Method For Hot Or Warm Forming A Workpiece And Production Plant For Hot Or Warm Forming A Workpiece

Banik; Janko ;   et al.

Patent Application Summary

U.S. patent application number 15/527333 was filed with the patent office on 2017-11-09 for method for hot or warm forming a workpiece and production plant for hot or warm forming a workpiece. This patent application is currently assigned to ThyssenKrupp Steel Europe AG. The applicant listed for this patent is thyssenKrupp AG, ThyssenKrupp Steel Europe AG. Invention is credited to Janko Banik, Sascha Sikora.

Application Number20170321295 15/527333
Document ID /
Family ID54542226
Filed Date2017-11-09

United States Patent Application 20170321295
Kind Code A1
Banik; Janko ;   et al. November 9, 2017

METHOD FOR HOT OR WARM FORMING A WORKPIECE AND PRODUCTION PLANT FOR HOT OR WARM FORMING A WORKPIECE

Abstract

A method for hot or warm forming a workpiece may comprise providing the workpiece to be formed, at least partially pretreating the workpiece, at least partially heating the workpiece to a target temperature, and at least partially forming and/or hardening the workpiece. Furthermore, the workpiece may be at least partially cleaned in a cleaning step between the pretreating and the heating of the workpiece. In some examples, at least partially cleaning the workpiece may involve brushing the workpiece, using a cleaning bath, or heating the workpiece with a first burner to a cleaning temperature. Further, one or more burners used to heat or clean the workpiece may be operated with a fuel gas and/or an oxygen-containing gas.


Inventors: Banik; Janko; (Altena, DE) ; Sikora; Sascha; (Lunen, DE)
Applicant:
Name City State Country Type

ThyssenKrupp Steel Europe AG
thyssenKrupp AG

Duisburg
Essen

DE
DE
Assignee: ThyssenKrupp Steel Europe AG
Duisburg
DE

thyssenKrupp AG
Essen
DE

Family ID: 54542226
Appl. No.: 15/527333
Filed: November 5, 2015
PCT Filed: November 5, 2015
PCT NO: PCT/EP2015/075809
371 Date: May 17, 2017

Current U.S. Class: 1/1
Current CPC Class: C21D 1/18 20130101; C21D 1/72 20130101; C21D 9/46 20130101; C23C 22/73 20130101
International Class: C21D 9/46 20060101 C21D009/46; C21D 1/18 20060101 C21D001/18; C21D 1/72 20060101 C21D001/72; C23C 22/73 20060101 C23C022/73

Foreign Application Data

Date Code Application Number
Nov 19, 2014 DE 10 2014 116 950.6

Claims



1.-15. (canceled)

16. A method for hot or warm forming a workpiece, the method comprising: providing the workpiece; at least partially pretreating the workpiece; at least partially cleaning the workpiece that has been at least partially pretreated; at least partially heating the workpiece that has been at least partially cleaned to a target temperature in a heating station; and at least partially forming and/or hardening the workpiece.

17. The method of claim 16 wherein at least partially cleaning the workpiece comprises at least partially treating the workpiece chemically, mechanically, and/or thermally.

18. The method of claim 16 wherein at least partially cleaning the workpiece comprises cleaning at least a portion of the workpiece in a cleaning bath.

19. The method of claim 16 wherein at least partially cleaning the workpiece comprises brushing the workpiece.

20. The method of claim 16 further comprising transporting the workpiece as the workpiece is at least partially cleaned.

21. The method of claim 16 further comprising transporting the workpiece from a cleaning station to the heating station after the workpiece is at least partially cleaned and before the workpiece is at least partially heated.

22. The method of claim 16 wherein at least partially cleaning the workpiece comprises heating the workpiece with a first burner to a cleaning temperature.

23. The method of claim 22 further comprising heating the workpiece with a second burner to the target temperature.

24. The method of claim 23 wherein at least one of the first burner or the second burner is operated with a fuel gas and an oxygen-containing gas.

25. The method of claim 16 further comprising coating the workpiece with at least one of a protective material or a corrosion protection oil.

26. The method of claim 16 wherein at least partially forming and/or hardening the workpiece comprises positioning the workpiece in at least one of a forming die or a hardening die.

27. The method of claim 16 wherein the workpiece is a flat metal sheet.

28. A production plant for hot or warm forming a workpiece by at least partially pretreating the workpiece, at least partially cleaning the workpiece that has been at least partially pretreated, at least partially heating the workpiece that has been at least partially cleaned to a target temperature, and at least partially forming and/or hardening the workpiece, wherein the production plant comprises: a cleaning station for at least partially cleaning the workpiece; and a heating station for at least partially heating the workpiece to the target temperature.

29. The production plant of claim 28 further comprising a conveying mechanism.

30. The production plant of claim 28 wherein the cleaning station is structurally separate from the heating station.
Description



PRIOR ART

[0001] The present invention concerns a method for hot or warm forming of a workpiece and a production plant for hot or warm forming of a workpiece.

[0002] In hot and warm forming, uncoated or coated materials are generally used. To avoid corrosion during transport, a semifabricated piece in the form of a coil or a sheet can be provided partially, preferably entirely, with a corrosion protection oil or with lubricants. In addition, a contamination with dust or the like, especially in a coil or sheet warehouse, can likewise hardly be avoided as a rule.

[0003] Caused by thermal processes which occur upon reaching the desired temperature for the tempering process, a thermal decomposition of the substances which have been deposited on the semifabricated piece occurs. As a result of this thermal decomposition, contaminants remain on the semifabricated piece, which in turn reduce the quality of the fabricated semifabricated piece. A mechanical cleaning, such as by shot blasting, cannot always entirely remove the residues which occur, or it may in particular impair semifabricated pieces which are coated. Furthermore, large oil residues, such as those due to a large oil film, may lead to an intensified hydrogen absorption in the material during the processing of the semifinished piece. This may result in material embrittlement on account of the high strength. In the case of a micro-oiling, this behavior is not found, but then no adequate corrosion protection can be assured.

DISCLOSURE OF THE INVENTION

[0004] One object of the present invention is to provide a method for hot or warm forming of a workpiece with which the quality of the piece fabricated by the hot or warm forming is further improved beyond that of the prior art.

[0005] The present invention solves the object by a method for hot or warm forming of a workpiece, comprising the following method steps:

providing of the workpiece, at least partial pretreating of the workpiece, at least partial heating of the workpiece to a target temperature in a heating station and at least partial forming and/or hardening of the workpiece, wherein the workpiece is at least partially cleaned in a cleaning step between the pretreating and the heating of the workpiece.

[0006] As compared to the prior art, the workpiece is cleaned after the pretreating and before the heating for the forming and/or hardening and in particular is thereby freed of residues which have become deposited due to the pretreatment on the workpiece. In this way, the quality of the part fabricated after the forming of the workpiece is improved, since the likelihood of a depositing of contaminants which form from the residues during the heating of the workpiece and thus the likelihood of a permanent impairment of the workpiece is reduced. Furthermore, other contaminations such as dust can be removed from the workpiece in the cleaning step.

[0007] Preferably, it is provided that the cleaning step is done immediately before the heating. It is furthermore preferably provided that the workpiece as a finished part after the forming and/or hardening is a structural or chassis part of a motor vehicle. In particular, the workpiece is provided as a sheet metal piece, especially a flat metal sheet (direct hot forming) or a formed part having practically its final geometry (indirect hot forming), and the pretreatment is at least part of the manufacturing process for the sheet metal piece. Furthermore, it is preferably provided that the partial region of the workpiece which is supposed to be heated during the heating to the target temperature, preferably the entire workpiece, is specifically cleaned in the cleaning step. But it is also conceivable to clean specifically those partial regions of the workpiece for which an improved surface quality is desired on the finished part. Advantageous embodiments and modifications of the invention will be found in the dependent claims and in the specification making reference to the drawings.

[0008] According to a further embodiment of the present invention, it is provided that the workpiece in the cleaning step is at least partially chemically, mechanically and/or thermally treated. The chosen cleaning method is thereby preferably adapted to the workpiece such that the cleaning leaves the properties of the workpiece substantially unimpaired. In this way, one can advantageously ensure that no steps are taken with the cleaning step which endanger the quality of the subsequently fabricated part.

[0009] According to a further embodiment of the present invention, it is provided that the workpiece in the cleaning step is at least partially cleaned in a cleaning bath. During this chemical treatment of the workpiece, the contaminants are advantageously bound in a liquid of the cleaning bath. It is conceivable that the liquid in the cleaning bath will be exchanged by bringing the liquid into the cleaning bath and draining it out once more, for example it is pumped in a liquid circuit into the cleaning bath and again pumped out from the cleaning bath. Thanks to the binding of the contaminants to the liquid, it is advantageously prevented that the contaminants spread via the air and become deposited for example on plant parts. Furthermore, it is conceivable that the wet workpiece will be dried, for example with hot air, before the heating.

[0010] According to a further embodiment of the present invention, it is provided that the workpiece is in the cleaning step brushed. For this mechanical treatment in the cleaning step, it is conceivable that the workpiece is brought into contact with the brush and the workpiece is moved in the longitudinal direction, while the brush extends substantially along the transverse direction of the workpiece. In this way, the cleaning step can be advantageously integrated in the transport of the workpiece to the heating station, without the cleaning step occasioning any significant delay in the hot or warm forming. It is also conceivable that the brush or a system of brushes are arranged at the entrance to the heating station and in this way the cleaning of the workpiece is provided immediately before the heating. Alternatively, it is conceivable that the workpiece is cleaned manually. In manual cleaning with a brush, residues visible to the naked eye can be advantageously removed without major additional effort.

[0011] According to a further embodiment of the present invention, it is provided that the workpiece in the cleaning step is heated by a burner to a cleaning temperature. Preferably the workpiece is heated by one or more burners, preferably on both sides, especially all around and uniformly. It is conceivable that the burner is moved during the heating along the transverse direction or the longitudinal direction of the workpiece, preferably in oscillating manner. Thanks to the heating already done during the cleaning of the workpiece, relatively little heating energy is required to attain the target temperature in the heating station. Preferably the cleaning station with its burner is physically separate from the heating station in order to prevent contaminants which are present in the exhaust gases occurring during the heating to the cleaning temperature from depositing on the plant parts during the heating to the target temperature. But it is also conceivable that the cleaning step is carried out in the heating station by the burner responsible for the heating first heating the workpiece to the cleaning temperature and then to the target temperature, the target temperature being greater than the cleaning temperature. It is preferably provided that the air surrounding the workpiece is drawn off during the heating of the workpiece to a cleaning temperature, for example by means of an exhaust hood, in order to carry away the contaminants.

[0012] According to a further embodiment of the present invention, it is provided that the workpiece is transported or moved during the cleaning step. In this way, the cleaning step can be advantageously integrated in the hot or warm forming of the workpiece such that potential delays due to the cleaning step are kept as short as possible. If the cleaning step involves a thermal treatment, it is conceivable that the workpiece is moved by a burner belt along the conveyance direction past a burner, with the burner heating the workpiece as it moves past it. In particular, the workpiece is moved with a conveying mechanism along a conveyance direction and in this process it passes in succession through the cleaning station, the heating station, and reaches the forming and/or hardening die.

[0013] According to a further embodiment of the present invention, it is provided that the workpiece is transported from a cleaning station to a heating station between the cleaning step and the heating step. In the case of thermal cleaning, it is preferably provided that the transport path is covered in a shortest possible time in order to prevent the workpiece from cooling down again. In particular, it is conceivable that the conveying mechanism comprises heating elements which ensure that the workpiece basically maintains its cleaning temperature. Preferably, the workpiece is transported such that the workpiece does not become polluted or contaminated once more. In particular, the workpiece is moved with a conveying mechanism along a conveyance direction and thereby passes in succession through the cleaning station, the heating station, and reaches the forming and/or hardening die.

[0014] According to a further embodiment of the present invention, it is provided that the workpiece is heated during the heating for the forming and/or hardening with an additional burner to the target temperature. Preferably, the target temperature chosen is a temperature between 600.degree. C. and 900.degree. C. If a manganese-boron steel material is used preferably, it is preferably provided that the target temperature is reached above AC3, in order to transform the microstructure completely into austenite. If the target temperature lies below AC3 and above AC1, a mixed microstructure of austenite and ferrite is obtained. For example, it is provided that the speed with which the workpiece is heated to the cleaning temperature when using a burner is greater than the speed with which the workpiece is heated to the target temperature, especially when using a radiant furnace.

[0015] According to a further embodiment of the present invention, it is provided that the workpiece is coated with a protective material and/or in particular it is coated at least partially with a corrosion protection oil in order to prevent corrosion during transport.

[0016] According to a further embodiment of the present invention, it is provided that the burner and/or the additional burner is operated with a fuel gas and an oxygen-containing gas. Preferably, the heating power of the burner and/or the additional burner is adjusted by the mix ratio of the fuel gas and the oxygen-containing gas. In particular, an oxygen content is used to establish the maximum temperature in a burning flame of the burner and/or the additional burner. It is provided for example that a technical oxygen mixture is supplied to the additional burner wherein the oxygen content is preferably greater than 70% or especially preferably greater than 90%. Furthermore, it is provided that, in order to reach the target temperature with a desired speed at which the workpiece is heated, the distance between burner and workpiece, the oxygen content, and/or a conveying speed of the workpiece being transported along the conveyance direction are adjusted accordingly.

[0017] According to a further embodiment of the present invention, it is provided that the workpiece is arranged in a forming/hardening die for the forming and/or hardening. Preferably, the forming/hardening die is at least partially cooled and thereby advantageously ensures, for example, a partial hardening of the workpiece.

[0018] According to a further embodiment of the present invention, it is provided that the workpiece used is a flat metal sheet. For example, the workpiece is a workpiece fabricated substantially from a manganese-boron steel, especially 22MnB5, or it is a flat metal sheet with higher carbon content.

[0019] Another subject matter of the present invention is a production plant for hot or warm forming of a workpiece, especially for carrying out a method according to the invention, wherein the production plant comprises a cleaning station for cleaning a workpiece and a heating station for heating the cleaned workpiece.

[0020] As compared to the prior art, the production plant according to the invention has the advantage that, thanks to the cleaning station, it can be ensured that possible residues from a pretreatment of the workpiece are removed and thus the quantity of potential contaminants which might impair the quality of the subsequently fabricated part is reduced in advantageous manner.

[0021] According to a further embodiment of the present invention, it is provided that the production plant comprises a conveying mechanism. With the conveying mechanism, the workpiece can be advantageously transported through the cleaning station and the heating station to the forming/hardening die. It is conceivable that the conveying mechanism comprises conveying rollers.

[0022] According to a further embodiment of the present invention, it is provided that the cleaning station is structurally separate from the heating station. In this way, it can be advantageously ensured that the contaminants loosened by the heating of the workpiece to the cleaning temperature are distributed through the air and then become deposited on the plant parts of the heating station.

[0023] Further details, features and benefits of the invention will emerge from the drawings as well as the following specification of preferred embodiments with the aid of the drawings. The drawings only illustrate sample embodiments of the invention which do not limit the notions of the invention.

BRIEF DESCRIPTION OF THE FIGURES

[0024] FIGS. 1a to 1d show a method for hot or warm forming of a workpiece according to a sample embodiment of the present invention.

EMBODIMENTS OF THE INVENTION

[0025] In the various figures, the same parts are always provided with the same reference number and therefore as a rule will respectively only be mentioned or designated once.

[0026] FIGS. 1a to 1d represent a method for hot or warm forming of a workpiece 1 according to a sample embodiment of the present invention. For example, this involves a structural or chassis part of a motor vehicle, the workpiece 1 being provided as a semifabricated part, especially in the form of a tailored rolled blank or a metal sheet as shown in FIG. 1. The workpiece 1 consists, for example, of a material fabricated at least partially from a boron-manganese steel, especially 22MnB5. Thanks to the hot or warm forming, it is preferably provided that the workpiece 1 is converted into its final form as a component part. In order not to influence the properties and/or the form of the component fabricated afterwards, the workpiece 1 is subjected to a pretreatment. One example of such a pretreatment is the coating of the workpiece 1 with a corrosion protection oil or with a lubricant in order to prevent corrosion during the transport of the workpiece. Another example of the pretreatment is the application of a cutting oil to the workpiece 1 in order to facilitate a possible cutting of the sheet to size in advance of the hot or warm forming. Due to the pretreatment and other external circumstances, residues remain behind on the workpiece 1, such as those of the corrosion protection oil, the lubricant and/or the cutting oil. Upon heating of the workpiece 1 required for the hot or warm forming, these residues as contaminants would result in damage or impairment of the finished part, for example in the form of a material embrittlement. In order to avoid such impairment, it is provided that the pretreated workpiece 1 is cleaned, preferably directly before the heating of the workpiece 1 in a heating station 20, in a cleaning step. Preferably the cleaning step begins 60 seconds, preferably 20 seconds and especially preferably 5 seconds before the heating of the workpiece 1.

[0027] As an example of a cleaning step, the embodiment in FIGS. 1a to 1d shows in FIG. 1b a thermal treatment in a cleaning station 10. In the present embodiment, the cleaning station 10 comprises a burner belt or roller conveyor 4, arranged underneath the workpiece 1 being delivered by the burner belt or roller conveyor 4. Furthermore, the cleaning station 10 preferably comprises a burner 2, which is arranged above and/or beneath the transportable workpiece 1. It is furthermore provided that the burner 2 heats the workpiece 1 to a cleaning temperature. For this, the burner 2 is operated in particular with a mixture of a burner gas and an oxygen-containing gas. Furthermore, when using a burner 2 for heating the workpiece 1 to the cleaning temperature, a burner flame 3 occurs which makes direct contact with the workpiece 1 in the cleaning station 10, for example, or which is held at a distance from the workpiece. In particular, the burner belt or roller conveyor 4 has a recess 6 in one position so that the burner flame 3 can heat the workpiece 1 unhindered. Furthermore, it is provided that the workpiece 1 is heated on both sides by one burner 2 apiece, in order to free as much of the surface of the workpiece 1 as possible from residues. It is conceivable that the burner 2 is moved along a direction running perpendicular to a conveyance direction of the burner belt or roller conveyor 4, preferably in oscillating manner, in order to realize by this motion the heating along a transverse dimension of the workpiece 1. In particular, it is conceivable that the cleaning temperature is adjusted or realized by the determination of a conveyance speed with which the workpiece 1 is delivered by the burner belt or roller conveyor 4, the determination of a distance of the burner 2 from the workpiece 1 and/or by the determination of an oxygen content of the oxygen-containing gas mixed in with the fuel gas. Furthermore, it is preferably provided that the burner flame 3 of the burner 2 in the cleaning station 10 heats the workpiece 1 homogeneously, i.e., uniformly along the surface. Furthermore, it is conceivable that the cleaning station 10 comprises an exhaust air system in order to carry away the pollution gases arising during the thermal treatment by the exhaust air system. In this way, it is possible to prevent the pollutants contained in the pollution gas from being deposited on the plant parts of the cleaning station 10. In order to further prevent the pollutants contained in the pollution gas from being deposited on plant parts which are situated for example in a heating station 20, the cleaning station 10 in the depicted embodiment is structurally separate from the heating station 20, as shown in FIG. 1c.

[0028] FIG. 1c shows a heating station 20 in the form of a furnace 5, the workpiece 1 being arranged for the heating inside the preferably enclosed furnace 5. In particular, it is provided that the target temperature is greater than the cleaning temperature. Furthermore, it is provided that the workpiece 1 is heated in the heating station 20 with an additional burner or by radiant heating, the additional burner being operated preferably with a mixture of a fuel gas and an oxygen-containing gas. In particular, the additional burner in the heating station 20 is operated with a technical-grade oxygen whose oxygen content is preferably greater than 75%, especially preferably greater than 90%. For example, the heating in the heating station 20 can be used to adjust material properties of the component fabricated afterwards. For example, the workpiece 1 is specifically heated in at least a first region to a temperature below AC3, especially below AC1, in order to avoid a complete austenitization and/or at least in a second region to a temperature above AC3, in order to bring about an austenitization. It is also conceivable for the workpiece 1 to be precoated after the cleaning step and before the heating in order to ensure by this precoating the formation of an alloy layer on the surface of the workpiece 1. Furthermore, it is provided that the cleaning station 10 is connected to the heating station 20 via a conveying mechanism 4. In particular, the cleaned workpiece 1 is delivered by the conveying mechanism 4 to the furnace 5.

[0029] After the heating of the cleaned workpiece 1 it is provided that the workpiece 1 is placed in a preferably cooled forming and/or hardening die 30 and formed and/or hardened therein, as shown in FIG. 1d. In particular, the forming and/or hardening die 30 comprises a mold which is adapted to the component to be fabricated. Furthermore, it is conceivable that the conveying mechanism delivers the workpiece 1 along the conveyance direction in a production plant through the cleaning station 10 and the heating station 20 to the forming and/or hardening die 30.

LIST OF REFERENCE NUMBERS

[0030] 1 Workpiece [0031] 2 Burner [0032] 3 Burner flame [0033] 4 Conveying mechanism, burner belt, roller conveyor [0034] 5 Furnace [0035] 6 Recess [0036] 10 Cleaning station [0037] 20 Heating station [0038] 30 Forming and/or hardening die

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed