Method For Sealing A Reusable Electrical Surgical Instrument

Beardsley; John W.

Patent Application Summary

U.S. patent application number 15/640672 was filed with the patent office on 2017-10-19 for method for sealing a reusable electrical surgical instrument. The applicant listed for this patent is Covidien LP. Invention is credited to John W. Beardsley.

Application Number20170296287 15/640672
Document ID /
Family ID50679878
Filed Date2017-10-19

United States Patent Application 20170296287
Kind Code A1
Beardsley; John W. October 19, 2017

METHOD FOR SEALING A REUSABLE ELECTRICAL SURGICAL INSTRUMENT

Abstract

A method for sealing surgical instruments, particularly reusable electric surgical instruments sterilized using an autoclave process, includes providing at least two body shells having a runner system on the mating surfaces, aligning the body shells, securing the body shells in position relative to each other, inserting an injection device into the runner system, injecting an elastomer material from the injection device into the runner system, removing the injection device from the runner system, and curing the elastomer material. The elastomer material seals the housing chamber of the instrument. The elastomer material may bond the body shells together.


Inventors: Beardsley; John W.; (Wallingford, CT)
Applicant:
Name City State Country Type

Covidien LP

Mansfield

MA

US
Family ID: 50679878
Appl. No.: 15/640672
Filed: July 3, 2017

Related U.S. Patent Documents

Application Number Filing Date Patent Number
14679607 Apr 6, 2015 9693827
15640672
13886506 May 3, 2013 9015919
14679607

Current U.S. Class: 1/1
Current CPC Class: B29C 65/08 20130101; B29C 65/70 20130101; B29C 45/00 20130101; Y10T 29/49893 20150115; A61B 2017/00526 20130101; B21D 53/00 20130101; B29L 2031/26 20130101; B29C 65/483 20130101; B29C 65/562 20130101; Y10T 29/49947 20150115; B29C 66/54 20130101; B29C 66/1142 20130101; B29C 65/542 20130101; B29L 2031/7546 20130101; Y10T 29/49966 20150115; A61B 2090/0813 20160201; A61B 90/00 20160201; Y10T 29/49826 20150115; B29C 39/10 20130101; A61B 17/00 20130101
International Class: A61B 90/00 20060101 A61B090/00; B21D 53/00 20060101 B21D053/00; B29C 39/10 20060101 B29C039/10; B29C 45/00 20060101 B29C045/00; A61B 17/00 20060101 A61B017/00; B29C 65/70 20060101 B29C065/70

Claims



1. A method for assembling and sealing a surgical instrument, comprising: mating a first joining surface of a first body shell with a second joining surface of a second body shell, the first joining surface of the first body shell defining a runner system that surrounds a perimeter of the first joining surface; inserting an injection device into an inlet port of the first runner system; injecting an elastomer material from the injection device through the inlet port until the elastomer material exits from an outlet port of the first runner system; and removing the injection device from the inlet port while continuing to inject elastomer material from the injection device.

2. The method according to claim 1, wherein inserting the injection device into the first runner system includes inserting the injection device into the first runner system such that a tip of the injection device is inserted past a bridge section of the first runner system that fluidly connects the inlet port to the outlet port.

3. The method according to claim 1, further comprising securing the first and second body shells in position relative to one another before inserting the injection device into the inlet port.

4. The method according to claim 3, wherein securing the first and second body shells in position includes at least one of screwing, sonic welding, or clamping.

5. The method according to claim 1, further comprising curing the elastomer material to form a seal between the first and second body shells along the first and second joining surfaces.

6. The method according to claim 5, wherein curing the elastomer material includes forming a bond between the first and second joining surfaces with the elastomer material.

7. The method according to claim 1, wherein mating the first and second joining surfaces includes aligning the first runner system with a second runner system defined the second joining surface, the second runner system surrounding a perimeter of the second joining surface.

8. The method according to claim 1, further comprising mating a third joining surface of a third body shell with the first and second joining surfaces, the third joining surface defining a third runner system that surrounds a perimeter of the third joining surface.

9. The method according to claim 8, further comprising inserting the injection device into an inlet port of the third runner system such that the tip of the injection device is inserted past a bridge section of the second runner system that fluidly connects the inlet port to an outlet port of the third runner system after removing the injection device from the inlet port of the first runner system.

10. The method according to claim 8, further comprising inserting a second tip of the injection device into an inlet port of the third runner system such that the second tip is inserted past a bridge section of the third runner system that fluidly connects the inlet port of the third runner system to an outlet port of the third runner system.

11. The method according to claim 10, wherein inserting the second tip of the injection device into the inlet port of the third runner system occurs concurrently with inserting the injection device into the inlet port of the first runner system.

12. A method for assembling and sealing a surgical instrument comprising: mating a first joining surface of a first body shell with a second joining surface of a second body shell, the first joining surface defining a first runner that surrounds a perimeter of the first joining surface; positioning a tip of an injection device in a first runner system which includes the first runner; injecting elastomeric material through the tip until elastomeric material exits from an outlet port of the first runner system; and removing the tip from the first runner system while continuing to inject elastomeric material.

13. The method according to claim 12, wherein positioning a tip of the injection device in the first runner system includes positioning the tip in an inlet port of the first runner system and beyond a bridge section of the first runner system, the bridge section fluidly coupling the inlet and outlet ports of the first runner system.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. patent application Ser. No. 14/679,607, filed Apr. 6, 2015, which is a continuation of U.S. patent application Ser. No. 13/886,506, filed May 3, 2013, now U.S. Pat. No. 9,015,919. The entire contents of each of the above applications are hereby incorporated by reference.

BACKGROUND

Technical Field

[0002] The present disclosure relates generally to reusable surgical instruments, and more particularly, to reusable electrical surgical instruments that are sterilized.

Description of Related Art

[0003] Electrical surgical instruments generally comprise of a handle portion having multiple body shells, which houses the electrical components, and a working portion extending from the handle portion, which comes in contact with a patient. After each use, an electrical surgical instrument is disposed of, reused, or partially disposed of and partially reused. Any part of an electrical surgical instrument that is reused must be sterilized to neutralize potentially infectious agents before being reused.

[0004] The autoclave process has been used for many years to sterilized reusable surgical instruments. However, the steam and the high-pressure used in the autoclave process can damage electrical components within the housing. Even where the components are disposed in a shell, the components can be damaged if the steam is allowed to infiltrate the joints between the body shells of an electrical surgical instrument. Different sealing methods have been used to seal the joints between body shells.

[0005] One such sealing method is to bond the body shells of the handle portion together with adhesives. Another known method employs an o-ring that is compressed between the body shells using screws or other joining means.

[0006] The existing sealing methods are known to fail after a varying number of autoclave processes. One cause of the failure is that the sealing materials and the material of the body shells expand and contract at different rates and to differing extents during the autoclave process.

[0007] Based on the above, a continuing need exists for a sealing method that will extend the life of reusable electrical surgical instruments capable of maintaining a sealed chamber during the contracting and expansion that takes occurs during the autoclave process.

SUMMARY

[0008] Disclosed herein is a method for sealing body shells that injects an elastomer material into a runner system. The method includes the steps of providing body shells of an instrument having a runner system, aligning the body shells, securing the body shells together, inserting an injection device into the runner system, injecting an elastomer material, removing the injection device, and curing the elastomer material forming a seal between the body shells.

[0009] In an embodiment of the method, the runner system forms a half-cylindrical groove on the joining surface.

[0010] In a certain embodiment of the method, the runner system is on both joining surfaces of a pair of mutual joining surfaces.

[0011] In another embodiment of the method, the elastomer material forms a bond between the body shells along the pair of mutual joining surfaces.

DESCRIPTION OF THE DRAWINGS

[0012] The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:

[0013] FIG. 1 is a top plan view of a body shell having a runner system on the joining surface;

[0014] FIG. 2 is an enlarged view of the area of detail 2 of FIG. 1;

[0015] FIG. 3 is a front cross-sectional view of two body shells mated together taken along section line 3-3 of FIG. 1;

[0016] FIG. 4 is a top view of an alternative configuration of a runner system;

[0017] FIG. 5 is a top view of a body shell showing an injection device inserted in the runner system; and

[0018] FIG. 6 is an enlarged view of the area of detail 6 of FIG. 5.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0019] Particular embodiments of the present disclosure will be described herein with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.

[0020] Referring now to the drawings, in which like reference numerals identify identical or substantially similar parts throughout the several views, FIG. 1 illustrates first body shell 10 having runner system 30 in accordance with the principles of the present disclosure.

[0021] As shown in FIG. 1, first body shell 10 defines side wall 20 about the perimeter of first body shell 10. Side wall 20 has interior surface 22 and exterior surface 24. The side wall surface between interior surface 22 and exterior surface 24 defines joining surface 26. In any of the embodiments disclosed herein, the runner system can be a recess, channel, or space defined by part of the shell, and is generally narrow and extending the periphery of the chamber of the joined shell parts.

[0022] Continuing to refer to FIG. 1, runner system 30 is disposed on joining surface 26. Runner system 30 remains between interior surface 22 and exterior surface 24. Runner system 30 diverts around connecting holes 15. Runner system 30 has inlet port 32 and outlet port 34 connected by bridge section 36 as shown in FIG. 2. The corners of runner system 30 may be generally rounded.

[0023] In the embodiment illustrated in FIG. 2, inlet port 32 and outlet port 34 each penetrate exterior surface 24 of side wall 20. In another embodiment, illustrated in FIG. 4, inlet port 32' and bridge 36' penetrate an exterior surface 24' of side wall 20' while outlet port 34' remains between interior surface 22' and exterior surface 24'.

[0024] Now referring to FIGS. 1 and 3, a particular embodiment of the method is disclosed, the first step is to provide first body shell 10 and second body shell 110. First body shell 10 and second body shell 110 each having joining surfaces 26, 126. Joining surface 26 configured to mate with joining surface 126. The pair of joining surfaces 26, 126 defines a pair of mutual joining surfaces.

[0025] Runner system 30 is partially disposed within at least one of joining surfaces 26, 126. Runner system 30 may be partially disposed within each joining surface 26, 126. In this configuration, runner system 30 defines a substantially semi-circular groove on each joining surface 26, 126.

[0026] Next, the pair of mutual joining surfaces are aligned such that runner system 30 is in contact with each joining surface 26, 126 as shown in FIG. 3.

[0027] Once aligned, body shells 10, 110 are secured in position relative to one another. Any known method of securing the body shells together is envisioned. One known method is to clamp the body shells in position. Another known method is to screw the body shells together using connecting holes 15. Another known method is by sonic welding the body shells together. Adhesives and other methods can be used.

[0028] Once body shells 10, 110 are secured in position, injection device 200 is inserted into inlet port 32 such that tip 211 of injection device 200 is past bridge section 36 as shown in FIGS. 5 and 6. Injection device 200 includes distal portion 210 insertable into inlet port 32. Distal portion 210 includes a lumen in fluid communication with an opening in the tip 211 for delivering material. Distal portion 210 is fluidly coupled to a source of material (e.g., the elastomer material). The source can be a reservoir of elastomer material or a cartridge. Injection devices are well known to a person skilled in the art and include needles and other suitable devices.

[0029] After injection device 200 is inserted, an elastomer material (not shown) is injected from injection device 200 through tip 211 into inlet port 32. The Elastomer material may be a natural rubber, a synthetic rubber, a silicone that is room temperature vulcanizing (RTV), or any suitable material with the viscosity to flow through the runner system filling all voids before flowing from the outlet port.

[0030] When the elastomer material is injected through runner system 30, the elastomer material flows from inlet port 32 through runner system 30 towards outlet port 34. When the elastomer material flows from outlet port 34, injection device 200 is removed from inlet port 32 while continuing to inject the elastomer material. Injection device 200 is removed slowly to allow the elastomer material to fill outlet port 34 and bridge section 36. This is done to ensure that there are no voids in runner system 30. Thus, the elastomer material completely fills runner system 30.

[0031] When runner system 30 is filled with the elastomer material, the elastomer material is cured or allowed to cure. After the elastomer material is cured, the elastomer material forms a seal or barrier between exterior surfaces 24, 124 and interior surfaces 22, 122 forming housing chamber 80 within body shells 10, 110 illustrated in FIG. 3. The material may cure on its own, or using heat, UV light, etc.

[0032] In an embodiment of the method, the elastomer material also forms a bond between body shells 10, 110, further attaching the first and second body shells.

[0033] In any of the embodiments disclosed herein, the elastomer material has similar expansion and contracting properties to the materials of body shells 10, 110 such that during an autoclave process, the elastomer material and the body shell material expand and contract at substantially the same rate maintaining a barrier between housing chamber 80 and exterior surfaces 24, 124.

[0034] In any of the embodiments, runner system 30 is comprised of a half cylindrical groove in each joining surface 26, 126 such that when joining surfaces 26, 126 are aligned runner system 30 is substantially cylindrical, illustrated in FIG. 3.

[0035] It is envisioned that this method may be used for instruments with a plurality of body shells having a plurality of pairs of mutual joining surfaces having a plurality of runner systems. It is envisioned that each runner system may be injected either sequentially with respect to other runner systems or simultaneously with respect to other runner systems or a combination of sequential and simultaneous injection. In any of the embodiments disclosed herein, one or more chambers 80 can be formed so that components in the chambers are separately sealed from the exterior of the instrument, as well as each other.

[0036] While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Different embodiments of the disclosure may be combined with one another based on the particular needs of the patients to achieve optimal results of the surgical procedures. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed