Filter Device

BAUTZ; Marco ;   et al.

Patent Application Summary

U.S. patent application number 15/553631 was filed with the patent office on 2018-02-15 for filter device. The applicant listed for this patent is RT-FILTERTECHNIK GMBH. Invention is credited to Marco BAUTZ, Gerhard STEHLE.

Application Number20180043290 15/553631
Document ID /
Family ID55809067
Filed Date2018-02-15

United States Patent Application 20180043290
Kind Code A1
BAUTZ; Marco ;   et al. February 15, 2018

FILTER DEVICE

Abstract

A filter device, having a support part (39, 43) and a filter part (1) that can be received therein, having at least one sealing device (17) that acts between the support part (39, 43) and the filter part (1), and having a securing device (53, 57, 61) for releasably connecting the support part (43) to the filter part (1), which securing device has a circumferential collar part (53) and, under the action of at least one energy store (61), exerts a force on the sealing device (17), which force seals the support part (39, 43) and the filter part (1) in a fluid-tight manner with respect to one another, wherein the support part (39, 43) has, at least on its end region oriented toward the securing device (53, 57, 61), another circumferential collar part (39), is characterized in that the collar part (53) of the securing device (53, 57, 61) is guided concentrically within the collar part (39) of the support part (39, 43) which is provided with a sealing system (41, 72).


Inventors: BAUTZ; Marco; (Friedrichshafen, DE) ; STEHLE; Gerhard; (Konstanz, DE)
Applicant:
Name City State Country Type

RT-FILTERTECHNIK GMBH

Friedrichshafen

DE
Family ID: 55809067
Appl. No.: 15/553631
Filed: April 19, 2016
PCT Filed: April 19, 2016
PCT NO: PCT/EP2016/000631
371 Date: August 25, 2017

Current U.S. Class: 1/1
Current CPC Class: B01D 2201/4053 20130101; B01D 29/58 20130101; B01D 2201/122 20130101; B01D 29/232 20130101; B01D 2201/4015 20130101; B01D 29/21 20130101; B01D 35/0276 20130101; B01D 35/147 20130101; B01D 2201/291 20130101; B01D 2201/342 20130101
International Class: B01D 29/23 20060101 B01D029/23; B01D 29/58 20060101 B01D029/58; B01D 29/21 20060101 B01D029/21; B01D 35/027 20060101 B01D035/027; B01D 35/147 20060101 B01D035/147

Foreign Application Data

Date Code Application Number
Jun 9, 2015 DE 10 2015 007 691.4

Claims



1. A filter device having a support part (39, 43) and a filter part (1) capable of being received therein, having at least one sealing mechanism (15, 17) that acts between the support part (39, 43) and the filter part (1), and also having a securing mechanism (53, 57, 61) for releasably connecting the support part (43) to the filter part (1), which securing mechanism has a circumferential collar part (53) and which under the action of at least one energy store (61) exerts a force on the sealing mechanism (15, 17), which force seals the support part (39, 43) and the filter part (1) in a fluid-tight manner with respect to each other, wherein the support part (39, 43) has, at least on its end region facing the securing mechanism (53, 57, 61), another circumferential collar part (39), characterized in that the collar part (53) of the securing mechanism (53, 57, 61) is guided concentrically within the collar part (39) of the support part (39, 43), which is provided with a sealing system (41, 72).

2. The filter device according to claim 1, characterized in that in the filtration mode of said device, the energy store (61) applies the collar part (53) of the securing mechanism (53, 57, 61) with settable sealing force against a sealing element (15) of the adjacently arranged one end cap (5) of the filter part (1).

3. The filter device according to claim 1, characterized in that this one end cap (5) moves the other end cap (3) of the filter part (1) via the filter medium (7), under the action of the energy store (61), against the sealing mechanism (17) that acts between the support part (39, 43) and the filter part (1), resulting in an increased effect of the sealing force.

4. The filter device according to claim 1, characterized in that the action of the energy store (61) of the securing mechanism (53, 57, 61) is transferred via the sealing mechanism (17) between the filter part (1) and the support part (39, 43) onto the collar part (39) of the support part (39, 43), which abuts with at least parts (41) of its sealing system (41, 72) on housing parts (37) of a receiving housing (25) for the support part (39, 43) and the filter part (1) together with the securing mechanism (53, 57, 61), resulting in an increased effect of the sealing force.

5. The filter device according to claim 1, characterized in that the sealing mechanism (17) that acts between the support part (39, 43) and the filter part (1) is arranged, in particular molded, on the other end cap (3) of the filter part (1), which other end cap presses on an adjacently arranged end cap (71) of the support part (39, 43) under the action of the energy store (61) of the securing mechanism (53, 57, 61).

6. The filter device according to claim 1, characterized in that the collar part (39) of the support part (39, 43) is graduated and that the inwardly folded, in particular inwardly crimped end (44) of a perforated support tube (43) of the support part (39, 43) rests on a step (66) of this collar part (39).

7. The filter device according to claim 1, characterized in that the collar part (39) of the support part (39, 43) is provided, on its inner circumference, with another sealing mechanism (72) serving as part of the sealing system (41, 72), on which the collar part (53) of the securing mechanism (53, 57, 61) that is graduated correspondingly to the collar part (39) of the support part (39, 43) rests in a sealing manner.

8. The filter device according to claim 1, characterized in that, in the filtering mode and with all sealing mechanisms (15, 17, 41, 72) exerting a sealing effect, when viewed in the axial direction parallel to the longitudinal axis of the filter device, there is essentially a virtually force-free contact between each of the correspondingly graduated inner wall surfaces (66, 68) of the two collar parts (39, 53), which are guided concentrically into one another.

9. The filter device according to claim 1, characterized in that the collar part (53) of the securing mechanism (53, 57, 61) has outwardly oriented latching bolts (74) projecting above its upper rim which, as the securing mechanism (53, 57, 61) is twisted with respect to the support part (39, 43), can be brought into lateral engagement with assignable latching hooks (65) of the other collar part (39), of which the axial extension is dimensioned in such a way that the latching bolts (74) in engagement with the latching hooks (65), guided in a contact-free manner under the action of the energy store (61), execute an axial, force-transferring feed motion on the sealing mechanism (15) of the one upper end cap (5) of the filter part (1).

10. The filter device according to claim 1, characterized in that the collar part (39) of the support part (39, 43) has, at least partially adjacent to the free opening of the latching hooks (65), a control cam (63) provided with a ramp-like rise to facilitate the disengagement of the filter part (1) from the support part (39, 43).

11. A tank device having a tubular housing part (25), into which a filter device according to the configuration of features of claim 1 can be inserted via a housing opening that can be closed with a tank lid (32), which lid exerts a force on a compression spring (61) of a securing mechanism (53, 57, 61) of the filter device in such a way that the filter device is sealingly received in the tubular housing part (25).
Description



[0001] The invention relates to a filter device, having a support part and filter part that can be received therein, having at least one sealing mechanism that acts between the support part and the filter part, and having a securing mechanism for releasably connecting the support part to the filter part, which securing mechanism has a circumferential collar part and which, under the action of at least one energy store, exerts a force on the sealing mechanism that seals the support part and the filter part in a fluid tight manner with respect to one another, wherein the support part has, at least on its end region oriented toward the securing mechanism, another circumferential collar part.

[0002] A filter device of this generic type is disclosed in Document EP 0874 675 B1. For generating the force that acts on the sealing mechanism, the securing mechanism in this prior art filter device has a tie rod that passes from the open end of the filter element, coaxially to the longitudinal axis of the device, entirely through the filter part and the support part, wherein on the free end of the tie rod that passes through the associated end cap, a first energy store is provided that pulls the support part against a collar part of the securing mechanism, which is in turn secured on the outer housing of the device by means of a second energy store. The operational safety of this device leaves much to be desired for several reasons. For one thing, the transfer of the spring force of the first energy store to the end surface of the end cap, even if the latter is made of metal, is critical because of the deformation risk resulting from the increased sealing force. For another thing, it is difficult to seal the place where the tie rod passes through. Furthermore, if the long tie rod is pulled diagonally, there is a risk of the entire support part tilting, resulting in a correspondingly non-uniform transfer of force to the collar part of the securing mechanism, resulting in a correspondingly compromised sealing.

[0003] On the basis of this prior art, the object of the invention is that of providing a filter device of the aforementioned generic type, which is distinguished by improved operating performance, particularly in terms of improved sealing.

[0004] According to the invention, this object is achieved by means of a filter device that has the features of claim 1 in its entirety.

[0005] According to the characterizing part of claim 1, an essential feature of the invention lies in the fact that the collar part of the securing mechanism is guided concentrically within the collar part of the support part, which is provided with a sealing system. Because an axial guide is formed in this manner for the component that directly transfers the sealing force, an optimum transfer of the force acting in the axial direction to the filter part is guaranteed, thus in turn assuring optimum sealing.

[0006] The arrangement can be advantageously made such that in the filtering mode of the device, the energy store applies the collar part of the securing mechanism with a presettable sealing force against a sealing element of the adjacently arranged one end cap of the filter part. A second energy store such as the one required in the aforementioned prior art solution for securing the collar part of the securing mechanism to the device housing thus becomes superfluous.

[0007] In particularly advantageous exemplary embodiments, the one end cap allocated to the collar parts moves the other end cap of the filter part, via the filter medium under the action of the energy store, against the sealing mechanism that acts between the support part and the filter part, resulting in an increased effect of the sealing force. As a result, the force generated by the only energy store present is applied as a sealing force on both end caps.

[0008] Furthermore, the arrangement can advantageously be made such that the action of the energy store of the securing mechanism is transferred via the sealing mechanism between the filter part and the support part to the collar part of the support part, which abuts with at least parts of its sealing system on housing parts of a receiving housing for the support part and the filter part together with the securing mechanism, resulting in an increased effect of the sealing force. Thus not only are the support part and the filter part kept under sealing contact force by the force of the energy store, but by means of the energy store the composite formed from these parts is also secured in the device housing concerned.

[0009] In particularly advantageous exemplary embodiments, the sealing mechanism that acts between the support part and the filter part is arranged, in particular molded, on the other end cap of the filter part, and this sealing mechanism presses on an adjacently arranged end cap of the support part under the action of the energy store of the securing mechanism.

[0010] The arrangement can be made particularly advantageously such that the collar part of the support part is graduated and such that the inwardly folded, in particular inwardly crimped, end of a perforated support tube of the support part rests on a step of this collar part. A positive fit is thus formed in a simple manner, which secures the collar part against being lifted from the support part.

[0011] With particular advantage, the collar part of the support part can be provided, on its inner circumference, with another sealing mechanism as part of the sealing system, against which the collar part of the securing mechanism, which is graduated in a manner corresponding to the collar part of the support part, rests in sealing contact.

[0012] In a particularly advantageous manner, the geometry in the area of the graduated surface sections of the two collar parts can be dimensioned such that, in the filtering mode of the device and with all sealing mechanisms exerting a sealing effect, when viewed in the axial direction parallel to the longitudinal axis of the filter device there is essentially a virtually force-free contact between each of the correspondingly graduated inner wall surfaces of the two collar parts, which are guided concentrically into each other. A clearance for a relative axial movement between the collar parts is thus provided for transferring the sealing force supplied by the energy store and acting on the collar part of the securing mechanism to each of the downstream sealing mechanisms for forming seals between the securing part, the filter part, and the support part.

[0013] In particularly advantageous exemplary embodiments, the collar part of the securing mechanism has outwardly oriented latching bolts projecting above its upper edge which, as the securing mechanism is twisted with respect to the support part, can be brought into lateral engagement with assignable latching hooks of the other collar part, wherein the axial extension thereof is dimensioned in such a way that the latching bolts in engagement with the latching hooks are guided in a contact-free manner. With a latching mechanism thus configured and consisting of the latching bolts and latching hooks, an axial clearance necessary for the transfer of force onto the sealing system is still available even with the latching bolts and latching hooks in the engaged state.

[0014] In particularly advantageous exemplary embodiments, the collar part of the support part has, at least partly adjacent to the free opening of the latching hooks, a control cam, which is provided with a ramp-like rise to facilitate the disengagement of the filter part from the support part. To this end, the cam ramps allocated to a given latching bolt can be arranged and formed in such a way that as the securing mechanism is twisted, an axial motion component via which the two collar parts are moved apart in the axial direction is imparted to the latching bolts.

[0015] According to claim 11, a tank device having a tubular housing part, into which a filter device according to the configuration of features of one of claims 1 through 10 can be inserted via a housing opening, is also the subject matter of the invention.

[0016] In the following, the invention is explained in detail with reference to an exemplary embodiment depicted in the drawings.

[0017] FIG. 1 shows an illustration of an exemplary embodiment of the filter device according to the invention, in a perspective oblique view and cut longitudinally;

[0018] FIG. 2 shows a partial longitudinal section of just the lower end region of the filter device, drawn to a larger scale relative to FIG. 1 and in a perspective oblique view;

[0019] FIG. 3 shows a partial longitudinal section of just the upper end region of the exemplary embodiment of the filter device, drawn to the scale of FIG. 2 and in a perspective oblique view;

[0020] FIG. 4 shows a detail of the area designated by IV in FIG. 3, magnified in relation to FIG. 3;

[0021] FIG. 5. shows an incomplete perspective oblique view of the area of the collar parts of the support part and of the securing mechanism of the device; and

[0022] FIGS. 6-8 show views corresponding to FIG. 5, in which different movement phases of the securing mechanism during the release of the connection between the collar parts are depicted.

[0023] With reference to the drawings, the filter device of the invention is explained using a so-called in-tank filter device as an example, which receives a filter element 1 in a relatively thin-walled, circular cylinder-shaped filter housing 25, which has on its upper end a flange part 27, with which it is secured on an upper tank opening (not illustrated) in such a way that the lower open end 29 of the housing 25 extends into the tank concerned up to a height that lies below the operating fluid level. On the upper end, the housing 25 can be closed with a lid 32 screwed to the flange part 27. At a short distance from the flange part 27, a supply pipe 31 opens into the housing 25 via an inlet opening 33.

[0024] As can be clearly discerned in FIGS. 2 and 3, the filter element 1 has a lower end cap 3 and an upper end cap 5. As FIG. 2 shows most clearly for the end cap 3, the end caps 3, 5 form the enclosure for a given end of a filter material 7 that forms a hollow cylinder, which in this example has the form of a folded mesh pack. Both end caps 3 and 5 have a circular outer rim 9, on which the outside of the filter material 7 rests in the example shown. However, the filter material 7 does not necessarily have to rest on a rim of the end caps 3, 5. Whereas the upper end cap 5 likewise has a circular inner rim 11, the lower end cap 3 has an inner rim 13 in the shape of a polygon, namely a Reuleaux triangle in the example shown. The non-circular connection area on the end cap 3 can be used to form a so-called safeguard against incorrect installation, as a matching non-circular geometry is provided for the connection area provided on the filter device for the end cap 3, thus assuring that the fluid coupling connection between the filter element and the filter device can only be made if the geometries of the right filter element 1 and the connection area of the end cap 3 match.

[0025] Both end caps 3 and 5 each have a circumferential seal 17 and 15, respectively, which seals are molded from an elastic material onto the rigid material that forms the end caps 3, 5. As FIG. 3 shows, the seal 15 for the upper end cap 5 is molded in such a way that it forms an axial sealing surface 19, which is configured as sloping down via an inclined plane 21 towards the outer circumference of the upper [sic] end cap 3. The seal 17 of the lower end cap 3 is molded in such a way that at least one radial sealing edge 23 is formed. As can be discerned in FIGS. 2 and 3, which illustrate the situation with the filter element 1 being installed in the filter device, the sealing surfaces 19 and 23 are used to form seals on the securing parts, by means of which the filter element 1 can be positioned in the filter device of the invention.

[0026] Below the inlet opening 33, an inward crimp 35 is formed in the wall of the filter housing 25, which inward crimp is shaped in such a way that a sort of step or flank 37 is formed on a radially recessed area (FIG. 3), on which a collar part (which has the shape of a graduated annular body 39) of the support part of the device is braced by a seal 41 against downward axial movement. As shown in FIG. 3, the graduated annular body 39, which forms the collar part of the support part of the device, is connected to a perforated support tube 43 of the support part. The support tube 43, on which rests the outside of the filter material 7 of the filter element 1, extends to the lower open end of the filter housing 25. As FIG. 2 shows, an inward crimp 45 is provided on the lower end of the support tube 43, by means of which a rigid bottom part 47 is connected to the support tube 43. In combination with the annular body 39 and the bottom part 47, the support tube 43 serving as a component of the support part thus forms a sort of inner housing for the filter element 1, which can be inserted from above. As the filter element 1 is being inserted, i.e., moved axially downward from the partially inserted position shown in FIG. 2, the bottom part 47, together with a bypass valve housing 49 connected thereto, forms a lower securing part for the lower end cap of the filter element 1.

[0027] As already indicated, in order to form a sort of key/lock system, the outer circumference of the bypass valve housing 49 has a polygonal shape in the contact or sealing area 51 that corresponds to the Reuleaux triangle on the inner rim 13 of the end cap 3, see FIG. 2. If the polygonal shapes of the inner rim 13 of the end cap 3 and the outer circumference of the bypass valve housing 49 that forms the sealing area 51 serving as the lower securing part of the filter device do not match, the filter element 1 cannot be moved into the engaged functional position. An effective fail-safe mechanism is thus formed that prevents an improper filter element 1 that is not suited for the intended use from being put into operation.

[0028] As another collar part which is associated with the securing mechanism and by means of which the filter element 1 is kept in the installed functional position on the lower securing part, i.e. the bottom part 47 with the bypass valve housing 49, a retaining ring 53 is provided that engages in the graduated inner circumference of the annular body 39 that forms the collar part of the support part, which retaining ring has a graduated shape corresponding to the inside of the annular body 39 and which, in its functional position, rests with its inner, lower end rim 55 on the sealing surface 19 of the end cap 5. One-piece bars 57 extend radially inwardly in an upwardly inclined manner from the inside of the retaining ring 53 to a centrally located spring bearing 59 supporting a compression spring 61, the other end of which rests in contact on the housing lid 32 and thus exerts a downward axial pretensioning force on the retaining ring 53 and generates the sealing force with which the end rim 55 rests in contact on the sealing surface 19 of the end cap 5.

[0029] As already mentioned, the support tube 43, in combination with the bottom part 47 connected thereto on the lower end by means of the inward crimp 45, forms an inner housing for the filter element 1, wherein the bottom part 47 forms a securing part for the filter part. As can best be discerned from FIG. 4, the upper end of the support tube 43 has an outwardly angled rim 44, which rests on a step 66 on the inside of the annular body 39 serving as a collar part of the support part. The inner housing formed by the support tube 43 is thus braced against the sealing force generated by the compression spring 61, which is transferred from the end rim 55 of the retaining ring 53 to the upper end cap 5 and via the filter element 1 to the lower end cap 3, and from the latter in turn to the bottom part 47 serving as the lower securing part, on the annular body 39, whereby the latter is in turn secured in a sealing manner via the ring seal 41 on the recessed flank 37 of the filter housing 25. In order to assure an unobstructed transfer of the sealing force from the retaining ring 53 serving as a collar part of the securing part to the upper end cap 5, the dimensions of the retaining ring 53 and the annular body 39 serving as a collar part of the support part, as well as the position of the steps 66, 68 formed thereon, are selected in such a way that in the installation state, as shown most clearly in FIG. 4, there is an axial clearance between the step 66 on the annular body 39 and the opposite step 68 on the retaining ring 53, which serves as space for a relative axial movement. In the area adjoining the steps 66, 68 in an axially downward direction, there is likewise a radial clearance 70 between the annular body 39 and the retaining ring 53. A suitable guide, on which a ring seal 72 forms the sealing area, is formed only in the area adjoining the steps 66, 68 in the upward direction between the annular body 39 and the retaining ring 53. The sealing force generated by the compression spring 61 thus acts via the filter element 1 as an axial force, which is transferred from the upper rim 44 of the support tube 43 to the annular body 39 and via the latter in turn to the ring seal 41, which rests on the flank 37 of the housing 25.

[0030] As can be discerned most clearly from FIGS. 5-8, provision is made of a plurality of cam tracks 63 on the upper circumferential rim of the annular body 39, to each of which is attached a latching hook 65 extending above the end of the associated cam track 63 in the circumferential direction. To interact with these latching hooks 65, radially outwardly projecting latching bolts 74 are provided on the upper rim of the retaining ring 53 that forms the collar part of the securing mechanism. FIG. 5 shows the installed state, in which the sealing force generated by the compression spring 61 is effective. The latching bolts 74 are at the lowest point of the cam tracks 63 under the hooks 65, although there is still an axial clearance between the latching bolts 74 and the given cam track 63 so that the elastic force of the compression spring 61 is not exerted by the latching bolts 74 on the retaining ring 53, which is secured in the axial direction on the flank 67 of the housing 25, but instead is exerted without obstruction on the annular body 39, which is decoupled from the retaining ring 53 in terms of axial movements by the clearance that exists between the steps 66 and 68.

[0031] If the housing lid 32 is loosened, the compression spring 61 is decompressed so that the securing mechanism can be removed without any tension, for example in order to take the filter element 1 out of the inner housing of the support part in order to change it. In order to keep the support part, i.e. the inner housing with the support tube 43 plus the annular body 39 forming its collar part, in the housing 25, the retaining ring 53 and the annular body 39 must be moved apart axially. This can be effected in an expedient manner by turning the latching bolts 74 clockwise by means of a clockwise rotary movement of the bars 57 with the retaining ring 53, wherein the latching bolts are forcibly actuated in axially upward movement along the cam tracks 63 and a relative axial movement takes place between the retaining ring 53 and the annular body 39. It is furthermore possible to effect the rotary movement by means of a tool such as a ratchet wrench, which engages on a hex head to which the spring 61 is also coupled. The sequential movement phases of this rotary movement are shown in FIGS. 6 and 7. Any friction acting between these collar parts 39, 53 in the guide zone sealed by means of the seal 72 is thus overcome in an expedient manner. The cam tracks 63 and the latching bolts 74 interact in this way to form an aid for dismantling the filter element 1. The entire securing mechanism 53, 57, 61 along with a permanent magnetic bar 69, which is mounted on the spring bearing 59 and which extends therefrom in the axial direction into the interior of the filter element 1, can thus be removed in an expedient manner (cf. FIG. 8).

[0032] As can be discerned most clearly in FIG. 2, the lower end cap 3 has an inner body in the shape of a dome 71, which starting from the polygonally-running inner rim 13, extends axially into the interior filter cavity and has a ring of fluid openings 73 on its upper end. On the inside, the dome 71 forms a fillet 75 that extends in the axial direction by means of a recessed wall region. The bypass valve housing 49, which extends into the dome 71 when the filter element 1 is in its inserted operating position, has an external shape that corresponds to the internal shape of the dome 71 and has on its outside a channel-like wall recess 77, which forms a sliding surface 79 (see FIG. 2), along which the fillet 75 of the dome 71 is guided when the filter element 1 is pushed downwards from the starting position shown in FIG. 2 and into the operating position. The fillet 75, in combination with the sliding surface 79 on the recess 77 of the bypass valve housing 49, thus forms a rotary positioning mechanism, which aligns the polygon on the inner rim 13 of the end cap 3 congruently to the polygonal shape on the sealing area 51 of the bypass valve housing 49. The latter forms, on the inner rim 81 of an upper housing opening 83, a valve seat for the seating of a valve body 85 of the bypass valve. The valve body 85 is pretensioned by a valve spring 87, which is mounted on a connecting piece 89 located on the bottom part 47. With the filter element 1 installed, the outer wall of the valve housing 49 furthermore forms the sealing seat in conjunction with the lower ring seal 17 having a circumferential sealing edge 23 of the lower end cap 3.

[0033] With the filter element 1 in the filtration mode in the illustrated in-tank filter device, the fluid flows through the inlet opening 33 on the front side of the filter element 1 and reaches the inner filter cavity that forms the crude or non-filtrate side through the opening on the inner rim 11 of the end cap 5. After flowing through the filter material 7 from the inside to the outside to the clean or filtrate side in the space between the support tube 43 and the housing wall 25, the filtrate exits into the tank via the open lower end of the housing 25. Obviously, the filter element 1 cannot only be advantageously used with an in-tank filter device, but with all types of filter devices in which corresponding securing parts are provided for connections to end caps, the filter elements of which are shaped in a special non-circular manner.

[0034] Although a Reuleaux polygon is shown here, in which the polygonal shape is located on the lower end cap 3 and the connection area of the upper end cap 5 is circular cylindrical, both end caps 3 and 5 could each be provided with a different polygonal shape, or the lower end cap 3 could have a circular cylindrical connection geometry and the polygonal shape could be provided on the upper end cap 5. The polygonal connection geometry could be provided on an outer rim of one or both end caps or on the inner rim of one end cap and on the outer rim of the other end cap, rather than on the inner rim 13 of the end cap 3 as in the present example. Furthermore, use could be made of end caps having characteristic polygonal shapes that differ from one another.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed