 2520gaagatggtt tagcattacc agacggaaca aagttcgaag gtggcaacaa tgtacctgaa 2580tgggcaactg tgaatgaaga tggttctatt tcaatttcac caaatcaaga tgtggaaaaa 2640ggtaactata atgtgcctgt tgtcgtcaca tatccagatg gttcaaaaga aacagtattt 2700gcaccagttt tagttcaaga agctgttcca actgcagaac aatacgatcc aacaattgaa 2760acaattaata aggaatatgg tactactgca acagaagatg aaattaaagg cgcaatcaca 2820attccggatt acccaacaga tggagatcaa ccaacaatca cgattgacga cccaactcaa 2880attccaaatg gaacagaaga aggcacagtg aatgtaggtg tcactgtcac ttatccagat 2940ggttcaacag acaaattaac agtaccagtc gttacaggta agcaagcgga taacgataag 3000tacacaccag aaacaacacc aattacgaaa gacttcggta caggtgtaac agaagacgaa 3060gtgaaaggtg cagtcactgt tccggattac ccaacagatg gagaccaacc aacaattacg 3120attgacgacc caagtcagtt gcctgatggt tcaaaagaag gaacaacgga tgtcgacgta 3180acagtggaat atccagacgg cacaacagat cacatcacag ttccagtgac tgttggaaag 3240caagcggata atgataagta cacaccagaa acaacaccaa ttacgaaaga cttcggtaca 3300ggtgtaacag aagacgaagt gaaaggtgca gtcactgttc cggattaccc aacagacggt 3360gaccaaccaa caattacaat tgatgatcca aatcaattac cggacggttc acaagaaggt 3420acgactgatg taaatgtaac agtggaatat ccagatggca caacagatca catcacagtt 3480ccagtgactg ttggaaagca agcggataat gataagtaca caccagaaac aacaccaatt 3540acgaaagact tcggtacagg tgtaacagaa gacgaagtga aaggtgcagt cactgttccg 3600gattacccaa cagatggaga tcaaccaacg gttacaattg atgatccaaa tcaattaccg 3660gacggttcac aagaaggtac gactgatgta aatgtaacag tggaatatcc agacggcaca 3720acagatcaca tcacagttcc agtgactgtt ggaaagcaag cggataatga taagtacaca 3780ccagaaacaa caccaattac gaaagacttc ggtacaggtg taacagaaga cgaagtgaaa 3840ggtgcagtca ctgttccgga ttacccaaca gacggtgacc aaccaacggt tacaattgat 3900gatccaaatc aattaccgga cggttcacaa gaaggtacga ctgatgtaaa tgtaacagtg 3960gaatatccag atggcacaac agatcacatc acagttccag tgactgttgg aaagcaagcg 4020gataacgata agtacacacc agaaacaaca ccaattacga aagacttcgg tacaggtgta 4080acagaagacg aagtgaaagg tgcagtcact gttccggatt acccaacaga tggagatcaa 4140ccaacggtta caattgacga tccgagtcag ttaccagatg gctcacaaga aggcacaaca 4200gatgtgaatg taacagtgga atatccagat ggcacaacag accacatcac agttccagtg 4260actgttggta agcaagcaga taacgataag tacacgccag aaacaacacc aattacgaaa 4320gacttcggta caggtgtaac agaagacgaa gtgaaaggtg cagtcactgt tccggattac 4380ccaacagatg gagaccaacc aacaattaca attgacgatc cgagtcagtt accagacggt 4440tcacaagaag gtacgactga tgtaaatgta acagtggaat atccagatgg cacaacagat 4500cacatcacag ttccagtgac tgttggtaag caagcagata acgataagta cacaccagaa 4560acaacaccaa ttacgaaaga cttcggtaca ggtgtaacag aagacgaagt gaaaggtgca 4620gtcactgttc cggattaccc aacagatgga gaccaaccaa caattacaat tgacgatccg 4680agtcagttac cagacggttc acaagaaggt acgactgatg taaatgtaac agtggaatat 4740ccagatggca caacagatca catcacagtt ccagtgactg ttggaaagca agcagataac 4800gataagtaca caccagaaac aacaccaatt acgaaagact tcggtacagg tgtaacagaa 4860ggcgaagtga aagattcaat cacaattccc ggttacccaa cagatggaga ccaaccaaca 4920attacaattg acgacccaag tcagttacca gatggttcac aagaaggtac gactgatgtc 4980gatgtaacag tggaatatcc agacggcaca acagatcaca ttacagttcc agtgactgtt 5040ggaaagcaag cagataacga taagtacaca ccagaaacag aaggtgtcaa caaagatcat 5100ggtacgtcag taacagaaga tgaagtgaaa ggtgcagtca ctgttccggg atacccaaca 5160gatggagatc aaccaacggt tacaattgat gatccaagtc aattgccgga cggttcacaa 5220gaaggtacga ctgatgtaaa tgtaacagtg gaatatccag acggcacaac agaccacatt 5280acagtcccag taactgttgg taaacaacct actaaagata acggggctac agataatgat 5340ggcgacatga atcaaggcac agatgaagga aatagtgcta ctgatcatgg cgacaatgta 5400aaacaagatt caaacggaaa ctatacgccg gttgaacaac gtgacaatca tgcgacttca 5460cctgcaacag atatggatcc aatgccaagc aatagccaaa caacttttga tggcataaat 5520gcaaaaggtt caacttcaga gaaagcaaac cataaacaac agtctgagca attaccagac 5580acaggtgaaa gcaatacaca aaatggtgca cttttaggcg gattatttgc agcacttgga 5640ggcttattct taatcggcag acgtcgtaaa gaaaaagaag gcaaataa 5688141895PRTStaphylococcus pseudintermedius 14Met Lys Lys Ser Arg Lys Lys Arg Ile Asp Phe Leu Pro Asn Arg Gln 1 5 10 15 Asn Arg Tyr Ala Ile Arg Arg Phe Ser Val Gly Thr Ala Ser Ile Leu 20 25 30 Val Gly Ala Thr Leu Ile Phe Gly Ile His Ser Asn Asp Ala Ser Ala 35 40 45 Ala Val Glu Asp Ala Thr Ser Gln Glu Ala Gly Thr Thr Asn Glu Asn 50 55 60 Ser Asn Ser Thr Glu Glu Ala Thr Thr Asn Glu Ser Thr Thr Val Glu 65 70 75 80 Ala Pro Thr Ser Glu Glu Ala Thr Thr Glu Glu Gln Ser Val Glu Ala 85 90 95 Pro Thr Ser Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro 100 105 110 Thr Ser Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr 115 120 125 Ser Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser 130 135 140 Glu Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser Glu 145 150 155 160 Glu Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser Glu Glu 165 170 175 Val Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser Glu Glu Ala 180 185 190 Thr Thr Glu Glu Gln Ser Val Glu Ala Pro Thr Ser Glu Glu Ala Thr 195 200 205 Thr Lys Thr Pro Val Lys Glu Glu Thr Ser Ser Thr Gln Glu Asn Ser 210 215 220 Pro Thr Thr Thr Leu Glu Glu Gln Phe Ser Asn Glu Phe Asn Gln Leu 225 230 235 240 Thr Ser Thr Glu Asp Lys Thr Asn Tyr Thr Arg Glu Tyr Leu Thr Gln 245 250 255 Asn Thr Asn Leu Ser Ala Glu Gln Val Glu Ala Thr Val Glu Arg Leu 260 265 270 Asn Leu Ser Gln Glu Asn Val Thr Ala Gln Asp Ile Tyr Phe Ala Leu 275 280 285 Leu Lys Asp Leu Ala Asp Gln Gln Asp Ala Leu Leu Pro Arg Val Thr 290 295 300 Leu Leu Ala Ala Arg Asp Ser Glu Leu Thr Asn Glu Ala Ser Ile Ala 305 310 315 320 Leu Thr Glu Asn Ser Pro Met Phe Arg Ala Ala Leu Ala Asn Ser Pro 325 330 335 Ser Gly Asn Asp Val Val Ser Glu Glu Asp Asn Ile Ile Val Ala Asp 340 345 350 Ala Leu Ala Asn Gly Tyr Ile Asn Ser Gln Thr Asp Ala Thr Asn Ala 355 360 365 Ala Asn Thr Leu Ser Gly Arg Ala Trp Val Val Asp Thr Gly Thr Pro 370 375 380 Ala Thr Met Ser Asn Gly Leu Thr Ala Val Pro Glu Gly Thr Lys Val 385 390 395 400 Tyr Met Gln Trp Ile Asp Thr Asp Gly Ala Val Ser Pro Val Tyr Gln 405 410 415 Ala Ser Thr Thr Asn Lys Leu Ser Ser Ser Gly Gly Ser Gln Val Gly 420 425 430 Pro Gly Ala Tyr Ala Phe Asp Leu Arg Glu Ala Trp Ile Asp Ser Asn 435 440 445 Gly Lys Ala His Arg Tyr Glu Ala Ser Ser Gly Gln Tyr Tyr Arg Leu 450 455 460 Trp Ile Asp Asp Tyr Lys Thr Val Asp Gly Asn Thr Ala Thr Met Leu 465 470 475 480 Arg Gln Ala Gly Gly Phe Phe Pro Gly Ser Tyr Val Asn Ser Val Thr 485 490 495 Gly Asn Asn Ile Gly Gln Phe Pro Leu Ile Gly Thr Asn Met Gln Arg 500 505 510 Thr Gly Ile Phe Met Gly Val Ile Pro Thr Asn Asp Tyr Met Thr Thr 515 520 525 Asp Thr Ser Asn Trp Ile Gln Asp Asn Glu Gly Pro Ile Ser Asn Pro 530 535 540 Ala Val Thr Ser Thr Ser Glu Phe Val Ser Gly Lys Val Trp Ser Glu 545 550 555 560 Thr Gly Ser Gly Asp Tyr Ala Asn Ser Ala Thr Gly Pro Asn Phe Asn 565 570 575 Ser Gly Asp Ile Ala Arg Glu Gly Tyr Gln Val Val Met Ser Ser Leu 580 585 590 Thr Ser Ala Gly Ala Gln Ala Tyr Lys Ala Gln Val Glu Ser Leu Pro 595 600 605 Thr Asp Gln Gln Ala Ala Ala Ala His Gln Leu Phe Lys Asp His Pro 610 615 620 Glu Phe Ile Ser Ala Thr

Val Thr Gly Lys Thr Asp Ala Asn Gly Ala 625 630 635 640 Tyr Thr Leu Arg Phe Pro Ser Gly Ser Leu Ser Lys Asp Tyr Leu Tyr 645 650 655 Gly Tyr Val Met Asp Asn Lys Gly Asn Leu Val Lys Gly Tyr Ser Ser 660 665 670 Phe Thr Ser Pro Leu Phe Arg Ser Pro Asn Ser Asn Leu Ser Phe Ala 675 680 685 Pro Gln Thr Ala Pro Tyr His Arg Pro Ala Lys Asn Ala Trp Val Asn 690 695 700 Val Asn Phe Ala Leu Val Glu Thr Ile Glu Thr Ser Ile Asp Ile Thr 705 710 715 720 Asn Phe Asp Val Thr Ala Asn Pro Ala Gln Arg Gly Asp Thr Ala Ile 725 730 735 Ile Asp Val Thr Ser Thr Ala Leu Ser Pro Leu Pro Thr His Val Glu 740 745 750 Trp Arg Asp Ser Lys Gly Asn Val Val Gln Lys Ser Gly Asp Val Thr 755 760 765 Thr Val Glu Glu Ala Glu Thr Ala Gly Thr Phe Thr Ile Pro Asp Asp 770 775 780 Ala Lys Thr Gly Glu Ile Tyr Thr Val Tyr Ile Val Ser Gly Gly Asn 785 790 795 800 Glu Val Ala Ala Asp Ser Leu Ile Val Gln Val Gln Glu Asn Ala Ala 805 810 815 Thr Tyr Glu Pro Val Tyr Pro Thr Thr Thr Val Glu Gln Asp Gln Thr 820 825 830 Val Thr Ile Pro Thr Pro Thr Asn Glu Asp Gly Leu Ala Leu Pro Asp 835 840 845 Gly Thr Lys Phe Glu Gly Gly Asn Asn Val Pro Glu Trp Ala Thr Val 850 855 860 Asn Glu Asp Gly Ser Ile Ser Ile Ser Pro Asn Gln Asp Val Glu Lys 865 870 875 880 Gly Asn Tyr Asn Val Pro Val Val Val Thr Tyr Pro Asp Gly Ser Lys 885 890 895 Glu Thr Val Phe Ala Pro Val Leu Val Gln Glu Ala Val Pro Thr Ala 900 905 910 Glu Gln Tyr Asp Pro Thr Ile Glu Thr Ile Asn Lys Glu Tyr Gly Thr 915 920 925 Thr Ala Thr Glu Asp Glu Ile Lys Gly Ala Ile Thr Ile Pro Asp Tyr 930 935 940 Pro Thr Asp Gly Asp Gln Pro Thr Ile Thr Ile Asp Asp Pro Thr Gln 945 950 955 960 Ile Pro Asn Gly Thr Glu Glu Gly Thr Val Asn Val Gly Val Thr Val 965 970 975 Thr Tyr Pro Asp Gly Ser Thr Asp Lys Leu Thr Val Pro Val Val Thr 980 985 990 Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile 995 1000 1005 Thr Lys Asp Phe Gly Thr Gly Val Thr Glu Asp Glu Val Lys Gly 1010 1015 1020 Ala Val Thr Val Pro Asp Tyr Pro Thr Asp Gly Asp Gln Pro Thr 1025 1030 1035 Ile Thr Ile Asp Asp Pro Ser Gln Leu Pro Asp Gly Ser Lys Glu 1040 1045 1050 Gly Thr Thr Asp Val Asp Val Thr Val Glu Tyr Pro Asp Gly Thr 1055 1060 1065 Thr Asp His Ile Thr Val Pro Val Thr Val Gly Lys Gln Ala Asp 1070 1075 1080 Asn Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile Thr Lys Asp Phe 1085 1090 1095 Gly Thr Gly Val Thr Glu Asp Glu Val Lys Gly Ala Val Thr Val 1100 1105 1110 Pro Asp Tyr Pro Thr Asp Gly Asp Gln Pro Thr Ile Thr Ile Asp 1115 1120 1125 Asp Pro Asn Gln Leu Pro Asp Gly Ser Gln Glu Gly Thr Thr Asp 1130 1135 1140 Val Asn Val Thr Val Glu Tyr Pro Asp Gly Thr Thr Asp His Ile 1145 1150 1155 Thr Val Pro Val Thr Val Gly Lys Gln Ala Asp Asn Asp Lys Tyr 1160 1165 1170 Thr Pro Glu Thr Thr Pro Ile Thr Lys Asp Phe Gly Thr Gly Val 1175 1180 1185 Thr Glu Asp Glu Val Lys Gly Ala Val Thr Val Pro Asp Tyr Pro 1190 1195 1200 Thr Asp Gly Asp Gln Pro Thr Val Thr Ile Asp Asp Pro Asn Gln 1205 1210 1215 Leu Pro Asp Gly Ser Gln Glu Gly Thr Thr Asp Val Asn Val Thr 1220 1225 1230 Val Glu Tyr Pro Asp Gly Thr Thr Asp His Ile Thr Val Pro Val 1235 1240 1245 Thr Val Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr 1250 1255 1260 Thr Pro Ile Thr Lys Asp Phe Gly Thr Gly Val Thr Glu Asp Glu 1265 1270 1275 Val Lys Gly Ala Val Thr Val Pro Asp Tyr Pro Thr Asp Gly Asp 1280 1285 1290 Gln Pro Thr Val Thr Ile Asp Asp Pro Asn Gln Leu Pro Asp Gly 1295 1300 1305 Ser Gln Glu Gly Thr Thr Asp Val Asn Val Thr Val Glu Tyr Pro 1310 1315 1320 Asp Gly Thr Thr Asp His Ile Thr Val Pro Val Thr Val Gly Lys 1325 1330 1335 Gln Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile Thr 1340 1345 1350 Lys Asp Phe Gly Thr Gly Val Thr Glu Asp Glu Val Lys Gly Ala 1355 1360 1365 Val Thr Val Pro Asp Tyr Pro Thr Asp Gly Asp Gln Pro Thr Val 1370 1375 1380 Thr Ile Asp Asp Pro Ser Gln Leu Pro Asp Gly Ser Gln Glu Gly 1385 1390 1395 Thr Thr Asp Val Asn Val Thr Val Glu Tyr Pro Asp Gly Thr Thr 1400 1405 1410 Asp His Ile Thr Val Pro Val Thr Val Gly Lys Gln Ala Asp Asn 1415 1420 1425 Asp Lys Tyr Thr Pro Glu Thr Thr Pro Ile Thr Lys Asp Phe Gly 1430 1435 1440 Thr Gly Val Thr Glu Asp Glu Val Lys Gly Ala Val Thr Val Pro 1445 1450 1455 Asp Tyr Pro Thr Asp Gly Asp Gln Pro Thr Ile Thr Ile Asp Asp 1460 1465 1470 Pro Ser Gln Leu Pro Asp Gly Ser Gln Glu Gly Thr Thr Asp Val 1475 1480 1485 Asn Val Thr Val Glu Tyr Pro Asp Gly Thr Thr Asp His Ile Thr 1490 1495 1500 Val Pro Val Thr Val Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr 1505 1510 1515 Pro Glu Thr Thr Pro Ile Thr Lys Asp Phe Gly Thr Gly Val Thr 1520 1525 1530 Glu Asp Glu Val Lys Gly Ala Val Thr Val Pro Asp Tyr Pro Thr 1535 1540 1545 Asp Gly Asp Gln Pro Thr Ile Thr Ile Asp Asp Pro Ser Gln Leu 1550 1555 1560 Pro Asp Gly Ser Gln Glu Gly Thr Thr Asp Val Asn Val Thr Val 1565 1570 1575 Glu Tyr Pro Asp Gly Thr Thr Asp His Ile Thr Val Pro Val Thr 1580 1585 1590 Val Gly Lys Gln Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr Thr 1595 1600 1605 Pro Ile Thr Lys Asp Phe Gly Thr Gly Val Thr Glu Gly Glu Val 1610 1615 1620 Lys Asp Ser Ile Thr Ile Pro Gly Tyr Pro Thr Asp Gly Asp Gln 1625 1630 1635 Pro Thr Ile Thr Ile Asp Asp Pro Ser Gln Leu Pro Asp Gly Ser 1640 1645 1650 Gln Glu Gly Thr Thr Asp Val Asp Val Thr Val Glu Tyr Pro Asp 1655 1660 1665 Gly Thr Thr Asp His Ile Thr Val Pro Val Thr Val Gly Lys Gln 1670 1675 1680 Ala Asp Asn Asp Lys Tyr Thr Pro Glu Thr Glu Gly Val Asn Lys 1685 1690 1695 Asp His Gly Thr Ser Val Thr Glu Asp Glu Val Lys Gly Ala Val 1700 1705 1710 Thr Val Pro Gly Tyr Pro Thr Asp Gly Asp Gln Pro Thr Val Thr 1715 1720 1725 Ile Asp Asp Pro Ser Gln Leu Pro Asp Gly Ser Gln Glu Gly Thr 1730 1735 1740 Thr Asp Val Asn Val Thr Val Glu Tyr Pro Asp Gly Thr Thr Asp 1745 1750 1755 His Ile Thr Val Pro Val Thr Val Gly Lys Gln Pro Thr Lys Asp 1760 1765 1770 Asn Gly Ala Thr Asp Asn Asp Gly Asp Met Asn Gln Gly Thr Asp 1775 1780 1785 Glu Gly Asn Ser Ala Thr Asp His Gly Asp Asn Val Lys Gln Asp 1790 1795 1800 Ser Asn Gly Asn Tyr Thr Pro Val Glu Gln Arg Asp Asn His Ala 1805 1810 1815 Thr Ser Pro Ala Thr Asp Met Asp Pro Met Pro Ser Asn Ser Gln 1820 1825 1830 Thr Thr Phe Asp Gly Ile Asn Ala Lys Gly Ser Thr Ser Glu Lys 1835 1840 1845 Ala Asn His Lys Gln Gln Ser Glu Gln Leu Pro Asp Thr Gly Glu 1850 1855 1860 Ser Asn Thr Gln Asn Gly Ala Leu Leu Gly Gly Leu Phe Ala Ala 1865 1870 1875 Leu Gly Gly Leu Phe Leu Ile Gly Arg Arg Arg Lys Glu Lys Glu 1880 1885 1890 Gly Lys 1895 151860DNAStaphylococcus pseudintermedius 15atgacagaac gaaaatcccc ttcatctcaa aacatgcgtc atcgtttagt caaagctggt 60actgtccttt tattggttgg tagtggactg caaatgcctt caacattgtc acacgaaatg 120acagcgatag ctcagacaga tgcgactgat gatttgaaaa cattacgtga aaatgcagat 180aaaaaagtga aagcgttaca atatttaaat acggattata aaaatgaatt tcttgcgtta 240attcgtgaat atgatacgtc gtcaaaaaat attgaagtgg ttgttgacga agcagaagca 300gccaatcgtc tagctcatga cgctcaatcg gacgatgaaa tacaacctga attagatgcc 360attgatgaaa aaattagcgc gttaaaggca aaggttgatg aaggtcaacg agaatcaact 420gaagcgcgtc aagatgtaac gtcaacagag acaaagagtg ctgaatcaga aggaagagag 480ccatccactg aaggcgagag caaagtaaag gagtcatctt cagcacaaac gattgtagca 540cctcatcatg gtcaacaaga tgtgagcgca ctgaaagacc atattaagaa cgatgtcgat 600acacttaaac aagactatgc aacgcaagac aagcaagtga caccactcca gggcattgac 660agtgcaatca cacgcattga ccatttcgtt tcagaaagcg tggatcacaa gtctgacaat 720tattttgaag aaaaacgtca acatttacaa aactttgaac aagacattaa aaaacgtacg 780gacatttctg ggactgagaa ggcgactttg cttgatgatg cgaaaacggt agccaaccaa 840ctgaacgcgc aaaatgatac gattttaact gaacttcaac agcatgacga taaacgtgca 900gcagttgaat cgatattagg tgagattttt aatgcacaag aagcggctga acgtgcgaaa 960cagatagatg ttaaaggtaa aacagatcaa caattggcaa acgaaattca tcaacaagcg 1020gacggactta tcaaaacgtc gagtgatgat ttattgttag gaatgttgga aaataattca 1080aatacacaag gtctagtgga aagcatttta cgaacacgct ttgacaaaca agaagcgcac 1140aaaattgccg gcgaaatcat gcaaggcaag ccttcaaata cagcgatact cgaccgcttg 1200aaagaccatt ttaaagcgaa tggtaaggcg agtggagatg atattttaaa tgcgttaatt 1260aataatacgg atgcagatgc tgaagtgatt gaatcaattc tagggggccg tcttaatgca 1320gaaaatgcaa aattgattgc cgatcgtgta cagcaagata aaaagaagac acatcaaaac 1380ttaaaggcga ttgaagacga acttagtgcg caagcgaatc gattgttaac gttacggaag 1440caattgcaac aaatccgtca taatacgcaa acagatatga atgacttgtt tgcaccactg 1500cgtcgtattg caaatattct cggtggtggt ttaaatcgtg acgacattca ctcttcaggt 1560cgtacgaatg acaaattgca gcaactgtta aatcgtgatc attcgttgtt aggtcgtggt 1620ggtgatttat tcaaacatga ttttgcgcca aagccgaata tcgatccata tcaagcgatt 1680aatagtcaaa cggcatcaga aggtttttta gatggtttat ttgatcaaaa tggcgatttc 1740aatttaccga atacaggtga aatagtgaag cggacttggc taccgttggg tattttagtc 1800gttgcaatcg gtgtactgat cttaacggtg agatttcata aaaaaacacg caaacaataa 186016619PRTStaphylococcus pseudintermedius 16Met Thr Glu Arg Lys Ser Pro Ser Ser Gln Asn Met Arg His Arg Leu 1 5 10 15 Val Lys Ala Gly Thr Val Leu Leu Leu Val Gly Ser Gly Leu Gln Met 20 25 30 Pro Ser Thr Leu Ser His Glu Met Thr Ala Ile Ala Gln Thr Asp Ala 35 40 45 Thr Asp Asp Leu Lys Thr Leu Arg Glu Asn Ala Asp Lys Lys Val Lys 50 55 60 Ala Leu Gln Tyr Leu Asn Thr Asp Tyr Lys Asn Glu Phe Leu Ala Leu 65 70 75 80 Ile Arg Glu Tyr Asp Thr Ser Ser Lys Asn Ile Glu Val Val Val Asp 85 90 95 Glu Ala Glu Ala Ala Asn Arg Leu Ala His Asp Ala Gln Ser Asp Asp 100 105 110 Glu Ile Gln Pro Glu Leu Asp Ala Ile Asp Glu Lys Ile Ser Ala Leu 115 120 125 Lys Ala Lys Val Asp Glu Gly Gln Arg Glu Ser Thr Glu Ala Arg Gln 130 135 140 Asp Val Thr Ser Thr Glu Thr Lys Ser Ala Glu Ser Glu Gly Arg Glu 145 150 155 160 Pro Ser Thr Glu Gly Glu Ser Lys Val Lys Glu Ser Ser Ser Ala Gln 165 170 175 Thr Ile Val Ala Pro His His Gly Gln Gln Asp Val Ser Ala Leu Lys 180 185 190 Asp His Ile Lys Asn Asp Val Asp Thr Leu Lys Gln Asp Tyr Ala Thr 195 200 205 Gln Asp Lys Gln Val Thr Pro Leu Gln Gly Ile Asp Ser Ala Ile Thr 210 215 220 Arg Ile Asp His Phe Val Ser Glu Ser Val Asp His Lys Ser Asp Asn 225 230 235 240 Tyr Phe Glu Glu Lys Arg Gln His Leu Gln Asn Phe Glu Gln Asp Ile 245 250 255 Lys Lys Arg Thr Asp Ile Ser Gly Thr Glu Lys Ala Thr Leu Leu Asp 260 265 270 Asp Ala Lys Thr Val Ala Asn Gln Leu Asn Ala Gln Asn Asp Thr Ile 275 280 285 Leu Thr Glu Leu Gln Gln His Asp Asp Lys Arg Ala Ala Val Glu Ser 290 295 300 Ile Leu Gly Glu Ile Phe Asn Ala Gln Glu Ala Ala Glu Arg Ala Lys 305 310 315 320 Gln Ile Asp Val Lys Gly Lys Thr Asp Gln Gln Leu Ala Asn Glu Ile 325 330 335 His Gln Gln Ala Asp Gly Leu Ile Lys Thr Ser Ser Asp Asp Leu Leu 340 345 350 Leu Gly Met Leu Glu Asn Asn Ser Asn Thr Gln Gly Leu Val Glu Ser 355 360 365 Ile Leu Arg Thr Arg Phe Asp Lys Gln Glu Ala His Lys Ile Ala Gly 370 375 380 Glu Ile Met Gln Gly Lys Pro Ser Asn Thr Ala Ile Leu Asp Arg Leu 385 390 395 400 Lys Asp His Phe Lys Ala Asn Gly Lys Ala Ser Gly Asp Asp Ile Leu 405 410 415 Asn Ala Leu Ile Asn Asn Thr Asp Ala Asp Ala Glu Val Ile Glu Ser 420 425 430 Ile Leu Gly Gly Arg Leu Asn Ala Glu Asn Ala Lys Leu Ile Ala Asp 435 440 445 Arg Val Gln Gln Asp Lys Lys Lys Thr His Gln Asn Leu Lys Ala Ile 450 455 460 Glu Asp Glu Leu Ser Ala Gln Ala Asn Arg Leu Leu Thr Leu Arg Lys 465 470 475 480 Gln Leu Gln Gln Ile Arg His Asn Thr Gln Thr Asp Met Asn Asp Leu 485 490 495 Phe Ala Pro Leu Arg Arg Ile Ala Asn Ile Leu Gly Gly Gly Leu Asn 500 505 510 Arg Asp Asp Ile His Ser Ser Gly Arg Thr Asn Asp Lys Leu Gln Gln 515 520 525 Leu Leu Asn Arg Asp His Ser Leu Leu Gly Arg Gly Gly Asp Leu Phe 530 535 540 Lys His Asp Phe Ala Pro Lys Pro Asn Ile Asp Pro Tyr Gln Ala Ile 545 550 555 560 Asn Ser Gln Thr Ala Ser Glu Gly Phe Leu Asp Gly Leu Phe Asp Gln 565 570 575 Asn Gly Asp Phe Asn Leu Pro Asn Thr Gly Glu Ile Val Lys Arg Thr 580 585 590 Trp Leu Pro Leu Gly Ile Leu Val Val Ala Ile Gly Val Leu Ile Leu 595 600 605 Thr Val Arg Phe His Lys Lys Thr Arg Lys Gln 610 615 17729DNAStaphylococcus pseudintermedius 17atgttaaaaa aattaattgt tacaggtttg attgctacag cggcgacaca agtttatgcg 60catgacacgc aagcggcgga aaagggtgct acagatgctc cgaatgtgat ggttaaggat 120gaggcgaaaa aagaagtgac accgataatc cataaaccga cttgcattta cccgcatcta 180gaaggcgaag atgatgctgc gtatttaaaa cgtatggcaa cgaatccacc agaaggcgca 240gtgccgtacg gtgtattgaa taaagatgga tcgattacag aaccgaatac aaatccacat 300tttgatgttt taaaaattga agatccaaat gcgatgaaag atttggttga tacaccggca 360gatgatcaag atacggtacc gagtgattta caaattgaac caccagcatt aataggacca 420gctactaaac atacggatgg tacgggagac gcaaaatcta atgatgacca

caaagtaaca 480aaatcttcgg gagcgtcagc ccaagatatg aagaaaaaag acgtgacaac acaaactgca 540caaccaaaag cagataaaaa gatggcgact gcaaaagtag caccagcgaa acaacaagat 600aaagcagcca aaatgttacc agcagcaggg gaaccacaag tgaatgcaat cagtcaaaca 660gcacttgcac tttcaatgat cgcattaggt gtcatcgcgt tctttacacg acgacgcaaa 720acaaattaa 72918242PRTStaphylococcus pseudintermedius 18Met Leu Lys Lys Leu Ile Val Thr Gly Leu Ile Ala Thr Ala Ala Thr 1 5 10 15 Gln Val Tyr Ala His Asp Thr Gln Ala Ala Glu Lys Gly Ala Thr Asp 20 25 30 Ala Pro Asn Val Met Val Lys Asp Glu Ala Lys Lys Glu Val Thr Pro 35 40 45 Ile Ile His Lys Pro Thr Cys Ile Tyr Pro His Leu Glu Gly Glu Asp 50 55 60 Asp Ala Ala Tyr Leu Lys Arg Met Ala Thr Asn Pro Pro Glu Gly Ala 65 70 75 80 Val Pro Tyr Gly Val Leu Asn Lys Asp Gly Ser Ile Thr Glu Pro Asn 85 90 95 Thr Asn Pro His Phe Asp Val Leu Lys Ile Glu Asp Pro Asn Ala Met 100 105 110 Lys Asp Leu Val Asp Thr Pro Ala Asp Asp Gln Asp Thr Val Pro Ser 115 120 125 Asp Leu Gln Ile Glu Pro Pro Ala Leu Ile Gly Pro Ala Thr Lys His 130 135 140 Thr Asp Gly Thr Gly Asp Ala Lys Ser Asn Asp Asp His Lys Val Thr 145 150 155 160 Lys Ser Ser Gly Ala Ser Ala Gln Asp Met Lys Lys Lys Asp Val Thr 165 170 175 Thr Gln Thr Ala Gln Pro Lys Ala Asp Lys Lys Met Ala Thr Ala Lys 180 185 190 Val Ala Pro Ala Lys Gln Gln Asp Lys Ala Ala Lys Met Leu Pro Ala 195 200 205 Ala Gly Glu Pro Gln Val Asn Ala Ile Ser Gln Thr Ala Leu Ala Leu 210 215 220 Ser Met Ile Ala Leu Gly Val Ile Ala Phe Phe Thr Arg Arg Arg Lys 225 230 235 240 Thr Asn 191362DNAStaphylococcus pseudintermedius 19atggtagaat ataaaaaaga acatagcgta aagcgactat taaaattagg aatcggttca 60acgagtattt tatgtgttgt atcacctctt ttattaacac atgacgttgt tcaagcagca 120gatatcaata acaggatgcc agctttgaat acattgaaga ccacttcttc atatgatcaa 180agggcacaca tggatgaatt acgaaacgcc attacttcag atagtgacac tactcaaaca 240ccatcattca atgagataac tgtgtcttca actaatgaaa cggatgcagc gtcaacggaa 300aatgtgaacc cgagtgatga ggtcccggca aaggatgaaa gtgaatcaac gacaccgagt 360acagaacaag acacatctat agaagaaacg ggtactgaag aagtgccatc tcatgaagac 420aatcatcaca acaccccaag tcaagaagag caaccgtctc cgcctgatca accaggaaca 480aacaaagatg aagagagtgg agaaaaaccg aataaagaaa atcatcggaa gccgaatcaa 540ccgaacaaag accaaccttc aaaagatgag aataaaaaac ctgacaaagg aaacaaacca 600gcaccaccgt ctaaaatgcc aaatcgcccg gatcaaaagg aagatggttc aaacaacacc 660ccaccacctg ccactgataa cggtggaaac agtaatgacg gtacaacaac gggtcccaat 720ggtggaggtg gcagtgaagc aagtccacca ccgaatgagc aaccgtcaaa tggcaatgca 780agcgataccc atcaaaacgg ttcagtttca agcaccaatc attcgaatca gtatggtaca 840tcggcttatg atgaatacgc aggtttattg aataataatt ataaatataa tccattgttt 900aaagaagagg ttgcgcgttt aagtcaattt ggaagtcaag atcaacatga tattgcaagt 960ttgagtcgta aagaacaatt ttctcaaaat gcatttttag atgacttgca acaaagtaca 1020gattatttta gatatcaata ttttaacccg ctttccacag agcaatacta tcatcgttta 1080gataaacaag tattagcact cgttacgggg gaatttggtt cgatgccaga tttcaagaaa 1140agtggtgata agtcattggt taataagcat cagcaagata aagtgaagaa aattgaacag 1200caaggagaaa atattaatac gcatcatatg aaaaatacga aagaagatac aggaaaatca 1260ttaagttaca agccgatgat atatattggc attgtcatgg tcggttttgt cggcctgatc 1320agtatgattt tatggaaacg actgcatcat ttttggaaat aa 136220453PRTStaphylococcus pseudintermedius 20Met Val Glu Tyr Lys Lys Glu His Ser Val Lys Arg Leu Leu Lys Leu 1 5 10 15 Gly Ile Gly Ser Thr Ser Ile Leu Cys Val Val Ser Pro Leu Leu Leu 20 25 30 Thr His Asp Val Val Gln Ala Ala Asp Ile Asn Asn Arg Met Pro Ala 35 40 45 Leu Asn Thr Leu Lys Thr Thr Ser Ser Tyr Asp Gln Arg Ala His Met 50 55 60 Asp Glu Leu Arg Asn Ala Ile Thr Ser Asp Ser Asp Thr Thr Gln Thr 65 70 75 80 Pro Ser Phe Asn Glu Ile Thr Val Ser Ser Thr Asn Glu Thr Asp Ala 85 90 95 Ala Ser Thr Glu Asn Val Asn Pro Ser Asp Glu Val Pro Ala Lys Asp 100 105 110 Glu Ser Glu Ser Thr Thr Pro Ser Thr Glu Gln Asp Thr Ser Ile Glu 115 120 125 Glu Thr Gly Thr Glu Glu Val Pro Ser His Glu Asp Asn His His Asn 130 135 140 Thr Pro Ser Gln Glu Glu Gln Pro Ser Pro Pro Asp Gln Pro Gly Thr 145 150 155 160 Asn Lys Asp Glu Glu Ser Gly Glu Lys Pro Asn Lys Glu Asn His Arg 165 170 175 Lys Pro Asn Gln Pro Asn Lys Asp Gln Pro Ser Lys Asp Glu Asn Lys 180 185 190 Lys Pro Asp Lys Gly Asn Lys Pro Ala Pro Pro Ser Lys Met Pro Asn 195 200 205 Arg Pro Asp Gln Lys Glu Asp Gly Ser Asn Asn Thr Pro Pro Pro Ala 210 215 220 Thr Asp Asn Gly Gly Asn Ser Asn Asp Gly Thr Thr Thr Gly Pro Asn 225 230 235 240 Gly Gly Gly Gly Ser Glu Ala Ser Pro Pro Pro Asn Glu Gln Pro Ser 245 250 255 Asn Gly Asn Ala Ser Asp Thr His Gln Asn Gly Ser Val Ser Ser Thr 260 265 270 Asn His Ser Asn Gln Tyr Gly Thr Ser Ala Tyr Asp Glu Tyr Ala Gly 275 280 285 Leu Leu Asn Asn Asn Tyr Lys Tyr Asn Pro Leu Phe Lys Glu Glu Val 290 295 300 Ala Arg Leu Ser Gln Phe Gly Ser Gln Asp Gln His Asp Ile Ala Ser 305 310 315 320 Leu Ser Arg Lys Glu Gln Phe Ser Gln Asn Ala Phe Leu Asp Asp Leu 325 330 335 Gln Gln Ser Thr Asp Tyr Phe Arg Tyr Gln Tyr Phe Asn Pro Leu Ser 340 345 350 Thr Glu Gln Tyr Tyr His Arg Leu Asp Lys Gln Val Leu Ala Leu Val 355 360 365 Thr Gly Glu Phe Gly Ser Met Pro Asp Phe Lys Lys Ser Gly Asp Lys 370 375 380 Ser Leu Val Asn Lys His Gln Gln Asp Lys Val Lys Lys Ile Glu Gln 385 390 395 400 Gln Gly Glu Asn Ile Asn Thr His His Met Lys Asn Thr Lys Glu Asp 405 410 415 Thr Gly Lys Ser Leu Ser Tyr Lys Pro Met Ile Tyr Ile Gly Ile Val 420 425 430 Met Val Gly Phe Val Gly Leu Ile Ser Met Ile Leu Trp Lys Arg Leu 435 440 445 His His Phe Trp Lys 450 213096DNAStaphylococcus pseudintermedius 21gtgattacaa ataaaaatat atatagtatt cgaaagcata aacttggcgt ggcatcattc 60ttattgggga cattatttgt tgtagggcat gcaaataatg ctgaagcttc agaagtgagc 120gcaacaacac aagaacataa tgtcgagact gagcaaacaa aaactgaggg cgaactaaca 180actgaggtag cacaacaagc agtcagcgaa tcagcaccta tagctgaaaa catgcagaaa 240acaacatcag tggcaagtga aaatgcgaaa gaggttacag cttctgatag cacacaagaa 300gtcacaaaaa ctgaagcaaa agatacagca acaatgaaag attcagaaat tgcacaacct 360gtatcagaag tgaataaacc tgttactcaa acagctgcac ccgtagcaga accatcaaca 420gcaaacaaac aaacttcacc acgacaagta caagaactta ctgcaccaat ggacacaaaa 480gtaattaatg tagaaaacgg aacagatgtg acaagtaaag tgaaagttga aaaatcgtca 540attacagggc atcagaataa agataaaaca tatcatcaat cgaacactgt aaatccacat 600aaagctgaac gtgtgacatt aaattatgat tggtcatttg aaaatggaat taaagctggt 660gattattttg acttccaatt aagcgataat gtcgatacaa atggaatatc aacaataaaa 720aaagtcccac acattatgga tagtcaaaat agcgaacaaa ttattgctta cggggaaatt 780aatgaaaaca accgtgtccg ttaccgattt atggactatg taaatcaaaa agaaaattta 840aaaggtaaat tgtcattaaa cttatttatt aaaccagata aagttcaaga tgaaggaaaa 900atcactgtca cttcacaatt gggcaaggaa atgacaagtc aggaatttga cattaaatat 960attgatggtg taaaaagccc ttcaggtatc acattaaacg gtcgtcttga tgaattatca 1020aaagcagatc aatcatttac gcattattct atatttaaac ctaagcataa taacttaact 1080aatgtaactt taagaggcac agtttcaaat aacgcacagc aaaatgaaaa aaatggtcaa 1140gttaatgttt acgaatatat tggtcaagga gaattgccac aaagtgctta tgccaatgta 1200aatgatacga agcagttcaa tgacattact aagagtatga aatcaatcaa aaataacagt 1260aatggctatg aaattacttt tgacatgaac aaagacaatc atccttatat catagtatat 1320caaggtcact ttaacaataa tgcaaaagac tttgatttct caacaaatgc gacaggttat 1380caaaatttaa atcaatcgga atatagttat tattggcctt acaattattc attcaattta 1440acatgggata atggtgttgc tttctactct aataatgcaa gtggggaagg gaacgacaaa 1500cctgtaccgc cgacttatgg atatagtccg acagtaaata caattcaaga tactcatgcg 1560gattatcctg taatgacttt ccaacaacct ggaactctag aggagacaga agacagtatg 1620ccaatcacta cacttaccga atctggtgag gatcgtggtg aaaatacttc tccaattatc 1680gagacaacag aagattcaca gcctgttgag tttgaagaag agacaaatca tggcattcaa 1740gacgtgacac ttcatgcaga tgctgttgat tttgaggaag aaacaaacca tggtgaacaa 1800gacacggtac accactctga tgtcgttgaa tacgacgaag atacgacaac tggcatgtta 1860acaggtgcca tttctgacca tacaacagaa gaaggcacga tggagtacac aactgatggc 1920ttattgattg agtttgatga tgaaatgaat cctaatgtga gcggtcagta cgatgacatc 1980acaacggata cgatagagga atcatctcat attgacacat tcactgaact tgaatctgaa 2040tttggtcaac atgacggtat agtgacattt gaagaagata ctatcgttga gaagccgaaa 2100acagaaaagg gtaaccgagt accacttgta attgatttat caacaccaaa acataaccat 2160cagttcaata ttcaacctac cgatccaaat attgatacct ctgctacgta tcgaattggc 2220aattttgtat ggcgcgatga agatcacaat ggcgtacaaa atgatggtga acatggtctt 2280gaaggtgttc ttgtcacact taaaacagct gatggtgtcg ttttaaatac aacgacaagt 2340gatgccaatg gacactacca gttcactaat gttcaaaaag gaaaatatat tgttgaattc 2400actacacctg aaggttatga agcaacaagc aaacatacta cagcgaatac tgaaaaagac 2460tctgatgggt taatcgcaaa tatcgatgtt actcaagatg atatgtcaat cgatgctggt 2520ttcttcccgt tagaaaactg gaatcctcag ccagagccga aaaaccctga tgatagagag 2580aaaccggcac ctgagcaacc tgatgtacct cagccagaac cgaaaaaccc tgatgataga 2640gagaaaccgg cacctgagca acctgatgta cctcagccag aaccgaaaaa tcctgatgat 2700agagagaaac cggcacctga gcaacctgat gtacctcaac cagagccgaa aaatcctgat 2760gataaagaga aaccggcacc tgagcaacct gatgtacctc aaccagagcc gaaaaatcct 2820gatgataaag agaaaccggc acctgagcaa cctgatgcac ctcaaccaaa gccgatgctc 2880ccaggtgaaa aggtgaaacc caaaccaact catcccggtg aagctatgca aacaacacct 2940caggacaaat caacatctca aacagatgaa gcacttccta aaacaggtga atcatcatca 3000caatcatctg ctttaatctt cggtggttta ctcagtctat taggacttgg tttattacgt 3060cgatcatcta aacaaaaccg ttcttcaatg aaataa 3096221031PRTStaphylococcus pseudintermedius 22Val Ile Thr Asn Lys Asn Ile Tyr Ser Ile Arg Lys His Lys Leu Gly 1 5 10 15 Val Ala Ser Phe Leu Leu Gly Thr Leu Phe Val Val Gly His Ala Asn 20 25 30 Asn Ala Glu Ala Ser Glu Val Ser Ala Thr Thr Gln Glu His Asn Val 35 40 45 Glu Thr Glu Gln Thr Lys Thr Glu Gly Glu Leu Thr Thr Glu Val Ala 50 55 60 Gln Gln Ala Val Ser Glu Ser Ala Pro Ile Ala Glu Asn Met Gln Lys 65 70 75 80 Thr Thr Ser Val Ala Ser Glu Asn Ala Lys Glu Val Thr Ala Ser Asp 85 90 95 Ser Thr Gln Glu Val Thr Lys Thr Glu Ala Lys Asp Thr Ala Thr Met 100 105 110 Lys Asp Ser Glu Ile Ala Gln Pro Val Ser Glu Val Asn Lys Pro Val 115 120 125 Thr Gln Thr Ala Ala Pro Val Ala Glu Pro Ser Thr Ala Asn Lys Gln 130 135 140 Thr Ser Pro Arg Gln Val Gln Glu Leu Thr Ala Pro Met Asp Thr Lys 145 150 155 160 Val Ile Asn Val Glu Asn Gly Thr Asp Val Thr Ser Lys Val Lys Val 165 170 175 Glu Lys Ser Ser Ile Thr Gly His Gln Asn Lys Asp Lys Thr Tyr His 180 185 190 Gln Ser Asn Thr Val Asn Pro His Lys Ala Glu Arg Val Thr Leu Asn 195 200 205 Tyr Asp Trp Ser Phe Glu Asn Gly Ile Lys Ala Gly Asp Tyr Phe Asp 210 215 220 Phe Gln Leu Ser Asp Asn Val Asp Thr Asn Gly Ile Ser Thr Ile Lys 225 230 235 240 Lys Val Pro His Ile Met Asp Ser Gln Asn Ser Glu Gln Ile Ile Ala 245 250 255 Tyr Gly Glu Ile Asn Glu Asn Asn Arg Val Arg Tyr Arg Phe Met Asp 260 265 270 Tyr Val Asn Gln Lys Glu Asn Leu Lys Gly Lys Leu Ser Leu Asn Leu 275 280 285 Phe Ile Lys Pro Asp Lys Val Gln Asp Glu Gly Lys Ile Thr Val Thr 290 295 300 Ser Gln Leu Gly Lys Glu Met Thr Ser Gln Glu Phe Asp Ile Lys Tyr 305 310 315 320 Ile Asp Gly Val Lys Ser Pro Ser Gly Ile Thr Leu Asn Gly Arg Leu 325 330 335 Asp Glu Leu Ser Lys Ala Asp Gln Ser Phe Thr His Tyr Ser Ile Phe 340 345 350 Lys Pro Lys His Asn Asn Leu Thr Asn Val Thr Leu Arg Gly Thr Val 355 360 365 Ser Asn Asn Ala Gln Gln Asn Glu Lys Asn Gly Gln Val Asn Val Tyr 370 375 380 Glu Tyr Ile Gly Gln Gly Glu Leu Pro Gln Ser Ala Tyr Ala Asn Val 385 390 395 400 Asn Asp Thr Lys Gln Phe Asn Asp Ile Thr Lys Ser Met Lys Ser Ile 405 410 415 Lys Asn Asn Ser Asn Gly Tyr Glu Ile Thr Phe Asp Met Asn Lys Asp 420 425 430 Asn His Pro Tyr Ile Ile Val Tyr Gln Gly His Phe Asn Asn Asn Ala 435 440 445 Lys Asp Phe Asp Phe Ser Thr Asn Ala Thr Gly Tyr Gln Asn Leu Asn 450 455 460 Gln Ser Glu Tyr Ser Tyr Tyr Trp Pro Tyr Asn Tyr Ser Phe Asn Leu 465 470 475 480 Thr Trp Asp Asn Gly Val Ala Phe Tyr Ser Asn Asn Ala Ser Gly Glu 485 490 495 Gly Asn Asp Lys Pro Val Pro Pro Thr Tyr Gly Tyr Ser Pro Thr Val 500 505 510 Asn Thr Ile Gln Asp Thr His Ala Asp Tyr Pro Val Met Thr Phe Gln 515 520 525 Gln Pro Gly Thr Leu Glu Glu Thr Glu Asp Ser Met Pro Ile Thr Thr 530 535 540 Leu Thr Glu Ser Gly Glu Asp Arg Gly Glu Asn Thr Ser Pro Ile Ile 545 550 555 560 Glu Thr Thr Glu Asp Ser Gln Pro Val Glu Phe Glu Glu Glu Thr Asn 565 570 575 His Gly Ile Gln Asp Val Thr Leu His Ala Asp Ala Val Asp Phe Glu 580 585 590 Glu Glu Thr Asn His Gly Glu Gln Asp Thr Val His His Ser Asp Val 595 600 605 Val Glu Tyr Asp Glu Asp Thr Thr Thr Gly Met Leu Thr Gly Ala Ile 610 615 620 Ser Asp His Thr Thr Glu Glu Gly Thr Met Glu Tyr Thr Thr Asp Gly 625 630 635 640 Leu Leu Ile Glu Phe Asp Asp Glu Met Asn Pro Asn Val Ser Gly Gln 645 650 655 Tyr Asp Asp Ile Thr Thr Asp Thr Ile Glu Glu Ser Ser His Ile Asp 660 665 670 Thr Phe Thr Glu Leu Glu Ser Glu Phe Gly Gln His Asp Gly Ile Val 675 680 685 Thr Phe Glu Glu Asp Thr Ile Val Glu Lys Pro Lys Thr Glu Lys Gly 690 695 700 Asn Arg Val Pro Leu Val Ile Asp Leu Ser Thr Pro Lys His Asn His 705 710 715 720 Gln Phe Asn Ile Gln Pro Thr Asp Pro Asn Ile Asp Thr Ser Ala Thr 725 730 735 Tyr Arg Ile Gly Asn Phe Val Trp Arg Asp Glu Asp His Asn Gly Val 740 745 750 Gln Asn Asp Gly Glu His Gly Leu Glu Gly Val Leu Val Thr Leu Lys 755 760 765 Thr Ala Asp Gly Val Val Leu Asn Thr Thr Thr Ser Asp Ala Asn Gly 770 775 780 His Tyr Gln Phe Thr Asn Val Gln Lys Gly Lys Tyr Ile Val Glu Phe 785 790 795 800 Thr Thr Pro Glu Gly Tyr Glu Ala Thr Ser Lys His Thr Thr Ala Asn 805 810 815 Thr Glu Lys Asp Ser Asp Gly Leu Ile Ala Asn Ile Asp Val Thr Gln 820 825 830 Asp Asp Met Ser Ile Asp Ala Gly Phe Phe Pro Leu Glu Asn Trp Asn 835 840 845

Pro Gln Pro Glu Pro Lys Asn Pro Asp Asp Arg Glu Lys Pro Ala Pro 850 855 860 Glu Gln Pro Asp Val Pro Gln Pro Glu Pro Lys Asn Pro Asp Asp Arg 865 870 875 880 Glu Lys Pro Ala Pro Glu Gln Pro Asp Val Pro Gln Pro Glu Pro Lys 885 890 895 Asn Pro Asp Asp Arg Glu Lys Pro Ala Pro Glu Gln Pro Asp Val Pro 900 905 910 Gln Pro Glu Pro Lys Asn Pro Asp Asp Lys Glu Lys Pro Ala Pro Glu 915 920 925 Gln Pro Asp Val Pro Gln Pro Glu Pro Lys Asn Pro Asp Asp Lys Glu 930 935 940 Lys Pro Ala Pro Glu Gln Pro Asp Ala Pro Gln Pro Lys Pro Met Leu 945 950 955 960 Pro Gly Glu Lys Val Lys Pro Lys Pro Thr His Pro Gly Glu Ala Met 965 970 975 Gln Thr Thr Pro Gln Asp Lys Ser Thr Ser Gln Thr Asp Glu Ala Leu 980 985 990 Pro Lys Thr Gly Glu Ser Ser Ser Gln Ser Ser Ala Leu Ile Phe Gly 995 1000 1005 Gly Leu Leu Ser Leu Leu Gly Leu Gly Leu Leu Arg Arg Ser Ser 1010 1015 1020 Lys Gln Asn Arg Ser Ser Met Lys 1025 1030 231704DNAStaphylococcus pseudintermedius 23atggcatttg atggtatgtt tacaagaaaa atggtagaag atttacaatt tctcgtttct 60gggcgtattc ataaaatcaa tcaaccggaa aacgatacaa tcatcatggt tataagacag 120caacgccaaa atcatcaatt gttgttgtcg attcacccga attttgcacg gattcacctc 180actacaaaaa aatatgataa tccatttgaa ccgccgatgt ttgcgcgcgt ctttcgtaaa 240catttagaag gtggacgtat ccttgccatt cgccaaatcg gaaatgaccg tcgcatcgaa 300atggacgtgg aaagtaaaga tgaaattggt gacacgattc atcgtacagt gattttagaa 360attatgggca aacatagtaa tctcattctc gttaatgaag aacgtaaaat tttagaaggt 420tttaaacacc ttacaccaaa tacgaatcaa tttagaaccg tgatgccagg ttttcaatat 480gaagtgccgc caacacaaca taaacagaac ccttatgcat atactggtgc gcaagtgctc 540caacatattg atttcaatgc gggcaaaatt gatcgccaac tgcttcaaac gtttgaaggt 600ttttcaccgt taatcacaaa agaaatcaca tcaagacgcc attttatgac cacacaaact 660ttacctgaag cttttgacga agtgatggcc gaaacgaaag cgacacccca accggtattt 720cataaaaata acgaaacagg taaagaagac ttttatttta tgaagttaca tcagttttac 780gatgattgcg tcacatatga ttcactccat gaactgctcg accgttttta tgatgcacgc 840ggtgaacgtg aacgcgtcaa acaacgtgca aacgatttag tcaaactcgt ccaacaatta 900cttcaaaaat atcaaaataa attaagtaag ctcgtcgatg aacaagcggg gactgaagaa 960aaagaaaatc aacaattgta cggcgagtta atcacagcga atatttatca actcaaacct 1020ggagatcgcc agttagaaac agtaaattat tatacaggag aaaacgtgac tattccgtta 1080aatccacaaa agtcacctgc tgaaaatgcg caatactatt acaagcaata caaccgaatg 1140aaaacacgtg agcgcgaatt gacccatcaa attactttaa cggaagaaaa tatcgcttat 1200tttgaaaata tcgagcaaca gttgtcacac attcaagttc atgaaattga cgatattcgt 1260gaagaactag cagaacaagg ctttatcaaa caaaagaaac agcagaaaaa gaaaaagcaa 1320caaaaaatcc agttacaatc ctacgtttcg actgatggcg atacgatttt agtcggtaaa 1380aataataagc aaaatgatta tttaacgaat aaacgtgcgc aaaaatcgca tttatggttc 1440catacaaaag atatcccagg aagccatgtc gtgattttaa atgatgcgcc aagtgacaaa 1500acgattgaag aagcggcgat gattgcagcg tacttttcaa aggcggggca atcgggacaa 1560attccagtgg attatacaac aattcgcaat gtgcataagc cgagtggcag taaacctgga 1620tttgtaacgt acgataacca gaagacgctt tacgcaacgc cggattatga catgattcgt 1680cgattgaaag ctgaagaagc gtaa 170424567PRTStaphylococcus pseudintermedius 24Met Ala Phe Asp Gly Met Phe Thr Arg Lys Met Val Glu Asp Leu Gln 1 5 10 15 Phe Leu Val Ser Gly Arg Ile His Lys Ile Asn Gln Pro Glu Asn Asp 20 25 30 Thr Ile Ile Met Val Ile Arg Gln Gln Arg Gln Asn His Gln Leu Leu 35 40 45 Leu Ser Ile His Pro Asn Phe Ala Arg Ile His Leu Thr Thr Lys Lys 50 55 60 Tyr Asp Asn Pro Phe Glu Pro Pro Met Phe Ala Arg Val Phe Arg Lys 65 70 75 80 His Leu Glu Gly Gly Arg Ile Leu Ala Ile Arg Gln Ile Gly Asn Asp 85 90 95 Arg Arg Ile Glu Met Asp Val Glu Ser Lys Asp Glu Ile Gly Asp Thr 100 105 110 Ile His Arg Thr Val Ile Leu Glu Ile Met Gly Lys His Ser Asn Leu 115 120 125 Ile Leu Val Asn Glu Glu Arg Lys Ile Leu Glu Gly Phe Lys His Leu 130 135 140 Thr Pro Asn Thr Asn Gln Phe Arg Thr Val Met Pro Gly Phe Gln Tyr 145 150 155 160 Glu Val Pro Pro Thr Gln His Lys Gln Asn Pro Tyr Ala Tyr Thr Gly 165 170 175 Ala Gln Val Leu Gln His Ile Asp Phe Asn Ala Gly Lys Ile Asp Arg 180 185 190 Gln Leu Leu Gln Thr Phe Glu Gly Phe Ser Pro Leu Ile Thr Lys Glu 195 200 205 Ile Thr Ser Arg Arg His Phe Met Thr Thr Gln Thr Leu Pro Glu Ala 210 215 220 Phe Asp Glu Val Met Ala Glu Thr Lys Ala Thr Pro Gln Pro Val Phe 225 230 235 240 His Lys Asn Asn Glu Thr Gly Lys Glu Asp Phe Tyr Phe Met Lys Leu 245 250 255 His Gln Phe Tyr Asp Asp Cys Val Thr Tyr Asp Ser Leu His Glu Leu 260 265 270 Leu Asp Arg Phe Tyr Asp Ala Arg Gly Glu Arg Glu Arg Val Lys Gln 275 280 285 Arg Ala Asn Asp Leu Val Lys Leu Val Gln Gln Leu Leu Gln Lys Tyr 290 295 300 Gln Asn Lys Leu Ser Lys Leu Val Asp Glu Gln Ala Gly Thr Glu Glu 305 310 315 320 Lys Glu Asn Gln Gln Leu Tyr Gly Glu Leu Ile Thr Ala Asn Ile Tyr 325 330 335 Gln Leu Lys Pro Gly Asp Arg Gln Leu Glu Thr Val Asn Tyr Tyr Thr 340 345 350 Gly Glu Asn Val Thr Ile Pro Leu Asn Pro Gln Lys Ser Pro Ala Glu 355 360 365 Asn Ala Gln Tyr Tyr Tyr Lys Gln Tyr Asn Arg Met Lys Thr Arg Glu 370 375 380 Arg Glu Leu Thr His Gln Ile Thr Leu Thr Glu Glu Asn Ile Ala Tyr 385 390 395 400 Phe Glu Asn Ile Glu Gln Gln Leu Ser His Ile Gln Val His Glu Ile 405 410 415 Asp Asp Ile Arg Glu Glu Leu Ala Glu Gln Gly Phe Ile Lys Gln Lys 420 425 430 Lys Gln Gln Lys Lys Lys Lys Gln Gln Lys Ile Gln Leu Gln Ser Tyr 435 440 445 Val Ser Thr Asp Gly Asp Thr Ile Leu Val Gly Lys Asn Asn Lys Gln 450 455 460 Asn Asp Tyr Leu Thr Asn Lys Arg Ala Gln Lys Ser His Leu Trp Phe 465 470 475 480 His Thr Lys Asp Ile Pro Gly Ser His Val Val Ile Leu Asn Asp Ala 485 490 495 Pro Ser Asp Lys Thr Ile Glu Glu Ala Ala Met Ile Ala Ala Tyr Phe 500 505 510 Ser Lys Ala Gly Gln Ser Gly Gln Ile Pro Val Asp Tyr Thr Thr Ile 515 520 525 Arg Asn Val His Lys Pro Ser Gly Ser Lys Pro Gly Phe Val Thr Tyr 530 535 540 Asp Asn Gln Lys Thr Leu Tyr Ala Thr Pro Asp Tyr Asp Met Ile Arg 545 550 555 560 Arg Leu Lys Ala Glu Glu Ala 565 254167DNAStaphylococcus pseudintermedius 25atggtcaaaa aatttggtta taaaacacct acaatcgttg cacttacttt ggctggaact 60gcattttctg cacaccaagc caatgccgct gaacaagttg cacctgaaaa aacacctacg 120aatgtacttg atgatcaata cgcattaaaa caagctgatg atgcgaaaca aacgacacaa 180ggaacaacac ttgcaggttc aaaagaatac aaggatcctt cacaaattga tacgactcaa 240gtcgatacag cagcacaaac tgaaacgccc gtagaaggag ggcaacaaga cgcacaacaa 300cctactacaa ctgatgaagc gacatcaaca gatcatactg tatcaaaagg tacaaacgaa 360agtgcatcac ctgcaacagc ttctatagat gaaggaacat taaacgcaca agtcaattca 420gatgaaacgg ctactaaccg tacacaagac gtcactgaaa atgtgacaaa atatccttat 480cattcaagtg aaatcgatac acatgaagac gcaactgtgt caccagatac atatcatgca 540ctggacacgc atgcgcaaca accttcagca atggatgtaa gcgattcaac atcagcacaa 600actgaagcga cgcaagtaaa tacgtcaaca aatgtaaatg acaaagaggc cgtttcgaca 660acagaagatg cacctactac acaacttcaa gcagctgtac aatctgaagc caacaaagaa 720gcgaaggcaa ctactgaaac agctcaaaat aaaacacctc aagttgaaaa gaaagcaaca 780gcaactcaaa atacagcaca gttagcaacg gggcatcagg atattactga caaagtctca 840aaacgcgtag cagtgacaaa tgaaacgaaa gcggatgcca caacagcgaa aacacaagca 900cctacttcag tgacacatca agctgataca caagcaaaaa cgataacaga caagaaggca 960acaacttaca gtgcacaaac cgcaactgac caagacataa atgcgaatcc ggacggtcca 1020acacctccac gcgttggcgg taaagggggt ccccctgctt cactttcact ccaatcgact 1080ggtcaaacag cattccgttc agctgtcgct agtaaaccga gtgcatatca acctaaagtg 1140aaatcgtcta ttaatgacta tattcgtaag caaaactaca aagtgcctgt atatgaagaa 1200gattattcaa gttacttccc taaatacggt tatcgtaatg gtgtcggtaa acctgagggc 1260atcatcgtgc atgatacagc aaatgacaac tctacaattg atggcgaaat cagttacatg 1320aaaagaaatt atcaaaatgc tttcgtacat ggctttatta atggtcaacg tattgttgaa 1380acgcaaccta cagattattt agcatggggt gcaggtgcga ttgcgaatga acgctttatt 1440catatcgaac tcgttcatgt tcacagtaaa gaagatttcg cacgtcaaat gaacaatatg 1500gcagattatg cggcgacgaa cttacaatat tatggccttt ctccagatag tgcggaatat 1560gatggtcgtg ggacagtttg gacacatgat gctgtttcta gatttttagg tggtacagac 1620cataccgatc cgcacggcta tttaaaacaa catggttatt cctttgatgc gttgtatgat 1680ttaatcaatg aaaaatatca agtgaaaatg ggttatgcct cacctgctaa ctcgtcttca 1740aaaccatcaa caaatactgg cttaacagtt aaaaacacaa caggtttcgg ccgtattaac 1800acaacaaata gcggtttata tacgaccgtt tatgatcaaa aaggtaaagc gacgaatcaa 1860acgaatcaaa cgttaaaagt tacaaaagaa gcgacgttaa atggcaacaa attctattta 1920atgagtgatg caaaatctaa tcaaacactc ggttgggtca aatcaaacga cgcaacatat 1980caagctgccc aagctgagaa aaaagtaacg aaaacgtata ctgtcaaacc aggaacaaca 2040gtatatcaag tgccttgggg tgcctcatct caaacagtag gcaaagctcc aggtacgtca 2100aaccaatcat tcaaatcaac gaaagaacaa actgttgcga aaacgaaatg gctttatggg 2160acagttggca aagtgacagg ctggattaat gcaagtagtg ttgtagcaaa tgatcaaaaa 2220ccatcgacga ataccgcact aaaagtaaca actgacactg gtctcggtcg cattaaagac 2280aaaaatagtg gtttatacgc aacggtatat gataaaactg gtaaaagcac ttcagccact 2340aaccaaacat taaaagtaac gaaaaaagca agtgtcaatg gccaatcatt ctatttagta 2400tcagattatg ctaaaggtac aaatgttggt tgggtgaaac agtcagatgt cgaatatcaa 2460acaagtaaag ccccttctaa agtgaatcaa aattatacga ttaaatcggg tgcgaaattg 2520tatcaagtgc cttggggtac aagtaaacaa gttgccggta cagtgacagg tgctgcgaca 2580caaacattta aggcaacaca atctcaaact gtaggtaaag caacatactt gtatgggaca 2640gttggcaaat tatctggttg gattaattca acagcattag cagctcaaaa aacaacaacg 2700aatgttacta aaacaatttc tcaaatcggt caactgaaca cgaaaaatag cggtgtcaaa 2760gcttctattt atgacaaaac agcaaaagat gcatccaaat gggcaggtca aacttataaa 2820attactaaaa cagcttctgc caataacgaa gactatgtat tactgcaaaa tagtacagga 2880ggcacgccac tcggttggtt caatgttaaa gacgtcacaa cacgcaactt aggtgctgaa 2940acagctgtta aagggcggta cactgttaat agtaaaacat ctggactcta cgctatgcct 3000tggggtacaa cgaagcaacg tgtcgataca ttaaaaaatg ccacaagtcg tttatttaca 3060gcttcaaaat cagttaaagt cggtaatgat acattcttat tcggtacagt gaatcaaaaa 3120ttgggctgga ttaatcaaaa agacttaaca gctgtagcag caaaagttgc aaacatgaaa 3180actgcatcga atagcgcagt caaaggtgcc gcaatcacaa ctttgaaaaa agtagaagat 3240tatgtgatta cgaataaaaa tggttattat tacactaaag ttggagattc aaaaacagct 3300ggtgctttaa aaggttttta tcaacaaatt tttaaagtcg aaaaaacatc tttactgaac 3360ggcattactt ggtactatgg cgcattccaa aacgggacga aaggatggat taaagcagct 3420gacatacgtt catcattcat tcaacatact gcggtcagta gcacattgaa agcagcactc 3480gataaacaaa tggcgctgac ttacccgcct caagttcaac gtgtagccgg taaatgggtc 3540aatgcgaatc gtgcagaaac tgaaaaagca atgaataccg cagcaattga aaaagatccg 3600actctcattt accaattttt aaaacttgat aaataccaag gtcttggcgt agaagaactt 3660aataaattgt taagaggcaa aggcatttta gaaggtcaag gtgccgcatt taaagaagcc 3720gcacaaaaac acaatattaa tgaggtttac ttaatgtctc acgcattttt agaaacaggt 3780aacgggactt ctcaattagc caatggcggt cacgtagata aaaataataa agtcgtaaca 3840aacggtaaac cgaagtatta caacatgttc ggtatcgggg caattgatac agacgcttta 3900cgcaatggct ttaaaactgc tgaaaaatat ggttggaata cggtcagcaa agcgattatc 3960ggtggcgcaa aattcatccg tgatcagtac atcggttcag gacaaaacac attgtatcgt 4020atgcgttgga atccagaaca ccctgccaca catcagtatg cgactgatat taattgggca 4080aatgtaaacg cacaacgcat gaaatatttc tatgatcaaa ttggtgaaac aggtaaatat 4140ttcgacgtcg atgtatataa gaagtag 4167261388PRTStaphylococcus pseudintermedius 26Met Val Lys Lys Phe Gly Tyr Lys Thr Pro Thr Ile Val Ala Leu Thr 1 5 10 15 Leu Ala Gly Thr Ala Phe Ser Ala His Gln Ala Asn Ala Ala Glu Gln 20 25 30 Val Ala Pro Glu Lys Thr Pro Thr Asn Val Leu Asp Asp Gln Tyr Ala 35 40 45 Leu Lys Gln Ala Asp Asp Ala Lys Gln Thr Thr Gln Gly Thr Thr Leu 50 55 60 Ala Gly Ser Lys Glu Tyr Lys Asp Pro Ser Gln Ile Asp Thr Thr Gln 65 70 75 80 Val Asp Thr Ala Ala Gln Thr Glu Thr Pro Val Glu Gly Gly Gln Gln 85 90 95 Asp Ala Gln Gln Pro Thr Thr Thr Asp Glu Ala Thr Ser Thr Asp His 100 105 110 Thr Val Ser Lys Gly Thr Asn Glu Ser Ala Ser Pro Ala Thr Ala Ser 115 120 125 Ile Asp Glu Gly Thr Leu Asn Ala Gln Val Asn Ser Asp Glu Thr Ala 130 135 140 Thr Asn Arg Thr Gln Asp Val Thr Glu Asn Val Thr Lys Tyr Pro Tyr 145 150 155 160 His Ser Ser Glu Ile Asp Thr His Glu Asp Ala Thr Val Ser Pro Asp 165 170 175 Thr Tyr His Ala Leu Asp Thr His Ala Gln Gln Pro Ser Ala Met Asp 180 185 190 Val Ser Asp Ser Thr Ser Ala Gln Thr Glu Ala Thr Gln Val Asn Thr 195 200 205 Ser Thr Asn Val Asn Asp Lys Glu Ala Val Ser Thr Thr Glu Asp Ala 210 215 220 Pro Thr Thr Gln Leu Gln Ala Ala Val Gln Ser Glu Ala Asn Lys Glu 225 230 235 240 Ala Lys Ala Thr Thr Glu Thr Ala Gln Asn Lys Thr Pro Gln Val Glu 245 250 255 Lys Lys Ala Thr Ala Thr Gln Asn Thr Ala Gln Leu Ala Thr Gly His 260 265 270 Gln Asp Ile Thr Asp Lys Val Ser Lys Arg Val Ala Val Thr Asn Glu 275 280 285 Thr Lys Ala Asp Ala Thr Thr Ala Lys Thr Gln Ala Pro Thr Ser Val 290 295 300 Thr His Gln Ala Asp Thr Gln Ala Lys Thr Ile Thr Asp Lys Lys Ala 305 310 315 320 Thr Thr Tyr Ser Ala Gln Thr Ala Thr Asp Gln Asp Ile Asn Ala Asn 325 330 335 Pro Asp Gly Pro Thr Pro Pro Arg Val Gly Gly Lys Gly Gly Pro Pro 340 345 350 Ala Ser Leu Ser Leu Gln Ser Thr Gly Gln Thr Ala Phe Arg Ser Ala 355 360 365 Val Ala Ser Lys Pro Ser Ala Tyr Gln Pro Lys Val Lys Ser Ser Ile 370 375 380 Asn Asp Tyr Ile Arg Lys Gln Asn Tyr Lys Val Pro Val Tyr Glu Glu 385 390 395 400 Asp Tyr Ser Ser Tyr Phe Pro Lys Tyr Gly Tyr Arg Asn Gly Val Gly 405 410 415 Lys Pro Glu Gly Ile Ile Val His Asp Thr Ala Asn Asp Asn Ser Thr 420 425 430 Ile Asp Gly Glu Ile Ser Tyr Met Lys Arg Asn Tyr Gln Asn Ala Phe 435 440 445 Val His Gly Phe Ile Asn Gly Gln Arg Ile Val Glu Thr Gln Pro Thr 450 455 460 Asp Tyr Leu Ala Trp Gly Ala Gly Ala Ile Ala Asn Glu Arg Phe Ile 465 470 475 480 His Ile Glu Leu Val His Val His Ser Lys Glu Asp Phe Ala Arg Gln 485 490 495 Met Asn Asn Met Ala Asp Tyr Ala Ala Thr Asn Leu Gln Tyr Tyr Gly 500 505 510 Leu Ser Pro Asp Ser Ala Glu Tyr Asp Gly Arg Gly Thr Val Trp Thr 515 520 525 His Asp Ala Val Ser Arg Phe Leu Gly Gly Thr Asp His Thr Asp Pro 530 535 540 His Gly Tyr Leu Lys Gln His Gly Tyr Ser Phe Asp Ala Leu Tyr Asp 545 550 555 560 Leu Ile Asn Glu Lys Tyr Gln Val Lys Met Gly Tyr Ala Ser Pro Ala 565 570 575 Asn Ser Ser Ser Lys Pro Ser Thr Asn Thr Gly Leu Thr Val Lys Asn 580 585 590 Thr Thr Gly Phe Gly Arg Ile Asn Thr Thr Asn Ser Gly Leu Tyr Thr 595 600 605 Thr Val Tyr Asp Gln Lys Gly Lys Ala Thr Asn Gln Thr Asn Gln Thr 610 615 620

Leu Lys Val Thr Lys Glu Ala Thr Leu Asn Gly Asn Lys Phe Tyr Leu 625 630 635 640 Met Ser Asp Ala Lys Ser Asn Gln Thr Leu Gly Trp Val Lys Ser Asn 645 650 655 Asp Ala Thr Tyr Gln Ala Ala Gln Ala Glu Lys Lys Val Thr Lys Thr 660 665 670 Tyr Thr Val Lys Pro Gly Thr Thr Val Tyr Gln Val Pro Trp Gly Ala 675 680 685 Ser Ser Gln Thr Val Gly Lys Ala Pro Gly Thr Ser Asn Gln Ser Phe 690 695 700 Lys Ser Thr Lys Glu Gln Thr Val Ala Lys Thr Lys Trp Leu Tyr Gly 705 710 715 720 Thr Val Gly Lys Val Thr Gly Trp Ile Asn Ala Ser Ser Val Val Ala 725 730 735 Asn Asp Gln Lys Pro Ser Thr Asn Thr Ala Leu Lys Val Thr Thr Asp 740 745 750 Thr Gly Leu Gly Arg Ile Lys Asp Lys Asn Ser Gly Leu Tyr Ala Thr 755 760 765 Val Tyr Asp Lys Thr Gly Lys Ser Thr Ser Ala Thr Asn Gln Thr Leu 770 775 780 Lys Val Thr Lys Lys Ala Ser Val Asn Gly Gln Ser Phe Tyr Leu Val 785 790 795 800 Ser Asp Tyr Ala Lys Gly Thr Asn Val Gly Trp Val Lys Gln Ser Asp 805 810 815 Val Glu Tyr Gln Thr Ser Lys Ala Pro Ser Lys Val Asn Gln Asn Tyr 820 825 830 Thr Ile Lys Ser Gly Ala Lys Leu Tyr Gln Val Pro Trp Gly Thr Ser 835 840 845 Lys Gln Val Ala Gly Thr Val Thr Gly Ala Ala Thr Gln Thr Phe Lys 850 855 860 Ala Thr Gln Ser Gln Thr Val Gly Lys Ala Thr Tyr Leu Tyr Gly Thr 865 870 875 880 Val Gly Lys Leu Ser Gly Trp Ile Asn Ser Thr Ala Leu Ala Ala Gln 885 890 895 Lys Thr Thr Thr Asn Val Thr Lys Thr Ile Ser Gln Ile Gly Gln Leu 900 905 910 Asn Thr Lys Asn Ser Gly Val Lys Ala Ser Ile Tyr Asp Lys Thr Ala 915 920 925 Lys Asp Ala Ser Lys Trp Ala Gly Gln Thr Tyr Lys Ile Thr Lys Thr 930 935 940 Ala Ser Ala Asn Asn Glu Asp Tyr Val Leu Leu Gln Asn Ser Thr Gly 945 950 955 960 Gly Thr Pro Leu Gly Trp Phe Asn Val Lys Asp Val Thr Thr Arg Asn 965 970 975 Leu Gly Ala Glu Thr Ala Val Lys Gly Arg Tyr Thr Val Asn Ser Lys 980 985 990 Thr Ser Gly Leu Tyr Ala Met Pro Trp Gly Thr Thr Lys Gln Arg Val 995 1000 1005 Asp Thr Leu Lys Asn Ala Thr Ser Arg Leu Phe Thr Ala Ser Lys 1010 1015 1020 Ser Val Lys Val Gly Asn Asp Thr Phe Leu Phe Gly Thr Val Asn 1025 1030 1035 Gln Lys Leu Gly Trp Ile Asn Gln Lys Asp Leu Thr Ala Val Ala 1040 1045 1050 Ala Lys Val Ala Asn Met Lys Thr Ala Ser Asn Ser Ala Val Lys 1055 1060 1065 Gly Ala Ala Ile Thr Thr Leu Lys Lys Val Glu Asp Tyr Val Ile 1070 1075 1080 Thr Asn Lys Asn Gly Tyr Tyr Tyr Thr Lys Val Gly Asp Ser Lys 1085 1090 1095 Thr Ala Gly Ala Leu Lys Gly Phe Tyr Gln Gln Ile Phe Lys Val 1100 1105 1110 Glu Lys Thr Ser Leu Leu Asn Gly Ile Thr Trp Tyr Tyr Gly Ala 1115 1120 1125 Phe Gln Asn Gly Thr Lys Gly Trp Ile Lys Ala Ala Asp Ile Arg 1130 1135 1140 Ser Ser Phe Ile Gln His Thr Ala Val Ser Ser Thr Leu Lys Ala 1145 1150 1155 Ala Leu Asp Lys Gln Met Ala Leu Thr Tyr Pro Pro Gln Val Gln 1160 1165 1170 Arg Val Ala Gly Lys Trp Val Asn Ala Asn Arg Ala Glu Thr Glu 1175 1180 1185 Lys Ala Met Asn Thr Ala Ala Ile Glu Lys Asp Pro Thr Leu Ile 1190 1195 1200 Tyr Gln Phe Leu Lys Leu Asp Lys Tyr Gln Gly Leu Gly Val Glu 1205 1210 1215 Glu Leu Asn Lys Leu Leu Arg Gly Lys Gly Ile Leu Glu Gly Gln 1220 1225 1230 Gly Ala Ala Phe Lys Glu Ala Ala Gln Lys His Asn Ile Asn Glu 1235 1240 1245 Val Tyr Leu Met Ser His Ala Phe Leu Glu Thr Gly Asn Gly Thr 1250 1255 1260 Ser Gln Leu Ala Asn Gly Gly His Val Asp Lys Asn Asn Lys Val 1265 1270 1275 Val Thr Asn Gly Lys Pro Lys Tyr Tyr Asn Met Phe Gly Ile Gly 1280 1285 1290 Ala Ile Asp Thr Asp Ala Leu Arg Asn Gly Phe Lys Thr Ala Glu 1295 1300 1305 Lys Tyr Gly Trp Asn Thr Val Ser Lys Ala Ile Ile Gly Gly Ala 1310 1315 1320 Lys Phe Ile Arg Asp Gln Tyr Ile Gly Ser Gly Gln Asn Thr Leu 1325 1330 1335 Tyr Arg Met Arg Trp Asn Pro Glu His Pro Ala Thr His Gln Tyr 1340 1345 1350 Ala Thr Asp Ile Asn Trp Ala Asn Val Asn Ala Gln Arg Met Lys 1355 1360 1365 Tyr Phe Tyr Asp Gln Ile Gly Glu Thr Gly Lys Tyr Phe Asp Val 1370 1375 1380 Asp Val Tyr Lys Lys 1385 273435DNAStaphylococcus pseudintermedius 27gtgtcgacag aaaaacaaga tgatacacaa gcaaaagcga atgcactttc tacagatgat 60tcaacaccta caacagaaca atcaaaaagt gataccgaac caacgcaaaa tcaagaagtg 120aatgaaaaag aagcaacaca agttgagcaa actccagata atgcatcatc agaatttaaa 180gacagtgcag cacaagatga aacaacatcg aaagacgctg acattgctca aacaaaagaa 240gcaaaaaatg aagcattgca aagtgactca tcagcaaacc tatcaaatca agaagcagaa 300aaagaaaaca caactaacag tgaatctcaa gtaaatgaac aacctaaagc agatacaact 360tctgattcac aagtttcaaa tacacctcaa caagatccta catcgacagt accttcacca 420gaaacatcag aagacaatcg accttcaaca gaattaaaaa atagtgaaac aactgcttct 480caaacaactt taaacgaaca acctactgaa tcaacatcca atcaaactga aacgacaaaa 540gcaccaacaa atacaacagt cgcaaacaaa aaagcacctg cacaattaaa agacattaaa 600ggtacaactc aacttcgcgc agtcagtgca agtcaaccta ctgctgttgc agctggtggg 660acaaacgtaa atgacaaagt aacagcatca aatatgaaaa taactgaatc ttatatcgag 720ccaaacaact caggaaactt ttatttaaaa agtaacttta acgtaaacgg gactgttaaa 780gaaggtgact actttactgt aaaaatgcct gacactgtca atacttttgg tgacacgcgc 840cattcacctg actttagaga aaaaattaca aatcaaaaag gtgaagttgt ggctttaggt 900gaatatgatg ttgccaacca tactatgaca tacacgttca ctaatgtcgt taataattta 960gaaaatgtgt ccggttcgtt taacttgact caatttatgg atcgtaaagt ggcaacagat 1020tctcaaacat atccattaaa atacgacatt gcaggcgaat ctttagatac acaaattaaa 1080gtgaattacg gtcaatatta cagtgaaggt gattctaact taaaatcaat gatcacttca 1140gaagatccta aaactgggga atatgatcaa tacatttatg tcaacccatt acaaaaaacg 1200gcaaacggta cagttgtaag agttcaaggg ttccaagttg atccaactaa gagtaatggg 1260caagtgaaac cagatacaac gcagatcaag attttaaaag ttgctgatgg tcaaccactt 1320aatagtagtt tcggtgtgaa tgacagtgaa tatgaagatg tcacaaaaca atttaatatt 1380gtttatcgtg ataataattt ggcagatatt tactttggaa acttaaatgg gcaacgctat 1440atcgttaaag tgacgagcaa agaaaatttg gattctaaag aggatttaaa cttgcgtgct 1500attatggcca ctcaaaaccg atatggtcaa tataactata ttacttggga taacgatatt 1560gtgaaaagct cttctggtgg tacagccgac ggaaatgaag catcatatca attaggcgac 1620aaagtttgga atgatgtgaa taaaaatggt atccaagatc aaggtgaaac tggtattgct 1680gatgtaaagg ttactttaaa agatcttgat ggcaacattt tggatacaac ttatacaaac 1740acgaatggta aatatatctt tgataattta aaaaatggta attatcaagt gggttttgaa 1800acaccggaag gctatgctgc aagtccatcc aaccaaggta atgacgccct tgactctgat 1860ggtcctacaa atgtacaagc tgtcattagt gatgggaaca acttaactat cgaccaaggt 1920ttttaccaaa ctgaaacacc aacacacaac gtcggcgaca aagtttggga agacttaaat 1980aaagatggca tccaagacca aaatgaacca ggtatcgcta acgttaaggt cactttaaaa 2040gacgcggatg gtaacgttgt ggatacacgt acgactgatg ataaagggaa ttacttattc 2100gaaaaagtta aagaaggcga atatacaatt gaatttgaaa cgcctgaagg ttatacaccg 2160acacaaacag gccaaggcag agtcagcact gactctaatg ggacatcttc ccttatttta 2220gtcgaaggta acgatgactt aacaatcgat agcggtttct acaaagaacc tgttacacac 2280aaagttggcg acaaagtttg ggatgactta aataaagacg gtatccaaga tgacaatgaa 2340ccaggcatct ctgacgttaa agtcacttta aaagatgcgg atggtaacgt cgtagataca 2400cgtacaactg atgctaacgg taactattta tttgaaaacg tgaaagaagg cgactatacg 2460attgaatttg aaacgcctga aggttacaca ccgactgtta caggtcaagg tacagctgat 2520aatgactcta acggtacatc tacaaaagtt acagttaaag atggcgatga cttaacaatt 2580gacagtggtt tcactcaagt tacacctgag ccaccgacac ataatgttgg cgacaaagtt 2640tgggatgact taaataaaga cggtatccaa gatgacaatg aaccaggcat ctctgacgtt 2700aaagtcactt taaaagatgc ggatggtaac gtcgtagata cacgtacaac tgatgctaac 2760ggtaactatt tatttgaaaa cgtgaaagaa ggcgactata cgattgaatt tgaaacgcct 2820gaaggttaca caccgactgt tacaggtcaa ggtacagctg ataatgactc taacggtaca 2880tctacaaaag ttacagttaa agatggcgat gacttaacaa ttgacagtgg tttcactcaa 2940gttacacctg agccaccgac tgaacctgaa aaccctagtc cagagcaacc ttctgaaccg 3000ggtcaacctg aaaatcctag tccagagcaa ccttctgaac caggtcaacc tgaaaatcct 3060agtccagagc aaccttctga accaggtcaa cctgaaaatc ctagtccaga acaaccttct 3120gaaccgggtc aacctgaaaa tcctagtcca gaacagcctt ctgagccagg acaacctaaa 3180aatcctagtc cagaacagcc aaataatcca agtgtgccag gtgttcaaaa tcctgaaaaa 3240ccaagcttaa ctccagtcac acaaccggtt cattcaaacg gcaataaagc aaaaccatct 3300caacaacaaa aagctttacc tgaaacaggt gaaactgaat cacatcaagg tacattattc 3360ggtggtattt tagctgcttt aggcgcatta ctctttgcac gtaaaaaacg ccacgataaa 3420aaacaatcac actaa 3435281144PRTStaphylococcus pseudintermedius 28Val Ser Thr Glu Lys Gln Asp Asp Thr Gln Ala Lys Ala Asn Ala Leu 1 5 10 15 Ser Thr Asp Asp Ser Thr Pro Thr Thr Glu Gln Ser Lys Ser Asp Thr 20 25 30 Glu Pro Thr Gln Asn Gln Glu Val Asn Glu Lys Glu Ala Thr Gln Val 35 40 45 Glu Gln Thr Pro Asp Asn Ala Ser Ser Glu Phe Lys Asp Ser Ala Ala 50 55 60 Gln Asp Glu Thr Thr Ser Lys Asp Ala Asp Ile Ala Gln Thr Lys Glu 65 70 75 80 Ala Lys Asn Glu Ala Leu Gln Ser Asp Ser Ser Ala Asn Leu Ser Asn 85 90 95 Gln Glu Ala Glu Lys Glu Asn Thr Thr Asn Ser Glu Ser Gln Val Asn 100 105 110 Glu Gln Pro Lys Ala Asp Thr Thr Ser Asp Ser Gln Val Ser Asn Thr 115 120 125 Pro Gln Gln Asp Pro Thr Ser Thr Val Pro Ser Pro Glu Thr Ser Glu 130 135 140 Asp Asn Arg Pro Ser Thr Glu Leu Lys Asn Ser Glu Thr Thr Ala Ser 145 150 155 160 Gln Thr Thr Leu Asn Glu Gln Pro Thr Glu Ser Thr Ser Asn Gln Thr 165 170 175 Glu Thr Thr Lys Ala Pro Thr Asn Thr Thr Val Ala Asn Lys Lys Ala 180 185 190 Pro Ala Gln Leu Lys Asp Ile Lys Gly Thr Thr Gln Leu Arg Ala Val 195 200 205 Ser Ala Ser Gln Pro Thr Ala Val Ala Ala Gly Gly Thr Asn Val Asn 210 215 220 Asp Lys Val Thr Ala Ser Asn Met Lys Ile Thr Glu Ser Tyr Ile Glu 225 230 235 240 Pro Asn Asn Ser Gly Asn Phe Tyr Leu Lys Ser Asn Phe Asn Val Asn 245 250 255 Gly Thr Val Lys Glu Gly Asp Tyr Phe Thr Val Lys Met Pro Asp Thr 260 265 270 Val Asn Thr Phe Gly Asp Thr Arg His Ser Pro Asp Phe Arg Glu Lys 275 280 285 Ile Thr Asn Gln Lys Gly Glu Val Val Ala Leu Gly Glu Tyr Asp Val 290 295 300 Ala Asn His Thr Met Thr Tyr Thr Phe Thr Asn Val Val Asn Asn Leu 305 310 315 320 Glu Asn Val Ser Gly Ser Phe Asn Leu Thr Gln Phe Met Asp Arg Lys 325 330 335 Val Ala Thr Asp Ser Gln Thr Tyr Pro Leu Lys Tyr Asp Ile Ala Gly 340 345 350 Glu Ser Leu Asp Thr Gln Ile Lys Val Asn Tyr Gly Gln Tyr Tyr Ser 355 360 365 Glu Gly Asp Ser Asn Leu Lys Ser Met Ile Thr Ser Glu Asp Pro Lys 370 375 380 Thr Gly Glu Tyr Asp Gln Tyr Ile Tyr Val Asn Pro Leu Gln Lys Thr 385 390 395 400 Ala Asn Gly Thr Val Val Arg Val Gln Gly Phe Gln Val Asp Pro Thr 405 410 415 Lys Ser Asn Gly Gln Val Lys Pro Asp Thr Thr Gln Ile Lys Ile Leu 420 425 430 Lys Val Ala Asp Gly Gln Pro Leu Asn Ser Ser Phe Gly Val Asn Asp 435 440 445 Ser Glu Tyr Glu Asp Val Thr Lys Gln Phe Asn Ile Val Tyr Arg Asp 450 455 460 Asn Asn Leu Ala Asp Ile Tyr Phe Gly Asn Leu Asn Gly Gln Arg Tyr 465 470 475 480 Ile Val Lys Val Thr Ser Lys Glu Asn Leu Asp Ser Lys Glu Asp Leu 485 490 495 Asn Leu Arg Ala Ile Met Ala Thr Gln Asn Arg Tyr Gly Gln Tyr Asn 500 505 510 Tyr Ile Thr Trp Asp Asn Asp Ile Val Lys Ser Ser Ser Gly Gly Thr 515 520 525 Ala Asp Gly Asn Glu Ala Ser Tyr Gln Leu Gly Asp Lys Val Trp Asn 530 535 540 Asp Val Asn Lys Asn Gly Ile Gln Asp Gln Gly Glu Thr Gly Ile Ala 545 550 555 560 Asp Val Lys Val Thr Leu Lys Asp Leu Asp Gly Asn Ile Leu Asp Thr 565 570 575 Thr Tyr Thr Asn Thr Asn Gly Lys Tyr Ile Phe Asp Asn Leu Lys Asn 580 585 590 Gly Asn Tyr Gln Val Gly Phe Glu Thr Pro Glu Gly Tyr Ala Ala Ser 595 600 605 Pro Ser Asn Gln Gly Asn Asp Ala Leu Asp Ser Asp Gly Pro Thr Asn 610 615 620 Val Gln Ala Val Ile Ser Asp Gly Asn Asn Leu Thr Ile Asp Gln Gly 625 630 635 640 Phe Tyr Gln Thr Glu Thr Pro Thr His Asn Val Gly Asp Lys Val Trp 645 650 655 Glu Asp Leu Asn Lys Asp Gly Ile Gln Asp Gln Asn Glu Pro Gly Ile 660 665 670 Ala Asn Val Lys Val Thr Leu Lys Asp Ala Asp Gly Asn Val Val Asp 675 680 685 Thr Arg Thr Thr Asp Asp Lys Gly Asn Tyr Leu Phe Glu Lys Val Lys 690 695 700 Glu Gly Glu Tyr Thr Ile Glu Phe Glu Thr Pro Glu Gly Tyr Thr Pro 705 710 715 720 Thr Gln Thr Gly Gln Gly Arg Val Ser Thr Asp Ser Asn Gly Thr Ser 725 730 735 Ser Leu Ile Leu Val Glu Gly Asn Asp Asp Leu Thr Ile Asp Ser Gly 740 745 750 Phe Tyr Lys Glu Pro Val Thr His Lys Val Gly Asp Lys Val Trp Asp 755 760 765 Asp Leu Asn Lys Asp Gly Ile Gln Asp Asp Asn Glu Pro Gly Ile Ser 770 775 780 Asp Val Lys Val Thr Leu Lys Asp Ala Asp Gly Asn Val Val Asp Thr 785 790 795 800 Arg Thr Thr Asp Ala Asn Gly Asn Tyr Leu Phe Glu Asn Val Lys Glu 805 810 815 Gly Asp Tyr Thr Ile Glu Phe Glu Thr Pro Glu Gly Tyr Thr Pro Thr 820 825 830 Val Thr Gly Gln Gly Thr Ala Asp Asn Asp Ser Asn Gly Thr Ser Thr 835 840 845 Lys Val Thr Val Lys Asp Gly Asp Asp Leu Thr Ile Asp Ser Gly Phe 850 855 860 Thr Gln Val Thr Pro Glu Pro Pro Thr His Asn Val Gly Asp Lys Val 865 870 875 880 Trp Asp Asp Leu Asn Lys Asp Gly Ile Gln Asp Asp Asn Glu Pro Gly 885 890 895 Ile Ser Asp Val Lys Val Thr Leu Lys Asp Ala Asp Gly Asn Val Val 900 905 910 Asp Thr Arg Thr Thr Asp Ala Asn Gly Asn Tyr Leu Phe Glu Asn Val 915 920 925 Lys Glu Gly Asp Tyr Thr Ile Glu Phe Glu Thr Pro Glu Gly Tyr Thr 930 935 940 Pro Thr Val Thr Gly Gln Gly Thr Ala Asp Asn Asp Ser Asn Gly Thr 945 950 955 960 Ser Thr Lys Val Thr Val Lys Asp Gly Asp Asp Leu Thr Ile Asp Ser 965 970 975 Gly Phe Thr

Gln Val Thr Pro Glu Pro Pro Thr Glu Pro Glu Asn Pro 980 985 990 Ser Pro Glu Gln Pro Ser Glu Pro Gly Gln Pro Glu Asn Pro Ser Pro 995 1000 1005 Glu Gln Pro Ser Glu Pro Gly Gln Pro Glu Asn Pro Ser Pro Glu 1010 1015 1020 Gln Pro Ser Glu Pro Gly Gln Pro Glu Asn Pro Ser Pro Glu Gln 1025 1030 1035 Pro Ser Glu Pro Gly Gln Pro Glu Asn Pro Ser Pro Glu Gln Pro 1040 1045 1050 Ser Glu Pro Gly Gln Pro Lys Asn Pro Ser Pro Glu Gln Pro Asn 1055 1060 1065 Asn Pro Ser Val Pro Gly Val Gln Asn Pro Glu Lys Pro Ser Leu 1070 1075 1080 Thr Pro Val Thr Gln Pro Val His Ser Asn Gly Asn Lys Ala Lys 1085 1090 1095 Pro Ser Gln Gln Gln Lys Ala Leu Pro Glu Thr Gly Glu Thr Glu 1100 1105 1110 Ser His Gln Gly Thr Leu Phe Gly Gly Ile Leu Ala Ala Leu Gly 1115 1120 1125 Ala Leu Leu Phe Ala Arg Lys Lys Arg His Asp Lys Lys Gln Ser 1130 1135 1140 His 29660DNAStaphylococcus pseudintermedius 29atgaagaaaa caatttcagt acttggtcta gggctattag caacattttt tgtaagtaac 60gaatcatatg ccgcagaaac gattcaaaac aatacgtcat caagtgaaac gaatcaaaat 120tcagatcaga cgccgttaga tcattatatt cgaaaagcag atggcacact ggttgaaccg 180aacgtgtacc cacataaaga ttatgtagag aatgaaggac ctttaccaga gtttaaattt 240caagttgact ctaagaaaga ttcatctgat ccaaatcaag caccgttaga tcattatatt 300cgaaaagcgg atggcacgtt ggttgaaccg aatgtatatc cacacaaaga ttatgtcgaa 360aatgaagggc ctttaccaga gtttaaattt atgtatgctg acaaacaaaa tcatcatgac 420caacagagta aaaacaacaa ggataagcag cgtgcaaatt acagtgacaa aaagcataat 480gatcagccgg gtcatccaaa agcagtcacg ccagctgtac aacatgataa agcagtcact 540tcaaacgcta ctgtaaaagc attgccaaac acaggtgaat ctgataaaac aacacaatta 600ccaatcgtat tatcattgtt atctgtgggg attttagttt tattaaaatt gagaaaataa 66030219PRTStaphylococcus pseudintermedius 30Met Lys Lys Thr Ile Ser Val Leu Gly Leu Gly Leu Leu Ala Thr Phe 1 5 10 15 Phe Val Ser Asn Glu Ser Tyr Ala Ala Glu Thr Ile Gln Asn Asn Thr 20 25 30 Ser Ser Ser Glu Thr Asn Gln Asn Ser Asp Gln Thr Pro Leu Asp His 35 40 45 Tyr Ile Arg Lys Ala Asp Gly Thr Leu Val Glu Pro Asn Val Tyr Pro 50 55 60 His Lys Asp Tyr Val Glu Asn Glu Gly Pro Leu Pro Glu Phe Lys Phe 65 70 75 80 Gln Val Asp Ser Lys Lys Asp Ser Ser Asp Pro Asn Gln Ala Pro Leu 85 90 95 Asp His Tyr Ile Arg Lys Ala Asp Gly Thr Leu Val Glu Pro Asn Val 100 105 110 Tyr Pro His Lys Asp Tyr Val Glu Asn Glu Gly Pro Leu Pro Glu Phe 115 120 125 Lys Phe Met Tyr Ala Asp Lys Gln Asn His His Asp Gln Gln Ser Lys 130 135 140 Asn Asn Lys Asp Lys Gln Arg Ala Asn Tyr Ser Asp Lys Lys His Asn 145 150 155 160 Asp Gln Pro Gly His Pro Lys Ala Val Thr Pro Ala Val Gln His Asp 165 170 175 Lys Ala Val Thr Ser Asn Ala Thr Val Lys Ala Leu Pro Asn Thr Gly 180 185 190 Glu Ser Asp Lys Thr Thr Gln Leu Pro Ile Val Leu Ser Leu Leu Ser 195 200 205 Val Gly Ile Leu Val Leu Leu Lys Leu Arg Lys 210 215 315541DNAStaphylococcus pseudintermedius 31atgaaaagta aatatgattt tttacctaat agacttaata aattttctat acgaaaattt 60actgttggta gtgtatcagt gctaatagga gccactttat tattcgggtt tgtagaagga 120gaagcatcag catcagtaaa agaaggtcaa caaagtataa attctagtga gaaagaaagc 180gccgatccta cagtagttga tttaattagt aagaaagaaa caaatttaga tggactagat 240gtatcaagag aagaaacgac caaagtacca ataaatgaaa acaaaagagg tgaggaacaa 300agtatttctg ataaagctat aacagaaaaa gctgatacac cagtaagcaa tttatcaagt 360aaggaagttg aggagcaagg tgtttctgat aaagctataa cagaaaaagc tgatacacca 420gtaaccaatt tatcaagtaa ggaagctaag gagcaaggtg cttctgatag agttataaca 480gaaaaagctg atacaccagt aagcaattta tcaagtaagg aagctaagga gcaaggtgct 540tctgatagag ttataacaga aaaagctgat acaccagtaa gcaatttatc aagtaaggaa 600gttgaggagc aaggtgtttc tgataaagct atagagaaaa tagctgatgc atcagctact 660gatttgtcaa gtaaggaaga agtagaacaa gatatatcta cacaaggtaa agtaaaatca 720aaggaagcag tacaagtaga aagtagtcag ttacaaaatt taaatagtga aataaatgct 780gaacctaatg aaattaaggc aatagataga agttcaatat tacctttaaa tttaaatgat 840gaagaaaata acaaaaaagt taataaaggg actcgggttc cagaagctac attaagaaat 900gcctctaata accaactcaa tacacgaatg agatcagtga gtttatttag agttgctaga 960ctaacagaaa tcaatagaaa tgttaatgat aaagtaaagg tttcggatat cgacatcgca 1020atagccccac cgcatactaa ccctaaaact ggaaaagaag aattttgggc gacatcttct 1080tcagttttaa agttaaaggc aagctatgaa ttggataata gcatttctaa aggggatcaa 1140tttactattc aatttggtca aaatattcgt ccaggtggat taaatttacc aagaccttat 1200aattttttat atgataagga taaaaaatta gttgcaactg gccgttacaa taaagaatca 1260aatacaatca catatacatt tacggattat gtagataaac atcaaaacat taaaggtagt 1320tttgagatga atgcattttc tagaaaggaa aatgctacta ctgacaaaac agcatatcca 1380atggatgtta ctattgcgaa tcaaaaatat agtgaaaata ttattgtaga ctatggtaat 1440aaaaagaatg ctgctattat ttcaagtaca gaatatattg atttagatgg tagtagaaaa 1500atgacaacat atattaatca aaatggtagt aaaaattcca tctatcgtgc tgatatgcaa 1560attgatttga acggttataa atttgatcca tccaaaaaca attttaaaat ttatgaagtg 1620gaaaatagca gtgactttgt ggatagcttt tcaccagatg tgagcaagtt aagggatgtt 1680acgagtcaat ttaatattca atatacaaat aataatacaa tggcaaaagt ggattttggt 1740actaaccttt ggaggggtaa aaaatatatt attcagcaag tggcgaatat agacgacagt 1800aaattagtga aaaatgcttc aatcaattat acattgaata aaatggattt taataataaa 1860agaacggtag aaacacataa caatacttat tctacagtga aagataaatc aacagcacta 1920ggtgacgtac aggaaagtca atctattagt gagagccaat cagttagtga aagcgagtca 1980ctaagtgaga gccaatcaat cagtgaaagc gaatcattaa gtgagagcca atcaatcagt 2040gaaagcgaat cattaagtga aagtcaatca atctcagaga gcgaatcact aagtgaaagt 2100cagtcaattt cagaaagcga atcattaagt gaaagccaat caatctcaga gagtgaatca 2160ttaagtgaaa gtcagtcaat ttcagagagt gaatcactaa gtgaaagtca gtcaatttca 2220gaaagcgaat cattaagcga gagtcagtca atttcagaaa gcgaatcatt aagcgagagt 2280cagtcaattt cagaaagcga atcattaagt gaaagccaat caatcagtga aagcgaatca 2340ctaagcgaga gccaatcaat ctcagagagt gaatcattaa gcgagagtca atcaatctca 2400gagagcgaat cattaagtga gagtcaatca atcagtgaaa gcgagtcact aagtgagagt 2460caatcaattt cagagagcga atcattaagt gaaagccaat caatctcaga gagtgaatca 2520ctaagtgaga gccaatcaat ctcagagagt gaatcattaa gtgagagcca atcaatctca 2580gagagcgagt cactaagcga gagccaatca atttcagaga gtgaatcact aagtgaaagt 2640caatcaattt cagagagcga atcactaagt gagagccaat caatctcaga gagcgaatca 2700ctaagtgaaa gtcaatcaat ttcagagagt gaatcactaa gcgagagcca atcaatctca 2760gagagtgaat cattaagtga aagtcagtca atttcagaga gtgaatcact aagtgaaagt 2820cagtcaattt cagaaagcga atcattaagt gaaagccaat caatcagtga aagcgaatca 2880ctaagcgaga gtcaatcaat ctcagagagc gaatcattaa gtgaaagtca atcaatttca 2940gaaagcgagt cattaagcga gagtcagtca atctcagaga gcgaatcact aagcgagagt 3000caatcaatct cagagagtga atcattaagt gagagccaat cagttagtga aagcgaatca 3060ctaagtgaaa gtcagtcaat ttcagaaagc gaatcattaa gtgagagtca atcaatttca 3120gaaagcgaat cattaagtga aagccaatca atcagtgaaa gcgaatcact aagcgagagc 3180caatcaatca gtgaaagcga atcattaagt gagagtcaat caatctcaga aagcgaatca 3240ttaagtgaga gtcaatcaat cagtgaaagc gaatcactaa gcgagagcca atcaatctca 3300gagagcgaat cactaagcga gagccaatca atctcagaga gcgagtcact aagcgagagc 3360caatcaatca gtgaaagcga atcattaagt gagagtcaat caatcagtga aagcgagtca 3420ctaagtgaga gccaatcaat ctcagagagt gaatcattga gtgagagcca atcaatctca 3480gagagcgagt cactaagtga gagtcaatca atttcagaga gcgaatcatt aagtgaaagc 3540caatcaatct cagagagtga atcattgagt gagagccaat cagttagtga aagcgagtca 3600ctaagtgaga gtcaatcaat cagtgaaagc gagtcactaa gtgagagtca atcaatttca 3660gagagcgaat cattaagcga gagtcagtca atctcagaga gtgaatcact aagtgagagc 3720caatcaatct cagagagtga atcattaagt gagagccaat caatctcaga gagtgaatca 3780ctaagtgaga gtcaatcaat cagtgaaagc gaatcactaa gcgagagcca atcaatttca 3840gagagtgaat cattaagtga gagccaatca gttagtgaaa gcgaatcact aagcgagagc 3900caatcaatct cagagagcga atcattgagt gagagccaat caatctcaga gagtgaatca 3960ttgagtgaga gtcaatcaat cagtgaaagc gaatcactaa gcgaaagtca atcaatttca 4020gagagtgaat cattgagtga gagccaatca atttcagaga gtgaatcact aagtgaaagt 4080cagtcaattt cagaaagcga atcactaagc gagagccaat caatctcaga gagcgaatca 4140ctaagtgaaa gtcagtcaat ttcagaaagc gaatcattaa gtgaaagcca atcaatctca 4200gagagtgaat cattaagtga aagtcagtca atttcagaga gtgaatcact aagtgaaagt 4260cagtcaattt cagaaagcga atcattaagc gagagtcagt caatttcaga aagcgaatca 4320ttaagtgaaa gccaatcaat cagtgaaagc gaatcactaa gcgagagcca atcaatctca 4380gagagcgaat cactaagcga gagccaatca atctcagaga gcgaatcact aagtgaaagt 4440caatcaattt cagagagtga atcattgagt gagagtcaat caatttcaga gagtgaatca 4500ctaagtgaaa gtcaatcaat ttcagagagt gaatcactaa gcgagagcca atcaatctca 4560gagagtgaat cattaagtga aagtcagtca atttcagaga gggaatcact aagtgaaagt 4620cagtcaattt cagaaagcga atcattaagt gaaagccaat caatcagtga aagcgaatca 4680ctaagtgaaa gtcaatcaat ctcagagagt gaatcactaa gtgagagcca atcaatctca 4740gagagtgaat cattgagtga gagccaatca atctcagaga gcgaatcact aagtgaaagt 4800caatcaattt cagaaagcga gtcattaagc gagagtcagt caatctcaga gagtgaatca 4860ctaagtgaga gccaatcaat ctcagagagt gaatcactaa gtgagagtca atcaatcagt 4920gaaagcgaat cactaagcga gagccaatca atttcagaga gtgaatcatt aagtgagagc 4980caatcagtta gtgaaagcga atcactaagc gagagccaat caatctcaga gagcgagtca 5040ctaagcgaga gtcaatcaat ctcagagagt gaatcactaa gtgaaagtca gtcaatttca 5100gaaagcgagt cactaagcga gagtcaatca atctcagaga gtgaatcatt gagtgagagc 5160caatcaatct cagagagcga atcattgagt gagagccaat caatctcaga gagtgaatca 5220ttgagtgaga gccaatcaat ttcagagagc gaatcactaa gcgagagcca atcaatcagt 5280gaaagcgaat cattaagtga gagtcagtca attagcgaaa gcgaatcact aagtgagagt 5340caatcaatct cagagagtga atcactaagt gaaagtcagt caatcagcga aagcgaatct 5400aaatctttac ctaataccgg tactggagaa aagatttcta attatccagg tattttagga 5460ggattattaa gcatattagg tataagtttg cttaaaagaa aagacagaga gaaaaaatta 5520ggacaaaaat ctaataagta g 5541321846PRTStaphylococcus pseudintermedius 32Met Lys Ser Lys Tyr Asp Phe Leu Pro Asn Arg Leu Asn Lys Phe Ser 1 5 10 15 Ile Arg Lys Phe Thr Val Gly Ser Val Ser Val Leu Ile Gly Ala Thr 20 25 30 Leu Leu Phe Gly Phe Val Glu Gly Glu Ala Ser Ala Ser Val Lys Glu 35 40 45 Gly Gln Gln Ser Ile Asn Ser Ser Glu Lys Glu Ser Ala Asp Pro Thr 50 55 60 Val Val Asp Leu Ile Ser Lys Lys Glu Thr Asn Leu Asp Gly Leu Asp 65 70 75 80 Val Ser Arg Glu Glu Thr Thr Lys Val Pro Ile Asn Glu Asn Lys Arg 85 90 95 Gly Glu Glu Gln Ser Ile Ser Asp Lys Ala Ile Thr Glu Lys Ala Asp 100 105 110 Thr Pro Val Ser Asn Leu Ser Ser Lys Glu Val Glu Glu Gln Gly Val 115 120 125 Ser Asp Lys Ala Ile Thr Glu Lys Ala Asp Thr Pro Val Thr Asn Leu 130 135 140 Ser Ser Lys Glu Ala Lys Glu Gln Gly Ala Ser Asp Arg Val Ile Thr 145 150 155 160 Glu Lys Ala Asp Thr Pro Val Ser Asn Leu Ser Ser Lys Glu Ala Lys 165 170 175 Glu Gln Gly Ala Ser Asp Arg Val Ile Thr Glu Lys Ala Asp Thr Pro 180 185 190 Val Ser Asn Leu Ser Ser Lys Glu Val Glu Glu Gln Gly Val Ser Asp 195 200 205 Lys Ala Ile Glu Lys Ile Ala Asp Ala Ser Ala Thr Asp Leu Ser Ser 210 215 220 Lys Glu Glu Val Glu Gln Asp Ile Ser Thr Gln Gly Lys Val Lys Ser 225 230 235 240 Lys Glu Ala Val Gln Val Glu Ser Ser Gln Leu Gln Asn Leu Asn Ser 245 250 255 Glu Ile Asn Ala Glu Pro Asn Glu Ile Lys Ala Ile Asp Arg Ser Ser 260 265 270 Ile Leu Pro Leu Asn Leu Asn Asp Glu Glu Asn Asn Lys Lys Val Asn 275 280 285 Lys Gly Thr Arg Val Pro Glu Ala Thr Leu Arg Asn Ala Ser Asn Asn 290 295 300 Gln Leu Asn Thr Arg Met Arg Ser Val Ser Leu Phe Arg Val Ala Arg 305 310 315 320 Leu Thr Glu Ile Asn Arg Asn Val Asn Asp Lys Val Lys Val Ser Asp 325 330 335 Ile Asp Ile Ala Ile Ala Pro Pro His Thr Asn Pro Lys Thr Gly Lys 340 345 350 Glu Glu Phe Trp Ala Thr Ser Ser Ser Val Leu Lys Leu Lys Ala Ser 355 360 365 Tyr Glu Leu Asp Asn Ser Ile Ser Lys Gly Asp Gln Phe Thr Ile Gln 370 375 380 Phe Gly Gln Asn Ile Arg Pro Gly Gly Leu Asn Leu Pro Arg Pro Tyr 385 390 395 400 Asn Phe Leu Tyr Asp Lys Asp Lys Lys Leu Val Ala Thr Gly Arg Tyr 405 410 415 Asn Lys Glu Ser Asn Thr Ile Thr Tyr Thr Phe Thr Asp Tyr Val Asp 420 425 430 Lys His Gln Asn Ile Lys Gly Ser Phe Glu Met Asn Ala Phe Ser Arg 435 440 445 Lys Glu Asn Ala Thr Thr Asp Lys Thr Ala Tyr Pro Met Asp Val Thr 450 455 460 Ile Ala Asn Gln Lys Tyr Ser Glu Asn Ile Ile Val Asp Tyr Gly Asn 465 470 475 480 Lys Lys Asn Ala Ala Ile Ile Ser Ser Thr Glu Tyr Ile Asp Leu Asp 485 490 495 Gly Ser Arg Lys Met Thr Thr Tyr Ile Asn Gln Asn Gly Ser Lys Asn 500 505 510 Ser Ile Tyr Arg Ala Asp Met Gln Ile Asp Leu Asn Gly Tyr Lys Phe 515 520 525 Asp Pro Ser Lys Asn Asn Phe Lys Ile Tyr Glu Val Glu Asn Ser Ser 530 535 540 Asp Phe Val Asp Ser Phe Ser Pro Asp Val Ser Lys Leu Arg Asp Val 545 550 555 560 Thr Ser Gln Phe Asn Ile Gln Tyr Thr Asn Asn Asn Thr Met Ala Lys 565 570 575 Val Asp Phe Gly Thr Asn Leu Trp Arg Gly Lys Lys Tyr Ile Ile Gln 580 585 590 Gln Val Ala Asn Ile Asp Asp Ser Lys Leu Val Lys Asn Ala Ser Ile 595 600 605 Asn Tyr Thr Leu Asn Lys Met Asp Phe Asn Asn Lys Arg Thr Val Glu 610 615 620 Thr His Asn Asn Thr Tyr Ser Thr Val Lys Asp Lys Ser Thr Ala Leu 625 630 635 640 Gly Asp Val Gln Glu Ser Gln Ser Ile Ser Glu Ser Gln Ser Val Ser 645 650 655 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 660 665 670 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 675 680 685 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 690 695 700 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 705 710 715 720 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 725 730 735 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 740 745 750 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 755 760 765 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 770 775 780 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 785 790 795 800 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 805 810 815 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 820 825 830 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 835 840 845 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 850 855 860 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 865 870 875 880 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 885 890 895 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 900 905 910 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 915 920 925 Gln Ser Ile Ser Glu Ser Glu

Ser Leu Ser Glu Ser Gln Ser Ile Ser 930 935 940 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 945 950 955 960 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser 965 970 975 Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser 980 985 990 Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 995 1000 1005 Leu Ser Glu Ser Gln Ser Val Ser Glu Ser Glu Ser Leu Ser Glu 1010 1015 1020 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1025 1030 1035 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1040 1045 1050 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1055 1060 1065 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1070 1075 1080 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1085 1090 1095 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1100 1105 1110 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1115 1120 1125 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1130 1135 1140 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1145 1150 1155 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1160 1165 1170 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1175 1180 1185 Leu Ser Glu Ser Gln Ser Val Ser Glu Ser Glu Ser Leu Ser Glu 1190 1195 1200 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1205 1210 1215 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1220 1225 1230 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1235 1240 1245 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1250 1255 1260 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1265 1270 1275 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Val Ser Glu 1280 1285 1290 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1295 1300 1305 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1310 1315 1320 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1325 1330 1335 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1340 1345 1350 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1355 1360 1365 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1370 1375 1380 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1385 1390 1395 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1400 1405 1410 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1415 1420 1425 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1430 1435 1440 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1445 1450 1455 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1460 1465 1470 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1475 1480 1485 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1490 1495 1500 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1505 1510 1515 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1520 1525 1530 Arg Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1535 1540 1545 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1550 1555 1560 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1565 1570 1575 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1580 1585 1590 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1595 1600 1605 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1610 1615 1620 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1625 1630 1635 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1640 1645 1650 Ser Glu Ser Leu Ser Glu Ser Gln Ser Val Ser Glu Ser Glu Ser 1655 1660 1665 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1670 1675 1680 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1685 1690 1695 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1700 1705 1710 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1715 1720 1725 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu 1730 1735 1740 Ser Gln Ser Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser 1745 1750 1755 Ile Ser Glu Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu 1760 1765 1770 Ser Glu Ser Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser 1775 1780 1785 Leu Ser Glu Ser Gln Ser Ile Ser Glu Ser Glu Ser Lys Ser Leu 1790 1795 1800 Pro Asn Thr Gly Thr Gly Glu Lys Ile Ser Asn Tyr Pro Gly Ile 1805 1810 1815 Leu Gly Gly Leu Leu Ser Ile Leu Gly Ile Ser Leu Leu Lys Arg 1820 1825 1830 Lys Asp Arg Glu Lys Lys Leu Gly Gln Lys Ser Asn Lys 1835 1840 1845 331953DNAStaphylococcus pseudintermedius 33atgttaagaa caaattataa actaagaaag cttaaagtag gtttagtatc gacaggtgtg 60gcgttgactt ttgtgatggc aagtgggaat gcagaggcgt cggagaacga gcagactgaa 120gtaaaagggg aggcgcaagt tgcttctgtg aatgaaaaag agagtgaagc agaattacct 180gtagcgcaac aagaagcatc tattcaacta gacaaagtac aaccaggcga tgcacagctt 240tcaggctata cacagccaaa caaagcgatt tctgtaaaga tcgacaataa agatattgtg 300tctgtagatg atggctatga agaggtatta tcggatgata caggtaaatt tgtatatgat 360ttgaaagggc gtcaaattgt ttacaatcaa aaagttgatg ttgaagcgat gacgccattt 420aattttgaag attttgatga atcagcactt gagagcgaag aggcattgga ggcgttaggt 480caattggaag acgaagaaac agcgacagct tctgtgacga cgcctagata tgaaggtgcg 540tatacagttc ctgaagaacg cttgacaccc attcaaggcc aacagcaagt attcatcgaa 600cctattttag aaggggcaag taaaatcaaa ggacatacat ctgtacaagg taaagtcgcg 660ttagcaatca atcaagaaca tgtgcaccta ggtgatacgt tagaagaaca agcagcactc 720actgatcaag agtggcaagg tcgttatgac gggatttggc gccatattga tgatcaaggg 780tttttcgagt ttgacttgaa ccgtctttac aataaatctt acccattgaa gtctggcgat 840ttagtgactt tatcttttaa atctaatgac gaagtaggcc cattattcaa tgtgaacgtt 900gagcctttcg aacgtgtggc acaagctaaa acaaagtatg agcagaatga cagtccagta 960gtcaacaaat tggatgatac taaaagtgac ttggaggttc aacctatcta tggagacctt 1020acacaagcag cagtacatgg cgagtcgaaa gtgttgatac cggggacgtc aaaagttgaa 1080ggacgtacga attatgcaca tgcatggata gagatggcat ctaatttagg ggaatatcgt 1140agtttcccta aattacaagc tgatgcgaca ggtgcgttta tatttgattt aaaagcggca 1200gacatacaat tgttaaacgg agaacgtttg acattcagag ccgttgaccc acatacaaaa 1260caacagttag ctgaaactac atcagaagta cgcccagtag atatgcaaga tgaagagtca 1320gaggttgtgc agacttcaag cactgagaaa tcagcacttg cggatgaaat tcttcgttct 1380atgacaattg acaaatcatt taatcctgaa gttaccgaga taccgggtca tgtatatcct 1440aagaaaacag aggataaagg tgctgaaaat acagaacaag cctcagagaa ttctgagaag 1500ccatctcaga ctacagaatc tcaaaatgat gccgtacaag atgtagagaa atcctctgtt 1560aatgaggagg ttacgccacc ttcaacagaa tctgctcaag ttgaaaaggg gcaaaataca 1620gaaggggctt tgcttccaaa aaatgtagaa caacatgtag agagtatacc ataccaaaaa 1680cgtaaagcgt tgataggact gacaaaacat caaggatcag ggcacatgcc gccattttct 1740ttaagcttta ataataaaga agatgacgta tccacaaagg ttaacgaagc aaacgagcat 1800gaacgtaagc agggtacagt ttatccagag caaatagaac aattacctca aacaggttta 1860actgaaaaat cgccattctg ggcattgtta tttgttgtat caggcacagg tttattatta 1920ttcaaacgtt ctagacgaca acgccaatct taa 195334650PRTStaphylococcus pseudintermedius 34Met Leu Arg Thr Asn Tyr Lys Leu Arg Lys Leu Lys Val Gly Leu Val 1 5 10 15 Ser Thr Gly Val Ala Leu Thr Phe Val Met Ala Ser Gly Asn Ala Glu 20 25 30 Ala Ser Glu Asn Glu Gln Thr Glu Val Lys Gly Glu Ala Gln Val Ala 35 40 45 Ser Val Asn Glu Lys Glu Ser Glu Ala Glu Leu Pro Val Ala Gln Gln 50 55 60 Glu Ala Ser Ile Gln Leu Asp Lys Val Gln Pro Gly Asp Ala Gln Leu 65 70 75 80 Ser Gly Tyr Thr Gln Pro Asn Lys Ala Ile Ser Val Lys Ile Asp Asn 85 90 95 Lys Asp Ile Val Ser Val Asp Asp Gly Tyr Glu Glu Val Leu Ser Asp 100 105 110 Asp Thr Gly Lys Phe Val Tyr Asp Leu Lys Gly Arg Gln Ile Val Tyr 115 120 125 Asn Gln Lys Val Asp Val Glu Ala Met Thr Pro Phe Asn Phe Glu Asp 130 135 140 Phe Asp Glu Ser Ala Leu Glu Ser Glu Glu Ala Leu Glu Ala Leu Gly 145 150 155 160 Gln Leu Glu Asp Glu Glu Thr Ala Thr Ala Ser Val Thr Thr Pro Arg 165 170 175 Tyr Glu Gly Ala Tyr Thr Val Pro Glu Glu Arg Leu Thr Pro Ile Gln 180 185 190 Gly Gln Gln Gln Val Phe Ile Glu Pro Ile Leu Glu Gly Ala Ser Lys 195 200 205 Ile Lys Gly His Thr Ser Val Gln Gly Lys Val Ala Leu Ala Ile Asn 210 215 220 Gln Glu His Val His Leu Gly Asp Thr Leu Glu Glu Gln Ala Ala Leu 225 230 235 240 Thr Asp Gln Glu Trp Gln Gly Arg Tyr Asp Gly Ile Trp Arg His Ile 245 250 255 Asp Asp Gln Gly Phe Phe Glu Phe Asp Leu Asn Arg Leu Tyr Asn Lys 260 265 270 Ser Tyr Pro Leu Lys Ser Gly Asp Leu Val Thr Leu Ser Phe Lys Ser 275 280 285 Asn Asp Glu Val Gly Pro Leu Phe Asn Val Asn Val Glu Pro Phe Glu 290 295 300 Arg Val Ala Gln Ala Lys Thr Lys Tyr Glu Gln Asn Asp Ser Pro Val 305 310 315 320 Val Asn Lys Leu Asp Asp Thr Lys Ser Asp Leu Glu Val Gln Pro Ile 325 330 335 Tyr Gly Asp Leu Thr Gln Ala Ala Val His Gly Glu Ser Lys Val Leu 340 345 350 Ile Pro Gly Thr Ser Lys Val Glu Gly Arg Thr Asn Tyr Ala His Ala 355 360 365 Trp Ile Glu Met Ala Ser Asn Leu Gly Glu Tyr Arg Ser Phe Pro Lys 370 375 380 Leu Gln Ala Asp Ala Thr Gly Ala Phe Ile Phe Asp Leu Lys Ala Ala 385 390 395 400 Asp Ile Gln Leu Leu Asn Gly Glu Arg Leu Thr Phe Arg Ala Val Asp 405 410 415 Pro His Thr Lys Gln Gln Leu Ala Glu Thr Thr Ser Glu Val Arg Pro 420 425 430 Val Asp Met Gln Asp Glu Glu Ser Glu Val Val Gln Thr Ser Ser Thr 435 440 445 Glu Lys Ser Ala Leu Ala Asp Glu Ile Leu Arg Ser Met Thr Ile Asp 450 455 460 Lys Ser Phe Asn Pro Glu Val Thr Glu Ile Pro Gly His Val Tyr Pro 465 470 475 480 Lys Lys Thr Glu Asp Lys Gly Ala Glu Asn Thr Glu Gln Ala Ser Glu 485 490 495 Asn Ser Glu Lys Pro Ser Gln Thr Thr Glu Ser Gln Asn Asp Ala Val 500 505 510 Gln Asp Val Glu Lys Ser Ser Val Asn Glu Glu Val Thr Pro Pro Ser 515 520 525 Thr Glu Ser Ala Gln Val Glu Lys Gly Gln Asn Thr Glu Gly Ala Leu 530 535 540 Leu Pro Lys Asn Val Glu Gln His Val Glu Ser Ile Pro Tyr Gln Lys 545 550 555 560 Arg Lys Ala Leu Ile Gly Leu Thr Lys His Gln Gly Ser Gly His Met 565 570 575 Pro Pro Phe Ser Leu Ser Phe Asn Asn Lys Glu Asp Asp Val Ser Thr 580 585 590 Lys Val Asn Glu Ala Asn Glu His Glu Arg Lys Gln Gly Thr Val Tyr 595 600 605 Pro Glu Gln Ile Glu Gln Leu Pro Gln Thr Gly Leu Thr Glu Lys Ser 610 615 620 Pro Phe Trp Ala Leu Leu Phe Val Val Ser Gly Thr Gly Leu Leu Leu 625 630 635 640 Phe Lys Arg Ser Arg Arg Gln Arg Gln Ser 645 650 351491DNAStaphylococcus pseudintermedius 35atgaaaacta aatacacagc aaaattatta attggggcag caacaatatc tttagcaaca 60tttatttcac aagggaacgc acatgcgagc gaacaaacta caggactcgc accggcacaa 120cctgtcaact ttgattcaat caatgtaacg ccagaccaaa aaacattcta tcaagtctta 180catatggaag gcatttcaga agaccaacgt gaacaatatt tgaaacaatt gcacgaagac 240ccaagtagcg cacaaaatgt tttttcagaa tcaattaaag atgccatcca cccggaacgt 300cgtgttgcgc aacaaaatgc gttttacagc gtattacaca acgatgactt atccgaagag 360caacgtgatg catacattgg tagaattaaa gaagatccag atcaaagcca agaagtattt 420gttgagtctt taaatgtggc acctaaagca gaatcacatg aagatcgcct cattgaatta 480caaaacaaaa atttaatgga agcgaatgaa gcacttaaag cgttacaaca agaagacagc 540attcagaata gacgtgcggc tcaacgtgct gtcaacaaat tgacgccgga tagcgcgaac 600gcattccaaa aagaattaga tcaaatcaat gccccacgcg acgctaaaat taaagctgac 660gctgaagcaa aaaaacaagc acctgaagta agcgcaccac aaattgaaga tgcacctact 720actgaagttg caccatctcc aaaacaagat atgccaaaag tagataaaaa agaagaagat 780aaagtagaaa gtgatactga ggtcaaagaa gtacctaaag ctgatacaga gaaaaaccct 840caatctaaag acacttctaa aactgaacaa gctaaagaaa cacctaaagt agagcaatca 900cctaaaacag aaaaggctga agaagcacct aaagcagaaa cacctcaaaa tggaaataaa 960gcacaaactg aagaagctaa accagaagta aaagacaatg tgaaaaacac tccatctgca 1020cctgtgttac ctgaaacagg aaaagcaaca acttcaacac ttgaaagcta ctggaattct 1080ttcaaagaca gtgtgaataa aggttatact tacattaaac aaagcttaga aagtggttat 1140caatatttaa aaggtcaata cgactatatc actaaaaaat acaatgatgc gaaatactat 1200acaaaaatgt attcaaatca taagtctaca attgatcagt ctgtattagc tatattaggt 1260aaaactggat ctagcgcata tatcaagcca ttaaatatcg aagaaaattc aaacgtattt 1320tacaaagctt atgcaaaaac aagaaacttt gctacagaaa gcattaacac aggaaaagta 1380ttatacacat tatatcaaaa ccctactgta gttaaatctg ctttcactgc aattgaaaca 1440gcaaatacag taaaaaatgc aataagcaat cttttctctc tcttcaaata a 149136496PRTStaphylococcus pseudintermedius 36Met Lys Thr Lys Tyr Thr Ala Lys Leu Leu Ile Gly Ala Ala Thr Ile 1 5 10 15 Ser Leu Ala Thr Phe Ile Ser Gln Gly Asn Ala His Ala Ser Glu Gln 20 25 30 Thr Thr Gly Leu Ala Pro Ala Gln Pro Val Asn Phe Asp Ser Ile Asn 35 40 45 Val Thr Pro Asp Gln Lys Thr Phe Tyr Gln Val Leu His Met Glu Gly 50 55 60 Ile Ser Glu Asp Gln Arg Glu Gln Tyr Leu Lys Gln Leu His Glu Asp 65 70 75 80 Pro Ser Ser Ala Gln Asn Val Phe Ser Glu Ser Ile Lys Asp Ala Ile 85 90 95 His Pro Glu Arg Arg Val Ala Gln Gln Asn Ala Phe Tyr Ser Val Leu 100 105 110 His Asn Asp Asp Leu Ser Glu Glu Gln Arg Asp Ala Tyr Ile Gly Arg 115 120 125 Ile Lys Glu Asp Pro Asp Gln Ser Gln Glu Val Phe Val Glu Ser Leu 130 135

140 Asn Val Ala Pro Lys Ala Glu Ser His Glu Asp Arg Leu Ile Glu Leu 145 150 155 160 Gln Asn Lys Asn Leu Met Glu Ala Asn Glu Ala Leu Lys Ala Leu Gln 165 170 175 Gln Glu Asp Ser Ile Gln Asn Arg Arg Ala Ala Gln Arg Ala Val Asn 180 185 190 Lys Leu Thr Pro Asp Ser Ala Asn Ala Phe Gln Lys Glu Leu Asp Gln 195 200 205 Ile Asn Ala Pro Arg Asp Ala Lys Ile Lys Ala Asp Ala Glu Ala Lys 210 215 220 Lys Gln Ala Pro Glu Val Ser Ala Pro Gln Ile Glu Asp Ala Pro Thr 225 230 235 240 Thr Glu Val Ala Pro Ser Pro Lys Gln Asp Met Pro Lys Val Asp Lys 245 250 255 Lys Glu Glu Asp Lys Val Glu Ser Asp Thr Glu Val Lys Glu Val Pro 260 265 270 Lys Ala Asp Thr Glu Lys Asn Pro Gln Ser Lys Asp Thr Ser Lys Thr 275 280 285 Glu Gln Ala Lys Glu Thr Pro Lys Val Glu Gln Ser Pro Lys Thr Glu 290 295 300 Lys Ala Glu Glu Ala Pro Lys Ala Glu Thr Pro Gln Asn Gly Asn Lys 305 310 315 320 Ala Gln Thr Glu Glu Ala Lys Pro Glu Val Lys Asp Asn Val Lys Asn 325 330 335 Thr Pro Ser Ala Pro Val Leu Pro Glu Thr Gly Lys Ala Thr Thr Ser 340 345 350 Thr Leu Glu Ser Tyr Trp Asn Ser Phe Lys Asp Ser Val Asn Lys Gly 355 360 365 Tyr Thr Tyr Ile Lys Gln Ser Leu Glu Ser Gly Tyr Gln Tyr Leu Lys 370 375 380 Gly Gln Tyr Asp Tyr Ile Thr Lys Lys Tyr Asn Asp Ala Lys Tyr Tyr 385 390 395 400 Thr Lys Met Tyr Ser Asn His Lys Ser Thr Ile Asp Gln Ser Val Leu 405 410 415 Ala Ile Leu Gly Lys Thr Gly Ser Ser Ala Tyr Ile Lys Pro Leu Asn 420 425 430 Ile Glu Glu Asn Ser Asn Val Phe Tyr Lys Ala Tyr Ala Lys Thr Arg 435 440 445 Asn Phe Ala Thr Glu Ser Ile Asn Thr Gly Lys Val Leu Tyr Thr Leu 450 455 460 Tyr Gln Asn Pro Thr Val Val Lys Ser Ala Phe Thr Ala Ile Glu Thr 465 470 475 480 Ala Asn Thr Val Lys Asn Ala Ile Ser Asn Leu Phe Ser Leu Phe Lys 485 490 495 37504PRTStaphylococcus pseudintermedius 37Asn Glu Asp Val Thr Glu Thr Thr Gly Arg Asn Ser Val Thr Thr Gln 1 5 10 15 Ala Ser Glu Gln His Leu Gln Val Glu Ala Val Pro Gln Glu Gly Asn 20 25 30 Asn Val Asn Val Ser Ser Val Lys Val Pro Thr Asn Thr Ala Thr Gln 35 40 45 Ala Gln Glu Asp Val Ala Ser Val Ser Asp Val Lys Ala His Ala Asp 50 55 60 Asp Ala Leu Gln Val Gln Glu Ser Ser His Thr Asp Gly Val Ser Ser 65 70 75 80 Glu Phe Lys Gln Glu Thr Ala Tyr Ala Asn Pro Gln Thr Ala Glu Thr 85 90 95 Val Lys Pro Asn Ser Glu Ala Val His Gln Ser Glu Tyr Glu Asp Lys 100 105 110 Gln Lys Pro Val Ser Ser Ser Arg Lys Glu Asp Glu Thr Met Leu Gln 115 120 125 Gln Gln Gln Val Glu Ala Lys Asn Val Val Ser Ala Glu Glu Val Ser 130 135 140 Lys Glu Glu Asn Thr Gln Val Met Gln Ser Pro Gln Asp Val Glu Gln 145 150 155 160 His Val Gly Gly Lys Asp Ile Ser Asn Glu Val Val Val Asp Arg Ser 165 170 175 Asp Ile Lys Gly Phe Asn Ser Glu Thr Thr Ile Arg Pro His Gln Gly 180 185 190 Gln Gly Gly Arg Leu Asn Tyr Gln Leu Lys Phe Pro Ser Asn Val Lys 195 200 205 Pro Gly Asp Gln Phe Thr Ile Lys Leu Ser Asp Asn Ile Asn Thr His 210 215 220 Gly Val Ser Val Glu Arg Thr Ala Pro Arg Ile Met Ala Lys Asn Thr 225 230 235 240 Glu Gly Ala Thr Asp Val Ile Ala Glu Gly Leu Val Leu Glu Asp Gly 245 250 255 Lys Thr Ile Val Tyr Thr Phe Lys Asp Tyr Val Asn Gly Lys Gln Asn 260 265 270 Leu Thr Ala Glu Leu Ser Val Ser Tyr Phe Val Ser Pro Glu Lys Val 275 280 285 Leu Thr Thr Gly Thr Gln Thr Phe Thr Thr Met Ile Gly Asn His Ser 290 295 300 Thr Gln Ser Asn Ile Asp Val Tyr Tyr Asp Asn Ser His Tyr Val Asp 305 310 315 320 Gly Arg Ile Ser Gln Val Asn Lys Lys Glu Ala Lys Phe Gln Gln Ile 325 330 335 Ala Tyr Ile Asn Pro Asn Gly Tyr Leu Asn Gly Arg Gly Thr Ile Ala 340 345 350 Val Asn Gly Glu Val Val Ser Gly Thr Thr Lys Asp Leu Met Gln Pro 355 360 365 Thr Val Arg Val Tyr Gln Tyr Lys Gly Gln Gly Val Pro Pro Glu Ser 370 375 380 Ile Thr Ile Asp Pro Asn Met Trp Glu Glu Ile Ser Ile Asn Asp Thr 385 390 395 400 Met Val Arg Lys Tyr Asp Gly Gly Tyr Ser Leu Asn Leu Asp Thr Ser 405 410 415 Lys Asn Gln Lys Tyr Ala Ile Tyr Tyr Glu Gly Ala Tyr Asp Ala Gln 420 425 430 Ala Asp Thr Leu Leu Tyr Arg Thr Tyr Ile Gln Ser Leu Asn Ser Tyr 435 440 445 Tyr Pro Phe Ser Tyr Gln Lys Met Asn Gly Val Lys Phe Tyr Glu Asn 450 455 460 Ser Ala Ser Gly Ser Gly Glu Leu Lys Pro Lys Pro Pro Glu Gln Pro 465 470 475 480 Lys Pro Glu Pro Glu Ile Gln Ala Asp Val Val Asp Ile Ile Glu Asp 485 490 495 Ser His Val Ile Asp Ile Gly Trp 500 381512DNAStaphylococcus pseudintermedius 38aatgaagatg tcactgaaac aactgggaga aattcagtga caacgcaagc ttctgagcaa 60catttgcaag tggaagcagt acctcaagaa ggcaataatg taaatgtatc ctctgtaaaa 120gtacctacga atacggcaac gcaagcacaa gaagatgttg caagtgtatc cgatgttaaa 180gcacatgctg atgatgcatt acaagtacaa gaaagtagtc atactgatgg tgtttcttca 240gaattcaagc aggagacagc ttatgcgaat cctcaaacag ctgagacagt taaacctaat 300agtgaagcag tgcatcagtc tgaatacgag gataagcaaa aacccgtatc atctagccgc 360aaagaagatg agactatgct tcagcagcaa caagttgaag ccaaaaatgt tgtgagtgcg 420gaggaagtgt ctaaagaaga aaatactcaa gtgatgcaat cccctcaaga cgttgaacaa 480catgtaggtg gtaaagatat ctctaatgag gttgtagtgg ataggagtga tatcaaagga 540tttaacagcg aaactactat tcgacctcat cagggacaag gtggtaggtt gaattatcaa 600ttaaagtttc ctagcaatgt aaagccaggc gatcagttta ctataaaatt atctgacaat 660atcaatacac atggtgtttc tgttgaaaga accgcaccga gaatcatggc taaaaatact 720gaaggtgcga cggatgtaat tgctgaaggt ctagtgttgg aagatggtaa aaccatcgta 780tatacattta aagactatgt aaatggcaag caaaatttga ctgctgagtt atcagtgagc 840tatttcgtaa gtccggaaaa agtcttgact actgggacac aaacattcac gacgatgatc 900ggtaatcatt caacgcaatc caatattgac gtttattatg ataatagtca ttatgtagat 960ggacgtattt cgcaagtgaa caaaaaagaa gctaaatttc aacaaatagc atacattaac 1020cctaatggct atttaaatgg cagggggaca attgcagtta atggtgaagt ggtcagtggt 1080acgactaaag acttaatgca acctacagtg cgtgtatatc aatataaagg acaaggtgtt 1140cctcctgaaa gtattactat agaccctaat atgtgggaag aaatcagcat aaacgatact 1200atggtaagaa aatatgatgg tggctatagc ttgaatctgg ataccagcaa gaatcaaaaa 1260tatgccatct attatgaagg ggcatatgat gcgcaagctg acacactgtt gtatagaaca 1320tatatacagt cattaaacag ttactatccg ttcagttacc aaaaaatgaa cggtgtgaag 1380ttttacgaaa acagtgcgag tggaagcggt gagttgaaac cgaaaccacc tgaacaacca 1440aaaccagaac ctgaaattca agctgatgta gtagatatta ttgaagatag ccatgtgatt 1500gatataggat gg 1512

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed