Cooling Control For Data Centers With Cold Aisle Containment Systems

Shrivastava; Saurabh K. ;   et al.

Patent Application Summary

U.S. patent application number 15/905195 was filed with the patent office on 2018-07-05 for cooling control for data centers with cold aisle containment systems. This patent application is currently assigned to PANDUIT CORP.. The applicant listed for this patent is PANDUIT CORP.. Invention is credited to Mahmoud I. Ibrahim, Bharathkrishnan Muralidharan, Saurabh K. Shrivastava.

Application Number20180192548 15/905195
Document ID /
Family ID55438897
Filed Date2018-07-05

United States Patent Application 20180192548
Kind Code A1
Shrivastava; Saurabh K. ;   et al. July 5, 2018

COOLING CONTROL FOR DATA CENTERS WITH COLD AISLE CONTAINMENT SYSTEMS

Abstract

Embodiments of the present invention generally relate to the field of data center cooling and energy management. In some embodiments disclosed herein, a pressure within a cold aisle containment enclosure within a data center is controlled by a controller through the use of active floor damper panels.


Inventors: Shrivastava; Saurabh K.; (Redmond, WA) ; Ibrahim; Mahmoud I.; (Chicago, IL) ; Muralidharan; Bharathkrishnan; (Tinley Park, IL)
Applicant:
Name City State Country Type

PANDUIT CORP.

TINLEY PARK

IL

US
Assignee: PANDUIT CORP.
TINLEY PARK
IL

Family ID: 55438897
Appl. No.: 15/905195
Filed: February 26, 2018

Related U.S. Patent Documents

Application Number Filing Date Patent Number
14847711 Sep 8, 2015 9943011
15905195
62048423 Sep 10, 2014

Current U.S. Class: 1/1
Current CPC Class: H05K 7/20745 20130101; H05K 7/1488 20130101; H05K 7/20836 20130101; H05K 7/20709 20130101
International Class: H05K 7/20 20060101 H05K007/20; H05K 7/14 20060101 H05K007/14

Claims



1. A portion of a data center utilizing cold aisle containment, comprising: a cold aisle containment enclosure; first and second rows of enclosures housing IT equipment, the first and second rows of enclosures being on opposite sides of, and sharing, the cold aisle containment enclosure; an under-floor cold air supply plenum to provide cold supply air to the cold aisle containment enclosure; an active damper floor tile between the under-floor cold air supply plenum and the cold aisle containment enclosure; a differential pressure sensor located in the cold aisle containment enclosure to measure a pressure within the cold aisle containment enclosure; and a cold aisle containment (CAC) controller to: compare the pressure measurement from the differential pressure sensor to a differential pressure set point; and modulate the active damper floor tile based on the comparison between the pressure measurement from the differential pressure sensor and the differential pressure set point to control a flow of the cold supply air from the under-floor cold air supply plenum to the cold aisle containment enclosure.

2. The portion of the data center of claim 1, comprising: a plenum pressure sensor located in the under-floor cold air supply plenum to measure a pressure within the under-floor cold air supply plenum.

3. The portion of the data center of claim 1, wherein the CAC controller is to: compare the measured pressure in the under-floor cold air supply plenum from the penum pressure sensor to a plenum pressure set point; and modulate a fan speed of a cooling unit in the data center based on the comparison between the measured pressure in the under-floor cold air supply plenum and the plenum pressure set point.

4. The portion of the data center of claim 1, wherein the CAC controller is to: compare the pressure measurement from the differential pressure sensor to the differential pressure set point in response to determining that the measured pressure in the under-floor cold air supply plenum matches the plenum pressure set point.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefits of priority to U.S. patent application Ser. No. 14/847,711, filed on Sep. 8, 2015, and U.S. Provisional Patent Application No. 62/048,423, filed on Sep. 10, 2014, which are incorporated herein by reference in their entireties.

BACKGROUND OF THE INVENTION

[0002] Data center cooling energy efficiency is critical to successful operation of modern large data centers. The cooling infrastructure can account for an average of 40% of the total data center energy consumption. Adopting methods to raise the efficiency of cooling in data centers can significantly affect the cost of running them, as well as extending their life. The current trend of deploying high heat load density cabinets in data centers necessitates the use of air containment systems. Many of the modern data centers use some kind of air containment systems to achieve high cooling energy efficiency. Air containment in simple terms provides physical separation between the supplied cool air and the cabinet exhaust hot air. This separation of cold and hot air results in cooling energy savings; however, in order to observe the maximum energy savings a proper control system for cooling units is required. Typically, the cooling units get controlled based on a coupled control scheme, wherein both the fan speed and the chilled water valve/compressor speed get controlled based on a single parameter, i.e., return or supply air temperature. These type of control schemes work well for data centers without containment systems but they may not be the best way to control cooling in data centers with containment systems.

[0003] In containment systems, the cooling units and the information technology (IT) equipment are tightly connected with each other via supply air plenum and aisle containment system, Therefore, it becomes important to not only have cold air available at a proper temperature but also have the cooling airflow in the correct amount at the IT equipment inlet. Use of coupled control schemes (i.e. supply air temperature or return air temperature) in containment system does not necessarily guarantee the above conditions and almost always results in either oversupply and/or undersupply of cooling airflow. Oversupply of cooling airflow means waste in cooling energy and cooling capacity of the data center. Undersupply of cooling airflow results in IT equipment starving for c airflow, which could result in unreliable operation of IT equipment.

[0004] One common aspect in these decoupled control methods is the use of supply air temperature sensor to control the temperature of the air supplied by the cooling unit. Controlling the amount of air supplied to the data center however varies significantly between the different methods. Some of the ways used to control the amount of air supplied to the data center included using underfloor pressure, server or cabinet inlet temperatures, temperature difference across a containment, and containment pressure. If a data center includes only one containment system, some of these methods may succeed in reaching optimum control. Also, if a data center includes multiple containment systems that all have exactly the same heat load and airflow demand at all times, some of these methods may again succeed in reaching optimum control. However, a typical data center almost always has more than one containment system and it is rare to have the heat load and airflow demand the same for all containment systems at all times. In these situations, the existing control schemes fall short of optimum control for cooling units and result in unwanted cooling airflow bypass, which result in waste of cooling fan energy.\

SUMMARY

[0005] In an embodiment, the present invention is a data center. The data center comprises a first datacenter POD including a first plurality of rows of cabinets where each of the first plurality of rows of cabinets are adjacent to and share a first cold aisle, the first cold aisle including a first temperature and a first pressure set point; a second datacenter POD including a second plurality of rows of cabinets where each of the second plurality of rows of cabinets are adjacent to and share a second cold aisle, the second cold aisle including a second temperature set point and a second pressure set point; a cold air supply connected to both the first cold aisle and the second cold aisle, the cold air supply providing a cold air flow having both a temperature and a volumetric flow rate associated therewith; a first active damper connected to and between the first cold aisle and the cold air supply; a second active damper connected to and between the second cold aisle and the cold air supply; and a controller connected to the cold air supply, the first active damper, and the second active damper, the controller controlling the temperature of the cold air flow, the controller further controlling the first active damper to partition the volumetric flow rate to approximately achieve the first pressure set point in the first cold aisle, the controller further controlling the second active damper to partition the volumetric flow rate to approximately achieve the second pressure set point in the second cold aisle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a perspective view of a data center with cold aisle containment systems according to an embodiment of the present invention;

[0007] FIG. 2 is a schematic side view of the data center of FIG. 1;

[0008] FIG. 3 is a block diagram of a cooling control system according to an embodiment of the present invention;

[0009] FIG. 4 is a flow chart of the cooling control system of FIG. 3;

[0010] FIG. 5 is a flow chart of the cooling unit fan speed control of FIG. 4;

[0011] FIG. 6 is a flow chart of the supply air temperature set point control of FIG. 4; and

[0012] FIG. 7 is a block diagram of a cooling control system according to an alternative embodiment of the present invention.

DETAILED DESCRIPTION

[0013] One embodiment of the present invention is a cooling control solution for data centers with multiple cold aisle containment (CAC) PODs. A POD is defined as two rows of cabinets sharing a common cold aisle. The present invention includes a process that controls the amount of cooling airflow supplied by the cooling units and controls the amount of cooling airflow going into each CAC POD. The cooling control scheme closely matches the amount of air supplied by the cooling units to the amount of air required by the IT equipment while maintaining safe cabinet inlet temperatures (within threshold limits), to ensure safe and reliable operation of the IT equipment. The cooling control scheme also monitors and balances the amount of cooling airflow going into each POD.

[0014] Achieving optimum cooling control (lowest energy consumption while maintaining cabinet inlet air temperature within user defined threshold limits) in a data center with containment system can require independent control of cooling fan speed and cooling air temperature. The control scheme of the present in invention decouples the control of the cooling unit; using at least one variable to control the amount of air provided by the cooling unit fan to the data center, and at least one other variable to control the temperature of the air supplied by the cooling unit.

[0015] With the use of the present invention, the data center manager/operator can reduce the amount of supplied cooling airflow and hence the cooling fan power consumption, while maintaining proper thermal environment for the IT equipment. The amount of cooling airflow saved can be used to cool additional IT equipment heat load (reclaim lost cooling capacity) that gets commissioned in the future and hence helps in extending the life of the data center. The reduction in supplied cooling airflow also optimizes the cooling capacity usage by increasing the return air temperature to the cooling units.

[0016] FIG. 1 is an isometric view of a data center with two CAC PODs for an embodiment of the present invention, which includes cabinet enclosures 1a-1d that house IT equipment 2a-2d with cold aisle containment enclosures 3a-3b deployed for two separate PODs. The data center is cooled using two perimeter cooling units 4a-4b. Cabinet inlet temperature sensors 5a-5b are installed at the intake of each cabinet enclosure 1a-1d. Containment pressure sensors 6a-6b are installed in each cold aisle containment enclosure 3a-3b. The raised-floor plenum in the data center has underfloor pressure sensors 7 and supply air temperature sensors 8a-8b installed. FIG. 2 provides additional details of the data center described in FIG. 1. In FIG. 2, each of the two PODs described previously have a combination of active damper tiles 9a-9b and perforated tiles 10a-10b. The IT equipment 2a-2d are cooled by the cold supply air 11a-11b that is flooded into the underfloor plenum, which then enters each POD through its associated active damper tiles 9a-9b and perforated tiles 10a-10b. Cold inlet air flow 12a-12d enters the IT equipment 2a-2d to cool the IT equipment components and returns to the data center room air as hot exhaust air 13a-13d. The hot return air 14a-14b is drawn by the cooling unit fans 15a-15b through the cooling unit 4a-4b to be cooled once again and the cycle continues.

[0017] FIG. 3 is a block diagram of an embodiment of the present invention and its different components. The present invention includes an active CAC controller 17 which receives information from all the sensors deployed in the data center; cabinet inlet temperature sensors 5a-5d, containment pressure sensors 6a-6b, underfloor pressure sensors 7, and supply air temperature sensors 8a-8b as well as a system for receiving information from the active damper tiles 9a-9b on their position. Active CAC controller 17 interacts with the cooling units' fans 15a-15b and cooling units' chilled water valves 16a-16b through the cooling units 4a-4b and it interacts with a user interface 18 which allows the user to view all the data received by the active CAC controller 17 and input the desired set points for the different variables. The figure also details which specific sensor measurement inputs are used to control the active damper tiles 9a-9b, cooling unit fans 15a-15b and cooling units' chilled water valves 16a-16b. Input 1(i) from both supply air temperature sensors 8a-8b and cabinet inlet temperature sensors 5a-5d is used to control the cooling units' chilled water valves 16a-16b opening through the output signal 1(o). Input 2(i) from the underfloor pressure sensors 7 are used to control the cooling unit fans 15a-15b speeds through the output signal 2(o). Input 3(i) from the containment pressure sensors 6a-6b is used to control the active damper tiles 9a-9b openings through the output signal 3(o).

[0018] FIG. 4 details the flow of an embodiment of the invented process. In step S2, the deployed sensors are constantly measuring different variables within the data center. In step S4, providing the information collected in step S2 to the active CAC controller 17 and the user interface 18. In Step S6, the active CAC controller 17 modulates local active damper tiles 9a-9b based on local POD containment pressure sensor reading 6a-6b and POD differential pressure set point defined in user interface 18. In Step S8, the active CAC controller 17 modulates cooling units' fans 15a-15b speed based on underfloor pressure sensor reading 7 and underfloor pressure set point defined in user interface 18. With airflow balanced between all PODS in the data center and the underfloor pressure set point satisfied, in step S 10 the active CAC controller 17 modulates chilled water valve 16a-16b opening based on supply air temperature sensor reading 8a-8b and supply air temperature set point defined in user interface 18.

[0019] Using the above described process, airflow is matched in each CAC POD based on the IT equipment 2a-2d airflow demand in the respective POD to the air supplied by the cooling unit fans 15a-15b which ensures that minimum to none of the air supplied is wasted. This helps achieve the optimum control of the cooling unit fans 15a-15b which in turn reduces their energy consumption. In addition to energy savings, saving the amount of air flow supplied by the cooling unit fans 15a-15b also optimizes the cooling capacity usage of the cooling units 4a-4b, allowing to extend the life of the data center and enabling the use of the full designed capacity of the cooling units 4a-4b.

[0020] FIG. 5 details the flow chart for cooling unit fans 15a-15b speed control. In step S12, containment pressure sensor 6a-6b measurements, and underfloor pressure sensor 7 measurements are reported to the active CAC controller 17. In Step 14, the active CAC controller 17 checks if any of the pressure sensors are not working. If a pressure sensor isn't working, an alarm is sent to the user interface 18 to report which sensor is not working in step S16. In step S18, the active CAC controller 17 checks if the underfloor pressure sensor 7 measurements match the underfloor pressure set point defined in user interface 18. If not, in step S20 a proportional integral control loop is used to control the cooling units' fans 15a-15b to maintain the underfloor pressure set point. If the underfloor pressure set point is satisfied in step S22, the active CAC controller 17 checks if all containment pressure sensor 6a-6b measurements match the containment pressure set point defined in user interface 18 in step S24. If the containment pressure sensor 6a-6b measurements do not match the set point in step S24, the active CAC controller 17 checks if the active damper tiles 9a-9b associated with the cold aisle containment enclosure 3a-3b that has a mismatch in pressure is at a 100% or 0% opening in step S26; if so, in step S28, active CAC controller 17 overrides the initial underfloor pressure set-point condition and controls the cooling units' fans' 15a-15b speed based on the containment pressure sensor 6a-6b to maintain its set point.

[0021] FIG. 6 details the flow chart for the supply air temperature set point control. In step S42, all supply temperature sensors' 8a-8b measurements, and cabinet inlet temperature sensor 5a-5d measurements are reported to the active CAC controller 17. In step S44, the active CAC controller 17 checks if any of the temperature sensors are not working. If a temperature sensor isn't working, an alarm is sent to the user interface 18 in step S45 to report which sensor is not working. In S46 the active CAC controller 17 checks if a POD door is open. If so, an alarm is sent to the user interface 18 in step S47 to report which POD door is open and active controller 17 does not make any changes. If no POD door is open, the active CAC controller 17 checks if the supply air temperature sensor 7 measurement is within range of the supply air temperature set point in step S48. if not within range, the active CAC controller 17 does not make any changes, to wait for the cooling units chilled water valve 16a-16b to regulate based on the supply air temperature set point. If within range, in step S50 the active CAC controller 17 checks if all cabinet inlet temperature sensor 5a-5d measurements are within range of the cabinet inlet temperature set point. If yes, the active CAC controller 17 does not make any changes. If no, in step S51 active CAC controller 17 changes the supply air temperature set point defined in the user interface 18 by a delta value defined in the user interface 18.

[0022] In another embodiment, according to the present invention, the cooling units 4a-4b illustrated in FIG. 1 and FIG. 2 can be replaced with large air handling units that are physically located outside of the data center. However, cold air supply to the data center and warm air exhaust from the data center are in a similar fashion as depicted in FIG. 1 and FIG. 2.

[0023] In another embodiment, according to the present invention, the cooling units 4a-4b illustrated in FIG. 1 and FIG. 2 can be direct expansion (DX) cooling units that utilize a compressor for cooling instead of the chilled water supply. In this case, the cooling capacity is regulated by a compressor speed instead of a chilled water valve opening.

[0024] In another embodiment, according to the present invention, the cooling units 4a-4b illustrated in FIG. 1 and FIG. 2 can be equipped with air-side economization and/or evaporative cooling capability. In this case, the cooling capacity is regulated using supply air set point temperature and outside ambient air condition.

[0025] In another embodiment, according to the present invention, the active damper tiles 9a-9b are controlled through a damper tile controller 19 instead of the active CAC controller 17, based on a user specified set point through the user interface 18. All other aspects of the present invention remain the same. FIG. 7 is a block diagram of the present invention in the separate described embodiment.

[0026] Note that while this invention has been described in terms of several embodiments, these embodiments are non-limiting (regardless of whether they have been labeled as exemplary or not), and there are alterations, permutations, and equivalents, which fall within the scope of this invention. Additionally, the described embodiments should not be interpreted as mutually exclusive, and should instead be understood as potentially combinable if such combinations are permissive. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that claims that may follow be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed