Diagnostic Kits

DENT; David ;   et al.

Patent Application Summary

U.S. patent application number 15/747424 was filed with the patent office on 2018-08-02 for diagnostic kits. The applicant listed for this patent is AZOTIC TECHNOLOGIES LTD. Invention is credited to David DENT, Gary DEVINE, Dhaval PATEL.

Application Number20180216168 15/747424
Document ID /
Family ID54106731
Filed Date2018-08-02

United States Patent Application 20180216168
Kind Code A1
DENT; David ;   et al. August 2, 2018

DIAGNOSTIC KITS

Abstract

The invention provides a diagnostic kit comprising means to determine the presence in a sample of preferred strains the nitrogen-fixing bacteria Gluconacetobacter diazotrophicus (Gd) which are based upon the finding that such strains comprises unique nucleic acid sequences and other features, that are detectable, even in the presence of plant genomic DNA. Methods for using the kits in agriculture are also described and claimed.


Inventors: DENT; David; (Fleet Hampshire, GB) ; PATEL; Dhaval; (Nottingham, GB) ; DEVINE; Gary; (Nottingham, GB)
Applicant:
Name City State Country Type

AZOTIC TECHNOLOGIES LTD

Chorley, Lancashire

GB
Family ID: 54106731
Appl. No.: 15/747424
Filed: July 27, 2016
PCT Filed: July 27, 2016
PCT NO: PCT/GB2016/052288
371 Date: January 24, 2018

Current U.S. Class: 1/1
Current CPC Class: C05F 11/08 20130101; C12N 1/20 20130101; C12Q 1/689 20130101; A01C 1/06 20130101; A01N 63/00 20130101
International Class: C12Q 1/689 20060101 C12Q001/689; C05F 11/08 20060101 C05F011/08

Foreign Application Data

Date Code Application Number
Jul 28, 2015 GB 1513277.2

Claims



1. A diagnostic kit for determining the presence of plant-colonizing strains of Gluconacetobacter diazotrophicus (Gd), said kit comprising means to determine the presence in a sample of at least one nucleic acid sequence selected from SEQ ID NOs 1-10.

2. The diagnostic kit of claim 1 which comprises means for determining the presence of up to 10 different nucleic acid sequences of SEQ ID NOs 1-10.

3. (canceled)

4. The diagnostic kit of claim 1 which further comprises means for determining the presence of at least one nucleic acid sequence which is characteristic of Gd species.

5. The diagnostic kit of claim 4 wherein the at least one nucleic acid sequence which is characteristic of a Gd species is a nucleic acid sequence selected from SEQ ID NOs 11-13.

6. The diagnostic kit of claim 1 which further comprises means for detecting nucleic acid found in a plant.

7. The diagnostic kit of claim 1 which further comprises means for determining the presence of SEQ ID NOs 64, 65, 66 or 67 as a negative control.

8. The diagnostic kit of claim 1 wherein the means for determining the presence of nucleic acid sequences comprises one or more amplification primers which target said at least one nucleic acid sequence.

9. The diagnostic kit of claim 8 which further comprises one or more additional reagents necessary to carry out a nucleic acid amplification reaction.

10. The diagnostic kit of claim 9 wherein the nucleic acid amplification reaction is a polymerase chain reaction (PCR).

11. The diagnostic kit of claim 9 wherein the nucleic acid amplification reaction is a loop-mediated amplification reaction (LAMP).

12. The diagnostic kit of claim 10, wherein the amplification primers are selected from SEQ ID NOs 14 to 39 or 58 to 63.

13. The diagnostic kit of claim 11 wherein the amplification primers are selected from SEQ ID NOs 40-57.

14. The diagnostic kit of claim 1 which comprises means for extracting plasmid DNA from a Gd containing sample.

15. (canceled)

16. A method for determining the presence in a sample of a strain of Gluconacetobacter diazotrophicus (Gd) able to intracellularly colonise plant cells, said method comprising detecting in said sample at least one nucleic acid sequence selected from SEQ ID NOs 1-10.

17. The method of claim 16 wherein the presence of at least 5 of said nucleic acid sequences of SEQ ID NOs 1-10 is detected.

18. (canceled)

19. The method of claim 16 wherein the presence of at least one nucleic acid sequence which is characteristic of Gd species is detected, wherein the nucleic acid sequence which is characteristic of Gd species is selected from SEQ ID NOs 11-13.

20. (canceled)

21. The method of claim 16 wherein the sample is a plant sample and a nucleic acid sequence found in said plant is also detected.

22. The method of claim 16 wherein the presence of said nucleic acid sequences are determined by means of a nucleic acid amplification reaction, wherein the nucleic acid amplification reaction is a polymerase chain reaction (PCR), a quantitative PCR (QPCR), or a loop-mediated isothermal amplification (LAMP).

23-27. (canceled)

28. The method of claim 16, which further comprises extracting plasmid DNA from the sample and detecting the presence of a plasmid of less than 17566 base pairs.

29. (canceled)

30. The method of claim 16 wherein the sample is a plant sample to which a strain of Gluconacetobacter diazotrophicus (Gd) has been applied.
Description



[0001] The present invention relates to a diagnostic kit, able to identify particular strains of the nitrogen-fixing bacteria Gluconacetobacter diazotrophicus (Gd) that have good utility in agriculture, in terms of their ability to colonise plant cells intracellularly, giving rise to particularly effective nitrogen fixation, as well as to reagents for use in the kits. Novel strains that are identified by the kits form the subject of a co-pending application.

BACKGROUND OF THE INVENTION

[0002] Gluconacetobacter diazotrophicus (Gd) has been well studied for its nitrogen fixing and plant growth promoting activities as reviewed in Eskin et al. International Journal of Agronomy (2014):1-13. Certain strains of Gd however have been shown to be particularly advantageous in the treatment of plants since they are able to establish themselves intracellularly within plant cells along with exhibiting species and tissue independence (Cocking et al., In vitro Cellular & Developmental Biology Plant (2006) 42 (1). These properties, combined with their ability to travel throughout a range of plant tissues, make such strains better able to deliver the benefits to the target crop plants.

[0003] However, a wide range of strains of Gd exist and it has not yet been possible to provide a means for easily identifying strains which have these beneficial properties.

[0004] Furthermore, an important aspect of bio-fertiliser has been to provide an alternative to the chemical fertilisers in a nature friendly way to agricultural crop plants. However, it would be helpful to validate the effectiveness of any on-going treatment in field conditions, so that a farmer is able to determine what levels of nitrogen fertiliser, if any, are required to be supplied to enhance growth conditions.

[0005] The applicants have found that specific advantageous strains of Gd contain a number of unique nucleic acid sequences that are not found in other Gd species, nor in any other species, including plant species. This gives rise to the provision of a reliable diagnostic test, useful in both monitoring of treatments in the fields and in research, for identifying related beneficial strains.

SUMMARY OF THE INVENTION

[0006] According to the present invention there is provided a diagnostic kit comprising means to determine the presence in a sample of at least one nucleic acid sequence selected from SEQ ID NOS 1-10 shown in attached Table 1 hereinafter.

[0007] SEQ ID NOs 1-10 represent unique and novel sequences, which appear in a preferred sub-species or strain of Gd. Strains having these unique characteristics have been found to be particularly effective in intracellular colonization of plant cells resulting in beneficial nitrogen fixing. In particular, it has been found that use of a stain of the invention leads to yield enhancements in crops such as cereal crops like maize and wheat. Alternatively, similar yields can be achieved even with reduction in traditional nitrogen fertiliser applications.

[0008] Thus the sequences provide a means for identifying these beneficial strains. In addition, they have been found to be amenable to detection using primers which do not cross-react with plant species.

[0009] Furthermore, since the strains can colonise intracellularly in the host plant cells, they are able to effectively travel throughout the plant. The kit of the invention can be used to provide an evaluation of colonisation by Gd post-germination at a young stage and check its efficiency. This will then allow the farmers to make an "informed decision" about the existence and extent of the colonisation and if required how much chemical based nitrogen fertiliser will be required to be applied. This extra level of security will provide `assurance` to farmers that their crops are being well-tended, even when using nature and crop friendly fertiliser in the form of Gd.

[0010] In a particular embodiment, the kit of the invention comprises means for determining the presence of more than one of the nucleic acid sequences of SEQ ID NOs 1-10, for example up to 10, such as up to 5, or up to 3 of said nucleic acid sequences of SEQ ID NOs 1-10. In this way, a reliable diagnostic kit would be provided which will ensure that the strain detected is the one which is similar or substantially similar to the beneficial strain. Similar strains would be detected even if one or more of the sequences differs for example as result of mutation.

[0011] Preferred strains appear to contain a plasmid, and so plasmid detection, for example by isolation using a commercially-available plasmid isolation kit, may provide further confirmation of the identification of a beneficial strain. In particular, any plasmid identified should be less than 27455 bp in size, for example about 17566 bp. The presence of a plasmid, in particular of this size, differs from a previously known strain of Gd, UAP5541, which has been reported as lacking in plasmids (Luis E. Fuentes-Ramierez et al., FEMS Microbiology Ecology 29 (1999) 117-128). Furthermore, the size of the plasmid is smaller than that reported previously in respect of PAL5 strains containing a single plasmid (Giongo et al. Standards in Genomic Sciences, May 2010, Volume 2, Issue 3, pp 309-317 doi: 10.4056/sigs.972221).

[0012] The plasmid of beneficial strains may also be characterized in that it is restricted into two fragments by the restriction enzyme EcoRI, wherein the fragments are about 12 Kb and about 5.6 kb in size respectively. Thus, in certain embodiments, the kit of the invention may further comprise means for determining the presence and nature of the plasmid, including the provision of a restriction enzyme such as EcoR1, to allow for the detection of fragments of the above-mentioned sizes.

[0013] Furthermore, the plasmid lacks a number of key sequences which have been previously identified as being present in the plasmid of PAL5. These sequences are shown as SEQ ID Nos 65, 66, 67 and 68 in the attached sequence listing. Thus the absence of these particular sequences may provide a further characterizing feature of the strains. In some embodiments therefore, the kit may comprise means for detecting these SEQ ID Nos 65, 66, 67 and 68 to provide a negative control in the sense that the absence of positive results for these sequences may be used to confirm the presence or identity of preferred strains, or the presence of the these sequences may be used to reject less preferred strains in strain selection.

[0014] In a particular embodiment, the diagnostic kit further comprises means for determining the presence of at least one nucleic acid sequence which is characteristic of Gd species, for example 2, or 3 nucleic acid sequences which are characteristic of Gd species. In this way, the kit would provide confirmation that some Gd is present in the sample, thus confirming the accuracy of the test. If the sample is known to contain Gd, a positive result in this determination would act as a `control` confirming that the test has been carried out effectively. Suitable specific strains will be sequences found in Gd species generally but not in other species, and in particular not in other microbial species or in at least some plants, in particular plants which may be targeted for Gd treatments.

[0015] Particular examples of such sequences are shown as SEQ ID NOS 11-13 in Table 2 hereinafter. In particular, these nucleic acid sequence which is used to detect Gd species have been found to be amendable to detection of Gd species present in a range of crops, without cross-reacting with plant species.

[0016] In a further embodiment, the kit comprises means for detecting the presence of a plant specific nucleic acid sequence, such as a chloroplast specific nucleic acid which amplifies universally from plant DNA. The inclusion of such means will act as a control when the kit is used in the context of detection of Gd within a plant species, as this means will produce a detectable signal, even in the absence of any Gd. If this signal fails, this would indicate failure in the test rather than necessarily that there is no Gd present. A particular chloroplast primer set which is available commercially from Thermo Scientific. Product as Phire Plant Direct PCR Master Mix, is based on the disclosure by Demesure B et al (1995) Molecular Ecology 4:129-131.

[0017] The means for detecting the presence of the nucleic acid sequences may take various forms as would be understood in the art.

[0018] Where the nucleic acids are genes which are expressed, the kit may comprise means for detecting the expressed proteins. Such means may include specific protein tests such as immunochemical analysis which utilise antibodies specific to the proteins to immobilise and/or detect the proteins, such as ELISA or RIA techniques, or immunoelectrophoretic methods such as Western blotting.

[0019] However, in a particular preferred embodiment, the kit of the invention comprises means for detecting specific nucleic acids themselves.

[0020] In particular, nucleic acids may be detected using any of the available techniques including nucleic acid binding assays and immunoassays using antibodies raised to haptenised forms of the nucleic acids. However, in a particular embodiment, the detection involves nucleic acid amplification reactions, and thus in particular, the kits will comprise one or more amplification primers which target the or each nucleic acid sequence being detected.

[0021] As would be understood by a skilled person, when detection of a sequence is carried out using an amplification reaction, it would not be necessary to amplify the entire sequence, but rather just a characteristic fragment of the entire sequence, for example a fragment of at least 10, and suitably at least 50 base pairs. Thus the size of the sequence that may be amplified would could be in the range of from 10-3070 base pairs, and suitably from 20-2000 base pairs, for example from 50-500 base pairs, such as from 100-300 base pairs. The size of the fragment will depend upon the nature of the detection reaction being used, but it should be sufficient to ensure that the product is characteristic of SEQ ID Nos 1-10 or variants as defined above, and so is not present in other sequences, in particular plant sequences. Where more than one sequence is amplified, they may be selected to be of differing sizes, so that they may be easily differentiated during detection, using techniques such as separation on the basis of size, or melting point analysis.

[0022] If required, the kit may further comprise one or more additional reagents necessary to carry out a nucleic acid amplification reaction. Thus it may include enzymes such as polymerases, salts such as magnesium or manganese salts, buffers and nucleotides as would be understood in the art.

[0023] The kits may, if required, include means for detecting the products of the amplification. Such means may include dyes or probes, in particular labelled probes that bind the target sequence intermediate the primers. Alternatively, the primers themselves may be labelled to facilitate detection.

[0024] Suitable nucleic amplification reactions include reactions that utilise thermal cycling such as the polymerase chain reaction (PCR) and ligase chain reaction (LCR) as well as isothermal amplification reactions such as nucleic acid sequence based amplification (NASBA), strand displacement amplification (SDA), transcription mediated amplification (TMA), loop-mediated isothermal amplification (LAMP) and rolling circle amplification, 3SR, ramification amplification (as described by Zhang et al., Molecular Diagnosis (2001) 6 No 2, p 141-150), recombinase polymerase amplification (available from TwistDx) and others. In a particular embodiment, the nucleic acid amplification is a PCR, and may be a quantitative PCR (QPCR) to provide information regarding the extent of colonisation.

[0025] In an alternative embodiment, the amplification is LAMP reaction. LAMP assays utilise at least four and suitably six primers which are designed to target six different regions of the target sequence. There will always be two outer primers (F3 and B3) and two inner primers (FIP and BIP). Optionally, in addition there are two loop primers (FLoop and BLoop). The use of the Loop primers usually reduces the amplification time and increases the specificity of the assay. FIP and BIP primers consist of F2, complementary to the F2c region of the template sequence, and F1c, identical to the F1 region of the template. Four main features need to be considered in order to guarantee a successful LAMP primer design: the melting temperature of the primers (Tm), given 55-65.degree. C. for F3, FIP, BIP and B3 primers and .gtoreq.65.degree. C. for FLoop and BLoop; a GC content of 50-60% in the primer sequences; the absence of secondary structures formation and stability at the ends of each primers; and finally the distance between primer regions. Examples of suitable LAMP primer sets are disclosed hereinafter.

[0026] The presence of the products of amplification reactions may be determined using any available technology. Thus they may include techniques where products are separated on a gel on the basis of size and/or charge and detected such as agarose gel electrophoresis. Alternatively, they may be detected in situ, using for example using intercalating dyes or labelled probes or primers. The detection of amplification products using a wide variety of signalling and detection systems is known. Many of these systems can be operated in `real-time`, allowing the progress of amplification to be monitored as it progresses, allowing for quantification of the product. Many such systems utilise labels and in particular fluorescent labels that are associated with elements such as primers and probes used in the amplification system and which rely on fluorescent energy transfer (FET) as a basis for signalling. A particular form of such fluorescent energy transfer is fluorescent resonance energy transfer or Forster resonance energy transfer (FRET) for signal generation.

[0027] A major example of such a process used commercially is the TaqMan.RTM. process, in which a dual-labelled probe, carrying both a first label comprising a fluorescent energy donor molecule or reporter and a second label comprising a fluorescent energy acceptor molecule or quencher, is included in a PCR system. When bound to the probe, these molecules interact so that the fluorescent signal from the donor molecule is quenched by the acceptor. During an amplification reaction however, the probe binds to the target sequence and is digested as the polymerase extends primers used in the PCR. Digestion of the probe leads to separation of the donor and acceptor molecules, so that they no longer interact. In this way, the quenching effect of the acceptor is eliminated, thus modifying emissions from the molecule. This change in emission can be monitored and related to the progress of the amplification reaction.

[0028] Where more than one nucleic acid sequence is detected, the kit may comprise components sufficient to carry out multiple separate amplification reactions, such as individual sets of primers. Preferably however the kit is set up to carry out a multiplex reaction, where multiple targets may be detected in a single reaction. In this case, where the detection is done using gel electrophoresis, the primers are suitably selected so that each amplified product has a significantly different size or charge so that they may be readily separated and identified on an agarose gel or by melting point analysis using a signalling reagent such as a DNA intercalating dye.

[0029] Alternatively, where the detection system includes labels, any labels provided for example on primers or probes, will provide a different and distinguishable signal from other primer sets, for example on the basis of the wavelength of the emitted signal and/or the fact that the product has a different melting point or annealing temperature, which may be distinguished by carrying out a melting point analysis of products.

[0030] Suitable amplification primers, in particular for PCR amplification, together with the approximate size of the products they generate are selected from those set out in Table 3 below:

TABLE-US-00001 TABLE 3 SEQ SEQ Product ID Forward ID Reverse size A 14 TGAAATTGACGCCCGTTGGA 15 CACGCCGGGAAAGAGGATTC 472 bp B 16 GGCAACGCGGTTTCTACGAA 17 CGTTAGCCGGGGTTGTCAGA 489 bp C 18 TCGTTGCCACTTTCCGAGGG 19 GTCGATTGTGTGCAGCGTCA 268 bp A D 20 CACCGATCTTGTGCGTTTCG 21 CGGCAATGCTCCATACCCAC 522 bp E 22 CACCGGAAAGAGTGGCAGGA 23 AACCGGGTCACTTGCGTCAT 783 bp F 24 AGCCATCGGAGTCACATCGG 25 GGAAACCTCGAAACCCTGCG 1129 bp G 26 TCAGGGCAATCACTAGCCGG 27 TCGAGCAGCCGTTTCATCCA 1118 bp H 28 TGATGCGCTTGTTCGTGACG 29 CGTTCGCCCTTGTCGTCATG 478 bp I 30 GGGCCATCCGTTACCTGCTT 31 TGACACACCCGCTCCGAAAT 1102 bp J 32 GCATTTGCGGTAAGTCATCC 33 GGATCCCGATTTGCAAGCCA 814 bp CA K 34 TGTCGGGTCGGGAACTCAAG 35 CGGGTTCTCGCTGATGACCT 464 bp L 36 TCCCGCCTGCATCTGAAGAC 37 CAGCGATGCCAGCCAATACC 1098 bp M 38 GTTCGTCGCGTCTGATGCAG 39 ACCTGGGCATTGTTGGTGGA 1045 bp

[0031] Primer sets represented by SEQ ID NOS 14-33 have been found to act as useful strain-specific primers for beneficial strains of Gd, while primer sets represented by SEQ ID NOS 34-39 act as useful Gd species-specific primers.

[0032] In a further aspect, the invention provides a method for determining the presence in a sample of a strain of Gluconacetobacter diazotrophicus (Gd) able to intracellularly colonise plant cells, said method comprising detecting in said sample at least one nucleic acid sequence selected from SEQ ID NOS 1-10.

[0033] Suitably up to 10, for example up to 5 such as about 3 of said nucleic acid sequences of SEQ ID NOs 1-10 are detected.

[0034] In a particular embodiment, the method further comprises detecting at least one nucleic acid which is characteristic of Gd species, as described above, such as a nucleic acid sequence of SEQ ID NOS 11-13. Again, more than one such species specific nucleic acid sequence may be detected if required.

[0035] In yet a further embodiment, the method further comprises detecting a plant specific nucleic acid sequence, which may be characteristic of the particular Gd colonised plant being examined or may be universally present in plants, such as a chloroplast specific nucleic acid sequence, as a control for the reaction.

[0036] Various methods of detection may be used in the method, as described above, but in particular, the method comprises a nucleic acid amplification reaction, such as the polymerase chain reaction (PCR).

[0037] Suitable primers are as described above.

[0038] The sample which may be used in the method of the invention may be any sample that contains or is suspected of containing a strain of Gd. This may include cultures or laboratory samples, which may contain the desired strain of Gd. Alternatively, they may comprise plant samples, including leaf, stem, or root samples, from which nucleic acid has been released, for example by causing cell lysis, for example using mechanical, chemical or sonic means. In particular, the sample is from a plant to which a strain of Gluconacetobacter diazotrophicus (Gd) has previously been applied. In this way, the successful colonisation of the plant by Gd can be confirmed.

[0039] Typically, such tests will be carried out in a laboratory, although mobile testing, for example, in field conditions, may be carried out if suitable equipment, such as mobile PCR machines, are available, or if detection of targets in particular protein targets, using techniques such as ELISAs, which may be carried out on lateral flow devices are employed.

[0040] Novel strains of Gluconacetobacter diazotrophicus (Gd) able to intracellularly colonise plant cells and identified using a method described above are described in the applicants copending application of even date. A particular example of such a strain IMI504958, deposited at CABI (UK) on 22 May 2015.

DETAILED DESCRIPTION OF THE INVENTION

[0041] The invention will now be particularly described by way of example with reference to the accompanying figures which are described as follows:

[0042] FIG. 1A: is a gel showing PCR products from a range of designed to be strain or species specific, including primer sets A-H in Table 3 (shown in lanes 4, 5, 6, 7, 8, 9, 12 and 13 respectively). FIG. 1B is a gel showing PCR products from a range of designed to be strain or species specific, including primer sets I-M in Table 3 (shown in lanes 4, 5, 9, 12 and 13 respectively).

[0043] FIG. 2: is a gel illustrating PCR products using Primer set E following inoculation of reactions with 100 ng of (1) OSR var. Ability, (2) OSR var. Extrovert, (3) rice var. Valencia, (4) wheat var. Willow, (5) grass var. Aberglyn, (6) grass var. Dickens, (7) maize, (8) quinoa, (9) Arabidopsis var. Columbia, (10) barley var. Chapeaux, (11) grass var. Twystar, (12) grass var. J Premier Wicket, (13) potato, and (14) tomato. Lane (15) contains amplicon produced from 10 ng genomic DNA from Gd, (16) contains the no template PCR control, and the molecular weight marker at each end of the gel is Hyperladder 1 kb plus (Bioline).

[0044] FIG. 3: is a gel illustrating the sensitivity PCR using Primer set B in reactions containing 100 ng DNA from OSR var. Ability, co-inoculated with (1) 1 ng, (2) 100 picogram, (3) 10 picogram, (4) 1 picogram, (5) 100 femtogram, (6) 10 femtogram, and (7) no added genomic DNA from Gd. Lane (8) is the no template control sample and molecular weight marker at each end of the gel is Hyperladder 1 kb plus (Bioline).

[0045] FIG. 4A is a graph showing positive amplification of Gluconacetobacter diazotrophicus by fluorescent LAMP using the Genie II real-time machine and a primer set embodying the invention. Positive DNA amplification is detected by a fluorescence signal. FIG. 4B is an anneal curve for the Gluconacetobacter diazotrophicus samples, following amplification by LAMP; the reaction was put through an anneal analysis and the temperature at which the dsDNA reanneals is detected as a burst of fluorescence.

[0046] FIGS. 5A-C are graphs showing representative results of QPCR experiments carried out using primers designed to amplify sequences according to the method of the invention, when carried out using serial dilutions of samples containing GD DNA. FIG. 5A shows the results for primer set designated P5 for SEQ ID NOs 58 and 59. FIG. 5B shows results for a primer set designated P8 for SEQ ID NOs 60 and 61. FIG. 5C shows results for a primer set designated P17 for SEQ ID NO 62 and 63 as defined hereinafter.

[0047] FIGS. 6A-F are graphs showing representative results of QPCR experiments carried out using primers designed to amplify sequences that may be detected using a kit of the invention, when carried out using serial dilutions of samples containing GD DNA and plant genomic DNA. FIG. 6A shows the results for primer set designated P5 in the presence of wheat DNA. FIG. 6B shows melt peak graphs of the products of FIG. 6A for all the samples (i.e. dilutions of Gd in presence of wheat genome and relevant controls). FIG. 6C shows melt peak graph of the controls from FIG. 6A where a positive control comprising Gd DNA only resulted in giving signal, and negative controls comprising plant DNA only and QPCR negative samples only (NTC--no transcript control), both did not resulted in giving signal. FIG. 6D shows results for a primer set designated P17 as defined hereinafter in the presence of maize DNA. FIG. 6E shows the melt peak graph of the products of FIG. 6D for all the samples tested (i.e. dilutions of Gd in presence of Maize genome and relevant controls). FIG. 6F shows the melt peak graphs of the controls from FIG. 6D where a positive control comprising Gd DNA only resulted in giving signal, and negative controls comprising plant DNA only and QPCR negative samples only (NTC--no transcript control), both did not resulted in giving signal.

[0048] FIG. 7 shows a resolved 1% agarose gel showing plasmid DNA extracted from a particular strain of GD (IMI504958).

[0049] FIG. 8 shows resolved 1% agarose gel restriction digestion product of plasmid DNA with EcoRI from strain of Gd (IMI504958). The restricted fragments are mentioned as 1) .about.12 Kb and 2) .about.5.6 Kb when run alongside 1 kb ladder where the nearest fragment from the ladder is highlighted for the size comparison.

[0050] FIG. 9 shows an agarose gel obtained from a PCR amplification to detect Gd from the seedlings of wheat obtained during a field trial.

[0051] FIG. 10 is a graph showing the chlorophyll index of wheat treated with Gd in accordance with the invention compared to a control.

[0052] However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. The following descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive of or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments are shown and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.

Example 1

Identification of Unique Sequences

[0053] IMI504958, a Gd strain derived from passaging UAP5541, which was found to have particularly beneficial plant colonisation properties was isolated and the full genome sequenced. A comparison was made against the publically available genome of the type strain (PAL5; sequenced by JGI, USA [Genbank sequence accession CP001189]) using standard methods.

[0054] Surprisingly, a large number of differences were noted in the genome, and in particular, a number of genes were identified which are present in the genome of IMI504958 but not PAL5.

[0055] Many of these genes were annotated with an associated function. The unique genes with annotations were further checked for uniqueness across all the genomes sequenced to date using the NCBI's web-based BLAST tool.

[0056] Analysis of the BLAST result narrowed the list to 20 unique genes not present in any genome. These unique genes appeared to be "strain-specific" for IMI504958.

[0057] Also, five sets were found to be unique to the Gd species and will hereafter be referred to as "species-specific" (i.e. present in IMI 504853, Pa15 and other Gd strains but in no other species).

[0058] The applicants used this data to design a diagnostic kit for IMI504958.

Example 2

PCR Validation

[0059] A set of 25 primer sets were designed based upon the sequences identified in the analysis of the genome. The specificity of these 25 primer sets (20 designed to be strain-specific and 5 designed to be species-specific) were first tested by carrying out a conventional PCR reaction using genomic DNA of IMI504958 and PAL5. The results with IMI504958 are illustrated in FIGS. 1A-B. Results showed that 16 strain-specific primer sets delineated IMI504958 from PAL5 as obtained from three different collections (ATCC49037, DSM5601 and LMG7603). However, 4 putative strain-specific primer sets cross-reacted with at least one PAL5 and hence were removed from strain-specific study.

[0060] All 5 species-specific primers reacted as expected.

[0061] Further, testing of strain- and species-specific primers was done against two other strains of Gd, one originally isolated in India (IMI 502398) and the other from Mauritius (IMI 502399), as well as a revived 2001 culture of UAP5541 strain (stored in glycerol at -80.degree. C.), using the method described above. The data was in agreement with the 16 strain specific primers and 4 species specific primer sets as one of the species-specific primer sets produced a higher molecular weight band. This was a surprise result.

[0062] The sensitivity of detection of all 25 primer sets (20 strain-specific and 5 species-specific) was checked using serial dilutions of bacterial broth cultures. It was found that 24 of these sets produced very high levels of detection (requiring 1-10 bacterial cells).

[0063] Further, these 25 primers were then checked for cross-reactivity with several target plant species and varieties using DNA extracted in-house. The primers were tested in a PCR reaction using DNA extracted from plants of the following species: maize, wheat (var. Willow), quinoa, rice (var. Valencia), barley (var. Chapeaux), potato, Arabidopsis (var. Columbia), oilseed rape (vars. Ability and Extrovert) and a range of grasses (vars. Aberglyn, Dickens, J Premier Wicket, and Twystar). The method for isolating nucleic acids from plant tissues involved the mechanical maceration of leaf material followed by a modified CTAB extraction (Doyle and Doyle, 1987 Phytochem. Bull., 19: 11-15). Briefly, cellular membranes were disrupted using SDS and CTAB to release their contents, and cellular proteins were degraded or denatured using proteinase K and .beta.-mercaptoethanol. The extraction buffer also contained PVPP to remove plant polyphenols, EDTA to chelate metal ions, sodium chloride to solubilise nucleic acid structures, as well as TRIS HCl to stabilise the buffer pH. RNA molecules were degraded using RNase A treatment. Following the removal of insoluble cellular debris using chloroform:isoamyl mix (24:1), deoxynucleic acids were precipitated in ethanol using sodium acetate, washed using diluted ethanol, and resuspended in molecular grade water.

[0064] Illustrative results are shown in FIG. 2.

[0065] At the same time, the sensitivity of primers were tested by co-inoculating PCR reactions containing 100 ng of the above mentioned plant genomes with six-fold serially diluted genomic DNA from Gd, starting from 1 ng. It was found that the sensitivity of the PCR system was generally unaffected by the presence of plant genome and routine detection was established from a minimum of 1 picogram of Gd DNA.

[0066] Illustrative results are shown in FIG. 3.

[0067] Results suggested that 17 of the 20 strain-specific primer sets and three of the five species-specific sets either do not cross react with any plant genomes tested, or cross-react with a small number but produce a DNA product of a different size and distinguishable size.

[0068] Of the strain-specific primer sets, only 10 produced results which were of (1) high specificity, (2) high sensitivity, and (3) produced no cross-reactions with plant DNA and these are represented in Table 3 above as primer sets A-J. Similarly only three of the selected species-specific primer sets were found to be specific and sensitive enough for use and these are shown as primer sets K-M in Table 3 respectively. In addition, the size of the products obtained using these primers is shown in Table 3 and illustrated in FIGS. 1A and 1B. Thus, methods and kits based upon these primers are particularly useful in identifying beneficial Gd in field situations.

Example 3

LAMP Assay

[0069] A series of LAMP primers were designed to amplify regions of SEQ ID NOS 6, 7 and 9 and are shown in Table 4 below as follows:

TABLE-US-00002 TABLE 4 SEQ ID NO Sequence Type 40 CTCAGGAAGACCGAATTGATTA F3 41 GCGAAACGTCTGATTGAAC B3 42 CGGATAACCACTGGTGCTCCGACTCGCCTCACTCTACT FIP 43 TCCACGAATCTCACGAAGCACCCCGACCTTATCTCCCAT BIP 44 GCCAGGCGTGTACATATAACTA FL 45 CGGAATACCTAGTTGGAACACT BL 46 TCAAGATCGATGCACCTATTC F3 47 AACAGACAGTTCTGGTAGGA B3 48 CGCATCTCCAGATCGGCAGGTCGTCCAGTCGATCATG FIP 49 ACATCTGTCCACGGCATTGGTGGCTGGCTTATGAGTCT BIP 50 GAGAAGTCCTCTGCTTCGG FL 51 CGGCGGTTGAGAAGATGT BL 52 GGAAGACATCAACGAAGCA F3 53 TTGACAGTTGCATAGTCCG B3 54 ATACGGCTCGTCATGTCGCGGTGATGGATAATCTCAGCC FIP 55 CAGTGGCCGAACCTGGAAGCGCTGATATAAGCCTGAAGAT BIP 56 ATTGCACCGCGTTGATG FL 57 GCGTAACGGTCACAAGGA BL

[0070] SEQ ID NOS 40-45 were designed to amplify SEQ ID NO 6 above, SEQ ID NOS 46-51 were designed to amplify SEQ ID NO 7 above, and SEQ ID NOS 52-57 were designed to amplify SEQ ID NO 9 above.

[0071] These primers were obtained and tested in a LAMP assay on samples comprising pure Gd DNA that had been isolated using a modified CTAB methodology from bacteria grown in liquid culture.

[0072] In addition, DNAs from a range of plant pathogenic bacteria and fungi was tested for amplification in LAMP by the primer sets. These included Bacillus subtilis, Lactobacillus, Fructobacillus, Pseudomonas spp., Agrobacterium spp., a range of phytoplasmas and various fungi including species from the Fusarium, Penicillium and Aspergillus genera.

[0073] Real-time LAMP was carried out on a Genie II instrument (OptiGene), and 1 .mu.l of sample was added to a 24 .mu.l reaction mix containing 15 .mu.l Isothermal Master Mix ISO-001 (OptiGene), 200 nM of each external primer (F3 and B3), 2 .mu.M of each internal primer (FIP and BIP) and 1 .mu.M of loops primer (FLoop and BLoop). RT-LAMP reaction consisted of 30 minutes of isothermal amplification at 63.degree. C. To evaluate the annealing temperature of the products, reactions were then subjected to a slow annealing step from 95 to 68.degree. C. (0.05.degree. C./s) with fluorescence monitoring.

[0074] Negative reaction controls, consisting of water, were also used.

[0075] Of the three sets of primers tested in LAMP, the third primer set specific for SEQ ID NO 9 gave amplification in nine and a half minutes with an anneal at 89.2.degree. C. (see FIG. 4A). The primer set specific for SEQ ID NO 6 amplified the positive control at around 11 minutes with an anneal of approximately 88.degree. C., and the primer set specific for SEQ ID NO 7 was the slowest, amplifying the positive control at around 23 minutes with an annealing temperature around 90.degree. C.

[0076] All sets of primers that gave the positive Gd amplification were specific for the bacterium and did not amplify from DNA of any of the other bacterial and fungal DNAs they were tested on. They are therefore all suitable as primer sets to be used for detection of the Gd bacterium.

Example 4

Detecting Gd on Plant Samples Using LAMP

[0077] To validate the primers on rapidly extracted DNA from contaminated seed, a series of experiments were set up in which seed of two plant species, tomato and wheat, were spiked on the surface with Gd DNA. The samples were then put through the 2-minute DNA extraction technique in which the samples are placed in plastic tubes containing steel beads and TE buffer and shaken vigorously for 2 minutes. Two microliters of the solution was then placed in the LAMP reaction as described in Example 4 using the primer set comprising SEQ ID NOs 52 to 57 to test for amplification of the Gd DNA from these samples.

[0078] The results showed that the Gd DNA is detectable when put through these assays, against a background of plant DNA.

[0079] In order confirm that any samples that tested negative for Gd supported LAMP amplification (i.e. they do not contain inhibitors of LAMP reactions), the cytochrome-oxidase gene (COX) primers (Tomlinson et al., 2012 Journal of Virological Methods, 191: 148-154.), which amplify DNA from the host plant, were used as controls for false negatives on all samples.

Example 5

QPCR Determination

[0080] A range of QPCR reactions were carried out on samples comprising known quantities of DNA from Gd (IMI504958) and also from a range of crop species including maize, barley and wheat genomic DNA.

[0081] QPCR reaction mixtures were prepared to a volume of 20 .mu.L volume per reaction. In the case of Gd DNA alone, these consisted of 10 .mu.L iTaq.TM. Universal SYBR Green.RTM. Supermix (2.times.) (Bio-Rad), 1 .mu.L each of forward and reverse primers (final concentration of 10 .mu.mol), 7 .mu.L SDW (sterile distilled water) and 1 .mu.L DNA template at the required concentration.

[0082] Primers used in this case were as set out in Table 5.

TABLE-US-00003 TABLE 5 SEQ ID NO Sequence Type 58 AGGAGGCTCTTTCTTTGGAAGC Forward 59 AAGTGCCCCTGTTATCGTACAC Reverse 60 TGGGTCATCGGTTCTGATTTCC Forward 61 TAGTTTGATGTCGGGTGCTGAG Reverse 62 GCGAATACCGGTCTTTTTACGC Forward 63 ATGCAAGCTCCGGATTGAGAG Reverse

[0083] The primer set represented by SEQ ID NOs 58 and 59 (designated P5) was aimed at amplifying a 149 base pair region of SEQ ID NO 3, the primer set represented by SEQ ID NOS 60 and 61 (designated P8) was designed to amplify a 104 base pair region of SEQ ID NO 6 above, and the primer pair represented by SEQ ID NO 62 and 63 (designated P17) was designed to amplify a 130 base pair region of SEQ ID NO 10 above.

[0084] Thermocycling was carried out using a CFX96 Touch.TM. Real-Time PCR Detection System from Bio-rad. Initial denaturation was performed at 95.degree. C. for 3 minutes; amplification was performed using 40 cycles of denaturation at 95.degree. C. for 5 seconds followed by 60.degree. C. for 30 seconds (plate read post each amplification).

[0085] All of the primer sets amplified Gd DNA with good efficiency as set out in Table 6, which shows the average Cq values of three replicates of the amplification, and quantitatively as illustrated by FIG. 5A-C. The percentage efficiency was calculated using the formula % E=[10.sup.(-1/slope)]-1.times.100.

TABLE-US-00004 TABLE 6 P5 (SEQ P8 (SEQ P17 (SEQ Log ID NOs ID Nos ID NOs 62 + Dilutions 58 + 59) 60 + 61) 63) ng/.mu.l -1 19.23 19.68 19.96 12 -2 22.75 22.55 23.39 1.2 -3 26.19 26.10 26.78 0.12 -4 30.23 29.97 30.75 0.012 -5 33.64 32.85 33.96 0.0012 -6 36.15 36.26 37.04 0.00012 -7 NA NA NA Slope -3.4659 -3.3613 -3.4594 % Efficiency 94.32 98.38 94.57

[0086] The quantitative amplification was carried out in the presence of genomic plant DNA in order to determine whether there was any cross reactivity. It was found that whilst there was cross reactivity with some plants species, the primer pairs P5 showed no cross-reactivity to wheat and barley genomes, P8 showed no cross-reactivity to wheat barley and maize and P17 showed no cross-reactivity to wheat and maize genomes making these potentially suitable primer sets for detecting Gd in crop species.

[0087] To ensure that primer efficiency and robustness would be maintained in the presence of plant genomic DNA, the above QPCR examples above were repeated but in this case, the composition was varied in that 6 .mu.L SDW (sterile distilled water) was used together with 1 .mu.L relevant Gd dilution DNA template and 1 .mu.L plant genomic DNA template. For instance, Gd DNA (92 ng/.mu.l) was serially diluted from 10.sup.-1 to 10.sup.-7 with either wheat DNA (70.6 ng/.mu.l) or maize DNA (111 ng/.mu.l) and amplification reactions run as described above.

[0088] Representative results are shown in FIG. 6A and FIG. 6C and in Table 7.

TABLE-US-00005 TABLE 7 Gd + Plant DNA QPCR Std. curve Cq Value from QPCR run Log P5 (Seq ID P17 (Seq ID ng/.mu.l in dilutions 3)_Wheat 10)_Maize reaction -1 21.47 21.76 9.2 -2 24.56 25.11 9.2 -3 27.69 28.13 0.92 -4 31.38 32.08 0.092 -5 34.89 35.32 0.0092 -6 37.55 37.80 0.00092 -7 N/A N/A 0.000092 AzGd DNA 24.20 25.00 (0.01) Plant DNA N/A NA NTC NA NA Slope -3.2887 -3.2794 % Efficiency 101.41 101.81

[0089] It appears that the primers will maintain efficiency in the presence of plant genomes and thus may form the basis of a detection kit.

[0090] Results were confirmed by carrying out melt analysis post amplification the denaturation curve (Melt curve) analysis was performed from 60.degree. C. to 95.degree. C. with 0.5.degree. C. increment 5 seconds/step followed by plate read after each increment.

[0091] Representative examples of the results are shown in FIGS. 6(B) and 6(E). Clear melt curves are visible for amplified Gd DNA, without plant genomic DNA.

Example 6

Plasmid Detection

[0092] Plasmid DNA extraction from Gd (IMI504958) was performed using Qiagen mini prep kit (Cat. No. 69104). The low copy number plasmid extraction protocol was followed using 5 ml and 10 ml 48 hour bacterial culture. The extracted plasmid was run on 1% agarose gel flanked by a 1 kb ladder (FIG. 7) and imaged.

[0093] Alongside the plasmid DNA, genomic DNA of Gd (IMI504958) was also included on lane-1. The results, shown in FIG. 7 indicate the presence of a single plasmid of about 17.5 Kb in size, which is smaller than that reported previously for plasmids found in PAL5.

[0094] The plasmid DNA was sequenced and a primer was designed using Primer3 to cover the start and end sites of linear sequence data (P_End_Fw--CCAAATCTCTGGAACGGGTA (SEQ ID NO 64). Sangar sequencing was performed using this primer (SEQ ID NO 64) and the sequenced data was aligned to confirm the plasmid sequence was complete.

[0095] Since plasmid DNA in its natural form is circular and can form secondary and tertiary structures, this may impact on the accuracy of size measurements using agarose gels. To confirm the results and also validate the sequencing of the plasmid DNA, a restriction map of plasmid was studied using NEBcutter. The restriction digestion will linearize the plasmid providing only a single conformational structure. Also, the restriction enzyme selection is done after studying the sequence, thus allowing the plasmid sequence to be validated as well. In case of IMI504958 plasmid DNA, the NEB-cutter showed the restriction enzyme EcoRI to digest the plasmid DNA at 3864-9461 bp and 9462-3863 bp producing a DNA fragment of 5598 bp and 11968 bp. Both the size can be studied using a 1 Kb ladder available in the lab, removing the limitation of the reference ladder's maximum size detection as well.

[0096] Therefore, restriction digestion was performed on IMI504958 plasmid using double cutter EcoRI as per supplier's protocol. Post restriction digestion the products were run on 1% agarose gel until the bands were resolved and imaged. IMI504958 plasmid DNA when restricted with EcoRI produced two fragments (1. .about.12 Kb and 2. .about.5.6 Kb) of DNA of predicted size (FIG. 8).

[0097] This validated the sequencing data in terms of both size and sequence. It may further provide an identification test or a confirmatory test in relation to the kit of the invention.

Example 7

Illustration of Activity of IMI504853

[0098] A field trial was designed to test Gd (IMI504853) as a bio-fertilizer using wheat (cultivar Mulika). Two plots of Gd treated and control (untreated) respectively where planted. Post germination the young wheat seedlings at 10-12 day of growth were sampled and tested for Gd presence using the primer G (seq ID 26 & 27) representing the DNA seq ID 7. The Gd presence was detected when PCR was resolved on a 1% agarose gel with respective negative and positive controls (FIG. 9) confirming that in real world condition the kit of the invention works well.

[0099] The measurement of chlorophyll content i.e. "greenness" using a SPAD meter has been shown to correlate with over all plant health and crop yield. The crop at growth stage 35 and 61 were checked for its chlorophyll content using SPAD was found to be statistically significantly (P=0.001) in Gd treated plots when compared to control plots (FIG. 10). Interestingly, the SPAD showed a significant increase in the chlorophyll content from the wheat obtained from plots treated with Gd identifiable using the kit of the invention compared to untreated controls (FIG. 10). This indicates that Gd treated plots which have been confirmed to have the bacterium present using the diagnostics kit results in much healthier plants and potentially higher yield. The data from wheat field trial indicates the efficacy of Gd as a bio-fertiliser.

TABLE-US-00006 TABLE 1 SEQ ID 1 Glutathione S- ATGACAAAATTATACTATTCTCCCGGCGCTTGCTCTTTGGCAGGGCATATTTTGCTCGAAGAGTTGGGAAGAC- C transferase (EC ATATGAGTTGAAATTGACGCCCGTTGGAGACGAAGGCACGGGAAGTGAAGAGTTTCTAAAAATAAACCCGCGA- G 2.5.1.18) GAAGGGTGCCTGTTTTAATTGATGGTGCGGAAATAATTACCGAAAGCCCCGCAATCTTATTTT- ATTTATCGAGT TCATTTTCAGACGGAAATTTCTGGCCAAAATCAGTTTTGGAGCAAGCCCGCTGCTGGGAATGGTTTAACTGG- TT ATCGAGCAATGTACACTCGGTTGCCTATGGGCAGGTGTGGCGACCAGGACGGTTCATTGATGATGAGCGTCA- GT GGAATAATGTTATTTCAAAAGGGAAAAATAACCTTCATGAATTTAGTGATGTAATAGAAAATAATATCTCCG- GG AAAACGTGGTGTGTGGGTGAATCGTATTCATGCGTTGATCCGTATTTGTTTGTTTTTTATTCTTGGGGGAAA- GC CATCGGATTGGATATGGAATCCTCTTTCCCGGCGTGGTCGCGTCATGCAGCGCGGATGCTGGAGCGGTTGGC- CG TTCAAAACGCTTTACGGCAAGAAGGTTTGATCTCGTAA SEQ ID 2 O- TTGGATGCCTCTCGTTTTCCTTGCGGAGTCATCATGACCATTCCTCTCTTTCGTCCGCAATTCACACCGCAGA- T methyl- TCAACGTGCGCTTGATCGCCTTTATTCCGAGACACTCTCGCAAGATCCAGCGATACGCCAATTGG- CGCAAGCCA transferase AAGGACTGACACATGACGGGCAACGCGGTTTCTACGAAGCCATGAAAGATGCCAGACTACCCGTTACGCCAGA- G (EC 2.1.1.-) TTCGGCGCCCTGCTCTATATTCTGGCACGCAGCACCAGAGCCCAACATATCATCGAATTCGGCACGTCCTTCG- G TGTTTCAACATTATTTCTCGCAGCGGCTTTACGCGACAATGGCGGGGGCCGACTGGTGACCTCGGAACTTAT- CT CAGACAAAGCAGAAAGGGCTTCCGCCAATCTGCGGGAGGCAGGACTGGCAGACCTCGTAGACATTCGCATCG- GA GATGCCCGCGCCACGTTATCGCGTGATCTTCCTGAGTCGATCGATCTGATCCTGCTGGATGCGACTAAAGGA- CT CTACCTCGATCTCTTACTCCTGCTGGAACCTGCATTACGAAAAGGTGGCCTGGTGATCAGCGATCGCGCCGA- TC TCGATGGTGACGACGGCGGTCGCGCAGCAGCCTACCTTACCTATCTGACAACCCCGGCTAACGGATATCGCA- TC GCCGGCATCACTACACAGGCGTTGGGACAAACCTTCGCTCACGATGTGGCGGTGCGCACCTGA SEQ ID 3 Transcriptional GTGGGAATAGCCACGCTCTACCAATACTTTGAGAACAAGGAGAGCGTTGTCGCGGCACTTAGTCGTCGGGTAC- G regulator, TetR GGAAACACTGCTCCATGATGTTGCGTCATTACTCGAAACCGCTTGTTCGTTGCCACTTTCCGAGGGTGTGCGC- T family GTCTGGTCGTCGCTGCCGTGAAGGCGGACAAGAGCCGTCCATCGCTTACGGTCCGGCTTGATCGGT- TGGAGGAG GCTCTTTCTTTGGAAGCGGATCATCTGCTGGTAGCGGCTGAGCTTTGCACGGTTGTTGCGTCGTTCCTCAAG- TG CCAGGGAATTATTCAGGAGAACACTGCAAAAATTCTGGCAGATGATCTGTGTACGATAACAGGGGCACTTAT- TG ACGCTGCACACAATCGACAGATACCTATCGATGACTTGCTAATTGACCGTATTACGCGAAGGCTGGTCGCGA- TT ATTCAGAGCGCGCTTTAA SEQ ID 4 RNA polymerase GTGGGACAGCCGGACAAATATTTCGAGCTTTTCGCGATACATCGCACCGATCTTGTGCGTTTCGCCAGAGGTA- T ECF-type sigma CATGAGAGATGATAGTCTGGCGGAAGATGTTGTACAGGATGCTTTTCTGCGGCTGACTACTGTAACAGTGGCA- C factor::RNA AGGACCGCGTTCTTTCGGATCCTCTGAATTACGTTTACCGCATTATTCGGAATCTGGCCTTTGACCGTTATCG- A polymerase ECF- CGACGGCAATTCGAGGCCGGATTGTTTGACCATGGGGTAGATAGTTCTTCCGAAACAATCGAAGCGGATGCCC- C type sigma TACACCGGAAGGTGAGGCTTCAGGGAAATCCGACATGCGGGCAATGCGCGCCGCTATGGCGGAACTGCCAGAA- C factor GGACGTGCGTCGCATTGGAAATGCATCTGTTCGACGGACGAAAGCTACGGGAAATAGCGGCTCATT- TAGGTGTT TCTATTGGGATGGCCCACTCCCTTGTCGCAGTGGGTATGGAGCATTGCCGCAAACGTCTTTCCACACCTGAA- AC CTGA SEQ ID 5 FecR family GTGAGCGAAGACTTCAATCCAACAACGGCGGTTGAGTGGAAAATAGCCCTTTCAGAAGAGCCTGACGATTCTG- T protein, GCTCAGAGAACGCTTTGAAGCATGGCTTGCTGCCGCAGAGGATCACCGGAAAGAGTGGCAGGAA- CTTACGCAGG COG:Fe2+- GACTTGAGAATTTCCGCCAGATTGGCCCGCTTTATCGTGAGAAATGGGTGCCTTCATCAAGTG- GGGCACAAAAT dicitrate ACTGCGTCAAAACAAGGTAGGCTCAAAGGAAGACCTGCTAATTTTGTTAGGTTTTCAGTTGCT- GCATTTGCGGC sensor, membrane TGCTGCTGCCGTTACATTGGTATGGTCCTCTGACCTTCTGCTTCGATTACAGGCCGATTACGCCACAGGCTCG- G component; CAGAAACGCGAACAGTCAGTCTCCCCGATGGTAGTGAATTGACCCTCGCGCCGCGAAGTGCGGTAAAAATGTC- T TACTCTGTAGAGAAACGGGATATTCGTCTTTTAAAGGGAGAGGCGCTCTTCACGGTTCGACATGATATGGCG- CG ACCTTTTGAGGTCCACACAGACAAATTCACCGTAACGGACATCGGAACTATTTTTGACGTCAGAATGTCTCA- GG GCGAGGAAGAAGTCTCTGTCCGGGAAGGAGAGGTCCGGGTGCAGGATGTTTCCGGTGGATTTCATAATCTCG- AT GCCGGAACGTGGGAGCGGATTAGAACTGTAGGCAATGGAGTGAGCGTCACTCATGGGAGCGGCTCTCCGGAA- GA TGTGGGCGCATGGTCAGCGGGGCAAATTATTGCCAAGGAAAACAGCGTGTCCAGCGTCGTGGAAAGGCTTAG- GC CCTACTACCGGGGGGTTGTTGTCCTTTATGGTTCTTCCTTTGGGGAGAAGTCACTCACTGGTGTTTATGACG- CA AGTGACCCGGTTGGCGCATTTCGGGCGATCGCAGCCGCGCATCATGCTCAGATGCATCAGGTTTCGCCATGG- CT GACAATATTGGCCGCACCGTAG SEQ ID 6 Ferrichrome-iron ATGAAGGGTGCGGTTGCATTGCATTCGCAATTGTGGCGGCTCATACGAATGGGAACGGATAAGGTGATGACGA- T receptor TGATGATAGAATGAAGCGGTGTGGGCGGCAGGTGGCGTGGCTTATCGCGCTGGGTAGTACGACG- TTTCTGAATG CCGCTGTGACGAAAAGCTATGGTGCAGAACCTTCCCAAAGTGCTCGGGCCGTCAGATCATTTTCCATTCCGG- CC CAATCTCTTGAAGATGGTCTCGCAAGGTTCGGACAGCAAAGTGGGTGGCAGGTTTCTGTTGACGGAAATCTT- GC AAAATCTCTGACAACGCACGGTGTTAGCGGTACGATGACATCTGCTCAGGCCCTCAATGCGATCCTGTCCGG- GA CTGGCCTGACATACACGATCAGGGGTGGCCGAACCGTCGTGCTGACGAAAGCAGTAGCCAACATCACGCTTG- GT CCGGTCCGTGTCGGAGGAACCCTCGCGCGTCAGGATCCAACAGGGCCGGGTGTCGGCTACTTCGCCGAAAAC- AC AATGGTTGGTACAAAGACGGATACGCCCATCACGGAAATACCGAACTCAGTCTACGTCGTGACCAAGCAGTT- GA TGACCGATCAGCAGCCGCAGAATATCCTACAGGCTTTGCGTTACACTCCCGGCATCTACTCTGAAGCCGGAG- GA ACGACAAATCGCGGATCTGCCCAGAATGACAACATGGGCATTTATCAGCGTGGATTTCTCTCGAGCCAGTTC- GT GGATGGGTTGATGACGAATTCGTATGCCGCCGCCGAGCCAAGCTTTCTGGACCGTATCGAGGCGCTCAACGG- TC CAGCATCGGTGATGTATGGCCAGACGACACCCGGAGGAATGGTCGGTATGAGCCTGAAGAAACCCACCGAAA- CG CCGCTGCATCAGGTTTCGCTAGGCTTCGGAAGCTGGGGACGGTACGAGGCAACGTTCGATGTCAGCGATAAG- AT CACGCAGTCCGGTAATCTGCGCTATCGTATTGCAGCCATCGGAGTCACATCGGGCACTCAGGAAGACCGAAT- TG ATTATCATCGGGTGGGTGTACTTCCTTCAATCACGTGGGATATCGATCCCAAGACTCGCCTCACTCTACTTG- GT AGTTATATGTACACGCCTGGCTCAGGGAGCACCAGTGGTTATCCGGTCCTCGGGACTCTTATTCACAATTCG- GA AATTCCACGAATCTCACGAAGCACATTTATCGGAATACCTAGTTGGAACACTATGGGAGATAAGGTCGGGAT- GT TCGAATATCAATTTAGTCATAAATTTAATAAATTTATTGAGTTCAATCAGACGTTTCGCGTAGAGAATTCCA- AC GTTCATGAGTCAAATATCACCGATGTAACACCTGTAGATGTTGAAGGAAAATGGACATATTTTTATCCTTGG- AA ACAAAATTATGAAAACACAACTGAGGTACTTGATACTCGCTTAGGGGGGCGGTTTCTAACTGGTCCTGTACA- AC ATACATGGGTCATCGGTTCTGATTTCCGCAATTATGACTATCATTATACTGAGCTCATCGACGACGGTGCGA- CA ATCGTTGTGCCCACTCAGCACCCGACATCAAACTATTCCCCATGTATAAGTTTAACCTCCGCGAAGTGTGAC- GC CTTCGCGGGAATAAACCCAGACTATAACTCGTTTCAGGAGGGCGTGTATTTTCAGGACCAGATAAAATGGCA- GC GCCTGTCCGTTCTCTTGGGTGGACGCCAAGATTGGGTTAATTCATCTAATAAAAATTACAGTGTAACGAACT- TT TATGGAAACGTCAGCACCCGCGTTAATAACACTGCTCCACACCCTCAATCGGCCTTCACCTGGAGAGCTGGT- AT AATCTATAATTTTGACTTTGGGCTTGCCCCGTACTTCAGTTACGCAACATCCTTTGTGCCACAAGGAGGTAC- GG ATTGGCAGGGTAAGATTTTCGCGCCTTTGAGCGGAAAGCAACTCGAAGCCGGGTTGAAGTATAAAGTTCCAA- AC GAAGATATCCTCATAACGGCATCAGCATTCCGAATTGATGAAGACCACTATCTTATCAGTGATCTTGTTCAC- AC GGGCTTTAGCAGTGACGCGGGAACGGTACGCTCGCAGGGTTTCGAGGTTTCCGCCAGTGCGAACATTACCAA- AA ACCTCAAACTTGTCGCCTCTTACACATATGAGGATGTGCGGTTCAGAAAGAACAATTTGGCCGTAAATTCGG- TC GATCCCGTCACGCTAACATATGGAGCAAAGGTAAGCGAGAATGGAAAATTCGTTCCTCGAGTTCCTCGGAAT- AT GTTTAATATGTTTCTTGATTACACCTTCCACGACGCCCCATTGAAGGGTCTCGGCTTTAATGGAGGAATTCG- CT ACACCGGTTTTACCTATGCGGACTATGTGGAGTCTTACAAAACGCCGGCGTATTATCTGTTTGACATTGGCG- CA CACTATGATTTTGAGGAAATAATCCCTTCTCTCAAAGGTCTGCGTGCCCAGTTGGCAATCTCAAATTTGGCC- AA TAAATATTATATTACTTCGTGCAATACCGCCATATGTACTCTCGGTTATGCTCGAAAGTTTTACGGTAACGT- GA CGTATAGCTGGTGA SEQ ID 7 Reverse GTGACGCCCGAATTGCTCCTCTCCAAGGTGCGGCTGCTGCGGTCGCCCAATGACGACGGCGCGTTCTTCGACC- T transcriptase AGTCGGCAGTGTTCTTAATTGGTCCTGGGAGGAAAGAGACGAACGTCAATTCGCCCGCTTCAAGCAGCGCGCG- G family protein GCATCCCTGAGTTCGATGGCGTCGCCCTTCCACAGGGTTTGGTTGCAGCTGGCTTCTTCTCGAACATCGTGCT- G CTTGATTTCGATCGGATCGTCATCGGACAGATTGGGAGAGAAGTTACAAACGGAGTGTGGCTCCGGGACGCC- TG CCGGTACGTCGACGACATTAGACTGACCATAACAACTGCACCAGGTATTGACCCAAGAGAAGCTCAGGCGCG- TG TAATGGCGTGGCTTGGGCAACTCCTCACGGGGAGCTGTCCGGGCTTGGAATTCTCCCCGGAGAAGACGTCAA- CT GCGTCGGTTGGAGGCGAGCAGATGCCGCTGGTTCGCCAATCCCGAAAGATGGAGCGCATCCAGACCGCGATT- TC CGGCGGCTTCGATGCCAGTGGTGGCGAGGAGGTGATCCACGCGATCGAAGCCCTCGTCCGATCCCAGCTAAC- GA TCAACAGCGTCGAAGAGTCGCCTACCCCTCCCGGCTTGAGAGCGGTACCCGATGTCAAAGACGAGACAGTCG- GT CGTTTCGCTGCTGGTCGGTTCAGAAAAACCTTTCGTTCATTGAGGCCACTACTCGATGATCGACCTTACATG- GA GATTGCTGAATTCGGGGAGGAGACGTTCCGGCGCACCCGACTTTCGCAATCGGAGCTTGACGAGGAAGCACG- CG CATTTGCGCTAATCCTAGTCGAACGGTGGATACTCGATCCTTCGAATGTGCGGCTGCTGCGCGTCGCACTCG- AC CTCTGGCCGTCCCGCCAACTCCTCAAGGAAGTACTGAAACTCTTTGAGCCCTATCTTGTCGGGAAGATCAGG- GC AATCACTAGCCGGCAAGTTGCATACTACTGCCTCGCCGAGATATTTCGAGCAGGGGCGACCGAGACGGGCTT- CA TTGACGATCCAGAGTGCCTTCCCGCTGCCGTCGATCTCGCCGGTTATAGATCTCTGCTTCTGGAGGCCGCAG- TA CGAGTGGCCCGGGGCGAAGCCGAACGTGTCCCGTGGTATCTCGCGCAACAAGCACTGCTTTACATTGCGGTC- CA CGATCCCCGGGCTATCCAAGATCGAGGAATTTCAAAGACCAATCGATCCTATTGGCGCCTCGTCTCATTTCT- GA AAGGCGAACGCGACGTCTCTTCAGATCGCGAATTCGCAGTAGCCGCGGTGGTGAGCCGCAGGTCGTTCCTTT- CG AATGATCAGGCCGTGGATCTCGTCGGTCGGATGCTCACGCCAGAGCGGTTCGCCGAGGTGGCCGCGCGCGAC- AT AGAATTCGCCCGCGATCTCTTTCGCGCCGTCGACCGACACCTCACCGTTCCGGCAGGCATTGCCGAGGACTT- GG GGGTCGCCGAATGGTCCATGTCAGAGGAAATGAGCTCTCTGCAAAGCTATATCCAAGGCAAAGGGCCTCTGA- AT CCGCTACGCAATGAGATCGGCGTACTCAGTTTTGCAGAGAAATTCATCTCCCATCTCCAAGAAGGAAATTTG- CC GGAAGTCGTGACGCCGTCGACGACGCAGATAGCGGTACAGCAAGTGGGCAAATATGTCCGCGTCGAACGGGT- GA TCTTCAGATCGGCCCAGACAACGCCGACTTACCGGTCTATTTATACTGCTCCCAGATGGGCGCCGGAATCTC- AA CGCTGGCGCTTTCAGCTCGGTTATTTACTTCGCTTCATTCTTACTGCCAGAATAGACTTCAGCCTTCCAGTT- AG GCCGCCATCGTGGAAGGAAGGTAAACACATCTATCGGCCTACCAGAAGTCACTGGTTTCAGCGGCAATACGG- CT TCTATAATGGGCATGAGGCCTTCGGGGACGATTGGCTACCCATTTCGCAGTTCACTCAGGATCTTCTCTTCG- AT CTGCTCACCTGGCCCGGCTGCCGCACAAGTAGCCCGGATGTCGATCAGTTGTCCCTGGATGAAACGGCTGCT- CG AATCCGCGCAGCTCTCGTAGAAGCCACCGCTGCGATTGGCCCGGCTACAGGAACCCTGATGCTCAAGATCGA- TG CACCTATTCCAGGTACCACATCGAAGGGGCGCCCGCTTCGGGCCTGCGTCGTCCAGTCGATCATGCCCGAAG- CA GAGGACTTCTCGGCTGCCGATCTGGAGATGCGCTCGCCGGCCCTTCGACGAAAGCACCGCAAACATCTGTCC-

AC GGCATTGGCGGCGGTTGAGAAGATGTTGGATCTTCGCGAGACTCATAAGCCAGCCAGCAAGCGTCTCGACTG- GC TCATCCTACCAGAACTGTCTGTTCACCCGGATGACGTTGCCACCCACCTCGTGCCGTTCGCGCGAGCGTTCA- AG ACCGCGATCCTGGTCGGCATGGCCTACGAACAAGTCGTCACGGGAGAGCCGCTGATCAACTCGGCCCTCTGG- AT TATCCCGAGGATGGTGCGGGGCATGGGCCTACAGACGGTGATCAGACGGCAGGGAAAACAGCACCTCTCTCC- GA TGGAACAGAAGTACGTCAAACCGGTCGAACTGATCACCGGATTCCGCCCGTGCCAGTGGCTGGTGGGGTACG- AA TGGTCGAACAATCCGGCCAAAGACGCACTTTGGCTCACCGCGTCCATCTGCTACGATGCAACAGACCTGAAG- CT GGCGAGCGATCTTCGTGATCGCTCAGACGTGTTTGCGATCCCAGCCCTGAATCTCGACGTCGGCACCTTCGA- TC AGATGGCGCAGGCGCTGCATTATCATATGTTCCAACTCGTGCTGATCGCGAACAACGGAGCTTATGGGGGCA- GC AATGCTCACGTTCCCAAGGGGGAGGCCTATCAACGCCAAGTGTTCCATACCCATGGCCAGCCCCAGGCTACA- AT TTCCTTTTTCGAGATCGACGATATCGAGGGCATGAAGCAGAGACACAAGCTCGGCGCTGGGAAGGAAGGCGG- GT GGAAATATCCACCTGCCGGCTGTCAAGTCTGA SEQ ID 8 DNA topology TTGATGCGCTTGTTCGTGACGGGGCCAACTGGCAGTGGAAAATCAACGCTGGCTGCAAAGTTGGCTCAAAGGG- C modulation AGCTATACCACTGTTCCCGCTCGATGAAATTCATTGGGTTCGCCATCTCTCCGGGGATTGGCGGCGCGATCCT- G protein TTGAACGCCTGTCTATGCTCGGAGAGATTGTACAGCTCGATGCCTGGGTCATCGAAGGCGTGCAG- TTCAAATGG ACTGATATAGCGATAGAACGAGCAGACTGGATCGTCGTCCTCGATCCACCACGTTGGCGGAACATCGCTCGT- AT CCTGCGCCGTTTCGTCAATCGCCGATGCTTTTCTGGGGCGGGGCACCGTGGAACGGTAAAGGCTCTATTGGA- GG AGATGCGTTGGTCAGCCGACTACTATGGTCATGAACGCGGTATGCTGTTCGAGAAGATTGGACAATCGCCAG- AC AAGCTCATCGTCGTACATGACGACAAGGGCGAACGCGCTTTGACCGAGGCTGTATTCGCGACTGCGTGA SEQ ID 9 Cycloisomaltooli ATGGCATATTGGATCAGGCTCTCGCTGGCCGTGTGGCCGCCCGATCAGCAACGTTGTAGCGAAGGCCGCGTAA- T gosaccharide GCGCCGCTATCTTTTCACAACCATTCTCTCGCTCTTACCGTCCCTTGCGGCGGCGGCATCCCTCCAAGGTCCG- A glucano- TTGTTTCGCATGTGCGGGATGATCGGGCTTTCTACCAGGCAGGCAATGTCGCGATGATTTCCGT- GGAACTGACC transferase CCACTAGCCGCTTGGACGGGAGGCCATGTGGATCTAGCGATATGTTCGCGTGGGCAAGTCGTGGGCACGATTC- A precursor (EC GAGCCAAGCGGTCACCAGCATGGTGGCTGGGGCGGACCAGACACTTCACTATCCCGTCACCGTTCCCAGTCTC- C 2.4.1.-) ATGCTCATGGGTATCAGTTGGCTATCGCGGCCCTGAACAATGGGGACAGCGGGACAGCGTCCTG- TACCGGGACA GGCAGCACTTCCACGTCGCCGGCCGATGTGGCGTCAGGCGGCATCAACGTGGCCGCGAATGCCTGGGAAGAC- AT CAACGAAGCATGGGTCGACGCGCCGACGCTCGGCAACGTCTCCGCGGCCCGGGTGATGGATAATCTCAGCCA- GT ATCACATCAACGCGGTGCAATTTTACGACGTGCTGTGGCGACATGACGAGCCGTATTCATCCGCCCCGCAGT- GG CCGAACCTGGAAGGCGTAACGGTCACAAGGACCAATCTTCAGGCTTATATCAGCGCGGCGCATAGCCGCGGC- AT GGTGGCGCTCGCCTATAATCTCTGGAACGGAGCCTGGGCGGACTATGCAACTGTCAATCCGAAGGTCACGGC- GG CAATGGGGCTCTATGCTTCGTCCGGACAGAAACACCAACTGACCAACGGCGGGGGCTGGCTGTCCTGGGGGT- GG TCGACCGACCATATTGCTGAAATGAACCCGTTCAATGGCGACTGGGCCAGATGGCTAACCAGCCAGATCCAG- AA GACCATGTGGAATTTAGGATTCGACGCCGCGCATCTGGATACGTTGGGTGACCCTGGTGGTCAGCAATATGA- CG GCGAGGGCCATCCGTTACCTGCTTTAGGAACGATTCTGGCAGACTTTGCGAATAATGTACAGGCTCAGACCG- GG GCACCAACTGACATCAACGCCGTTTCGGGTTGGAATACCACCGACCTTTACCTACGCGGTACGGGACCCAAC- CT GTATATCGAACCCCATCCCGAATTCGGAAACACGCCGGGCTACGATGATTCCCGAAGCTTATGGGACATCAA- AC AGAAATATACGTCGCGCCCGCTGATGACGGCGTTTTATCCGCAGCAGGTCCAGAGCGGTTCGCTGAGCACGT- CC TTTGCCGTCAAGGGTGAGAGTGTGAAGGTTTGCGACCCGACGTTAAAATCCGGATGCATAGCCAATAACCTC- GG CATTGAGTTGTTGCTCGGCCAGATTGCGCTCAATGGAGGCTCCAATATTACTCTTGGTGATTTTGATCATCT- GA TACCGGGGCCATATTTCCCCCGTCCGACCCTTAAGATCGACGGTCCATTGCAGCAATATCTGGCGGATTACT- AC AACTGGTGGGTCGGAATGCGCGATCTGCTGCGTGTCGGCGTCATCTCATCCAATGAGAGGGAGTCCATCCGG- AA TGGAAACGGAGCCAGTATCGGCCAACCTTATGCCCAACCGGGAACCGTCTACTATCATCCCCTGATACGCGC- TG GCATCGCTGGTGAATTGGCGCTCACAAACATGATCGGGTTGCATTATAATCGGATTGACGACCCTGACGGCA- AA AACAATCCGACCCCGGTGAACAACCTGTCGATCGAGATGGAATTCTGGGAAAGAAGCACACCGGGGGCATTG- TA CTATAGCGCGCCCGACATCAACCACGGCTTCCCACAGCCCCTCACCTATAGGCTGAACGGAAACGGTAGCGT- GA TGTTTACGCTACCGACTCTCAAGACGGTGGCGCTTGTTTGGCTGGAAGGCACCAATTTCACCACTACGACCG- AT TACACGATCGGTACGGCGCAGGATGTGAGGGGTGGCACAGCAAACTTCTGGACGAACGGCAGCGGAGAGGAT- GC TACCGGATATCGTGGCTGCTGTGGTCGCTCCGCACGCTGGGACAGCATCGATTTCGGAGCGGGTGTGTCAAC- GC TAACGATGGTAACCCGAAGCCAACTCGGCGGACTGGTCGAATTTCGCCTGGATGCACCTGATGGACCAGTCA- TC GCCCGTAATTATGTTCCTGCGTCTAGCGCCACGACAACAACCACTCAATTACGCAGGCCAGTATTCGGGACA- CA TACCGTCTTCGCTAAAATTCCTGGTCGCGAGATTACGCTGATATCCTGGAAGCCATAA SEQ ID 10 Methyl- ATGATGGCTAACGACAATACCACTGAGGTGGTTGGTGCATTTGCGGTAAGTCATCCCAACTTGGCGCAAGGTT- T transferase TACTTTTAGTAACAGCAGTCAACTAGATACGATTGCTTCTACTATTCATAAAAGCGGTTTGGAGACTTATGAA- G (EC 2.1.1.-) CTCCGACAACTAATATAATTATCGAACTGATCAGGAGTTCGTCTGGTCTTATTTTAGATGTGGGAGCGAATAC- C GGTCTTTTTACGCTAGTCGCCGCAGCAGCCAACCCCCTGATCCGCGTCTGCTCTTTTGAGCCGCTTGCGAGT- AT TCGTGAACTTCTCAAGAGCAATATTGCTCTCAATCCGGAGCTTGCATCACGTATCGCTGTCGAGCCTGTCGG- GT TATCGAATGAACGGGGCACTTTCACTTTTTACGAAACGATCAACAATCGTGGCTTTGTCACGACGAGTTCAT- CG CTTGAAAAAGCACATGCAGAGCGAATCGGCGATTTGTACGTCGAGCGCACTATCGAGACCCGGACACTTGAT- GA ATTCGGAGAAACGCTCGGGAATGCGAGCGTTCCGTTCGTCAAAATTGACGTTGAGGGACATGAGCATGCCGT- TA TCTCCGGTGGCCGCCACTTTATCGCCAAGCACCGCCCTTTTCTTACTCTCGAAGTCCTGAGAGAGGCTAACA- CT TTGAGTCTGGACCAGTTGGTGACCGAGTCCAACTACCTTGCCCTGGCAATGGCACCCGACGAATTGCGGCAG- TG CGAGCGTTTACGGTTTCATGACGACGCCTGGAATCATCTTTTGGTCCCCGCCGAAAAAGCGGAACGGCTATT- TT CGCTCTGCCGCCGACTTGGCTTGCAAATCGGGATCCGCTGA

TABLE-US-00007 TABLE 2 SEQ ID 11 Transcriptional ATGTCGAATTCCGAGCGCCCAATGCGCGATTTGTCGGACCTGGCAAAAAACCGACAAATAGAGCCGATGGTTA- T repressor; CAGGCTACGAGAAGTAGTGGATCGGACCGGAGGCGCGAAAGCTGTGGCCGCACGCACGGACATCCCTCTCAGC- A asserted pathway CACTTTCAGGTTACCTGTCGGGTCGGGAACTCAAGCTTTCCGTCGCGCGCAAGATCACGGAAGCCTGCGGTGT- C PF01381<21br> AGTCTTGACTGGCTTGCGGCAGGAGAGGACGGACCTGCGGCCCGGGAATTCGGCAATGCCCGGCAGGCGGGTC- C Peptidase S24- CGAGTCGGTCGAGTTTCTGAATTACGACGTCATTCTCTCCGCCCACCAGGGCGTCGACGGGGATAGTTCTTAT- A like::PF00717 TCGAAACGAGAATATCGATACCGCGGGATTTTCTCCCTTTGTCCATTCAGTCCAATACGGACAACATTTCGGC- C GTCACGGCGAAATGCGACAGCATGAATCCGATCATAGACGATGGAGACATTCTTTTAATAAGAACGGATGTG- CA TACGCTCACAAGTGGCAGCATCTATGCCCTGCGGGTAGAAAACACCCTTCTGGTCAGGCGTCTGATCCTCAA- GA CCAACGGCAACGTCCAGGTCATCAGCGAGAACCCGCGTTACCCGACCGAGGAACTGAACGCCGAGGACGTTC- GC AGGATGGTCCAGGACGACGGCTTTCCGGCCAGGATCATCGGCCGGGTCATCTGGCGCGCCGGTAGCCTGATT- CC ATAG SEQ ID 12 outer membrane ATGCGCATCGTCCTCTTGCCCTGCCTCGTCGCGACCTCAATAAGTATGTTGGCGGTTTCCGCATCCTATGCTT- G heme receptor GGCGGACAATAGCCCGTCGCCCCCCAGGACGAACAAACAGGCCAAATCGCGGCCGTTACATGCGCAGGGGACG- C GCAAAGCGGGCAGCGCCATCACCAGCCAGGATGAAGCGGTGGCTGTCGTGGGAACACGTGAGACATCGCATG- GG ATGGAGCAGAGCGTTACCCGTGCGACGATGGACAAGTTCGTGGCGGGGACCAGTCCCCTGCAGATTCTGTCG- GC CACGACACCGGGTGTCAATTTTGCCTCGGACGACCCGTTCGGCCTGGATACATGGGCGAACACATTTTATAT- TC GCGGCTATTCCCAAAGCCAGTTGGGCATCACCCTGGACGGTATCCCGCTGGGCGATGCCCAGTTCATCAATT- CC AACGGCCTCGATATCAATCAGGCGATCATCCAGAACAATATCGGTCGCGTCGACATGTCGCAGGGTGGCGGT- GC GCTCGATGTCATGTCCGTCACCAACCTGGGTGGCGCGCTGCAATATTATTCACTCGATCCGCGCGACAAGGC- TG GTGGAGACATTTCACAGACGTTCGGCAGCAACCAGACCTATCGCACGTACGTCAGCGCCCAGAGCGGCAAGC- TC AATCCCAGCGGGACGAAGTTCTATGCGTCGTACGCGCGCACCGATGCCGGGAAATGGAAAGGCGCCGGGGAC- CA GTTCGAACAGCAGGCGAATTTCAAGATCGTACAGCCGCTCGGGCGTTACGGAAAACTGTCCGGATTCTTCAA- TT ATTCCGAATTCGACCAGTATAATTACAGCGATTTGAGCCTGGAAATCATCCAGAAGCTCGGCCGGAACGTGG- AT TATTTCTATCCGAACTACAAAGCCGCGTATCAGGCTGCCGAGGGGATCTATCCCGCAGGCTATGCCAAGGTC- GG AGATGCCATGGACGTCTCCTATTACGATGGTGGCCAGGACCAGCGGAATTATCTTTCCGGCATCACGTCCAC- GA TCGACCTGACGTCCCGCCTGCATCTGAAGACGGTGCTGTACGACCAGCAATCGGCGGGGGACTACGAATGGA- CC AACCCCTATGTGTCGTCGCCCTCGGGCGCGCCCATGATCCAGCAGGTCGGGCACACATCGATGACGCGCGTG- GG CGGGATTGGCGCGGTGCAGTACCAGATCGCCAATCATTCGCTTGAAACCGGCGTCTGGTACGAAAACAACGG- AT ATAGCTGGGCGCAACGGTACTACAACCAGCCGCTTCTGGGGGAGGGTACGCCCCGAAGCGCCACCGGACCGT- AC AACGATCCGTTCGCCACCGCATACGCCATGACCTTCAATACCAACAGTTTTCAATATTACCTGGAAGATTCC- TA CCGTATCTTGAAGACGCTGCGGGTGCACGCGGGCTTCAAATCCATGCTGACGACGACGTCGGGCGGCGCATC- CT ATAACAATCCCGTCTATACGGGCCAGGACACCCTGCCCAGTGGCAGCCTGACCACCGCCAGCGCCTTCCTGC- CG CATGTCAGCATCAACTGGAATTTCCTGCCCCGGAACGAACTGTTTTTCGACTTCGCGGAGAACATGCGCGCA- TT CACCTATAATACATGGCAGAGCGGGAATGCATGGGGAGTCAATGAGATGCCCCAGAACCTGAAGCCCGAGAC- CA CCTTCAATTACGAGGTCGGTTATCGATATAATTCCCGCTTCGTCACGGGCCTCGTCAATCTGTATCATATCG- AT TACAGGAACCGGCTGGCCACCATCACCACCGGCAGCCTGGTGAACGCCCACAATACCTATATCAACGTGGGG- AA CATGGCGATCTGGGGTGCCGATGCCGGCGTGACGGTGCGCCCGCTGCCGGGCCTCGAGATCTTCAACAGCGC- CA GCTACAACAAATCCACCTATGGGCAGGATGTATCCAGCGGCGGGGTAAATTATCCCATCAGCGGCAAGCAGG- AG GCCGGCTATCCGCAATGGATGTACAAGGCCAACGTCTCGTACAGGTATGGCAACGCGAAGGTCAACTTCAAC- GT CAACTATATGGGAAAGCGATACATCTCGTACATGAACGACGCCGCCGTGAACGGGTATTGGCTGGCATCGCT- GT CGGCGACGTATATCTTCAAAACCATTCCCCATCTCTCTCAGCTTGAATTCAATTTCGGCGTCTACAACCTGT- TC AACCAGGAATATATCGGCGGCATCGGCGGGTTCTCACTGTCCGGTGACACGCAGCAACTCTTTGCCGGCGCG- CC ACGCCAGTTCTTCGGTACGCTGCACGCACGGTTCTAG SEQ ID 13 Levansucrase GTGACGGCGCGGTCGTGGTTGCTCTGCAATCTGAAGAGTTTCCTTCAGGAGGATGGAATGGCGCATGTACGCC- G AAAAGTAGCCACGCTGAATATGGCGTTGGCCGGGTCCCTGCTCATGGTGCTGGGCGCGCAAAGTGCGCTGGC- GC AAGGGAATTTCAGCCGGCAGGAAGCCGCGCGCATGGCGCACCGTCCGGGTGTGATGCCTCGTGGCGGCCCGC- TC TTCCCCGGGCGGTCGCTGGCCGGGGTGCCGGGCTTCCCGCTGCCCAGCATTCATACGCAGCAGGCGTATGAC- CC GCAGTCGGACTTTACCGCCCGCTGGACACGTGCCGACGCATTGCAGATCAAGGCGCATTCGGATGCGACGGT- CG CGGCCGGGCAGAATTCCCTGCCGGCGCAACTGACCATGCCGAACATCCCGGCGGACTTCCCGGTGATCAATC- CG GATGTCTGGGTCTGGGATACCTGGACCCTGATCGACAAGCACGCCGATCAGTTCAGCTATAACGGCTGGGAA- GT CATTTTCTGCCTGACGGCCGACCCCAATGCCGGATACGGTTTCGACGACCGCCACGTGCATGCCCGCATCGG- CT TCTTCTATCGTCGCGCGGGTATTCCCGCCAGCCGGCGGCCGGTGAATGGCGGCTGGACCTATGGCGGCCATC- TC TTCCCCGACGGAGCCAGCGCGCAGGTCTACGCCGGCCAGACCTACACGAACCAGGCGGAATGGTCCGGTTCG- TC GCGTCTGATGCAGATACATGGCAATACCGTATCGGTCTTCTATACCGACGTGGCGTTCAACCGTGACGCCAA- CG CCAACAACATCACCCCGCCGCAGGCCATCATCACCCAGACCCTGGGGCGGATCCACGCCGACTTCAACCATG- TC TGGTTCACGGGCTTCACCGCCCACACGCCGCTGCTGCAGCCCGACGGCGTGCTGTATCAGAACGGTGCGCAG- AA CGAATTCTTCAATTTCCGCGATCCGTTCACCTTCGAGGACCCGAAGCATCCCGGCGTGAACTACATGGTGTT- CG AGGGCAATACCGCGGGCCAGCGTGGCGTCGCCAACTGCACCGAGGCCGATCTGGGCTTCCGCCCGAACGATC- CC AATGCGGAAACCCTGCAGGAAGTCCTGGATAGCGGGGCCTATTACCAGAAGGCCAATATCGGCCTGGCCATC- GC CACGGATTCGACCCTGTCGAAATGGAAGTTCCTGTCGCCGCTGATTTCGGCCAACTGCGTCAATGACCAGAC- CG AACGGCCGCAGGTGTACCTCCATAACGGAAAATACTATATCTTCACCATCAGCCACCGCACGACCTTCGCGG- CC GGTGTCGATGGACCGGACGGCGTCTACGGCTTCGTGGGTGACGGCATCCGCAGTGACTTCCAGCCGATGAAC- TA TGGCAGCGGCCTGACGATGGGCAATCCGACCGACCTCAACACGGCGGCAGGCACGGATTTCGATCCCAGCCC- GG ACCAGAACCCGCGGGCCTTCCAGTCCTATTCGCACTACGTCATGCCGGGGGGACTGGTTGAATCGTTCATCG- AC ACGGTGGAAAACCGTCGCGGGGGTACCCTGGCGCCCACGGTCCGGGTGCGCATCGCCCAGAACGCGTCCGCG- GT CGACCTGCGGTACGGCAATGGCGGCCTGGGCGGCTATGGCGATATTCCGGCCAACCGCGCGGACGTGAACAT- CG CCGGCTTCATCCAGGATCTGTTCGGCCAGCCCACGTCGGGTCTGGCGGCGCAGGCGTCCACCAACAATGCCC- AG GTGCTGGCGCAGGTTCGCCAATTCCTGAACCAGTAA

Sequence CWU 1

1

681630DNAAcetobacterGlutathione S-transferase (EC 2.5.1.18) 1atgacaaaat tatactattc tcccggcgct tgctctttgg cagggcatat tttgctcgaa 60gagttgggaa gaccatatga gttgaaattg acgcccgttg gagacgaagg cacgggaagt 120gaagagtttc taaaaataaa cccgcgagga agggtgcctg ttttaattga tggtgcggaa 180ataattaccg aaagccccgc aatcttattt tatttatcga gttcattttc agacggaaat 240ttctggccaa aatcagtttt ggagcaagcc cgctgctggg aatggtttaa ctggttatcg 300agcaatgtac actcggttgc ctatgggcag gtgtggcgac caggacggtt cattgatgat 360gagcgtcagt ggaataatgt tatttcaaaa gggaaaaata accttcatga atttagtgat 420gtaatagaaa ataatatctc cgggaaaacg tggtgtgtgg gtgaatcgta ttcatgcgtt 480gatccgtatt tgtttgtttt ttattcttgg gggaaagcca tcggattgga tatggaatcc 540tctttcccgg cgtggtcgcg tcatgcagcg cggatgctgg agcggttggc cgttcaaaac 600gctttacggc aagaaggttt gatctcgtaa 6302729DNAAcetobacterO-methyltransferase (EC 2.1.1.-) 2ttggatgcct ctcgttttcc ttgcggagtc atcatgacca ttcctctctt tcgtccgcaa 60ttcacaccgc agattcaacg tgcgcttgat cgcctttatt ccgagacact ctcgcaagat 120ccagcgatac gccaattggc gcaagccaaa ggactgacac atgacgggca acgcggtttc 180tacgaagcca tgaaagatgc cagactaccc gttacgccag agttcggcgc cctgctctat 240attctggcac gcagcaccag agcccaacat atcatcgaat tcggcacgtc cttcggtgtt 300tcaacattat ttctcgcagc ggctttacgc gacaatggcg ggggccgact ggtgacctcg 360gaacttatct cagacaaagc agaaagggct tccgccaatc tgcgggaggc aggactggca 420gacctcgtag acattcgcat cggagatgcc cgcgccacgt tatcgcgtga tcttcctgag 480tcgatcgatc tgatcctgct ggatgcgact aaaggactct acctcgatct cttactcctg 540ctggaacctg cattacgaaa aggtggcctg gtgatcagcg atcgcgccga tctcgatggt 600gacgacggcg gtcgcgcagc agcctacctt acctatctga caaccccggc taacggatat 660cgcatcgccg gcatcactac acaggcgttg ggacaaacct tcgctcacga tgtggcggtg 720cgcacctga 7293462DNAAcetobacterTranscriptional regulator, TetR family 3gtgggaatag ccacgctcta ccaatacttt gagaacaagg agagcgttgt cgcggcactt 60agtcgtcggg tacgggaaac actgctccat gatgttgcgt cattactcga aaccgcttgt 120tcgttgccac tttccgaggg tgtgcgctgt ctggtcgtcg ctgccgtgaa ggcggacaag 180agccgtccat cgcttacggt ccggcttgat cggttggagg aggctctttc tttggaagcg 240gatcatctgc tggtagcggc tgagctttgc acggttgttg cgtcgttcct caagtgccag 300ggaattattc aggagaacac tgcaaaaatt ctggcagatg atctgtgtac gataacaggg 360gcacttattg acgctgcaca caatcgacag atacctatcg atgacttgct aattgaccgt 420attacgcgaa ggctggtcgc gattattcag agcgcgcttt aa 4624522DNAAcetobacterRNA polymerase ECF-type sigma factor :: RNA polymerase ECF-type sigma factor 4gtgggacagc cggacaaata tttcgagctt ttcgcgatac atcgcaccga tcttgtgcgt 60ttcgccagag gtatcatgag agatgatagt ctggcggaag atgttgtaca ggatgctttt 120ctgcggctga ctactgtaac agtggcacag gaccgcgttc tttcggatcc tctgaattac 180gtttaccgca ttattcggaa tctggccttt gaccgttatc gacgacggca attcgaggcc 240ggattgtttg accatggggt agatagttct tccgaaacaa tcgaagcgga tgcccctaca 300ccggaaggtg aggcttcagg gaaatccgac atgcgggcaa tgcgcgccgc tatggcggaa 360ctgccagaac ggacgtgcgt cgcattggaa atgcatctgt tcgacggacg aaagctacgg 420gaaatagcgg ctcatttagg tgtttctatt gggatggccc actcccttgt cgcagtgggt 480atggagcatt gccgcaaacg tctttccaca cctgaaacct ga 5225984DNAAcetobacterFecR family protein, COGFe2+-dicitrate sensor, membrane component; 5gtgagcgaag acttcaatcc aacaacggcg gttgagtgga aaatagccct ttcagaagag 60cctgacgatt ctgtgctcag agaacgcttt gaagcatggc ttgctgccgc agaggatcac 120cggaaagagt ggcaggaact tacgcaggga cttgagaatt tccgccagat tggcccgctt 180tatcgtgaga aatgggtgcc ttcatcaagt ggggcacaaa atactgcgtc aaaacaaggt 240aggctcaaag gaagacctgc taattttgtt aggttttcag ttgctgcatt tgcggctgct 300gctgccgtta cattggtatg gtcctctgac cttctgcttc gattacaggc cgattacgcc 360acaggctcgg cagaaacgcg aacagtcagt ctccccgatg gtagtgaatt gaccctcgcg 420ccgcgaagtg cggtaaaaat gtcttactct gtagagaaac gggatattcg tcttttaaag 480ggagaggcgc tcttcacggt tcgacatgat atggcgcgac cttttgaggt ccacacagac 540aaattcaccg taacggacat cggaactatt tttgacgtca gaatgtctca gggcgaggaa 600gaagtctctg tccgggaagg agaggtccgg gtgcaggatg tttccggtgg atttcataat 660ctcgatgccg gaacgtggga gcggattaga actgtaggca atggagtgag cgtcactcat 720gggagcggct ctccggaaga tgtgggcgca tggtcagcgg ggcaaattat tgccaaggaa 780aacagcgtgt ccagcgtcgt ggaaaggctt aggccctact accggggggt tgttgtcctt 840tatggttctt cctttgggga gaagtcactc actggtgttt atgacgcaag tgacccggtt 900ggcgcatttc gggcgatcgc agccgcgcat catgctcaga tgcatcaggt ttcgccatgg 960ctgacaatat tggccgcacc gtag 98462604DNAAcetobacterFerrichrome-iron receptor 6atgaagggtg cggttgcatt gcattcgcaa ttgtggcggc tcatacgaat gggaacggat 60aaggtgatga cgattgatga tagaatgaag cggtgtgggc ggcaggtggc gtggcttatc 120gcgctgggta gtacgacgtt tctgaatgcc gctgtgacga aaagctatgg tgcagaacct 180tcccaaagtg ctcgggccgt cagatcattt tccattccgg cccaatctct tgaagatggt 240ctcgcaaggt tcggacagca aagtgggtgg caggtttctg ttgacggaaa tcttgcaaaa 300tctctgacaa cgcacggtgt tagcggtacg atgacatctg ctcaggccct caatgcgatc 360ctgtccggga ctggcctgac atacacgatc aggggtggcc gaaccgtcgt gctgacgaaa 420gcagtagcca acatcacgct tggtccggtc cgtgtcggag gaaccctcgc gcgtcaggat 480ccaacagggc cgggtgtcgg ctacttcgcc gaaaacacaa tggttggtac aaagacggat 540acgcccatca cggaaatacc gaactcagtc tacgtcgtga ccaagcagtt gatgaccgat 600cagcagccgc agaatatcct acaggctttg cgttacactc ccggcatcta ctctgaagcc 660ggaggaacga caaatcgcgg atctgcccag aatgacaaca tgggcattta tcagcgtgga 720tttctctcga gccagttcgt ggatgggttg atgacgaatt cgtatgccgc cgccgagcca 780agctttctgg accgtatcga ggcgctcaac ggtccagcat cggtgatgta tggccagacg 840acacccggag gaatggtcgg tatgagcctg aagaaaccca ccgaaacgcc gctgcatcag 900gtttcgctag gcttcggaag ctggggacgg tacgaggcaa cgttcgatgt cagcgataag 960atcacgcagt ccggtaatct gcgctatcgt attgcagcca tcggagtcac atcgggcact 1020caggaagacc gaattgatta tcatcgggtg ggtgtacttc cttcaatcac gtgggatatc 1080gatcccaaga ctcgcctcac tctacttggt agttatatgt acacgcctgg ctcagggagc 1140accagtggtt atccggtcct cgggactctt attcacaatt cggaaattcc acgaatctca 1200cgaagcacat ttatcggaat acctagttgg aacactatgg gagataaggt cgggatgttc 1260gaatatcaat ttagtcataa atttaataaa tttattgagt tcaatcagac gtttcgcgta 1320gagaattcca acgttcatga gtcaaatatc accgatgtaa cacctgtaga tgttgaagga 1380aaatggacat atttttatcc ttggaaacaa aattatgaaa acacaactga ggtacttgat 1440actcgcttag gggggcggtt tctaactggt cctgtacaac atacatgggt catcggttct 1500gatttccgca attatgacta tcattatact gagctcatcg acgacggtgc gacaatcgtt 1560gtgcccactc agcacccgac atcaaactat tccccatgta taagtttaac ctccgcgaag 1620tgtgacgcct tcgcgggaat aaacccagac tataactcgt ttcaggaggg cgtgtatttt 1680caggaccaga taaaatggca gcgcctgtcc gttctcttgg gtggacgcca agattgggtt 1740aattcatcta ataaaaatta cagtgtaacg aacttttatg gaaacgtcag cacccgcgtt 1800aataacactg ctccacaccc tcaatcggcc ttcacctgga gagctggtat aatctataat 1860tttgactttg ggcttgcccc gtacttcagt tacgcaacat cctttgtgcc acaaggaggt 1920acggattggc agggtaagat tttcgcgcct ttgagcggaa agcaactcga agccgggttg 1980aagtataaag ttccaaacga agatatcctc ataacggcat cagcattccg aattgatgaa 2040gaccactatc ttatcagtga tcttgttcac acgggcttta gcagtgacgc gggaacggta 2100cgctcgcagg gtttcgaggt ttccgccagt gcgaacatta ccaaaaacct caaacttgtc 2160gcctcttaca catatgagga tgtgcggttc agaaagaaca atttggccgt aaattcggtc 2220gatcccgtca cgctaacata tggagcaaag gtaagcgaga atggaaaatt cgttcctcga 2280gttcctcgga atatgtttaa tatgtttctt gattacacct tccacgacgc cccattgaag 2340ggtctcggct ttaatggagg aattcgctac accggtttta cctatgcgga ctatgtggag 2400tcttacaaaa cgccggcgta ttatctgttt gacattggcg cacactatga ttttgaggaa 2460ataatccctt ctctcaaagg tctgcgtgcc cagttggcaa tctcaaattt ggccaataaa 2520tattatatta cttcgtgcaa taccgccata tgtactctcg gttatgctcg aaagttttac 2580ggtaacgtga cgtatagctg gtga 260473066DNAAcetobacterReverse transcriptase family protein 7gtgacgcccg aattgctcct ctccaaggtg cggctgctgc ggtcgcccaa tgacgacggc 60gcgttcttcg acctagtcgg cagtgttctt aattggtcct gggaggaaag agacgaacgt 120caattcgccc gcttcaagca gcgcgcgggc atccctgagt tcgatggcgt cgcccttcca 180cagggtttgg ttgcagctgg cttcttctcg aacatcgtgc tgcttgattt cgatcggatc 240gtcatcggac agattgggag agaagttaca aacggagtgt ggctccggga cgcctgccgg 300tacgtcgacg acattagact gaccataaca actgcaccag gtattgaccc aagagaagct 360caggcgcgtg taatggcgtg gcttgggcaa ctcctcacgg ggagctgtcc gggcttggaa 420ttctccccgg agaagacgtc aactgcgtcg gttggaggcg agcagatgcc gctggttcgc 480caatcccgaa agatggagcg catccagacc gcgatttccg gcggcttcga tgccagtggt 540ggcgaggagg tgatccacgc gatcgaagcc ctcgtccgat cccagctaac gatcaacagc 600gtcgaagagt cgcctacccc tcccggcttg agagcggtac ccgatgtcaa agacgagaca 660gtcggtcgtt tcgctgctgg tcggttcaga aaaacctttc gttcattgag gccactactc 720gatgatcgac cttacatgga gattgctgaa ttcggggagg agacgttccg gcgcacccga 780ctttcgcaat cggagcttga cgaggaagca cgcgcatttg cgctaatcct agtcgaacgg 840tggatactcg atccttcgaa tgtgcggctg ctgcgcgtcg cactcgacct ctggccgtcc 900cgccaactcc tcaaggaagt actgaaactc tttgagccct atcttgtcgg gaagatcagg 960gcaatcacta gccggcaagt tgcatactac tgcctcgccg agatatttcg agcaggggcg 1020accgagacgg gcttcattga cgatccagag tgccttcccg ctgccgtcga tctcgccggt 1080tatagatctc tgcttctgga ggccgcagta cgagtggccc ggggcgaagc cgaacgtgtc 1140ccgtggtatc tcgcgcaaca agcactgctt tacattgcgg tccacgatcc ccgggctatc 1200caagatcgag gaatttcaaa gaccaatcga tcctattggc gcctcgtctc atttctgaaa 1260ggcgaacgcg acgtctcttc agatcgcgaa ttcgcagtag ccgcggtggt gagccgcagg 1320tcgttccttt cgaatgatca ggccgtggat ctcgtcggtc ggatgctcac gccagagcgg 1380ttcgccgagg tggccgcgcg cgacatagaa ttcgcccgcg atctctttcg cgccgtcgac 1440cgacacctca ccgttccggc aggcattgcc gaggacttgg gggtcgccga atggtccatg 1500tcagaggaaa tgagctctct gcaaagctat atccaaggca aagggcctct gaatccgcta 1560cgcaatgaga tcggcgtact cagttttgca gagaaattca tctcccatct ccaagaagga 1620aatttgccgg aagtcgtgac gccgtcgacg acgcagatag cggtacagca agtgggcaaa 1680tatgtccgcg tcgaacgggt gatcttcaga tcggcccaga caacgccgac ttaccggtct 1740atttatactg ctcccagatg ggcgccggaa tctcaacgct ggcgctttca gctcggttat 1800ttacttcgct tcattcttac tgccagaata gacttcagcc ttccagttag gccgccatcg 1860tggaaggaag gtaaacacat ctatcggcct accagaagtc actggtttca gcggcaatac 1920ggcttctata atgggcatga ggccttcggg gacgattggc tacccatttc gcagttcact 1980caggatcttc tcttcgatct gctcacctgg cccggctgcc gcacaagtag cccggatgtc 2040gatcagttgt ccctggatga aacggctgct cgaatccgcg cagctctcgt agaagccacc 2100gctgcgattg gcccggctac aggaaccctg atgctcaaga tcgatgcacc tattccaggt 2160accacatcga aggggcgccc gcttcgggcc tgcgtcgtcc agtcgatcat gcccgaagca 2220gaggacttct cggctgccga tctggagatg cgctcgccgg cccttcgacg aaagcaccgc 2280aaacatctgt ccacggcatt ggcggcggtt gagaagatgt tggatcttcg cgagactcat 2340aagccagcca gcaagcgtct cgactggctc atcctaccag aactgtctgt tcacccggat 2400gacgttgcca cccacctcgt gccgttcgcg cgagcgttca agaccgcgat cctggtcggc 2460atggcctacg aacaagtcgt cacgggagag ccgctgatca actcggccct ctggattatc 2520ccgaggatgg tgcggggcat gggcctacag acggtgatca gacggcaggg aaaacagcac 2580ctctctccga tggaacagaa gtacgtcaaa ccggtcgaac tgatcaccgg attccgcccg 2640tgccagtggc tggtggggta cgaatggtcg aacaatccgg ccaaagacgc actttggctc 2700accgcgtcca tctgctacga tgcaacagac ctgaagctgg cgagcgatct tcgtgatcgc 2760tcagacgtgt ttgcgatccc agccctgaat ctcgacgtcg gcaccttcga tcagatggcg 2820caggcgctgc attatcatat gttccaactc gtgctgatcg cgaacaacgg agcttatggg 2880ggcagcaatg ctcacgttcc caagggggag gcctatcaac gccaagtgtt ccatacccat 2940ggccagcccc aggctacaat ttcctttttc gagatcgacg atatcgaggg catgaagcag 3000agacacaagc tcggcgctgg gaaggaaggc gggtggaaat atccacctgc cggctgtcaa 3060gtctga 30668513DNAAcetobacterDNA topology modulation protein 8ttgatgcgct tgttcgtgac ggggccaact ggcagtggaa aatcaacgct ggctgcaaag 60ttggctcaaa gggcagctat accactgttc ccgctcgatg aaattcattg ggttcgccat 120ctctccgggg attggcggcg cgatcctgtt gaacgcctgt ctatgctcgg agagattgta 180cagctcgatg cctgggtcat cgaaggcgtg cagttcaaat ggactgatat agcgatagaa 240cgagcagact ggatcgtcgt cctcgatcca ccacgttggc ggaacatcgc tcgtatcctg 300cgccgtttcg tcaatcgccg atgcttttct ggggcggggc accgtggaac ggtaaaggct 360ctattggagg agatgcgttg gtcagccgac tactatggtc atgaacgcgg tatgctgttc 420gagaagattg gacaatcgcc agacaagctc atcgtcgtac atgacgacaa gggcgaacgc 480gctttgaccg aggctgtatt cgcgactgcg tga 51392352DNAAcetobacterCycloisomaltooligosaccharide glucanotransferase precursor (EC 2.4.1.-) 9atggcatatt ggatcaggct ctcgctggcc gtgtggccgc ccgatcagca acgttgtagc 60gaaggccgcg taatgcgccg ctatcttttc acaaccattc tctcgctctt accgtccctt 120gcggcggcgg catccctcca aggtccgatt gtttcgcatg tgcgggatga tcgggctttc 180taccaggcag gcaatgtcgc gatgatttcc gtggaactga ccccactagc cgcttggacg 240ggaggccatg tggatctagc gatatgttcg cgtgggcaag tcgtgggcac gattcagagc 300caagcggtca ccagcatggt ggctggggcg gaccagacac ttcactatcc cgtcaccgtt 360cccagtctcc atgctcatgg gtatcagttg gctatcgcgg ccctgaacaa tggggacagc 420gggacagcgt cctgtaccgg gacaggcagc acttccacgt cgccggccga tgtggcgtca 480ggcggcatca acgtggccgc gaatgcctgg gaagacatca acgaagcatg ggtcgacgcg 540ccgacgctcg gcaacgtctc cgcggcccgg gtgatggata atctcagcca gtatcacatc 600aacgcggtgc aattttacga cgtgctgtgg cgacatgacg agccgtattc atccgccccg 660cagtggccga acctggaagg cgtaacggtc acaaggacca atcttcaggc ttatatcagc 720gcggcgcata gccgcggcat ggtggcgctc gcctataatc tctggaacgg agcctgggcg 780gactatgcaa ctgtcaatcc gaaggtcacg gcggcaatgg ggctctatgc ttcgtccgga 840cagaaacacc aactgaccaa cggcgggggc tggctgtcct gggggtggtc gaccgaccat 900attgctgaaa tgaacccgtt caatggcgac tgggccagat ggctaaccag ccagatccag 960aagaccatgt ggaatttagg attcgacgcc gcgcatctgg atacgttggg tgaccctggt 1020ggtcagcaat atgacggcga gggccatccg ttacctgctt taggaacgat tctggcagac 1080tttgcgaata atgtacaggc tcagaccggg gcaccaactg acatcaacgc cgtttcgggt 1140tggaatacca ccgaccttta cctacgcggt acgggaccca acctgtatat cgaaccccat 1200cccgaattcg gaaacacgcc gggctacgat gattcccgaa gcttatggga catcaaacag 1260aaatatacgt cgcgcccgct gatgacggcg ttttatccgc agcaggtcca gagcggttcg 1320ctgagcacgt cctttgccgt caagggtgag agtgtgaagg tttgcgaccc gacgttaaaa 1380tccggatgca tagccaataa cctcggcatt gagttgttgc tcggccagat tgcgctcaat 1440ggaggctcca atattactct tggtgatttt gatcatctga taccggggcc atatttcccc 1500cgtccgaccc ttaagatcga cggtccattg cagcaatatc tggcggatta ctacaactgg 1560tgggtcggaa tgcgcgatct gctgcgtgtc ggcgtcatct catccaatga gagggagtcc 1620atccggaatg gaaacggagc cagtatcggc caaccttatg cccaaccggg aaccgtctac 1680tatcatcccc tgatacgcgc tggcatcgct ggtgaattgg cgctcacaaa catgatcggg 1740ttgcattata atcggattga cgaccctgac ggcaaaaaca atccgacccc ggtgaacaac 1800ctgtcgatcg agatggaatt ctgggaaaga agcacaccgg gggcattgta ctatagcgcg 1860cccgacatca accacggctt cccacagccc ctcacctata ggctgaacgg aaacggtagc 1920gtgatgttta cgctaccgac tctcaagacg gtggcgcttg tttggctgga aggcaccaat 1980ttcaccacta cgaccgatta cacgatcggt acggcgcagg atgtgagggg tggcacagca 2040aacttctgga cgaacggcag cggagaggat gctaccggat atcgtggctg ctgtggtcgc 2100tccgcacgct gggacagcat cgatttcgga gcgggtgtgt caacgctaac gatggtaacc 2160cgaagccaac tcggcggact ggtcgaattt cgcctggatg cacctgatgg accagtcatc 2220gcccgtaatt atgttcctgc gtctagcgcc acgacaacaa ccactcaatt acgcaggcca 2280gtattcggga cacataccgt cttcgctaaa attcctggtc gcgagattac gctgatatcc 2340tggaagccat aa 235210855DNAAcetobacterMethyltransferase (EC 2.1.1.-) 10atgatggcta acgacaatac cactgaggtg gttggtgcat ttgcggtaag tcatcccaac 60ttggcgcaag gttttacttt tagtaacagc agtcaactag atacgattgc ttctactatt 120cataaaagcg gtttggagac ttatgaagct ccgacaacta atataattat cgaactgatc 180aggagttcgt ctggtcttat tttagatgtg ggagcgaata ccggtctttt tacgctagtc 240gccgcagcag ccaaccccct gatccgcgtc tgctcttttg agccgcttgc gagtattcgt 300gaacttctca agagcaatat tgctctcaat ccggagcttg catcacgtat cgctgtcgag 360cctgtcgggt tatcgaatga acggggcact ttcacttttt acgaaacgat caacaatcgt 420ggctttgtca cgacgagttc atcgcttgaa aaagcacatg cagagcgaat cggcgatttg 480tacgtcgagc gcactatcga gacccggaca cttgatgaat tcggagaaac gctcgggaat 540gcgagcgttc cgttcgtcaa aattgacgtt gagggacatg agcatgccgt tatctccggt 600ggccgccact ttatcgccaa gcaccgccct tttcttactc tcgaagtcct gagagaggct 660aacactttga gtctggacca gttggtgacc gagtccaact accttgccct ggcaatggca 720cccgacgaat tgcggcagtg cgagcgttta cggtttcatg acgacgcctg gaatcatctt 780ttggtccccg ccgaaaaagc ggaacggcta ttttcgctct gccgccgact tggcttgcaa 840atcgggatcc gctga 85511744DNAAcetobacter 11atgtcgaatt ccgagcgccc aatgcgcgat ttgtcggacc tggcaaaaaa ccgacaaata 60gagccgatgg ttatcaggct acgagaagta gtggatcgga ccggaggcgc gaaagctgtg 120gccgcacgca cggacatccc tctcagcaca ctttcaggtt acctgtcggg tcgggaactc 180aagctttccg tcgcgcgcaa gatcacggaa gcctgcggtg tcagtcttga ctggcttgcg 240gcaggagagg acggacctgc ggcccgggaa ttcggcaatg cccggcaggc gggtcccgag 300tcggtcgagt ttctgaatta cgacgtcatt ctctccgccc accagggcgt cgacggggat 360agttcttata tcgaaacgag aatatcgata ccgcgggatt ttctcccttt gtccattcag 420tccaatacgg acaacatttc ggccgtcacg gcgaaatgcg acagcatgaa tccgatcata 480gacgatggag acattctttt aataagaacg gatgtgcata cgctcacaag tggcagcatc 540tatgccctgc gggtagaaaa cacccttctg gtcaggcgtc tgatcctcaa gaccaacggc 600aacgtccagg tcatcagcga gaacccgcgt tacccgaccg aggaactgaa cgccgaggac 660gttcgcagga tggtccagga cgacggcttt ccggccagga tcatcggccg ggtcatctgg 720cgcgccggta gcctgattcc atag 744122331DNAAcetobacterouter membrane heme receptor 12atgcgcatcg tcctcttgcc ctgcctcgtc gcgacctcaa taagtatgtt ggcggtttcc 60gcatcctatg cttgggcgga caatagcccg tcgcccccca ggacgaacaa acaggccaaa 120tcgcggccgt tacatgcgca ggggacgcgc aaagcgggca gcgccatcac cagccaggat 180gaagcggtgg ctgtcgtggg aacacgtgag acatcgcatg ggatggagca gagcgttacc 240cgtgcgacga tggacaagtt cgtggcgggg accagtcccc tgcagattct gtcggccacg 300acaccgggtg tcaattttgc ctcggacgac ccgttcggcc tggatacatg ggcgaacaca 360ttttatattc gcggctattc ccaaagccag ttgggcatca ccctggacgg tatcccgctg 420ggcgatgccc agttcatcaa ttccaacggc ctcgatatca atcaggcgat

catccagaac 480aatatcggtc gcgtcgacat gtcgcagggt ggcggtgcgc tcgatgtcat gtccgtcacc 540aacctgggtg gcgcgctgca atattattca ctcgatccgc gcgacaaggc tggtggagac 600atttcacaga cgttcggcag caaccagacc tatcgcacgt acgtcagcgc ccagagcggc 660aagctcaatc ccagcgggac gaagttctat gcgtcgtacg cgcgcaccga tgccgggaaa 720tggaaaggcg ccggggacca gttcgaacag caggcgaatt tcaagatcgt acagccgctc 780gggcgttacg gaaaactgtc cggattcttc aattattccg aattcgacca gtataattac 840agcgatttga gcctggaaat catccagaag ctcggccgga acgtggatta tttctatccg 900aactacaaag ccgcgtatca ggctgccgag gggatctatc ccgcaggcta tgccaaggtc 960ggagatgcca tggacgtctc ctattacgat ggtggccagg accagcggaa ttatctttcc 1020ggcatcacgt ccacgatcga cctgacgtcc cgcctgcatc tgaagacggt gctgtacgac 1080cagcaatcgg cgggggacta cgaatggacc aacccctatg tgtcgtcgcc ctcgggcgcg 1140cccatgatcc agcaggtcgg gcacacatcg atgacgcgcg tgggcgggat tggcgcggtg 1200cagtaccaga tcgccaatca ttcgcttgaa accggcgtct ggtacgaaaa caacggatat 1260agctgggcgc aacggtacta caaccagccg cttctggggg agggtacgcc ccgaagcgcc 1320accggaccgt acaacgatcc gttcgccacc gcatacgcca tgaccttcaa taccaacagt 1380tttcaatatt acctggaaga ttcctaccgt atcttgaaga cgctgcgggt gcacgcgggc 1440ttcaaatcca tgctgacgac gacgtcgggc ggcgcatcct ataacaatcc cgtctatacg 1500ggccaggaca ccctgcccag tggcagcctg accaccgcca gcgccttcct gccgcatgtc 1560agcatcaact ggaatttcct gccccggaac gaactgtttt tcgacttcgc ggagaacatg 1620cgcgcattca cctataatac atggcagagc gggaatgcat ggggagtcaa tgagatgccc 1680cagaacctga agcccgagac caccttcaat tacgaggtcg gttatcgata taattcccgc 1740ttcgtcacgg gcctcgtcaa tctgtatcat atcgattaca ggaaccggct ggccaccatc 1800accaccggca gcctggtgaa cgcccacaat acctatatca acgtggggaa catggcgatc 1860tggggtgccg atgccggcgt gacggtgcgc ccgctgccgg gcctcgagat cttcaacagc 1920gccagctaca acaaatccac ctatgggcag gatgtatcca gcggcggggt aaattatccc 1980atcagcggca agcaggaggc cggctatccg caatggatgt acaaggccaa cgtctcgtac 2040aggtatggca acgcgaaggt caacttcaac gtcaactata tgggaaagcg atacatctcg 2100tacatgaacg acgccgccgt gaacgggtat tggctggcat cgctgtcggc gacgtatatc 2160ttcaaaacca ttccccatct ctctcagctt gaattcaatt tcggcgtcta caacctgttc 2220aaccaggaat atatcggcgg catcggcggg ttctcactgt ccggtgacac gcagcaactc 2280tttgccggcg cgccacgcca gttcttcggt acgctgcacg cacggttcta g 2331131812DNAAcetobacterLevansucrase 13gtgacggcgc ggtcgtggtt gctctgcaat ctgaagagtt tccttcagga ggatggaatg 60gcgcatgtac gccgaaaagt agccacgctg aatatggcgt tggccgggtc cctgctcatg 120gtgctgggcg cgcaaagtgc gctggcgcaa gggaatttca gccggcagga agccgcgcgc 180atggcgcacc gtccgggtgt gatgcctcgt ggcggcccgc tcttccccgg gcggtcgctg 240gccggggtgc cgggcttccc gctgcccagc attcatacgc agcaggcgta tgacccgcag 300tcggacttta ccgcccgctg gacacgtgcc gacgcattgc agatcaaggc gcattcggat 360gcgacggtcg cggccgggca gaattccctg ccggcgcaac tgaccatgcc gaacatcccg 420gcggacttcc cggtgatcaa tccggatgtc tgggtctggg atacctggac cctgatcgac 480aagcacgccg atcagttcag ctataacggc tgggaagtca ttttctgcct gacggccgac 540cccaatgccg gatacggttt cgacgaccgc cacgtgcatg cccgcatcgg cttcttctat 600cgtcgcgcgg gtattcccgc cagccggcgg ccggtgaatg gcggctggac ctatggcggc 660catctcttcc ccgacggagc cagcgcgcag gtctacgccg gccagaccta cacgaaccag 720gcggaatggt ccggttcgtc gcgtctgatg cagatacatg gcaataccgt atcggtcttc 780tataccgacg tggcgttcaa ccgtgacgcc aacgccaaca acatcacccc gccgcaggcc 840atcatcaccc agaccctggg gcggatccac gccgacttca accatgtctg gttcacgggc 900ttcaccgccc acacgccgct gctgcagccc gacggcgtgc tgtatcagaa cggtgcgcag 960aacgaattct tcaatttccg cgatccgttc accttcgagg acccgaagca tcccggcgtg 1020aactacatgg tgttcgaggg caataccgcg ggccagcgtg gcgtcgccaa ctgcaccgag 1080gccgatctgg gcttccgccc gaacgatccc aatgcggaaa ccctgcagga agtcctggat 1140agcggggcct attaccagaa ggccaatatc ggcctggcca tcgccacgga ttcgaccctg 1200tcgaaatgga agttcctgtc gccgctgatt tcggccaact gcgtcaatga ccagaccgaa 1260cggccgcagg tgtacctcca taacggaaaa tactatatct tcaccatcag ccaccgcacg 1320accttcgcgg ccggtgtcga tggaccggac ggcgtctacg gcttcgtggg tgacggcatc 1380cgcagtgact tccagccgat gaactatggc agcggcctga cgatgggcaa tccgaccgac 1440ctcaacacgg cggcaggcac ggatttcgat cccagcccgg accagaaccc gcgggccttc 1500cagtcctatt cgcactacgt catgccgggg ggactggttg aatcgttcat cgacacggtg 1560gaaaaccgtc gcgggggtac cctggcgccc acggtccggg tgcgcatcgc ccagaacgcg 1620tccgcggtcg acctgcggta cggcaatggc ggcctgggcg gctatggcga tattccggcc 1680aaccgcgcgg acgtgaacat cgccggcttc atccaggatc tgttcggcca gcccacgtcg 1740ggtctggcgg cgcaggcgtc caccaacaat gcccaggtgc tggcgcaggt tcgccaattc 1800ctgaaccagt aa 18121420DNAAcetobacterPrimer 14tgaaattgac gcccgttgga 201520DNAAcetobacterPrimer 15cacgccggga aagaggattc 201620DNAAcetobacterPrimer 16ggcaacgcgg tttctacgaa 201720DNAAcetobacterPrimer 17cgttagccgg ggttgtcaga 201820DNAAcetobacterPrimer 18tcgttgccac tttccgaggg 201921DNAAcetobacterPrimer 19gtcgattgtg tgcagcgtca a 212020DNAAcetobacterPrimer 20caccgatctt gtgcgtttcg 202120DNAAcetobacterPrimer 21cggcaatgct ccatacccac 202220DNAAcetobacterPrimer 22caccggaaag agtggcagga 202320DNAAcetobacterPrimer 23aaccgggtca cttgcgtcat 202420DNAAcetobacterPrimer 24agccatcgga gtcacatcgg 202520DNAAcetobacterPrimer 25ggaaacctcg aaaccctgcg 202620DNAAcetobacterPrimer 26tcagggcaat cactagccgg 202720DNAAcetobacterPrimer 27tcgagcagcc gtttcatcca 202820DNAAcetobacterPrimer 28tgatgcgctt gttcgtgacg 202920DNAAcetobacterPrimer 29cgttcgccct tgtcgtcatg 203020DNAAcetobacterPrimer 30gggccatccg ttacctgctt 203120DNAAcetobacterPrimer 31tgacacaccc gctccgaaat 203222DNAAcetobacterPrimer 32gcatttgcgg taagtcatcc ca 223320DNAAcetobacterPrimer 33ggatcccgat ttgcaagcca 203420DNAAcetobacterPrimer 34tgtcgggtcg ggaactcaag 203520DNAAcetobacterPrimer 35cgggttctcg ctgatgacct 203620DNAAcetobacterPrimer 36tcccgcctgc atctgaagac 203720DNAAcetobacterPrimer 37cagcgatgcc agccaatacc 203820DNAAcetobacterPrimer 38gttcgtcgcg tctgatgcag 203920DNAAcetobacterPrimer 39acctgggcat tgttggtgga 204022DNAAcetobacterPrimer 40ctcaggaaga ccgaattgat ta 224119DNAAcetobacterPrimer 41gcgaaacgtc tgattgaac 194238DNAAcetobacterPrimer 42cggataacca ctggtgctcc gactcgcctc actctact 384339DNAAcetobacterPrimer 43tccacgaatc tcacgaagca ccccgacctt atctcccat 394422DNAAcetobacterPrimer 44gccaggcgtg tacatataac ta 224522DNAAcetobacterPrimer 45cggaatacct agttggaaca ct 224621DNAAcetobacterPrimer 46tcaagatcga tgcacctatt c 214720DNAAcetobacterPrimer 47aacagacagt tctggtagga 204837DNAAcetobacterPrimer 48cgcatctcca gatcggcagg tcgtccagtc gatcatg 374938DNAAcetobacterPrimer 49acatctgtcc acggcattgg tggctggctt atgagtct 385019DNAAcetobacterPrimer 50gagaagtcct ctgcttcgg 195118DNAAcetobacterPrimer 51cggcggttga gaagatgt 185219DNAAcetobacterPrimer 52ggaagacatc aacgaagca 195319DNAAcetobacterPrimer 53ttgacagttg catagtccg 195439DNAAcetobacterPrimer 54atacggctcg tcatgtcgcg gtgatggata atctcagcc 395540DNAAcetobacterPrimer 55cagtggccga acctggaagc gctgatataa gcctgaagat 405617DNAAcetobacterPrimer 56attgcaccgc gttgatg 175718DNAAcetobacterPrimer 57gcgtaacggt cacaagga 185822DNAAcetobacterPrimer 58aggaggctct ttctttggaa gc 225922DNAAcetobacterPrimer 59aagtgcccct gttatcgtac ac 226022DNAAcetobacterPrimer 60tgggtcatcg gttctgattt cc 226122DNAAcetobacterPrimer 61tagtttgatg tcgggtgctg ag 226222DNAAcetobacterPrimer 62gcgaataccg gtctttttac gc 226321DNAAcetobacterPrimer 63atgcaagctc cggattgaga g 216420DNAAcetobacterPrimer 64ccaaatctct ggaacgggta 2065420DNAAcetobacterhypothetical protein coding sequence 65atgcggatca gcggcatatc ttcgattctc gataatgcaa cggcccagtc ctcatcgggt 60gccacgacac agaagagcgg gattttgcaa tcatcgtctc tcgatttcag caatatttcc 120gcgtcgaatc tgcaagacgt gaatgcggaa ctctataatc aggggaagat atcgctccgt 180cagagcggtg acttgtcctt gttggatggg tgggcactca agggcgtcaa taatggtcaa 240cttcggcagt catcgaccgg aaccctcaac gcctattcct tgcttgatac catgattaat 300tatcaggaaa cgaacggtat cggcgatgta aaagatacgg tcgcatccct caaggcattg 360cgcagtacac ttgaggaata tgataccaac aatcagaata aaacggcgat cacggcctaa 42066864DNAAcetobacterGDIA_RS17945 (7136..7999)- hypothetical protein 66atgtacgttt cagtggcaaa ggctggtacc atcgttgata gcctgtcgac gagggagaag 60agcaaagagg gaggcggcac gctcctgacg tccgatcagc cagattccgc tgaaacaggc 120cacgccgaga ccgaatctgt ttcgattacg ctgtctcagg cggccgtcga cgctttgaac 180gggactgcct cgcagaacac tccggcttcc atgcaactcg ccatgtcccg catggaccag 240attatccggt ccggcaacag cgcggcaaaa gccgatgccg gggcgcgtgt cgccaatttg 300caggcgcaga tgcggcagct catggagacc aaggatctca tgtcgccaaa agcgctggcg 360gccgccctgg cgctgatggc ccgcgaactg gccgccgccg tcagcgagta tgtgcaatgc 420ggcggatcgg ctgccaacgc ggccattggt accgtcgtac tatccgcgtc ggccgacaca 480tcggctgatc cgtccactgc cgccccggca acatctgtaa cggcggatca acccgttgcg 540tcggttcccc aggacgcgac acaggaacag agtgcccaag gccagaccgc tcccgggcag 600agcggtcagc agacccagga aggaaacgcc gtcgatcatt cgagcgatga gacggaacag 660accgcaggtg cggcaaatac ccagcctaaa gaaagcgggg acgacctgtt tgccaaggcc 720gtgaagagcc tggcggagga aatgaagagc atcctcaacg aactgaagaa caagaagaaa 780aaggacgatg cgtccgaaga ccatgatctt caatcgacac agggttctct cgacagaatc 840gatcagatga ttggaggcat ataa 864671392DNAAcetobacterGDIA_RS17965 (13228..14619)- HlyD family type I secretion periplasmic adaptor subunit 67tcatggctcc ctcataccgt cagtcatgag cggaatgaga ttgttaagaa gaaattgcat 60aatggttcgt gtacccactt gaatatctgc tgtaatgggc attcctggcc gggggtgaaa 120cgatgaaggt acgccgtgca accgataatc ttcgatatgc agccgtgcgc gataatagga 180ctgtgccgca gcggcaggat cgttgctcgc tcgctgcccg atcccgccgt ttgatacggc 240gtcctgtgac gtattaccat cgaacgtgtc tgcgctgatt tctcgtacca gcgcctcagc 300accgccatac tgagagtatg gaaatgccgc gaacttgata attgccttgt tgccgggttg 360cacaaaaccc gcatctttgc tgcttaaatg cacctcgact tcaagaccgc tatcgactgg 420aacaagccgc atcagctctg ccccggttgt cagaacggac ccaggtgaca atctggcgat 480cgtcaggacg actgcatcct cttgcgccgt caagatggtc atgcttttgc ggagcttcgc 540cttttgatag tcggcatccg tggttgagag cttgtgttgt gcctcgctta aatcgcgata 600gatgtccgct ctccatgttt caatatattc ttggcgttcg gcgacgagcg cctgcaactt 660ggcttttgcc gatgctgcgt catgctgggc aaggacctcg gagcgctgaa cttccatcat 720atcgttctga gcgccaagag tagaaaggcg gctgcccacc tgttcctcct gcaagcgagt 780tcgcatcctg tgtacgttgg tcgcgacttc gagccgttta gcgtagatgg tagcgttggc 840cagcgcgcct tggagatcgg ccgcctggga agccagttgt tcttgatagt tctcgatttt 900ggccgcaaac tcagccttac gacgcaggaa tgtcgccgct tgctgtattg acgctgggtc 960gtcggggtcc gacaggtagt ccctaccctg cgcttccgca gaaaggcgtg cgacttccgc 1020agtataactt tgggtttgtg acttcaaatt tgcgatatca gcgtcgttaa ccgtagggtc 1080aaggcgggat aatacttggc ccttatgaac aaggtcacct tcccgcacgt ccacactacg 1140aataatcgac gtttcgaacg gctgtacaac gagaggtctc tgaatagata ctattttccc 1200ttcggtggac accacccgag tcagcggaaa gaccatcatg aatacgatac tactcgcggt 1260cagcgcacca attatccaag atatatagcg ggctgaaggc gtggccggca tgttgacaag 1320cgcggcagtc ggcgaatgaa actcaagcaa cgccggaggc aaatcggcat agtcaaagga 1380gtcagtctcc ac 139268849DNAAcetobacterGDIA_RS18030 (25282..26130) - hypothetical protein 68tcaagatttt ttaccttccc gctcgattgt gacggaagcg gcgagttcct tgatcgcggc 60gacgctggca tcggctcgtt cctcagcccg gatggcgcgg gcttccgctg cctgcacgcg 120ggattccgca cgggcttcgg ccgcgtcacg ggacttttca gcgttctcca gtgccgtggc 180agcggtgctg gcccgacgct ccgcgatgtc ctgggctttc tccgccgcct gggcacgggc 240ctgggcctcg gacacggcct gccgcagggc gtcgatctcc ccggtctgcc gctcggccat 300ggcacgcgcc gcctgatggg cctgacgttc agcggtcagt tcgaccgtca gccggtccac 360ctcccgctgc aaggcctcca gccggcgtgt cagcccttca gcctcggccg tagcgccagc 420cagggcttcc gccaattcca tcgcctcccc cctggcatcg gccagctccg cacccgcctg 480agcctggata tcggcgatct gctggtccgc cgcttcccgc gccagcgcca ccttctggtc 540ggccgccgcc tggatggcct gctggacgga ttgccctttc tggcgctccg catcgacaaa 600gccggtcagc atcgccagga agccctgctt catccgttcg gccgcgttgt ccatctcggc 660cgagacgaga tccccggctt cgctccgggg ctcctccttc ggtgcttcga ccggccgccc 720gcgctgactg tctttccagg cgttgagcag cggcaggatg gcgttcggac tgccgccccc 780cagctcgtcc cgcactttgc gcacactggg cttctcgccc cgcccgacca gcgcttcggc 840ggcctgcat 849

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed