Plants With Enhanced Size And Growth Rate

Ratcliffe; Oliver J. ;   et al.

Patent Application Summary

U.S. patent application number 15/438520 was filed with the patent office on 2017-08-10 for plants with enhanced size and growth rate. The applicant listed for this patent is Mendel Biotechnology, Inc.. Invention is credited to Robert A. Creelman, Neal I. Gutterson, Oliver J. Ratcliffe, Peter P. Repetti.

Application Number20170226528 15/438520
Document ID /
Family ID39082532
Filed Date2017-08-10

United States Patent Application 20170226528
Kind Code A1
Ratcliffe; Oliver J. ;   et al. August 10, 2017

PLANTS WITH ENHANCED SIZE AND GROWTH RATE

Abstract

Polynucleotides and polypeptides incorporated into expression vectors have been introduced into plants and were ectopically expressed. The polypeptides of the invention regulate transcription in these plants and have been shown to confer at least one regulatory activity that results in increased size, biomass, growth rate, and/or yield as compared to a control plant.


Inventors: Ratcliffe; Oliver J.; (Hayward, CA) ; Repetti; Peter P.; (Emeryville, CA) ; Gutterson; Neal I.; (Oakland, CA) ; Creelman; Robert A.; (Castro Valley, CA)
Applicant:
Name City State Country Type

Mendel Biotechnology, Inc.

Hayward

CA

US
Family ID: 39082532
Appl. No.: 15/438520
Filed: February 21, 2017

Related U.S. Patent Documents

Application Number Filing Date Patent Number
14590872 Jan 6, 2015
15438520
12376569 Feb 5, 2009 8927811
PCT/US07/17321 Aug 3, 2007
14590872
60836243 Aug 7, 2006

Current U.S. Class: 1/1
Current CPC Class: C12N 15/8261 20130101; Y02A 40/146 20180101; C07K 14/415 20130101; C12N 15/8262 20130101; A01H 1/02 20130101
International Class: C12N 15/82 20060101 C12N015/82; A01H 1/02 20060101 A01H001/02

Claims



1. An expression vector comprising: (i) recombinant nucleic acid sequence encoding a polypeptide sharing a percentage of amino acid identity with any of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 198, 202, 210 or 213; or (ii) a recombinant nucleic acid sequence encoding a polypeptide sharing a percentage of amino acid identity with any of SEQ ID NO: 85-126, 199, 203, 211, or 214; wherein when the polypeptide is overexpressed in a plant, the polypeptide regulates transcription and confers at least one regulatory activity resulting in an altered trait in the plant as compared to a control plant; wherein the percentage of amino acid identity of (i) is selected from the group consisting of at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 45%, at least 46%, at least 47%, at least 49%, at least 50%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 61%, at least 62%, at least 63%, at least 72%, at least 78%, at least 79%, and at least 86%; or wherein the percentage of amino acid identity of (ii) is selected from the group consisting of at least 70%, at least 71%, at least 72%, at least 73%, at least 75%, at least 76%, at least 78%, at least 80%, at least 81%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at least 90%, at least 91%, at least 92%, at least 96%, and 100%.

2. (canceled)

3. The expression vector of claim 1, wherein the expression vector encodes a polypeptide comprising any of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 198, 202, 210, or 213.

4. The expression vector of claim 1, wherein the expression vector further comprises a constitutive, inducible, or tissue-specific promoter operably lined to the recombinant nucleic acid sequence.

5. The expression vector of claim 4, wherein the tissue-specific promoter regulates transcription in a tissue selected from the group consisting of floral meristem, epidermis, vascular, shoot apical meristem, embryo, endosperm, and fruit.

6. The expression vector of claim 1, wherein the altered trait is selected from the group consisting of greater yield, greater size, greater biomass, and faster growth rate, as compared to the control plant.

7. A recombinant host cell comprising the expression vector of claim 1.

8. A transgenic plant comprising the expression vector of claim 1, wherein when a polypeptide encoded by the expression vector is overexpressed in the transgenic plant, the polypeptide confers at least one regulatory activity resulting in an altered trait selected from the group consisting of greater size, greater biomass, and faster growth rate, as compared to the control plant.

9. The transgenic plant of claim 8, wherein the transgenic plant is a monocot.

10. The transgenic plant of claim 9, wherein the transgenic plant is a member of the family Gramineae.

11. The transgenic plant of claim 8, wherein the transgenic plant is a dicot.

12. The transgenic plant of claim 11, wherein the transgenic plant is a tomato plant.

13. A transgenic seed comprising the expression vector of claim 1.

14. A method for increasing yield of a plant as compared to yield of a control plant, the method comprising: (a) providing an expression vector of claim 1; wherein when a polypeptide encoded by the expression vector is overexpressed in a plant, the polypeptide confers at least one regulatory activity resulting in an altered trait selected from the group consisting of greater size, greater biomass, and faster growth rate, as compared to the control plant; and (b) transforming a target plant with the expression vector to produce a transgenic plant; wherein the transgenic plant produces greater yield than the wild-type plant.

15. The method of claim 14, wherein the methods further comprises the step of: (c) selecting a transgenic plant that ectopically expresses the polypeptide.

16. The method of claim 14, wherein the expression vector further comprises a constitutive, inducible, or tissue-specific promoter operably lined to the recombinant nucleic acid sequence.

17. The method of claim 14, wherein the tissue-specific promoter regulates transcription in a tissue selected from the group consisting of floral meristem, epidermis, vascular, shoot apical meristem, embryo, endosperm, and fruit.

18. The method of claim 14, wherein the expression vector encodes a polypeptide comprising any of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 198, 202, 210, or 213.

19. The method of claim 14, wherein the method steps further comprise selfing or crossing the transgenic plant with itself or another plant, respectively, to produce transgenic seed.

20. A method for producing a transgenic plant having greater biomass, growth rate or yield as compared to a control plant, the method comprising: (a) providing an expression vector of claim 1; wherein when a polypeptide encoded by the expression vector is overexpressed in a plant, the polypeptide confers at least one regulatory activity resulting in an altered trait selected from the group consisting of greater size, greater biomass, and faster growth rate, as compared to the control plant; (b) transforming a target plant with the expression vector to produce a transgenic plant; and (c) optionally, selecting the transgenic plant that has greater biomass, growth rate or yield than the wild-type plant.
Description



RELATED APPLICATION

[0001] This application claims priority to U.S. Patent Application 60/836,243, filed on Aug. 7, 2006.

JOINT RESEARCH AGREEMENT

[0002] The claimed invention, in the field of functional genomics and the characterization of plant genes for the improvement of plants, was made by or on behalf of Mendel Biotechnology, Inc. and Monsanto Corporation as a result of activities undertaken within the scope of a joint research agreement in effect on or before the date the claimed invention was made.

FIELD OF THE INVENTION

[0003] The present invention relates to plant genomics and plant improvement.

BACKGROUND OF THE INVENTION

[0004] Increasing the size or growth rate of a commercially valuable plant provides a number of important practical applications, and may contribute to an increase in yield. For example, increasing the size of a cultivar may generate higher yield of the edible vegetative portion a crop plant. Increasing the size and/or growth rate of a plant may also provide a competitive advantage in the field. Many weeds outgrow slow-growing young crops or out-compete them for nutrients, and thus it is usually desirable to use plants that establish themselves quickly. Seedlings and young plants are also particularly susceptible to stress conditions such as salinity or disease. Increasing seedling growth rate and shortening the time to emergence from soil contributes to seedling vigor, aids seedlings in coping with these stresses, and may allow these crops to be planted earlier in the season. Early planting helps add days to a critical seed or grain-filling period and increases yield. Modification of the biomass of other tissues, such as root tissue, may be useful to improve a plant's ability to grow under harsh environmental conditions, including drought, high salt or nutrient deprivation, because larger roots may better reach or take up water or nutrients.

[0005] For many plants, including fruit-bearing trees, plants that are used for biofuels, trees that are used for lumber production, or trees and shrubs that serve as view or wind screens, increased stature provides improved benefits in the forms of greater yield or improved screening.

[0006] Increased leaf size may also be of particular interest. Increasing leaf biomass can be used to increase production of plant-derived pharmaceutical or industrial products. An increase in total plant photosynthesis is typically achieved by increasing leaf area of the plant. Additional photosynthetic capacity may be used to increase yield derived from particular plant tissue, including leaves, roots, fruits or seed, or permit better growth of a plant under both decreased and high light intensity.

[0007] However, increasing the size or growth rate of a plant may require controlling a number of regulatory and synthetic pathways. Transcription factors are proteins that influence the expression of a particular gene or sets of genes. Altering the expression of one or more transcription factors may provide the necessary control to manipulate complex biochemical or morphological traits in a plant, and thus multiple cellular processes. This application demonstrates that transformed plants that comprise cells having altered levels of at least one of the closely-related transcription factors of the invention exhibit increased size and/or growth rate relative to control plants.

SUMMARY OF THE INVENTION

[0008] An object of this invention is to provide plants that can express genes to increase the yield of commercially significant plants by increasing the growth rate, yield, and/or mass of the plants. A plant of the invention is transformed with an expression vector that encodes a CCAAT family transcription factor polypeptide of the invention, and the polypeptide is then overexpressed in the plant. Due to the function of these polynucleotides and their encoded polypeptides, the transgenic plant will have greater yield and/or increased size and/or growth rate at one or more stages of growth as compared to a control plant.

[0009] Methods for producing transgenic plants having increased size, yield and/or growth rate are also encompassed by the invention. These method steps include first providing an expression vector comprising a recombinant polynucleotide of the invention. The expression vector may also include at least one regulatory element flanking the polynucleotide sequence. Generally, the regulatory element(s) control expression of the recombinant polynucleotide in a target plant. The expression vector is then introduced into plant cells. The plant cells overexpress a polypeptide encoded by the recombinant polynucleotide, resulting in increased size and/or growth rate of the plant. Those plants that have increased yield, size and/or growth rate may be identified and possibly selected on the basis of the extent to which yield, size and/or growth rate is increased.

[0010] The recombinant polynucleotides, expression vectors and transgenic plants of the invention may comprise any of the following sequences: [0011] (a) the nucleotide sequences found in the sequence listing; [0012] (b) nucleotide sequences encoding polypeptides found in the sequence listing; [0013] (c) sequence variants that are at least 35% sequence identical to any of the nucleotide sequences of (a) or (b); [0014] (d) polypeptide sequences that are at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 45%, at least 46%, at least 47%, at least 49%, at least 50%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 61%, at least 62%, at least 63%, at least 72%, at least 78%, at least 79%, or at least 86% identical in their amino acid sequence to any of SEQ ID NOs: 2n, where n=1 to 42, or SEQ ID NOs: 198, 202, 210 or 213; [0015] (e) orthologous and paralogous nucleotide sequences that are at least 35% identical to any of the nucleotide sequences of (a) or (b); [0016] (f) nucleotide sequence that hybridize to any of the nucleotide sequences of (a) or (b) under stringent conditions, which may include, for example, hybridization with wash steps of 6.times. SSC and 65.degree. C. for ten to thirty minutes per wash step; and [0017] (g) polypeptides, and the nucleotide sequences that encode them, having a conserved CCAAT family domain required for the function of regulating transcription and increasing size or biomass in a transgenic plant, the conserved domain being at least 34%, at least 37%, at least 39%, at least 44%, at least 47%, at least 52%, at least 55%, at least 61%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 70%, at least 71%, at least 72%, at least 73%, at least 75%, at least 76%, at least 78%, at least 80%, at least 81%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at least 90%, at least 91%, at least 92%, at least 96%, or 100% identical to any of the phylogenetically-related conserved domains of SEQ ID NO: 85-126, or SEQ ID NOs: 199, 203, 211 or 214. The polypeptides of the invention, SEQ ID NO: 2n, where n=1 to 42, or 198, 202, 210 or 213 are listed in Tables 1-4. Each polypeptide of the invention comprises a conserved domain required for the function of regulating transcription and altering a trait in a transgenic plant, said trait selected from the group consisting of increased size (for example, seedling size or size of the mature plant), increased growth rate, increased yield, increased biomass, and increased height, as compared to the control plant.

[0018] The expression vectors, and hence the transgenic plants of the invention, comprise putative transcription factor polynucleotides sequences and, in particular, CCAAT family HAP2-like (NF-YA) and HAP5-like (NF-YC) sequences comprising conserved domains that are required for subunit association and/or DNA binding, and hence the regulatory activity of the CCAAT-box transcription factor complex. When any of the polypeptides of the invention is overexpressed in a plant, the polypeptide confers at least one transcriptional regulatory activity to the plant, which in turn is manifested in a trait selected from the group consisting of increased growth rate, increased size, increased biomass, increased yield, and increased height as compared to the control plant.

[0019] The invention is also directed to transgenic seed produced by any of the transgenic plants of the invention, and to methods for making transgenic seed.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING AND DRAWINGS

[0020] The Sequence Listing provides exemplary polynucleotide and polypeptide sequences of the invention. The traits associated with the use of the sequences are included in the Examples. CD-ROMs Copy 1 and Copy 2, as well as Copy 3, the latter being a CRF copy of the Sequence Listing under CFR Section 1.821(e), are read-only memory computer-readable compact discs. Each contains a copy of the Sequence Listing in ASCII text format. The Sequence Listing is named "MBI-0072P.ST25.txt", the electronic file of the Sequence Listing contained on each of these CD-ROMs was created on Aug. 4, 2006, and the file is 331 kilobytes in size. The copies of the Sequence Listing on the CD-ROM discs are hereby incorporated by reference in their entirety.

[0021] FIG. 1 shows a conservative estimate of phylogenetic relationships among the orders of flowering plants (modified from Angiosperm Phylogeny Group (1998) Ann. Missouri Bot. Gard. 84: 1-49). Those plants with a single cotyledon (monocots) are a monophyletic clade nested within at least two major lineages of dicots; the eudicots are further divided into rosids and asterids. Arabidopsis is a rosid eudicot classified within the order Brassicales; rice is a member of the monocot order Poales. FIG. 1 was adapted from Daly et al., 2001).

[0022] In FIGS. 2 and 3, phylogenetic trees and multiple sequence alignments of related transcription factors in the HAP2 and HAP5 CCAAT binding families, respectively, were constructed using ClustalW (CLUSTAL W Multiple Sequence Alignment Program version 1.83, 2003). ClustalW multiple alignment parameters were: [0023] Gap Opening Penalty:10.00 [0024] Gap Extension Penalty:0.20 [0025] Delay divergent sequences:30% [0026] DNA Transitions Weight:0.50 [0027] Protein weight matrix:Gonnet series [0028] DNA weight matrix:IUB [0029] Use negative matrix:OFF

[0030] A FastA formatted alignment was then used to generate phylogenetic trees in MEGA2 software (MEGA2 (http://www.megasoftware.net) using the neighbor joining algorithm and a p-distance model. A test of phylogeny was done via bootstrap with 1000 replications and Random Seed set to default. Cut off values of the bootstrap tree were set to 50%. Closely-related homologs of G929 (SEQ ID NO: 2) or G3911 (SEQ ID NO: 36) are considered as being those proteins descending from ancestral sequences indicated by strong nodes of the trees. In FIGS. 2 and 3, two ancestral nodes are indicated by arrows have bootstrap values of 100 and 84, respectively. Sequences of closely related homologs that descended from these ancestral nodes are shown within the large boxes in these figures. As indicated in the experiments found in the Examples, many of these sequences have been overexpressed in plants and have been shown to retain the function of increasing size and/or growth rate. SEQ ID NOs. appear in parentheses. Abbreviations: At--Arabidopsis thaliana; Dc--Daucus carota; Ga--Gossypium arboreum; Gm--Glycine max; Gr--Gossypium raimondii; Le--Lycopersicon esculentum; Mt--Medicago truncatula; Nb--Nicotiana benthamiana; Os--Oryza sativa; Pp--Physcomitrella patens; Sb--Sorghum bicolor; St--Solanum tuberosum; Zm--Zea mays.

[0031] FIGS. 4A-4G show a Clustal W alignment of HAP2 transcription factors. SEQ ID NOs: appear in parentheses after each Gene IDentifier (GID). GIDs representing HAP2 polypeptides that are closely related to G929 and G3926 appear in the boxes along the left margin in FIGS. 4A-4G. Highly conserved domains comprising the contiguous subunit association domains and DNA binding domains (Edwards et al., 1998) are identified in FIGS. 4D-4E by the large boxes surrounding the residues within these domains.

[0032] FIGS. 5A-5G show a Clustal W alignment of HAP5 transcription factors. SEQ ID NOs: appear in parentheses after each Gene IDentifier (GID). GIDs representing HAP5 polypeptides that are closely related to G3911 and G3543 appear in the boxes along the left margin in FIGS. 5A-5G. The highly conserved "core sequence" domains first described in related sequences by Edwards et al. (1998) are identified in FIGS. 5B-5D by the large boxes surrounding the residues within these domains.

[0033] FIG. 6 shows a field of transgenic tomato plants overexpressing a number of different promoter and transcription factor combinations. Of particular note is a transgenic plant in the center of this photograph, indicated by the arrow, overexpressing G929 under the regulatory control of the cruciferin promoter. This plant was transformed with a two component expression system consisting of SEQ ID NO: 205 (a driver vector comprising the cruciferin promoter, a LexA DNA binding domain, and a GAL4 transactivation (TA) domain) and SEQ ID NO: 206 (comprising a LexA operator (opLexA) and the G929 transcription factor sequence). The transgenic plant was much larger than virtually all of its neighboring plants, including wild-type and empty vector control plants, and was particularly noted for its high vigor, upright stems, and no noticeable loss in fruit production.

DETAILED DESCRIPTION

[0034] The present invention relates to polynucleotides and polypeptides for modifying phenotypes of plants, particularly those associated with increased yield with respect to a control plant (for example, a wild-type plant). Throughout this disclosure, various information sources are referred to and/or are specifically incorporated. The information sources include scientific journal articles, patent documents, textbooks, and World Wide Web browser-inactive page addresses. While the reference to these information sources clearly indicates that they can be used by one of skill in the art, each and every one of the information sources cited herein are specifically incorporated in their entirety, whether or not a specific mention of "incorporation by reference" is noted. The contents and teachings of each and every one of the information sources can be relied on and used to make and use embodiments of the invention.

[0035] As used herein and in the appended claims, the singular forms "a", "an", and "the" include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "a stress" is a reference to one or more stresses and equivalents thereof known to those skilled in the art, and so forth.

Definitions

[0036] "Polynucleotide" is a nucleic acid molecule comprising a plurality of polymerized nucleotides, e.g., at least about 15 consecutive polymerized nucleotides. A polynucleotide may be a nucleic acid, oligonucleotide, nucleotide, or any fragment thereof. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single-stranded or double-stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can be combined with carbohydrate, lipids, protein, or other materials to perform a particular activity such as transformation or form a useful composition such as a peptide nucleic acid (PNA). The polynucleotide can comprise a sequence in either sense or antisense orientations. "Oligonucleotide" is substantially equivalent to the terms amplimer, primer, oligomer, element, target, and probe and is preferably single-stranded.

[0037] A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

[0038] An "isolated polynucleotide" is a polynucleotide, whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

[0039] "Gene" or "gene sequence" refers to the partial or complete coding sequence of a gene, its complement, and its 5' or 3' untranslated regions. A gene is also a functional unit of inheritance, and in physical terms is a particular segment or sequence of nucleotides along a molecule of DNA (or RNA, in the case of RNA viruses) involved in producing a polypeptide chain. The latter may be subjected to subsequent processing such as chemical modification or folding to obtain a functional protein or polypeptide. A gene may be isolated, partially isolated, or found with an organism's genome. By way of example, a transcription factor gene encodes a transcription factor polypeptide, which may be functional or require processing to function as an initiator of transcription.

[0040] Operationally, genes may be defined by the cis-trans test, a genetic test that determines whether two mutations occur in the same gene and that may be used to determine the limits of the genetically active unit (Rieger et al., 1976). A gene generally includes regions preceding ("leaders"; upstream) and following ("trailers"; downstream) the coding region. A gene may also include intervening, non-coding sequences, referred to as "introns", located between individual coding segments, referred to as "exons". Most genes have an associated promoter region, a regulatory sequence 5' of the transcription initiation codon (there are some genes that do not have an identifiable promoter). The function of a gene may also be regulated by enhancers, operators, and other regulatory elements.

[0041] A "polypeptide" is an amino acid sequence comprising a plurality of consecutive polymerized amino acid residues e.g., at least about 15 consecutive polymerized amino acid residues. In many instances, a polypeptide comprises a polymerized amino acid residue sequence that is a transcription factor or a domain or portion or fragment thereof. Additionally, the polypeptide may comprise: (i) a localization domain; (ii) an activation domain; (iii) a repression domain; (iv) an oligomerization domain; (v) a protein-protein interaction domain; (vi) a DNA-binding domain; or the like. The polypeptide optionally comprises modified amino acid residues, naturally occurring amino acid residues not encoded by a codon, non-naturally occurring amino acid residues.

[0042] "Protein" refers to an amino acid sequence, oligopeptide, peptide, polypeptide, or portions thereof whether naturally occurring or synthetic.

[0043] "Portion", as used herein, refers to any part of a protein used for any purpose, but especially for the screening of a library of molecules which specifically bind to that portion or for the production of antibodies.

[0044] A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. A "synthetic polypeptide" is a polypeptide created by consecutive polymerization of isolated amino acid residues using methods well known in the art. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild-type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild-type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

[0045] "Homology" refers to sequence similarity between a reference sequence and at least a fragment of a newly sequenced clone insert or its encoded amino acid sequence.

[0046] "Identity" or "similarity" refers to sequence similarity between two polynucleotide sequences or between two polypeptide sequences, with identity being a more strict comparison. The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more polynucleotide sequences or two or more polypeptide sequences. "Sequence similarity" refers to the percent similarity in base pair sequence (as determined by any suitable method) between two or more polynucleotide sequences. Two or more sequences can be anywhere from 0-100% similar, or any integer value therebetween. Identity or similarity can be determined by comparing a position in each sequence that may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same nucleotide base or amino acid, then the molecules are identical at that position. A degree of similarity or identity between polynucleotide sequences is a function of the number of identical, matching or corresponding nucleotides at positions shared by the polynucleotide sequences. A degree of identity of polypeptide sequences is a function of the number of identical amino acids at corresponding positions shared by the polypeptide sequences. A degree of homology or similarity of polypeptide sequences is a function of the number of amino acids at corresponding positions shared by the polypeptide sequences.

[0047] "Alignment" refers to a number of nucleotide bases or amino acid residue sequences aligned by lengthwise comparison so that components in common (i.e., nucleotide bases or amino acid residues at corresponding positions) may be visually and readily identified. The fraction or percentage of components in common is related to the homology or identity between the sequences. Alignments such as those of FIGS. 4A-4G and specifically 4D-4E may be used to identify conserved domains and relatedness within these domains. An alignment may suitably be determined by means of computer programs known in the art, such as MACVECTOR software (1999) (Accelrys, Inc., San Diego, Calif.).

[0048] A "conserved domain" or "conserved region" as used herein refers to a region in heterologous polynucleotide or polypeptide sequences where there is at least one similar conserved function and a relatively high degree of sequence identity between the distinct sequences. Subunit association domains and DNA binding domains such as are found in a polypeptide member of HAP2 transcription factors, or HAP5 core sequences from HAP2 transcription factors (Edwards, 1998) are examples of a conserved domain. With respect to polynucleotides encoding presently disclosed polypeptides, a conserved domain is preferably at least nine base pairs (bp) in length. A conserved domain with respect to presently disclosed polypeptides refers to a domain within a polypeptide family that exhibits similar function and a higher degree of sequence homology, such as at least about 34%, at least about 37%, at least about 39%, at least about 44%, at least about 47%, at least about 52%, at least about 55%, at least about 61%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 75%, at least about 76%, at least about 78%, at least about 80%, at least about 81%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 96%, or 100% amino acid sequence identity to the similar conserved domains of SEQ ID NO: 85-126, 199, 203, 211, or 214. Sequences that possess or encode for conserved domains that meet these criteria of percentage identity, and that have comparable biological activity to the present polypeptide sequences, thus being members of the HAP2 and HAP5 polypeptides, are encompassed by the invention. A fragment or domain can be referred to as outside a conserved domain, outside a consensus sequence, or outside a consensus DNA-binding site that is known to exist or that exists for a particular polypeptide class, family, or sub-family. In this case, the fragment or domain will not include the exact amino acids of a consensus sequence or consensus DNA-binding site of a transcription factor class, family or sub-family, or the exact amino acids of a particular transcription factor consensus sequence or consensus DNA-binding site. Furthermore, a particular fragment, region, or domain of a polypeptide, or a polynucleotide encoding a polypeptide, can be "outside a conserved domain" if all the amino acids of the fragment, region, or domain fall outside of a defined conserved domain(s) for a polypeptide or protein. Sequences having lesser degrees of identity but comparable biological activity are considered to be equivalents.

[0049] As one of ordinary skill in the art recognizes, conserved domains may be identified as regions or domains of identity to a specific consensus sequence (see, for example, Riechmann et al., 2000a, 2000b). Edwards (1998) defined conserved domains of HAP2 transcription factor sequences, and identified these contiguous domains as comprising subunit association and DNA binding activity. Edwards (1998) also defined conserved "core sequence" domains of HAP5 transcription factors that comprise a predicted histone fold triple helix for dimerization and are required for formation of the CCAAT-box transcription factor complex. Thus, by using alignment methods well known in the art, the conserved domains of the CCAAT binding transcription factor proteins may be determined. The conserved domains for many of the polypeptide sequences of the invention are listed in Tables 1-4. Also, the polypeptides of Tables 1-4 have conserved domains specifically indicated by amino acid coordinates of the full length polypeptides. It is expected that these conserved domains are required for the functions of subunit association and/or DNA binding (Edwards, 1998).

[0050] "Complementary" refers to the natural hydrogen bonding by base pairing between purines and pyrimidines. For example, the sequence A-C-G-T (5'->3') forms hydrogen bonds with its complements A-C-G-T (5'->3') or A-C-G-U (5'->3'). Two single-stranded molecules may be considered partially complementary, if only some of the nucleotides bond, or "completely complementary" if all of the nucleotides bond. The degree of complementarity between nucleic acid strands affects the efficiency and strength of hybridization and amplification reactions. "Fully complementary" refers to the case where bonding occurs between every base pair and its complement in a pair of sequences, and the two sequences have the same number of nucleotides.

[0051] The terms "highly stringent" or "highly stringent condition" refer to conditions that permit hybridization of DNA strands whose sequences are highly complementary, wherein these same conditions exclude hybridization of significantly mismatched DNAs. Polynucleotide sequences capable of hybridizing under stringent conditions with the polynucleotides of the present invention may be, for example, variants of the disclosed polynucleotide sequences, including allelic or splice variants, or sequences that encode orthologs or paralogs of presently disclosed polypeptides. Nucleic acid hybridization methods are disclosed in detail by Kashima et al., 1985, Sambrook et al., 1989, and by Haymes et al., 1985), which references are incorporated herein by reference.

[0052] In general, stringency is determined by the temperature, ionic strength, and concentration of denaturing agents (e.g., formamide) used in a hybridization and washing procedure (for a more detailed description of establishing and determining stringency, see the section "Identifying Polynucleotides or Nucleic Acids by Hybridization", below). The degree to which two nucleic acids hybridize under various conditions of stringency is correlated with the extent of their similarity. Thus, similar nucleic acid sequences from a variety of sources, such as within a plant's genome (as in the case of paralogs) or from another plant (as in the case of orthologs) that may perform similar functions can be isolated on the basis of their ability to hybridize with known related polynucleotide sequences. Numerous variations are possible in the conditions and means by which nucleic acid hybridization can be performed to isolate related polynucleotide sequences having similarity to sequences known in the art and are not limited to those explicitly disclosed herein. Such an approach may be used to isolate polynucleotide sequences having various degrees of similarity with disclosed polynucleotide sequences, such as, for example, encoded transcription factors having 34% or greater identity with a conserved domain of disclosed sequences as provided in SEQ ID NOs: 85-126, 199, 203, 211, or 214.

[0053] The terms "paralog" and "ortholog" are defined below in the section entitled "Orthologs and Paralogs". In brief, orthologs and paralogs are evolutionarily related genes that have similar sequences and functions. Orthologs are structurally related genes in different species that are derived by a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event.

[0054] The term "equivalog" describes members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families, and otherwise into protein families with other hierarchically defined homology types. This definition is provided at the Institute for Genomic Research (TIGR) World Wide Web (www) website, under "http://www.tigrorg/TIGRFAMs/Explanations.shtml" for the heading "Terms associated with TIGRFAMs".

[0055] In general, the term "variant" refers to molecules with some differences, generated synthetically or naturally, in their base or amino acid sequences as compared to a reference (native) polynucleotide or polypeptide, respectively. These differences include substitutions, insertions, deletions or any desired combinations of such changes in a native polynucleotide of amino acid sequence.

[0056] With regard to polynucleotide variants, differences between presently disclosed polynucleotides and polynucleotide variants are limited so that the nucleotide sequences of the former and the latter are closely similar overall and, in many regions, identical. Due to the degeneracy of the genetic code, differences between the former and latter nucleotide sequences may be silent (i.e., the amino acids encoded by the polynucleotide are the same, and the variant polynucleotide sequence encodes the same amino acid sequence as the presently disclosed polynucleotide. Variant nucleotide sequences may encode different amino acid sequences, in which case such nucleotide differences will result in amino acid substitutions, additions, deletions, insertions, truncations or fusions with respect to the similar disclosed polynucleotide sequences. These variations may result in polynucleotide variants encoding polypeptides that share at least one functional characteristic. The degeneracy of the genetic code also dictates that many different variant polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

[0057] Also within the scope of the invention is a variant of a nucleic acid listed in the Sequence Listing, that is, one having a sequence that differs from the one of the polynucleotide sequences in the Sequence Listing, or a complementary sequence, that encodes a functionally equivalent polypeptide (i.e., a polypeptide having some degree of equivalent or similar biological activity) but differs in sequence from the sequence in the Sequence Listing, due to degeneracy in the genetic code. Included within this definition are polymorphisms that may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding polypeptide, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding polypeptide.

[0058] "Allelic variant" or "polynucleotide allelic variant" refers to any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations may be "silent" or may encode polypeptides having altered amino acid sequence. "Allelic variant" and "polypeptide allelic variant" may also be used with respect to polypeptides, and in this case the terms refer to a polypeptide encoded by an allelic variant of a gene.

[0059] "Splice variant" or "polynucleotide splice variant" as used herein refers to alternative forms of RNA transcribed from a gene. Splice variation naturally occurs as a result of alternative sites being spliced within a single transcribed RNA molecule or between separately transcribed RNA molecules, and may result in several different forms of mRNA transcribed from the same gene. Thus, splice variants may encode polypeptides having different amino acid sequences, which may or may not have similar functions in the organism. "Splice variant" or "polypeptide splice variant" may also refer to a polypeptide encoded by a splice variant of a transcribed mRNA.

[0060] As used herein, "polynucleotide variants" may also refer to polynucleotide sequences that encode paralogs and orthologs of the presently disclosed polypeptide sequences. "Polypeptide variants" may refer to polypeptide sequences that are paralogs and orthologs of the presently disclosed polypeptide sequences.

[0061] Differences between presently disclosed polypeptides and polypeptide variants are limited so that the sequences of the former and the latter are closely similar overall and, in many regions, identical. Presently disclosed polypeptide sequences and similar polypeptide variants may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination. These differences may produce silent changes and result in a functionally equivalent polypeptides. Thus, it will be readily appreciated by those of skill in the art, that any of a variety of polynucleotide sequences is capable of encoding the polypeptides and homolog polypeptides of the invention. A polypeptide sequence variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties. Deliberate amino acid substitutions may thus be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as a significant amount of the functional or biological activity of the polypeptide is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine. More rarely, a variant may have "non-conservative" changes, e.g., replacement of a glycine with a tryptophan. Similar minor variations may also include amino acid deletions or insertions, or both. Related polypeptides may comprise, for example, additions and/or deletions of one or more N-linked or O-linked glycosylation sites, or an addition and/or a deletion of one or more cysteine residues. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing functional or biological activity may be found using computer programs well known in the art, for example, DNASTAR software (see U.S. Pat. No. 5,840,544). "Fragment", with respect to a polynucleotide, refers to a clone or any part of a polynucleotide molecule that retains a usable, functional characteristic. Useful fragments include oligonucleotides and polynucleotides that may be used in hybridization or amplification technologies or in the regulation of replication, transcription or translation. A "polynucleotide fragment" refers to any subsequence of a polynucleotide, typically, of at least about 9 consecutive nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50 nucleotides, of any of the sequences provided herein. Exemplary polynucleotide fragments are the first sixty consecutive nucleotides of the polynucleotides listed in the Sequence Listing. Exemplary fragments also include fragments that comprise a region that encodes an conserved domain of a polypeptide. Exemplary fragments also include fragments that comprise a conserved domain of a polypeptide. Exemplary fragments include fragments that comprise an conserved domain of a polypeptide, for example, amino acid residues 98-157 of G929 (SEQ ID NO: 2), amino acid residues 164-222 of G3926 (SEQ ID NO: 18), amino acid residues 83-148 of G3911 (SEQ ID NO: 36) or amino acid residues 70-135 of G3543 (SEQ ID NO: 68).

[0062] Fragments may also include subsequences of polypeptides and protein molecules, or a subsequence of the polypeptide. Fragments may have uses in that they may have antigenic potential. In some cases, the fragment or domain is a subsequence of the polypeptide that performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA-binding site or domain that binds to a DNA promoter region, an activation domain, or a domain for protein-protein interactions, and may initiate transcription. Fragments can vary in size from as few as 3 amino acid residues to the full length of the intact polypeptide, but are preferably at least about 30 amino acid residues in length and more preferably at least about 60 amino acid residues in length.

[0063] The invention also encompasses production of DNA sequences that encode polypeptides and derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding polypeptides or any fragment thereof.

[0064] "Derivative" refers to the chemical modification of a nucleic acid molecule or amino acid sequence. Chemical modifications can include replacement of hydrogen by an alkyl, acyl, or amino group or glycosylation, pegylation, or any similar process that retains or enhances biological activity or lifespan of the molecule or sequence.

[0065] The term "plant" includes whole plants, shoot vegetative organs/structures (for example, leaves, stems and tubers), roots, flowers and floral organs/structures (for example, bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit (the mature ovary), plant tissue (for example, vascular tissue, ground tissue, and the like) and cells (for example, guard cells, egg cells, and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, horsetails, psilophytes, lycophytes, bryophytes, and multicellular algae (see for example, FIG. 1, adapted from Daly et al., 2001, and see also Tudge, 2000).

[0066] A "control plant" as used in the present invention refers to a plant cell, seed, plant component, plant tissue, plant organ or whole plant used to compare against transgenic or genetically modified plant for the purpose of identifying an enhanced phenotype in the transgenic or genetically modified plant. A control plant may in some cases be a transgenic plant line that comprises an empty vector or marker gene, that is, a vector that does not contain the recombinant polynucleotide of the present invention that is expressed in the transgenic or genetically modified plant being evaluated. In general, a control plant is a plant of the same line or variety as the transgenic or genetically modified plant being tested. A suitable control plant would include a genetically unaltered or non-transgenic plant of the parental line used to generate a transgenic plant herein.

[0067] A "transgenic plant" refers to a plant that contains genetic material not found in a wild-type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation, but any method can be used as one of skill in the art recognizes.

[0068] A transgenic plant of the invention generally contains an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the controlled expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to in vitro systems that mimic biochemical or cellular components or processes in a cell.

[0069] "Wild type" or "wild-type", as used herein, refers to a plant cell, seed, plant component, plant tissue, plant organ or whole plant that has not been genetically modified or treated in an experimental sense. Wild-type cells, seed, components, tissue, organs or whole plants may be used as controls to compare levels of expression and the extent and nature of trait modification with cells, tissue or plants of the same species in which a polypeptide's expression is altered, e.g., in that it has been knocked out, overexpressed, or ectopically expressed.

[0070] A "trait" refers to a physiological, morphological, biochemical, or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by biochemical techniques, such as detecting the protein, starch, or oil content of seed or leaves, or by observation of a metabolic or physiological process, e.g. by measuring tolerance to water deprivation or particular salt or sugar concentrations, or by the observation of the expression level of a gene or genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays, or reporter gene expression systems, or by agricultural observations such as hyperosmotic stress tolerance or yield. Any technique can be used to measure the amount of, comparative level of, or difference in any selected chemical compound or macromolecule in the transgenic plants.

[0071] "Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild-type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease, or an even greater difference, in an observed trait as compared with a control or wild-type plant. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution and magnitude of the trait in the plants as compared to control or wild-type plants.

[0072] When two or more plants have "similar morphologies", "substantially similar morphologies", "a morphology that is substantially similar", or are "morphologically similar", the plants have comparable forms or appearances, including analogous features such as overall dimensions, height, width, mass, root mass, shape, glossiness, color, stem diameter, leaf size, leaf dimension, leaf density, internode distance, branching, root branching, number and form of inflorescences, and other macroscopic characteristics, and the individual plants are not readily distinguishable based on morphological characteristics alone.

[0073] "Modulates" refers to a change in activity (biological, chemical, or immunological) or lifespan resulting from specific binding between a molecule and either a nucleic acid molecule or a protein.

[0074] The term "transcript profile" refers to the expression levels of a set of genes in a cell in a particular state, particularly by comparison with the expression levels of that same set of genes in a cell of the same type in a reference state. For example, the transcript profile of a particular polypeptide in a suspension cell is the expression levels of a set of genes in a cell knocking out or overexpressing that polypeptide compared with the expression levels of that same set of genes in a suspension cell that has normal levels of that polypeptide. The transcript profile can be presented as a list of those genes whose expression level is significantly different between the two treatments, and the difference ratios. Differences and similarities between expression levels may also be evaluated and calculated using statistical and clustering methods.

[0075] With regard to gene knockouts as used herein, the term "knockout" refers to a plant or plant cell having a disruption in at least one gene in the plant or cell, where the disruption results in a reduced expression or activity of the polypeptide encoded by that gene compared to a control cell. The knockout can be the result of, for example, genomic disruptions, including transposons, tilling, and homologous recombination, antisense constructs, sense constructs, RNA silencing constructs, or RNA interference. A T-DNA insertion within a gene is an example of a genotypic alteration that may abolish expression of that gene.

[0076] "Ectopic expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild-type plant or a reference plant of the same species. The pattern of expression may also be compared with a reference expression pattern in a wild-type plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild-type plant, or by expression at a time other than at the time the sequence is expressed in the wild-type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild-type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

[0077] The term "overexpression" as used herein refers to a greater expression level of a gene in a plant, plant cell or plant tissue, compared to expression in a wild-type plant, cell or tissue, at any developmental or temporal stage for the gene. Overexpression can occur when, for example, the genes encoding one or more polypeptides are under the control of a strong promoter (e.g., the cauliflower mosaic virus 35S transcription initiation region). Overexpression may also under the control of an inducible or tissue specific promoter. Thus, overexpression may occur throughout a plant, in specific tissues of the plant, or in the presence or absence of particular environmental signals, depending on the promoter used.

[0078] Overexpression may take place in plant cells normally lacking expression of polypeptides functionally equivalent or identical to the present polypeptides. Overexpression may also occur in plant cells where endogenous expression of the present polypeptides or functionally equivalent molecules normally occurs, but such normal expression is at a lower level. Overexpression thus results in a greater than normal production, or "overproduction" of the polypeptide in the plant, cell or tissue.

[0079] The term "transcription regulating region" refers to a DNA regulatory sequence that regulates expression of one or more genes in a plant when a transcription factor having one or more specific binding domains binds to the DNA regulatory sequence. Transcription factors possess a conserved domain. The transcription factors also comprise an amino acid subsequence that forms a transcription activation domain that regulates expression of one or more yield-related genes in a plant when the transcription factor binds to the regulating region.

[0080] "Yield" or "plant yield" refers to increased plant growth, increased crop growth, increased biomass, and/or increased plant product production, and is dependent to some extent on temperature, plant size, organ size, planting density, light, water and nutrient availability, and how the plant copes with various stresses, such as through temperature acclimation and water or nutrient use efficiency. Relative indicators of yield may include volume per land area (e.g. bushels per acre) or weight per land area (e.g., kilograms per hectare) measurements.

[0081] "Planting density" refers to the number of plants that can be grown per acre. For crop species, planting or population density varies from a crop to a crop, from one growing region to another, and from year to year. Using corn as an example, the average prevailing density in 2000 was in the range of 20,000-25,000 plants per acre in Missouri, USA. A desirable higher population density (a measure of yield) would be at least 22,000 plants per acre, and a more desirable higher population density would be at least 28,000 plants per acre, more preferably at least 34,000 plants per acre, and most preferably at least 40,000 plants per acre. The average prevailing densities per acre of a few other examples of crop plants in the USA in the year 2000 were: wheat 1,000,000-1,500,000; rice 650,000-900,000; soybean 150,000-200,000, canola 260,000-350,000, sunflower 17,000-23,000 and cotton 28,000-55,000 plants per acre (Cheikh et al., 2003) U.S. Patent Application No. 20030101479). A desirable higher population density for each of these examples, as well as other valuable species of plants, would be at least 10% higher than the average prevailing density or yield.

Description of the Specific Embodiments

[0082] Transcription Factors Modify Expression of Endogenous Genes

[0083] A transcription factor may include, but is not limited to, any polypeptide that can activate or repress transcription of a single gene or a number of genes. As one of ordinary skill in the art recognizes, transcription factors can be identified by the presence of a region or domain of structural similarity or identity to a specific consensus sequence or the presence of a specific consensus DNA-binding motif (see, for example, Riechmann et al., 2000a). The plant transcription factors of the present invention belong to the CCAAT binding HAP2 or HAP5 families.

[0084] Generally, transcription factors are involved in cell differentiation and proliferation and the regulation of growth. Accordingly, one skilled in the art would recognize that by expressing the present sequences in a plant, by, for example, introducing into the plant a polynucleotide sequence encoding a transcription factor of the invention, one may change the expression of autologous genes or induce the expression of introduced genes and thus alter the plant's phenotype to one with improved traits related to size, growth rate and/or yield. Plants may then be selected for those that produce the most desirable degree of over- or under-expression of target genes of interest and coincident trait improvement.

[0085] The sequences of the present invention may be derived from any species, particularly plant species, in a naturally occurring form or from any source whether natural, synthetic, semi-synthetic or recombinant. The sequences of the invention may also include functional fragments of the present amino acid sequences. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

[0086] In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e., expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like; as substrates for cloning e.g., including digestion or ligation reactions; and for identifying exogenous or endogenous modulators of the transcription factors. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

[0087] Expression of genes that encode polypeptides that modify expression of endogenous genes, polynucleotides, and proteins are well known in the art. In addition, transgenic plants comprising isolated polynucleotides encoding transcription factors may also modify expression of endogenous genes, polynucleotides, and proteins. Examples include Peng et al. (1997) and Peng et al. (1999). In addition, many others have demonstrated that an Arabidopsis transcription factor expressed in an exogenous plant species elicits the same or very similar phenotypic response (see, for example, Fu et al., 2001; Nandi et al., 2000; Coupland, 1995; and Weigel and Nilsson, 1995).

[0088] In another example, Mandel et al. (1992b) and Suzuki et al. (2001) teach that a transcription factor expressed in another plant species elicits the same or very similar phenotypic response of the endogenous sequence, as often predicted in earlier studies of Arabidopsis transcription factors in Arabidopsis (see Mandel et al., 1992a; and Suzuki et al., 2001). Other examples include Muller et al. (2001); Kim et al., (2001); Kyozuka and Shimamoto (2002); Boss and Thomas (2002); He et al. (2000); and Robson et al. (2001).

[0089] In yet another example, Gilmour et al. (1998) teach that an Arabidopsis AP2 transcription factor, CBF1, which, when overexpressed in transgenic plants, increases plant freezing tolerance. Jaglo et al. (2001) further identified sequences in Brassica napus which encode CBF-like genes and that transcripts for these genes accumulated rapidly in response to low temperature. Transcripts encoding CBF-like proteins were also found to accumulate rapidly in response to low temperature in wheat, as well as in tomato. An alignment of the CBF proteins from Arabidopsis, B. napus, wheat, rye, and tomato revealed the presence of conserved consecutive amino acid residues, PKK/RPAGRxKFxETRHP and DSAWR, which bracket the AP2/EREBP DNA binding domains of the proteins and distinguish them from other members of the AP2/EREBP protein family. (Jaglo et al., 2001).

[0090] Transcription factors mediate cellular responses and control traits through altered expression of genes containing cis-acting nucleotide sequences that are targets of the introduced transcription factor. It is well appreciated in the art that the effect of a transcription factor on cellular responses or a cellular trait is determined by the particular genes whose expression is either directly or indirectly (e.g., by a cascade of transcription factor binding events and transcriptional changes) altered by transcription factor binding. In a global analysis of transcription comparing a standard condition with one in which a transcription factor is overexpressed, the resulting transcript profile associated with transcription factor overexpression is related to the trait or cellular process controlled by that transcription factor. For example, the PAP2 gene and other genes in the MYB family have been shown to control anthocyanin biosynthesis through regulation of the expression of genes known to be involved in the anthocyanin biosynthetic pathway (Bruce et al., 2000; and Borevitz et al., 2000). Further, global transcript profiles have been used successfully as diagnostic tools for specific cellular states (e.g., cancerous vs. non-cancerous; Bhattacharjee et al., 2001; and Xu et al., 2001). Consequently, it is evident to one skilled in the art that similarity of transcript profile upon overexpression of different transcription factors would indicate similarity of transcription factor function.

[0091] Polypeptides and Polynucleotides of the Invention

[0092] The present invention includes putative transcription factors (TFs), and isolated or recombinant polynucleotides encoding the polypeptides, or novel sequence variant polypeptides or polynucleotides encoding novel variants of polypeptides derived from the specific sequences provided in the Sequence Listing; the recombinant polynucleotides of the invention may be incorporated in expression vectors for the purpose of producing transformed plants. Also provided are methods for modifying yield from a plant by modifying the mass, size or number of plant organs or seed of a plant by controlling a number of cellular processes. These methods are based on the ability to alter the expression of transcription factors, critical regulatory molecules that may be conserved between diverse plant species. Related conserved regulatory molecules may be originally discovered in a model system such as Arabidopsis and homologous, functional molecules may then be discovered in other plant species. The latter may then be used to confer increased yield in diverse plant species.

[0093] Exemplary polynucleotides encoding the polypeptides of the invention were identified in the Arabidopsis thaliana GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known polypeptides. In addition, further exemplary polynucleotides encoding the polypeptides of the invention were identified in the plant GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known polypeptides.

[0094] Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known polypeptides under low stringency hybridization conditions. Additional sequences, including full length coding sequences, were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full-length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

[0095] Many of the sequences in the Sequence Listing, derived from diverse plant species, have been ectopically expressed in transgenic plants. Therefore, the present polynucleotides and polypeptides can be used to change expression levels of genes, polynucleotides, and/or proteins of plants or plant cells. The changes in the characteristic(s) or trait(s) of the plants were then observed and found to confer increased growth rate and/or size.

Background Information for HAP2 and HAP5 Related Sequences; the Role of the CCAAT-Box Element and CCAAT-Box Binding Proteins

[0096] Transcriptional regulation of most eukaryotic genes occurs through the binding of transcription factors to sequence specific binding sites in their promoter regions. Many of these protein binding sites have been conserved through evolution and are found in the promoters of diverse eukaryotic organisms. One element that shows a high degree of conservation is the CCAAT-box (Gelinas et al., 1985). This cis-acting regulatory element is found in all eukaryotic species and is present in the promoter and enhancer regions of approximately 30% of genes (Bucher and Trifonov, 1988; Bucher, 1990). The CCAAT-box can function in either orientation, and operates alone, or in possible cooperation with other cis regulatory elements (Tasanen et al., 1992).

[0097] Proteins that bind the CCAAT-box element were first identified in yeast, and function as a hetero-tetrameric complex called the HAP complex (heme activator protein complex) or the CCAAT binding factor (Forsburg and Guarente, 1988). The yeast HAP complex is composed of at least four subunits, HAP2, HAP3, HAP4, and HAP5, each of which is encoded by a single gene. The yeast HAP4 polypeptide does not bind to DNA but associates with the HAP2,3,5 complex and activates transcription through an acidic domain.(Forsburg and Guarente, 1989). The yeast HAP complex has a key role in the regulation of energy metabolism. In particular, the HAP complex is required for growth on non-fermentable carbon sources and is involved in the activation of genes involved in mitochondrial biogenesis (Mazon et al., 1982; Dang et al., 1996; Gancedo, 1998).

[0098] CCAAT binding factors of the HAP2-like, HAP3-like and HAP5-like classes are found in plant proteomes, and as in mammals, HAP4-like factors are absent (Edwards et al., 1998). In vertebrates, the three sequences of the CCAAT-binding factor are known as NF-YA, NF-YB, and NF-YC, respectively, and are homologous to HAP2, HAP3 and HAP5 subunits, respectively. In plants, the HAP2-like, HAP3-like and HAP5-like proteins are each encoded by small gene families and likely play a more complex role in regulating gene transcription than in yeast. We have identified 36 CCAAT family genes in the Arabidopsis genome, and these are approximately equally divided into each of the three subfamilies. In Arabidopsis there are 10 members of the HAP2 (NF-YA) subfamily, 12 members of the HAP3 (NF-YB) subfamily, and 11 members of the HAP5 (NF-YC) subfamily. Three additional Arabidopsis proteins were also identified that did not clearly fit into any of the three sub-groups, but that have some similarity to HAPs; we have designated these as HAP-like factors.

[0099] The three types of subunits in plants have the same kind of structural organization as their counterparts from mammals. For example, G481 (found in PCT patent publication WO2004076638) encodes a 141 amino acid protein of the HAP3 (NF-YB) class. In the case of the HAP3 class, the central conserved region, which confers the DNA binding and subunit interaction properties, is termed the B domain. The more variable N and C terminal regions are called the A and C domains, respectively (Li et al., 1992).

[0100] Like their mammalian counterparts, plant CCAAT binding factors most likely bind DNA as heterotrimers composed of HAP2-like, HAP3-like and HAP5-like subunits. All subunits contain regions that are required for DNA binding and subunit association. However, regions that might have an activation domain function are less apparent than in the mammalian proteins, where Q-rich regions within the HAP2 and HAP5 subunits are thought to fulfill such a role. Nonetheless, some of the HAP2 and HAP5 class proteins that we have identified do have Q-rich regions within the N and C-termini. However, these regions have not been confirmed yet as having such activation domain properties.

[0101] There is some support for the notion that HAP subunits might function in close association with other transcription factors on target promoters as part of a larger complex. This is evidenced by that fact that the CCAAT box is generally found in close proximity to other promoter elements. In particular, a HAP3-like protein from rice, OsNF-YB1, interacts with a MADS-box protein OsMADS18 in vitro as part of a ternary complex (Masiero et al., 2002). It was also shown that the in vitro interaction between these two types of transcription factors requires that OsNF-YB1 dimerizes with a HAP5-like protein, and that OsMADS18 forms a heterodimer with another MADS-box protein. Interestingly, the OsNF-YB1/HAP5 protein dimer is incapable of interacting with HAP2-like subunits and therefore cannot bind the CCAAT element. The authors therefore speculated that there is a select set of HAP3-like proteins in plants that act on non-CCAAT promoter elements by virtue of their interaction with other non-CCAAT transcription factors (Masiero et al., 2002). In support of this, HAP3/HAP5 subunit dimers have been shown to be able to interact with TFIID in the absence of HAP2 subunits (Romier et al., 2003).

[0102] A number of phylogenetically-related sequences from diverse plant species are listed in Tables 1-4 for HAP2 (Tables 1 and 2) and HAP5 (Tables 3 and 4) proteins, respectively. These tables include the SEQ ID NO: (Column 1 of each table), the species from which the sequence was derived and the Gene Identifier ("GID"; Column 2 of each table), the percent identity of each polypeptide to the full length polypeptide of G929, SEQ ID NO: 2 (Table 1, Column 3), G3926, SEQ ID NO: 18 (Table 2, column 3), G3911, SEQ ID NO: 36 (Table 3, Column 3) and G3543, SEQ ID NO: 68 (Table 4, Column 3), as determined by a BLASTp analysis with a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix Henikoff & Henikoff (1989). The numbers in parentheses in Column 3 in each of these tables indicate the number of identical residues over the number of residues in the length of sequence compared in the BLAST analysis. Tables 1-4 also list the amino acid residue coordinates for the conserved domains, in coordinates beginning at the N-terminus of each of the sequences (Column 4 of each table), the conserved domain sequences of the respective polypeptides (Column 5 of each table); the SEQ ID NO: of each of the conserved domains (Column 6 of each table), the percentage identity of each conserved domain in each Column 5 to the conserved domain of G929, SEQ ID NO: 85 (Table 1, Column 7), G3926, SEQ ID NO: 93 (Table 2, Column 7), G3911, SEQ ID NO: 102 (Table 3, Column 7), or G3543, SEQ ID NO: 118 (Table 4, Column 7), and in the assays performed thus far, whether a transgenic plant overexpressing the CCAAT-binding transcription factor was larger, had greater biomass, and/or a faster growth rate relative to a control plant at the seedling stage or adult stage (Column 8 of each table). Positive results are reported when more than one line (except in Tables 3 and 4 for G3886 and G3894 as noted) had larger size, biomass and/or faster growth rate than wild type controls or control plants harboring an empty vector. Transgenic plants generated with the sequences in Tables 1-4 overexpressed the transcription factor under the regulatory control of the constitutive CaMV 35S promoter, unless otherwise noted for certain tissue-specific promoters. "OE" refers to a transgenic plant overexpressing a CCAAT-binding transcription factor of Column 1. Species abbreviations used in these tables included: At--Arabidopsis thaliana; Gm--Glycine max; Gr--Gossypium raimondii; Le--Lycopersicon esculenturn; Os--Oryza sativa; Zm--Zea mays.

[0103] At the time of evaluation, plants were given one of the following scores: [0104] (+) Enhanced size, biomass and/or growth rate compared to controls. The response was consistent but was only moderately above the normal levels of variability observed for that assay. [0105] (-) No detectable difference from wild-type controls, or impaired size, biomass and/or growth rate compared to controls. [0106] (n/d) Experiment failed, data not obtained, or assay not performed.

TABLE-US-00001 [0106] TABLE 1 Sequential and functional similarity of G929-related HAP2 polypeptides and conserved domains Col. 7 Percent Col. 8 Col. 3 identity of OE had Percent conserved greater Col. 1 identity Col. 4 Col. 6 domain in size, Poly- Col. 2 of poly- Conserved SEQ ID Column 5 to biomass peptide Species/ peptide domain in Col. 5 NO: of conserved or faster SEQ GID in Column amino acid HAP2 conserved conserved domain of growth ID NO: No. 1 to G929 coordinates domain domain G929 rate 2 At/G929 100% 98-157 EPVFVNAKQYHGI 85 100% + (198/198) LRRRQSRAKLEAR (60/60) NRAIKAKKPYMHE SRHLHAIRRPRGC GGRFLNAK 4 At/G2344 60% 100-159 EPVFVNAKQYHGI 86 86% + (126/197) LRRRQSRARLESQ (52/60) NKVIKSRKPYLHE SRHLHAIRRPRGC GGRFLNAK 6 At/G931 47% 172-231 EPVFVNAKQFHAI 87 76% + (73/155) MRRRQKLIKARKP (46/60) YLHESRHVHALKR PRGSGGRFLNTK 8 Gm/G3920 50% 149-208 EPVYVNAKQYHGI 88 76% + (69/136) LRRRQSRAKAEIE (46/60) KKVIKNRKPYLHE SRHLHAMRRARGN GGRFLNTK 10 At/G928 45% 179-238 DPVFVNAKQYHAI 89 75% + (68/151) MRRRQQRAKLEAQ (45/60) NKLIRARKPYLHE SRHVHALKRPRGS GGRFLNTK 12 At/G1782 58% 178-237 EPIFVNAKQYHAI 90 75% + (56/96) LRRRKHRAKLEAQ (45/60) NKLIKCRKPYLHE SRHLHALKRARGS GGRFLNTK 213 Zm/G4261 55% 175-231 EPVYVNAKQYHGI 214 75% n/d (64/116) LRRRQSRAKAELE (45/60) KKVVKARKPYLHE SRHQHAMRRARGN GGRFL 14 At/G1363 42% 171-230 EPIFVNAKQYQAI 91 73% + (66/156) LRRRERRAKLEAQ (44/60) NKLIKVRKPYLHE SRHLHALKRVRGS GGRFLNTK 16 Os/G3924 42% 163-222 EPVYVNAKQYHGI 92 73% + (74/174) LRRRQSRAKAELE (44/60) KKVVKSRKPYLHE SRHQHAMRRARGT GGRFLNTK 28 At/G2632 50% 166-223 EPVFVNAKQYQAI 98 73% - (67/134) LRRRQARAKAELE (41/56) KKLIKSRKPYLHE SRHQHAMRRPRGT GGRFAK 18 Os/G3926 42% 164-222 EPIFVNAKQYNAI 93 71% + (79/184) LRRRQTRAKLEAQ (43/60) NKAVKGRKPYLHE SRHHHAMKRARGS GGRFLTK 20 Os/G3925 42% 138-197 EPIYVNAKQYHAI 94 71% + (67/158) LRRRQLRAKLEAE (43/60) NKLVKNRKPYLHE SRHQHAMKRARGT GGRFLNTK 22 Zm/G3921 41% 148-207 EPIYVNAKQYHAI 95 71% n/d (71/170) LRRRQTRAKLEAQ (43/60) NKMVKGRKPYLHE SRHRHAMKRARGS GGRFLNTK 24 Zm/G3922 35% 171-230 EPIYVNAKQYHAI 96 71% n/d (69/193) LRRRQTRAKLEAQ (43/60) NKMVKNRKPYLHE SRHRHAMKRARGS GGRFLNTK 26 Zm/G4264 38% 155-214 EPIYVNAKQYHAI 97 71% + (74/193) LRRRQTRAKLEAQ (43/60) NKMVKNRKPYLHE SRHRHAMKRARGS GGRFLNTK 30 At/G1334 40% 133-190 DGTIYVNSKQYHG 99 70% + (60/149) IIRRRQSRAKAEK (41/58) LSRCRKPYMHHSR HLHAMRRPRGSGG RFLNTK 32 At/G926 44% 171-228 EPVYVNAKQYEGI 100 66% +.sup.1 (58/131) LRRRKARAKAELE (37/56) RKVIRDRKPYLHE SRHKHAMRRARAS GGRFAK 34 At/G927 37% 136-199 STIYVNSKQYHGI 101 64% - (59/156) IRRRQSRAKAAAV (40/62) LDQKKLSSRCRKP YMHHSRHLHALRR PRGSGGRFLNTK

TABLE-US-00002 TABLE 2 Sequential and functional similarity of G3926-related HAP2 polypeptides and conserved domains Col. 7 Percent Col. 8 Col. 3 identity of OE had Percent conserved greater Col. 1 identity Col. 4 Col. 6 domain in size, Poly- Col. 2 of poly- Conserved SEQ ID Column 5 to biomass peptide Species/ peptide domain in Col. 5 NO: of conserved or faster SEQ GID in Column amino acid HAP2 conserved conserved domain of growth ID NO: No. 1 to G3926 coordinates domain domain G3926 rate 18 Os/G3926 100% 164-222 EPIFVNAKQYNAI 93 100% + (317/317) LRRRQTRAKLEAQ (59/59) NKAVKGRKPYLHE SRHHHAMKRARGS GGRFLTK 22 Zm/G3921 47% 148-207 EPIYVNAKQYHAI 95 92% n/d (143/304) LRRRQTRAKLEAQ (53/57) NKMVKGRKPYLHE SRHRHAMKRARGS GGRFLNTK 24 Zm/G3922 47% 171-230 EPIYVNAKQYHAI 96 91% n/d (140/295) LRRRQTRAKLEAQ (52/57) NKMVKNRKPYLHE SRHRHAMKRARGS GGRFLNTK 26 Zm/G4264 46% 155-214 EPIYVNAKQYHAI 97 91% + (146/311) LRRRQTRAKLEAQ (52/57) NKMVKNRKPYLHE SRHRHAMKRARGS GGRFLNTK 12 At/G1782 37% 178-237 EPIFVNAKQYHAI 90 85% + (89/236) LRRRKHRAKLEAQ (49/57) NKLIKCRKPYLHE SRHLHALKRARGS GGRFLNTK 20 Os/G3925 50% 138-197 EPIYVNAKQYHAI 94 85% + (104/204) LRRRQLRAKLEAE (49/57) NKLVKNRKPYLHE SRHQHAMKRARGT GGRFLNTK 14 At/G1363 37% 171-230 EPIFVNAKQYQAI 91 84% + (98/259) LRRRERRAKLEAQ (48/57) NKLIKVRKPYLHE SRHLHALKRVRGS GGRFLNTK 6 At/G931 37% 172-231 EPVFVNAKQFHAI 87 80% + (104/278) MRRRQQRAKLEAQ (46/57) NKLIKARKPYLHE SRVHVALKRPRGS GGRFLNTK 10 At/G928 35% 179-238 DPVFVNAKQHYAI 89 78% + (94/262) MRRRQQRAKLEAQ (45/57) NKLIRARKPYLHE SRHVHALKRPRGS GGRFLNTK 4 At/G2344 49% 100-159 EPVFVNAKQYHGI 86 75% + (66/134) LRRRQSRARLESQ (43/57) NKVIKSRKPYLHE SRHLHAIRRPRGC GGRFLNAK 16 Os/G3924 45% 163-222 EPVYVNAKQHYGI 92 75% + (76/167) LRRRQSRAKAELE (43/57) KKVVKSRKPYLHE SRHQHAMRRARGT GGRFLNTK 213 Zm/G4261 47% 175-231 EPVYVNAKQYHGI 214 75% n/d (87/183) LRRRQSRAKAELE (43/57) KKVVKARKPYLHE SRHQHAMRRARGN GGRFL 2 At/G929 42% 98-157 EPVFVNAKQHYGI 85 73% + (79/184) LRRRQSRAKLEAR (42/57) NRAIKAKKPYMHE SRHLHAIRRPRGC GGRFLNAK 28 At/G2632 40% 166-223 EPVFVNAKQYQAI 98 72% - (87/217) LRRRQARAKAELE (43/59) KKLIKSRKPYLHE SRHQHAMRRPRGT GGRFAK 8 Gm/G3920 36% 149-208 EPVYVNAKQHYGI 88 73% + (76/209) RRRQSRAKAEIEK (42/57) KVIKNRKPYLHES RHLHAMRRARGNG GRFLNTK 32 At/G926 39% 171-228 EPVYVNAKQYEGI 100 67% +.sup.1 (75/192) LRRRKARAKAELE (40/59) RKVIRDRKPYLHE SRHKHAMRRARAS GGRFAK 30 At/G1334 39% 133-190 DGTIYVNSKQYHG 99 65% + (54/136) IIRRRQSRAKAEK (36/55) LSRCRKPYMHHSR HLHAMRRPRGSGG RFLNTK 34 At/G927 34% 136-199 STIYVNSKQHYGI 101 57% - (73/213) IRRRQSRAKAAAV (34/59) LVQKKLSSRCRKP YMHHSRHLHALRR PRGSGGRFLNTK

Specific notes for Tables 1 and 2: .sup.1Assays with 35S::G926 Arabidopsis plants have not yet been performed. However, 35S::G926 overexpressing tomato plants produced increased average fruit weight in the top 5% and cruciferin::G926 tomato plants produced increased average fruit weight in the top 10% of 3,217 tomato lines tested that overexpressed many different Arabidopsis transcription factors. Arabidopsis plants overexpressing G926-YFP fusion proteins (YFP or "yellow fluorescent protein" is a red-shifted spectral variant of green fluorescent protein (GFP)) were not larger and did not appear to have a faster growth rate than controls.

TABLE-US-00003 TABLE 3 Sequential and functional similarity of G3911-related HAPS polypeptides and conserved domains Col. 7 Percent Col. 8 Col. 3 identity of OE had Percent conserved greater Col. 1 identity Col. 4 Col. 6 domain in size, Poly- Col. 2 of poly- Conserved SEQ ID Column 5 to biomass peptide Species/ peptide domain in Col. 5 NO: of conserved or faster SEQ GID in Column amino acid conserved conserved domain of growth ID NO: No. 1 to G3911 coordinates domain domain G3911 rate 36 Zm/G3911 100% 86-148 LPLARIKKIMKA 102 100% + (200/200) DEDVRMIAAEAP (66/66) VVFARACEMFIL ELTHRGWAHAEE NKRRTLQKSDIA AAIART 38 Os/G3546 79% 91-156 LPLARIKKIMKA 103 100% + (167/211) DEDVRMIAAEAP (66/66) VVFARACEMFIL ELTHRGWAHAEE NKRRTLQKSDIA AAIART 40 Zm/G3909 78% 86-151 LPLARIKKIMKA 104 96% + (159/203) DEDVRMIAAEAP (64/66) VVFSRACEMFIL ELTHRGWAHAEE NKRRTLQKSDIA AAVART 202 Le/G3894 54% 103-168 LPLARIKKIMKA 203 89% +.sup.1 (119/220) DEDVRMISAEAP (59/66) VVFARACEMFIL ELTLRAWNHTEE NKRRTLQKNDIA AAITRT 46 Gm/G3547 55% 102-167 LPLARIKKIMKA 107 87% + (125/226) DEDVRMISAEAP (58/66) VIFARACEMFIL ELTLRSWNHTEE NKRRTLQKNDIA AAITRT 48 At/G714 72% 71-136 LPLARIKKIMKA 108 87% + (96/132) DEDVRMISAEAP (58/66) VVFARACEMFIL ELTLRSWNHTEE NKRRTLQKNDIA AAVTRT 52 At/G489 58% 81-146 LPLARIKKIMKA 110 87% +.sup.2 (107/182) DEDVRMISAEAP (58/66) VVFARACEMFIL ELTLRSWNHTEE NKRRTLQKNDIA AAVTRT 42 Zm/G3552 55% 100-165 LPLARIKKIMKA 105 86% + (121/218) DEDVRMISAEAP (57/66) VVFAKACEIFIL ELTLRSWMHTEE NKRRTLQKNDIA AAITRT 44 At/G483 65% 77-142 LPLARIKKIMKA 106 86% - (95/144) DEDVRMISAEAP (57/66) VIFAKACEMFIL ELTLRAWIHTEE NKRRTLQKNDIA AAISRT 50 Os/G3542 54% 106-171 LPLARIKKIMKA 109 86% + (124/228) DEDVRMISAEAP (57/66) VVFAKACEVFIL ELTLRSWMHTEE NKRRTLQKNDIA AAITRT 56 Gm/G3550 56% 107-172 LPLARIKKIMKA 112 86% + (108/191) DEDVRMISAEAP (56/65) VIFAKACEMFIL ELTLRSWIHTEE NKRRTLQKNDIA AAISRN 58 Gm/G3548 56% 90-155 LPLARIKKIMKA 113 86% + (112/198) DEDVRMISAEAP (56/65) VIFAKACEMFIL ELTLRSWIHTEE NKRRTLQKNDIA AAISRN 54 Os/G3544 56% 102-167 LPLARIKKIMKA 111 84% + (111/198) DEDVRMISAEAP (56/66) VIFAKACEIFIL ELTLRSWMHTEE NKRRTLQKNDIA AAITRT 60 At/G715 54% 66-131 LPLARIKKIMKA 114 84% + (117/215) DEDVRMISAEAP (56/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 62 Gm/G3886 61% 72-137 LPLARIKKIMKA 115 84% +.sup.1 (114/186) DEDVRMISAEAP (56/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 64 Zm/G3889 55% 69-134 LPLARIKKIMKA 116 84% + (114/206) DEDVRMISAEAP (56/66) VLFAKACELFIL ELTIRSWLHAEE NKRRTLQRNDVA AAIART 66 At/G1646 53% 79-144 LPLARIKKIMKA 117 84% + (111/206) DEDVRMISAEAP (56/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 198 Gr/G3883 61% 67-132 LPLARIKKIMKA 199 84% - (104/168) DEDVRMISAEAP (56/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 210 Zm/4259 57% 70-135 LPLARIKKIMKA 211 84% n/d (115/201) DEDVRMISAEAP (56/66) VLFAKACELFIL ELTIRSWLHAEE NKRRTLQRNDVA AAIART 68 Os/G3543 55% 70-135 LPLAGIKKIMKA 118 83% + (108/193) DEDVRMISAEAP (55/66) VLFAKACELFIL ELTIRSWLHAEE NKRRTLQRKDVA AAIART 70 At/G1820 52% 55-120 LPLARIKKIMKA 119 73% - (76/145) DPDVHMVSAEAP (47/64) IIFAKACEMFIV DLTMRSWLKAEE NKRHTLQKSDIS NAVASS 72 At/G1836 53% 37-102 LPITRIKKIMKY 120 63% + (65/122) DPDVTMIASEAP (42/66) ILLSKACEMFIM DLTMRSWLHAQE SKRVTLQKSNVD AAVAQT 74 At/G1819 37% 64-135 FPLTRIKKIMKS 121 52% + (64/169) NPEVNMVTAEAP (37/71) VLISKACEMLIL DLTMRSWLHTVE GGRQTLKRSDTL TRSDISAATTRS 76 At/G1818 47% 38-102 PISRIKRIMKFD 122 55% + (57/119) PDVSMIAAEAPN (36/65) LLSKACEMFVMD LTMRSWLHAQES NRLTIRKSDVDA VVSQT 78 At/G490 41% 68-133 LPLSRVRKILKS 123 44% + (41/99) DPEVKKISCDVP (28/63) ALFSKACEYFIL EVTLRAWMHTQS CTRETIRRCDIF QAVKNS 80 At/G3074 38% 9-73 FPAARIKKIMQA 124 37% + (30/77) DEDVGKIALAVP (24/64) VLVSKSLELFLQ DLCDRTYEITLE RGAKTVSSLHLK HCVER 82 At/G1249 35% 12-76 FPIGRVKKIMKL 125 34% + (27/77) DKDINKINSEAL (22/64) HVITYSTELFLH FLAEKSAVVTAE KKRKTVNLDHLR IAVKR 84 At/G3075 25% 110-173 FPMNRIRRIMRS 126 22% - (19/76) DNSAPQIMQDAV (14/63) FLVNKATEMFIE RFSEEAYDSSVK DKKKFIHYKHLS SVVS

TABLE-US-00004 TABLE 4 Sequential and functional similarity of G3543-related HAP5 polypeptides and conserved domains Col. 7 Percent Col. 8 Col. 3 identity of OE had Percent conserved greater Col. 1 identity Col. 4 Col. 6 domain in size, Poly- Col. 2 of poly- Conserved SEQ ID Column 5 to biomass peptide Species/ peptide domain in Col. 5 NO: of conserved or faster SEQ GID in Column amino acid conserved conserved domain of growth ID NO: No. 1 to G3543 coordinates domain domain G3543 rate 68 Os/G3543 100% 70-135 LPLAGIKKIMKA 118 100% + (246/246) DEDVRMISAEAP (66/66) VLFAKACELFIL ELTIRSWLHAEE NKRRTLQRKDVA AAIART 210 Zm/4259 87% 70-135 LPLARIKKIMKA 211 96% n/d (219/251) DEDVRMISAEAP (64/66 VLFAKACELFIL ELTIRSWLHAEE NKRRTLQRNDVA AAIART 64 Zm/G3889 86% 69-134 LPLARIKKIMKA 116 96% + (218/251) DEDVRMISAEAP (64/66) VLFAKACELFIL ELTIRSSLHAEE NKRRTLQRNDVA AAIART 60 At/G715 58% 66-131 LPLARIKKIMKA 114 90% + (144/248) DEDVRMISAEAP (60/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 62 Gm/G3886 58% 72-137 LPLARIKKIMKA 115 90% +.sup.1 (142/243) DEDVRMISAEAP (60/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 66 At/G1646 56% 79-144 LPLARIKKIMKA 117 90% + (143/253) DEDVRMISAEAP (60/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 198 Gr/G3883 58% 67-132 LPLARIKKIMKA 199 90% - (142/244) DEDVRMISAEAP (60/66) ILFAKACELFIL ELTIRSWLHAEE NKRRTLQKNDIA AAITRT 56 Gm/G3550 63% 107-172 LPLARIKKIMKA 112 84% + (98/154) DEDVRMISAEAP (55/65) VIFAKACEMFIL ELTLRSWIHTEE NKRRTLQKNDIA AAISRN 58 Gm/G3548 62% 90-155 LPLARIKKIMKA 113 85% + (97/154) DEDVRMISAEAP (55/65) VIFAKACEMFIL ELTLRSWIHTEE NKRRTLQKNDIA AAISRN 50 Os/G3542 55% 106-171 LPLARIKKIMKA 109 84% + (113/205) DEDVRMISAEAP (56/66) VVFAKACEVFIL ELTLRSWMHTEE NKRRTLQKNDIA AAITRT 42 Zm/G3552 56% 100-165 LPLARIKKIMKA 105 84% + (110/194) DEDVRMISAEAP (56/66) VVFAKACEIFIL ELTLRSWMHTEE NKRRTLQKNDIA AAITRT 54 Os/G3544 54% 102-167 LPLARIKKIMKA 111 84% + (108/198) DEDVRMISAEAP (56/66) VIFAKACEIFIL ELTLRSWMHTEE NKRRTLQKNDIA AAITRT 44 At/G483 65% 77-142 LPLARIKKIMKA 106 83% - (105/161) DEDVRMISAEAP (55/66) VIFAKACEMFIL ELTLRAWIHTEE NKRRTLQKNDIA AAISRT 46 Gm/G3547 53% 102-167 LPLARIKKIMKA 107 83% + (117/220) DEDVRMISAEAP (55/66) VIFARACEMFIL ELTLRSWNHTEE NKRRTLQKNDIA AAITRT 36 Zm/G3911 55% 83-148 LPLARIKKIMKA 102 83% + (108/193) DEDVRMIAAEAP (55/66) VVFARACEMFIL ELTHRGWAHAEE NKRRTLQKSDIA AAIART 38 Os/G3546 56% 91-156 LPLARIKKIMKA 103 83% + (110/194) DEDVRMIAAEAP (55/66) VVFARACEMFIL ELTHRGWAHAEE NKRRTLQKSDIA AAIART 48 At/G714 57% 71-136 LPLARIKKIMKA 108 81% + (106/185) DEDVRMISAEAP (54/66) VVFARACEMFIL ELTLRSWNHTEE NKRRTLQKNDIA AAVTRT 52 At/G489 53% 81-146 LPLARIKKIMKA 110 81% +.sup.2 (117/220) DEDVRMISAEAP (54/66) VVFARACEMFIL ELTLRSWNHTEE NKRRTLQKNDIA AAVTRT 202 Le/G3894 59% 103-168 LPLARIKKIMKA 203 81% +.sup.1 (108/182) DEDVRMISAEAP (54/64) VVFARACEMFIL ELTLRAWNHTEE NKRRTLQKNDIA AAITRT 40 Zm/G3909 55% 86-151 LPLARIKKIMKA 104 80% + (108/193) DEDVRMIAAEAP (53/66) VVFSRACEMFIL ELTHRGWAHAEE NKRRTLQKSDIA AAVART 70 At/G1820 43% 55-120 LPLARIKKIMKA 119 71% - (85/195) DPDVHMVSAEAP (46/64) IIFAKACEMFIV DLTMRSWLKAEE NKRHTLQKSDIS NAVASS 72 At/G1836 46% 37-102 LPITRIKKIMKY 120 63% + (72/154) DPDVTMIASEAP (42/66) ILLSKACEMFIM DLTMRSWLHAQE SKRVTLQKSNVD AAVAQT 74 At/G1819 38% 64-135 FPLTRIKKIMKS 121 61% + (67/174) NPEVNMVTAEAP (35/57) VLISKACEMLIL DLTMRSWLHTVE GGRQTLKRSDTL TRSDISAATTRS 76 At/G1818 35% 38-102 PISRIKRIMKFD 122 55% + (70/195) PDVSMIAAEAPN (36/65) LLSKACEMFVMD LTMRSWLHAQES NRLTIRKSDVDA VVSQT 78 At/G490 40% 68-133 LPLSRVRKILKS 123 47% + (41/101) DPEVKKISCDVP (30/63) ALFSKACEYFIL EVTLRAWMHTQS CTRETIRRCDIF QAVKNS 80 At/G3074 39% 9-73 FPAARIKKIMQA 124 39% + (31/79) DEDVGKIALAVP (25/64) VLVSKSLELFLQ DLCDRTYEITLE RGAKTVSSLHLK HCVER 82 At/G1249 34% 12-76 FPIGRVKKIMKL 125 34% + (27/79) DKDINKINSEAL (22/64) HVITYSTELFLH FLAEKSAVVTAE KKRKTVNLDHLR IAVKR 84 At/G3075 26% 110-173 FPMNRIRRIMRS 126 23% - (27/101) DNSAPQIMQDAV (15/63) FLVNKATEMFIE RFSEEAYDSSVK DKKKFIHYKDKK KFIHYKHLSSVV S Specific notes for Tables 3 and 4: .sup.1One of ten lines had larger seedlings .sup.2Numberous plants overexpressing G489-YFP fusion proteins had larger rosettes than controls; YFP or "yellow fluorescent protein is a red-shifted spectral variant of green fluorescent protein (GFP)

[0107] Orthologs and Paralogs

[0108] Homologous sequences as described above can comprise orthologous or paralogous sequences. Several different methods are known by those of skill in the art for identifying and defining these functionally homologous sequences. General methods for identifying orthologs and paralogs, including phylogenetic methods, sequence similarity and hybridization methods, are described herein; an ortholog or paralog, including equivalogs, may be identified by one or more of the methods described below.

[0109] As described by Eisen (1998), evolutionary information may be used to predict gene function. It is common for groups of genes that are homologous in sequence to have diverse, although usually related, functions. However, in many cases, the identification of homologs is not sufficient to make specific predictions because not all homologs have the same function. Thus, an initial analysis of functional relatedness based on sequence similarity alone may not provide one with a means to determine where similarity ends and functional relatedness begins. Fortunately, it is well known in the art that protein function can be classified using phylogenetic analysis; functional predictions can be greatly improved by focusing on how the genes became similar in sequence, i.e., by evolutionary processes, rather than on the sequence similarity itself (Eisen, 1998). In fact, many specific examples exist in which gene function has been shown to correlate well with gene phylogeny (Eisen, 1998). Thus, "[t]he first step in making functional predictions is the generation of a phylogenetic tree representing the evolutionary history of the gene of interest and its homologs. Such trees are distinct from clusters and other means of characterizing sequence similarity because they are inferred by techniques that help convert patterns of similarity into evolutionary relationships . . . . After the gene tree is inferred, biologically determined functions of the various homologs are overlaid onto the tree. Finally, the structure of the tree and the relative phylogenetic positions of genes of different functions are used to trace the history of functional changes, which is then used to predict functions of [as yet] uncharacterized genes" (Eisen, 1998).

[0110] Within a single plant species, gene duplication may cause two copies of a particular gene, giving rise to two or more genes with similar sequence and often similar function known as paralogs. A paralog is therefore a similar gene formed by duplication within the same species. Paralogs typically cluster together or in the same clade (a group of similar genes) when a gene family phylogeny is analyzed using programs such as CLUSTAL (Thompson et al., 1994; Higgins et al., 1996). Groups of similar genes can also be identified with pair-wise BLAST analysis (Feng and Doolittle, 1987). For example, a clade of very similar MADS domain transcription factors from Arabidopsis all share a related function in flowering time (Ratcliffe et al., 2001, 2003), and a group of very similar AP2 domain transcription factors from Arabidopsis are involved in tolerance of plants to freezing (Gilmour et al., 1998). Analysis of groups of similar genes with similar function that fall within one clade can yield sub-sequences that are particular to the clade. These sub-sequences, known as consensus sequences, can not only be used to define the sequences within each clade, but define the functions of these genes; genes within a clade may contain paralogous sequences, or orthologous sequences that share the same function (see also, for example, Mount, 2001).

[0111] Transcription factor gene sequences are conserved across diverse eukaryotic species lines (Goodrich et al., 1993; Lin et al., 1991; Sadowski et al., 1988). Plants are no exception to this observation; diverse plant species possess transcription factors that have similar sequences and functions. Speciation, the production of new species from a parental species, gives rise to two or more genes with similar sequence and similar function. These genes, termed orthologs, often have an identical function within their host plants and are often interchangeable between species without losing function. Because plants have common ancestors, many genes in any plant species will have a corresponding orthologous gene in another plant species. Once a phylogenic tree for a gene family of one species has been constructed using a program such as CLUSTAL (Thompson et al., 1994; Higgins et al., 1996) potential orthologous sequences can be placed into the phylogenetic tree and their relationship to genes from the species of interest can be determined. Orthologous sequences can also be identified by a reciprocal BLAST strategy. Once an orthologous sequence has been identified, the function of the ortholog can be deduced from the identified function of the reference sequence.

[0112] By using a phylogenetic analysis, one skilled in the art would recognize that the ability to predict similar functions conferred by closely-related polypeptides is predictable. This predictability has been confirmed by our own many studies in which we have found that a wide variety of polypeptides have orthologous or closely-related homologous sequences that function as does the first, closely-related reference sequence. For example, distinct transcription factors, including:

[0113] (i) AP2 family Arabidopsis G47 (found in US patent publication 20040019925A1), a phylogenetically-related sequence from soybean, and two phylogenetically-related homologs from rice all conferred greater tolerance to drought, hyperosmotic stress, or delayed flowering in transgenic plants as compared to control plants;

[0114] (ii) CCAAT family and HAP3 Arabidopsis G481 (found in PCT patent publication WO2004076638), and numerous phylogenetically-related sequences from dicots and monocots conferred greater tolerance to drought-related stress as compared to control plants;

[0115] (iii) Myb-related Arabidopsis G682 (found in PCT patent publication WO2004076638) and numerous phylogenetically-related sequences from dicots and monocots conferred greater tolerance to heat, drought-related stress, cold, and salt as compared to control plants;

[0116] (iv) WRKY family Arabidopsis G1274 (found in U.S. patent application Ser. No. 10/666,642) and numerous closely-related sequences from dicots and monocots have been shown to confer increased water deprivation tolerance, and

[0117] (v) AT-hook family soy sequence G3456 (found in US patent publication 20040128712A1) and numerous phylogenetically-related sequences from dicots and monocots, increased biomass compared to control plants when these sequences were overexpressed in plants.

[0118] The polypeptide sequences belong to distinct clades of polypeptides that include members from diverse species. In each case, most or all of the clade member sequences derived from both dicots and monocots have been shown to confer increased yield or tolerance to one or more abiotic stresses when the sequences were overexpressed. These studies and others demonstrate that evolutionarily conserved genes from diverse species are likely to function similarly (i.e., by regulating similar target sequences and controlling the same traits), and that polynucleotides from one species may be transformed into closely-related or distantly-related plant species to confer or improve traits.

[0119] As shown in Tables 1-4, polypeptides that are phylogenetically related homologs of the polypeptides of the invention may have conserved domains that share at least 34%, at least 37%, at least 39%, at least 44%, at least 47%, at least 52%, at least 55%, at least 61%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 70%, at least 71%, at least 72%, at least 73%, at least 75%, at least 76%, at least 78%, at least 80%, at least 81%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at least 90%, at least 91%, at least 92%, at least 96%, or 100% amino acid sequence identity to similar conserved domains of any of SEQ ID NO: 85-126, 199, 203, 211, or 214, and have similar functions in that the polypeptides of the invention may, when overexpressed, confer at least one regulatory activity selected from the group consisting of greater yield, more rapid growth, greater size, and increased biomass as compared to a control plant.

[0120] At the nucleotide level, the sequences of the invention will typically share at least about 30% or 35% nucleotide sequence identity, or 40% nucleotide sequence identity, preferably at least about 50%, or about 60%, or about 70% or about 80% sequence identity, or more preferably about 85%, or about 90%, or about 95% or about 97% or more sequence identity to one or more of the listed full-length sequences, or to a listed sequence but excluding or outside of the region(s) encoding a known consensus sequence or consensus DNA-binding site, or outside of the region(s) encoding one or all conserved domains. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein.

[0121] Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Inc. Madison, Wis.). The MEGALIGN program can create alignments between two or more sequences according to different methods, for example, the clustal method (see, for example, Higgins and Sharp (1988). The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. Other alignment algorithms or programs may be used, including FASTA, or BLAST, and which may be used to calculate percent similarity. These are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with or without default settings. In one embodiment, the percent identity of two sequences can be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid or nucleotide mismatch between the two sequences (see U.S. Pat. No. 6,262,333).

[0122] Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (see internet, website at http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, 1990; Altschul et al., 1993). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, 1989). Unless otherwise indicated for comparisons of predicted polynucleotides, "sequence identity" refers to the % sequence identity generated from a tblastx using the NCBI version of the algorithm at the default settings using gapped alignments with the filter "off" (see, for example, internet website at http://www.ncbi.nlm.nih.gov/).

[0123] Other techniques for alignment are described by Doolittle (1996). Preferably, an alignment program that permits gaps in the sequence is utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments (see Shpaer (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs on a MASPAR computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases.

[0124] The percentage similarity between two polypeptide sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity.

[0125] Percent identity between polynucleotide sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method (see, for example, Hein, 1990). Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions (see US Patent Application No. 20010010913).

[0126] Thus, the invention provides methods for identifying a sequence similar or paralogous or orthologous or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an internet or intranet) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

[0127] In addition, one or more polynucleotide sequences or one or more polypeptides encoded by the polynucleotide sequences may be used to search against a BLOCKS (Bairoch et al., 1997), PFAM, and other databases which contain previously identified and annotated motifs, sequences and gene functions. Methods that search for primary sequence patterns with secondary structure gap penalties (Smith et al., 1992) as well as algorithms such as Basic Local Alignment Search Tool (BLAST; Altschul, 1990; Altschul et al., 1993), BLOCKS (Henikoff and Henikoff, 1991), Hidden Markov Models (HMM; Eddy, 1996; Sonnhammer et al., 1997), and the like, can be used to manipulate and analyze polynucleotide and polypeptide sequences encoded by polynucleotides. These databases, algorithms and other methods are well known in the art and are described in Ausubel et al. (1997) and in Meyers (1995).

[0128] A further method for identifying or confirming that specific homologous sequences control the same function is by comparison of the transcript profile(s) obtained upon overexpression or knockout of two or more related polypeptides. Since transcript profiles are diagnostic for specific cellular states, one skilled in the art will appreciate that genes that have a highly similar transcript profile (e.g., with greater than 50% regulated transcripts in common, or with greater than 70% regulated transcripts in common, or with greater than 90% regulated transcripts in common) will have highly similar functions. Fowler and Thomashow (2002) have shown that three paralogous AP2 family genes (CBF1, CBF2 and CBF3) are induced upon cold treatment, and each of which can condition improved freezing tolerance, and all have highly similar transcript profiles. Once a polypeptide has been shown to provide a specific function, its transcript profile becomes a diagnostic tool to determine whether paralogs or orthologs have the same function.

[0129] Furthermore, methods using manual alignment of sequences similar or homologous to one or more polynucleotide sequences or one or more polypeptides encoded by the polynucleotide sequences may be used to identify regions of similarity and conserved (e.g., CCAAT binding) domains. Such manual methods are well-known by those of skill in the art and can include, for example, comparisons of tertiary structure between a polypeptide sequence encoded by a polynucleotide that comprises a known function and a polypeptide sequence encoded by a polynucleotide sequence that has a function not yet determined. Such examples of tertiary structure may comprise predicted alpha helices, beta-sheets, amphipathic helices, leucine zipper motifs, zinc finger motifs, proline-rich regions, cysteine repeat motifs, and the like.

[0130] Orthologs and paralogs of presently disclosed polypeptides may be cloned using compositions provided by the present invention according to methods well known in the art. cDNAs can be cloned using mRNA from a plant cell or tissue that expresses one of the present sequences. Appropriate mRNA sources may be identified by interrogating Northern blots with probes designed from the present sequences, after which a library is prepared from the mRNA obtained from a positive cell or tissue. Polypeptide-encoding cDNA is then isolated using, for example, PCR, using primers designed from a presently disclosed gene sequence, or by probing with a partial or complete cDNA or with one or more sets of degenerate probes based on the disclosed sequences. The cDNA library may be used to transform plant cells. Expression of the cDNAs of interest is detected using, for example, microarrays, Northern blots, quantitative PCR, or any other technique for monitoring changes in expression. Genomic clones may be isolated using similar techniques to those.

[0131] Examples of Arabidopsis polypeptide sequences and functionally similar and phylogenetically-related sequences are listed in Tables 1-4 and the Sequence Listing. In addition to the sequences in Tables 1-4 and the Sequence Listing, the invention encompasses isolated nucleotide sequences that are phylogenetically and structurally similar to sequences listed in the Sequence Listing) and can function in a plant by increasing yield and/or and abiotic stress tolerance when ectopically expressed in a plant.

[0132] Since a significant number of these sequences are phylogenetically and sequentially related to each other and have been shown to increase yield from a plant and/or abiotic stress tolerance, one skilled in the art would predict that other similar, phylogenetically related sequences falling within the present clades of polypeptides would also perform similar functions when ectopically expressed.

[0133] Identifying Polynucleotides or Nucleic Acids by Hybridization

[0134] Polynucleotides homologous to the sequences illustrated in the Sequence Listing and tables can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physical-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency under which two polynucleotide strands hybridize, the more similar are the two strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number thereof), as described in more detail in the references cited below (e.g., Sambrook et al., 1989; Berger and Kimmel, 1987; and Anderson and Young, 1985).

[0135] Encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, including any of the polynucleotides within the Sequence Listing, and fragments thereof under various conditions of stringency (see, for example, Wahl and Berger, 1987; and Kimmel, 1987). In addition to the nucleotide sequences listed in the Sequence Listing, full length cDNA, orthologs, and paralogs of the present nucleotide sequences may be identified and isolated using well-known methods. The cDNA libraries, orthologs, and paralogs of the present nucleotide sequences may be screened using hybridization methods to determine their utility as hybridization target or amplification probes.

[0136] With regard to hybridization, conditions that are highly stringent, and means for achieving them, are well known in the art (see, for example, Sambrook et al., 1989; Berger, 1987 , pages 467-469; and Anderson and Young, 1985).

[0137] Stability of DNA duplexes is affected by such factors as base composition, length, and degree of base pair mismatch. Hybridization conditions may be adjusted to allow DNAs of different sequence relatedness to hybridize. The melting temperature I is defined as the temperature when 50% of the duplex molecules have dissociated into their constituent single strands. The melting temperature of a perfectly matched duplex, where the hybridization buffer contains formamide as a denaturing agent, may be estimated by the following equations:

T.sub.m(.degree. C.)=81.5+16.6(log [Na+])+0.41(% G+C)-0.62(% formamide)-500/L (I)DNA-DNA:

T.sub.m(.degree. C.)=79.8+18.5(log [Na+])+0.58(% G+C)+0.12(% G+C).sup.2-0.5(% formamide)-820/L (II)DNA-RNA:

T.sub.m(.degree. C.)=79.8+18.5(log [Na+])+0.58(% G+C)+0.12(% G+C).sup.2-0.35(% formamide)-820/L (III) RNA-RNA:

[0138] where L is the length of the duplex formed, [Na.+-.] is the molar concentration of the sodium ion in the hybridization or washing solution, and % G+C is the percentage of (guanine+cytosine) bases in the hybrid. For imperfectly matched hybrids, approximately 1.degree. C. is required to reduce the melting temperature for each 1% mismatch.

[0139] Hybridization experiments are generally conducted in a buffer of pH between 6.8 to 7.4, although the rate of hybridization is nearly independent of pH at ionic strengths likely to be used in the hybridization buffer (Anderson and Young, 1985). In addition, one or more of the following may be used to reduce non-specific hybridization: sonicated salmon sperm DNA or another non-complementary DNA, bovine serum albumin, sodium pyrophosphate, sodium dodecyl sulfate (SDS), polyvinyl-pyrrolidone, ficoll and Denhardt's solution. Dextran sulfate and polyethylene glycol 6000 act to exclude DNA from solution, thus raising the effective probe DNA concentration and the hybridization signal within a given unit of time. In some instances, conditions of even greater stringency may be desirable or required to reduce non-specific and/or background hybridization. These conditions may be created with the use of higher temperature, lower ionic strength and higher concentration of a denaturing agent such as formamide.

[0140] Stringency conditions can be adjusted to screen for moderately similar fragments such as homologous sequences from distantly related organisms, or to highly similar fragments such as genes that duplicate functional enzymes from closely related organisms. The stringency can be adjusted either during the hybridization step or in the post-hybridization washes. Salt concentration, formamide concentration, hybridization temperature and probe lengths are variables that can be used to alter stringency (as described by the formula above). As a general guideline, high stringency is typically performed at T.sub.m-5.degree. C. to T.sub.m20.degree. C., moderate stringency at T.sub.m-20.degree. C. to T.sub.m-35.degree. C. and low stringency at T.sub.m-35.degree. C. to T.sub.m-50.degree. C. for duplex >150 base pairs. Hybridization may be performed at low to moderate stringency (25-50.degree. C. below T.sub.m), followed by post-hybridization washes at increasing stringencies. Maximum rates of hybridization in solution are determined empirically to occur at T.sub.m-25.degree. C. for DNA-DNA duplex and T.sub.m-15.degree. C. for RNA-DNA duplex. Optionally, the degree of dissociation may be assessed after each wash step to determine the need for subsequent, higher stringency wash steps.

[0141] High stringency conditions may be used to select for nucleic acid sequences with high degrees of identity to the disclosed sequences. An example of stringent hybridization conditions obtained in a filter-based method such as a Southern or Northern blot for hybridization of complementary nucleic acids that have more than 100 complementary residues is about 5.degree. C. to 20.degree. C. lower than the thermal melting point I for the specific sequence at a defined ionic strength and pH. Conditions used for hybridization may include about 0.02 M to about 0.15 M sodium chloride, about 0.5% to about 5% casein, about 0.02% SDS or about 0.1% N-laurylsarcosine, about 0.001 M to about 0.03 M sodium citrate, at hybridization temperatures between about 50.degree. C. and about 70.degree. C. More preferably, high stringency conditions are about 0.02 M sodium chloride, about 0.5% casein, about 0.02% SDS, about 0.001 M sodium citrate, at a temperature of about 50.degree. C. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire DNA molecule or selected portions, e.g., to a unique subsequence, of the DNA.

[0142] Stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate. Increasingly stringent conditions may be obtained with less than about 500 mM NaCl and 50 mM trisodium citrate, to even greater stringency with less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, whereas high stringency hybridization may be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30.degree. C., more preferably of at least about 37.degree. C., and most preferably of at least about 42.degree. C. with formamide present. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS) and ionic strength, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed.

[0143] The washing steps that follow hybridization may also vary in stringency; the post-hybridization wash steps primarily determine hybridization specificity, with the most critical factors being temperature and the ionic strength of the final wash solution. Wash stringency can be increased by decreasing salt concentration or by increasing temperature. Stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate.

[0144] Thus, hybridization and wash conditions that may be used to bind and remove polynucleotides with less than the desired homology to the nucleic acid sequences or their complements that encode the present polypeptides include, for example:

[0145] 6.times.SSC at 65.degree. C.;

[0146] 50% formamide, 4.times.SSC at 42.degree. C.; or

[0147] 0.5.times.SSC, 0.1% SDS at 65.degree. C.;

[0148] with, for example, two wash steps of 10-30 minutes each. Useful variations on these conditions will be readily apparent to those skilled in the art.

[0149] A person of skill in the art would not expect substantial variation among polynucleotide species encompassed within the scope of the present invention because the highly stringent conditions set forth in the above formulae yield structurally similar polynucleotides.

[0150] If desired, one may employ wash steps of even greater stringency, including about 0.2.times.SSC, 0.1% SDS at 65.degree. C. and washing twice, each wash step being about 30 minutes, or about 0.1.times.SSC, 0.1% SDS at 65.degree. C. and washing twice for 30 minutes. The temperature for the wash solutions will ordinarily be at least about 25.degree. C., and for greater stringency at least about 42.degree. C. Hybridization stringency may be increased further by using the same conditions as in the hybridization steps, with the wash temperature raised about 3.degree. C. to about 5.degree. C., and stringency may be increased even further by using the same conditions except the wash temperature is raised about 6.degree. C. to about 9.degree. C. For identification of less closely related homologs, wash steps may be performed at a lower temperature, e.g., 50.degree. C.

[0151] An example of a low stringency wash step employs a solution and conditions of at least 25.degree. C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS over 30 minutes. Greater stringency may be obtained at 42.degree. C. in 15 mM NaCl, with 1.5 mM trisodium citrate, and 0.1% SDS over 30 minutes. Even higher stringency wash conditions are obtained at 65.degree. C.-68.degree. C. in a solution of 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Wash procedures will generally employ at least two final wash steps. Additional variations on these conditions will be readily apparent to those skilled in the art (see, for example, U.S. Patent Application No. 20010010913).

[0152] Stringency conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10.times. higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a polypeptide known as of the filing date of the application. It may be desirable to select conditions for a particular assay such that a higher signal to noise ratio, that is, about 15.times. or more, is obtained. Accordingly, a subject nucleic acid will hybridize to a unique coding oligonucleotide with at least a 2.times. or greater signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radioactive label, or the like. Labeled hybridization or PCR probes for detecting related polynucleotide sequences may be produced by oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.

EXAMPLES

[0153] It is to be understood that this invention is not limited to the particular devices, machines, materials and methods described. Although particular embodiments are described, equivalent embodiments may be used to practice the invention.

[0154] The invention, now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention and are not intended to limit the invention. It will be recognized by one of skill in the art that a polypeptide that is associated with a particular first trait may also be associated with at least one other, unrelated and inherent second trait that was not predicted by the first trait.

Example I

Project Types and Vector and Cloning Information

[0155] A number of constructs were used to modulate the activity of sequences of the invention. An individual project was defined as the analysis of transgenic plant lines for a particular construct (for example, this might include G929, G3926, G3911 or G3543 lines that constitutively overexpressed a sequence of the invention). In the present study, each gene was directly fused to a promoter that drove its expression in transgenic plants. Such a promoter could be the native promoter of that gene, or the cauliflower mosaic 35S promoter. Alternatively, a promoter that drives tissue specific or conditional expression could be used in similar studies.

[0156] In the present study, expression of a given polynucleotide from a particular promoter was achieved by either a direct-promoter fusion construct in which that sequence was cloned directly behind the promoter of interest, or a two-component system, described below. A direct fusion approach has the advantage of allowing for simple genetic analysis if a given promoter-polynucleotide line is to be crossed into different genetic backgrounds at a later date. The two-component method potentially allows for stronger expression to be obtained via an amplification of transcription.

[0157] For the two-component system, two separate constructs were used: Promoter::LexA-GAL4TA and opLexA::TF. The first of these (Promoter::LexA-GAL4TA) comprised a desired promoter (for example, the floral meristem-specific AP1 promoter, the epidermis and vascular tissue-specific LTP1 promoter, the shoot apical meristem-specific STM promoter, or the embryo-, endosperm-, and fruit-specific cruciferin promoter (SEQ ID NOs: 191, 193, 208 or 205, respectively) cloned in front of a LexA DNA binding domain fused to a GAL4 activation domain. The construct vector backbone (pMEN48, SEQ ID NO: 195) also carried a kanamycin resistance marker along with an opLexA::GFP reporter. Transgenic lines were obtained containing this first component, and a line was selected that showed reproducible expression of the reporter gene in the desired pattern through a number of generations. A homozygous population was established for that line, and the population was supertransformed with the second construct (opLexA::TF) carrying the transcription factor of interest cloned behind a LexA operator site, for example, G1819 (SEQ ID NO: 192), G2344 (SEQ ID NO: 194) or G929 (SEQ ID NO: 206). The backbone of these second construct vectors (pMEN53, SEQ ID NO: 196) also contained a sulfonamide resistance marker. After supertransformation, the LexA-GAL4 transcript was translated, and the resulting fusion protein activated the second component construct causing transcription of the transcription factor of interest.

[0158] For analysis of HAP2- or HAP5-overexpressing plants, transgenic lines were created with an expression vector, for example, P399 (SEQ ID NO: 127) or P26600 (SEQ ID NO: 135) containing HAP2 DNA clones, or P26591 (SEQ ID NO: 143) or P26598 (SEQ ID NO: 159) which contained HAP5 cDNA clones. These constructs constituted 35S::G929, 35S::G3926, 35S::G3911 or 35S::G3543 direct promoter-fusions, respectively in these examples, each carrying a kanamycin resistance marker. The constructs were introduced into Arabidopsis plants as indicated in following Examples.

[0159] A list of constructs (PIDs), indicating the promoter fragment that was used to drive the transgene, along with the cloning vector backbone, is provided in Table 5. Compilations of the sequences of promoter fragments and the expressed transgene sequences within the PIDs are provided in the Sequence Listing.

TABLE-US-00005 TABLE 5 Expression constructs, sequences of promoter fragments and the expressed transgene sequences SEQ ID Gene Construct NO: of Identifier (PID) PID Promoter Project type Vector G929 P399 127 35S Direct promoter- pMEN20 fusion G2344 P1627 128 35S Direct promoter- pMEN65 fusion G931 P1608 129 35S Direct promoter- pMEN65 fusion G3920 P26608 130 35S Direct promoter- pMEN65 fusion G928 P143 131 35S Direct promoter- pMEN20 fusion G1782 P966 132 35S Direct promoter- pMEN65 fusion G1363 P26121 133 35S Protein-YFP-C-fusion P25800 G3924 P26602 134 35S Direct promoter- pMEN65 fusion G3926 P26600 135 35S Direct promoter- pMEN65 fusion G3925 P26597 136 35S Direct promoter- pMEN65 fusion G4264 P26593 137 35S Direct promoter- pMEN65 fusion G2632 P15494 138 35S Direct promoter- pMEN65 fusion G1334 P714 139 35S Direct promoter- pMEN20 fusion G926 P26217 140 35S Direct promoter- pMEN65 fusion G926 P26217 141 35S Protein-YFP-C-fusion P25800 G927 P142 142 35S Direct promoter- pMEN20 fusion G3911 P26591 143 35S Direct promoter- pMEN65 fusion G3546 P26603 144 35S Direct promoter- pMEN65 fusion G3909 P26596 145 35S Direct promoter- pMEN20 fusion G3552 P26595 146 35S Direct promoter- pMEN65 fusion G483 P48 147 35S Direct promoter- pMEN20 fusion G3547 P26758 148 35S Direct promoter- pMEN65 fusion G714 P111 149 35S Direct promoter- pMEN20 fusion G3542 P26604 150 35S Direct promoter- pMEN65 fusion G489 P26060 151 35S Protein-YFP-C-fusion P25800 G3544 P26599 152 35S Direct promoter- pMEN65 fusion G3550 P26606 153 35S Direct promoter- pMEN65 fusion G3548 P26610 154 35S Direct promoter- pMEN65 fusion G715 P15502 155 35S Direct promoter- pMEN65 fusion G3886 P26607 156 35S Direct promoter- pMEN65 fusion G3889 P26590 157 35S Direct promoter- pMEN65 fusion G1646 P964 158 35S Direct promoter- pMEN65 fusion G3543 P26598 159 35S Direct promoter- pMEN65 fusion G1820 P1284 160 35S Direct promoter- pMEN65 fusion G1836 P973 161 35S Direct promoter- pMEN65 fusion G1819 P1285 162 35S Direct promoter- pMEN65 fusion G1818 P1677 163 35S Direct promoter- pMEN65 fusion G490 P912 164 35S Direct promoter- pMEN65 fusion G3074 P2712 165 35S Direct promoter- pMEN1963 fusion G1249 P1184 166 35S Direct promoter- pMEN65 fusion G3075 P2797 167 35S Direct promoter- pMEN1963 fusion G3883 P26821 200 35S Direct promoter- pMEN65 fusion G3894 P26611 204 35S Direct promoter- pMEN65 fusion P5326 191 AP1 AP1::LexA-GAL4TA pMEN48 driver construct in two-component system G1819 P4039 192 Transcription factor pMEN53 component of two- component system (opLexA::G1819) P5287 193 LTP1 LTP1::LexA- pMEN48 GAL4TA driver construct in two- component system G2344 P6063 194 Transcription factor pMEN53 component of two- component system (opLexA::G2344) P5324 205 Cruciferin CRU::LexA-GAL4TA pMEN48 driver construct in two-component system G926 P5562 207 Transcription factor pMEN53 component of two- component system (opLexA::G926) P5318 208 STM STM::LexA-GAL4TA pMEN48 driver construct in two-component system G929 P9107 206 Transcription factor pMEN53 component of two- component system (opLexA::G929) P25800 168 35S YFP fusion vector pMEN1963 169 35S 35S expression vector pMEN20 170 35S 35S expression vector pMEN48 195 35S Two component driver vector pMEN53 196 LexA operator and polylinker sequence two component target vector pMEN65 171 35S 35S expression vector

Example II

Transformation of Agrobacterium with the Expression Vector

[0160] After the plasmid vector containing the gene was constructed, the vector was used to transform Agrobacterium tumefaciens cells expressing the gene products. The stock of Agrobacterium tumefaciens cells for transformation was made as described by Nagel et al. (1990) FEMS MicroBiol. Letts. 67: 325-328. Agrobacterium strain ABI was grown in 250 ml LB medium (Sigma) overnight at 28.degree. C. with shaking until an absorbance (A.sub.600) of 0.5-1.0 was reached. Cells were harvested by centrifugation at 4,000.times. g for 15 min at 4.degree. C. Cells were then resuspended in 250 .mu.l chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 .mu.l chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 .mu.l and 750 respectively. Resuspended cells were then distributed into 40 .mu.l aliquots, quickly frozen in liquid nitrogen, and stored at -80.degree. C.

[0161] Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50-100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 .mu.l of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2 mm electrode gap and subject to a 2.5 kV charge dissipated at 25 .mu.F and 200 .mu.F using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2-4 hours at 28.degree. C. in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 .mu.g/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28.degree. C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

Example III

Transformation of Arabidopsis Plants

[0162] Transformation of Arabidopsis was performed by an Agrobacterium-mediated protocol based on the method of Bechtold and Pelletier (1998). Most of the experiments were performed with the Arabidopsis thaliana ecotype Columbia (col-0). Some of the results, as noted, were obtained with transformed tomato plants (Lycopersicon esculentum).

[0163] Plant preparation. Seeds were sown on mesh covered pots. The seedlings were thinned so that 6-10 evenly spaced plants remained on each pot 10 days after planting. The primary bolts were cut off a week before transformation to break apical dominance and encourage auxiliary shoots to form. Transformation was typically performed at 4-5 weeks after sowing.

[0164] Bacterial culture preparation. Agrobacterium stocks were inoculated from single colony plates or from glycerol stocks and grown with the appropriate antibiotics and grown until saturation. On the morning of transformation, the saturated cultures were centrifuged and bacterial pellets were re-suspended in Infiltration Media (0.5.times.MS, 1.times.B5 Vitamins, 5% sucrose, 1 mg/ml benzylaminopurine riboside, 200 .mu.l/L Silwet L77) until an A600 reading of 0.8 was reached.

[0165] Transformation and seed harvest. The Agrobacterium solution was poured into dipping containers. All flower buds and rosette leaves of the plants were immersed in this solution for 30 seconds. The plants were laid on their side and wrapped with plastic wrap to keep the humidity high. The plants were kept this way overnight at 4.degree. C. and then the pots were turned upright, unwrapped, and moved to growth racks.

[0166] The plants were maintained on growth racks under 24-hour light until seeds were ready to be harvested. Seeds were harvested when 80% of the siliques of the transformed plants were ripe (approximately 5 weeks after the initial transformation). This seed was deemed T0 seed, since it was obtained from the T0 generation, and was later plated on selection plates (either kanamycin or sulfonamide). Resistant plants that were identified on such selection plates comprised the T1 generation.

Example IV

Morphology

[0167] Morphological analysis was performed to determine whether changes in polypeptide levels affect plant growth and development. This was primarily carried out on the T1 generation, when at least 10-20 independent lines were examined. However, in cases where a phenotype required confirmation or detailed characterization, plants from subsequent generations were also analyzed.

[0168] Primary transformants were selected on MS medium with 0.3% sucrose and 50 mg/l kanamycin. T2 and later generation plants were selected in the same manner, except that kanamycin was used at 35 mg/l. In cases where lines carry. a sulfonamide marker (as in all lines generated by super-transformation), seeds were selected on MS medium with 0.3% sucrose and 1.5 mg/l sulfonamide. KO lines were usually germinated on plates without a selection. Seeds were cold-treated (stratified) on plates for three days in the dark (in order to increase germination efficiency) prior to transfer to growth cabinets. Initially, plates were incubated at 22.degree. C. under a light intensity of approximately 100 microEinsteins for 7 days. At this stage, transformants were green, possessed two true leaves, and were easily distinguished from bleached kanamycin or sulfonamide-susceptible seedlings. Resistant seedlings were then transferred onto soil (Sunshine potting mix). Following transfer to soil, trays of seedlings were covered with plastic lids for 2-3 days to maintain humidity while they became established. Plants were grown on soil under fluorescent light at an intensity of 70-95 microEinsteins and a temperature of 18-23.degree. C. Light conditions consisted of a 24-hour photoperiod unless otherwise stated. In instances where alterations in flowering time were apparent, flowering time was re-examined under both 12-hour and 24-hour light to assess whether the phenotype was photoperiod dependent. Under our 24-hour light growth conditions, the typical generation time (seed to seed) was approximately 14 weeks.

[0169] Because many aspects of Arabidopsis development are dependent on localized environmental conditions, in all cases plants were evaluated in comparison to controls in the same flat. For a given construct, ten transformed lines were typically examined in subsequent plate based physiology assays. Controls for transgenic lines were wild-type plants or transgenic plants harboring an empty transformation vector selected on kanamycin or sulfonamide. Careful examination was made at the following stages: young seedling (1 week), rosette (2-3 weeks), flowering (4-7 weeks), and late seed set (8-12 weeks). Seed was also inspected. Young seedling size and morphology was assessed on selection plates. At all other stages, plants were macroscopically evaluated while growing on soil. All significant differences (including alterations in growth rate, size, biomass, etc., were recorded as noted in Example V.

Example V

Assessment of Growth Rate and Size

[0170] In subsequent Examples, unless otherwise indicted, morphological traits are disclosed in comparison to control plants. That is, a transformed plant that is described as large and/or has a faster growth rate was large and had a faster growth rate with respect to a control plant, the latter including wild-type plants, parental lines and lines transformed with a vector that does not contain the transcription factor sequence of interest (e.g., an "empty" vector). When a plant is said to have a better performance than controls, it generally was larger, had greater yield, and/or showed fewer stress symptoms than control plants.

[0171] Germination assays. All germination assays were performed in tissue culture. Growing the plants under controlled temperature and humidity on sterile medium produced uniform plant material that has not been exposed to additional stresses (such as water stress) which could cause variability in the results obtained.

[0172] Prior to plating, seed for all experiments were surface sterilized in the following manner: (1) 5 minute incubation with mixing in 70% ethanol, (2) 20 minute incubation with mixing in 30% bleach, 0.01% triton-X 100, (3) 5.times. rinses with sterile water, (4) Seeds were re-suspended in 0.1% sterile agarose and stratified at 4.degree. C. for 3-4 days.

[0173] All germination assays followed modifications of the same basic protocol. Sterile seeds were sown on the conditional media that has a basal composition of 80% MS+ Vitamins. Plates were incubated at 22.degree. C. under 24-hour light (120-130 .mu.E m.sup.-2s.sup.-1) in a growth chamber. Evaluation of germination and seedling vigor was performed five days after planting.

[0174] Growth assays. Assays were usually conducted on Arabidopsis thaliana ecotype Columbia (col-0) non-selected segregating T2 populations (in order to avoid the extra stress of selection). Control plants for assays on lines containing direct promoter-fusion constructs were wild-type Col-0 plants and/or Col-0 plants transformed with an empty transformation vector (pMEN65, SEQ ID NO: 171).

Example VI

Morphological Observations with HAP2 and HAP5 Overexpressors in Arabidopsis and Tomato

[0175] Overexpression of HAP2 and HAP5 transcription factors in Arabidopsis or tomato plants produced the experimental observations related to size or growth rate that are listed in Tables 6 and 7. Experiments indicating larger seedlings or plants than controls also demonstrated a faster growth rate as the observed larger sizes were achieved in the same time period of growth for both controls and experimental plants. This may be particularly important for seedlings of overexpressors that were larger than controls as these plants may be more tolerant to environmental stresses encountered early in their growth.

TABLE-US-00006 TABLE 6 Yield-related experimental results obtained with HAP2 overexpressors % Identity % Identity of of conserved conserved domain in domain in first first SEQ ID column to column to SEQ ID NO: of conserved conserved NO: of conserved domain of domain of GID polypeptide domain G929 G3926 Experimental Observations At/G929 2 85 100% 73% Two 35S::G929 lines produced seedlings that were larger than controls, and three lines had larger rosettes at the flowering stage A transgenic tomato plant overexpressing G929 under the regulatory control of the cruciferin promoter was considerably larger than control plants (FIG. 6). At/G2344 4 86 86% 75% Three of ten 35S::G2344 lines examined produced seedlings that were larger than controls, and one line had larger rosettes at the flowering stage. The average fruit weights of LTP1::G2344 tomato plants were within the top 1% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 193 and 194), and STM::G2344 tomato plants were within the top 8% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 208 and 194); empty vector controls were in the 56.sup.th percentile. At/G931 6 87 76% 80% Four 35S::G931 lines produced plants that were larger than controls at the rosette stage, and two of these lines maintained larger rosettes at the flowering stage. Gm/G3920 8 88 76% 73% Four of ten 35S::G3920 lines produced seedlings that were larger than controls; one line produced plants with larger rosettes than controls at the flowering stage. At/G928 10 88 75% 78% Two 35S::G928 lines produced seedlings that were larger than controls, and one of these lines was also larger at the rosette and flowering stages. At/G1782 12 90 75% 85% Four 35S::G1782 lines produced plants that were larger than controls at the rosette stage, and two of these lines maintained larger rosettes at the flowering stage. At/G1363 14 91 73% 84% One 35S::G1363 line produced plants that were larger at the flowering stage; seven G1363-YFP fusion lines had broader leaves at the rosette stage, and four G1363-YFP fusion lines were large at the flowering stage. Os/G3924 16 92 73% 75% Two of ten 35S::G3924 lines examined produced seedlings that were larger than controls. Os/G3926 18 93 71% 100% Three of ten 35S::G3926 lines tested produced seedlings that were larger than controls. Os/G3925 20 94 71% 85% Two of ten 35S::G3925 lines examine produced seedlings that were larger than controls. Os/G4264 26 97 71% 91% Two of ten 35S::G4264 lines produced seedlings that were larger than controls; four lines produced plants with larger rosettes than controls at the flowering stage. At/G2632 28 98 73% 72% None examined thus far have been found that were larger or had a faster growth rate than controls, and some 35S::G2632 seedlings were smaller than controls; At/G1334 30 99 70% 65% Four of ten 35S::G1334 lines tested produced seedlings that were larger than controls. At/G926 32 100 66% 67% Seedlings overexpressing G926-YFP fusion proteins were similar in size and growth rate to controls. However, the average fruit weights of 35S::G926 tomato plants were within the top 4% of all tomato lines tested (plants comprised the one component expression system of SEQ ID NO: 140), and the average fruit weights of cruciferin::G926 tomato plants were within the top 10% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 205 and 207); empty vector controls were in the 56.sup.th percentile. At/G927 34 101 64% 57% 35S::G927 seedlings were similar in size and growth rate to controls.

TABLE-US-00007 TABLE 7 Yield-related experimental results obtained with HAP5 overexpressors % Identity % Identity of of conserved conserved domain in domain in SEQ ID first first NO: of column to column to SEQ ID CCAAT- conserved conserved NO: of binding domain of domain of GID polypeptide domain G3911 G3543 Experimental Observations Zm/G3911 36 102 100% 83% Nine 35S::G3911 lines produced seedlings that were larger than controls, and two lines had larger rosettes at their late flowering stage. Os/G3546 38 103 100% 83% All ten 35S::G3546 lines tested produced seedlings that were larger than controls. Zm/G3909 40 104 96% 80% Seven 35S::G3909 lines produced seedlings that were larger than controls, and seven lines had larger rosettes at their early flowering stage. Le/G3894 202 203 89% 81%% Seedlings from a single line of 35S::G3894 plants of ten lines tested were larger and more vigorous than controls seven days after planting. Zm/G3552 42 105 86% 84% Eight 35S::G3552 lines produced seedlings that were larger than controls, and one line had slightly broader leaves than controls at its early flowering stage. At/G483 44 106 86% 83% 35S::G483 overexpressors were wild-type in size and growth rate in experiments performed to date Gm/G3547 46 107 87% 83% Three 35S::G3547 lines produced seedlings that were larger than controls. At/G714 48 108 87% 81% Three 35S::G714 lines had larger rosettes at their late flowering stage. Os/G3542 50 109 86% 84% Five of ten 35S::G3542 lines tested produced seedlings that were larger than controls. At/G489 52 110 87% 81% Thirteen G489-YFP fusion lines had larger rosettes than controls at their late flowering stage. Os/G3544 54 111 84% 84% Two of ten 35S::G3544 lines tested produced seedlings that were larger than controls. Gr/G3883 198 199 84% 90% 35S::G3883 overexpressors were wild-type in size and growth rate in experiments performed to date. Gm/G3550 56 112 86% 84% Five of ten 35S::G3550 lines tested produced seedlings that were larger than controls. Gm/G3548 58 113 86% 84% Three of ten 35S::G3548 lines tested produced seedlings that were larger than controls. At/G715 60 114 84% 90% One of ten 35S::G715 lines tested produced seedlings that were larger than controls, and another line was larger at the early flowering stage Gm/G3886 62 115 84% 90% One of ten 35S::G3886 lines tested produced seedlings that were slightly larger than controls. Zm/G3889 64 116 84% 96% Five of ten 35S::G3889 lines tested produced seedlings that were larger than controls. At/G1646 66 117 84% 90% One of ten 35S::G1646 lines tested produced seedlings that were slightly larger than controls; three lines had larger rosettes at early and late flowering stages. Os/G3543 68 118 83% 100% Five of ten 35S::G3543 lines tested produced seedlings that were larger than controls. At/G1820 70 119 73% 71% 35S::G1820 overexpressors were wild-type in size and growth rate in experiments performed to date. At/G1836 72 120 63% 63% One 35S::G1836 line produced larger seedlings in germination and growth assays, and five lines had very full, large rosettes with broad leaves at the late flowering stage. At/G1819 74 121 52% 61% One 35S::G1819 Arabidopsis line was slightly larger than controls at the early flowering stage. The average fruit weights of AP1::G1819 overexpressing tomato plants were within the top 5% of all tomato lines tested (plants comprised the two component expression system of SEQ ID NOs: 191 and 192; empty vector controls were in the 56.sup.th percentile). At/G1818 76 122 55% 55% At late flowering to late stage, many 35S::G1818 lines produced large, full rosettes. At/G490 78 123 44% 47% Two 35S::G490 lines produced larger fuller rosettes than controls at the late flowering stage. At/G3074 80 124 37% 39% Two 35S::G3074 lines produced larger seedlings in germination and growth assays and five lines had slightly larger rosettes than controls. At/G1249 82 125 34% 34% Two 35S::G1249 lines of ten lines tested of overexpressors produced larger seedlings in germination assays. At/G3075 84 126 22% 23% 35S::G3075 overexpressors were wild-type in size and growth rate in experiments performed to date.

Utilities of HAP2 and HAP5 Transcription Factors in Plants

[0176] Based on the data obtained in the above-disclosed Examples, the increased size, height and/or biomass of plants that overexpress HAP2 or HAP5 transcription factors indicate that these sequences when overexpressed may be used to improve yield of commercially valuable plants or to help these plants become established more successfully or quickly.

Example VII

Transformation of Dicots to Produce Increased Yield

[0177] Crop species that overexpress polypeptides of the invention may produce plants with increased growth rate, size, biomass and/or yield in both stressed and non-stressed conditions. Thus, polynucleotide sequences listed in the Sequence Listing recombined into, for example, one of the expression vectors of the invention, or another suitable expression vector, may be transformed into a plant for the purpose of modifying plant traits for the purpose of improving yield and/or quality. The expression vector may contain a constitutive, tissue-specific or inducible promoter operably linked to the polynucleotide. The cloning vector may be introduced into a variety of plants by means well known in the art such as, for example, direct DNA transfer or Agrobacterium tumefaciens-mediated transformation. It is now routine to produce transgenic plants using most dicot plants (see Weissbach and Weissbach, 1989; Gelvin et al., 1990; Herrera-Estrella et al., 1983; Bevan, 1984; and Klee, 1985). Methods for analysis of traits are routine in the art and examples are disclosed above.

[0178] Numerous protocols for the transformation of tomato and soy plants have been previously described, and are well known in the art. Gruber et al. (1993) and Glick and Thompson (1993) describe several expression vectors and culture methods that may be used for cell or tissue transformation and subsequent regeneration. For soybean transformation, methods are described by Miki et al. (1993) and U.S. Pat. No. 5,563,055, (Townsend and Thomas), issued Oct. 8, 1996.

[0179] There are a substantial number of alternatives to Agrobacterium-mediated transformation protocols, other methods for the purpose of transferring exogenous genes into soybeans or tomatoes. One such method is microprojectile-mediated transformation, in which DNA on the surface of microprojectile particles is driven into plant tissues with a biolistic device (see, for example, Sanford et al., 1987; Christou et al., 1992; Sanford, 1993; Klein et al., 1987; U.S. Pat. No. 5,015,580 (Christou et al), issued May 14, 1991; and U.S. Pat. No. 5,322,783 (Tomes et al., issued Jun. 21, 1994)).

[0180] Alternatively, sonication methods (see, for example, Zhang et al., 1991); direct uptake of DNA into protoplasts using CaCl.sub.2 precipitation, polyvinyl alcohol or poly-L-ornithine (see, for example, Hain et al., 1985; Draper et al., 1982); liposome or spheroplast fusion (see, for example, Deshayes et al., 1985); Christou et al., 1987); and electroporation of protoplasts and whole cells and tissues (see, for example, Donn et al., 1990; D'Halluin et al., 1992; and Spencer et al., 1994) have been used to introduce foreign DNA and expression vectors into plants.

[0181] After a plant or plant cell is transformed (and the latter regenerated into a plant), the transformed plant may be crossed with itself or a plant from the same line, a non-transformed or wild-type plant, or another transformed plant from a different transgenic line of plants. Crossing provides the advantages of producing new and often stable transgenic varieties. Genes and the traits they confer that have been introduced into a tomato or soybean line may be moved into distinct lines of plants using traditional backcrossing techniques well known in the art. Transformation of tomato plants may be conducted using the protocols of Koornneef et al (1986), and in U.S. Pat. No. 6,613,962, the latter method described in brief here. Eight day old cotyledon explants are precultured for 24 hours in Petri dishes containing a feeder layer of Petunia hybrida suspension cells plated on MS medium with 2% (w/v) sucrose and 0.8% agar supplemented with 10 .mu.M .quadrature.-naphthalene acetic acid and 4.4 .mu.M 6-benzylaminopurine. The explants are then infected with a diluted overnight culture of Agrobacterium tumefaciens containing an expression vector comprising a polynucleotide of the invention for 5-10 minutes, blotted dry on sterile filter paper and cocultured for 48 hours on the original feeder layer plates. Culture conditions are as described above. Overnight cultures of Agrobacterium tumefaciens are diluted in liquid MS medium with 2% (w/v/) sucrose, pH 5.7) to an OD.sub.600 of 0.8.

[0182] Following cocultivation, the cotyledon explants are transferred to Petri dishes with selective medium comprising MS salts with 4.56 .mu.M zeatin, 67.3 .mu.M vancomycin, 418.9 .mu.M cefotaxime and 171.6 .mu.M kanamycin sulfate, and cultured under the culture conditions described above. The explants are subcultured every three weeks onto fresh medium. Emerging shoots are dissected from the underlying callus and transferred to glass jars with selective medium without zeatin to form roots. The formation of roots in a kanamycin sulfate-containing medium is a positive indication of a successful transformation.

[0183] Transformation of soybean plants may be conducted using the methods found in, for example, U.S. Pat. No. 5,563,055 (Townsend et al., issued Oct. 8, 1996), described in brief here. In this method soybean seed is surface sterilized by exposure to chlorine gas evolved in a glass bell jar. Seeds are germinated by plating on 1/10 strength agar solidified medium without plant growth regulators and culturing at 28.degree. C. with a 16 hour day length. After three or four days, seed may be prepared for cocultivation. The seedcoat is removed and the elongating radicle removed 3-4 mm below the cotyledons.

[0184] Overnight cultures of Agrobacterium tumefaciens harboring the expression vector comprising a polynucleotide of the invention are grown to log phase, pooled, and concentrated by centrifugation. Inoculations are conducted in batches such that each plate of seed was treated with a newly resuspended pellet of Agrobacterium. The pellets are resuspended in 20 ml inoculation medium. The inoculum is poured into a Petri dish containing prepared seed and the cotyledonary nodes are macerated with a surgical blade. After 30 minutes the explants are transferred to plates of the same medium that has been solidified. Explants are embedded with the adaxial side up and level with the surface of the medium and cultured at 22.degree. C. for three days under white fluorescent light. These plants may then be regenerated according to methods well established in the art, such as by moving the explants after three days to a liquid counter-selection medium (see U.S. Pat. No. 5,563,055).

[0185] The explants may then be picked, embedded and cultured in solidified selection medium. After one month on selective media transformed tissue becomes visible as green sectors of regenerating tissue against a background of bleached, less healthy tissue. Explants with green sectors are transferred to an elongation medium. Culture is continued on this medium with transfers to fresh plates every two weeks. When shoots are 0.5 cm in length they may be excised at the base and placed in a rooting medium.

Example VIII

Transformation of Monocots to Produce Increased Yield

[0186] Members of the family Gramineae, including turfgrass or other grasses such as Miscanthus, Panicum virgatum or other Panicum species, or cereal plants such as barley, corn, rice, rye, sorghum, or wheat, may be transformed with the present polynucleotide sequences, including monocot or dicot-derived sequences such as those presented in the present Tables 1-7, cloned into a vector containing a kanamycin-resistance marker, and expressed constitutively under, for example, the CaMV 35S, STM, AP1, LPT1, cruciferin, or COR15 promoters, or with other tissue-specific or inducible promoters. The expression vectors may be one found in the Sequence Listing, or any other suitable expression vector may be similarly used. For example, pMEN020 may be modified to replace the NptII coding region with the Bar gene of Streptomyces hygroscopicus that confers resistance to phosphinothricin. The Kpnl and BglII sites of the Bar gene are removed by site-directed mutagenesis with silent codon changes.

[0187] The cloning vector may be introduced into a variety of cereal plants by means well known in the art including direct DNA transfer or Agrobacterium tumefaciens-mediated transformation. The latter approach may be accomplished by a variety of means, including, for example, that of U.S. Pat. No. 5,591,616, in which monocotyledon callus is transformed by contacting dedifferentiating tissue with the Agrobacterium containing the cloning vector.

[0188] The sample tissues are immersed in a suspension of 3.times.10.sup.-9 cells of Agrobacterium containing the cloning vector for 3-10 minutes. The callus material is cultured on solid medium at 25.degree. C. in the dark for several days. The calli grown on this medium are transferred to Regeneration medium. Transfers are continued every 2-3 weeks (2 or 3 times) until shoots develop. Shoots are then transferred to Shoot-Elongation medium every 2-3 weeks. Healthy looking shoots are transferred to rooting medium and after roots have developed, the plants are placed into moist potting soil.

[0189] The transformed plants are then analyzed for the presence of the NPTII gene/kanamycin resistance by ELISA, using the ELISA NPTII kit from 5Prime-3Prime Inc. (Boulder, Colo.).

[0190] It is also routine to use other methods to produce transgenic plants of most cereal crops (Vasil, 1994) such as corn, wheat, rice, sorghum (Cassas et al., 1993), and barley (Wan and Lemeaux, 1994). DNA transfer methods such as the microprojectile method can be used for corn (Fromm et al., 1990; Gordon-Kamm et al., 1990; Ishida, 1990), wheat (Vasil et al., 1992; Vasil et al., 1993; Weeks et al., 1993), and rice (Christou, 1991; Hiei et al., 1994; Aldemita and Hodges, 1996; and Hiei et al., 1997). For most cereal plants, embryogenic cells derived from immature scutellum tissues are the preferred cellular targets for transformation (Hiei et al., 1997; Vasil, 1994). For transforming corn embryogenic cells derived from immature scutellar tissue using microprojectile bombardment, the A188XB73 genotype is the preferred genotype (Fromm et al., 1990; Gordon-Kamm et al., 1990). After microprojectile bombardment, the tissues are selected on phosphinothricin to identify the transgenic embryogenic cells (Gordon-Kamm et al., 1990). Transgenic plants are regenerated by standard corn regeneration techniques (Fromm et al., 1990; Gordon-Kamm et al., 1990).

Example IX

Expression and Analysis of Increased Yield in Non-Arabidopsis Species

[0191] It is expected that structurally similar orthologs of the HAP2 or HAP5 polypeptide sequences, including those found in the Sequence Listing, can confer increased yield relative to control plants.

[0192] Northern blot analysis, RT-PCR or microarray analysis of the regenerated, transformed plants may be used to show expression of a polypeptide or the invention and related genes that are capable of inducing increased growth rate and/or larger size of the plants, including larger seed, plant products or plant parts, such as leaves, roots or stems.

[0193] After a dicot plant, monocot plant or plant cell has been transformed (and the latter regenerated into a plant) and shown to have greater size, improved planting density, that is, able to tolerate greater planting density with a coincident increase in yield in the presence or absence of stress conditions, the transformed monocot plant may be crossed with itself or a plant from the same line, a non-transformed or wild-type monocot plant, or another transformed monocot plant from a different transgenic line of plants.

[0194] The function of specific polypeptides of the invention, including closely-related orthologs, have been analyzed and may be further characterized and incorporated into crop plants. The ectopic overexpression of these sequences may be regulated using constitutive, inducible, or tissue specific regulatory elements. Genes that have been examined and have been shown to modify plant traits (including increasing growth rate and/or yield) encode polypeptides found in the Sequence Listing. In addition to these sequences, it is expected that newly discovered polynucleotide and polypeptide sequences closely related to polynucleotide and polypeptide sequences found in the Sequence Listing can also confer alteration of traits in a similar manner to the sequences found in the Sequence Listing, when transformed into any of a considerable variety of plants of different species, and including dicots and monocots. The polynucleotide and polypeptide sequences derived from monocots (e.g., the rice sequences) may be used to transform both monocot and dicot plants, and those derived from dicots (e.g., the Arabidopsis and soy genes) may be used to transform either group, although it is expected that some of these sequences will function best if the gene is transformed into a plant from the same group as that from which the sequence is derived.

[0195] It is expected that the same methods may be applied to identify other useful and valuable sequences of the present polypeptide clades, and the sequences may be derived from a broad range of plant species.

REFERENCES CITED

[0196] Aldemita and Hodges (1996) Planta 199: 612-617 [0197] Altschul (1990) J. Mol. Biol. 215: 403-410 [0198] Altschul (1993) J. Mol. Evol. 36: 290-300 [0199] Anderson and Young (1985) "Quantitative Filter Hybridisation", In: Hames and Higgins, ed., Nucleic Acid Hybridisation, A Practical Approach. Oxford, IRL Press, 73-111 [0200] Ausubel et al. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., unit 7.7 [0201] Bairoch et al. (1997) Nucleic Acids Res. 25: 217-221 [0202] Bechtold and Pelletier (1998) Methods Mol. Biol. 82: 259-266 [0203] Berger and Kimmel (1987), "Guide to Molecular Cloning Techniques", in Methods in Enzymology, vol. 152, Academic Press, Inc., San Diego, Calif. [0204] Bevan (1984) Nucleic Acids Res. 12: 8711-8721 [0205] Bhattacharjee et al. (2001) Proc. Natl. Acad. Sci. USA 98: 13790-13795 [0206] Borevitz et al. (2000) Plant Cell 12: 2383-2393 [0207] Boss and Thomas (2002) Nature, 416: 847-850 [0208] Bruce et al. (2000) Plant Cell 12: 65-79 [0209] Bucher (1990) J. Mol. Biol. 212: 563-578 [0210] Bucher and Trifonov (1988) J. Biomol. Struct. Dyn. 5: 1231-1236 [0211] Cassas et al. (1993) Proc. Natl. Acad. Sci. USA 90: 11212-11216 [0212] Cheikh et al. (2003) U.S. Patent Application No. 20030101479 [0213] Christou et al. (1987) Proc. Natl. Acad. Sci. USA 84: 3962-3966 [0214] Christou (1991) Bio/Technol. 9:957-962 [0215] Christou et al. (1992) Plant. J. 2: 275-281 [0216] Coupland (1995) Nature 377: 482-483 [0217] Daly et al. (2001) Plant Physiol. 127: 1328-1333 [0218] Dang et al. (1996) J. Bacteriol. 178: 1842-1849 [0219] Deshayes et al. (1985) EMBO J., 4: 2731-2737 [0220] D'Halluin et al. (1992) Plant Cell 4: 1495-1505 [0221] Donn et al.(1990) in Abstracts of VIIth International Congress on Plant Cell and Tissue Culture IAPTC, A2-38: 53 [0222] Doolittle, ed. (1996) Methods in Enzymology, vol. 266: "Computer Methods for Macromolecular Sequence Analysis" Academic Press, Inc., San Diego, Calif., USA [0223] Draper et al. (1982) Plant Cell Physiol. 23: 451-458 [0224] Eddy (1996) Curr. Opin. Sir. Biol. 6: 361-365 [0225] Edwards et al. (1998) Plant Physiol. 117: 1015-1022 [0226] Eisen (1998) Genome Res. 8: 163-167 [0227] Feng and Doolittle (1987) J. Mol. Evol. 25: 351-360 [0228] Forsburg and Guarente (1988) Genes Dev. 3: 1166-1178 [0229] Forsburg and Guarente (1989) Genes Dev. 3: 1166-1178 [0230] Fowler and Thomashow (2002) Plant Cell 14: 1675-1690 [0231] Fromm et al. (1990) Bio/Technol. 8: 833-839 [0232] Fu et al. (2001) Plant Cell 13: 1791-1802 [0233] Gancedo (1998) Microbiol. Mol. Biol. Rev. 62: 334-361 [0234] Gelinas et al. (1985) Prog. Clin. Biol. Res. 191: 125-139 [0235] Gelvin et al. (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers [0236] Gilmour et al. (1998) Plant J. 16: 433-442 [0237] Glick and Thompson (1993) Methods in Plant Molecular Biology and Biotechnology. eds., CRC Press, Inc., Boca Raton [0238] Gruber et al. (in Glick and Thompson (1993) Methods in Plant Molecular Biology and Biotechnology. eds., CRC Press, Inc., Boca Raton [0239] Goodrich et al. (1993) Cell 75: 519-530 [0240] Gordon-Kamm et al. (1990) Plant Cell 2: 603-618 [0241] Hain et al. (1985) Mol. Gen. Genet. 199: 161-168 [0242] Haymes et al. (1985) Nucleic Acid Hybridization: A Practical Approach, IRL Press, Washington, D.C. [0243] He et al. (2000) Transgenic Res. 9: 223-227 [0244] Hein (1990) Methods Enzymol. 183: 626-645 [0245] Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915 [0246] Henikoff and Henikoff (1991) Nucleic Acids Res. 19: 6565-6572 [0247] Herrera-Estrella et al. (1983) Nature 303: 209 [0248] Hiei et al. (1994) Plant J. 6:271-282 [0249] Hiei et al. (1997) Plant Mol. Biol. 35:205-218 [0250] Higgins and Sharp (1988) Gene 73: 237-244 [0251] Higgins et al. (1996) Methods Enzymol. 266: 383-402 [0252] Ishida (1990) Nature Biotechnol. 14:745-750 [0253] Jaglo et al. (2001) Plant Physiol. 127: 910-917 [0254] Kashima et al. (1985) Nature 313: 402-404 [0255] Kim et al. (2001) Plant J. 25: 247-259 [0256] Kimmel (1987) Methods Enzymol. 152: 507-511 [0257] Klee (1985) Bio/Technology 3: 637-642 [0258] Klein et al. (1987) Nature 327: 70-73 [0259] Koornneef et al (1986) in Tomato Biotechnology: Alan R. Liss, Inc., 169-178 [0260] Ku et al. (2000) Proc. Natl. Acad. Sci. USA 97: 9121-9126 [0261] Kyozuka and Shimamoto (2002) Plant Cell Physiol. 43: 130-135 [0262] Li et al. (1992) Nucleic Acids Res. 20: 1087-1091 [0263] Lin et al. (1991) Nature 353: 569-571 [0264] Mandel (1992a) Nature 360: 273-277 [0265] Mandel et al. (1992b) Cell 71-133-143 [0266] Masiero et al. (2002) J. Biol. Chem. 277, 26429-26435 [0267] Mazon et al. (1982) Eur. J. Biochem. 127: 605-608 [0268] Meyers (1995) Molecular Biology and Biotechnology, Wiley VCH, New York, N.Y., p 856-853 [0269] Miki et al. (1993) in Methods in Plant Molecular Biology and Biotechnology, p. 67-88, Glick and Thompson, eds., CRC Press, Inc., Boca Raton [0270] Mount (2001), in Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p. 543 [0271] Muller et al. (2001) Plant J. 28: 169-179

[0272] Nandi et al. (2000) Curr. Biol. 10: 215-218

[0273] Peng et al. (1997) Genes Development 11: 3194-3205)

[0274] Peng et al. (1999) Nature 400: 256-261

[0275] Ratcliffe et al. (2001) Plant Physiol. 126: 122-132

[0276] Ratcliffe et al. (2003) Plant Cell 15: 1159-1169

[0277] Riechmann et al. (2000a) Science 290: 2105-2110

[0278] Riechmann and Ratcliffe (2000b) Curr. Opin. Plant Biol. 3, 423-434

[0279] Rieger et al. (1976) Glossary of Genetics and Cytogenetics: Classical and Molecular, 4th ed., Springer Verlag, Berlin

[0280] Robson et al. (2001) Plant J. 28: 619-631

[0281] Romier et al. (2003) J. Biol. Chem. 278: 1336-1345

[0282] Sadowski et al. (1988) Nature 335: 563-564 [0283] Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. [0284] Sanford et al. (1987) Part. Sci. Technol. 5:27-37 [0285] Sanford (1993) Methods Enzymol. 217: 483-509 [0286] Shpaer (1997) Methods Mol. Biol. 70: 173-187 [0287] Smith et al. (1992) Protein Engineering 5: 35-51 [0288] Sonnhammer et al. (1997) Proteins 28: 405-420 [0289] Spencer et al. (1994) Plant Mol. Biol. 24: 51-61 [0290] Suzuki et al. (2001) Plant J. 28: 409-418 [0291] Tasanen et al. (1992) J. Biol. Chem. 267: 11513-11519 [0292] Thompson et al. (1994) Nucleic Acids Res. 22: 4673-4680 [0293] Tudge (2000) in The Variety of Life, Oxford University Press, New York, NY pp. 547-606 [0294] Vasil et al. (1992) Bio/Technol. 10:667-674 [0295] Vasil et al. (1993) Bio/Technol. 11:1553-1558 [0296] Vasil (1994) Plant Mol. Biol. 25: 925-937 [0297] Wahl and Berger (1987) Methods Enzymol. 152: 399-407 [0298] Wan and Lemeaux (1994) Plant Physiol. 104: 37-48 [0299] Weeks et al. (1993) Plant Physiol. 102:1077-1084 [0300] Weigel and Nilsson (1995) Nature 377: 482-500 [0301] Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, Academic Press [0302] Xu et al. (2001) Proc. Natl. Acad. Sci. USA 98: 15089-15094 [0303] Zhang et al. (1991) Bio/Technology 9: 996-997

[0304] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

[0305] The present invention is not limited by the specific embodiments described herein. The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the claims. Modifications that become apparent from the foregoing description and accompanying figures fall within the scope of the following claims.

Sequence CWU 1

1

2161953DNAArabidopsis thalianaG929 1ggagagacct ttaacaattt tctgagggta agatccagag attgattgaa tcagcttact 60attttatata attcagtttg ttgttcctca gacttgtaac taggacagtc ttctcatgaa 120tcatgacttc ttcagtacat gagctctctg ataacaatga aagtcatgcg aagaaagaac 180gtccagattc ccaaacccga ccacaggttc cttcaggacg aagttcggaa tctattgata 240caaactctgt ctactcagag cccatggcac atggattata cccgtatcca gatccttact 300acagaagcgt ctttgcacag caagcgtatc ttccacatcc ctatcctggg gtccaattgc 360agttaatggg aatgcagcag ccaggagttc cattgcaatg tgatgcagtc gaggaacctg 420tttttgttaa cgcaaagcaa taccatggta tactcaggcg caggcaatcc cgggcaaaac 480ttgaggcacg aaatagagcc atcaaagcaa aaaagccata catgcatgaa tctcggcatt 540tacatgcgat aagacggcca agaggatgtg gtggccggtt tctcaatgcc aagaaggaaa 600atggagacca caaggaggag gaggaggcaa cctctgatga gaacacttca gaagcaagtt 660ccagcctcag gtccgagaaa ttagctatgg ctacttctgg tcctaatggt agatcttgag 720gaaggtttct gcacaaccac aagtttagtt tctattttgg gtggatgttc tcagggcatc 780atcgtcttta gtgtttttgg atacgctgtg tacaggttat ttgctagggt aaactttgtt 840ttagcgatta gaaataaaac taagcaaaga aatgaaaagt gtgattggaa gtattgttgt 900accaaattga tattctttgc caatgaactc atgttttgga aagtaaaaaa aaa 9532198PRTArabidopsis thalianaG929 polypeptide (domain in aa coordinates 98-157) 2Met Thr Ser Ser Val His Glu Leu Ser Asp Asn Asn Glu Ser His Ala 1 5 10 15 Lys Lys Glu Arg Pro Asp Ser Gln Thr Arg Pro Gln Val Pro Ser Gly 20 25 30 Arg Ser Ser Glu Ser Ile Asp Thr Asn Ser Val Tyr Ser Glu Pro Met 35 40 45 Ala His Gly Leu Tyr Pro Tyr Pro Asp Pro Tyr Tyr Arg Ser Val Phe 50 55 60 Ala Gln Gln Ala Tyr Leu Pro His Pro Tyr Pro Gly Val Gln Leu Gln 65 70 75 80 Leu Met Gly Met Gln Gln Pro Gly Val Pro Leu Gln Cys Asp Ala Val 85 90 95 Glu Glu Pro Val Phe Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg 100 105 110 Arg Arg Gln Ser Arg Ala Lys Leu Glu Ala Arg Asn Arg Ala Ile Lys 115 120 125 Ala Lys Lys Pro Tyr Met His Glu Ser Arg His Leu His Ala Ile Arg 130 135 140 Arg Pro Arg Gly Cys Gly Gly Arg Phe Leu Asn Ala Lys Lys Glu Asn 145 150 155 160 Gly Asp His Lys Glu Glu Glu Glu Ala Thr Ser Asp Glu Asn Thr Ser 165 170 175 Glu Ala Ser Ser Ser Leu Arg Ser Glu Lys Leu Ala Met Ala Thr Ser 180 185 190 Gly Pro Asn Gly Arg Ser 195 3573DNAArabidopsis thalianaG2344 3atgacttctt caatccatga gctttctgat aacattggaa gtcatgagaa gcaagaacag 60agagattctc atttccaacc accaatccct tctgcaagaa attatgaatc aattgttaca 120agtttagtct actcagaccc ggggactaca aattccatgg cacctggaca atatccatat 180ccagatcctt actacagaag catatttgca ccgcctccac aaccgtatac cggggtacat 240ctacagttga tgggagtgca gcaacaaggc gttcctttac catctgatgc agtcgaggaa 300cctgtttttg ttaacgcaaa gcaataccac ggtatactaa ggcgcagaca atcaagagca 360agacttgagt ctcagaataa agtcatcaag tcacgtaagc cgtatttgca tgaatctcgg 420catttgcatg cgataagacg accaagagga tgtggcgggc ggtttctaaa tgccaagaag 480gaggatgagc atcacgaaga cagtagtcat gaagaaaaat ccaaccttag cgctggtaaa 540tccgccatgg ctgcttctag tggtacatct tga 5734190PRTArabidopsis thalianaG2344 polypeptide (domain in aa coordinates 100-159) 4Met Thr Ser Ser Ile His Glu Leu Ser Asp Asn Ile Gly Ser His Glu 1 5 10 15 Lys Gln Glu Gln Arg Asp Ser His Phe Gln Pro Pro Ile Pro Ser Ala 20 25 30 Arg Asn Tyr Glu Ser Ile Val Thr Ser Leu Val Tyr Ser Asp Pro Gly 35 40 45 Thr Thr Asn Ser Met Ala Pro Gly Gln Tyr Pro Tyr Pro Asp Pro Tyr 50 55 60 Tyr Arg Ser Ile Phe Ala Pro Pro Pro Gln Pro Tyr Thr Gly Val His 65 70 75 80 Leu Gln Leu Met Gly Val Gln Gln Gln Gly Val Pro Leu Pro Ser Asp 85 90 95 Ala Val Glu Glu Pro Val Phe Val Asn Ala Lys Gln Tyr His Gly Ile 100 105 110 Leu Arg Arg Arg Gln Ser Arg Ala Arg Leu Glu Ser Gln Asn Lys Val 115 120 125 Ile Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala 130 135 140 Ile Arg Arg Pro Arg Gly Cys Gly Gly Arg Phe Leu Asn Ala Lys Lys 145 150 155 160 Glu Asp Glu His His Glu Asp Ser Ser His Glu Glu Lys Ser Asn Leu 165 170 175 Ser Ala Gly Lys Ser Ala Met Ala Ala Ser Ser Gly Thr Ser 180 185 190 51180DNAArabidopsis thalianaG931 5ggaggttctt tgacagacac atgtatcatc aatcttctct gttgaagcag agagagagag 60agctaattgt tgcctctgag tcacatggat aagaaagttt catttactag ctctgtggca 120cattcaactc caccatacct tagtacttcc atctcatggg gacttccaac caaatccaat 180ggtgtgactg aatcactgag tttgaaggtg gtagatgcaa gaccagaacg tcttataaac 240acaaagaata tcagtttcca ggaccaggat tcatcttcaa ctctgtcctc tgctcaatct 300tctaacgatg ttacaagtag tggagatgat aacccctcaa gacaaatctc atttttagca 360cattcagatg tttgtaaagg atttgaagaa actcaaagga agcgatttgc aattaaatca 420ggctcctcca cggcaggaat cgctgatatt cactcttctc cttccaaggc taacttctca 480tttcactatg ccgatccaca ttttggtggt ttaatgcctg cggcttacct accacaggca 540acaatatgga atccccaaat gactcgagtt ccgctaccat tcgatctcat agagaatgag 600cctgtctttg tcaatgcaaa gcaattccat gcaattatga ggaggaggca acagcgtgct 660aagctagagg cgcaaaacaa actaatcaaa gcccgtaagc cgtatcttca tgaatctcga 720catgttcacg ctcttaaacg acctagagga tctggtggaa gattcctaaa caccaaaaag 780cttcaagaat ctacagatcc aaaacaagac atgccaatcc aacagcaaca cgcaacggga 840aacatgtcaa gatttgtgct ttatcagttg cagaacagca atgactgtga ttgttcaacc 900acttctcgct ctgacatcac atctgcttct gacagcgtta atctctttgg acactctgaa 960tttctgatat cagattgccc atctcagaca aacccaacaa tgtatgttca tggtcaatca 1020aatgacatgc atggaggtag gaacacacac catttctctg tccatatctg agccggtgga 1080atctggtaat gtgtacgttc ctacaaaaaa agggaagtca tccttggctg ctacttcgct 1140tattagctag ttcttatttc acacgctttg tccagatatc 11806328PRTArabidopsis thalianaG931 polypeptide (domain in aa coordinates 172-231) 6Met Asp Lys Lys Val Ser Phe Thr Ser Ser Val Ala His Ser Thr Pro 1 5 10 15 Pro Tyr Leu Ser Thr Ser Ile Ser Trp Gly Leu Pro Thr Lys Ser Asn 20 25 30 Gly Val Thr Glu Ser Leu Ser Leu Lys Val Val Asp Ala Arg Pro Glu 35 40 45 Arg Leu Ile Asn Thr Lys Asn Ile Ser Phe Gln Asp Gln Asp Ser Ser 50 55 60 Ser Thr Leu Ser Ser Ala Gln Ser Ser Asn Asp Val Thr Ser Ser Gly 65 70 75 80 Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Leu Ala His Ser Asp Val 85 90 95 Cys Lys Gly Phe Glu Glu Thr Gln Arg Lys Arg Phe Ala Ile Lys Ser 100 105 110 Gly Ser Ser Thr Ala Gly Ile Ala Asp Ile His Ser Ser Pro Ser Lys 115 120 125 Ala Asn Phe Ser Phe His Tyr Ala Asp Pro His Phe Gly Gly Leu Met 130 135 140 Pro Ala Ala Tyr Leu Pro Gln Ala Thr Ile Trp Asn Pro Gln Met Thr 145 150 155 160 Arg Val Pro Leu Pro Phe Asp Leu Ile Glu Asn Glu Pro Val Phe Val 165 170 175 Asn Ala Lys Gln Phe His Ala Ile Met Arg Arg Arg Gln Gln Arg Ala 180 185 190 Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Ala Arg Lys Pro Tyr Leu 195 200 205 His Glu Ser Arg His Val His Ala Leu Lys Arg Pro Arg Gly Ser Gly 210 215 220 Gly Arg Phe Leu Asn Thr Lys Lys Leu Gln Glu Ser Thr Asp Pro Lys 225 230 235 240 Gln Asp Met Pro Ile Gln Gln Gln His Ala Thr Gly Asn Met Ser Arg 245 250 255 Phe Val Leu Tyr Gln Leu Gln Asn Ser Asn Asp Cys Asp Cys Ser Thr 260 265 270 Thr Ser Arg Ser Asp Ile Thr Ser Ala Ser Asp Ser Val Asn Leu Phe 275 280 285 Gly His Ser Glu Phe Leu Ile Ser Asp Cys Pro Ser Gln Thr Asn Pro 290 295 300 Thr Met Tyr Val His Gly Gln Ser Asn Asp Met His Gly Gly Arg Asn 305 310 315 320 Thr His His Phe Ser Val His Ile 325 7956DNAGlycine maxG3920 7agttggtgct aagatgccag ggaaacctga cactgatgat tggcgtgtag agcgtgggga 60gcagattcag tttcagtctt ccatttactc tcatcatcag ccttggtggc gcggagtggg 120ggaaaatgcc tccaaatcat cttcagatga tcagttaaat ggttcaatcg tgaatggtat 180cacgcggtct gagaccaatg ataagtcagg cggaggtgtt gccaaagaat accaaaacat 240caaacatgcc atgttgtcaa ccccatttac catggagaaa catcttgctc caaatcccca 300gatggaactt gttggtcatt cagttgtttt aacatctcct tattcagatg cacagtatgg 360tcaaatcttg actacttacg ggcaacaagt tatgataaat cctcagttgt atggaatgca 420tcatgctaga atgcctttgc cacttgaaat ggaagaggag cctgtttatg tcaatgcgaa 480gcagtatcat ggtattttga ggcgaagaca gtcacgtgct aaggctgaga ttgaaaagaa 540agtaatcaaa aacaggaagc catacctcca tgaatcccgt caccttcatg caatgagaag 600ggcaagaggc aacggtggtc gctttctcaa cacaaagaag cttgaaaata acaattctaa 660ttccacttca gacaaaggca acaatactcg tgcaaacgcc tcaacaaact cgcctaacac 720tcaacttttg ttcaccaaca atttgaatct aggctcatca aatgtttcac aagccacagt 780tcagcacatg cacacagagc agagtttcac tataggttac cataatggaa atggtcttac 840agcactatac cgttcacaag caaatgggaa aaaggaggga aactgctttg gtaaagagag 900ggaccctaat ggggatttca aataacactt ccctcagcca tacagcaaga gttagg 9568303PRTGlycine maxG3920 polypeptide (domain in aa coordinates 149-208) 8Met Pro Gly Lys Pro Asp Thr Asp Asp Trp Arg Val Glu Arg Gly Glu 1 5 10 15 Gln Ile Gln Phe Gln Ser Ser Ile Tyr Ser His His Gln Pro Trp Trp 20 25 30 Arg Gly Val Gly Glu Asn Ala Ser Lys Ser Ser Ser Asp Asp Gln Leu 35 40 45 Asn Gly Ser Ile Val Asn Gly Ile Thr Arg Ser Glu Thr Asn Asp Lys 50 55 60 Ser Gly Gly Gly Val Ala Lys Glu Tyr Gln Asn Ile Lys His Ala Met 65 70 75 80 Leu Ser Thr Pro Phe Thr Met Glu Lys His Leu Ala Pro Asn Pro Gln 85 90 95 Met Glu Leu Val Gly His Ser Val Val Leu Thr Ser Pro Tyr Ser Asp 100 105 110 Ala Gln Tyr Gly Gln Ile Leu Thr Thr Tyr Gly Gln Gln Val Met Ile 115 120 125 Asn Pro Gln Leu Tyr Gly Met His His Ala Arg Met Pro Leu Pro Leu 130 135 140 Glu Met Glu Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly 145 150 155 160 Ile Leu Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Ile Glu Lys Lys 165 170 175 Val Ile Lys Asn Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His 180 185 190 Ala Met Arg Arg Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys 195 200 205 Lys Leu Glu Asn Asn Asn Ser Asn Ser Thr Ser Asp Lys Gly Asn Asn 210 215 220 Thr Arg Ala Asn Ala Ser Thr Asn Ser Pro Asn Thr Gln Leu Leu Phe 225 230 235 240 Thr Asn Asn Leu Asn Leu Gly Ser Ser Asn Val Ser Gln Ala Thr Val 245 250 255 Gln His Met His Thr Glu Gln Ser Phe Thr Ile Gly Tyr His Asn Gly 260 265 270 Asn Gly Leu Thr Ala Leu Tyr Arg Ser Gln Ala Asn Gly Lys Lys Glu 275 280 285 Gly Asn Cys Phe Gly Lys Glu Arg Asp Pro Asn Gly Asp Phe Lys 290 295 300 91516DNAArabidopsis thalianaG928 9ctcatggcga tgttggtttc ccaggaaagg taaaagagac ggagacgaac caaaacaagg 60aagaaagaag aagatcttac atacgaagat cactctctga ttcactctga gagacaaact 120ggtttacttt ggttctgttt gacaaaagga gacatgcaaa aataaatctc tatcccttgt 180ttttcttctt cgcttcatcg attactcaaa gaggttgttg gttgtgagaa taattagctt 240gttaaggaag acgttatgat gcatcagatg ttgaataaga aagattcagc tactcattcc 300actttgccat accttaatac tagcatctct tggggagtgg ttccaactga ttccgttgct 360aatcgtcgcg gtcctgctga atcactaagc ttgaaggttg attcaagacc tgggcatata 420caaactacaa agcaaatcag ttttcaggac caagattcat cttcaacaca gtccactggt 480caatcttata ctgaagttgc tagtagtggt gatgataatc cttccagaca aatctccttt 540tcggctaaat caggatctga aataactcaa cggaaggggt ttgcaagtaa tcctaaacaa 600ggctcgatga ctggatttcc gaatattcac tttgctcctg cacaggctaa tttctcattt 660cactatgctg atccacatta tggtggttta ttagctgcaa cttacctacc acaggcacca 720acatgcaatc ctcaaatggt gagtatgatt cctggtcgtg ttcctttacc agcagagctc 780acagaaactg atccagtctt tgtcaatgcg aagcaatacc acgcaattat gaggaggaga 840cagcaacgtg ctaagcttga ggctcaaaac aaactaatca gagcccgtaa gccctatctt 900catgagtctc gacatgttca tgctcttaaa aggccaagag gatctggtgg aagattccta 960aacaccaaaa aacttcttca agaatccgaa caggctgctg ctagagaaca agaacaggac 1020aagttaggcc aacaggtaaa cagaaagacc aacatgtcta gattcgaagc tcatatgctg 1080cagaacaaca aagaccgcag ctcaaccact tctggctcag acatcacctc tgtttccgac 1140ggtgctgata tctttggaca cactgaattc cagttttcag gtttcccaac tccgataaac 1200cgagccatgc ttgttcatgg tcagtctaat gacatgcatg gaggtggaga catgcaccat 1260ttctctgtcc atatctgaga cagtggatct tggtgctgtg ttcatgttcc caccaagaag 1320gggaagtcat ccttggctac tactagttct ttcgcttgtt gtaacttcag tgtttttatt 1380tcatattatg tctgtgttag acatcacaag aacgaccaag atcttcactt tgaaacactc 1440tattaccttt tcatcttctg ttaccatgga tctcttgtct aaactagtga tatgattctt 1500ctgataaaaa aaaaaa 151610340PRTArabidopsis thalianaG928 polypeptide (domain in aa coordinates 179-238) 10Met Met His Gln Met Leu Asn Lys Lys Asp Ser Ala Thr His Ser Thr 1 5 10 15 Leu Pro Tyr Leu Asn Thr Ser Ile Ser Trp Gly Val Val Pro Thr Asp 20 25 30 Ser Val Ala Asn Arg Arg Gly Pro Ala Glu Ser Leu Ser Leu Lys Val 35 40 45 Asp Ser Arg Pro Gly His Ile Gln Thr Thr Lys Gln Ile Ser Phe Gln 50 55 60 Asp Gln Asp Ser Ser Ser Thr Gln Ser Thr Gly Gln Ser Tyr Thr Glu 65 70 75 80 Val Ala Ser Ser Gly Asp Asp Asn Pro Ser Arg Gln Ile Ser Phe Ser 85 90 95 Ala Lys Ser Gly Ser Glu Ile Thr Gln Arg Lys Gly Phe Ala Ser Asn 100 105 110 Pro Lys Gln Gly Ser Met Thr Gly Phe Pro Asn Ile His Phe Ala Pro 115 120 125 Ala Gln Ala Asn Phe Ser Phe His Tyr Ala Asp Pro His Tyr Gly Gly 130 135 140 Leu Leu Ala Ala Thr Tyr Leu Pro Gln Ala Pro Thr Cys Asn Pro Gln 145 150 155 160 Met Val Ser Met Ile Pro Gly Arg Val Pro Leu Pro Ala Glu Leu Thr 165 170 175 Glu Thr Asp Pro Val Phe Val Asn Ala Lys Gln Tyr His Ala Ile Met 180 185 190 Arg Arg Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile 195 200 205 Arg Ala Arg Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu 210 215 220 Lys Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu 225 230 235 240 Leu Gln Glu Ser Glu Gln Ala Ala Ala Arg Glu Gln Glu Gln Asp Lys 245 250 255 Leu Gly Gln Gln Val Asn Arg Lys Thr Asn Met Ser Arg Phe Glu Ala 260 265 270 His Met Leu Gln Asn Asn Lys Asp Arg Ser Ser Thr Thr Ser Gly Ser 275 280 285 Asp Ile Thr Ser Val Ser Asp Gly Ala Asp Ile Phe Gly His Thr Glu 290 295 300 Phe Gln Phe Ser Gly Phe Pro Thr Pro Ile Asn Arg Ala Met Leu Val 305 310 315 320 His Gly Gln Ser Asn Asp Met His Gly Gly Gly Asp Met His His Phe 325 330 335 Ser Val His Ile 340 11927DNAArabidopsis thalianaG1782 11atgcaagtgt ttcaaaggaa agaagattca tcttggggaa actcaatgcc tacaacaaat 60tcaaatattc aaggatctga atctttcagc ttgactaagg atatgataat gtctacaaca 120caattacccg cgatgaaaca ttcgggtttg cagctgcaaa atcaagattc aacctcatca 180caatctactg aagaagaatc aggcggcggt gaagttgcaa gctttggaga atataagcgt 240tatggatgca gcattgttaa taacaatctc tcaggttaca tcgaaaactt gggaaagcct 300attgaaaatt atactaagtc aattactacc tcgtcgatgg tgtctcaaga ctctgtgttt 360cctgctccta

cttctggtca aatatcttgg tctcttcaat gtgctgaaac gtcacatttc 420aatggtttct tggctcctga atatgcatca acaccaacgg cgctgccaca tttagagatg 480atgggtttgg tttcttcaag agtgccattg cctcatcaca ttcaagagaa tgaaccaata 540tttgtcaatg cgaaacagta tcatgcgatt ctccgtcgca ggaagcaccg tgctaaactc 600gaagctcaga acaaactcat caaatgccgt aaaccgtacc ttcatgagtc tcgccatctt 660catgctttaa agagagctag aggctccggt ggacgtttcc tcaatacaaa gaagcttcaa 720gaatcatcaa actcactgtg ttcttctcaa atggcaaatg gacaaaattt ctctatgagc 780cctcacggtg gtggaagcgg aatcgggtct agttcgatct caccgagctc caattcaaac 840tgtatcaaca tgttccaaaa cccgcagttc agattctcag gttatccgtc aacacaccat 900gcctcagctc tcatgtcagg gacttga 92712308PRTArabidopsis thalianaG1782 polypeptide (domain in aa coordinates 178-237) 12Met Gln Val Phe Gln Arg Lys Glu Asp Ser Ser Trp Gly Asn Ser Met 1 5 10 15 Pro Thr Thr Asn Ser Asn Ile Gln Gly Ser Glu Ser Phe Ser Leu Thr 20 25 30 Lys Asp Met Ile Met Ser Thr Thr Gln Leu Pro Ala Met Lys His Ser 35 40 45 Gly Leu Gln Leu Gln Asn Gln Asp Ser Thr Ser Ser Gln Ser Thr Glu 50 55 60 Glu Glu Ser Gly Gly Gly Glu Val Ala Ser Phe Gly Glu Tyr Lys Arg 65 70 75 80 Tyr Gly Cys Ser Ile Val Asn Asn Asn Leu Ser Gly Tyr Ile Glu Asn 85 90 95 Leu Gly Lys Pro Ile Glu Asn Tyr Thr Lys Ser Ile Thr Thr Ser Ser 100 105 110 Met Val Ser Gln Asp Ser Val Phe Pro Ala Pro Thr Ser Gly Gln Ile 115 120 125 Ser Trp Ser Leu Gln Cys Ala Glu Thr Ser His Phe Asn Gly Phe Leu 130 135 140 Ala Pro Glu Tyr Ala Ser Thr Pro Thr Ala Leu Pro His Leu Glu Met 145 150 155 160 Met Gly Leu Val Ser Ser Arg Val Pro Leu Pro His His Ile Gln Glu 165 170 175 Asn Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg 180 185 190 Arg Arg Lys His Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys 195 200 205 Cys Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys 210 215 220 Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Lys Leu Gln 225 230 235 240 Glu Ser Ser Asn Ser Leu Cys Ser Ser Gln Met Ala Asn Gly Gln Asn 245 250 255 Phe Ser Met Ser Pro His Gly Gly Gly Ser Gly Ile Gly Ser Ser Ser 260 265 270 Ile Ser Pro Ser Ser Asn Ser Asn Cys Ile Asn Met Phe Gln Asn Pro 275 280 285 Gln Phe Arg Phe Ser Gly Tyr Pro Ser Thr His His Ala Ser Ala Leu 290 295 300 Met Ser Gly Thr 305 131011DNAArabidopsis thalianaG1363 13cgtctaccta ctatggtctg gagattagtt cgtttattga actaatgttt tagacaatgc 60aagagttcca tagtagcaaa gattcattgc cttgtcctgc aacttcttgg gataactctg 120tcttcaccaa ctcaaatgtc caaggatcat catccttgac cgataacaac actttaagct 180tgacaatgga gatgaaacaa actggttttc aaatgcagca ctatgattcc tcctctactc 240aatccactgg aggagaatca tatagtgaag ttgctagctt aagtgaacct actaatcgtt 300atggccacaa cattgttgtc actcatctct caggttacaa agaaaacccg gaaaatccta 360ttggaagtca ttcgatatca aaggtgtctc aagattcagt ggttcttcct attgaggcgg 420cttcttggcc tttacacggc aatgtaacgc cacatttcaa tggtttcttg tcttttcctt 480atgcatcaca acacacggtg cagcatcctc aaatcagagg gttggttccg tctagaatgc 540ctttgcctca caacattcca gagaacgaac caattttcgt caatgcaaaa cagtaccaag 600ccattctccg ccgcagagag cgccgtgcaa agcttgaagc tcagaacaag ctcatcaaag 660tccgcaaacc atatcttcac gagtcgcggc acctccatgc actaaagaga gttagaggct 720ctggtggacg tttcctcaac acaaagaagc atcaagaatc aaattcctca ctatctcctc 780cattcttgat tccacctcat gtcttcaaga actctccagg aaagttccgg caaatggaca 840tttcaagggg tggggttgtg tctagtgtct cgacaacatc ttgctcggac ataaccggga 900acaacaacga catgttccag caaaacccac aattcaggtt ctcaggttat ccatcaaacc 960accatgtctc agtcctcatg tgagagagct cccgcaagtg gtggatgagg c 101114308PRTArabidopsis thalianaG1363 polypeptide (domain in aa coordinates 171-230) 14Met Gln Glu Phe His Ser Ser Lys Asp Ser Leu Pro Cys Pro Ala Thr 1 5 10 15 Ser Trp Asp Asn Ser Val Phe Thr Asn Ser Asn Val Gln Gly Ser Ser 20 25 30 Ser Leu Thr Asp Asn Asn Thr Leu Ser Leu Thr Met Glu Met Lys Gln 35 40 45 Thr Gly Phe Gln Met Gln His Tyr Asp Ser Ser Ser Thr Gln Ser Thr 50 55 60 Gly Gly Glu Ser Tyr Ser Glu Val Ala Ser Leu Ser Glu Pro Thr Asn 65 70 75 80 Arg Tyr Gly His Asn Ile Val Val Thr His Leu Ser Gly Tyr Lys Glu 85 90 95 Asn Pro Glu Asn Pro Ile Gly Ser His Ser Ile Ser Lys Val Ser Gln 100 105 110 Asp Ser Val Val Leu Pro Ile Glu Ala Ala Ser Trp Pro Leu His Gly 115 120 125 Asn Val Thr Pro His Phe Asn Gly Phe Leu Ser Phe Pro Tyr Ala Ser 130 135 140 Gln His Thr Val Gln His Pro Gln Ile Arg Gly Leu Val Pro Ser Arg 145 150 155 160 Met Pro Leu Pro His Asn Ile Pro Glu Asn Glu Pro Ile Phe Val Asn 165 170 175 Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg Arg Glu Arg Arg Ala Lys 180 185 190 Leu Glu Ala Gln Asn Lys Leu Ile Lys Val Arg Lys Pro Tyr Leu His 195 200 205 Glu Ser Arg His Leu His Ala Leu Lys Arg Val Arg Gly Ser Gly Gly 210 215 220 Arg Phe Leu Asn Thr Lys Lys His Gln Glu Ser Asn Ser Ser Leu Ser 225 230 235 240 Pro Pro Phe Leu Ile Pro Pro His Val Phe Lys Asn Ser Pro Gly Lys 245 250 255 Phe Arg Gln Met Asp Ile Ser Arg Gly Gly Val Val Ser Ser Val Ser 260 265 270 Thr Thr Ser Cys Ser Asp Ile Thr Gly Asn Asn Asn Asp Met Phe Gln 275 280 285 Gln Asn Pro Gln Phe Arg Phe Ser Gly Tyr Pro Ser Asn His His Val 290 295 300 Ser Val Leu Met 305 151959DNAOryza sativaG3924 15gactggatcc tgattggcgt tgcggccaat caggatcctg ctggatcctg attggatcct 60gattggcgtt gcggccgtgt ctctactgtt gttgttgttg tgtttttttt ttctttttta 120cctttttttg ccgccttggt tttgatgcgg agtctggatg tttctacttt tggatggggt 180ttttttacct tacccgaccg aattcgtggg tggattggat gcggttcatg gaagggaacg 240ggatcttggt cggctactcg gatggggggt ttgccggccg gttgggattt cgggaaccgg 300atcgaggaag aggcggagga gaattgatcc gcggcggcgg cggcggagga ggaggagaga 360atatgtggtg attttcatct gagcccggtt gcagaagtcc aactgtatcg gagaatctta 420ctcggttcgt actacagtcc cccacgctgg tattcaagga atcttctctg gatggaccag 480ttcttggttg gtcccggttc tttcatgtcc agttccccat ggtggttcag ttggcagttg 540tgccctagtt gttgtaggag taattgtcgg tggctttaaa tggttcatgc tcgtcagttc 600ttccgagcat tccgaggtga gcgagcatgg agtcgaggcc ggggggaacc aacctcgtgg 660agccgagggg gcagggcgcg ctgccgtccg gcataccgat ccagcagccg tggtggacga 720cctccgccgg ggtcggggcg gtgtcgcccg ccgtcgtggc gccggggagc ggtgcgggga 780tcagcctgtc gggcagggat ggcggcggcg acgacgcggc agaggagagc agcgatgact 840cacgaagatc aggggagacc aaagatggaa gcactgatca agaaaagcat catgcaacat 900cgcagatgac tgctttggca tcagactatt taacaccatt ttcacagctg gaactaaacc 960aaccaattgc ttcggcagca taccagtacc ctgactctta ctatatgggc atggttggtc 1020cctatggacc tcaagctatg tccgcacaga ctcatttcca gctacctgga ttaactcact 1080ctcgtatgcc gttgcctctt gaaatatctg aggagcctgt ttatgtaaat gctaagcaat 1140atcatggaat tttaagacgg aggcagtcac gtgcgaaggc tgaacttgag aaaaaagttg 1200ttaaatcaag aaagccctat cttcatgagt ctcgtcatca acatgctatg cgaagggcaa 1260gaggaacggg tggacgcttc ctgaacacaa agaaaaatga agatggtgct cccagtgaga 1320aagccgaacc aaacaaagga gagcagaact ccgggtatcg ccggatccct cctgacttac 1380agctcctaca gaaggaaaca tgaagtagcg gctcgaaacc tagaacagtg gcttctgtcc 1440accggcattc actcttgagg gtggattctt gctccagaat tgtgctgcca tctttcaaat 1500gatcttcatc gtgcaaagta attatatgta cattcctctg aatgatctat gcaccaattg 1560ttgatcctgg cagggtaata atctggatgt attgagtcca tcacagtgcg aatgtcacgg 1620gtagatctgc tgttttcagg caattcattc ttggctttct atcccacccg ttgttgttgc 1680aagttaagct agcagtactt gtctcagtgt ccgtgagacg tttgtgtaag attaggttaa 1740actagaagtt gtaatgctgt attaagtgtt tgtatttcta atatgaaccg taacaaggcc 1800agagcagaac tcgttataca tacaaaaatt gatggccagg tcagtgttac cgtattatta 1860tgcaatggca gaagcttgca taaggcgtgg tgccactcgt tgctttgctg tatgtttttg 1920agtttcattc gatttatttt cactgttgag tttgtgggt 195916258PRTOryza sativaG3924 polypeptide (domain in aa coordinates 163-222) 16Met Glu Ser Arg Pro Gly Gly Thr Asn Leu Val Glu Pro Arg Gly Gln 1 5 10 15 Gly Ala Leu Pro Ser Gly Ile Pro Ile Gln Gln Pro Trp Trp Thr Thr 20 25 30 Ser Ala Gly Val Gly Ala Val Ser Pro Ala Val Val Ala Pro Gly Ser 35 40 45 Gly Ala Gly Ile Ser Leu Ser Gly Arg Asp Gly Gly Gly Asp Asp Ala 50 55 60 Ala Glu Glu Ser Ser Asp Asp Ser Arg Arg Ser Gly Glu Thr Lys Asp 65 70 75 80 Gly Ser Thr Asp Gln Glu Lys His His Ala Thr Ser Gln Met Thr Ala 85 90 95 Leu Ala Ser Asp Tyr Leu Thr Pro Phe Ser Gln Leu Glu Leu Asn Gln 100 105 110 Pro Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Ser Tyr Tyr Met Gly 115 120 125 Met Val Gly Pro Tyr Gly Pro Gln Ala Met Ser Ala Gln Thr His Phe 130 135 140 Gln Leu Pro Gly Leu Thr His Ser Arg Met Pro Leu Pro Leu Glu Ile 145 150 155 160 Ser Glu Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu 165 170 175 Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val 180 185 190 Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met 195 200 205 Arg Arg Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys Lys Asn 210 215 220 Glu Asp Gly Ala Pro Ser Glu Lys Ala Glu Pro Asn Lys Gly Glu Gln 225 230 235 240 Asn Ser Gly Tyr Arg Arg Ile Pro Pro Asp Leu Gln Leu Leu Gln Lys 245 250 255 Glu Thr 171631DNAOryza sativaG3926 17gagtacaaag gagagagaga gagagactct agtgcatatt tggcaggaag agccgaagag 60gggaggtgag gatcagagga ggcagcctca tcgtcatgct tcagcactag tagtagtagt 120gccaccattt ctttgccctc gatctttccc cagagagaga gagagagaga gagagagtct 180tgattggggg aggagagagg gagagagaga aagagagagg acagaaaatg tttgtggatc 240ttgagtaatg ccttctaata atgataatgc tgttgcaaga aatggagaat catcctgtcc 300aatgcatggc caagaccaac tatgattttc ttgccaggaa taactatcca atgaaacagt 360tagttcagag gaactctgat ggtgactcgt caccaacaaa gtctggggag tctcaccaag 420aagcatctgc agtaagtgac agcagtctca acggacaaca cacctcacca caatcagtgt 480ttgtcccctc agatattaac aacaatgata gttgtgggga gcgggaccat ggcactaagt 540cggtattgtc tttggggaac acagaagctg cctttcctcc ttcaaagttc gattacaacc 600agccttttgc atgtgtttct tatccatatg gtactgatcc atattatggt ggagtatcaa 660caggatacac ttcacatgca tttgttcatc ctcaaattac tggtgctgca aactctagga 720tgccattggc tgttgatcct tctgtagaag agcccatatt tgtcaatgca aagcaataca 780atgcgatcct tagaagaagg caaacgcgtg caaaattgga ggcccaaaat aaggcggtga 840aaggtcggaa gccttacctc catgaatctc gacatcatca tgctatgaag cgagcccgtg 900gatcaggtgg tcggttcctt accaaaaagg agctgctgga acagcagcag cagcagcagc 960agcagaagcc accaccggca tcagctcagt ctccaacagg tagagccaga acgagcggcg 1020gtgccgttgt ccttggcaag aacctgtgcc cagagaacag cacatcctgc tcgccatcga 1080caccgacagg ctccgagatc tccagcatct catttggggg cggcatgctg gctcaccaag 1140agcacatcag cttcgcatcc gctgatcgcc accccacaat gaaccagaac caccgtgtcc 1200ccgtcatgag gtgaaaacct cgggatcgcg ggacacgggc ggttctggtt taccctcact 1260ggcgcactcc ggtgtgcccg tggcaattca tccttggctt atgaagtatc tacctgataa 1320tagtctgctg tcagtttata tgcaatgcaa cctctgtcag ataaactctt atagtttgtt 1380ttattgtaag ctatgactga acgaactgtc gagcagatgg ctaatttgta tgttgtgggt 1440acagaaatcc tgaagctttt gatgtaccta attgcctttt gcttatactc ttggtgtata 1500cccattacca agttgcctta aaaaccctcc aattatgtaa tcagtcatgg ttttatagaa 1560ccttgccaca tgtaatcaat cacctgtttt tgtaaattga tctataaacg ctataggctg 1620ctgtgttatc t 163118317PRTOryza sativaG3926 polypeptide (domain in aa coordinates 164-222) 18Met Ile Met Leu Leu Gln Glu Met Glu Asn His Pro Val Gln Cys Met 1 5 10 15 Ala Lys Thr Asn Tyr Asp Phe Leu Ala Arg Asn Asn Tyr Pro Met Lys 20 25 30 Gln Leu Val Gln Arg Asn Ser Asp Gly Asp Ser Ser Pro Thr Lys Ser 35 40 45 Gly Glu Ser His Gln Glu Ala Ser Ala Val Ser Asp Ser Ser Leu Asn 50 55 60 Gly Gln His Thr Ser Pro Gln Ser Val Phe Val Pro Ser Asp Ile Asn 65 70 75 80 Asn Asn Asp Ser Cys Gly Glu Arg Asp His Gly Thr Lys Ser Val Leu 85 90 95 Ser Leu Gly Asn Thr Glu Ala Ala Phe Pro Pro Ser Lys Phe Asp Tyr 100 105 110 Asn Gln Pro Phe Ala Cys Val Ser Tyr Pro Tyr Gly Thr Asp Pro Tyr 115 120 125 Tyr Gly Gly Val Ser Thr Gly Tyr Thr Ser His Ala Phe Val His Pro 130 135 140 Gln Ile Thr Gly Ala Ala Asn Ser Arg Met Pro Leu Ala Val Asp Pro 145 150 155 160 Ser Val Glu Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile 165 170 175 Leu Arg Arg Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala 180 185 190 Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His His His Ala 195 200 205 Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Thr Lys Lys Glu 210 215 220 Leu Leu Glu Gln Gln Gln Gln Gln Gln Gln Gln Lys Pro Pro Pro Ala 225 230 235 240 Ser Ala Gln Ser Pro Thr Gly Arg Ala Arg Thr Ser Gly Gly Ala Val 245 250 255 Val Leu Gly Lys Asn Leu Cys Pro Glu Asn Ser Thr Ser Cys Ser Pro 260 265 270 Ser Thr Pro Thr Gly Ser Glu Ile Ser Ser Ile Ser Phe Gly Gly Gly 275 280 285 Met Leu Ala His Gln Glu His Ile Ser Phe Ala Ser Ala Asp Arg His 290 295 300 Pro Thr Met Asn Gln Asn His Arg Val Pro Val Met Arg 305 310 315 191020DNAOryza sativaG3925 19ccacgcgtcc ggcaaggtga gaagtgagga ggcagcaagg gaggaggttt gccggagagg 60ggacatgctc cctcctcatc tcacagaaaa tggcacagta atgattcagt ttggtcataa 120aatgcctgac tacgagtcat cagctaccca atcaactagt ggatctcctc gtgaagtgtc 180tggaatgagc gaaggaagcc tcaatgagca gaatgatcaa tctggtaatc ttgatggtta 240cacgaagagt gatgaaggta agatgatgtc agctttatct ctgggcaaat cagaaactgt 300gtatgcacat tcggaacctg accgtagcca accctttggc atatcatatc catatgctga 360ttcgttctat ggtggtgctg tagcgactta tggcacacat gctattatgc atccccagat 420tgtgggcgtg atgtcatcct cccgagtccc gctaccaata gaaccagcca ccgaagagcc 480tatttatgta aatgcaaagc aataccatgc gattctccga aggagacagc tccgtgcaaa 540gttagaggct gaaaacaagc tggtgaaaaa ccgcaagccg tacctccatg aatcccggca 600tcaacacgcg atgaaaagag ctcggggaac aggggggaga ttcctcaaca caaagcagca 660gcctgaagct tcagatggtg gcaccccaag gctcgtctct gcaaacggcg ttgtgttctc 720aaagcacgag cacagcttgt cgtccagtga tctccatcat cgtgcgaaag agggcgcttg 780agatcctcgc cgtttctgtc atggcaaatc atccttggct tatgtgtggt gcccagcaaa 840aaaaaatctg actgaacctg tgtgtaaact gatgggtatg ggtgggtttt gtgcaactgt 900tacttgggtg cttgaaatct gtttctgtgt ttcctctgcc tccttagttt ggagacggtg 960cagctgcagc tggtaccagt aatctgatca tgctagactt gtgacaaaaa aaaaaaaaaa 102020238PRTOryza sativaG3925 polypeptide (domain in aa coordinates 138-197) 20Met Leu Pro Pro His Leu Thr Glu Asn Gly Thr Val Met Ile Gln Phe 1 5 10 15 Gly His Lys Met Pro Asp Tyr Glu Ser Ser Ala Thr Gln Ser Thr Ser 20 25 30 Gly Ser Pro Arg Glu Val Ser Gly Met Ser Glu Gly Ser Leu Asn Glu 35 40 45 Gln Asn Asp Gln Ser Gly Asn Leu Asp Gly Tyr Thr Lys Ser Asp Glu 50 55 60 Gly Lys Met Met Ser Ala Leu Ser Leu Gly Lys Ser Glu Thr Val Tyr 65 70 75

80 Ala His Ser Glu Pro Asp Arg Ser Gln Pro Phe Gly Ile Ser Tyr Pro 85 90 95 Tyr Ala Asp Ser Phe Tyr Gly Gly Ala Val Ala Thr Tyr Gly Thr His 100 105 110 Ala Ile Met His Pro Gln Ile Val Gly Val Met Ser Ser Ser Arg Val 115 120 125 Pro Leu Pro Ile Glu Pro Ala Thr Glu Glu Pro Ile Tyr Val Asn Ala 130 135 140 Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Leu Arg Ala Lys Leu 145 150 155 160 Glu Ala Glu Asn Lys Leu Val Lys Asn Arg Lys Pro Tyr Leu His Glu 165 170 175 Ser Arg His Gln His Ala Met Lys Arg Ala Arg Gly Thr Gly Gly Arg 180 185 190 Phe Leu Asn Thr Lys Gln Gln Pro Glu Ala Ser Asp Gly Gly Thr Pro 195 200 205 Arg Leu Val Ser Ala Asn Gly Val Val Phe Ser Lys His Glu His Ser 210 215 220 Leu Ser Ser Ser Asp Leu His His Arg Ala Lys Glu Gly Ala 225 230 235 21885DNAZea maysG3921 21atggaggatc attctgtcca tcccatgtct aagtctaacc atggctcctt gtcaggaaat 60ggttatgaga tgaaacatcc aggccatgaa gtttgcgata gggattcatc atcggagtct 120gatcggtctc accaagaagc atcagcagcg agtgaaagca gtccagatga acacacatca 180actcaatcag acaatgatga agatcatggg aaggataatc aggacacatt gaagccagta 240ttgtccttgg ggaaggaagg ctctgccact ggggccccaa aattacatta cagcccatct 300tttgcttgta ttccttatac tgctgacgct tactatggtg ccgttggggt cttgacagga 360tatcctccac atgccattgt ccatccccag caaaatgata caacgaacac tccgggtatg 420ttacctgtgg aacctgcaga agaaccaata tatgttaatg caaaacaata ccatgcaatc 480cttaggagga ggcaaacacg tgctaaattg gaggcccaga acaagatggt gaaaggtcgg 540aagccatacc ttcatgagtc ccgacatcgt catgccatga aacgggcccg tggctcagga 600gggcggttcc tcaacacaaa gcagctccag gaccaaaacc agcagtttca ggaagcgtcg 660agtggttcaa tgtgctcaaa gatcattggc aacagcataa tctcccaaag tggccccacc 720tgcacgccct cttctggcac tgcaggtgct tcaacagcca gccaggaccg cagctgcttg 780ccctcagttg gcttccgccc cacaaccaac ttcagtgacc aaggtcgagg aggcttgaag 840ctggccgtga tcggcatgca gcagcgtgtt tccaccataa ggtga 88522294PRTZea maysG3921 polypeptide (domain in aa coordinates 148-207) 22Met Glu Asp His Ser Val His Pro Met Ser Lys Ser Asn His Gly Ser 1 5 10 15 Leu Ser Gly Asn Gly Tyr Glu Met Lys His Pro Gly His Glu Val Cys 20 25 30 Asp Arg Asp Ser Ser Ser Glu Ser Asp Arg Ser His Gln Glu Ala Ser 35 40 45 Ala Ala Ser Glu Ser Ser Pro Asp Glu His Thr Ser Thr Gln Ser Asp 50 55 60 Asn Asp Glu Asp His Gly Lys Asp Asn Gln Asp Thr Leu Lys Pro Val 65 70 75 80 Leu Ser Leu Gly Lys Glu Gly Ser Ala Thr Gly Ala Pro Lys Leu His 85 90 95 Tyr Ser Pro Ser Phe Ala Cys Ile Pro Tyr Thr Ala Asp Ala Tyr Tyr 100 105 110 Gly Ala Val Gly Val Leu Thr Gly Tyr Pro Pro His Ala Ile Val His 115 120 125 Pro Gln Gln Asn Asp Thr Thr Asn Thr Pro Gly Met Leu Pro Val Glu 130 135 140 Pro Ala Glu Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala Ile 145 150 155 160 Leu Arg Arg Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Met 165 170 175 Val Lys Gly Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala 180 185 190 Met Lys Arg Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Gln 195 200 205 Leu Gln Asp Gln Asn Gln Gln Phe Gln Glu Ala Ser Ser Gly Ser Met 210 215 220 Cys Ser Lys Ile Ile Gly Asn Ser Ile Ile Ser Gln Ser Gly Pro Thr 225 230 235 240 Cys Thr Pro Ser Ser Gly Thr Ala Gly Ala Ser Thr Ala Ser Gln Asp 245 250 255 Arg Ser Cys Leu Pro Ser Val Gly Phe Arg Pro Thr Thr Asn Phe Ser 260 265 270 Asp Gln Gly Arg Gly Gly Leu Lys Leu Ala Val Ile Gly Met Gln Gln 275 280 285 Arg Val Ser Thr Ile Arg 290 231405DNAZea maysG3922 23tgggaccctc gaggccggcc gggatacgat tccgaagaag gtagcgaccc acgcgcgcgg 60gccagaggcc ggaagaggga gatacaggtt aatttttagg taccagatca tctgatttct 120cagaagcaaa atgttgtttg gagctcagtg acaccatctt gtaatgcctg tgattttacg 180ggaaatggag gatcattctg tccatcccat gtctaagtct aaccatggct ccttgtcagg 240aaatggttat gagatgaaac attcaggcca taaagtttgc gatagggatt catcatcgga 300gtctgatcgg tctcaccaag aagcatcagc agcaagtgaa agcagtccaa atgaacacac 360atcaactcaa tcagacaatg atgaagatca tgggaaagat aatcaggaca caatgaagcc 420agtattgtcc ttggggaagg aaggctctgc ctttttggcc ccaaaattac attacagccc 480atcttttgct tgtattcctt atactgctga tgcttattat agtggggttg gggtctcgac 540aggatatgct ccacatgcca ttgtatgttc actcttaatc tttcagtttc tgtcttcctg 600gccacattct gtccatcccc agcaaaatga tacaacgaac actccgggta tgttacctgt 660ggaacctgca gaagaaccaa tatatgttaa tgcaaaacaa taccatgcaa tccttaggag 720gaggcaaaca cgtgctaaat tggaggccca gaacaagatg gtgaaaaatc ggaagccata 780tcttcatgag tcccgacatc gtcatgccat gaaacgggct cgtggatcag gaggacggtt 840cctcaacaca aagcagctcc aggagcagaa ccagcagtat caggcatcga gtggttcatt 900gtgctcaaag atcattgcca acagcataat ctcccaaagt ggccccacct gcacgccctc 960ttctgacact gcaggtcttc agcagccagc caggaccgcg gctgcttgcc ctcggtgggc 1020ttccgcccca cagccaactt cagtgagcaa ggtggaggcg gctcgaagct ggtcgtgaac 1080ggcatgcagc agcgtgtttc caccataagg tgaagagaag tgggcacgac accattccca 1140ggcgcgcact gcctgtggca actcatcctt ggcttttgaa actatggata tgcaatggac 1200atgtagcttc gagttcctca gaataaccaa acgtgaagaa tatgcaaagt ccttttgaga 1260tttgctgtag ctgaaagaac tgtggttagg ttgagtttct tcctggagac tgatccatac 1320atgacatgct acctcgtgct gagtttctga ggtgaagcca tcgaaacatg accgtgtggt 1380tcagtaaaaa aaaaaaaaaa aaaaa 140524304PRTZea maysG3922 polypeptide (domain in aa coordinates 171-230) 24Met Pro Val Ile Leu Arg Glu Met Glu Asp His Ser Val His Pro Met 1 5 10 15 Ser Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys 20 25 30 His Ser Gly His Lys Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp 35 40 45 Arg Ser His Gln Glu Ala Ser Ala Ala Ser Glu Ser Ser Pro Asn Glu 50 55 60 His Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn 65 70 75 80 Gln Asp Thr Met Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala 85 90 95 Phe Leu Ala Pro Lys Leu His Tyr Ser Pro Ser Phe Ala Cys Ile Pro 100 105 110 Tyr Thr Ala Asp Ala Tyr Tyr Ser Gly Val Gly Val Ser Thr Gly Tyr 115 120 125 Ala Pro His Ala Ile Val Cys Ser Leu Leu Ile Phe Gln Phe Leu Ser 130 135 140 Ser Trp Pro His Ser Val His Pro Gln Gln Asn Asp Thr Thr Asn Thr 145 150 155 160 Pro Gly Met Leu Pro Val Glu Pro Ala Glu Glu Pro Ile Tyr Val Asn 165 170 175 Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys 180 185 190 Leu Glu Ala Gln Asn Lys Met Val Lys Asn Arg Lys Pro Tyr Leu His 195 200 205 Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly 210 215 220 Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Gln Asn Gln Gln Tyr Gln 225 230 235 240 Ala Ser Ser Gly Ser Leu Cys Ser Lys Ile Ile Ala Asn Ser Ile Ile 245 250 255 Ser Gln Ser Gly Pro Thr Cys Thr Pro Ser Ser Asp Thr Ala Gly Leu 260 265 270 Gln Gln Pro Ala Arg Thr Ala Ala Ala Cys Pro Arg Trp Ala Ser Ala 275 280 285 Pro Gln Pro Thr Ser Val Ser Lys Val Glu Ala Ala Arg Ser Trp Ser 290 295 300 251155DNAZea maysG4264 25tggtttcggc aatttgggtt aatttttagg taccagatca tctgatttct cagaagcaaa 60atgttgtttg gagctcagtg acaccatctt gtaatgcctg tgattttacg ggaaatggag 120gatcattctg tccatcccat gtctaagtct aaccatggct ccttgtcagg aaatggttat 180gagatgaaac attcaggcca taaagtttgc gatagggatt catcatcgga gtctgatcgg 240tctcaccaag aagcatcagc agcaagtgaa agcagtccaa atgaacacac atcaactcaa 300tcagacaatg atgaagatca tgggaaagat aatcaggaca caatgaagcc agtattgtcc 360ttggggaagg aaggctctgc ctttttggcc ccaaaattac attacagccc atcttttgct 420tgtattcctt atacttctga tgcttattat agtgcggttg gggtcttgac aggatatcct 480ccacatgcca ttgtccatcc ccagcaaaat gatacaacga acactccggg tatgttacct 540gtggaacctg cagaagaacc aatatatgtt aatgcaaaac aataccatgc aatccttagg 600aggaggcaaa cacgtgctaa attggaggcc cagaacaaga tggtgaaaaa tcggaagcca 660tatcttcatg agtcccgaca tcgtcatgcc atgaaacggg ctcgtggatc aggaggacgg 720ttcctcaaca caaagcagct ccaggagcag aaccagcagt atcaggcatc gagtggttca 780ttgtgctcaa agatcattgc caacagcata atctcccaaa gtggccccac ctgcacgccc 840tcttctggca ctgcaggtgc ttcaacagcc ggccaggacc gcagctgctt gccctcagtt 900ggcttccgcc ccacgacaaa cttcagtgac caaggtcgag gaggcttgaa gttggccgtg 960atcggcatgc agcagcgtgt ttccaccata aggtgaagag aagtgggcac aacaccattc 1020ccaggcacac tgcctgtggc aactcatcct tggctcttgg aactttgaat atgcaatcga 1080catgtagctt gagatcctca gaataaacca aaccttcagt tatatgcaag ccttttttga 1140ggttgctgtt gctgt 115526300PRTZea maysG4264 polypeptide (domain in aa coordinates 155-214) 26Met Pro Val Ile Leu Arg Glu Met Glu Asp His Ser Val His Pro Met 1 5 10 15 Ser Lys Ser Asn His Gly Ser Leu Ser Gly Asn Gly Tyr Glu Met Lys 20 25 30 His Ser Gly His Lys Val Cys Asp Arg Asp Ser Ser Ser Glu Ser Asp 35 40 45 Arg Ser His Gln Glu Ala Ser Ala Ala Ser Glu Ser Ser Pro Asn Glu 50 55 60 His Thr Ser Thr Gln Ser Asp Asn Asp Glu Asp His Gly Lys Asp Asn 65 70 75 80 Gln Asp Thr Met Lys Pro Val Leu Ser Leu Gly Lys Glu Gly Ser Ala 85 90 95 Phe Leu Ala Pro Lys Leu His Tyr Ser Pro Ser Phe Ala Cys Ile Pro 100 105 110 Tyr Thr Ser Asp Ala Tyr Tyr Ser Ala Val Gly Val Leu Thr Gly Tyr 115 120 125 Pro Pro His Ala Ile Val His Pro Gln Gln Asn Asp Thr Thr Asn Thr 130 135 140 Pro Gly Met Leu Pro Val Glu Pro Ala Glu Glu Pro Ile Tyr Val Asn 145 150 155 160 Ala Lys Gln Tyr His Ala Ile Leu Arg Arg Arg Gln Thr Arg Ala Lys 165 170 175 Leu Glu Ala Gln Asn Lys Met Val Lys Asn Arg Lys Pro Tyr Leu His 180 185 190 Glu Ser Arg His Arg His Ala Met Lys Arg Ala Arg Gly Ser Gly Gly 195 200 205 Arg Phe Leu Asn Thr Lys Gln Leu Gln Glu Gln Asn Gln Gln Tyr Gln 210 215 220 Ala Ser Ser Gly Ser Leu Cys Ser Lys Ile Ile Ala Asn Ser Ile Ile 225 230 235 240 Ser Gln Ser Gly Pro Thr Cys Thr Pro Ser Ser Gly Thr Ala Gly Ala 245 250 255 Ser Thr Ala Gly Gln Asp Arg Ser Cys Leu Pro Ser Val Gly Phe Arg 260 265 270 Pro Thr Thr Asn Phe Ser Asp Gln Gly Arg Gly Gly Leu Lys Leu Ala 275 280 285 Val Ile Gly Met Gln Gln Arg Val Ser Thr Ile Arg 290 295 300 27912DNAArabidopsis thalianaG2632 27atgggaattg aagacatgca ttcaaaatct gacagtggtg ggaacaaggt tgattcagag 60gttcatggta cagtatcgtc gtcgataaat agtttaaacc cttggcatcg tgctgctgct 120gcttgcaatg caaattctag tgtggaagct ggagataaat cttctaagtc aatagcatta 180gcattggaat caaacggttc caaatcacca tccaatagag ataatactgt taacaaggaa 240tcacaagtca caacgtctcc acaatcagct ggagattata gtgataaaaa ccaagaatct 300ctgcatcatg gcatcacaca acctcctcct caccctcaac ttgttggcca cacagttgga 360tgggcatcct caaatccata ccaggatcca tattatgcag gagtgatggg agcctatgga 420catcatcccc tggggtttgt tccatatggt gggatgcctc attcaagaat gccactgccg 480cctgagatgg cacaagaacc agttttcgtg aatgctaaac agtaccaggc gattctgagg 540cgaaggcagg cacgcgccaa ggcagagcta gagaagaagc taataaaatc cagaaagcct 600tatctacatg aatctcggca tcaacatgct atgaggaggc caaggggtac tggaggacgg 660tttgcaaaga aaaccaacac cgaagcttca aagcgtaaag ctgaagaaaa gagcaatggt 720catgttactc agtccccgtc atcatctaat tctgatcaag gtgaagcttg gaatggtgac 780tatagaacac ctcagggaga tgagatgcag agctcagctt ataagagaag ggaagaagga 840gagtgttcag ggcagcaatg gaacagcctt tcctcaaacc atccttctca agctcgtcta 900gccattaaat ga 91228303PRTArabidopsis thalianaG2632 polypeptide (domain in aa coordinates 166-223) 28Met Gly Ile Glu Asp Met His Ser Lys Ser Asp Ser Gly Gly Asn Lys 1 5 10 15 Val Asp Ser Glu Val His Gly Thr Val Ser Ser Ser Ile Asn Ser Leu 20 25 30 Asn Pro Trp His Arg Ala Ala Ala Ala Cys Asn Ala Asn Ser Ser Val 35 40 45 Glu Ala Gly Asp Lys Ser Ser Lys Ser Ile Ala Leu Ala Leu Glu Ser 50 55 60 Asn Gly Ser Lys Ser Pro Ser Asn Arg Asp Asn Thr Val Asn Lys Glu 65 70 75 80 Ser Gln Val Thr Thr Ser Pro Gln Ser Ala Gly Asp Tyr Ser Asp Lys 85 90 95 Asn Gln Glu Ser Leu His His Gly Ile Thr Gln Pro Pro Pro His Pro 100 105 110 Gln Leu Val Gly His Thr Val Gly Trp Ala Ser Ser Asn Pro Tyr Gln 115 120 125 Asp Pro Tyr Tyr Ala Gly Val Met Gly Ala Tyr Gly His His Pro Leu 130 135 140 Gly Phe Val Pro Tyr Gly Gly Met Pro His Ser Arg Met Pro Leu Pro 145 150 155 160 Pro Glu Met Ala Gln Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln 165 170 175 Ala Ile Leu Arg Arg Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys 180 185 190 Lys Leu Ile Lys Ser Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln 195 200 205 His Ala Met Arg Arg Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys Lys 210 215 220 Thr Asn Thr Glu Ala Ser Lys Arg Lys Ala Glu Glu Lys Ser Asn Gly 225 230 235 240 His Val Thr Gln Ser Pro Ser Ser Ser Asn Ser Asp Gln Gly Glu Ala 245 250 255 Trp Asn Gly Asp Tyr Arg Thr Pro Gln Gly Asp Glu Met Gln Ser Ser 260 265 270 Ala Tyr Lys Arg Arg Glu Glu Gly Glu Cys Ser Gly Gln Gln Trp Asn 275 280 285 Ser Leu Ser Ser Asn His Pro Ser Gln Ala Arg Leu Ala Ile Lys 290 295 300 291274DNAArabidopsis thalianaG1334 29atagctccca actaatagga atctcaagct tctcactctc tcttgttttt ccattggact 60tttggaacat aagctatgca aactgaggag cttttgtcgc caccacagac tccttggtgg 120aatgcttttg gatctcagcc gttgactaca gagagccttt ccggcgaagc ttctgattca 180ttcaccggag ttaaggcagt tactacggag gcagaacaag gtgtggtgga taaacaaact 240tctacaactc tcttcacttt ctcacctggt ggtgaaaaga gttcaagaga tgtgccaaag 300cctcatgttg ctttcgcgat gcaatcagct tgcttcgagt ttggatttgc tcagccaatg 360atgtacacaa agcatcctca tgttgaacaa tactatggag ttgtttcagc atacggatct 420cagaggtctt cgggccgagt aatgattcca ctgaagatgg agacagaaga agatggtacc 480atctatgtga actcaaagca gtaccatgga attatcaggc gacgccagtc ccgagcaaag 540gctgaaaaac tgagtagatg ccgtaagcca tatatgcatc actcacgcca tctccatgct 600atgcgccgtc ctagaggatc tggcgggcgt ttcttgaaca ccaagacagc tgatgcggct 660aagcagtcta agccgagtaa ttctcagagt tctgaagtct ttcatccgga aaatgagacc 720ataaactcat cgagggaagc aaatgagtca aatctctcgg attctgcagt tacaagtatg 780gattactttc taagttcgtc ggcttattct cctggtggca tggtcatgcc tatcaagtgg 840aatgcagcag caatggatat tggctgctgc aaacttaata tatgatcagc agatagggga 900caagacatga ttggtcacca gtccttttgt cttgtccctt atctttcagc caaacggaaa 960gagaacttgt gtcttggaaa aaagacattg agtttccttg gtttataaga ttggtccttt 1020taccatccgt ttggctgtaa acaggcaaat catctttggc tcatgcttca tcaagttctt 1080atcttcgtct gttttcttct acgcatcttc ataagatctc tgaactagtg aataacattt 1140cctagcatca tgtttcaact agtgtgtgtt gtaagaaact ctgccttatt tccagatgat 1200gtattgtgtg taacgtgttt atgaaacaaa cgtaagactt tcaagttaaa aaaaaaaaaa 1260aaaaaaaaaa

aaaa 127430269PRTArabidopsis thalianaG1334 polypeptide (domain in aa coordinates 133-190) 30Met Gln Thr Glu Glu Leu Leu Ser Pro Pro Gln Thr Pro Trp Trp Asn 1 5 10 15 Ala Phe Gly Ser Gln Pro Leu Thr Thr Glu Ser Leu Ser Gly Glu Ala 20 25 30 Ser Asp Ser Phe Thr Gly Val Lys Ala Val Thr Thr Glu Ala Glu Gln 35 40 45 Gly Val Val Asp Lys Gln Thr Ser Thr Thr Leu Phe Thr Phe Ser Pro 50 55 60 Gly Gly Glu Lys Ser Ser Arg Asp Val Pro Lys Pro His Val Ala Phe 65 70 75 80 Ala Met Gln Ser Ala Cys Phe Glu Phe Gly Phe Ala Gln Pro Met Met 85 90 95 Tyr Thr Lys His Pro His Val Glu Gln Tyr Tyr Gly Val Val Ser Ala 100 105 110 Tyr Gly Ser Gln Arg Ser Ser Gly Arg Val Met Ile Pro Leu Lys Met 115 120 125 Glu Thr Glu Glu Asp Gly Thr Ile Tyr Val Asn Ser Lys Gln Tyr His 130 135 140 Gly Ile Ile Arg Arg Arg Gln Ser Arg Ala Lys Ala Glu Lys Leu Ser 145 150 155 160 Arg Cys Arg Lys Pro Tyr Met His His Ser Arg His Leu His Ala Met 165 170 175 Arg Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys Thr Ala 180 185 190 Asp Ala Ala Lys Gln Ser Lys Pro Ser Asn Ser Gln Ser Ser Glu Val 195 200 205 Phe His Pro Glu Asn Glu Thr Ile Asn Ser Ser Arg Glu Ala Asn Glu 210 215 220 Ser Asn Leu Ser Asp Ser Ala Val Thr Ser Met Asp Tyr Phe Leu Ser 225 230 235 240 Ser Ser Ala Tyr Ser Pro Gly Gly Met Val Met Pro Ile Lys Trp Asn 245 250 255 Ala Ala Ala Met Asp Ile Gly Cys Cys Lys Leu Asn Ile 260 265 311388DNAArabidopsis thalianaG926 31ccaaaatcta gggttttctt ctcgcccaat ttcacttttc ttctacgaaa ttctccattc 60ctgccggctg tcgggttttc tgaatcgatt ctccttcacc aacttcttct ctggttctgt 120tcgattctga ttttttttca aggtcaattt tttcttctct ttaaactctg caaaatcgtg 180atcgattaaa ttcacctcag ggttttttga tttctgaaag aagttaatct tcttcgaagg 240cgattgcaaa agagtgctct gctgtgaatt tccactgaga tgcaatcaaa accgggaaga 300gaaaacgaag aggaagtcaa taatcaccat gctgttcagc agccgatgat gtatgcagag 360ccctggtgga aaaacaactc ctttggtgtt gtacctcaag cgagaccttc tggaattcca 420tcaaattcct cttctttgga ttgccccaat ggttccgagt caaacgatgt tcattcagca 480tctgaagacg gtgcgttgaa tggtgaaaac gatggcactt ggaaggattc acaagctgca 540acttcctctc gttcagataa tcacggaatg gaaggaaatg acccagcgct ctctatccgt 600aacatgcatg atcagccact tgtacaacca ccagagcttg ttggacacta tatcgcttgt 660gtcccaaacc catatcagga tccatattat gggggattga tgggagcata tggtcatcag 720caattgggtt ttcgtccata tcttggaatg cctcgtgaaa gaacagctct gccacttgac 780atggcacaag agcccgttta tgtgaatgca aagcagtacg agggaattct aaggcgaaga 840aaagcacgtg ccaaggcaga gctagagagg aaagtcatcc gggacagaaa gccatatctt 900cacgagtcaa gacacaagca tgcaatgaga agggcacgag cgagtggagg ccggtttgcg 960aagaaaagtg aggtagaagc gggagaggat gcaggaggga gagacagaga aaggggttca 1020gcaaccaact catcaggctc tgaacaagtt gagacagact ctaatgagac cctgaattct 1080tctggtgcac cataataaaa aaagccaaag ctctgagagg agagagagac acacactttg 1140gctaatataa tccattgcct caaaccggca aatcattctt ggctttttcg tttttgtgtt 1200tgctagttgt tcttgtcaga gtctcatatt gtgtgggttt aacagttatg atgaatgtac 1260aaagagcgag ttatgttagg tgttagattt tggagacaag agacaaagga atagcaagta 1320ggtcttgttt ttattctttg accttttttt tctcttttgc aaaattgaaa aatacgtttg 1380cttaaaaa 138832271PRTArabidopsis thalianaG926 polypeptide (domain in aa coordinates 171-228) 32Met Gln Ser Lys Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His 1 5 10 15 His Ala Val Gln Gln Pro Met Met Tyr Ala Glu Pro Trp Trp Lys Asn 20 25 30 Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile Pro Ser 35 40 45 Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val 50 55 60 His Ser Ala Ser Glu Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr 65 70 75 80 Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser Arg Ser Asp Asn His Gly 85 90 95 Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp Gln 100 105 110 Pro Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys Val 115 120 125 Pro Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly Leu Met Gly Ala Tyr 130 135 140 Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu Gly Met Pro Arg Glu 145 150 155 160 Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val Asn 165 170 175 Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala Lys 180 185 190 Ala Glu Leu Glu Arg Lys Val Ile Arg Asp Arg Lys Pro Tyr Leu His 195 200 205 Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg Ala Ser Gly Gly 210 215 220 Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly Gly 225 230 235 240 Arg Asp Arg Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu Gln 245 250 255 Val Glu Thr Asp Ser Asn Glu Thr Leu Asn Ser Ser Gly Ala Pro 260 265 270 331385DNAArabidopsis thalianaG927 33ggaatctgaa gctcttctct actctctact ctatcactcc atctgtgaac atatctttct 60tattcttcta ggcactatct atttttcact ttttgtaatt ggaatttgga gatggctatg 120caaactgtga gagaaggtct cttctctgct ccacagactt cttggtggac tgcttttgga 180tctcagccgt tggctccgga gagtctcgcc ggcgattctg actcattcgc cggagttaag 240gtcggatctg tcggagagac aagacaacgt gtggataaac agagcaactc tgcaacgcac 300ttagctttct cacttggtga tgtaaagagt ccaagacttg tgccaaagcc tcatggagct 360actttctcaa tgcaatcacc ttgcttggaa cttggatttt ctcagccacc gatctataca 420aagtatccct atggagaaca acaatactat ggagttgttt cagcctatgg atctcagagc 480agggtaatgc ttcctctaaa catggaaacg gaagatagta ccatctatgt gaactcaaag 540caataccatg gaatcataag gagacgccaa tcccgcgcaa aggctgctgc tgttcttgat 600cagaagaaat tgagtagtag atgccgcaag ccatatatgc atcattcgcg ccatctccat 660gcattgcggc gtcctagagg atccggtggg agattcttga acactaaaag tcagaacttg 720gaaaatagcg gaaccaatgc aaagaaaggt gatggaagta tgcagattca gtctcagcct 780aagcctcagc aaagtaactc tcagaattct gaagttgttc atccggaaaa cgggaccatg 840aacttatcga acggattaaa tgtgtcggga tcagaagtta ctagcatgaa ctacttccta 900agttctcccg ttcattctct tggtggcatg gtaatgccta gcaagtggat agcagcagca 960gcagcaatgg ataatggctg ctgcaatttc aaaacctgat cctttaccgt ttcacagtca 1020aacggagaga gataaagaac tcttgccttg gtataaagga ttttcctttt tgccaatccg 1080ctttggctgt gaacaggcaa atcatctttg gctcattctc tattaaggta acttcgccgt 1140gaggtgaaaa aagctttgat atatttatct tcagtgtaaa agtagttaaa actggtgaag 1200aacaatgatg tgtttggtca ctaaacccac ttgttccaac tagtagtgtg tgttttaaga 1260aaactctgtt atctgatttt gtagctctct ctggctttgt gtgtttctca aacaactgta 1320acaactttta agttatgtgg tttatgtaac atatttaaga cctgtgtttt tgtataaaaa 1380aaaaa 138534295PRTArabidopsis thalianaG927 polypeptide (domain in aa coordinates 136-199) 34Met Ala Met Gln Thr Val Arg Glu Gly Leu Phe Ser Ala Pro Gln Thr 1 5 10 15 Ser Trp Trp Thr Ala Phe Gly Ser Gln Pro Leu Ala Pro Glu Ser Leu 20 25 30 Ala Gly Asp Ser Asp Ser Phe Ala Gly Val Lys Val Gly Ser Val Gly 35 40 45 Glu Thr Arg Gln Arg Val Asp Lys Gln Ser Asn Ser Ala Thr His Leu 50 55 60 Ala Phe Ser Leu Gly Asp Val Lys Ser Pro Arg Leu Val Pro Lys Pro 65 70 75 80 His Gly Ala Thr Phe Ser Met Gln Ser Pro Cys Leu Glu Leu Gly Phe 85 90 95 Ser Gln Pro Pro Ile Tyr Thr Lys Tyr Pro Tyr Gly Glu Gln Gln Tyr 100 105 110 Tyr Gly Val Val Ser Ala Tyr Gly Ser Gln Ser Arg Val Met Leu Pro 115 120 125 Leu Asn Met Glu Thr Glu Asp Ser Thr Ile Tyr Val Asn Ser Lys Gln 130 135 140 Tyr His Gly Ile Ile Arg Arg Arg Gln Ser Arg Ala Lys Ala Ala Ala 145 150 155 160 Val Leu Asp Gln Lys Lys Leu Ser Ser Arg Cys Arg Lys Pro Tyr Met 165 170 175 His His Ser Arg His Leu His Ala Leu Arg Arg Pro Arg Gly Ser Gly 180 185 190 Gly Arg Phe Leu Asn Thr Lys Ser Gln Asn Leu Glu Asn Ser Gly Thr 195 200 205 Asn Ala Lys Lys Gly Asp Gly Ser Met Gln Ile Gln Ser Gln Pro Lys 210 215 220 Pro Gln Gln Ser Asn Ser Gln Asn Ser Glu Val Val His Pro Glu Asn 225 230 235 240 Gly Thr Met Asn Leu Ser Asn Gly Leu Asn Val Ser Gly Ser Glu Val 245 250 255 Thr Ser Met Asn Tyr Phe Leu Ser Ser Pro Val His Ser Leu Gly Gly 260 265 270 Met Val Met Pro Ser Lys Trp Ile Ala Ala Ala Ala Ala Met Asp Asn 275 280 285 Gly Cys Cys Asn Phe Lys Thr 290 295 351446DNAZea maysG3911 35accacacgtc cgcccacgcg tccgcctacg cgtcggcgga ctcgcgtgcc cccacgcggg 60cgggcttggc ttgggactgg gccgcccggc cgcgaggaat aaactcactc ctgccttcat 120acgtatccat agccgcggca gtacgtgtat gtggttagct atacgcgacc tcagctcggg 180cgcaagctac aacgccgacc aggcgagaag aagcatcgat agtgtgacga gctaacccac 240cagcagcaac gtaatccaaa tccatggaca accagccgct gccctactcc acaggccagc 300cccctgcccc cggaggagcc ccggtggcgg gcatgcctgg cgcggccggc ctcccacccg 360tgccgcacca cctacccgtt ccatctcaag tgaaagagat gacaactgtc ctaacaaaca 420aactagggct caaaactaac ttcaaaaaaa tcacccacta aaagcacctt cctcttcctc 480ttcctccgcc cccaatcccc ctcgtctcac aaccctagct gcccccgaat ccatggatcc 540taacaaatcc agcaccccgc cgccgcctcc agtcatgggt gcccccgttg cctaccctcc 600gcctgcgtac cctcccggtg tggccgccgg cgccggcgcc tacccgccgc agctctacgc 660accgccggct gctgccgcgg cccagcaggc ggcggccgcg cagcagcagc agctgcagat 720attctgggcg gagcagtacc gcgagatcga ggccactacc gacttcaaga atcacaacct 780cccgctcgcc cgcatcaaga agatcatgaa agccgacgag gacgtccgca tgatcgccgc 840cgaggctccc gtggtgttcg cccgggcctg cgagatgttc atcctcgagc tcacccatcg 900cggctgggcg cacgccgaag agaacaagcg ccgcacgctc cagaaatccg acattgccgc 960tgccatcgcc cgcaccgagg tattcgactt ccttgtggac atcgttccgc gcgacgacgg 1020taaagacgct gatgcggcgg ccgccgcagc tgccgcggct gccgggatcc cgcgccccgc 1080cgccggagta ccagccaccg accctctcgc ctactactac gtgcctcagc agtaatgtat 1140catcatcacg ttattgttcc gtctatgtgc ctgagcaata atgtatcatc attgccttat 1200tgttccgggg cagttgtgtt atttgtgtct gtttagttgc tgctgctgtt accgcgtaat 1260agcatatgtg ttatctgtgt ctgtttagtt gctgctgctg ttgccgcgta ataaaacttg 1320gtcatttacg gggctccctc aagattaaga attgagttgt ttgatggtag aatcctggta 1380aggttgttgt aactgggggg cgcctttgtt tgggctggta gtgtatgcct aggcctcact 1440tatctg 144636200PRTZea maysG3911 polypeptide (domain in aa coordinates 83-148) 36Met Asp Pro Asn Lys Ser Ser Thr Pro Pro Pro Pro Pro Val Met Gly 1 5 10 15 Ala Pro Val Ala Tyr Pro Pro Pro Ala Tyr Pro Pro Gly Val Ala Ala 20 25 30 Gly Ala Gly Ala Tyr Pro Pro Gln Leu Tyr Ala Pro Pro Ala Ala Ala 35 40 45 Ala Ala Gln Gln Ala Ala Ala Ala Gln Gln Gln Gln Leu Gln Ile Phe 50 55 60 Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp Phe Lys Asn 65 70 75 80 His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 85 90 95 Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala 100 105 110 Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala 115 120 125 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala 130 135 140 Ile Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile Val Pro Arg 145 150 155 160 Asp Asp Gly Lys Asp Ala Asp Ala Ala Ala Ala Ala Ala Ala Ala Ala 165 170 175 Ala Gly Ile Pro Arg Pro Ala Ala Gly Val Pro Ala Thr Asp Pro Leu 180 185 190 Ala Tyr Tyr Tyr Val Pro Gln Gln 195 200 37618DNAOryza sativaG3546 37atggagccca aatccaccac ccctcctccg cctcctccgc cccccgtgct gggcgccccc 60gtcccttacc cgccggcggg agcctacccc ccacccgtcg ggccctacgc ccacgcgccg 120ccgctctacg ccccgcctcc ccccgccgcc gccgccgcct ccgccgccgc caccgccgcc 180tcgcagcagg ccgccgccgc gcagctccag aacttctggg cggagcagta ccgcgagatc 240gagcacacca ccgacttcaa gaaccacaac ctccccctcg cccgcatcaa gaagatcatg 300aaggccgacg aggacgtccg catgatcgcc gccgaggccc ccgtcgtgtt cgccagggcg 360tgcgagatgt tcatcctcga gctcacccac cgcggctggg cgcacgccga ggagaacaag 420cgccgcacgc tccagaagtc cgacatcgcc gccgccatcg cccgcaccga ggtcttcgac 480ttcctcgtcg acatcgtgcc ccgcgacgag gccaaggacg ccgaggccgc cgccgccgtt 540gccgccggga tcccccaccc cgccgccggt ttgcccgcca ccgaccccat ggcctactac 600tatgtccagc cgcagtaa 61838205PRTOryza sativaG3546 polypeptide (domain in aa coordinates 91-156) 38Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Pro Pro Pro Val 1 5 10 15 Leu Gly Ala Pro Val Pro Tyr Pro Pro Ala Gly Ala Tyr Pro Pro Pro 20 25 30 Val Gly Pro Tyr Ala His Ala Pro Pro Leu Tyr Ala Pro Pro Pro Pro 35 40 45 Ala Ala Ala Ala Ala Ser Ala Ala Ala Thr Ala Ala Ser Gln Gln Ala 50 55 60 Ala Ala Ala Gln Leu Gln Asn Phe Trp Ala Glu Gln Tyr Arg Glu Ile 65 70 75 80 Glu His Thr Thr Asp Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile 85 90 95 Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu 100 105 110 Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu 115 120 125 Thr His Arg Gly Trp Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu 130 135 140 Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala Arg Thr Glu Val Phe Asp 145 150 155 160 Phe Leu Val Asp Ile Val Pro Arg Asp Glu Ala Lys Asp Ala Glu Ala 165 170 175 Ala Ala Ala Val Ala Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro 180 185 190 Ala Thr Asp Pro Met Ala Tyr Tyr Tyr Val Gln Pro Gln 195 200 205 39865DNAZea maysG3909 39ccctgaccgc cgtaacaccc taggcaatgg agcccaaatc caccacccct cccccgcccc 60ccgtgatggg cgcgcccatc gcgtatcctc ccccgcccgg cgccgcgtac cccgccgggc 120cgtacgtgca cgcgccggcg gccgcgctct accctcctcc tcccctgccg ccggcgcccc 180cctcctcgca gcagggcgcc gcggcggcgc accagcagca gctattctgg gcggagcaat 240accgcgagat cgaggccacc accgacttca agaaccacaa cctgccgctc gcccgcatca 300agaagatcat gaaggccgac gaggacgtgc gcatgatcgc cgccgaggcg cccgtcgtct 360tctcccgcgc ctgcgagatg ttcatcctcg agctcaccca ccgcggctgg gcacacgccg 420aggagaacaa gcgccgcacg ctgcagaagt ccgacatcgc cgccgccgtc gcgcgcaccg 480aggtcttcga cttcctcgtc gacatcgtgc cgcgggacga ggccaaggac gccgactccg 540ccgccatggg agcagccggg atcccgcacc ccgccgccgg cctgcccgcc gccgatccca 600tgggctacta ctacgtccag ccgccgcagt aacgaatttg cttccttatc atggcttcgc 660ttccatgcag cctttgcggg ttttagtaaa ctattattat tactgagagt gccctgttgt 720tacccatgct ctgttgttgc cacccaataa ctcgatgacc tgatgatcat ctgatgtgcc 780ccccgttccg taacaagtga ttccatttct gatttcagag aaaaaaaaaa aaaaaaaaaa 840aaaaaaaaaa aaaaaaaaaa aaaaa 86540201PRTZea maysG3909 polypeptide (domain in aa coordinates 86-151) 40Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Val Met Gly Ala 1 5 10 15 Pro Ile Ala Tyr Pro Pro Pro Pro Gly Ala Ala Tyr Pro Ala Gly Pro 20 25 30 Tyr Val His Ala Pro Ala Ala Ala Leu Tyr Pro Pro Pro Pro Leu Pro 35 40 45 Pro Ala Pro Pro Ser Ser Gln Gln Gly Ala Ala Ala Ala His Gln Gln 50 55

60 Gln Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp 65 70 75 80 Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 85 90 95 Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe 100 105 110 Ser Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp 115 120 125 Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile 130 135 140 Ala Ala Ala Val Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile 145 150 155 160 Val Pro Arg Asp Glu Ala Lys Asp Ala Asp Ser Ala Ala Met Gly Ala 165 170 175 Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro Ala Ala Asp Pro Met 180 185 190 Gly Tyr Tyr Tyr Val Gln Pro Pro Gln 195 200 411256DNAZea maysG3552 41ttaagaacct agtaggcaga cccggccggc gtagagaggg ggggaggtcg acgagacaga 60gagagaaggc caagaggctt cctctcccca ttcctccctt ccgtgcccta gccgagccag 120ccgcgaggaa ggaggcatcc cgccgtctcg cctggcgccc gcccgtcggc cgaccttctg 180ccgcagcttc caattctaaa aagatcatag atttttgtgc aagagcgagt ggatatggaa 240ccatcccctc agcctatggg tgtcgctgcc ggtgggtcac aagtgtatcc tgcctctgcc 300tatccgcctg cagcaacagt agctcctgct tctgttgtat ctgctggttt acagtcaggg 360cagccattcc cagccaaccc tggtcatatg agtgctcagc accagattgt ctaccaacaa 420gctcaacaat tccaccaaca gctccagcag cagcaacagc agcagcttca gcagttctgg 480gtcgaacgca tgactgaaat tgaggcgacg actgatttca agaaccacaa cttgccactt 540gcgaggataa agaagatcat gaaggccgat gaagatgttc gcatgatctc agccgaagct 600cctgtggtct tcgcaaaagc ttgtgagata ttcatactgg agctgacact taggtcgtgg 660atgcacactg aggagaacaa gcgccgcacc ttgcaaaaga atgacattgc agcagcgatc 720actaggactg acatttatga cttcttggtc gacattgttc ccagggatga gatgaaggag 780gacggaattg ggcttcctag ggctggtctg ccacccatgg gagccccagc tgatgcatat 840ccatactact acatgccaca gcagcaggtg cctggttctg gaatggttta tggtgcccag 900caagggcacc cagtgactta tttgtggcag gagcctcagc aacagcagga gcaagctcct 960gaagagcagc aatctgcatg aaagtggctg agaatattgc tcagaagcta tcacctgatt 1020cagagttctc attttaggtt gtccaaactg caggttttct tagtaatatc gttggttatc 1080aaactgaaac aggcgattct aagtagggtg tagcatcatg gtagtttcat ttctgcttgt 1140gatgttagtt gaaaggataa tgattagtgg ctagtggatt aaagttacca taccatttcc 1200ttctattccg aaagtttgcc tccatgaggc ctctgatatg acgaaaaaat aaaaaa 125642248PRTZea maysG3552 polypeptide (domain in aa coordinates 100-165) 42Met Glu Pro Ser Pro Gln Pro Met Gly Val Ala Ala Gly Gly Ser Gln 1 5 10 15 Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val Ala Pro Ala 20 25 30 Ser Val Val Ser Ala Gly Leu Gln Ser Gly Gln Pro Phe Pro Ala Asn 35 40 45 Pro Gly His Met Ser Ala Gln His Gln Ile Val Tyr Gln Gln Ala Gln 50 55 60 Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln 65 70 75 80 Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr Thr Asp Phe Lys 85 90 95 Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp 100 105 110 Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys 115 120 125 Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His 130 135 140 Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala 145 150 155 160 Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp Ile Val Pro 165 170 175 Arg Asp Glu Met Lys Glu Asp Gly Ile Gly Leu Pro Arg Ala Gly Leu 180 185 190 Pro Pro Met Gly Ala Pro Ala Asp Ala Tyr Pro Tyr Tyr Tyr Met Pro 195 200 205 Gln Gln Gln Val Pro Gly Ser Gly Met Val Tyr Gly Ala Gln Gln Gly 210 215 220 His Pro Val Thr Tyr Leu Trp Gln Glu Pro Gln Gln Gln Gln Glu Gln 225 230 235 240 Ala Pro Glu Glu Gln Gln Ser Ala 245 43748DNAArabidopsis thalianaG483 43gagatagctt agcaatggag cagtcagaag agggtcaaca gcaacagcaa cagggagtga 60tggattatgt acctcctcat gcttatcaga gtgggccagt aaatgcagct tcccatatgg 120cattccaaca agctcaccac ttccaccacc accatcagca gcaacaacag cagcagcttc 180agatgttctg ggctaaccaa atgcaagaga tcgagcatac cactgatttc aagaaccaca 240cccttcccct agcccgcatc aagaagatca tgaaagctga tgaagatgtg aggatgatct 300ctgcggaggc tcctgtgatt tttgccaagg cctgtgagat gttcattttg gagctcactc 360tacgtgcttg gatccacacc gaggagaaca agaggaggac cttgcagaag aacgacatcg 420ccgctgccat ttccaggacc gacgtgtttg atttccttgt ggacataatc ccgagggacg 480agctgaaaga agaaggttta ggcgtgacca aagggaccat accatcggtg gtgggttccc 540cgccatacta ttacttgcaa caacagggga tgatgcaaca ctggccccag gagcaacacc 600ctgatgagtc ttaaaacttt tcccctttcg tttgtttggt tgtatcgtag taaggtagct 660ctgctctgct gggaaccatt tctattgtgt tctgtaatga catgttagta tatccccagt 720ctatatctat ggcaatgcag tttctgtt 74844199PRTArabidopsis thalianaG483 polypeptide (domain in aa coordinates 77-142) 44Met Glu Gln Ser Glu Glu Gly Gln Gln Gln Gln Gln Gln Gly Val Met 1 5 10 15 Asp Tyr Val Pro Pro His Ala Tyr Gln Ser Gly Pro Val Asn Ala Ala 20 25 30 Ser His Met Ala Phe Gln Gln Ala His His Phe His His His His Gln 35 40 45 Gln Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Ala Asn Gln Met Gln 50 55 60 Glu Ile Glu His Thr Thr Asp Phe Lys Asn His Thr Leu Pro Leu Ala 65 70 75 80 Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser 85 90 95 Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu 100 105 110 Glu Leu Thr Leu Arg Ala Trp Ile His Thr Glu Glu Asn Lys Arg Arg 115 120 125 Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr Asp Val 130 135 140 Phe Asp Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu 145 150 155 160 Gly Leu Gly Val Thr Lys Gly Thr Ile Pro Ser Val Val Gly Ser Pro 165 170 175 Pro Tyr Tyr Tyr Leu Gln Gln Gln Gly Met Met Gln His Trp Pro Gln 180 185 190 Glu Gln His Pro Asp Glu Ser 195 451123DNAGlycine maxG3547 45acagcttttg ttctagcact tcgctgtctg aggttctgga ttctcagtgt ttgcggagcg 60cagcatcatc ttttagggaa gaatggatca tcaagggcat agccagaacc catctatggg 120ggttgttggt agtggagctc aattagcata tggttctaac ccatatcagc caggccaaat 180aactgggcca ccggggtctg ttgtgacatc agttgggacc attcaatcca ccggtcaacc 240tgctggagct cagcttggac agcatcaact tgcttatcag catattcatc agcaacaaca 300gcaccagctt cagcaacagc tccaacaatt ttggtcaagc cagtaccaag aaattgagaa 360ggttactgat tttaagaacc acagtcttcc cctggcaagg atcaagaaga ttatgaaggc 420tgacgaggat gttaggatga tatcagctga agcaccagtc atttttgcaa gggcatgtga 480aatgttcata ttagagttaa ccctgcgctc ttggaatcac actgaagaga acaaaaggcg 540aacacttcag aaaaatgata ttgctgctgc tatcacaagg actgacatct ttgatttctt 600ggttgacatt gtgcctcgtg aggacttgaa agatgaagtg cttgcatcaa tcccaagagg 660aacaatgcct gttgcagggc ctgctgatgc ccttccatac tgctacatgc cgcctcagca 720tccgtcccaa gttggagctg ctggtgtcat aatgggtaag cctgtgatgg acccaaacat 780gtatgctcag cagtctcacc cttacatggc accacaaatg tggccacagc caccagacca 840acgacagtcg tctccagaac attagctgat gtgtcgtgga aattaagata accaggcact 900ggaatcagtt gtgaatgtca aactgaatgg ttgggaaggt cgatactaca tagcgagcag 960aagctgtagc tgatagttta catgcaatgc agactataaa catatgtaga taatgtgcta 1020gggaaaactt aaccttatct ttgatttagc tggaaaaaat ggtatttttc attttaattc 1080acaggtcatc agatgataat atttatttac tggtgcatag cag 112346260PRTGlycine maxG3547 polypeptide (domain in aa coordinates 102-167) 46Met Asp His Gln Gly His Ser Gln Asn Pro Ser Met Gly Val Val Gly 1 5 10 15 Ser Gly Ala Gln Leu Ala Tyr Gly Ser Asn Pro Tyr Gln Pro Gly Gln 20 25 30 Ile Thr Gly Pro Pro Gly Ser Val Val Thr Ser Val Gly Thr Ile Gln 35 40 45 Ser Thr Gly Gln Pro Ala Gly Ala Gln Leu Gly Gln His Gln Leu Ala 50 55 60 Tyr Gln His Ile His Gln Gln Gln Gln His Gln Leu Gln Gln Gln Leu 65 70 75 80 Gln Gln Phe Trp Ser Ser Gln Tyr Gln Glu Ile Glu Lys Val Thr Asp 85 90 95 Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 100 105 110 Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe 115 120 125 Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp 130 135 140 Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile 145 150 155 160 Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile 165 170 175 Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Ser Ile Pro Arg 180 185 190 Gly Thr Met Pro Val Ala Gly Pro Ala Asp Ala Leu Pro Tyr Cys Tyr 195 200 205 Met Pro Pro Gln His Pro Ser Gln Val Gly Ala Ala Gly Val Ile Met 210 215 220 Gly Lys Pro Val Met Asp Pro Asn Met Tyr Ala Gln Gln Ser His Pro 225 230 235 240 Tyr Met Ala Pro Gln Met Trp Pro Gln Pro Pro Asp Gln Arg Gln Ser 245 250 255 Ser Pro Glu His 260 47925DNAArabidopsis thalianaG714 47ccacgcgtcc gcgtcaatct ttgagtttgg tagagaaatg gatcaacaag gacaatcatc 60agctatgaac tatggttcaa acccatatca aaccaacgcc atgaccacta caccaaccgg 120ttcagaccat ccagcttacc atcagatcca ccagcaacaa caacaacagc tcactcaaca 180gcttcaatct ttctgggaga ctcaattcaa agagattgag aaaaccactg atttcaagaa 240ccatagcctt ccattggcaa gaatcaagaa aatcatgaaa gctgatgaag atgtgcgtat 300gatctcggcc gaggcgcctg ttgtgttcgc cagggcctgc gagatgttta ttctggagct 360tacgttaagg tcttggaacc atactgagga gaacaagaga aggacgttgc agaagaatga 420tatcgcggct gcggtgacta gaactgatat ttttgatttt cttgtggata ttgttcctcg 480ggaggatctt cgtgatgaag tcttgggtgg tgttggtgct gaagctgcta cagctgcggg 540ttatccgtat ggatacttgc ctcctggaac agctccaatt gggaacccgg gaatggttat 600gggtaacccg ggcgcgtatc cgccgaaggc gtatatgggt cagccaatgt ggcaacaacc 660aggacctgag cagcaggatc ctgacaatta gcttggccta ataaactagc cgtctaattc 720gaagctctcc ccggtggatc tactcaagaa gaagaatgtt aatagaaaac tattgcgaca 780taaaaagttt ggtgtagtag aataatttct gttttatgat ccatggattt atcaattgtt 840attcagtttg gtttatcttg tcatcaaact gttttcggtc aatgtaacaa attcataaat 900tgagaattga acttacaaaa ggcta 92548217PRTArabidopsis thalianaG714 polypeptide (domain in aa coordinates 71-136) 48Met Asp Gln Gln Gly Gln Ser Ser Ala Met Asn Tyr Gly Ser Asn Pro 1 5 10 15 Tyr Gln Thr Asn Ala Met Thr Thr Thr Pro Thr Gly Ser Asp His Pro 20 25 30 Ala Tyr His Gln Ile His Gln Gln Gln Gln Gln Gln Leu Thr Gln Gln 35 40 45 Leu Gln Ser Phe Trp Glu Thr Gln Phe Lys Glu Ile Glu Lys Thr Thr 50 55 60 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 65 70 75 80 Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val 85 90 95 Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser 100 105 110 Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp 115 120 125 Ile Ala Ala Ala Val Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp 130 135 140 Ile Val Pro Arg Glu Asp Leu Arg Asp Glu Val Leu Gly Gly Val Gly 145 150 155 160 Ala Glu Ala Ala Thr Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Pro 165 170 175 Gly Thr Ala Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly 180 185 190 Ala Tyr Pro Pro Lys Ala Tyr Met Gly Gln Pro Met Trp Gln Gln Pro 195 200 205 Gly Pro Glu Gln Gln Asp Pro Asp Asn 210 215 49780DNAOryza sativaG3542 49atggaaccat cctcacagcc tcagcctgtg atgggtgttg ccactggtgg gtcacaagca 60tatcctcctc ctgctgctgc atatccacct caagccatgg ttcctggagc tcctgctgtt 120gttcctcctg gctcacagcc atcagcacca ttccccacta atccagctca actcagtgct 180cagcaccagc tagtctacca acaagcccag caatttcatc agcagctgca gcaacagcaa 240cagcagcaac tccgtgagtt ctgggctaac caaatggaag agattgagca aacaaccgac 300ttcaagaacc acagcttgcc actcgcaagg ataaagaaga taatgaaggc tgatgaggat 360gtccggatga tctcggcaga agcccccgtt gtcttcgcaa aggcatgcga ggtattcata 420ttagagttaa cattgaggtc gtggatgcac acggaggaga acaagcgccg gaccttgcag 480aagaatgaca ttgcagctgc catcaccagg actgatatct atgacttctt ggtggacata 540gttcccaggg atgaaatgaa agaagaaggg cttgggcttc cgagggttgg cctaccgcct 600aatgtggggg gcgcagcaga cacatatcca tattactacg tgccagcgca gcaggggcct 660ggatcaggaa tgatgtacgg tggacagcaa ggtcacccgg tgacgtatgt gtggcagcag 720cctcaagagc aacaggaaga ggcccctgaa gagcagcact ctctgccaga aagtagctaa 78050259PRTOryza sativaG3542 polypeptide (domain in aa coordinates 106-171) 50Met Glu Pro Ser Ser Gln Pro Gln Pro Val Met Gly Val Ala Thr Gly 1 5 10 15 Gly Ser Gln Ala Tyr Pro Pro Pro Ala Ala Ala Tyr Pro Pro Gln Ala 20 25 30 Met Val Pro Gly Ala Pro Ala Val Val Pro Pro Gly Ser Gln Pro Ser 35 40 45 Ala Pro Phe Pro Thr Asn Pro Ala Gln Leu Ser Ala Gln His Gln Leu 50 55 60 Val Tyr Gln Gln Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln 65 70 75 80 Gln Gln Gln Leu Arg Glu Phe Trp Ala Asn Gln Met Glu Glu Ile Glu 85 90 95 Gln Thr Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys 100 105 110 Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala 115 120 125 Pro Val Val Phe Ala Lys Ala Cys Glu Val Phe Ile Leu Glu Leu Thr 130 135 140 Leu Arg Ser Trp Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln 145 150 155 160 Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe 165 170 175 Leu Val Asp Ile Val Pro Arg Asp Glu Met Lys Glu Glu Gly Leu Gly 180 185 190 Leu Pro Arg Val Gly Leu Pro Pro Asn Val Gly Gly Ala Ala Asp Thr 195 200 205 Tyr Pro Tyr Tyr Tyr Val Pro Ala Gln Gln Gly Pro Gly Ser Gly Met 210 215 220 Met Tyr Gly Gly Gln Gln Gly His Pro Val Thr Tyr Val Trp Gln Gln 225 230 235 240 Pro Gln Glu Gln Gln Glu Glu Ala Pro Glu Glu Gln His Ser Leu Pro 245 250 255 Glu Ser Ser 51927DNAArabidopsis thalianaG489 51gaattcggca cgagacccac caagaggatc aaccagtctc ttccccttca gattctcctt 60tccacagtaa tggatcaaca agaccatgga cagtctggag ctatgaacta tggcacaaac 120ccataccaaa ccaacccgat gagcaccact gctgctactg tagcaggagg tgcggcacaa 180ccaggccagc tggcgttcca ccagatccat cagcagcagc agcagcaaca gctggcacag 240cagcttcaag cattttggga gaaccaattc aaagagattg agaagactac cgatttcaag 300aagcacagcc ttccccttgc gagaatcaag aaaatcatga aagcggatga agatgtccgt 360atgatctcgg ctgaggcgcc tgtcgtgttt gcaagggcct gtgagatgtt catcctggag 420ctgacactca ggtcgtggaa ccacactgag gagaataaga ggcggacgtt gcagaagaac 480gatattgctg ctgctgtgac tagaaccgat atttttgatt tccttgtgga tattgttccc 540cgggaggatc tccgagatga agtcttggga agtattccga ggggcactgt cccggaagct 600gctgctgctg gttacccgta tggatacttg cctgcaggaa ctgctccaat aggaaatccg 660ggaatggtta tgggtaatcc cggtggtgcg tatccaccta atccttatat gggtcaacca 720atgtggcaac aacaggcacc tgaccaacct gaccaggaaa attagcaaga aactgtgagt 780cttcccgctt cttttaggcc taccttgtag tcttggggtt ttgtttctgt tttcgaataa 840tggtaacctt tgtataactt atttcagtat cgtctcagtt tggtactatg tcagttttgg 900taaaaaaaaa aaaaaaaaaa aaaaaaa 92752231PRTArabidopsis thalianaG489 polypeptide (domain in aa

coordinates 81-146) 52Met Asp Gln Gln Asp His Gly Gln Ser Gly Ala Met Asn Tyr Gly Thr 1 5 10 15 Asn Pro Tyr Gln Thr Asn Pro Met Ser Thr Thr Ala Ala Thr Val Ala 20 25 30 Gly Gly Ala Ala Gln Pro Gly Gln Leu Ala Phe His Gln Ile His Gln 35 40 45 Gln Gln Gln Gln Gln Gln Leu Ala Gln Gln Leu Gln Ala Phe Trp Glu 50 55 60 Asn Gln Phe Lys Glu Ile Glu Lys Thr Thr Asp Phe Lys Lys His Ser 65 70 75 80 Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 85 90 95 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu 100 105 110 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu 115 120 125 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr 130 135 140 Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Asp 145 150 155 160 Leu Arg Asp Glu Val Leu Gly Ser Ile Pro Arg Gly Thr Val Pro Glu 165 170 175 Ala Ala Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Ala Gly Thr Ala 180 185 190 Pro Ile Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly Gly Ala Tyr 195 200 205 Pro Pro Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln Gln Ala Pro 210 215 220 Asp Gln Pro Asp Gln Glu Asn 225 230 53753DNAOryza sativaG3544 53atggagccat catcacaacc tcagccggca attggtgttg ttgctggtgg atcacaagtg 60taccctgcat accggcctgc agcaacagtg cctacagctc ctgctgtcat tcctgccggt 120tcacagccag caccgtcgtt ccctgccaac cctgatcaac tgagtgctca gcaccagctc 180gtctatcagc aagcccagca atttcaccag cagcttcagc agcagcaaca gcgtcaactc 240cagcagtttt gggctgaacg tctggtcgat attgaacaaa ctactgactt caagaaccac 300agcttgccac ttgctaggat aaagaagatc atgaaggcag atgaggacgt tcgcatgatc 360tccgcagagg ctcctgtgat ctttgcgaaa gcatgtgaga tattcatact ggagctgacc 420ctgagatcat ggatgcacac ggaggagaac aagcgccgta ccttgcagaa gaatgacata 480gcagctgcca tcaccaggac ggatatgtac gatttcttgg tagatatagt tcccagggat 540gacttgaagg aggagggagt tgggctccct agggctggat tgccgccctt gggtgtccct 600gctgactcat atccgtatgg ctactatgtg ccacagcagc aggtcccagg tgcaggaata 660gcgtatggtg gtcagcaagg tcatccgggg tatctgtggc aggatcctca ggaacagcag 720gaagagcctc ctgcagagca gcaaagtgat taa 75354250PRTOryza sativaG3544 polypeptide (domain in aa coordinates 102-167) 54Met Glu Pro Ser Ser Gln Pro Gln Pro Ala Ile Gly Val Val Ala Gly 1 5 10 15 Gly Ser Gln Val Tyr Pro Ala Tyr Arg Pro Ala Ala Thr Val Pro Thr 20 25 30 Ala Pro Ala Val Ile Pro Ala Gly Ser Gln Pro Ala Pro Ser Phe Pro 35 40 45 Ala Asn Pro Asp Gln Leu Ser Ala Gln His Gln Leu Val Tyr Gln Gln 50 55 60 Ala Gln Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Arg Gln Leu 65 70 75 80 Gln Gln Phe Trp Ala Glu Arg Leu Val Asp Ile Glu Gln Thr Thr Asp 85 90 95 Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 100 105 110 Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe 115 120 125 Ala Lys Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp 130 135 140 Met His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile 145 150 155 160 Ala Ala Ala Ile Thr Arg Thr Asp Met Tyr Asp Phe Leu Val Asp Ile 165 170 175 Val Pro Arg Asp Asp Leu Lys Glu Glu Gly Val Gly Leu Pro Arg Ala 180 185 190 Gly Leu Pro Pro Leu Gly Val Pro Ala Asp Ser Tyr Pro Tyr Gly Tyr 195 200 205 Tyr Val Pro Gln Gln Gln Val Pro Gly Ala Gly Ile Ala Tyr Gly Gly 210 215 220 Gln Gln Gly His Pro Gly Tyr Leu Trp Gln Asp Pro Gln Glu Gln Gln 225 230 235 240 Glu Glu Pro Pro Ala Glu Gln Gln Ser Asp 245 250 551126DNAGlycine maxG3550 55cttgcgccca atttccatgg aactgtaaag agaggatagt tagaagatta aatcttaaag 60cagtaagtca tcatggataa atcagagcag actcaacagc agcagcagca acaacagcat 120gtgatgggag ttgccgcagg ggctagccaa atggcctatt cttctcacta cccgactgct 180tccatggtgg cttctggcac gcccgctgta actgctcctt ccccaactca ggctccagct 240gccttctcta gttctgctca ccagcttgca taccagcaag cacagcattt ccaccaccaa 300cagcagcaac accaacaaca gcagcttcaa atgttctggt caaaccaaat gcaagaaatt 360gagcaaacaa ttgactttaa aaaccatagc cttcctcttg ctcggataaa aaagataatg 420aaagctgatg aagatgtccg gatgatttca gcagaagctc cggtcatatt tgcaaaagct 480tgtgaaatgt tcatattaga gttgacgttg cgatcttgga tccacacaga agagaacaag 540aggagaactc tacaaaagaa tgatatagca gctgctattt cgagaaacga tgtttttgat 600ttcttggttg atattattcc aagagatgag ttgaaagagg aaggacttgg aataaccaag 660gctactattc cgttagtggg ttctccagct gatatgccat attactatgt ccctccacag 720catcctgttg taggaccacc tgggatgatc atgggcaagc ccattggcgc tgagcaagca 780acactatatt ctacacagca gcctcgacct cctgtggcgt tcatgccatg gcctcataca 840caacccctgc aacagcagcc accccaacat caacaaacag actcatgatg actatgcaat 900tcaattaggt tggaaagtag cctgcacctt ttgattatta caaatttact taatgccttt 960cagccagctg tagtttagtg ttgtgcattg aaaaaaagca aaagattgtt ttgaggtttc 1020ttgcactcat ttatgattgt atgagctctt gtgatgagtt acttttggtt gtgtttacta 1080ttggtgtagt ggttaaatta tttggcagct gtccataacc agagag 112656271PRTGlycine maxG3550 polypeptide (domain in aa coordinates 107-172) 56Met Asp Lys Ser Glu Gln Thr Gln Gln Gln Gln Gln Gln Gln Gln His 1 5 10 15 Val Met Gly Val Ala Ala Gly Ala Ser Gln Met Ala Tyr Ser Ser His 20 25 30 Tyr Pro Thr Ala Ser Met Val Ala Ser Gly Thr Pro Ala Val Thr Ala 35 40 45 Pro Ser Pro Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln 50 55 60 Leu Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His 65 70 75 80 Gln Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile 85 90 95 Glu Gln Thr Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile 100 105 110 Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu 115 120 125 Ala Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu 130 135 140 Thr Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu 145 150 155 160 Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp 165 170 175 Phe Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu 180 185 190 Gly Ile Thr Lys Ala Thr Ile Pro Leu Val Gly Ser Pro Ala Asp Met 195 200 205 Pro Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly 210 215 220 Met Ile Met Gly Lys Pro Ile Gly Ala Glu Gln Ala Thr Leu Tyr Ser 225 230 235 240 Thr Gln Gln Pro Arg Pro Pro Val Ala Phe Met Pro Trp Pro His Thr 245 250 255 Gln Pro Leu Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser 260 265 270 571223DNAGlycine maxG3548 57caaaccaaac ctctctttct cagtttctct ctcttagggt tttctcctcc cccattgacc 60caccgtccat cgcaaaggaa gtcgcgccca atttccatgg actcagcagc aacatcagca 120tgggatgggc gttgccacag gtgctagcca aatggcctat tcttctcact acccgactgc 180tcccatggtg gcttctggca cgcctgctgt agctgttcct tccccaactc aggctccagc 240tgccttctct agttctgctc accagcttgc ataccagcaa gcacagcatt tccaccacca 300acagcagcaa caccaacaac agcagcttca aatgttctgg tcaaaccaaa tgcaagaaat 360tgagcaaaca attgacttta aaaaccacag tcttcctctt gctcggataa aaaagataat 420gaaagctgat gaagatgtcc ggatgatttc tgcagaagct ccagtcatat ttgcaaaagc 480atgtgaaatg ttcatattag agttgacgtt gagatcttgg atccacacag aagagaacaa 540gaggagaact ctacaaaaga atgatatagc agctgctatt tcgagaaacg atgtttttga 600tttcttggtt gatattatcc caagagatga gttgaaagag gaaggacttg gaataaccaa 660ggctactatt ccattggtga attctccagc tgatatgcca tattactatg tccctccaca 720gcatcctgtt gtaggacctc ctgggatgat catgggcaag cccgttggtg ctgagcaagc 780aacgctgtat tctacacagc agcctcgacc tcccatggcg ttcatgccat ggccccatac 840acaaccccag caacagcagc caccccaaca tcaacaaaca gactcatgat gaccatgcaa 900ttcaattagg tcggaaagta gcatgcacct tatgattatt acaaatttac ttaatgcctt 960taagtcagct gtagtttagt gttttgcatt gaaaaatgcc aaagattgtt tgaggtttct 1020tgcactcatt tatgattgta tgagctctta tgctgagtta cttttggttg tgtttatttg 1080aggtactggt gtggtagtta aattagtttg tagctgtcca taagtaaaca gcgtagctgc 1140ttaattagga ggtctgaaat gatgaaatag tttgtattgt tattgcagaa ggtaggtttt 1200attcagtatt tcattctact gca 122358254PRTGlycine maxG3548 polypeptide (domain in aa coordinates 90-155) 58Met Gly Val Ala Thr Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr 1 5 10 15 Pro Thr Ala Pro Met Val Ala Ser Gly Thr Pro Ala Val Ala Val Pro 20 25 30 Ser Pro Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu 35 40 45 Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln 50 55 60 Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu 65 70 75 80 Gln Thr Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys 85 90 95 Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala 100 105 110 Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr 115 120 125 Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln 130 135 140 Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe 145 150 155 160 Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly 165 170 175 Ile Thr Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met Pro 180 185 190 Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met 195 200 205 Ile Met Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr 210 215 220 Gln Gln Pro Arg Pro Pro Met Ala Phe Met Pro Trp Pro His Thr Gln 225 230 235 240 Pro Gln Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser 245 250 59705DNAArabidopsis thalianaG715 59atggatacca acaaccagca accacctccc tccgccgccg gaatccctcc tccaccacct 60ggaaccacca tctccgccgc aggaggagga gcttcttacc accaccttct ccaacaacaa 120caacaacagc tccaactatt ctggacctac caacgccaag agatcgaaca agttaacgat 180ttcaaaaacc atcagcttcc actagctagg ataaaaaaga tcatgaaagc cgatgaagat 240gttcgtatga tctccgcaga agcaccgatt ctcttcgcga aagcttgtga gcttttcatt 300ctcgagctca cgatcagatc ttggcttcac gctgaggaga ataaacgtcg tacgcttcag 360aaaaacgata tcgctgctgc gattactagg actgatatct tcgatttcct tgttgatatt 420gttcctagag atgagattaa ggacgaagcc gcagtcctcg gtggtggaat ggtggtggct 480cctaccgcga gcggcgtgcc ttactattat ccgccgatgg gacaaccagc tggtcctgga 540gggatgatga ttgggagacc agctatggat ccgaatggtg tttatgtcca gcctccgtct 600caggcgtggc agagtgtttg gcagacttcg acggggacgg gagatgatgt ctcttatggt 660agtggtggaa gttccggtca agggaatctc gacggccaag gttaa 70560234PRTArabidopsis thalianaG715 polypeptide (domain in aa coordinates 66-131) 60Met Asp Thr Asn Asn Gln Gln Pro Pro Pro Ser Ala Ala Gly Ile Pro 1 5 10 15 Pro Pro Pro Pro Gly Thr Thr Ile Ser Ala Ala Gly Gly Gly Ala Ser 20 25 30 Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Leu Phe Trp 35 40 45 Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His 50 55 60 Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp 65 70 75 80 Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys 85 90 95 Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu 100 105 110 Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile 115 120 125 Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Asp 130 135 140 Glu Ile Lys Asp Glu Ala Ala Val Leu Gly Gly Gly Met Val Val Ala 145 150 155 160 Pro Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro 165 170 175 Ala Gly Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Asn 180 185 190 Gly Val Tyr Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln 195 200 205 Thr Ser Thr Gly Thr Gly Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser 210 215 220 Ser Gly Gln Gly Asn Leu Asp Gly Gln Gly 225 230 61711DNAGlycine maxG3886 61atggagacca acaaccagca acaacaacaa caaggagctc aagcccaatc gggaccctac 60cccgtcgccg gcgccggcgg cagtgcaggt gcaggtgcag gcgctcctcc ccctttccag 120caccttctcc agcagcagca gcagcagctc cagatgttct ggtcttacca gcgtcaagaa 180atcgagcacg tgaacgactt taagaatcac cagctccctc ttgcccgcat caagaagatc 240atgaaggccg acgaggatgt ccgcatgatc tccgccgagg cccccatcct cttcgccaag 300gcctgcgagc tcttcatcct cgagctcacc atccgctcct ggctccacgc cgaggagaac 360aagcgccgca ccctccagaa gaacgacatc gccgccgcca tcacccgcac cgacattttc 420gacttcctcg ttgatattgt cccccgcgac gagatcaagg acgacgctgc tcttgtgggg 480gccaccgcca gtggggtgcc ttactactac ccgcccattg gacagcctgc cgggatgatg 540attggccgcc ccgccgtcga tcccgccacc ggggtttatg tccagccgcc ctcccaggca 600tggcagtccg tctggcagtc cgctgccgag gacgcttcct atggcaccgg ccccgccggt 660gcccagcgga gccttgatgg ccagagctag ctcgagcctg caggaagggc g 71162229PRTGlycine maxG3886 polypeptide (domain in aa coordinates 72-137) 62Met Glu Thr Asn Asn Gln Gln Gln Gln Gln Gln Gly Ala Gln Ala Gln 1 5 10 15 Ser Gly Pro Tyr Pro Val Ala Gly Ala Gly Gly Ser Ala Gly Ala Gly 20 25 30 Ala Gly Ala Pro Pro Pro Phe Gln His Leu Leu Gln Gln Gln Gln Gln 35 40 45 Gln Leu Gln Met Phe Trp Ser Tyr Gln Arg Gln Glu Ile Glu His Val 50 55 60 Asn Asp Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile 65 70 75 80 Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile 85 90 95 Leu Phe Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg 100 105 110 Ser Trp Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn 115 120 125 Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val 130 135 140 Asp Ile Val Pro Arg Asp Glu Ile Lys Asp Asp Ala Ala Leu Val Gly 145 150 155 160 Ala Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Ile Gly Gln Pro 165 170 175 Ala Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Ala Thr Gly Val 180 185 190 Tyr Val Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Ser Ala 195 200 205 Ala Glu Asp Ala Ser Tyr Gly Thr Gly Pro Ala Gly Ala Gln Arg Ser 210 215 220 Leu Asp Gly Gln Ser 225 63760DNAZea maysG3889 63cccagcagca acgtaatcca aatccatgga caaccagccg ctgccctact ccacaggcca 60gccccctgcc cccggaggag ccccggtggc gggcatgcct ggcgcggccg gcctcccacc 120cgtgccgcac caccacctgc tccagcagca ggcccagctg caggcgttct gggcgtacca 180gcgccaggag gcggagcgcg cgtccgcgtc ggacttcaag aaccaccagc tgcctctggc 240ccggatcaag aagatcatga aggccgacga ggacgtgcgc atgatctccg ccgaggcgcc

300cgtgctgttc gccaaggcct gcgagctctt catcctcgag ctcactatcc gctcctggct 360ccacgccgag gagaacaagc gccgcaccct gcagcgcaac gacgtcgccg cggccatcgc 420gcgcaccgac gtcttcgatt tcctcgtcga catcgtgccc cgcgaggagg ccaaggagga 480gcccggcagc gccctcggct tcgcggcgcc tgggaccggc gtcgtcgggg ctggcgcccc 540gggcggggcg ccagccgccg ggatgcccta ctactatccg ccgatggggc agccggcgcc 600gatgatgccg gcctggcatg ttccggcctg ggacccggcc tggcagcaag gggcagcgga 660tgtcgatcag agcggcagct tcagcgagga aggacaaggg tttggagcag gccatggcgg 720cgccgctagc ttccctcctg cgcctccgac ctccgagtga 76064244PRTZea maysG3889 polypeptide (domain in aa coordinates 69-134) 64Met Asp Asn Gln Pro Leu Pro Tyr Ser Thr Gly Gln Pro Pro Ala Pro 1 5 10 15 Gly Gly Ala Pro Val Ala Gly Met Pro Gly Ala Ala Gly Leu Pro Pro 20 25 30 Val Pro His His His Leu Leu Gln Gln Gln Ala Gln Leu Gln Ala Phe 35 40 45 Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp Phe 50 55 60 Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala 65 70 75 80 Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala 85 90 95 Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu 100 105 110 His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val Ala 115 120 125 Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile Val 130 135 140 Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe Ala 145 150 155 160 Ala Pro Gly Thr Gly Val Val Gly Ala Gly Ala Pro Gly Gly Ala Pro 165 170 175 Ala Ala Gly Met Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro 180 185 190 Met Met Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln Gln 195 200 205 Gly Ala Ala Asp Val Asp Gln Ser Gly Ser Phe Ser Glu Glu Gly Gln 210 215 220 Gly Phe Gly Ala Gly His Gly Gly Ala Ala Ser Phe Pro Pro Ala Pro 225 230 235 240 Pro Thr Ser Glu 65800DNAArabidopsis thalianaG1646 65gatcttttga tccaatcaca aggcaaagat ccaatggaca ataacaacaa caacaacaac 60cagcaaccac caccaacctc cgtctatcca cctggctccg ccgtcacaac cgtaatccct 120cctccaccat ctggatctgc atcaatagtc accggaggag gagcgacata ccaccacctc 180ctccagcaac aacagcaaca gcttcaaatg ttctggacat accagagaca agagatcgaa 240caggtaaacg atttcaaaaa ccatcagctc cctctagctc gtatcaaaaa aatcatgaaa 300gctgatgaag atgtgcgtat gatctccgcc gaagcaccga ttctcttcgc gaaagcttgt 360gagcttttca ttctcgaact tacgattaga tcttggcttc acgctgaaga gaacaaacgt 420cgtacgcttc agaaaaacga tatcgctgct gcgattacta gaaccgatat cttcgatttc 480cttgttgata ttgttcctag ggaagagatc aaggaagagg aagatgcagc atcggctctt 540ggtggaggag gtatggttgc tcccgccgcg agcggtgttc cttattatta tccaccgatg 600ggacaaccgg cggttcctgg agggatgatg attggaagac cggcgatgga tcctagcggt 660gtttatgctc agcctccttc tcaggcatgg caaagcgttt ggcagaattc agctggtggt 720ggtgatgatg tgtcttatgg aagtggagga agtagcggcc atggtaatct cgatagccaa 780gggtaagtga attctagtag 80066250PRTArabidopsis thalianaG1646 polypeptide (domain in aa coordinates 79-144) 66Met Asp Asn Asn Asn Asn Asn Asn Asn Gln Gln Pro Pro Pro Thr Ser 1 5 10 15 Val Tyr Pro Pro Gly Ser Ala Val Thr Thr Val Ile Pro Pro Pro Pro 20 25 30 Ser Gly Ser Ala Ser Ile Val Thr Gly Gly Gly Ala Thr Tyr His His 35 40 45 Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Thr Tyr Gln 50 55 60 Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn His Gln Leu Pro 65 70 75 80 Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met 85 90 95 Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu Leu Phe 100 105 110 Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu Asn Lys 115 120 125 Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr 130 135 140 Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Glu Ile Lys 145 150 155 160 Glu Glu Glu Asp Ala Ala Ser Ala Leu Gly Gly Gly Gly Met Val Ala 165 170 175 Pro Ala Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro 180 185 190 Ala Val Pro Gly Gly Met Met Ile Gly Arg Pro Ala Met Asp Pro Ser 195 200 205 Gly Val Tyr Ala Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln 210 215 220 Asn Ser Ala Gly Gly Gly Asp Asp Val Ser Tyr Gly Ser Gly Gly Ser 225 230 235 240 Ser Gly His Gly Asn Leu Asp Ser Gln Gly 245 250 67915DNAOryza sativaG3543 67atggacaacc agcagctacc ctacgccggt cagccggcgg ccgcaggcgc cggagccccg 60gtgccgggcg tgcctggcgc gggcgggccg ccggcggtgc cgcaccacca cctgctccag 120cagcagcagg cgcagctgca ggcgttctgg gcgtaccagc ggcaggaggc ggagcgcgcg 180tcggcgtcgg acttcaagaa ccaccagctg ccgctggcgg ggatcaagaa gatcatgaag 240gcggacgagg acgtgcgcat gatctcggcg gaggcgcccg tgctgttcgc caaggcgtgc 300gagctcttca tcctggagct caccatccgc tcgtggctgc acgccgagga gaacaagcgc 360cgcaccctgc agcgcaagga cgtcgccgcc gccatcgcgc gcaccgacgt gttcgacttc 420ctcgtcgaca tcgtgccgcg ggaggaggcc aaggaggagc ccggcagcgc gctcgggttc 480gcggcgggag ggcccgccgg cgccgttgga gcggccggcc ccgccgcggg gctgccgtac 540tactacccgc cgatggggca gccggcgccg atgatgccgg cgtggcatgt tccggcgtgg 600gacccggcgt ggcagcaagg agcagcgccg gatgtggacc agggcgccgc cggcagcttc 660agcgaggaag ggcagcaagg ttttgcaggc catggcggtg cggcagctag cttccctcct 720gcacctccaa gctccgaata gtgatgatcc atatggttcc atgcatgcat cgctgaggtg 780ctagctagct actatagctg ctcaaatcaa atgctcaatg tgtcggtaat taattaatgt 840ggtacgtatt aacttaaccg atgtacgtaa tggacgctca agctaattaa gggatgtaca 900atttactaaa aaaaa 91568246PRTOryza sativaG3543 polypeptide (domain in aa coordinates 70-135) 68Met Asp Asn Gln Gln Leu Pro Tyr Ala Gly Gln Pro Ala Ala Ala Gly 1 5 10 15 Ala Gly Ala Pro Val Pro Gly Val Pro Gly Ala Gly Gly Pro Pro Ala 20 25 30 Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala 35 40 45 Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp 50 55 60 Phe Lys Asn His Gln Leu Pro Leu Ala Gly Ile Lys Lys Ile Met Lys 65 70 75 80 Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe 85 90 95 Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp 100 105 110 Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Lys Asp Val 115 120 125 Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile 130 135 140 Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe 145 150 155 160 Ala Ala Gly Gly Pro Ala Gly Ala Val Gly Ala Ala Gly Pro Ala Ala 165 170 175 Gly Leu Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro Met Met 180 185 190 Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln Gln Gly Ala 195 200 205 Ala Pro Asp Val Asp Gln Gly Ala Ala Gly Ser Phe Ser Glu Glu Gly 210 215 220 Gln Gln Gly Phe Ala Gly His Gly Gly Ala Ala Ala Ser Phe Pro Pro 225 230 235 240 Ala Pro Pro Ser Ser Glu 245 69732DNAArabidopsis thalianaG1820 69ctcacttcca acatccaaat ccctagaaat tgtaaatggc tgagaacaac aacaacaacg 60gcgacaacat gaacaacgac aaccaccagc aaccaccgtc gtactcgcag ctgccgccga 120tggcatcatc caaccctcag ttacgtaatt actggattga gcagatggaa accgtctcgg 180atttcaaaaa ccgtcagctt ccattggctc gaattaagaa gatcatgaag gctgatccag 240atgtgcacat ggtctccgca gaggctccga tcatcttcgc aaaggcttgc gaaatgttca 300tcgttgatct cacgatgcgg tcgtggctca aagccgagga gaacaaacgc cacacgcttc 360agaaatcgga tatctccaac gcagtggcta gctctttcac ctacgatttc cttcttgatg 420ttgtccctaa ggacgagtct atcgccaccg ctgatcctgg ctttgtggct atgccacatc 480ctgacggtgg aggagtaccg caatattatt atccaccggg agtggtgatg ggaactccta 540tggttggtag tggaatgtac gcgccatcgc aggcgtggcc agcagcggct ggtgacgggg 600aggatgatgc tgaggataat ggaggaaacg gcggcggaaa ttgaagtgta gatttagggt 660ttgtaaccgc ctatgtggga aatttgaaat ttggtggtgt ttattagggt tcttcaattc 720gtcggatttg ct 73270202PRTArabidopsis thalianaG1820 polypeptide (domain in aa coordinates 55-120) 70Met Ala Glu Asn Asn Asn Asn Asn Gly Asp Asn Met Asn Asn Asp Asn 1 5 10 15 His Gln Gln Pro Pro Ser Tyr Ser Gln Leu Pro Pro Met Ala Ser Ser 20 25 30 Asn Pro Gln Leu Arg Asn Tyr Trp Ile Glu Gln Met Glu Thr Val Ser 35 40 45 Asp Phe Lys Asn Arg Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 50 55 60 Lys Ala Asp Pro Asp Val His Met Val Ser Ala Glu Ala Pro Ile Ile 65 70 75 80 Phe Ala Lys Ala Cys Glu Met Phe Ile Val Asp Leu Thr Met Arg Ser 85 90 95 Trp Leu Lys Ala Glu Glu Asn Lys Arg His Thr Leu Gln Lys Ser Asp 100 105 110 Ile Ser Asn Ala Val Ala Ser Ser Phe Thr Tyr Asp Phe Leu Leu Asp 115 120 125 Val Val Pro Lys Asp Glu Ser Ile Ala Thr Ala Asp Pro Gly Phe Val 130 135 140 Ala Met Pro His Pro Asp Gly Gly Gly Val Pro Gln Tyr Tyr Tyr Pro 145 150 155 160 Pro Gly Val Val Met Gly Thr Pro Met Val Gly Ser Gly Met Tyr Ala 165 170 175 Pro Ser Gln Ala Trp Pro Ala Ala Ala Gly Asp Gly Glu Asp Asp Ala 180 185 190 Glu Asp Asn Gly Gly Asn Gly Gly Gly Asn 195 200 71668DNAArabidopsis thalianaG1836 71ataacaagcc tagaacacta gaaacttcaa aaaagaaaaa aatcttatgg agaacaacaa 60cggcaacaac cagctgccac cgaaaggtaa cgagcaactg aagagtttct ggtcaaaaga 120gatggaaggt aacttagatt tcaaaaatca cgaccttcct ataactcgta tcaagaagat 180tatgaagtat gatccggatg tgactatgat agctagtgag gctccaatcc tcctctcgaa 240agcatgtgag atgtttatca tggatctcac gatgcgttcg tggctccatg ctcaggaaag 300caaacgagtc acgctacaga aatctaatgt cgatgccgca gtggctcaaa ctgttatctt 360tgatttcttg cttgatgatg acattgaggt aaagagagag tctgttgccg ccgctgctga 420tcctgtggcc atgccaccta ttgacgatgg agagctgcct ccaggaatgg taattggaac 480tcctgtttgt tgtagtcttg gaatccacca accacaacca caaatgcagg catggcctgg 540agcttggacc tcggtgtctg gtgaggagga agaagcgcgt gggaaaaaag gaggtgacga 600cggaaactaa taagtggaat acgttttagg gtattttcaa gggaatatgt agtaaatagt 660catggatc 66872187PRTArabidopsis thalianaG1836 polypeptide (domain in aa coordinates 37-102) 72Met Glu Asn Asn Asn Gly Asn Asn Gln Leu Pro Pro Lys Gly Asn Glu 1 5 10 15 Gln Leu Lys Ser Phe Trp Ser Lys Glu Met Glu Gly Asn Leu Asp Phe 20 25 30 Lys Asn His Asp Leu Pro Ile Thr Arg Ile Lys Lys Ile Met Lys Tyr 35 40 45 Asp Pro Asp Val Thr Met Ile Ala Ser Glu Ala Pro Ile Leu Leu Ser 50 55 60 Lys Ala Cys Glu Met Phe Ile Met Asp Leu Thr Met Arg Ser Trp Leu 65 70 75 80 His Ala Gln Glu Ser Lys Arg Val Thr Leu Gln Lys Ser Asn Val Asp 85 90 95 Ala Ala Val Ala Gln Thr Val Ile Phe Asp Phe Leu Leu Asp Asp Asp 100 105 110 Ile Glu Val Lys Arg Glu Ser Val Ala Ala Ala Ala Asp Pro Val Ala 115 120 125 Met Pro Pro Ile Asp Asp Gly Glu Leu Pro Pro Gly Met Val Ile Gly 130 135 140 Thr Pro Val Cys Cys Ser Leu Gly Ile His Gln Pro Gln Pro Gln Met 145 150 155 160 Gln Ala Trp Pro Gly Ala Trp Thr Ser Val Ser Gly Glu Glu Glu Glu 165 170 175 Ala Arg Gly Lys Lys Gly Gly Asp Asp Gly Asn 180 185 73639DNAArabidopsis thalianaG1819 73atggaagaga acaacggcaa caacaaccac tacctgccgc aaccatcgtc ttcccaactg 60ccgccgccac cattgtatta tcaatcaatg ccgttgccgt catattcact gccgctgccg 120tactcaccgc agatgcggaa ttattggatt gcgcagatgg gaaacgcaac tgatgttaag 180catcatgcgt ttccactaac caggataaag aaaatcatga agtccaaccc ggaagtgaac 240atggtcactg cagaggctcc ggtccttata tcgaaggcct gtgagatgct cattcttgat 300ctcacaatgc gatcgtggct tcataccgtg gagggcggtc gccaaactct caagagatcc 360gatacgctca cgagatccga tatctccgcc gcaacgactc gtagtttcaa atttaccttc 420cttggcgacg ttgtcccaag agacccttcc gtcgttaccg atgatcccgt gctacatccg 480gacggtgaag tacttcctcc gggaacggtg ataggatatc cggtgtttga ttgtaatggt 540gtgtacgcgt caccgccaca gatgcaggag tggccggcgg tgcctggtga cggagaggag 600gcagctgggg aaattggagg aagcagcggc ggtaattga 63974212PRTArabidopsis thalianaG1819 polypeptide (domain in aa coordinates 64-135) 74Met Glu Glu Asn Asn Gly Asn Asn Asn His Tyr Leu Pro Gln Pro Ser 1 5 10 15 Ser Ser Gln Leu Pro Pro Pro Pro Leu Tyr Tyr Gln Ser Met Pro Leu 20 25 30 Pro Ser Tyr Ser Leu Pro Leu Pro Tyr Ser Pro Gln Met Arg Asn Tyr 35 40 45 Trp Ile Ala Gln Met Gly Asn Ala Thr Asp Val Lys His His Ala Phe 50 55 60 Pro Leu Thr Arg Ile Lys Lys Ile Met Lys Ser Asn Pro Glu Val Asn 65 70 75 80 Met Val Thr Ala Glu Ala Pro Val Leu Ile Ser Lys Ala Cys Glu Met 85 90 95 Leu Ile Leu Asp Leu Thr Met Arg Ser Trp Leu His Thr Val Glu Gly 100 105 110 Gly Arg Gln Thr Leu Lys Arg Ser Asp Thr Leu Thr Arg Ser Asp Ile 115 120 125 Ser Ala Ala Thr Thr Arg Ser Phe Lys Phe Thr Phe Leu Gly Asp Val 130 135 140 Val Pro Arg Asp Pro Ser Val Val Thr Asp Asp Pro Val Leu His Pro 145 150 155 160 Asp Gly Glu Val Leu Pro Pro Gly Thr Val Ile Gly Tyr Pro Val Phe 165 170 175 Asp Cys Asn Gly Val Tyr Ala Ser Pro Pro Gln Met Gln Glu Trp Pro 180 185 190 Ala Val Pro Gly Asp Gly Glu Glu Ala Ala Gly Glu Ile Gly Gly Ser 195 200 205 Ser Gly Gly Asn 210 751740DNAArabidopsis thalianaG1818 75taacaaatca aataattaga gaaataacca aaatttaact tttagaggga ctacaggatt 60tgtactttgt acattcatat attattgtta tatatcgttt catacattaa tttgaaccaa 120tgtaaattaa gtaaaattca atttaacatc atgagcaaat tcttattaaa attctcttaa 180aattttgagc aaattatgct ttcacattta acatttgaaa acatcatttt taacaagata 240ttcaaaacta agttttgtac agcaaaattt taactttcaa ttttatagag aaaaaggtat 300tttttttttt gtttcatttt tataagacta ttatttggta tataatatac actttaagta 360aaaacaaatc tctttctttt ttcttcttat aataccaacc acaagtctgt cagtcacaca 420catacagtta ataacattaa atattcttaa caaactacta aataggttga gattcatata 480tgtaaagaga tcacttctta atcttatcct accatatctt atatacgctt aattttcctt 540tatatatgca aacctccaca taaaaatatc tcaaacccaa acacttcaaa caaaaaaaaa 600atggagaaca acaacaacaa ccaccaacag ccaccgaaag ataacgagca actaaagagt 660ttctggtcaa aggggatgga aggtgacttg aatgtcaaga atcacgagtt ccccatctct 720cgtatcaaga ggataatgaa gtttgatccg gatgtgagta tgatcgctgc tgaggctcca 780aatctcttat ctaaggcttg tgaaatgttt gtcatggacc tcacgatgcg ttcatggctc 840catgctcaag agagcaaccg actcacgata cggaaatctg atgttgatgc cgtagtgtct 900caaaccgtca tctttgattt cttgcgtgat gatgtcccta aggacgaggg agagcccgtt 960gtcgccgctg ctgatcctgt ggacgatgtt gctgatcatg tggctgtgcc agatcttaac 1020aatgaagaac tgccgccggg aacggtgata ggaactccgg tttgttacgg tttaggaata 1080cacgcgccac acccgcagat gcctggagct tggaccgagg aggatgcgac tggggcaaat 1140ggaggaaacg gtgggaatta atatttggat tgggttttgt aaccgctgtt gtgagaactt 1200gaatttcttt ttgagttctg cttatgtttt caatgttatg ttttttagtt gttgaatgta

1260tttctgttgt tttgtccaaa aaaaaaaaag aatgtatttc tgttgttgtc tttcaaatga 1320atctaatggt ttatgaatat tggctttaga ttaatttatg catacaaaaa cacaaggatt 1380acggataaaa aagtcctcag tttacccatg gaaacataat cttctagtga ttccttatga 1440gagtagaaaa gaatcatata ttataatcta tttcataaga gatagggtac tgtaaacaag 1500gatgtttatt cggctatttc tttttttttt aatcactttt acttgtcaag actcttttgt 1560gtttgcagct ttttgttaga ttacattcta gaggcaacaa gatccagaga tctagcaaaa 1620aaaacttatt ttgaaacctg aatctatttt aaaaattttc caactcattt ttcgttctta 1680ttctttgttt tccaacggaa tttggcgcac aaacgattta tttgaatttt gtctttcaag 174076186PRTArabidopsis thalianaG1818 polypeptide (domain in aa coordinates 38-102) 76Met Glu Asn Asn Asn Asn Asn His Gln Gln Pro Pro Lys Asp Asn Glu 1 5 10 15 Gln Leu Lys Ser Phe Trp Ser Lys Gly Met Glu Gly Asp Leu Asn Val 20 25 30 Lys Asn His Glu Phe Pro Ile Ser Arg Ile Lys Arg Ile Met Lys Phe 35 40 45 Asp Pro Asp Val Ser Met Ile Ala Ala Glu Ala Pro Asn Leu Leu Ser 50 55 60 Lys Ala Cys Glu Met Phe Val Met Asp Leu Thr Met Arg Ser Trp Leu 65 70 75 80 His Ala Gln Glu Ser Asn Arg Leu Thr Ile Arg Lys Ser Asp Val Asp 85 90 95 Ala Val Val Ser Gln Thr Val Ile Phe Asp Phe Leu Arg Asp Asp Val 100 105 110 Pro Lys Asp Glu Gly Glu Pro Val Val Ala Ala Ala Asp Pro Val Asp 115 120 125 Asp Val Ala Asp His Val Ala Val Pro Asp Leu Asn Asn Glu Glu Leu 130 135 140 Pro Pro Gly Thr Val Ile Gly Thr Pro Val Cys Tyr Gly Leu Gly Ile 145 150 155 160 His Ala Pro His Pro Gln Met Pro Gly Ala Trp Thr Glu Glu Asp Ala 165 170 175 Thr Gly Ala Asn Gly Gly Asn Gly Gly Asn 180 185 77588DNAArabidopsis thalianaG490 77atgaggaggc caaagtcatc tcacgtcagg atggaacctg ttgcgcctcg ttcacataac 60acgatgccaa tgcttgatca atttcgatct aatcatcctg aaacaagcaa gatcgagggg 120gtctcttcgt tggacacagc tctgaaggtg ttttggaata atcaaaggga gcagctagga 180aactttgcag gccaaactca tttgccgcta tctagggtca gaaagatttt gaaatctgat 240cctgaagtca agaagataag ctgtgatgtt cctgctttgt tttcgaaagc ctgtgaatac 300ttcattctag aggtaacatt acgagcttgg atgcatactc aatcatgcac tcgtgagacc 360atccggcgtt gtgatatctt ccaggccgta aagaactcag gaacttatga tttcctgatt 420gatcgtgtcc cttttggacc gcactgtgtc acccatcagg gtgtgcaacc tcctgctgaa 480atgattttgc cggatatgaa tgttccaatc gatatggacc agattgagga ggagaatatg 540atggaagagc gctctgtcgg gtttgacctc aactgtgatc tccagtga 58878195PRTArabidopsis thalianaG490 polypeptide (domain in aa coordinates 68-133) 78Met Arg Arg Pro Lys Ser Ser His Val Arg Met Glu Pro Val Ala Pro 1 5 10 15 Arg Ser His Asn Thr Met Pro Met Leu Asp Gln Phe Arg Ser Asn His 20 25 30 Pro Glu Thr Ser Lys Ile Glu Gly Val Ser Ser Leu Asp Thr Ala Leu 35 40 45 Lys Val Phe Trp Asn Asn Gln Arg Glu Gln Leu Gly Asn Phe Ala Gly 50 55 60 Gln Thr His Leu Pro Leu Ser Arg Val Arg Lys Ile Leu Lys Ser Asp 65 70 75 80 Pro Glu Val Lys Lys Ile Ser Cys Asp Val Pro Ala Leu Phe Ser Lys 85 90 95 Ala Cys Glu Tyr Phe Ile Leu Glu Val Thr Leu Arg Ala Trp Met His 100 105 110 Thr Gln Ser Cys Thr Arg Glu Thr Ile Arg Arg Cys Asp Ile Phe Gln 115 120 125 Ala Val Lys Asn Ser Gly Thr Tyr Asp Phe Leu Ile Asp Arg Val Pro 130 135 140 Phe Gly Pro His Cys Val Thr His Gln Gly Val Gln Pro Pro Ala Glu 145 150 155 160 Met Ile Leu Pro Asp Met Asn Val Pro Ile Asp Met Asp Gln Ile Glu 165 170 175 Glu Glu Asn Met Met Glu Glu Arg Ser Val Gly Phe Asp Leu Asn Cys 180 185 190 Asp Leu Gln 195 79882DNAArabidopsis thalianaG3074 79atgaggaaga agctcgatac tcggttccca gctgctcgta ttaaaaagat tatgcaagct 60gatgaggatg ttggcaagat agctttggca gtgcctgtct tagtctcaaa atctttggag 120ttgttcttgc aagacctttg tgatcgtaca tatgaaatta cccttgaaag aggtgccaag 180actgtgagct cattgcacct aaaacattgt gtggaaagat ataacgtgtt tgattttctg 240agggaagttg tgagtaaggt gcctgactat ggccattccc aagggcaagg acatggtgat 300gttaccatgg atgatcgcag catctccaag agaaggaagc ccatcagcga tgaagtgaat 360gacagtgacg aggaatataa gaaaagcaaa acgcaagaga tagggagtgc taagaccagt 420ggcaggggtg gtagaggaag agggcgagga agaggtcgtg gtggacgagc tgcaaaagca 480gccgaaagag agggtctcaa ccgcgagatg gaagtagaag ccgccaattc tggacagcca 540ccaccagaag acaatgtcaa gatgcatgcg tcagagtcat caccacaaga ggatgagaag 600aaaggcatcg acggcacagc agcatcgaac gaagacacca agcaacacct tcaaagtccc 660aaagaaggca ttgactttga tctcaacgct gaatccctcg acctaaacga gaccaaactg 720gcaccagcca caggcacaac cacaaccaca actgcagcaa cagactctga ggagtattcg 780ggctggccta tgatggacat aagcaaaatg gatccagcac agcttgctag tctgggtaag 840aggatagacg aggatgagga agattatgac gaagaaggct aa 88280293PRTArabidopsis thalianaG3074 polypeptide (domain in aa coordinates 9-73) 80Met Arg Lys Lys Leu Asp Thr Arg Phe Pro Ala Ala Arg Ile Lys Lys 1 5 10 15 Ile Met Gln Ala Asp Glu Asp Val Gly Lys Ile Ala Leu Ala Val Pro 20 25 30 Val Leu Val Ser Lys Ser Leu Glu Leu Phe Leu Gln Asp Leu Cys Asp 35 40 45 Arg Thr Tyr Glu Ile Thr Leu Glu Arg Gly Ala Lys Thr Val Ser Ser 50 55 60 Leu His Leu Lys His Cys Val Glu Arg Tyr Asn Val Phe Asp Phe Leu 65 70 75 80 Arg Glu Val Val Ser Lys Val Pro Asp Tyr Gly His Ser Gln Gly Gln 85 90 95 Gly His Gly Asp Val Thr Met Asp Asp Arg Ser Ile Ser Lys Arg Arg 100 105 110 Lys Pro Ile Ser Asp Glu Val Asn Asp Ser Asp Glu Glu Tyr Lys Lys 115 120 125 Ser Lys Thr Gln Glu Ile Gly Ser Ala Lys Thr Ser Gly Arg Gly Gly 130 135 140 Arg Gly Arg Gly Arg Gly Arg Gly Arg Gly Gly Arg Ala Ala Lys Ala 145 150 155 160 Ala Glu Arg Glu Gly Leu Asn Arg Glu Met Glu Val Glu Ala Ala Asn 165 170 175 Ser Gly Gln Pro Pro Pro Glu Asp Asn Val Lys Met His Ala Ser Glu 180 185 190 Ser Ser Pro Gln Glu Asp Glu Lys Lys Gly Ile Asp Gly Thr Ala Ala 195 200 205 Ser Asn Glu Asp Thr Lys Gln His Leu Gln Ser Pro Lys Glu Gly Ile 210 215 220 Asp Phe Asp Leu Asn Ala Glu Ser Leu Asp Leu Asn Glu Thr Lys Leu 225 230 235 240 Ala Pro Ala Thr Gly Thr Thr Thr Thr Thr Thr Ala Ala Thr Asp Ser 245 250 255 Glu Glu Tyr Ser Gly Trp Pro Met Met Asp Ile Ser Lys Met Asp Pro 260 265 270 Ala Gln Leu Ala Ser Leu Gly Lys Arg Ile Asp Glu Asp Glu Glu Asp 275 280 285 Tyr Asp Glu Glu Gly 290 81738DNAArabidopsis thalianaG1249 81tcgaccgttc ttctcaatct caccaatcgg tttaagctga aaacccgaat tagcaaaatc 60ttcgttcggg ctgttttggt taatccggtt tacatgtttt ctcattgctc attttcattt 120tcccgccgtg acagagcgcg taaatctcaa aaccctaaaa atgtcgaaca tatacaattc 180attaccttaa tcagattttc tcaacagaat caaaatcaaa atccatggag gaagaagaag 240gatcaatccg accagagttt ccaatcggaa gagtaaagaa gataatgaaa ctggacaaag 300acatcaacaa aatcaactca gaagctcttc acgtcatcac ttactccacc gaactcttcc 360tccacttcct cgccgagaaa tctgctgttg ttacggcgga gaagaagcgt aagactgtta 420atctcgatca tttaagaatc gccgtgaaaa gacaccaacc tactagtgat ttcctcttag 480actcgcttcc gttgccggct cagcctgtca aacataccaa atcggtttcc gacaagaaga 540ttccggcgcc gccaattggg actcgtcgta tcgatgattt cttcagtaaa gggaaagcaa 600agactgattc agcctaaagt aaaatttctc attttgttca caattgcaaa ttttactctg 660ttctcaaatc aaaatcttgt tttgctaaaa gtgtagtgag aatgtatgga tcatgaggaa 720cttttatagg aagcggcc 73882130PRTArabidopsis thalianaG1249 polypeptide (domain in aa coordinates 12-76) 82Met Glu Glu Glu Glu Gly Ser Ile Arg Pro Glu Phe Pro Ile Gly Arg 1 5 10 15 Val Lys Lys Ile Met Lys Leu Asp Lys Asp Ile Asn Lys Ile Asn Ser 20 25 30 Glu Ala Leu His Val Ile Thr Tyr Ser Thr Glu Leu Phe Leu His Phe 35 40 45 Leu Ala Glu Lys Ser Ala Val Val Thr Ala Glu Lys Lys Arg Lys Thr 50 55 60 Val Asn Leu Asp His Leu Arg Ile Ala Val Lys Arg His Gln Pro Thr 65 70 75 80 Ser Asp Phe Leu Leu Asp Ser Leu Pro Leu Pro Ala Gln Pro Val Lys 85 90 95 His Thr Lys Ser Val Ser Asp Lys Lys Ile Pro Ala Pro Pro Ile Gly 100 105 110 Thr Arg Arg Ile Asp Asp Phe Phe Ser Lys Gly Lys Ala Lys Thr Asp 115 120 125 Ser Ala 130 83621DNAArabidopsis thalianaG3075 83atggtgtcgt caaagaaacc caaggagaag aaggcgagga gcgatgtcgt cgtcaataaa 60gcgagtggtc ggagtaaacg cagctccggt tccagaacga agaagacgtc gaacaaggtt 120aacattgtga agaagaagcc ggagatttac gagatctcag aatcatcgag cagtgactct 180gtggaagaag caataagagg cgatgaggcg aagaaaagta acggcgtcgt gagcaagagg 240ggtaacggaa agagtgtagg aattccgacg aagacgagta aaaatcgaga agaggacgat 300ggaggcgcgg aagatgctaa gatcaagttt ccgatgaatc ggattcggcg gatcatgaga 360agcgataatt ctgctcctca gattatgcag gatgctgtat ttcttgtcaa caaagccacg 420gagatgttca ttgagcggtt ttctgaagaa gcttatgata gttccgtcaa ggacaaaaag 480aaattcatcc actacaaaca cctctcatcc gtagtgagta acgaccagag atacgagttc 540cttgcagata gtgttcccga gaaacttaaa gcagaggccg cgttggagga atgggaaaga 600ggcatgacag atgcaggctg a 62184206PRTArabidopsis thalianaG3075 polypeptide (domain in aa coordinates 110-173) 84Met Val Ser Ser Lys Lys Pro Lys Glu Lys Lys Ala Arg Ser Asp Val 1 5 10 15 Val Val Asn Lys Ala Ser Gly Arg Ser Lys Arg Ser Ser Gly Ser Arg 20 25 30 Thr Lys Lys Thr Ser Asn Lys Val Asn Ile Val Lys Lys Lys Pro Glu 35 40 45 Ile Tyr Glu Ile Ser Glu Ser Ser Ser Ser Asp Ser Val Glu Glu Ala 50 55 60 Ile Arg Gly Asp Glu Ala Lys Lys Ser Asn Gly Val Val Ser Lys Arg 65 70 75 80 Gly Asn Gly Lys Ser Val Gly Ile Pro Thr Lys Thr Ser Lys Asn Arg 85 90 95 Glu Glu Asp Asp Gly Gly Ala Glu Asp Ala Lys Ile Lys Phe Pro Met 100 105 110 Asn Arg Ile Arg Arg Ile Met Arg Ser Asp Asn Ser Ala Pro Gln Ile 115 120 125 Met Gln Asp Ala Val Phe Leu Val Asn Lys Ala Thr Glu Met Phe Ile 130 135 140 Glu Arg Phe Ser Glu Glu Ala Tyr Asp Ser Ser Val Lys Asp Lys Lys 145 150 155 160 Lys Phe Ile His Tyr Lys His Leu Ser Ser Val Val Ser Asn Asp Gln 165 170 175 Arg Tyr Glu Phe Leu Ala Asp Ser Val Pro Glu Lys Leu Lys Ala Glu 180 185 190 Ala Ala Leu Glu Glu Trp Glu Arg Gly Met Thr Asp Ala Gly 195 200 205 8560PRTArabidopsis thalianaG929 conserved domain 85Glu Pro Val Phe Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5 10 15 Arg Gln Ser Arg Ala Lys Leu Glu Ala Arg Asn Arg Ala Ile Lys Ala 20 25 30 Lys Lys Pro Tyr Met His Glu Ser Arg His Leu His Ala Ile Arg Arg 35 40 45 Pro Arg Gly Cys Gly Gly Arg Phe Leu Asn Ala Lys 50 55 60 8660PRTArabidopsis thalianaG2344 conserved domain 86Glu Pro Val Phe Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5 10 15 Arg Gln Ser Arg Ala Arg Leu Glu Ser Gln Asn Lys Val Ile Lys Ser 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Ile Arg Arg 35 40 45 Pro Arg Gly Cys Gly Gly Arg Phe Leu Asn Ala Lys 50 55 60 8760PRTArabidopsis thalianaG931 conserved domain 87Glu Pro Val Phe Val Asn Ala Lys Gln Phe His Ala Ile Met Arg Arg 1 5 10 15 Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Ala 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu Lys Arg 35 40 45 Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 8860PRTGlycine maxG3920 conserved domain 88Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5 10 15 Arg Gln Ser Arg Ala Lys Ala Glu Ile Glu Lys Lys Val Ile Lys Asn 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Met Arg Arg 35 40 45 Ala Arg Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 8960PRTArabidopsis thalianaG928 conserved domain 89Asp Pro Val Phe Val Asn Ala Lys Gln Tyr His Ala Ile Met Arg Arg 1 5 10 15 Arg Gln Gln Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Arg Ala 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Val His Ala Leu Lys Arg 35 40 45 Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9060PRTArabidopsis thalianaG1782 conserved domain 90Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5 10 15 Arg Lys His Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Cys 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys Arg 35 40 45 Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9160PRTArabidopsis thalianaG1363 conserved domain 91Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg 1 5 10 15 Arg Glu Arg Arg Ala Lys Leu Glu Ala Gln Asn Lys Leu Ile Lys Val 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Leu His Ala Leu Lys Arg 35 40 45 Val Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9260PRTOryza sativaG3924 conserved domain 92Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5 10 15 Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val Lys Ser 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg 35 40 45 Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9359PRTOryza sativaG3926 conserved domain 93Glu Pro Ile Phe Val Asn Ala Lys Gln Tyr Asn Ala Ile Leu Arg Arg 1 5 10 15 Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Ala Val Lys Gly 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His His His Ala Met Lys Arg 35 40 45 Ala Arg Gly Ser Gly Gly Arg Phe Leu Thr Lys 50 55 9460PRTOryza sativaG3925 conserved domain 94Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5 10 15 Arg Gln Leu Arg Ala Lys Leu Glu Ala Glu Asn Lys Leu Val Lys Asn 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Lys Arg 35 40 45 Ala Arg Gly Thr Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9560PRTZea maysG3921 conserved domain 95Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5 10 15 Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Met Val Lys Gly 20

25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys Arg 35 40 45 Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9660PRTZea maysG3922 conserved domain 96Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5 10 15 Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Met Val Lys Asn 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys Arg 35 40 45 Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9760PRTZea maysG4264 conserved domain 97Glu Pro Ile Tyr Val Asn Ala Lys Gln Tyr His Ala Ile Leu Arg Arg 1 5 10 15 Arg Gln Thr Arg Ala Lys Leu Glu Ala Gln Asn Lys Met Val Lys Asn 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Arg His Ala Met Lys Arg 35 40 45 Ala Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 9858PRTArabidopsis thalianaG2632 conserved domain 98Glu Pro Val Phe Val Asn Ala Lys Gln Tyr Gln Ala Ile Leu Arg Arg 1 5 10 15 Arg Gln Ala Arg Ala Lys Ala Glu Leu Glu Lys Lys Leu Ile Lys Ser 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg 35 40 45 Pro Arg Gly Thr Gly Gly Arg Phe Ala Lys 50 55 9958PRTArabidopsis thalianaG1334 conserved domain 99Asp Gly Thr Ile Tyr Val Asn Ser Lys Gln Tyr His Gly Ile Ile Arg 1 5 10 15 Arg Arg Gln Ser Arg Ala Lys Ala Glu Lys Leu Ser Arg Cys Arg Lys 20 25 30 Pro Tyr Met His His Ser Arg His Leu His Ala Met Arg Arg Pro Arg 35 40 45 Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 10058PRTArabidopsis thalianaG926 conserved domain 100Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg 1 5 10 15 Arg Lys Ala Arg Ala Lys Ala Glu Leu Glu Arg Lys Val Ile Arg Asp 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Lys His Ala Met Arg Arg 35 40 45 Ala Arg Ala Ser Gly Gly Arg Phe Ala Lys 50 55 10164PRTArabidopsis thalianaG927 conserved domain 101Ser Thr Ile Tyr Val Asn Ser Lys Gln Tyr His Gly Ile Ile Arg Arg 1 5 10 15 Arg Gln Ser Arg Ala Lys Ala Ala Ala Val Leu Asp Gln Lys Lys Leu 20 25 30 Ser Ser Arg Cys Arg Lys Pro Tyr Met His His Ser Arg His Leu His 35 40 45 Ala Leu Arg Arg Pro Arg Gly Ser Gly Gly Arg Phe Leu Asn Thr Lys 50 55 60 10266PRTZea maysG3911 conserved domain 102Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala 50 55 60 Arg Thr 65 10366PRTOryza sativaG3546 conserved domain 103Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala Ile Ala 50 55 60 Arg Thr 65 10466PRTZea maysG3909 conserved domain 104Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe Ser Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp Ala His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile Ala Ala Ala Val Ala 50 55 60 Arg Thr 65 10566PRTZea maysG3552 conserved domain 105Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys Ala Cys Glu 20 25 30 Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 10666PRTArabidopsis thalianaG483 conserved domain 106Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ala Trp Ile His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser 50 55 60 Arg Thr 65 10766PRTGlycine maxG3547 conserved domain 107Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 10866PRTArabidopsis thalianaG714 conserved domain 108Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr 50 55 60 Arg Thr 65 10966PRTOryza sativaG3542 conserved domain 109Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys Ala Cys Glu 20 25 30 Val Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 11066PRTArabidopsis thalianaG489 conserved domain 110Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr 50 55 60 Arg Thr 65 11166PRTOryza sativaG3544 conserved domain 111Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu 20 25 30 Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 11266PRTGlycine maxG3550 conserved domain 112Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Ile His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser 50 55 60 Arg Asn 65 11366PRTGlycine maxG3548 conserved domain 113Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe Ala Lys Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Ile His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Ser 50 55 60 Arg Asn 65 11466PRTArabidopsis thalianaG715 conserved domain 114Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 11566PRTGlycine maxG3886 conserved domain 115Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 11666PRTZea maysG3889 conserved domain 116Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val Ala Ala Ala Ile Ala 50 55 60 Arg Thr 65 11766PRTArabidopsis thalianaG1646 conserved domain 117Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 11866PRTOryza sativaG3543 conserved domain 118Leu Pro Leu Ala Gly Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Arg Lys Asp Val Ala Ala Ala Ile Ala 50 55 60 Arg Thr 65 11966PRTArabidopsis thalianaG1820 conserved domain 119Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Pro Asp Val 1 5 10 15 His Met Val Ser Ala Glu Ala Pro Ile Ile Phe Ala Lys Ala Cys Glu 20 25 30 Met Phe Ile Val Asp Leu Thr Met Arg Ser Trp Leu Lys Ala Glu Glu 35 40 45 Asn Lys Arg His Thr Leu Gln Lys Ser Asp Ile Ser Asn Ala Val Ala 50 55 60 Ser Ser 65 12066PRTArabidopsis thalianaG1836 conserved domain 120Leu Pro Ile Thr Arg Ile Lys Lys Ile Met Lys Tyr Asp Pro Asp Val 1 5 10 15 Thr Met Ile Ala Ser Glu Ala Pro Ile Leu Leu Ser Lys Ala Cys Glu 20 25 30 Met Phe Ile Met Asp Leu Thr Met Arg Ser Trp Leu His Ala Gln Glu 35 40 45 Ser Lys Arg Val Thr Leu Gln Lys Ser Asn Val Asp Ala Ala Val Ala 50 55 60 Gln Thr 65 12165PRTArabidopsis thalianaG1819 conserved domain 121Phe Pro Leu Thr Arg Ile Lys Lys Ile Met Lys Ser Asn Pro Glu Val 1 5 10 15 Asn Met Val Thr Ala Glu Ala Pro Val Leu Ile Ser Lys Ala Cys Glu 20 25 30 Met Leu Ile Leu Asp Leu Thr Met Arg Ser Trp Leu His Thr Val Glu 35 40 45 Gly Gly Arg Gln Thr Leu Lys Arg Ser Asp Thr Leu Thr Arg Ser Asp 50 55 60 Ile 65 12265PRTArabidopsis thalianaG1818 conserved domain 122Pro Ile Ser Arg Ile Lys Arg Ile Met Lys Phe Asp Pro Asp Val Ser 1 5 10 15 Met Ile Ala Ala Glu Ala Pro Asn Leu Leu Ser Lys Ala Cys Glu Met 20 25 30 Phe Val Met Asp Leu Thr Met Arg Ser Trp Leu His Ala Gln Glu Ser 35 40 45 Asn Arg Leu Thr Ile Arg Lys Ser Asp Val Asp Ala Val Val Ser Gln 50 55 60 Thr 65 12366PRTArabidopsis thalianaG490 conserved domain 123Leu Pro Leu Ser Arg Val Arg Lys Ile Leu Lys Ser Asp Pro Glu Val 1 5 10 15 Lys Lys Ile Ser Cys Asp Val Pro Ala Leu Phe Ser Lys Ala Cys Glu 20 25 30 Tyr Phe Ile Leu Glu Val Thr Leu Arg Ala Trp Met His Thr Gln Ser 35 40 45 Cys Thr Arg Glu Thr Ile Arg Arg Cys Asp Ile Phe Gln Ala Val Lys 50 55 60 Asn Ser 65 12464PRTArabidopsis thalianaG3074 conserved domain 124Pro Ala Ala Arg Ile Lys Lys Ile Met Gln Ala Asp Glu Asp Val Gly 1 5 10 15 Lys Ile Ala Leu Ala Val Pro Val Leu Val Ser Lys Ser Leu Glu Leu 20 25 30 Phe Leu Gln Asp Leu Cys Asp Arg Thr Tyr Glu Ile Thr Leu Glu Arg 35 40 45 Gly Ala Lys Thr Val Ser Ser Leu His Leu Lys His Cys Val Glu Arg 50 55 60 12564PRTArabidopsis thalianaG1249 conserved domain 125Pro Ile Gly Arg Val Lys Lys Ile Met Lys Leu Asp Lys Asp Ile Asn 1 5 10 15 Lys Ile Asn Ser Glu Ala Leu His Val Ile Thr Tyr Ser Thr Glu Leu 20 25 30 Phe Leu His Phe Leu Ala Glu Lys Ser Ala Val Val Thr Ala Glu Lys 35 40 45 Lys Arg Lys Thr Val Asn Leu Asp His Leu Arg Ile Ala Val Lys Arg 50 55 60 12663PRTArabidopsis thalianaG3075 conserved domain 126Pro Met Asn Arg Ile Arg Arg Ile Met Arg Ser Asp Asn Ser Ala Pro 1 5 10 15 Gln Ile Met Gln Asp Ala Val Phe Leu Val Asn Lys Ala Thr Glu Met 20 25 30 Phe Ile Glu Arg Phe Ser Glu Glu Ala Tyr Asp Ser Ser Val Lys Asp 35 40 45 Lys Lys Lys Phe Ile His Tyr Lys His Leu Ser Ser Val Val Ser 50 55 60 127953DNAArtificial sequencesynthetic sequence 127ggagagacct ttaacaattt tctgagggta agatccagag attgattgaa tcagcttact 60attttatata attcagtttg ttgttcctca gacttgtaac taggacagtc ttctcatgaa 120tcatgacttc ttcagtacat gagctctctg ataacaatga aagtcatgcg aagaaagaac 180gtccagattc ccaaacccga ccacaggttc cttcaggacg aagttcggaa tctattgata 240caaactctgt ctactcagag cccatggcac atggattata cccgtatcca gatccttact 300acagaagcgt ctttgcacag

caagcgtatc ttccacatcc ctatcctggg gtccaattgc 360agttaatggg aatgcagcag ccaggagttc cattgcaatg tgatgcagtc gaggaacctg 420tttttgttaa cgcaaagcaa taccatggta tactcaggcg caggcaatcc cgggcaaaac 480ttgaggcacg aaatagagcc atcaaagcaa aaaagccata catgcatgaa tctcggcatt 540tacatgcgat aagacggcca agaggatgtg gtggccggtt tctcaatgcc aagaaggaaa 600atggagacca caaggaggag gaggaggcaa cctctgatga gaacacttca gaagcaagtt 660ccagcctcag gtccgagaaa ttagctatgg ctacttctgg tcctaatggt agatcttgag 720gaaggtttct gcacaaccac aagtttagtt tctattttgg gtggatgttc tcagggcatc 780atcgtcttta gtgtttttgg atacgctgtg tacaggttat ttgctagggt aaactttgtt 840ttagcgatta gaaataaaac taagcaaaga aatgaaaagt gtgattggaa gtattgttgt 900accaaattga tattctttgc caatgaactc atgttttgga aagtaaaaaa aaa 953128812DNAArtificial sequencesynthetic sequence 128ttattctaag tagcttgact tgtttagttt aaatatgagg ttaatgattt tgtggggatt 60tgatagttct ggttcttgag tttatttaaa ataggtttac caggatcatg tactgactct 120gttctttgga acttttcaga attctgcttc ggacattaag ctcatgagtc atgacttctt 180caatccatga gctttctgat aacattggaa gtcatgagaa gcaagaacag agagattctc 240atttccaacc accaatccct tctgcaagaa attatgaatc aattgttaca agtttagtct 300actcagaccc ggggactaca aattccatgg cacctggaca atatccatat ccagatcctt 360actacagaag catatttgca ccgcctccac aaccgtatac cggggtacat ctacagttga 420tgggagtgca gcaacaaggc gttcctttac catctgatgc agtcgaggaa cctgtttttg 480ttaacgcaaa gcaataccac ggtatactaa ggcgcagaca atcaagagca agacttgagt 540ctcagaataa agtcatcaag tcacgtaagc cgtatttgca tgaatctcgg catttgcatg 600cgataagacg accaagagga tgtggcgggc ggtttctaaa tgccaagaag gaggatgagc 660atcacgaaga cagtagtcat gaagaaaaat ccaaccttag cgctggtaaa tccgccatgg 720ctgcttctag tggtacatct tgagaaggtc ctacaagtag ctttgttgta ttttggctct 780gtttggtctc agatcatcta tgtcttttag tg 8121291138DNAArtificial sequencesynthetic sequence 129tgacagacac atgtatcatc aatcttctct gttgaagcag agagagagag agctaattgt 60tgcctctgag tcacatggat aagaaagttt catttactag ctctgtggca cattcaactc 120caccatacct tagtacttcc atctcatggg gacttccaac caaatccaat ggtgtgactg 180aatcactgag tttgaaggtg gtagatgcaa gaccagaacg tcttataaac acaaagaata 240tcagtttcca ggaccaggat tcatcttcaa ctctgtcctc tgctcaatct tctaacgatg 300ttacaagtag tggagatgat aacccctcaa gacaaatctc atttttagca cattcagatg 360tttgtaaagg atttgaagaa actcaaagga agcgatttgc aattaaatca ggctcctcca 420cggcaggaat cgctgatatt cactcttctc cttccaaggc taacttctca tttcactatg 480ccgatccaca ttttggtggt ttaatgcctg cggcttacct accacaggca acaatatgga 540atccccaaat gactcgagtt ccgctaccat tcgatctcat agagaatgag cctgtctttg 600tcaatgcaaa gcaattccat gcaattatga ggaggaggca acagcgtgct aagctagagg 660cgcaaaacaa actaatcaaa gcccgtaagc cgtatcttca tgaatctcga catgttcacg 720ctcttaaacg acctagagga tctggtggaa gattcctaaa caccaaaaag cttcaagaat 780ctacagatcc aaaacaagac atgccaatcc aacagcaaca cgcaacggga aacatgtcaa 840gatttgtgct ttatcagttg cagaacagca atgactgtga ttgttcaacc acttctcgct 900ctgacatcac atctgcttct gacagcgtta atctctttgg acactctgaa tttctgatat 960cagattgccc atctcagaca aacccaacaa tgtatgttca tggtcaatca aatgacatgc 1020atggaggtag gaacacacac catttctctg tccatatctg agccggtgga atctggtaat 1080gtgtacgttc ctacaaaaaa agggaagtca tccttggctg ctacttcgct tattagct 1138130956DNAArtificial sequencesynthetic sequence 130agttggtgct aagatgccag ggaaacctga cactgatgat tggcgtgtag agcgtgggga 60gcagattcag tttcagtctt ccatttactc tcatcatcag ccttggtggc gcggagtggg 120ggaaaatgcc tccaaatcat cttcagatga tcagttaaat ggttcaatcg tgaatggtat 180cacgcggtct gagaccaatg ataagtcagg cggaggtgtt gccaaagaat accaaaacat 240caaacatgcc atgttgtcaa ccccatttac catggagaaa catcttgctc caaatcccca 300gatggaactt gttggtcatt cagttgtttt aacatctcct tattcagatg cacagtatgg 360tcaaatcttg actacttacg ggcaacaagt tatgataaat cctcagttgt atggaatgca 420tcatgctaga atgcctttgc cacttgaaat ggaagaggag cctgtttatg tcaatgcgaa 480gcagtatcat ggtattttga ggcgaagaca gtcacgtgct aaggctgaga ttgaaaagaa 540agtaatcaaa aacaggaagc catacctcca tgaatcccgt caccttcatg caatgagaag 600ggcaagaggc aacggtggtc gctttctcaa cacaaagaag cttgaaaata acaattctaa 660ttccacttca gacaaaggca acaatactcg tgcaaacgcc tcaacaaact cgcctaacac 720tcaacttttg ttcaccaaca atttgaatct aggctcatca aatgtttcac aagccacagt 780tcagcacatg cacacagagc agagtttcac tataggttac cataatggaa atggtcttac 840agcactatac cgttcacaag caaatgggaa aaaggaggga aactgctttg gtaaagagag 900ggaccctaat ggggatttca aataacactt ccctcagcca tacagcaaga gttagg 9561311486DNAArtificial sequencesynthetic sequence 131cccaggaaag gtaaaagaga cggagacgaa ccaaaacaag gaagaaagaa gaagatctta 60catacgaaga tcactctctg attcactctg agagacaaac tggtttactt tggttctgtt 120tgacaaaagg agacatgcaa aaataaatct ctatcccttg tttttcttct tcgcttcatc 180gattactcaa agaggttgtt ggttgtgaga ataattagct tgttaaggaa gacgttatga 240tgcatcagat gttgaataag aaagattcag ctactcattc cactttgcca taccttaata 300ctagcatctc ttggggagtg gttccaactg attccgttgc taatcgtcgc ggtcctgctg 360aatcactaag cttgaaggtt gattcaagac ctgggcatat acaaactaca aagcaaatca 420gttttcagga ccaagattca tcttcaacac agtccactgg tcaatcttat actgaagttg 480ctagtagtgg tgatgataat ccttccagac aaatctcctt ttcggctaaa tcaggatctg 540aaataactca acggaagggg tttgcaagta atcctaaaca aggctcgatg actggatttc 600cgaatattca ctttgctcct gcacaggcta atttctcatt tcactatgct gatccacatt 660atggtggttt attagctgca acttacctac cacaggcacc aacatgcaat cctcaaatgg 720tgagtatgat tcctggtcgt gttcctttac cagcagagct cacagaaact gatccagtct 780ttgtcaatgc gaagcaatac cacgcaatta tgaggaggag acagcaacgt gctaagcttg 840aggctcaaaa caaactaatc agagcccgta agccctatct tcatgagtct cgacatgttc 900atgctcttaa aaggccaaga ggatctggtg gaagattcct aaacaccaaa aaacttcttc 960aagaatccga acaggctgct gctagagaac aagaacagga caagttaggc caacaggtaa 1020acagaaagac caacatgtct agattcgaag ctcatatgct gcagaacaac aaagaccgca 1080gctcaaccac ttctggctca gacatcacct ctgtttccga cggtgctgat atctttggac 1140acactgaatt ccagttttca ggtttcccaa ctccgataaa ccgagccatg cttgttcatg 1200gtcagtctaa tgacatgcat ggaggtggag acatgcacca tttctctgtc catatctgag 1260acagtggatc ttggtgctgt gttcatgttc ccaccaagaa ggggaagtca tccttggcta 1320ctactagttc tttcgcttgt tgtaacttca gtgtttttat ttcatattat gtctgtgtta 1380gacatcacaa gaacgaccaa gatcttcact ttgaaacact ctattacctt ttcatcttct 1440gttaccatgg atctcttgtc taaactagtg atatgattct tctgat 14861321007DNAArtificial sequencesynthetic sequence 132gatttgtgac tggacttgtt ggtttggaca tttagtttat tgaagtaaag atttgaagac 60aatgcaagtg tttcaaagga aagaagattc atcttgggga aactcaatgc ctacaacaaa 120ttcaaatatt caaggatctg aatctttcag cttgactaag gatatgataa tgtctacaac 180acaattaccc gcgatgaaac attcgggttt gcagctgcaa aatcaagatt caacctcatc 240acaatctact gaagaagaat caggcggcgg tgaagttgca agctttggag aatataagcg 300ttatggatgc agcattgtta ataacaatct ctcaggttac atcgaaaact tgggaaagcc 360tattgaaaat tatactaagt caattactac ctcgtcgatg gtgtctcaag actctgtgtt 420tcctgctcct acttctggtc aaatatcttg gtctcttcaa tgtgctgaaa cgtcacattt 480caatggtttc ttggctcctg aatatgcatc aacaccaacg gcgctgccac atttagagat 540gatgggtttg gtttcttcaa gagtgccatt gcctcatcac attcaagaga atgaaccaat 600atttgtcaat gcgaaacagt atcatgcgat tctccgtcgc aggaagcacc gtgctaaact 660cgaagctcag aacaaactca tcaaatgccg taaaccgtac cttcatgagt ctcgccatct 720tcatgcttta aagagagcta gaggctccgg tggacgtttc ctcaatacaa agaagcttca 780agaatcatca aactcactgt gttcttctca aatggcaaat ggacaaaatt tctctatgag 840ccctcacggt ggtggaagcg gaatcgggtc tagttcgatc tcaccgagct ccaattcaaa 900ctgtatcaac atgttccaaa acccgcagtt cagattctca ggttatccgt caacacacca 960tgcctcagct ctcatgtcag ggacttgagg cacatgagaa gaccttg 10071331671DNAArtificial sequencesynthetic sequence 133atgcaagagt tccatagtag caaagattca ttgccttgtc ctgcaacttc ttgggataac 60tctgtcttca ccaactcaaa tgtccaagga tcatcatcct tgaccgataa caacacttta 120agcttgacaa tggagatgaa acaaactggt tttcaaatgc agcactatga ttcctcctct 180actcaatcca ctggaggaga atcatatagt gaagttgcta gcttaagtga acctactaat 240cgttatggcc acaacattgt tgtcactcat ctctcaggtt acaaagaaaa cccggaaaat 300cctattggaa gtcattcgat atcaaaggtg tctcaagatt cagtggttct tcctattgag 360gcggcttctt ggcctttaca cggcaatgta acgccacatt tcaatggttt cttgtctttt 420ccttatgcat cacaacacac ggtgcagcat cctcaaatca gagggttggt tccgtctaga 480atgcctttgc ctcacaacat tccagagaac gaaccaattt tcgtcaatgc aaaacagtac 540caagccattc tccgccgcag agagcgccgt gcaaagcttg aagctcagaa caagctcatc 600aaagtccgca aaccatatct tcacgagtcg cggcacctcc atgcactaaa gagagttaga 660ggctctggtg gacgtttcct caacacaaag aagcatcaag aatcaaattc ctcactatct 720cctccattct tgattccacc tcatgtcttc aagaactctc caggaaagtt ccggcaaatg 780gacatttcaa ggggtggggt tgtgtctagt gtctcgacaa catcttgctc ggacataacc 840gggaacaaca acgacatgtt ccagcaaaac ccacaattca ggttctcagg ttatccatca 900aaccaccatg tctcagtcct catggcggcc gctgccgctg cggcagcggc catggtgagc 960aagggcgagg agctgttcac cggggtggtg cccatcctgg tcgagctgga cggcgacgta 1020aacggccaca agttcagcgt gtccggcgag ggcgagggcg atgccaccta cggcaagctg 1080accctgaagt tcatctgcac caccggcaag ctgcccgtgc cctggcccac cctcgtgacc 1140accttcggct acggcctgca gtgcttcgcc cgctaccccg accacatgaa gcagcacgac 1200ttcttcaagt ccgccatgcc cgaaggctac gtccaggagc gcaccatctt cttcaaggac 1260gacggcaact acaagacccg cgccgaggtg aagttcgagg gcgacaccct ggataaccga 1320atcgagctga agggcatcga cttcaaggag gacggcaaca tcctggggca caagctggag 1380tacaactaca acagccacaa cgtctatatc atggccgaca agcagaagaa cggcatcaag 1440gtgaacttca agatccgcca caacatcgag gacggcagcg tgcagctcgc cgaccactac 1500cagcagaaca cccccatcgg cgacggcccc gtggtgctgc ccgacaacca ctacctgagc 1560taccagtccg ccctgagcaa agaccccaac gagaagcgcg atcacatggt cctgctggag 1620ttcgtgaccg ccgccgggat cactctcggc atggacgagc tgtacaagta a 1671134824DNAArtificial sequencesynthetic sequence 134gcattccgag gtgagcgagc atggagtcga ggccgggggg aaccaacctc gtggagccga 60gggggcaggg cgcgctgccg tccggcatac cgatccagca gccgtggtgg acgacctccg 120ccggggtcgg ggcggtgtcg cccgccgtcg tggcgccggg gagcggtgcg gggatcagcc 180tgtcgggcag ggatggcggc ggcgacgacg cggcagagga gagcagcgat gactcacgaa 240gatcagggga gaccaaagat ggaagcactg atcaagaaaa gcatcatgca acatcgcaga 300tgactgcttt ggcatcagac tatttaacac cattttcaca gctggaacta aaccaaccaa 360ttgcttcggc agcataccag taccctgact cttactatat gggcatggtt ggtccctatg 420gacctcaagc tatgtccgca cagactcatt tccagctacc tggattaact cactctcgta 480tgccgttgcc tcttgaaata tctgaggagc ctgtttatgt aaatgctaag caatatcatg 540gaattttaag acggaggcag tcacgtgcga aggctgaact tgagaaaaaa gttgttaaat 600caagaaagcc ctatcttcat gagtctcgtc atcaacatgc tatgcgaagg gcaagaggaa 660cgggtggacg cttcctgaac acaaagaaaa atgaagatgg tgctcccagt gagaaagccg 720aaccaaacaa aggagagcag aactccgggt atcgccggat ccctcctgac ttacagctcc 780tacagaagga aacatgaagt agcggctcga aacctagaac agtg 8241351000DNAArtificial sequencesynthetic sequence 135gtggatcttg agtaatgcct tctaataatg ataatgctgt tgcaagaaat ggagaatcat 60cctgtccaat gcatggccaa gaccaactat gattttcttg ccaggaataa ctatccaatg 120aaacagttag ttcagaggaa ctctgatggt gactcgtcac caacaaagtc tggggagtct 180caccaagaag catctgcagt aagtgacagc agtctcaacg gacaacacac ctcaccacaa 240tcagtgtttg tcccctcaga tattaacaac aatgatagtt gtggggagcg ggaccatggc 300actaagtcgg tattgtcttt ggggaacaca gaagctgcct ttcctccttc aaagttcgat 360tacaaccagc cttttgcatg tgtttcttat ccatatggta ctgatccata ttatggtgga 420gtattaacag gatacacttc acatgcattt gttcatcctc aaattactgg tgctgcaaac 480tctaggatgc cattgcctgt tgatccttct gtagaagagc ccatatttgt caatgcaaag 540caatacaatg cgatccttag aagaaggcaa acgcgtgcaa aattggaggc ccaaaataag 600gcggtgaaag gtcggaagcc ttacctccat gaatctcgac atcatcatgc tatgaagcga 660gcccgtggat caggtggtcg gttccttacc aaaaaggagc tgctggaaca gcagcagcag 720cagcagcagc agaagccacc accggcatca gctcagtctc caacaggtag agccagaacg 780agcggcggtg ccgttgtcct tggcaagaac ctgtgcccag agaacagcac atcctgctcg 840ccatcgacac cgacaggctc cgagatctcc agcatctcat ttgggggcgg catgctggct 900caccaagagc acatcagctt cgcatccgct gatcgccacc ccacaatgaa ccagaaccac 960cgtgtccccg tcatgaggtg aaaacctcgg gatcgcggga 1000136756DNAArtificial sequencesynthetic sequence 136ggaggaggtt tgccggagag gggacatgct ccctcctcat ctcacagaaa atggcacagt 60aatgattcag tttggtcata aaatgcctga ctacgagtca tcagctaccc aatcaactag 120tggatctcct cgtgaagtgt ctggaatgag cgaaggaagc ctcaatgagc agaatgatca 180atctggtaat cttgatggtt acacgaagag tgatgaaggt aagatgatgt cagctttatc 240tctgggcaaa tcagaaactg tgtatgcaca ttcggaacct gaccgtagcc aaccctttgg 300catatcatat ccatatgctg attcgttcta tggtggtgct gtagcgactt atggcacaca 360tgctattatg catccccaga ttgtgggcgt gatgtcatcc tcccgagtcc cgctaccaat 420agaaccagcc accgaagagc ctatttatgt aaatgcaaag caataccatg cgattctccg 480aaggagacag ctccgtgcaa agttagaggc tgaaaacaag ctggtgaaaa accgcaagcc 540gtacctccat gaatcccggc atcaacacgc gatgaagaga gctcggggaa caggggggag 600attcctcaac acaaagcagc agcctgaagc ttcagatggt ggcaccccaa ggctcgtctc 660tgcaaacggc gttgtgttct caaagcacga gcacagcttg tcgtccagtg atctccatca 720tcgtcgtgcg aaagagggcg cttgagatcc tcgccg 7561371091DNAArtificial sequencesynthetic sequence 137agatcatctg atttctcaga agcaaaatgt tgtttggagc tcagtgacac catcttgtaa 60tgcctgtgat tttacgggaa atggaggatc attctgtcca tcccatgtct aagtctaacc 120atggctcctt gtcaggaaat ggttatgaga tgaaacattc aggccataaa gtttgcgata 180gggattcatc atcggagtct gatcggtctc accaagaagc atcagcagca agtgaaagca 240gtccaaatga acacacatca actcaatcag acaatgatga agatcatggg aaagataatc 300aggacacaat gaagccagta ttgtccttgg ggaaggaagg ctctgccttt ttggccccaa 360aattacatta cagcccatct tttgcttgta ttccttatac ttctgatgct tattatagtg 420cggttggggt cttgacagga tatcctccac atgccattgt ccatccccag caaaatgata 480caacgaacac tccgggtatg ttacctgtgg aacctgcaga agaaccaata tatgttaatg 540caaaacaata ccatgcaatc cttaggagga ggcaaacacg tgctaaattg gaggcccaga 600acaagatggt gaaaaatcgg aagccatatc ttcatgagtc ccgacatcgt catgccatga 660aacgggctcg tggatcagga ggacggttcc tcaacacaaa gcagctccag gagcagaacc 720agcagtatca ggcatcgagt ggttcattgt gctcaaagat cattgccaac agcataatct 780cccaaagtgg ccccacctgc acgccctctt ctggcactgc aggtgcttca acagccggcc 840aggaccgcag ctgcttgccc tcagttggct tccgccccac gacaaacttc agtgaccaag 900gtcgaggagg cttgaagctg gccgtgatcg gcatgcagca gcgtgtttcc accataaggt 960gaagagaagt gggcacaaca ccattcccag gcacactgcc tgtggcaact catccttggc 1020tcttggaact ttgaatatgc aatcgacatg tagcttgagt tcctcagaat aaccaaaccg 1080tgaagaatat g 10911381149DNAArtificial sequencesynthetic sequence 138agatcgtttc atcgtccaag cggaagaagc gtctccttca atcaccgtgg acacctccga 60gactgtctcc gattgaatgg gaattgaaga catgcattca aaatctgaca gtggtgggaa 120caaggttgat tcagaggttc atggtacagt atcgtcgtcg ataaatagtt taaacccttg 180gcatcgtgct gctgctgctt gcaatgcaaa ttctagtgtg gaagctggag ataaatcttc 240taagtcaata gcattagcat tggaatcaaa cggttccaaa tcaccatcca atagagataa 300tactgttaac aaggaatcac aagtcacaac gtctccacaa tcagctggag attatagtga 360taaaaaccaa gaatctctgc atcatggcat cacacaacct cctcctcacc ctcaacttgt 420tggccacaca gttgtaactt cccaatatag atatattgtt cttatcattt cctttgggaa 480aattttagct atggttgctt acaatttagt tttttcccgg ttatgaatca tgcagggatg 540ggcatcctca aatccatacc aggatccata ttatgcagga gtgatgggag cctatggaca 600tcatcccctg gggtttgttc catatggtgg gatgcctcat tcaagaatgc cactgccgcc 660tgagatggca caagaaccag ttttcgtgaa tgctaaacag taccaggcga ttctgaggcg 720aaggcaggca cgcgccaagg cagagctaga gaagaagcta ataaaatcca gaaagcctta 780tctacatgaa tctcggcatc aacatgctat gaggaggcca aggggtactg gaggacggtt 840tgcaaagaaa accaacaccg aagcttcaaa gcgtaaagct gaagaaaaga gcaatggtca 900tgttactcag tccccgtcat catctaattc tgatcaaggt gaagcttgga atggtgacta 960tagaacacct cagggagatg agatgcagag ctcagcttat aagagaaggg aagaaggaga 1020gtgttcaggg cagcaatgga acagcctttc ctcaaaccat ccttctcaag ctcgtctagc 1080cattaaatga cctcacaagg cggcaattca ttcttggctt tctctttgtt ggcttattcg 1140gtagcagcc 1149139873DNAArtificial sequencesynthetic sequence 139ccattggact tttggaacat aagctatgca aactgaggag cttttgtcgc caccacagac 60tccttggtgg aatgcttttg gatctcagcc gttgactaca gagagccttt ccggcgaagc 120ttctgattca ttcaccggag ttaaggcagt tactacggag gcagaacaag gtgtggtgga 180taaacaaact tctacaactc tcttcacttt ctcacctggt ggtgaaaaga gttcaagaga 240tgtgccaaag cctcatgttg ctttcgcgat gcaatcagct tgcttcgagt ttggatttgc 300tcagccaatg atgtacacaa agcatcctca tgttgaacaa tactatggag ttgtttcagc 360atacggatct cagaggtctt cgggccgagt aatgattcca ctgaagatgg agacagaaga 420agatggtacc atctatgtga actcaaagca gtaccatgga attatcaggc gacgccagtc 480ccgagcaaag gctgaaaaac tgagtagatg ccgtaagcca tatatgcatc actcacgcca 540tctccatgct atgcgccgtc ctagaggatc tggcgggcgt ttcttgaaca ccaagacagc 600tgatgcggct aagcagtcta agccgagtaa ttctcagagt tctgaagtct ttcatccgga 660aaatgagacc ataaactcat cgagggaagc aaatgagtca aatctctcgg attctgcagt 720tacaagtatg gattactttc taagttcgtc ggcttattct cctggtggca tggtcatgcc 780tatcaagtgg aatgcagcag caatggatat tggctgctgc aaacttaata tatgatcagc 840agatagggga caagacatga ttggtcacca gtc 8731401394DNAArtificial sequencesynthetic sequence 140tgtttgatct ttgtccagag aactccaaga tagaccaaaa aggttcaacc tcaaaacaaa 60caacacaaaa acagccaaat agctagagac caagatgaga tcaagcagcc aaaattctga 120aaactccaag acttgtctat ctaacaacat caaagcaacc accaagaatg aagaagataa 180agatgaagag gatgatgaag aaggcgaaga ggatgaagaa gagagatctg gagatcagag 240cccatctagc aatagctatg aggaagagag tgggagtcac caccatgatc agaacaagaa 300gaatggagga tccgtgaggc cgtacaaccg ctcaaagact ccgaggctgc gatggacgcc 360ggagctccat atttgctttc ttcaagctgt ggagagattg ggtggcccag atagagcaac 420accgaagctt gttctccaat tgatgaacgt caaggggcta agtattgccc atgttaagag 480tcatcttcag atgtacagaa gcaagaagac cgatgagcct aatgaaggag atcaaggatt 540ttcgtttgaa cacggagctg gttacactta caaccttagc caacttccaa tgctacaaag 600ttttgatcaa aggccttctt ctagtttagg atatggtggt ggttcgtgga ctgaccacag 660acgacagatc

taccgtagcc cttggagagg attaacgaca cgagaaaata caagaacaag 720acaaacaatg tttagctcac agcctggtga gagatatcac ggagttagca atagtattct 780taacgataag aacaaaacta tttcatttcg aatcaattct catgaagggg ttcatgataa 840caatggagta gctggagctg ttccaagaat tcatagaagt tttcttgaag gtatgaaaac 900gtttaacaaa tcatggggac agagcctctc ttccaatctt aagtcctcca ccgcaacaat 960accacaagat catattgcta caacgctaaa ttcttatcaa tgggagaatg ctggagtggc 1020agaaggatca gagaatgttt tgaagaggaa gaggttatta ttttctgatg actgcaataa 1080gtcagaccaa gatttggatc taagcttgtc ccttaaggta cctcggacac acgacaatct 1140tggagaatgc ttgttagaag atgaagtaaa agaacatgat gatcatcaag atatcaagag 1200tttgtctctt tcgttatcat cttcaggttc atcaaaactc gaccgaacca ttaggaaaga 1260agatcaaact gatcacaaaa agagaaagat ttcggtcttg gcaagtcccc ttgatctcac 1320tctgtgaata tgtataacaa cttatatacg tatattctaa gtgagatctt gtggtacttg 1380ttgatggaag acgg 13941411560DNAArtificial sequencesynthetic sequence 141atgcaatcaa aaccgggaag agaaaacgaa gaggaagtca ataatcacca tgctgttcag 60cagccgatga tgtatgcaga gccctggtgg aaaaacaact cctttggtgt tgtacctcaa 120gcgagacctt ctggaattcc atcaaattcc tcttctttgg attgccccaa tggttccgag 180tcaaacgatg ttcattcagc atctgaagac ggtgcgttga atggtgaaaa cgatggcact 240tggaaggatt cacaagctgc aacttcctct cgttcagata atcacggaat ggaaggaaat 300gacccagcgc tctctatccg taacatgcat gatcagccac ttgtacaacc accagagctt 360gttggacact atatcgcttg tgtcccaaac ccatatcagg atccatatta tgggggattg 420atgggagcat atggtcatca gcaattgggt tttcgtccat atcttggaat gcctcgtgaa 480agaacagctc tgccacttga catggcacaa gagcccgttt atgtgaatgc aaagcagtac 540gagggaattc taaggcgaag aaaagcacgt gccaaggcag agctagagag gaaagtcatc 600cgggacagaa agccatatct tcacgagtca agacacaagc atgcaatgag aagggcacga 660gcgagtggag gccggtttgc gaagaaaagt gaggtagaag cgggagagga tgcaggaggg 720agagacagag aaaggggttc agcaaccaac tcatcaggct ctgaacaagt tgagacagac 780tctaatgaga ccctgaattc ttctggtgca ccagcggccg ctgccgctgc ggcagcggcc 840atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 900ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 960ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 1020ctcgtgacca ccttcggcta cggcctgcag tgcttcgccc gctaccccga ccacatgaag 1080cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 1140ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 1200gataaccgaa tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 1260aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 1320ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 1380gaccactacc agcagaacac ccccatcggc gacggccccg tggtgctgcc cgacaaccac 1440tacctgagct accagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 1500ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 15601421304DNAArtificial sequencesynthetic sequence 142ggaatctgaa gctcttctct actctctact ctatcactcc atctgtgaac atatctttct 60tattcttcta ggcactatct atttttcact ttttgtaatt ggaatttgga gatggctatg 120caaactgtga gagaaggtct cttctctgct ccacagactt cttggtggac tgcttttgga 180tctcagccgt tggctccgga gagtctcgcc ggcgattctg actcattcgc cggagttaag 240gtcggatctg tcggagagac aagacaacgt gtggataaac agagcaactc tgcaacgcac 300ttagctttct cacttggtga tgtaaagagt ccaagacttg tgccaaagcc tcatggagct 360actttctcaa tgcaatcacc ttgcttggaa cttggatttt ctcagccacc gatctataca 420aagtatccct atggagaaca acaatactat ggagttgttt cagcctatgg atctcagagc 480agggtaatgc ttcctctaaa catggaaacg gaagatagta ccatctatgt gaactcaaag 540caataccatg gaatcataag gagacgccaa tcccgcgcaa aggctgctgc tgttcttgat 600cagaagaaat tgagtagtag atgccgcaag ccatatatgc atcattcgcg ccatctccat 660gcattgcggc gtcctagagg atccggtggg agattcttga acactaaaag tcagaacttg 720gaaaatagcg gaaccaatgc aaagaaaggt gatggaagta tgcagattca gtctcagcct 780aagcctcagc aaagtaactc tcagaattct gaagttgttc atccggaaaa cgggaccatg 840aacttatcga acggattaaa tgtgtcggga tcagaagtta ctagcatgaa ctacttccta 900agttctcccg ttcattctct tggtggcatg gtaatgccta gcaagtggat agcagcagca 960gcagcaatgg ataatggctg ctgcaatttc aaaacctgat cctttaccgt ttcacagtca 1020aacggagaga gataaagaac tcttgccttg gtataaagga ttttcctttt tgccaatccg 1080ctttggctgt gaacaggcaa atcatctttg gctcattctc tattaaggta acttcgccgt 1140gaggtgaaaa aagctttgat atatttatct tcagtgtaaa agtagttaaa actggtgaag 1200aacaatgatg tgtttggtca ctaaacccac ttgttccaac tagtagtgtg tgttttaaga 1260aaactctgtt atctgatttt gtagctctct ctggctttgt gtgt 1304143627DNAArtificial sequencesynthetic sequence 143acaaccctag ctgcccccga atccatggat cctaacaaat ccagcacccc gccgccgcct 60ccagtcatgg gtgcccccgt tgcctaccct ccgcctgcgt accctcccgg tgtggccgcc 120ggcgccggcg cctacccgcc gcagctctac gcaccgccgg ctgctgccgc ggcccagcag 180gcggcggccg cgcagcagca gcagctgcag atattctggg cggagcagta ccgcgagatc 240gaggccacta ccgacttcaa gaatcacaac ctcccgctcg cccgcatcaa gaagatcatg 300aaagccgacg aggacgtccg catgatcgcc gccgaggctc ccgtggtgtt cgcccgggcc 360tgcgagatgt tcatcctcga gctcacccat cgcggctggg cgcacgccga agagaacaag 420cgccgcacgc tccagaaatc cgacattgcc gctgccatcg cccgcaccga ggtattcgac 480ttccttgtgg acatcgttcc gcgcgacgac ggtaaagacg ctgatgcggc ggccgccgca 540gctgccgcgg ctgccgggat cccgcgcccc gccgccggag taccagccac cgaccctctc 600gcctactact acgtgcctca gcagtaa 627144649DNAArtificial sequencesynthetic sequence 144gagaaaccct agcaatggag cccaaatcca ccacccctcc tccgcctcct ccgccccccg 60tgctgggcgc ccccgtccct tacccgccgg cgggagccta ccccccaccc gtcgggccct 120acgcccacgc gccgccgctc tacgccccgc ctccccccgc cgccgccgcc gcctccgccg 180ccgccaccgc cgcctcgcag caggccgccg ccgcgcagct ccagaacttc tgggcggagc 240agtaccgcga gatcgagcac accaccgact tcaagaacca caacctcccc ctcgcccgca 300tcaagaagat catgaaggcc gacgaggacg tccgcatgat cgccgccgag gcccccgtcg 360tgttcgccag ggcgtgcgag atgttcatcc tcgagctcac ccaccgcggc tgggcgcacg 420ccgaggagaa caagcgccgc acgctccaga agtccgacat cgccgccgcc atcgcccgca 480ccgaggtctt cgacttcctc gtcgacatcg tgccccgcga cgaggccaag gacgccgagg 540ccgccgccgc cgttgccgcc gggatccccc accccgccgc cggtttgccc gccaccgacc 600ccatggccta ctactatgtc cagccgcagt aacattttcc taccgtata 649145638DNAArtificial sequencesynthetic sequence 145tgaccgccgt aacaccctag gcaatggagc ccaaatccac cacccctccc ccgccccccg 60tgatgggcgc gcccatcgcg tatcctcccc cgcccggcgc cgcgtacccc gccgggccgt 120acgtgcacgc gccggcggcc gcgctctacc ctcctcctcc cctgccgccg gcgcccccct 180cctcgcagca gggcgccgcg gcggcgcacc agcagcagct attctgggcg gagcaatacc 240gcgagatcga ggccaccacc gacttcaaga accacaacct gccgctcgcc cgcatcaaga 300agatcatgaa ggccgacgag gacgtgcgca tgatcgccgc cgaggcgccc gtcgtcttct 360cccgcgcctg cgagatgttc atcctcgagc tcacccaccg cggctgggca cacgccgagg 420agaacaagcg ccgcacgctg cagaagtccg acatcgccgc cgccgtcgcg cgcaccgagg 480tcttcgactt cctcgtcgac atcgtgccgc gggacgaggc caaggacgcc gactccgccg 540ccatgggagc agccgggatc ccgcaccccg ccgccggcct gcccgccgcc gatcccatgg 600gctactacta cgtccagccg ccgcagtaac gaatttgc 638146778DNAArtificial sequencesynthetic sequence 146gagtggatat ggaaccatcc cctcagccta tgggtgtcgc tgccggtggg tcacaagtgt 60atcctgcctc tgcctatccg cctgcagcaa cagtagctcc tgcttctgtt gtatctgctg 120gtttacagtc agggcagcca ttcccagcca atcctggtca tatgagtgct cagcaccaga 180ttgtctacca acaagctcaa caattccacc aacagctcca gcagcaacaa caacagcagc 240ttcagcagtt ctgggttgaa cgcatgactg aaattgaggc gacgactgat ttcaagaacc 300acaacttgcc acttgcgagg ataaagaaga tcatgaaggc cgatgaagat gttcgcatga 360tctcagctga agctcctgta gtctttgcaa aagcttgtga gatattcata ctggagctga 420cacttaggtc gtggatgcac actgaggaga acaagcgccg caccttgcaa aagaatgaca 480ttgcagcagc gatcactagg actgacattt atgacttctt ggtcgacatt gttcccaggg 540atgagatgaa ggaggacgga attgggcttc ctagggctgg tctgccaccc atgggagccc 600cagctgatgc atatccatac tactacatgc cacagcagca ggtgcctggt tctggaatgg 660tttatggtgc ccagcaaggg cacccagtga cttatttgtg gcaggagcct cagcaacagc 720aggagcaagc tcctgaagag cagcaatctg catgaaagtg gctgagaata ttgctcag 778147553DNAArtificial sequencesynthetic sequence 147tgggctaacc aaatgcaaga gatcgagcat accactgatt tcaagaacca cacccttccc 60ctagcccgca tcaagaagat catgaaagct gatgaagatg tgaggatgat ctctgcggag 120gctcctgtga tttttgccaa ggcctgtgag atgttcattt tggagctcac tctacgtgct 180tggatccaca ccgaggagaa caagaggagg accttgcaga agaacgacat cgccgctgcc 240atttccagga ccgacgtgtt tgatttcctt gtggacataa tcccgaggga cgagctgaaa 300gaagaaggtt taggcgtgac caaagggacc ataccatcgg tggtgggttc cccgccatac 360tattacttgc aacaacaggg gatgatgcaa cactggcccc aggagtaaca ccctgatgag 420tcttaaaact tttccccttt cgtttgtttg gttgtatcgt agtaaggtag ctctgctctg 480ctgggaacca tttctattgt gttctgtaat gacatgttag tatatcccca gtctatatct 540atggcaatgc agt 553148806DNAArtificial sequencesynthetic sequence 148gggaagaatg gatcatcaag ggcatagcca gaacccatct atgggggttg ttggtagtgg 60agctcaatta gcatatggtt ctaacccata tcagccaggc caaataactg ggccaccggg 120gtctgttgtg acatcagttg ggaccattca atccaccggt caacctgctg gagctcagct 180tggacagcat caacttgctt atcagcatat tcatcagcaa caacagcacc agcttcagca 240acagctccaa caattttggt caagccagta ccaagaaatt gagaaggtta ctgattttaa 300gaaccacagt cttcccctgg caaggatcaa gaagattatg aaggctgacg aggatgttag 360gatgatatca gctgaagcac cagtcatttt tgcaagggca tgtgaaatgt tcatattaga 420gttaaccctg cgctcttgga atcacactga agagaacaaa aggcgaacac ttcagaaaaa 480tgatattgct gctgctatca caaggactga catctttgat ttcttggttg acattgtgcc 540tcgtgaggac ttgaaagatg aagtgcttgc atcaatccca agaggaacaa tgcctgttgc 600agggcctgct gatgcccttc catactgcta catgccgcct cagcatccgt cccaagttgg 660agctgctggt gtcataatgg gtaagcctgt gatggaccca aacatgtatg ctcagcagtc 720tcacccttac atggcaccac aaatgtggcc acagccacca gaccaacgac agtcatctcc 780agaacattag ctgatgtgtc gtggaa 806149925DNAArtificial sequencesynthetic sequence 149ccacgcgtcc gcgtcaatct ttgagtttgg tagagaaatg gatcaacaag gacaatcatc 60agctatgaac tatggttcaa acccatatca aaccaacgcc atgaccacta caccaaccgg 120ttcagaccat ccagcttacc atcagatcca ccagcaacaa caacaacagc tcactcaaca 180gcttcaatct ttctgggaga ctcaattcaa agagattgag aaaaccactg atttcaagaa 240ccatagcctt ccattggcaa gaatcaagaa aatcatgaaa gctgatgaag atgtgcgtat 300gatctcggcc gaggcgcctg ttgtgttcgc cagggcctgc gagatgttta ttctggagct 360tacgttaagg tcttggaacc atactgagga gaacaagaga aggacgttgc agaagaatga 420tatcgcggct gcggtgacta gaactgatat ttttgatttt cttgtggata ttgttcctcg 480ggaggatctt cgtgatgaag tcttgggtgg tgttggtgct gaagctgcta cagctgcggg 540ttatccgtat ggatacttgc ctcctggaac agctccaatt gggaacccgg gaatggttat 600gggtaacccg ggcgcgtatc cgccgaaggc gtatatgggt cagccaatgt ggcaacaacc 660aggacctgag cagcaggatc ctgacaatta gcttggccta ataaactagc cgtctaattc 720gaagctctcc ccggtggatc tactcaagaa gaagaatgtt aatagaaaac tattgcgaca 780taaaaagttt ggtgtagtag aataatttct gttttatgat ccatggattt atcaattgtt 840attcagtttg gtttatcttg tcatcaaact gttttcggtc aatgtaacaa attcataaat 900tgagaattga acttacaaaa ggcta 925150798DNAArtificial sequencesynthetic sequence 150agctgacatg gaaccatcct cacagcctca gcctgtgatg ggtgttgcca ctggtgggtc 60acaagcatat cctcctcctg ctgctgcata tccacctcaa gccatggttc ctggagctcc 120tgctgttgtt cctcctggct cacagccatc agcaccattc cccactaatc cagctcaact 180cagtgctcag caccagctag tctaccaaca agcccagcaa tttcatcagc agctgcagca 240acagcaacag cagcaactcc gtgagttctg ggctaaccaa atggaagaga ttgagcaaac 300aaccgacttc aagaaccaca gcttgccact cgcaaggata aagaagataa tgaaggctga 360tgaggatgtc cggatgatct cggcagaagc ccccgttgtc ttcgcaaagg catgcgaggt 420attcatatta gagttaacat tgaggtcgtg gatgcacacg gaggagaaca agcgccggac 480cttgcagaag aatgacattg cagctgccat caccaggact gatatctatg acttcttggt 540ggacatagtt cccagggatg aaatgaaaga agaagggctt gggcttccga gggttggcct 600accgcctaat gtggggggcg cagcagacac atatccatat tactacgtgc cagcgcagca 660ggggcctgga tcaggaatga tgtacggtgg acagcaaggt cacccggtga cgtatgtgtg 720gcagcagcct caagagcaac aggaagaggc ccctgaagag cagcactctc tgccagaaag 780tagctaaaga tgatacag 7981511407DNAArtificial sequencesynthetic sequence 151atgaactatg gcacaaaccc ataccaaacc aacccgatga gcaccactgc tgctactgta 60gcaggaggtg cggcacaacc aggccagctg gcgttccacc agatccatca gcagcagcag 120cagcaacagc tggcacagca gcttcaagca ttttgggaga accaattcaa agagattgag 180aagactaccg atttcaagaa ccacagcctt ccccttgcga gaatcaagaa aatcatgaaa 240gcggatgaag atgtccgtat gatctcggct gaggcgcctg tcgtgtttgc aagggcctgt 300gagatgttca tcctggagct gacactcagg tcgtggaacc acactgagga gaataagagg 360cggacgttgc agaagaacga tattgctgct gctgtgacta gaaccgatat ttttgatttc 420cttgtggata ttgttccccg ggaggatctc cgagatgaag tcttgggaag tattccgagg 480ggcactgtcc cggaagctgc tgctgctggt tacccgtatg gatacttgcc tgcaggaact 540gctccaatag gaaatccggg aatggttatg ggtaatcccg gtggtgcgta tccacctaat 600ccttatatgg gtcaaccaat gtggcaacaa caggcacctg accaacctga ccaggaaaat 660gcggccgctg ccgctgcggc agcggccatg gtgagcaagg gcgaggagct gttcaccggg 720gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 780ggcgagggcg agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc 840ggcaagctgc ccgtgccctg gcccaccctc gtgaccacct tcggctacgg cctgcagtgc 900ttcgcccgct accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 960ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc 1020gaggtgaagt tcgagggcga caccctggat aaccgaatcg agctgaaggg catcgacttc 1080aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc 1140tatatcatgg ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac 1200atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 1260ggccccgtgg tgctgcccga caaccactac ctgagctacc agtccgccct gagcaaagac 1320cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 1380ctcggcatgg acgagctgta caagtaa 1407152760DNAArtificial sequencesynthetic sequence 152agaggacatg gagccatcat cacaacctca gccggcaatt ggtgttgttg ctggtggatc 60acaagtgtac cctgcatacc ggcctgcagc aacagtgcct acagctcctg ctgtcattcc 120tgccggttca cagccagcac cgtcgttccc tgccaaccct gatcaactga gtgctcagca 180ccagctcgtc tatcagcaag cccagcaatt tcaccagcag cttcagcagc agcaacagcg 240tcaactccag cagttttggg ctgaacgtct ggtcgatatt gaacaaacta ctgacttcaa 300gaaccacagc ttgccacttg ctaggataaa gaagatcatg aaggcagatg aggacgttcg 360catgatctcc gcagaggctc ctgtgatctt tgcgaaagca tgtgagatat tcatactgga 420gctgaccctg agatcatgga tgcacacgga ggagaacaag cgccgtacct tgcagaagaa 480tgacatagca gctgccatca ccaggacgga tatgtacgat ttcttggtag atatagttcc 540cagggatgac ttgaaggagg agggagttgg gctccctagg gctggattgc cgcccttggg 600tgtccctgct gactcatatc cgtatggcta ctatgtgcca cagcagcagg tcccaggtgc 660aggaatagcg tatggtggtc agcaaggtca tccggggtat ctgtggcagg atcctcagga 720acagcaggaa gagcctcctg cagagcagca aagtgattaa 760153847DNAArtificial sequencesynthetic sequence 153agtaagtcat catggataaa tcagagcaga ctcaacagca gcagcagcaa caacagcatg 60tgatgggagt tgccgcaggg gctagccaaa tggcctattc ttctcactac ccgactgctt 120ccatggtggc ttctggcacg cccgctgtaa ctgctccttc cccaactcag gctccagctg 180ccttctctag ttctgctcac cagcttgcat accagcaagc acagcatttc caccaccaac 240agcagcaaca ccaacaacag cagcttcaaa tgttctggtc aaaccaaatg caagaaattg 300agcaaacaat tgactttaaa aaccatagcc ttcctcttgc tcggataaaa aagataatga 360aagctgatga agatgtccgg atgatttcag cagaagctcc ggtcatattt gcaaaagctt 420gtgaaatgtt catattagag ttgacgttgc gatcttggat ccacacagaa gagaacaaga 480ggagaactct acaaaagaat gatatagcag ctgctatttc gagaaacgat gtttttgatt 540tcttggttga tattattcca agagatgagt tgaaagagga aggacttgga ataaccaagg 600ctactattcc gttagtgggt tctccagctg atatgccata ttactatgtc cctccacagc 660atcctgttgt aggaccacct gggatgatca tgggcaagcc cattggcgct gagcaagcaa 720cactatattc tacacagcag cctcgacctc ctgtggcgtt catgccatgg cctcatacac 780aacccctgca acagcagcca ccccaacatc aacaaacaga ctcatgatga ctatgcaatt 840caattag 847154786DNAArtificial sequencesynthetic sequence 154aacatcaggg gatgggcgtt gccacaggtg ctagccaaat ggcctattct tctcactacc 60cgactgctcc catggtggct tctggcacgc ctgctgtagc tgttccttcc ccaactcagg 120ctccagctgc cttctctagt tctgctcacc agcttgcata ccagcaagca cagcatttcc 180accaccaaca gcagcaacac caacaacagc agcttcaaat gttctggtca aaccaaatgc 240aagaaattga gcaaacaatt gactttaaaa accacagtct tcctcttgct cggataaaaa 300agataatgaa agctgatgaa gatgtccgga tgatttctgc agaagctcca gtcatatttg 360caaaagcatg tgaaatgttc atattagagt tgacgttgag atcttggatc cacacagaag 420agaacaagag gagaactcta caaaagaatg atatagcagc tgctatttcg agaaacgatg 480tttttgattt cttggttgat attatcccaa gagatgagtt gaaagaggaa ggacttggaa 540taaccaaggc tactattcca ttggtgaatt ctccagctga tatgccatat tactatgtcc 600ctccacagca tcctgttgta ggacctcctg ggatgatcat gggcaagccc gttggtgctg 660agcaagcaac gctgtattct acacagcagc ctcgacctcc catggcgttc atgccatggc 720cccatacaca accccagcaa cagcagccac cccaacatca acaaacagac tcatgatgac 780catgca 786155748DNAArtificial sequencesynthetic sequence 155ccgaccaatg gataccaaca accagcaacc acctccctcc gccgccggaa tccctcctcc 60accacctgga accaccatct ccgccgcagg aggaggagct tcttaccacc accttctcca 120acaacaacaa caacagctcc aactattctg gacctaccaa cgccaagaga tcgaacaagt 180taacgatttc aaaaaccatc agcttccact agctaggata aaaaagatca tgaaagccga 240tgaagatgtt cgtatgatct ccgcagaagc accgattctc ttcgcgaaag cttgtgagct 300tttcattctc gagctcacga tcagatcttg gcttcacgct gaggagaata aacgtcgtac 360gcttcagaaa aacgatatcg ctgctgcgat tactaggact gatatcttcg atttccttgt 420tgatattgtt cctagagatg agattaagga cgaagccgca gtcctcggtg gtggaatggt 480ggtggctcct accgcgagcg gcgtgcctta ctattatccg ccgatgggac aaccagctgg 540tcctggaggg

atgatgattg ggagaccagc tatggatccg aatggtgttt atgtccagcc 600tccgtctcag gcgtggcaga gtgtttggca gacttcgacg gggacgggag atgatgtctc 660ttatggtagt ggtggaagtt ccggtcaagg gaatctcgac ggccaaggtt aagctcagag 720tattccagat gatgcttgac ctgcttga 748156750DNAArtificial sequencesynthetic sequence 156attgggggaa tggagaccaa caaccagcaa caacaacaac aaggagctca agcccaatcg 60ggaccctacc ccgtcgccgg cgccggcggc agtgcaggtg caggtgcagg cgctcctccc 120cctttccagc accttctcca gcagcagcag cagcagctcc agatgttctg gtcttaccag 180cgtcaagaaa tcgagcacgt gaacgacttt aagaatcacc agctccctct tgcccgcatc 240aagaagatca tgaaggccga cgaggatgtc cgcatgatct ccgccgaggc ccccatcctc 300ttcgccaagg cctgcgagct cttcatcctc gagctcacca tccgctcctg gctccacgcc 360gaggagaaca agcgccgcac cctccagaag aacgacatcg ccgccgccat cacccgcacc 420gacattttcg acttcctcgt tgatattgtc ccccgcgacg agatcaagga cgacgctgct 480cttgtggggg ccaccgccag tggggtgcct tactactacc cgcccattgg acagcctgcc 540gggatgatga ttggccgccc cgccgtcgat cccgccaccg gggtttatgt ccagccgccc 600tcccaggcat ggcagtccgt ctggcagtcc gctgccgagg acgcttccta tggcaccggc 660ggggccggtg cccagcggag ccttgatggc cagagttgag tgacatcgat gccgatgatg 720gacagtcagg agttatgaag attctgaact 750157768DNAArtificial sequencesynthetic sequence 157aatccatgga caaccagccg ctgccctact ccacaggcca gccccctgcc cccggaggag 60ccccggtggc gggcatgcct ggcgcggccg gcctcccacc cgtgccgcac caccacctgc 120tccagcagca gcaggcccag ctgcaggcgt tctgggcgta ccagcgccag gaggcggagc 180gcgcgtccgc gtcggacttc aagaaccacc agctgcctct ggcccggatc aagaagatca 240tgaaggccga cgaggacgtg cgcatgatct ccgccgaggc gcccgtgctg ttcgccaagg 300cctgcgagct cttcatcctc gagctcacta tccgctcctg gctccacgcc gaggagaaca 360agcgccgcac cctgcagcgc aacgacgtcg ccgcggccat cgcgcgcacc gacgtcttcg 420atttcctcgt cgacatcgtg ccccgcgagg aggccaagga ggagcccggc agcgccctcg 480gcttcgcggc gcctgggacc ggcgtcgtcg gggctggcgc cccgggcggg gcgccagccg 540ccgggatgcc ctactactat ccgccgatgg ggcagccggc gccgatgatg ccggcctggc 600atgttccggc ctgggacccg gcctggcagc aaggggcagc ggatgtcgat cagagcggca 660gcttcagcga ggaaggacaa gggtttggag caggccatgg cggcgccgct agcttccctc 720ctgcgcctcc gacctccgag tgatcgatcg gcgcgtctct tggtcctg 768158800DNAArtificial sequencesynthetic sequence 158gatcttttga tccaatcaca aggcaaagat ccaatggaca ataacaacaa caacaacaac 60cagcaaccac caccaacctc cgtctatcca cctggctccg ccgtcacaac cgtaatccct 120cctccaccat ctggatctgc atcaatagtc accggaggag gagcgacata ccaccacctc 180ctccagcaac aacagcaaca gcttcaaatg ttctggacat accagagaca agagatcgaa 240caggtaaacg atttcaaaaa ccatcagctc cctctagctc gtatcaaaaa aatcatgaaa 300gctgatgaag atgtgcgtat gatctccgcc gaagcaccga ttctcttcgc gaaagcttgt 360gagcttttca ttctcgaact tacgattaga tcttggcttc acgctgaaga gaacaaacgt 420cgtacgcttc agaaaaacga tatcgctgct gcgattacta gaaccgatat cttcgatttc 480cttgttgata ttgttcctag ggaagagatc aaggaagagg aagatgcagc atcggctctt 540ggtggaggag gtatggttgc tcccgccgcg agcggtgttc cttattatta tccaccgatg 600ggacaaccgg cggttcctgg agggatgatg attggaagac cggcgatgga tcctagcggt 660gtttatgctc agcctccttc tcaggcatgg caaagcgttt ggcagaattc agctggtggt 720ggtgatgatg tgtcttatgg aagtggagga agtagcggcc atggtaatct cgatagccaa 780gggtaagtga attctagtag 800159762DNAArtificial sequencesynthetic sequence 159ggtgacaatg gacaaccagc agctacccta cgccggtcag ccggcggccg caggcgccgg 60agccccggtg ccgggcgtgc ctggcgcggg cgggccgccg gcggtgccgc accaccacct 120gctccagcag cagcaggcgc agctgcaggc gttctgggcg taccagcggc aggaggcgga 180gcgcgcgtcg gcgtcggact tcaagaacca ccagctgccg ctggcgcgga tcaagaagat 240catgaaggcg gacgaggacg tgcgcatgat ctcggcggag gcgcccgtgc tgttcgccaa 300ggcgtgcgag ctcttcatcc tggagctcac catccgctcg tggctgcacg ccgaggagaa 360caagcgccgc accctgcagc gcaacgacgt cgccgccgcc atcgcgcgca ccgacgtgtt 420cgacttcctc gtcgacatcg tgccgcggga ggaggccaag gaggagcccg gcagcgcgct 480cgggttcgcg gcgggagggc ccgccggcgc cgttggagcg gccggccccg ccgcggggct 540gccgtactac tacccgccga tggggcagcc ggcgccgatg atgccggcgt ggcatgttcc 600ggcgtgggac ccggcgtggc agcaaggagc agcgccggat gtggaccagg gcgccgccgg 660cagcttcagc gaggaagggc agcaaggttt tgcaggccat ggcggtgcgg cagctagctt 720ccctcctgca cctccaagct ccgaatagtg atgatccata tg 762160734DNAArtificial sequencesynthetic sequence 160tctcacttcc aacatccaaa tccctagaaa ttgtaaatgg ctgagaacaa caacaacaac 60ggcgacaaca tgaacaacga caaccaccag caaccaccgt cgtactcgca gctgccgccg 120atggcatcat ccaaccctca gttacgtaat tactggattg agcagatgga aaccgtctcg 180gatttcaaaa accgtcagct tccattggct cgaattaaga agatcatgaa ggctgatcca 240gatgtgcaca tggtctccgc agaggctccg atcatcttcg caaaggcttg cgaaatgttc 300atcgttgatc tcacgatgcg gtcgtggctc aaagccgagg agaacaaacg ccacacgctt 360cagaaatcgg atatctccaa cgcagtggct agctctttca cctacgattt ccttcttgat 420gttgtcccta aggacgagtc tatcgccacc gctgatcctg gctttgtggc tatgccacat 480cctgacggtg gaggagtacc gcaatattat tatccaccgg gagtggtgat gggaactcct 540atggttggta gtggaatgta cgcgccatcg caggcgtggc cagcagcggc tggtgacggg 600gaggatgatg ctgaggataa tggaggaaac ggcggcggaa attgaagtgt agatttaggg 660tttgtaaccg cctatgtggg aaatttgaaa tttggtggtg tttattaggg ttcttcaatt 720cgtcggattt gctt 734161668DNAArtificial sequencesynthetic sequence 161ataacaagcc tagaacacta gaaacttcaa aaaagaaaaa aatcttatgg agaacaacaa 60cggcaacaac cagctgccac cgaaaggtaa cgagcaactg aagagtttct ggtcaaaaga 120gatggaaggt aacttagatt tcaaaaatca cgaccttcct ataactcgta tcaagaagat 180tatgaagtat gatccggatg tgactatgat agctagtgag gctccaatcc tcctctcgaa 240agcatgtgag atgtttatca tggatctcac gatgcgttcg tggctccatg ctcaggaaag 300caaacgagtc acgctacaga aatctaatgt cgatgccgca gtggctcaaa ctgttatctt 360tgatttcttg cttgatgatg acattgaggt aaagagagag tctgttgccg ccgctgctga 420tcctgtggcc atgccaccta ttgacgatgg agagctgcct ccaggaatgg taattggaac 480tcctgtttgt tgtagtcttg gaatccacca accacaacca caaatgcagg catggcctgg 540agcttggacc tcggtgtctg gtgaggagga agaagcgcgt gggaaaaaag gaggtgacga 600cggaaactaa taagtggaat acgttttagg gtattttcaa gggaatatgt agtaaatagt 660catggatc 668162800DNAArtificial sequencesynthetic sequence 162aatagttggg ctgatttcgt agcccactta atcagccttt aaatatggaa accctagcct 60agaaagtgaa caagaaaaac gtaaagatca aaatggaaga gaacaacggc aacaacaacc 120actacctgcc gcaaccatcg tcttcccaac tgccgccgcc accattgtat tatcaatcaa 180tgccgttgcc gtcatattca ctgccgctgc cgtactcacc gcagatgcgg aattattgga 240ttgcgcagat gggaaacgca actgatgtta agcatcatgc gtttccacta accaggataa 300agaaaatcat gaagtccaac ccggaagtga acatggtcac tgcagaggct ccggtcctta 360tatcgaaggc ctgtgagatg ctcattcttg atctcacaat gcgatcgtgg cttcataccg 420tggagggcgg tcgccaaact ctcaagagat ccgatacgct cacgagatcc gatatctccg 480ccgcaacgac tcgtagtttc aaatttacct tccttggcga cgttgtccca agagaccctt 540ccgtcgttac cgatgatccc gtgctacatc cggacggtga agtacttcct ccgggaacgg 600tgataggata tccggtgttt gattgtaatg gtgtgtacgc gtcaccgcca cagatgcagg 660agtggccggc ggtgcctggt gacggagagg aggcagctgg ggaaattgga ggaagcagcg 720gcggtaattg aaaagtgttg attgggtttt agggttgtaa tgcttttgtg agaatttgta 780tctctatgga gtcatgtttg 800163736DNAArtificial sequencesynthetic sequence 163taggttgaga ttcatatatg taaagagatc acttcttaat cttatcctac catatcttat 60atacgcttaa ttttccttta tatatgcaaa cctccacata aaaatatctc aaacccaaac 120acttcaaaca aaaaaaaaat ggagaacaac aacaacaacc accaacagcc accgaaagat 180aacgagcaac taaagagttt ctggtcaaag gggatggaag gtgacttgaa tgtcaagaat 240cacgagttcc ccatctctcg tatcaagagg ataatgaagt ttgatccgga tgtgagtatg 300atcgctgctg aggctccaaa tctcttatct aaggcttgtg aaatgtttgt catggacctc 360acgatgcgtt catggctcca tgctcaagag agcaaccgac tcacgatacg gaaatctgat 420gttgatgccg tagtgtctca aaccgtcatc tttgatttct tgcgtgatga tgtccctaag 480gacgagggag agcccgttgt cgccgctgct gatcctgtgg acgatgttgc tgatcatgtg 540gctgtgccag atcttaacaa tgaagaactg ccgccgggaa cggtgatagg aactccggtt 600tgttacggtt taggaataca cgcgccacac ccgcagatgc ctggagcttg gaccgaggag 660gatgcgactg gggcaaatgg aggaaacggt gggaattaat atttggattg ggttttgtaa 720ccgctgttgt gagaac 736164779DNAArtificial sequencesynthetic sequence 164acccttgttc ttgccaaact ctacatcttc aaagattttt catcatctgt tgtgaaatat 60aacatgagga ggccaaagtc atctcacgtc aggatggaac ctgttgcgcc tcgttcacat 120aacacgatgc caatgcttga tcaatttcga tctaatcatc ctgaaacaag caagatcgag 180ggggtctctt cgttggacac agctctgaag gtgttttgga ataatcaaag ggagcagcta 240ggaaactttg caggccaaac tcatttgccg ctatctaggg tcagaaagat tttgaaatct 300gatcctgaag tcaagaagat aagctgtgat gttcctgctt tgttttcgaa agcctgtgaa 360tacttcattc tagaggtaac attacgagct tggatgcata ctcaatcatg cactcgtgag 420accatccggc gttgtgatat cttccaggcc gtaaagaact caggaactta tgatttcctg 480attgatcgtg tcccttttgg accgcactgt gtcacccatc agggtgtgca acctcctgct 540gaaatgattt tgccggatat gaatgttcca atcgatatgg accagattga ggaggagaat 600atgatggaag agcgctctgt cgggtttgac ctcaactgtg atctccagtg aacatgaagc 660tgctctggaa gacaaaaact tgaagaagag aagaaatctg aagaggaatc acccaacaac 720tctatgttat gttcacctta taatagttta tcataaactc attcactaaa ctatgtgta 779165715DNAArtificial sequencesynthetic sequence 165cattgtgtgg aaagatataa cgtgtttgat tttctgaggg aagttgtgag taaggtgcct 60gactatggcc attcccaagg gcaaggacat ggtgatgtta ccatggatga tcgcagcatc 120tccaagagaa ggaagcccat cagcgatgaa gtgaatgaca gtgacgagga atataagaaa 180agcaaaacgc aagagatagg gagtgctaag accagtggca ggggtggtag aggaagaggg 240cgaggaagag gtcgtggtgg acgagctgca aaagcagccg aaagagaggg tctcaaccgc 300gagatggaag tagaagccgc caattctgga cagccaccac cagaagacaa tgtcaagatg 360catgcgtcag agtcatcacc acaagaggat gagaagaaag gcatcgacgg cacagcagca 420tcgaacgaag acaccaagca acaccttcaa agtcccaaag aaggcattga ctttgatctc 480aacgctgaat ccctcgacct aaacgagacc aaactggcac cagccacagg cacaaccaca 540accacaactg cagcaacaga ctctgaggag tattcgggct ggcctatgat ggacataagc 600aaaatggatc cagcacagct tgctagtctg ggtaagagga tagacgagga tgaggaagat 660tatgacgaag aaggctaagt cataacagca ctataggata tatagagtag cagcg 715166738DNAArtificial sequencesynthetic sequence 166tcgaccgttc ttctcaatct caccaatcgg tttaagctga aaacccgaat tagcaaaatc 60ttcgttcggg ctgttttggt taatccggtt tacatgtttt ctcattgctc attttcattt 120tcccgccgtg acagagcgcg taaatctcaa aaccctaaaa atgtcgaaca tatacaattc 180attaccttaa tcagattttc tcaacagaat caaaatcaaa atccatggag gaagaagaag 240gatcaatccg accagagttt ccaatcggaa gagtaaagaa gataatgaaa ctggacaaag 300acatcaacaa aatcaactca gaagctcttc acgtcatcac ttactccacc gaactcttcc 360tccacttcct cgccgagaaa tctgctgttg ttacggcgga gaagaagcgt aagactgtta 420atctcgatca tttaagaatc gccgtgaaaa gacaccaacc tactagtgat ttcctcttag 480actcgcttcc gttgccggct cagcctgtca aacataccaa atcggtttcc gacaagaaga 540ttccggcgcc gccaattggg actcgtcgta tcgatgattt cttcagtaaa gggaaagcaa 600agactgattc agcctaaagt aaaatttctc attttgttca caattgcaaa ttttactctg 660ttctcaaatc aaaatcttgt tttgctaaaa gtgtagtgag aatgtatgga tcatgaggaa 720cttttatagg aagcggcc 7381671461DNAArtificial sequencesynthetic sequence 167ggcgaaaggg tgaaacatac tgtagttcta aaaaattaat ggtgtcgtca aagaaaccca 60aggagaagaa ggcgaggagc gatgtcgtcg tcaataaagc gagtggtcgg agtaaacgca 120gctccggttc cagaacgaag aagacgtcga acaaggttaa cattgtgaag aagaagccgg 180agatttacga gatctcagaa tcatcgagca gtgactctgt ggaagaagca ataagaggcg 240atgaggcgaa gaaaagtaac ggcgtcgtga gcaagagggg taacggaaag agtgtaggaa 300ttccgacgaa gacgagtaaa aatcgagaag aggacgatgg aggcgcggaa gatgctaaga 360tcaagtttcc gatgaatcgg attcggcgga tcatgagaag cgataattct gctcctcaga 420ttatgcagga tgctgtattt cttgtcaaca aagccacggt atagtactaa ttagacatat 480aaatttagct tgaggaactt aatttcacat ggtttttgat gaatttggga gtatcaattg 540ctagtcagtg ttaattgggc gttataatct cgcaaattgc tacagtaatg agattgtttc 600tgttaattaa gccgggaatt aacgttattg cttcatctcc atgtgtgttt gatgaaaccg 660tagttactgt gcttgattgt cataggttta gcttttacat ccagaacttg tagacaccta 720acacatgaga aagtccttat atatgattta ggttcatatt ttcaaagctt aagtgatgag 780tgtttaattt tcctgtattg gaacttggca ttgttttttc tttcttttga tttcatcttg 840tgttcatcga aattgatgtt cattgcgttt acagtacatt aactggtttt tgtgattgaa 900ggagatgttc attgagcggt tttctgaaga agcttatgat agttccgtca aggacaaaaa 960gaaattcatc cactacaaac acctctgtaa gctctaatct cgtccctatt tgccaatatc 1020tggttacctc aatactgaat cccatgtcga aaatctcatg ctgctgcacc aattgctgaa 1080cttaggattt ctggcttctg cacaagggcc agtagttagt cttaggaaga gtttagataa 1140tgagttaatc cgttcgtatc acttgcaaga tttgttgcac tcctaacata attgatgaca 1200ctgtcatttc tactcgttgg cagcatccgt agtgagtaac gaccagagat acgagttcct 1260tgcaggtact taataacctc tgaagtattc gttttatgag ttccatgtgg tttacgaaca 1320gcattttaat acctgtaata tcttgaatgc agatagtgtt cccgagaaac ttaaagcaga 1380ggccgcgttg gaggaatggg aaagaggcat gacagatgca ggctgaaata aatccggttg 1440gaatcgaact gaaccatttg g 1461168747DNAArtificial sequencesynthetic sequence 168gcggccgctg ccgctgcggc agcggccatg gtgagcaagg gcgaggagct gttcaccggg 60gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 120ggcgagggcg agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc 180ggcaagctgc ccgtgccctg gcccaccctc gtgaccacct tcggctacgg cctgcagtgc 240ttcgcccgct accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 300ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc 360gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc 420aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc 480tatatcatgg ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac 540atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 600ggccccgtgc tgctgcccga caaccactac ctgagctacc agtccgccct gagcaaagac 660cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 720ctcggcatgg acgagctgta caagtaa 7471694856DNAArtificial sequencesynthetic sequence 169aagcttnnnn ctgcagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nntcggattc 60cattgcccag ctatctgtca ctttattgtg aagatagtga aaaagaaggt ggctcctaca 120aatgccatca ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc 180ccaaagatgg acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 240cttcaaagca agtggattga tgtgatggtc cgattgagac ttttcaacaa agggtaatat 300ccggaaacct cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg 360aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag 420atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa 480aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg 540taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt 600catttcattt ggagaggaca cgctgacaag ctgactctag cagatctggt accgtcgaat 660cacaagtttg tacaaaaaag ctgaacgaga aacgtaaaat gatataaata tcaatatatt 720aaattagatt ttgcataaaa aacagactac ataatactgt aaaacacaac atatccagtc 780actatggcgg ccgcattagg caccccaggc tttacacttt atgcttccgg ctcgtataat 840gtgtggattt tgagttagga tccgtcgaga ttttcaggag ctaaggaagc taaaatggag 900aaaaaaatca ctggatatac caccgttgat atatcccaat ggcatcgtaa agaacatttt 960gaggcatttc agtcagttgc tcaatgtacc tataaccaga ccgttcagct ggatattacg 1020gcctttttaa agaccgtaaa gaaaaataag cacaagtttt atccggcctt tattcacatt 1080cttgcccgcc tgatgaatgc tcatccggaa ttccgtatgg caatgaaaga cggtgagctg 1140gtgatatggg atagtgttca cccttgttac accgttttcc atgagcaaac tgaaacgttt 1200tcatcgctct ggagtgaata ccacgacgat ttccggcagt ttctacacat atattcgcaa 1260gatgtggcgt gttacggtga aaacctggcc tatttcccta aagggtttat tgagaatatg 1320tttttcgtct cagccaatcc ctgggtgagt ttcaccagtt ttgatttaaa cgtggccaat 1380atggacaact tcttcgcccc cgttttcacc atgggcaaat attatacgca aggcgacaag 1440gtgctgatgc cgctggcgat tcaggttcat catgccgtct gtgatggctt ccatgtcggc 1500agaatgctta atgaattaca acagtactgc gatgagtggc agggcggggc gtaaagatct 1560ggatccggct tactaaaagc cagataacag tatgcgtatt tgcgcgctga tttttgcggt 1620ataagaatat atactgatat gtatacccga agtatgtcaa aaagaggtat gctatgaagc 1680agcgtattac agtgacagtt gacagcgaca gctatcagtt gctcaaggca tatatgatgt 1740caatatctcc ggtctggtaa gcacaaccat gcagaatgaa gcccgtcgtc tgcgtgccga 1800acgctggaaa gcggaaaatc aggaagggat ggctgaggtc gcccggttta ttgaaatgaa 1860cggctctttt gctgacgaga acaggggctg gtgaaatgca gtttaaggtt tacacctata 1920aaagagagag ccgttatcgt ctgtttgtgg atgtacagag tgatattatt gacacgcccg 1980ggcgacggat ggtgatcccc ctggccagtg cacgtctgct gtcagataaa gtctcccgtg 2040aactttaccc ggtggtgcat atcggggatg aaagctggcg catgatgacc accgatatgg 2100ccagtgtgcc ggtctccgtt atcggggaag aagtggctga tctcagccac cgcgaaaatg 2160acatcaaaaa cgccattaac ctgatgttct ggggaatata aatgtcaggc tcccttatac 2220acagccagtc tgcaggtcga ccatagtgac tggatatgtt gtgttttaca gtattatgta 2280gtctgttttt tatgcaaaat ctaatttaat atattgatat ttatatcatt ttacgtttct 2340cgttcagctt tcttgtacaa agtggtgatg gccgctctag acaggcctcg taccggatcc 2400tctagctaga gctttcgttc gtatcatcgg tttcgacaac gttcgtcaag ttcaatgcat 2460cagtttcatt gcgcacacac cagaatccta ctgagtttga gtattatggc attgggaaaa 2520ctgtttttct tgtaccattt gttgtgcttg taatttactg tgttttttat tcggttttcg 2580ctatcgaact gtgaaatgga aatggatgga gaagagttaa tgaatgatat ggtccttttg 2640ttcattctca aattaatatt atttgttttt tctcttattt gttgtgtgtt gaatttgaaa 2700ttataagaga tatgcaaaca ttttgttttg agtaaaaatg tgtcaaatcg tggcctctaa 2760tgaccgaagt taatatgagg agtaaaacac ttgtagttgt accattatgc ttattcacta 2820ggcaacaaat atattttcag acctagaaaa gctgcaaatg ttactgaata caagtatgtc 2880ctcttgtgtt ttagacattt atgaactttc ctttatgtaa ttttccagaa tccttgtcag 2940attctaatca ttgctttata attatagtta tactcatgga tttgtagttg agtatgaaaa 3000tattttttaa tgcattttat gacttgccaa ttgattgaca acatgcatca atcgacctgc 3060agccactcga agcggccggc cgccactcga gatcatgagc ggagaattaa gggagtcacg 3120ttatgacccc

cgccgatgac gcgggacaag ccgttttacg tttggaactg acagaaccgc 3180aacgttgaag gagccactca gccgcgggtt tctggagttt aatgagctaa gcacatacgt 3240cagaaaccat tattgcgcgt tcaaaagtcg cctaaggtca ctatcagcta gcaaatattt 3300cttgtcaaaa atgctccact gacgttccat aaattcccct cggtatccaa ttagagtctc 3360atattcactc tcaatccaaa taatctgcac cggatctgga tcgtttcgca tgattgaaca 3420agatggattg cacgcaggtt ctccggccgc ttgggtggag aggctattcg gctatgactg 3480ggcacaacag acaatcggct gctctgatgc cgccgtgttc cggctgtcag cgcaggggcg 3540cccggttctt tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc aggacgaggc 3600agcgcggcta tcgtggctgg ccacgacggg cgttccttgc gcagctgtgc tcgacgttgt 3660cactgaagcg ggaagggact ggctgctatt gggcgaagtg ccggggcagg atctcctgtc 3720atctcacctt gctcctgccg agaaagtatc catcatggct gatgcaatgc ggcggctgca 3780tacgcttgat ccggctacct gcccattcga ccaccaagcg aaacatcgca tcgagcgagc 3840acgtactcgg atggaagccg gtcttgtcga tcaggatgat ctggacgaag agcatcaggg 3900gctcgcgcca gccgaactgt tcgccaggct caaggcgcgc atgcccgacg gcgaggatct 3960cgtcgtgacc catggcgatg cctgcttgcc gaatatcatg gtggaaaatg gccgcttttc 4020tggattcatc gactgtggcc ggctgggtgt ggcggaccgc tatcaggaca tagcgttggc 4080tacccgtgat attgctgaag agcttggcgg cgaatgggct gaccgcttcc tcgtgcttta 4140cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg acgagttctt 4200ctgagcggga ctctggggtt cgaaatgacc gaccaagcga cgcccaacct gccatcacga 4260gatttcgatt ccaccgccgc cttctatgaa aggttgggct tcggaatcgt tttccgggac 4320gccggctgga tgatcctcca gcgcggggat ctcatgctgg agttcttcgc ccacgggatc 4380tctgcggaac aggcggtcga aggtgccgat atcattacga cagcaacggc cgacaagcac 4440aacgccacga tcctgagcga caatatgatc gggcccggcg tccacatcaa cggcgtcggc 4500ggcgactgcc caggcaagac cgagatgcac cgcgatatct tgctgcgttc ggatattttc 4560gtggagttcc cgccacagac ccggatgatc cccgatcgtt caaacatttg gcaataaagt 4620ttcttaagat tgaatcctgt tgccggtctt gcgatgatta tcatataatt tctgttgaat 4680tacgttaagc atgtaataat taacatgtaa tgcatgacgt tatttatgag atgggttttt 4740atgattagag tcccgcaatt atacatttaa tacgcgatag aaaacaaaat atagcgcgca 4800aactaggata aattatcgcg cgcggtgtca tctatgttac tagatcgggc tcgaga 48561701394DNAArtificial sequencesynthetic sequence 170aagcttnnnn ctgcagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nntcggattc 60cattgcccag ctatctgtca ctttattgtg aagatagtga aaaagaaggt ggctcctaca 120aatgccatca ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc 180ccaaagatgg acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 240cttcaaagca agtggattga tgtgatggtc cgattgagac ttttcaacaa agggtaatat 300ccggaaacct cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg 360aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag 420atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa 480aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg 540taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt 600catttcattt ggagaggaca cgctgacaag ctgactctag cagatctggt accgtcgacg 660gtgagctccg cggccgctct agacaggcct cgtaccggat cctctagcta gagctttcgt 720tcgtatcatc ggtttcgaca acgttcgtca agttcaatgc atcagtttca ttgcgcacac 780accagaatcc tactgagttt gagtattatg gcattgggaa aactgttttt cttgtaccat 840ttgttgtgct tgtaatttac tgtgtttttt attcggtttt cgctatcgaa ctgtgaaatg 900gaaatggatg gagaagagtt aatgaatgat atggtccttt tgttcattct caaattaata 960ttatttgttt tttctcttat ttgttgtgtg ttgaatttga aattataaga gatatgcaaa 1020cattttgttt tgagtaaaaa tgtgtcaaat cgtggcctct aatgaccgaa gttaatatga 1080ggagtaaaac acttgtagtt gtaccattat gcttattcac taggcaacaa atatattttc 1140agacctagaa aagctgcaaa tgttactgaa tacaagtatg tcctcttgtg ttttagacat 1200ttatgaactt tcctttatgt aattttccag aatccttgtc agattctaat cattgcttta 1260taattatagt tatactcatg gatttgtagt tgagtatgaa aatatttttt aatgcatttt 1320atgacttgcc aattgattga caacatgcat caatcgacct gcagccactc gaagcggccg 1380gccgccactc gaga 13941713158DNAArtificial sequencesynthetic sequence 171aagcttnnnn ctgcagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nntcggattc 60cattgcccag ctatctgtca ctttattgtg aagatagtga aaaagaaggt ggctcctaca 120aatgccatca ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc 180ccaaagatgg acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 240cttcaaagca agtggattga tgtgatggtc cgattgagac ttttcaacaa agggtaatat 300ccggaaacct cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg 360aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag 420atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa 480aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg 540taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt 600catttcattt ggagaggaca cgctgacaag ctgactctag cagatctggt accgtcgacg 660gtgagctccg cggccgctct agacaggcct cgtaccggat cctctagcta gagctttcgt 720tcgtatcatc ggtttcgaca acgttcgtca agttcaatgc atcagtttca ttgcgcacac 780accagaatcc tactgagttt gagtattatg gcattgggaa aactgttttt cttgtaccat 840ttgttgtgct tgtaatttac tgtgtttttt attcggtttt cgctatcgaa ctgtgaaatg 900gaaatggatg gagaagagtt aatgaatgat atggtccttt tgttcattct caaattaata 960ttatttgttt tttctcttat ttgttgtgtg ttgaatttga aattataaga gatatgcaaa 1020cattttgttt tgagtaaaaa tgtgtcaaat cgtggcctct aatgaccgaa gttaatatga 1080ggagtaaaac acttgtagtt gtaccattat gcttattcac taggcaacaa atatattttc 1140agacctagaa aagctgcaaa tgttactgaa tacaagtatg tcctcttgtg ttttagacat 1200ttatgaactt tcctttatgt aattttccag aatccttgtc agattctaat cattgcttta 1260taattatagt tatactcatg gatttgtagt tgagtatgaa aatatttttt aatgcatttt 1320atgacttgcc aattgattga caacatgcat caatcgacct gcagccactc gaagcggccg 1380gccgccactc gagatcatga gcggagaatt aagggagtca cgttatgacc cccgccgatg 1440acgcgggaca agccgtttta cgtttggaac tgacagaacc gcaacgttga aggagccact 1500cagccgcggg tttctggagt ttaatgagct aagcacatac gtcagaaacc attattgcgc 1560gttcaaaagt cgcctaaggt cactatcagc tagcaaatat ttcttgtcaa aaatgctcca 1620ctgacgttcc ataaattccc ctcggtatcc aattagagtc tcatattcac tctcaatcca 1680aataatctgc accggatctg gatcgtttcg catgattgaa caagatggat tgcacgcagg 1740ttctccggcc gcttgggtgg agaggctatt cggctatgac tgggcacaac agacaatcgg 1800ctgctctgat gccgccgtgt tccggctgtc agcgcagggg cgcccggttc tttttgtcaa 1860gaccgacctg tccggtgccc tgaatgaact gcaggacgag gcagcgcggc tatcgtggct 1920ggccacgacg ggcgttcctt gcgcagctgt gctcgacgtt gtcactgaag cgggaaggga 1980ctggctgcta ttgggcgaag tgccggggca ggatctcctg tcatctcacc ttgctcctgc 2040cgagaaagta tccatcatgg ctgatgcaat gcggcggctg catacgcttg atccggctac 2100ctgcccattc gaccaccaag cgaaacatcg catcgagcga gcacgtactc ggatggaagc 2160cggtcttgtc gatcaggatg atctggacga agagcatcag gggctcgcgc cagccgaact 2220gttcgccagg ctcaaggcgc gcatgcccga cggcgaggat ctcgtcgtga cccatggcga 2280tgcctgcttg ccgaatatca tggtggaaaa tggccgcttt tctggattca tcgactgtgg 2340ccggctgggt gtggcggacc gctatcagga catagcgttg gctacccgtg atattgctga 2400agagcttggc ggcgaatggg ctgaccgctt cctcgtgctt tacggtatcg ccgctcccga 2460ttcgcagcgc atcgccttct atcgccttct tgacgagttc ttctgagcgg gactctgggg 2520ttcgaaatga ccgaccaagc gacgcccaac ctgccatcac gagatttcga ttccaccgcc 2580gccttctatg aaaggttggg cttcggaatc gttttccggg acgccggctg gatgatcctc 2640cagcgcgggg atctcatgct ggagttcttc gcccacggga tctctgcgga acaggcggtc 2700gaaggtgccg atatcattac gacagcaacg gccgacaagc acaacgccac gatcctgagc 2760gacaatatga tcgggcccgg cgtccacatc aacggcgtcg gcggcgactg cccaggcaag 2820accgagatgc accgcgatat cttgctgcgt tcggatattt tcgtggagtt cccgccacag 2880acccggatga tccccgatcg ttcaaacatt tggcaataaa gtttcttaag attgaatcct 2940gttgccggtc ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata 3000attaacatgt aatgcatgac gttatttatg agatgggttt ttatgattag agtcccgcaa 3060ttatacattt aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg 3120cgcgcggtgt catctatgtt actagatcgg gctcgaga 3158172230PRTLycopersicon esculentumG3553 polypeptide 172Met Asp Gln His Gly Asn Gly Gln Pro Pro Val Ser Ala Gly Ala Ile 1 5 10 15 Gln Ser Pro Gln Ala Ala Gly Leu Ala Ala Ser Ser Ala Gln Met Ala 20 25 30 Gln His Gln Leu Ala Tyr Gln His Ile His Gln Gln Gln Gln Gln Gln 35 40 45 Leu Gln Gln Gln Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile 50 55 60 Glu His Val Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile 65 70 75 80 Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu 85 90 95 Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu 100 105 110 Thr Leu Arg Ala Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu 115 120 125 Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp 130 135 140 Phe Leu Val Asp Ile Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu 145 150 155 160 Ala Thr Ile Pro Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly 165 170 175 Leu Pro Phe Tyr Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly 180 185 190 Ala Pro Gly Met Tyr Met Gly Lys Pro Val Asp Gln Ala Leu Tyr Ala 195 200 205 Gln Gln Pro Arg Pro Tyr Met Ala Gln Pro Ile Trp Pro Gln Gln Gln 210 215 220 Gln Pro Pro Ser Asp Ser 225 230 173271PRTLycopersicon esculentumG3554 polypeptide 173Met Asp Gln His Gly Asn Gly Gln Pro Pro Gly Ile Gly Val Val Thr 1 5 10 15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr Gln Ala Asn Gln Met Ala 20 25 30 Gly Pro Ser Pro Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro Gln 35 40 45 Ala Ala Gly Leu Ala Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu 50 55 60 Ala Tyr Gln His Ile His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln 65 70 75 80 Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile Glu His Val Thr 85 90 95 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 100 105 110 Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val 115 120 125 Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ala 130 135 140 Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp 145 150 155 160 Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp 165 170 175 Ile Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro 180 185 190 Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly Leu Pro Phe Tyr 195 200 205 Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala Pro Gly Met 210 215 220 Tyr Met Gly Lys Ala Cys Arg Ser Ser Ser Val Cys Pro Ala Ala Pro 225 230 235 240 Pro Ile Tyr Gly Thr Ala Asn Leu Ala Pro Ala Ala Ala Thr Thr Leu 245 250 255 Arg Phe Leu Ser Ser Ser Lys Leu Arg Leu Gln Glu Ser Arg Ser 260 265 270 174258PRTLycopersicon esculentumG3894 polypeptide 174Met Asp Gln His Gly Asn Gly Gln Pro Pro Gly Ile Gly Val Val Thr 1 5 10 15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr Gln Ala Asn Gln Met Ala 20 25 30 Gly Pro Ser Pro Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro Gln 35 40 45 Ala Ala Gly Leu Ala Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu 50 55 60 Ala Tyr Gln His Ile His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln 65 70 75 80 Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile Glu His Val Thr 85 90 95 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 100 105 110 Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val 115 120 125 Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ala 130 135 140 Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp 145 150 155 160 Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp 165 170 175 Ile Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro 180 185 190 Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly Leu Pro Phe Tyr 195 200 205 Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala Pro Gly Met 210 215 220 Tyr Met Gly Lys Pro Val Asp Gln Ala Leu Tyr Ala Gln Gln Pro Arg 225 230 235 240 Pro Tyr Met Ala Gln Pro Ile Trp Pro Gln Gln Gln Gln Pro Pro Ser 245 250 255 Asp Ser 175230PRTSolanum tuberosumG3892 polypeptide 175Met Asp His His Gly Asn Gly Gln Pro Pro Val Ser Ala Gly Ala Ile 1 5 10 15 Gln Ser Pro Gln Ala Ala Gly Leu Ser Ala Ser Ser Ala Gln Met Ala 20 25 30 Gln His Gln Leu Ala Tyr Gln His Ile His Gln Gln Gln Gln Gln Gln 35 40 45 Leu Gln Gln Gln Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile 50 55 60 Glu His Val Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile 65 70 75 80 Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu 85 90 95 Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu 100 105 110 Thr Leu Arg Ala Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu 115 120 125 Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp 130 135 140 Phe Leu Val Asp Ile Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu 145 150 155 160 Ala Thr Ile Pro Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly 165 170 175 Leu Pro Phe Tyr Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly 180 185 190 Ala Pro Gly Met Tyr Met Gly Lys Pro Val Asp Gln Ala Leu Tyr Ala 195 200 205 Gln Gln Pro Arg Pro Phe Met Ala Gln Pro Ile Trp Pro Gln Gln Gln 210 215 220 Gln Pro Pro Ser Asp Ser 225 230 176228PRTSolanum tuberosumG3893 polypeptide 176Met Asp His His Gly Asn Gly Gln Pro Pro Gly Ile Gly Val Val Thr 1 5 10 15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr Gln Ala Asn Gln Met Ala 20 25 30 Gly Pro Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro Gln Ala Ala 35 40 45 Gly Leu Ser Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu Ala Tyr 50 55 60 Gln His Ile His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln Leu Gln 65 70 75 80 Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile Glu His Val Thr Asp Phe 85 90 95 Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala 100 105 110 Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala 115 120 125 Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ala Trp Asn 130 135 140 His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala 145 150 155 160 Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val 165 170 175 Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro Arg Gly 180 185 190 Thr Leu Pro Val Gly Gly Pro Thr Glu Gly Leu Pro Phe Tyr Tyr Gly 195 200 205 Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala Pro Gly Met Tyr Met 210 215 220 Gly Lys Pro Val 225 177260PRTMedicago truncatulaG3896 polypeptide 177Met Asp His Gln Gly His Asn Gln Asn Pro Gln Met Gly Val Val Gly 1 5 10 15 Ser Gly Ser Gln Met Pro Tyr Gly Ser Asn Pro Tyr Gln Ser Asn Gln 20 25 30 Met Thr Gly Ala Pro Gly Ser Val Val Thr Ser Val Gly Gly Met Gln 35 40 45 Ser Thr Gly Gln Pro Ala Gly Ala Gln Leu Gly Gln His Gln Leu Ala 50

55 60 Tyr Gln His Ile His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln Leu 65 70 75 80 Gln Ser Phe Trp Ser Asn Gln Tyr Gln Glu Ile Glu Lys Val Thr Asp 85 90 95 Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 100 105 110 Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Ile Phe 115 120 125 Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp 130 135 140 Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile 145 150 155 160 Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile 165 170 175 Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Ser Ile Pro Arg 180 185 190 Gly Thr Met Pro Val Ala Gly Pro Ala Asp Ala Leu Pro Tyr Cys Tyr 195 200 205 Met Pro Pro Gln His Ala Ser Gln Val Gly Thr Ala Gly Val Ile Met 210 215 220 Gly Lys Pro Val Met Asp Pro Asn Met Tyr Ala Gln Gln Pro His Pro 225 230 235 240 Tyr Met Ala Pro Gln Met Trp Pro Gln Pro Pro Glu Gln Arg Pro Pro 245 250 255 Ser Pro Asp His 260 178248PRTZea maysG3551 polypeptide 178Met Glu Pro Ser Pro Gln Pro Met Gly Val Ala Ala Gly Gly Ser Gln 1 5 10 15 Val Tyr Pro Ala Ser Ala Tyr Pro Pro Ala Ala Thr Val Ala Pro Ala 20 25 30 Ser Val Val Ser Ala Gly Leu Gln Ser Gly Gln Pro Phe Pro Ala Asn 35 40 45 Pro Gly His Met Ser Ala Gln His Gln Ile Val Tyr Gln Gln Ala Gln 50 55 60 Gln Phe His Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln 65 70 75 80 Phe Trp Val Glu Arg Met Thr Glu Ile Glu Ala Thr Thr Asp Phe Lys 85 90 95 Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp 100 105 110 Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Lys 115 120 125 Ala Cys Glu Ile Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Met His 130 135 140 Thr Glu Val Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala 145 150 155 160 Ala Ile Thr Arg Thr Asp Ile Tyr Asp Phe Leu Val Asp Ile Val Pro 165 170 175 Arg Asp Glu Met Lys Glu Asp Gly Ile Gly Leu Pro Arg Ala Gly Leu 180 185 190 Pro Pro Met Gly Ala Pro Ala Asp Ala Tyr Pro Tyr Tyr Tyr Met Pro 195 200 205 Gln Gln Gln Val Pro Gly Ser Gly Met Val Tyr Gly Ala Gln Gln Gly 210 215 220 His Pro Val Thr Tyr Leu Trp Gln Glu Pro Gln Gln Gln Gln Glu Gln 225 230 235 240 Ala Pro Glu Glu Gln Gln Ser Ala 245 179249PRTDaucus carotaG3899 polypeptide 179Met Asp Glu Ser Glu Glu Pro Gln Gln Gln Gln Glu Ala Val Ile Asp 1 5 10 15 Ser Ala Ser Gln Met Thr Tyr Gly Val Pro His Tyr His Ala Val Gly 20 25 30 Leu Gly Val Ala Thr Gly Thr Pro Val Val Pro Val Ser Ala Pro Thr 35 40 45 Gln His Pro Thr Gly Thr Thr Ser Gln Gln Gln Pro Glu Tyr Tyr Glu 50 55 60 Ala Gln His Val Tyr Gln Gln Gln Gln Leu Gln Leu Arg Thr Gln Leu 65 70 75 80 Gln Ala Phe Trp Ala Asn Gln Ile Gln Glu Ile Gly Gln Thr Pro Asp 85 90 95 Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 100 105 110 Ala Asp Glu Asp Val Arg Met Ile Ser Ser Glu Ala Pro Val Ile Phe 115 120 125 Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Met Arg Ser Trp 130 135 140 Leu Leu Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile 145 150 155 160 Ala Ala Ala Ile Ser Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile 165 170 175 Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly Ile Thr Lys Ala 180 185 190 Thr Ile Pro Leu Leu Gly Ser Pro Ala Asp Ser Ala Pro Tyr Tyr Tyr 195 200 205 Val Pro Gln Gln His Ala Val Glu Gln Ala Gly Phe Tyr Pro Asp Gln 210 215 220 Gln Ala His Pro Gln Leu Pro Tyr Met Ser Trp Gln Gln Pro His Glu 225 230 235 240 His Lys Asp Gln Glu Glu Asn Gly Asp 245 180229PRTDaucus carotaG3900 polypeptide 180Met Asp His Ser Glu Glu Ser Gln Gln Gln Gln Glu Glu Val Ile Asp 1 5 10 15 Ile Ala Tyr Gly Met Pro Gln Tyr His Ala Gly Pro Gly Val Ala Thr 20 25 30 Gly Thr Pro Val Val Pro Val Ser Ala Ala Thr Gln Ala Gln His Phe 35 40 45 Phe Gln Gln Lys Leu Gln Leu Gln Gln Gln Asp Gln Leu Gln Ala Phe 50 55 60 Trp Ala Asn Gln Met Gln Glu Ile Glu Gln Thr Thr Asp Phe Lys Asn 65 70 75 80 His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 85 90 95 Asp Val Arg Met Ile Ser Ser Glu Ala Pro Val Val Phe Ala Lys Ala 100 105 110 Cys Glu Met Phe Ile Met Asp Leu Thr Met Arg Ser Trp Ser His Thr 115 120 125 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 130 135 140 Val Ser Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile Ile Pro Lys 145 150 155 160 Asp Glu Met Lys Glu Asp Thr Arg Ala Ser Ile Pro Leu Met Gly Gln 165 170 175 Pro Pro Ala Asp Ser Val Pro Tyr Tyr Tyr Val Pro Gln Gln His Ala 180 185 190 Ala Gly Gln Ala Gly Phe Tyr Pro Asp Gln His Gln Gln Gln Pro Leu 195 200 205 Pro Tyr Met Gln Trp Gln Gln Pro Gln Gln Asp Gln Asn Gln Gln Gln 210 215 220 Gln Glu Asn Gly Asn 225 181184PRTGossypium arboreumG3907 polypeptide 181Met Asp Gln Arg Glu Lys Thr Gln Gln Gln Gln Gln Gln Pro Val Met 1 5 10 15 Gly Val Val Pro Gly Ala Gly Gln Met Gly Tyr Ser Thr Ala Tyr Gln 20 25 30 Thr Ala Ser Met Val Ala Ser Gly Thr Thr Gly Val Ala Val Pro Ile 35 40 45 Gln Thr Gln Pro Ser Ala Thr Phe Ser Ser Ser Pro His Gln Leu Ala 50 55 60 Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln Gln Gln Gln 65 70 75 80 Gln Gln Leu Gln Met Phe Trp Ala Asn Gln Met His Glu Ile Glu Gln 85 90 95 Thr Thr Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys 100 105 110 Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro 115 120 125 Val Ile Phe Ala Lys Ala Cys Glu Met Phe Val Leu Glu Leu Thr Leu 130 135 140 Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys 145 150 155 160 Asn Asp Ile Ala Ala Ala Ile Ser Arg Thr Asp Val Phe Asp Phe Leu 165 170 175 Val Asp Ile Ile Pro Gly Thr Glu 180 182270PRTGlycine maxG3549 polypeptide 182Met Asp Lys Ser Glu Gln Thr Gln Gln Gln Gln Gln Gln Gln His Val 1 5 10 15 Met Gly Val Ala Ala Gly Ala Ser Gln Met Ala Tyr Ser Ser His Tyr 20 25 30 Pro Thr Ala Ser Met Val Ala Ser Gly Thr Pro Ala Val Thr Ala Pro 35 40 45 Ser Pro Thr Gln Ala Pro Ala Ala Phe Ser Ser Ser Ala His Gln Leu 50 55 60 Ala Tyr Gln Gln Ala Gln His Phe His His Gln Gln Gln Gln His Gln 65 70 75 80 Gln Gln Gln Leu Gln Met Phe Trp Ser Asn Gln Met Gln Glu Ile Glu 85 90 95 Gln Thr Ile Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys 100 105 110 Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala 115 120 125 Pro Val Ile Phe Ala Lys Ala Cys Glu Met Phe Ile Leu Glu Leu Thr 130 135 140 Leu Arg Ser Trp Ile His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln 145 150 155 160 Lys Asn Asp Ile Ala Ala Ala Ile Ser Arg Asn Asp Val Phe Asp Phe 165 170 175 Leu Val Asp Ile Ile Pro Arg Asp Glu Leu Lys Glu Glu Gly Leu Gly 180 185 190 Ile Thr Lys Ala Thr Ile Pro Leu Val Asn Ser Pro Ala Asp Met Pro 195 200 205 Tyr Tyr Tyr Val Pro Pro Gln His Pro Val Val Gly Pro Pro Gly Met 210 215 220 Ile Met Gly Lys Pro Val Gly Ala Glu Gln Ala Thr Leu Tyr Ser Thr 225 230 235 240 Gln Gln Pro Arg Pro Pro Met Ala Phe Met Pro Trp Pro His Thr Gln 245 250 255 Pro Gln Gln Gln Gln Pro Pro Gln His Gln Gln Thr Asp Ser 260 265 270 183201PRTSorghum bicolorG3910 polypeptide 183Met Glu Pro Lys Ser Thr Thr Pro Pro Pro Pro Pro Val Met Gly Ala 1 5 10 15 Pro Val Ala Tyr Pro Pro Pro Pro Gly Ala Ala Tyr Pro Ala Gly Pro 20 25 30 Tyr Ala His Ala Pro Ala Ala Ala Leu Tyr Pro Pro Pro Pro Pro Pro 35 40 45 Pro Ala Pro Pro Thr Ser Gln Gln Gly Ala Ala Ala Ala Gln Gln Leu 50 55 60 Gln Leu Phe Trp Ala Glu Gln Tyr Arg Glu Ile Glu Ala Thr Thr Asp 65 70 75 80 Phe Lys Asn His Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 85 90 95 Ala Asp Glu Asp Val Arg Met Ile Ala Ala Glu Ala Pro Val Val Phe 100 105 110 Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr His Arg Gly Trp 115 120 125 Ala His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Ser Asp Ile 130 135 140 Ala Ala Ala Val Ala Arg Thr Glu Val Phe Asp Phe Leu Val Asp Ile 145 150 155 160 Val Pro Arg Asp Glu Ala Lys Glu Ala Asp Ser Ala Ala Ala Met Gly 165 170 175 Pro Ala Gly Ile Pro His Pro Ala Ala Gly Leu Pro Ala Thr Asp Pro 180 185 190 Met Gly Tyr Tyr Tyr Val Gln Pro Gln 195 200 184232PRTLycopersicon esculentumG3555 polypeptide 184Met Asp Asn Asn Pro His Gln Ser Pro Thr Glu Ala Ala Ala Ala Ala 1 5 10 15 Ala Ala Ala Ala Ala Ala Ala Gln Ser Ala Thr Tyr Pro Ser Gln Thr 20 25 30 Pro Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe 35 40 45 Trp Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn 50 55 60 His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65 70 75 80 Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala Lys Ala 85 90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala 100 105 110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 115 120 125 Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130 135 140 Asp Glu Ile Lys Asp Glu Gly Val Gly Leu Gly Pro Gly Ile Val Gly 145 150 155 160 Ser Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro 165 170 175 Ala Pro Gly Gly Val Met Leu Gly Arg Pro Ala Val Pro Gly Val Asp 180 185 190 Pro Ser Met Tyr Val His Pro Pro Pro Ser Gln Ala Trp Gln Ser Val 195 200 205 Trp Gln Thr Gly Asp Asp Asn Ser Tyr Ala Ser Gly Gly Ser Ser Gly 210 215 220 Gln Gly Asn Leu Asp Gly Gln Ile 225 230 185232PRTSolanum tuberosumG3885 polypeptide 185Met Asp Asn Asn Pro His Gln Ser Pro Thr Glu Ala Ala Ala Ala Ala 1 5 10 15 Ala Ala Ala Ala Ala Ala Ala Gln Ser Ala Thr Tyr Pro Pro Gln Thr 20 25 30 Pro Tyr His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe 35 40 45 Trp Thr Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn 50 55 60 His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65 70 75 80 Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala Lys Ala 85 90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala 100 105 110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 115 120 125 Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130 135 140 Asp Glu Ile Lys Asp Glu Gly Val Val Leu Gly Pro Gly Ile Val Gly 145 150 155 160 Ser Thr Ala Ser Gly Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro 165 170 175 Ala Pro Gly Gly Val Met Leu Gly Arg Pro Ala Val Pro Gly Val Asp 180 185 190 Pro Ser Met Tyr Val His Pro Pro Pro Ser Gln Ala Trp Gln Ser Val 195 200 205 Trp Gln Thr Gly Asp Asp Asn Ser Tyr Ala Ser Gly Gly Ser Ser Gly 210 215 220 Gln Gly Asn Leu Asp Gly Gln Ile 225 230 186233PRTGossypium raimondiiG3883 polypeptide 186Met Asp Ser Asn Gln Gln Thr Gln Ser Thr Pro Tyr Pro Pro Gln Pro 1 5 10 15 Pro Thr Ser Ala Ile Thr Pro Pro Ser Ser Ala Thr Ala Thr Ala Pro 20 25 30 Pro Phe His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe 35 40 45 Trp Ser Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn 50 55 60 His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65 70 75 80 Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala 85 90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala 100 105 110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 115 120 125 Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130 135 140 Asp Glu Ile Lys Asp Glu Thr Gly Leu Ala Pro Met Val Gly Ala Thr 145 150 155 160 Ala Ser Gly Val Pro Tyr Phe Tyr Pro Pro Met Gly Gln Pro Ala Ala 165 170 175 Gly Gly Pro Gly Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Thr 180 185 190 Gly Gly Ile Tyr Gly Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp 195

200 205 Gln Thr Ala Gly Thr Asp Asp Gly Ser Tyr Gly Ser Gly Val Thr Gly 210 215 220 Gly Gln Gly Asn Leu Asp Gly Gln Gly 225 230 187227PRTNicotiana benthamianaG3884 polypeptide 187Met Glu Asn Asn Gln Gln Ser Ala Ala Asn Ala Ala Ala Ala Ala Ala 1 5 10 15 Ala Ala Ala Ala Tyr Pro Ala Gln Pro Pro Tyr His His Leu Leu Gln 20 25 30 Gln Gln Gln Gln Gln Leu Gln Met Phe Trp Thr Tyr Gln Arg Gln Glu 35 40 45 Ile Glu Gln Val Asn Asp Phe Lys Asn His Gln Leu Pro Leu Ala Arg 50 55 60 Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala 65 70 75 80 Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu 85 90 95 Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu Asn Lys Arg Arg Thr 100 105 110 Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe 115 120 125 Asp Phe Leu Val Asp Ile Val Pro Arg Asp Glu Ile Lys Glu Glu Gly 130 135 140 Gly Val Gly Leu Gly Pro Ala Gly Ile Val Gly Ser Thr Ala Ser Gly 145 150 155 160 Val Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala Pro Pro Gly Val 165 170 175 Met Met Gly Arg Pro Ala Met Pro Gly Val Asp Pro Ser Met Tyr Val 180 185 190 Gln Pro Pro Pro Ser Gln Ala Trp Gln Ser Val Trp Gln Thr Ala Glu 195 200 205 Asp Asn Ser Tyr Ala Ser Gly Gly Ser Ser Gly Gln Gly Asn Leu Asp 210 215 220 Gly Gln Ser 225 188214PRTPhyscomitrella patensG3867 polypeptide 188Met Ser His Pro Gly Ala Val Met Pro Leu Gln Met His Tyr Pro Gln 1 5 10 15 Ala Gln Gln Gln Met Met Pro Gln Leu Gly Asp Gln Gln Met Gln Pro 20 25 30 Gln Leu His Tyr Gln Gln Ile Gln Lys Gln Gln Leu Ser Gln Phe Trp 35 40 45 Gln Gln Gln Met Gln Glu Met Glu Gln Val Asn Asp Phe Lys Thr His 50 55 60 Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ser Asp Glu Asp 65 70 75 80 Val Lys Met Ile Ala Ala Glu Ala Pro Val Leu Phe Ser Lys Ala Cys 85 90 95 Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ser Trp Ile His Thr Glu 100 105 110 Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Ile Ala Gly Ala Ile 115 120 125 Thr Arg Gly Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Asp 130 135 140 Glu Leu Lys Glu Glu Asp Leu Gly Val Pro Trp Thr Gly Val Pro Gly 145 150 155 160 Asp Gly Ser Val Pro Tyr Gly Gly Ile Phe Tyr Pro Pro Met Ala Gly 165 170 175 Gln Gln Met His His Ser Met Gly Ala Pro Glu Met Met Val Gly Gln 180 185 190 Pro Pro Asn Pro Gln Met Met Tyr Gln Pro Pro Gln Thr Ala Phe Val 195 200 205 Pro Glu Gln Gln Gln Gln 210 189249PRTOryza sativaG3545 polypeptide 189Met Asp Pro His Ser His Lys Lys Ala His Glu Gly Leu Ile Gly Asp 1 5 10 15 Asn Pro Asp Ala Tyr Ala Val Thr Thr Tyr Gln Pro Val Leu Met Val 20 25 30 Glu Pro Ser Ala Ala Ala Ala Phe Pro Pro Ala Pro Gln Val Ala Pro 35 40 45 Ala Tyr Pro Val Asn Pro Met Gln Leu Pro Glu His Gln Gln His Ala 50 55 60 Ile Gln Gln Val Gln Gln Leu Gln Gln Gln Gln Lys Glu Gln Leu Gln 65 70 75 80 Ala Phe Trp Ala Asp Gln Met Ala Glu Val Glu Gln Met Thr Glu Phe 85 90 95 Lys Leu Pro Asn Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala 100 105 110 Asp Glu Asp Val Lys Met Ile Ala Gly Glu Ala Pro Ala Leu Phe Ala 115 120 125 Lys Ala Cys Glu Met Phe Ile Leu Asp Met Thr Leu Arg Ser Trp Gln 130 135 140 His Thr Glu Glu Gly Arg Arg Arg Thr Leu Gln Arg Ser Asp Val Glu 145 150 155 160 Ala Val Ile Lys Lys Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Ile 165 170 175 Thr Asp Asp Lys Met Lys Asp Asp Gly Met Gly Ser Gln Ala Ala Ser 180 185 190 Met Val Ser Pro Tyr Thr Ser Gly Gly Met Gly Phe Ser Phe Asp Leu 195 200 205 Tyr Pro Asn Gln His His Leu Ala Tyr Met Trp Pro Pro Gln Glu Gln 210 215 220 Gln Glu Gln Trp Pro Pro Gln Glu Gln Gln Glu Gln Lys Gln Lys Gln 225 230 235 240 Asp Ser Asp Gly Gly Gly Gln Asp Glu 245 190275PRTArabidopsis thalianaG2637 polypeptide 190Met Glu Ser Glu Lys Val Val Val Asp Glu Leu Pro Leu Ala Ile Val 1 5 10 15 Arg Arg Val Val Lys Lys Lys Leu Ser Glu Cys Ser Pro Asp Tyr Asp 20 25 30 Val Ser Ile His Lys Glu Ala Leu Leu Ala Phe Ser Glu Ser Ala Arg 35 40 45 Ile Phe Ile His Tyr Leu Ser Ala Thr Ala Asn Asp Phe Cys Lys Asp 50 55 60 Ala Arg Arg Gln Thr Met Lys Ala Asp Asp Val Phe Lys Ala Leu Glu 65 70 75 80 Glu Met Asp Phe Ser Glu Phe Leu Glu Pro Leu Lys Ser Ser Leu Glu 85 90 95 Asp Phe Lys Lys Lys Asn Ala Gly Lys Lys Ala Gly Ala Ala Ala Ala 100 105 110 Ser Tyr Pro Ala Gly Gly Ala Ala Leu Lys Ser Ser Ser Gly Thr Ala 115 120 125 Ser Lys Pro Lys Glu Thr Lys Lys Arg Lys Gln Glu Glu Pro Ser Thr 130 135 140 Gln Lys Gly Ala Arg Lys Ser Lys Ile Asp Glu Glu Thr Lys Arg Asn 145 150 155 160 Asp Glu Glu Thr Glu Asn Asp Asn Thr Glu Glu Glu Asn Gly Asn Asp 165 170 175 Glu Glu Asp Glu Asn Gly Asn Asp Glu Glu Asp Glu Asn Asp Asp Glu 180 185 190 Asn Thr Glu Glu Asn Gly Asn Asp Glu Glu Asn Asp Asp Glu Asn Thr 195 200 205 Glu Glu Asn Gly Asn Asp Glu Glu Asn Glu Lys Glu Asp Glu Glu Asn 210 215 220 Ser Met Glu Glu Asn Gly Asn Glu Ser Glu Glu Ser Gly Asn Glu Asp 225 230 235 240 His Ser Met Glu Glu Asn Gly Ser Gly Val Gly Glu Asp Asn Glu Asn 245 250 255 Glu Asp Gly Ser Val Ser Gly Ser Gly Glu Glu Val Glu Ser Asp Glu 260 265 270 Glu Asp Glu 275 1913446DNAArtificial sequencesynthetic sequence 191cacggacctt ggatctgaag ttatgaacaa taacatattt ggcaaaacaa agaaaaaaga 60aacaacaata ctaacatatt ttggtaaaag aacattgaga agtctcaaaa attaacttct 120tcttattttg tttcctaata agaccgtttg cttcatttca agttcttagg aaataatttc 180atgtaacgtg tatgtagata tgtttatgta cagataaaga gagatctgaa aatgatatat 240agagcttttg tggtgataag tgcaacaagc aggatatata tatcgaacgt ggtggttaga 300agatagcgtc aaaatagatg ctagctgctg cgtatacatc atattcatat catatgtact 360tctcttttgt gatttctcat gtgattgaac atactacata aatcttgata gatttataaa 420aatgcaacaa attgttgttt atataagaaa aataaaacac tgatatgata tttcattagt 480tattatcaaa tttgcaatat aatgtttaac atccaagatt tgttttacat aatcgttacg 540gttactaaag tttaatttat gatgttttaa aacaaattga gactaaattt ctaaaagaaa 600catatacgta catgtgtgta gctgcgtata tatatagaat ggtggggcta aaagctaatg 660atgtgtacat taattggaca tttgatgtgg ctggattgga cccaacttgc tctttgatag 720agacctaact aagacaattt tgctcttcat tcatttctcc cgtatacata attgaattaa 780ctgtacataa tgtttcacaa caagcgatct agctatatat ttcaaaataa cagagactga 840tattttaatc tggtcttcta agctctaacg tcaaattaaa aaaaaaatcc gatcttctaa 900ttaattagaa gaaatcaatt atagaacctc tctctttaat ttcatttatt taaaactgct 960tggaaattta attattcact aaagactcac tattctcctt aatttatgat aatttgtaga 1020tcatatgttc agtttttatt tatttgccat tcgaatgttg agttttaatt aaaccaatat 1080gttaatattc gaattaaaaa aacttaccta taattcactt atttaaaaac ataaaataat 1140aataattgca tcaccgtgat acaaagcaac ctcacaagtc acaactctcg tgactacaaa 1200gatcactcat taaacaaacc ttcctgcctt ctttttttct acttgggcac ctcgaccgat 1260cgaagactat tcttgggatc tgcttcaaaa acgactatat gttctaaatc cacttcgtat 1320gatgacgaac atttggttta ctactgaaga tagagattac gtccttctaa ttagaagtaa 1380ttaattattt tagtatttgg aagctaatgg tggagatgta accgtatctt agtggatcga 1440gatattgtat ataaaatatg tatgctacat cgaataataa actgaaagag agtaaaaagg 1500gatatttaat gggaagaaaa gaagggtgga gatgtaacaa aggcgaagat aatggatatt 1560cttgggatgt tgtcttcaag gccacgagct tagattcttt tagttttgct caatttgtta 1620agtttctact tttccttttg ttgcttacta cttttgctca tgatctccat atacatatca 1680tacatatata tagtatacta tctttagact gatttctcta tacactatct tttaacttat 1740gtatcgtttc aaaactcagg acgtacatgt ttaaatttgg ttatataacc acgaccattt 1800caagtatata tgtcatacca taccagattt aatataactt ctatgaagaa aatacataaa 1860gttggattaa aatgcaagtg acatcttttt agcataggtt catttggcat agaagaaata 1920tataactaaa aatgaacttt aacttaaata gattttacta tattacaatt ttttcttttt 1980acatggtcta atttattttt ctaaaattag tataattgtt gttttgatga aacaataata 2040ccgtaagcaa tagttgctaa aagatgtcca aatatttata aattacaaag taaatcaaat 2100aaggaagaag acacgtggaa aacaccaaat aagagaagaa atggaaaaaa cagaaagaaa 2160ttttttaaca agaaaaatca attagtcctc aaacctgaga tatttaaagt aatcaactaa 2220aacaggaaca cttgactaac aaagaaattt gaaacgtggt ccaactttca cttaattata 2280ttgttttctc taaggcttat gcaatatatg ccttaagcaa atgccgaatc tgtttttttt 2340ttttttgtta ttggatattg actgaaaata aggggttttt tcacacttga agatctcaaa 2400agagaaaact attacaacgg aaattcattg taaaagaagt gattaagcaa attgagcaaa 2460ggtttttatg tggtttattt cattatatga ttgacatcaa attgtatata tatggttgtt 2520ttatttaaca atatatatgg atataacgta caaactaaat atgtttgatt gacgaaaaaa 2580aatatatgta tgtttgatta acaacatagc acatattcaa ctgatttttg tcctgatcat 2640ctacaactta ataagaacac acaacattga acaaatcttt gacaaaatac tatttttggg 2700tttgaaattt tgaatactta caattattct tctcgatctt cctctctttc cttaaatcct 2760gcgtacaaat ccgtcgacgc aatacattac acagttgtca attggttctc agctctacca 2820aaaacatcta ttgccaaaag aaaggtctat ttgtacttca ctgttacagc tgagaacatt 2880aaatataata agcaaatttg ataaaacaaa gggttctcac cttattccaa aagaatagtg 2940taaaataggg taatagagaa atgttaataa aaggaaatta aaaatagata ttttggttgg 3000ttcagatttt gtttcgtaga tctacaggga aatctccgcc gtcaatgcaa agcgaaggtg 3060acacttgggg aaggaccagt ggtccgtaca atgttactta cccatttctc ttcacgagac 3120gtcgataatc aaattgttta ttttcatatt tttaagtccg cagttttatt aaaaaatcat 3180ggacccgaca ttagtacgag atataccaat gagaagtcga cacgcaaatc ctaaagaaac 3240cactgtggtt tttgcaaaca agagaaacca gctttagctt ttccctaaaa ccactcttac 3300ccaaatctct ccataaataa agatcccgag actcaaacac aagtcttttt ataaaggaaa 3360gaaagaaaaa ctttcctaat tggttcatac caaagtctga gctcttcttt atatctctct 3420tgtagtttct tattgggggt ctttgt 3446192800DNAArtificial sequencesynthetic sequence 192aatagttggg ctgatttcgt agcccactta atcagccttt aaatatggaa accctagcct 60agaaagtgaa caagaaaaac gtaaagatca aaatggaaga gaacaacggc aacaacaacc 120actacctgcc gcaaccatcg tcttcccaac tgccgccgcc accattgtat tatcaatcaa 180tgccgttgcc gtcatattca ctgccgctgc cgtactcacc gcagatgcgg aattattgga 240ttgcgcagat gggaaacgca actgatgtta agcatcatgc gtttccacta accaggataa 300agaaaatcat gaagtccaac ccggaagtga acatggtcac tgcagaggct ccggtcctta 360tatcgaaggc ctgtgagatg ctcattcttg atctcacaat gcgatcgtgg cttcataccg 420tggagggcgg tcgccaaact ctcaagagat ccgatacgct cacgagatcc gatatctccg 480ccgcaacgac tcgtagtttc aaatttacct tccttggcga cgttgtccca agagaccctt 540ccgtcgttac cgatgatccc gtgctacatc cggacggtga agtacttcct ccgggaacgg 600tgataggata tccggtgttt gattgtaatg gtgtgtacgc gtcaccgcca cagatgcagg 660agtggccggc ggtgcctggt gacggagagg aggcagctgg ggaaattgga ggaagcagcg 720gcggtaattg aaaagtgttg attgggtttt agggttgtaa tgcttttgtg agaatttgta 780tctctatgga gtcatgtttg 8001931183DNAArtificial sequencesynthetic sequence 193gatatgacca aaatgattaa cttgcattac agttgggaag tatcaagtaa acaacatttt 60gtttttgttt gatatcggga atctcaaaac caaagtccac actagttttt ggactatata 120atgataaaag tcagatatct actaatacta gttgatcagt atattcgaaa acatgacttt 180ccaaatgtaa gttatttact ttttttttgc tattataatt aagatcaata aaaatgtcta 240agttttaaat ctttatcatt atatccaaac aatcataatc ttattgttaa tctctcatca 300acacacagtt tttaaaataa attaattacc ctttgcatga taccgaagag aaacgaattc 360gttcaaataa ttttataaca ggaaataaaa tagataaccg aaataaacga tagaatgatt 420tcttagtact aactcttaac aacagtttta tttaaatgac ttttgtaaaa aaaacaaagt 480taacttatac acgtacacgt gtcgaaaata ttattgacaa tggatagcat gattcttatt 540agagtcatgt aaaagataaa cacatgcaaa tatatatatg aataatatgt tgttaagata 600aactagacga ttagaatata tagcacatct atagtttgta aaataactat ttctcaacta 660gacttaagtc ttcgaaatac ataaataaac aaaactataa aaattcagaa aaaaacatga 720gagtacgtta gtaaaatgta tttttttggt aaaataatca cttttcatca ggtcttttgt 780aaagcagttt tcatgttaga taaacgagat tttaattttt tttaaaaaaa gaagtaaact 840aactatgttc ctatctacac acctataatt ttgaacaatt acaaaacaac aatgaaatgc 900aaagaagacg tagggcactg tcacactaca atacgattaa taaatgtatt ttggtcgaat 960taataacttt ccatacgata aagttgaatt aacatgtcaa acaaaagaga tgagtggtcc 1020tatacatagt taggaattag gaacctctaa attaaatgag tacaaccacc aactactcct 1080tccctctata atctatcgca ttcacaccac ataacatata cgtacctact ctatataaca 1140ctcactcccc aaactctctt catcatccat cactacacac atc 1183194812DNAArtificial sequencesynthetic sequence 194ttattctaag tagcttgact tgtttagttt aaatatgagg ttaatgattt tgtggggatt 60tgatagttct ggttcttgag tttatttaaa ataggtttac caggatcatg tactgactct 120gttctttgga acttttcaga attctgcttc ggacattaag ctcatgagtc atgacttctt 180caatccatga gctttctgat aacattggaa gtcatgagaa gcaagaacag agagattctc 240atttccaacc accaatccct tctgcaagaa attatgaatc aattgttaca agtttagtct 300actcagaccc ggggactaca aattccatgg cacctggaca atatccatat ccagatcctt 360actacagaag catatttgca ccgcctccac aaccgtatac cggggtacat ctacagttga 420tgggagtgca gcaacaaggc gttcctttac catctgatgc agtcgaggaa cctgtttttg 480ttaacgcaaa gcaataccac ggtatactaa ggcgcagaca atcaagagca agacttgagt 540ctcagaataa agtcatcaag tcacgtaagc cgtatttgca tgaatctcgg catttgcatg 600cgataagacg accaagagga tgtggcgggc ggtttctaaa tgccaagaag gaggatgagc 660atcacgaaga cagtagtcat gaagaaaaat ccaaccttag cgctggtaaa tccgccatgg 720ctgcttctag tggtacatct tgagaaggtc ctacaagtag ctttgttgta ttttggctct 780gtttggtctc agatcatcta tgtcttttag tg 8121951110DNAArtificial sequencesynthetic sequence 195aagctttgag ctccgcggcc gcaagaccct tcctctatat aaggaagttc atttcatttg 60gagaggacac gctcgagtat aagagctcat ttttacaaca attaccaaca acaacaaaca 120acaaacaaca ttacaattac atttacaatt accatggaag cgttaacggc caggcaacaa 180gaggtgtttg atctcatccg tgatcacatc agccagacag gtatgccgcc gacgcgtgcg 240gaaatcgcgc agcgtttggg gttccgttcc ccaaacgcgg ctgaagaaca tctgaaggcg 300ctggcacgca aaggcgttat tgaaattgtt tccggcgcat cacgcgggat tcgtctgttg 360caggaagagg aagaagggtt gccgctggta ggtcgtgtgg ctgccggtga accacttctg 420gcgcaacagc atattgaagg tcattatcag gtcgatcctt ccttattcaa gccgaatgct 480gatttcctgc tgcgcgtcag cgggatgtcg atgaaagata tcggcattat ggatggtgac 540ttgctggcag tgcataaaac tcaggatgta cgtaacggtc aggtcgttgt cgcacgtatt 600gatgacgaag ttaccgttaa gcgcctgaaa aaacagggca ataaagtcga actgttgcca 660gaaaatagcg agtttaaacc aattgtcgta gatcttcgtc agcagagctt caccattgaa 720gggctggcgg ttggggttat tcgcaacggc gactggctgg aattccccaa ttttaatcaa 780agtgggaata ttgctgatag ctcattgtcc ttcactttca ctaacagtag caacggtccg 840aacctcataa caactcaaac aaattctcaa gcgctttcac aaccaattgc ctcctctaac 900gttcatgata acttcatgaa taatgaaatc acggctagta aaattgatga tggtaataat 960tcaaaaccac tgtcacctgg ttggacggac caaactgcgt ataacgcgtt tggaatcact 1020acagggatgt ttaataccac tacaatggat gatgtatata actatctatt cgatgatgaa 1080gataccccac caaacccaaa aaaagagtag 1110196333DNAArtificial sequencesynthetic sequence 196acatatccat atctaatctt acctcgactg ctgtatataa aaccagtggt tatatgtcca 60gtactgctgt atataaaacc agtggttata tgtacagtac gtcgatcgat cgacgactgc 120tgtatataaa accagtggtt atatgtacag tactgctgta tataaaacca gtggttatat 180gtacagtacg tcgaggggat gatcaagacc cttcctctat ataaggaagt tcatttcatt 240tggagaggac acgctgacaa gctgactcta gcagatctgg taccgtcgac ggtgagctcc 300gcggccgctc tagacaggcc tcgtaccgga tcc 3331971098DNAGossypium raimondiiG3883 197aaataataat aataaacaaa gccagcgccc attacaatgg ccgctgtacc ttatcccatc 60catatctgac ctttaaaaat atccaccgcc gccaccacca ccacgatcac caccgccaca 120tccccatctc ccgccatttg ttcaccagcc

aatggacagt aaccagcaaa ctcaatccac 180cccataccca cctcagcctc ccacatccgc cattacccct ccttcatccg ccacagcaac 240cgcgcctcct ttccaccacc tccttcaaca acaacagcaa cagctccaaa tgttttggtc 300ataccaacgc caagaaatcg agcaagttaa cgattttaag aaccaccaac tcccattagc 360tcgcattaag aagataatga aagccgacga agacgtccgt atgatctccg ccgaggctcc 420cattctcttc gccaaagctt gtgagctttt cattttggaa ctcactatcc gttcttggct 480tcacgccgag gaaaacaagc gacggacact tcagaaaaac gacatcgctg cggctattac 540gaggaccgac attttcgatt tcttggtaga tattgtgcct agggatgaga tcaaggatga 600aactggtttg gctccgatgg ttggggctac cgccagtggg gtaccttact tttatccccc 660tatgggtcaa cctgctgctg gtggtcctgg tgggatgatg attggccggc ctgccgtcga 720tcccaccgga ggtatttacg gtcagccacc ttctcaggct tggcagagtg tttggcagac 780ggcgggaact gatgatggct cgtatggcag tggagttacc ggtggtcaag ggaatcttga 840cggtcaaggc taacctaaaa tcatgggtcc gatatcgtac agtggatggt gtggaaaacg 900cgtggaactc aggtgatcta ctggggaatt tatgcttttg tgcttattga tttatgaatg 960cagttgtgtt ggtattgttt atgggaaaaa agaaaagcta ccttgaattt gatgacactt 1020ctatagtaac ttgttaaaaa aacaaactct tttaactcat ttttagtgca gctaaaacaa 1080tatcttgctg ccatgcca 1098198233PRTGossypium raimondiiG3883 polypeptide (domain in aa coordinates 67-132) 198Met Asp Ser Asn Gln Gln Thr Gln Ser Thr Pro Tyr Pro Pro Gln Pro 1 5 10 15 Pro Thr Ser Ala Ile Thr Pro Pro Ser Ser Ala Thr Ala Thr Ala Pro 20 25 30 Pro Phe His His Leu Leu Gln Gln Gln Gln Gln Gln Leu Gln Met Phe 35 40 45 Trp Ser Tyr Gln Arg Gln Glu Ile Glu Gln Val Asn Asp Phe Lys Asn 50 55 60 His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu 65 70 75 80 Asp Val Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala 85 90 95 Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala 100 105 110 Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala 115 120 125 Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg 130 135 140 Asp Glu Ile Lys Asp Glu Thr Gly Leu Ala Pro Met Val Gly Ala Thr 145 150 155 160 Ala Ser Gly Val Pro Tyr Phe Tyr Pro Pro Met Gly Gln Pro Ala Ala 165 170 175 Gly Gly Pro Gly Gly Met Met Ile Gly Arg Pro Ala Val Asp Pro Thr 180 185 190 Gly Gly Ile Tyr Gly Gln Pro Pro Ser Gln Ala Trp Gln Ser Val Trp 195 200 205 Gln Thr Ala Gly Thr Asp Asp Gly Ser Tyr Gly Ser Gly Val Thr Gly 210 215 220 Gly Gln Gly Asn Leu Asp Gly Gln Gly 225 230 19966PRTGossypium raimondiiG3883 conserved domain 199Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Ile Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 200719DNAArtificial sequencesynthetic sequence 200gttcaccagc caatggacag taaccagcaa actcaatcca ccccataccc acctcagcct 60cccacatccg ccattacccc tccttcatcc gccacagcaa cagcgcctcc tttccaccac 120ctccttcaac aacaacagca acagctccaa atgttttggt cataccaacg ccaagaaatc 180gagcaagtta acgattttaa gaaccaccaa ctcccattag ctcgcattaa gaagataatg 240aaagccgacg aagacgtccg tatgatctcc gccgaggctc ccattctctt cgccaaagct 300tgtgagcttt tcattttgga actcactatc cgttcttggc ttcacgccga ggaaaacaag 360cgacggacac ttcagaaaaa cgacatcgct gcggctatta cgaggaccga cattttcgat 420ttcttggtag atattgtgcc tagggatgag atcaaggatg aaactgcttt ggctccgatg 480gtcggtgcta ccgccagtgg ggtaccttac ttttatcccc ctatgggtca acctgctggt 540ggtggtcctg gtgggatgat gattggccgg cctgccgtcg atcccaccgg agttatttac 600ggtcagccac cttctcaggc ttggcagagt gtttggcaga cggcggggac tgatgatggc 660tcgtatggca gtggagttac cggtggtcaa gggaatcttg acggtcaagg ctaacctaa 7192011221DNALycopersicon esculentumG3894 201tatcaatcat ctacctcttt gattgaaccc tagctctcac tctctctttc tctctctaaa 60aaaaaagcat aaaagtttca atctttcagg taatttgatt ggagaggcgt atccagaatt 120tggagcttca atcagtgggg agcctaagtt agctttggat tctccaaaag ggaatcttgc 180tcaaaatgga tcaacatgga aatggacagc ctccaggtat tggagtcgtt actagctcag 240ctccaatata tggtgctcca taccaagcta accaaatggc agggccctct cctcctgcag 300tttcagctgg tgcaattcaa tctcctcaag cagctggtct tgctgcttcg tcagctcaga 360tggcgcaaca tcagctcgct tatcagcaca ttcatcagca gcagcaacaa cagttgcagc 420aacaactcca gactttctgg gcaaatcaat atcaagaaat cgagcatgtt actgatttca 480agaatcatag cttgccattg gcaaggatca agaaaatcat gaaagcggat gaagatgtta 540ggatgatatc tgctgaagca ccagtcgtat ttgctcgtgc ctgtgagatg ttcatacttg 600aattgacact gcgtgcatgg aaccacactg aggagaacaa aaggaggacg ctgcagaaaa 660atgatatcgc tgcagccata acaaggactg acatatttga tttcttagtt gacattgtcc 720caagagagga cttgaaagat gaggtgcttg caacaattcc tagaggaacg cttcctgttg 780gaggcccaac tgagggtctg ccattctatt atggcatgcc accacaatct gctcaaccga 840ttggagctcc agggatgtac atgggaaagc ctgtcgatca agctctgtat gcccagcagc 900cccgcccata tatggcacag ccaatttggc cccagcagca gcaaccaccc tcagattctt 960aagcagctca aagcttagat tacaggaatc cagaagctag gagcagtgag tagtctgagt 1020agcgaagtac tggagaacac atagcagtct gcatactttg aactttattt taatatatat 1080cgacatgaag cactagttat taaaagtcga gtgttccctt agtgtagcta aaactttaca 1140ccatgagctt gatgttcttg gtgatgttta tgaacaaata tgtttttaag tgtgtgattt 1200aaaagtaaaa aaaaaaaaaa a 1221202258PRTLycopersicon esculentumG3894 polypeptide (domain in aa coordinates 103-168) 202Met Asp Gln His Gly Asn Gly Gln Pro Pro Gly Ile Gly Val Val Thr 1 5 10 15 Ser Ser Ala Pro Ile Tyr Gly Ala Pro Tyr Gln Ala Asn Gln Met Ala 20 25 30 Gly Pro Ser Pro Pro Ala Val Ser Ala Gly Ala Ile Gln Ser Pro Gln 35 40 45 Ala Ala Gly Leu Ala Ala Ser Ser Ala Gln Met Ala Gln His Gln Leu 50 55 60 Ala Tyr Gln His Ile His Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln 65 70 75 80 Leu Gln Thr Phe Trp Ala Asn Gln Tyr Gln Glu Ile Glu His Val Thr 85 90 95 Asp Phe Lys Asn His Ser Leu Pro Leu Ala Arg Ile Lys Lys Ile Met 100 105 110 Lys Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Val 115 120 125 Phe Ala Arg Ala Cys Glu Met Phe Ile Leu Glu Leu Thr Leu Arg Ala 130 135 140 Trp Asn His Thr Glu Glu Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp 145 150 155 160 Ile Ala Ala Ala Ile Thr Arg Thr Asp Ile Phe Asp Phe Leu Val Asp 165 170 175 Ile Val Pro Arg Glu Asp Leu Lys Asp Glu Val Leu Ala Thr Ile Pro 180 185 190 Arg Gly Thr Leu Pro Val Gly Gly Pro Thr Glu Gly Leu Pro Phe Tyr 195 200 205 Tyr Gly Met Pro Pro Gln Ser Ala Gln Pro Ile Gly Ala Pro Gly Met 210 215 220 Tyr Met Gly Lys Pro Val Asp Gln Ala Leu Tyr Ala Gln Gln Pro Arg 225 230 235 240 Pro Tyr Met Ala Gln Pro Ile Trp Pro Gln Gln Gln Gln Pro Pro Ser 245 250 255 Asp Ser 20366PRTLycopersicon esculentumG3894 conserved domain 203Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu 20 25 30 Met Phe Ile Leu Glu Leu Thr Leu Arg Ala Trp Asn His Thr Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Ile Thr 50 55 60 Arg Thr 65 204799DNAArtificial sequencesynthetic sequence 204gctcaaaatg gatcaacatg gaaatggaca gcctccaggt attggagtcg ttactagctc 60agctccaata tatggtgctc cataccaagc taaccaaatg gcagggccct ctcctcctgc 120agtttcagct ggtgcaattc aatctcctca agcagctggt cttgctgctt cgtcagctca 180gatggcgcaa catcagctcg cttatcagca cattcatcag cagcagcaac aacagttgca 240gcaacaactc cagactttct gggcaaatca atatcaagaa atcgagcatg ttactgattt 300caagaatcat agcttgccat tggcaaggat caagaaaatc atgaaagcgg atgaagatgt 360taggatgata tctgctgaag caccagtcgt atttgctcgt gcctgtgaga tgttcatact 420tgaattgaca ctgcgtgcat ggaaccacac tgaggagaac aaaaggagga cgctgcagaa 480aaatgatatc gctgcagcca taacaaggac tgacatattt gatttcttag ttgacattgt 540cccaagagag gacttgaaag atgaggtgct tgcaacaatt cctagaggaa cgcttcctgt 600tggaggccca actgagggtc tgccattcta ttatggcatg ccaccacaat ctgctcaacc 660gattggagct ccagggatgt acatgggaaa gcctgtcgat caagctctgt atgcccagca 720gccccgccca tatatggcac agccaatttg gccccagcag cagcaaccac cctcagattc 780ttaagcagct caaagctta 7992051109DNAArtificial sequencesynthetic sequence 205ctacacgttt tgaaaagtta acctgttggt taaatggtta gctatgactc tcgcaacaaa 60cccaaccctt aagatgatga tggtttaaca tttgacaaca tagttaagac tgtgtctata 120taatagtcaa caaattcaga ttgtagtatt atggagtcaa catatttcga gatcaaaaac 180attcaaaacg taaatctatc gacgtctcac atagttttgt tatgaagctg atgaaaaaag 240ttggaagaca tagttttgca aacatcattt gttgctaacg tataaacgtt ggtttgatta 300aatgtaatag gataaggata tccgtttgtt catataattg agttaaatta tattttggtt 360attataatat gttaagttga aaataaatag gtccaacaac cttgtttaaa tagatttttt 420aggagtgatt cccttttaat agtatagatt atactctctt cctaatcgac cttccgtggg 480gtaaagtggt caattatatt ctttatggat gagcttgatt gagaatgggt ttatgggtta 540tgacaagggc atgtacaaat gtcactgcct cttgacatgc aaccgaacag ttggcgactc 600aagtcgcaga agatacaacg gaccaaaccc tccgagtgtc gccgcgtctg ttatgtgtca 660cctttttgtc tcctttcctt aaaaattggt aactcatttt tcaaaaaaag aagaggatag 720ttttggctgt atctcctaaa ctattcgatc acaacgccag atattttaat actggatact 780agtgatgtaa tttgatttgt taattgtcaa aaagtagatt ctcctatctc gtttttagtt 840caattattat atggttaaat gaatttaagt cgattagaaa tgattagtta atcaaccaga 900gttgctctat aagtctatac tgataacatg aaccattttc taaaaatgag atagatacat 960ttgaattttg tcgtggtttg gagtatgcgg agatagtcgt acgcgcatga acatcatgag 1020acacttgctt cagctcacag agtgacgtgt aaagaccata gacccacgac ttcatgcaaa 1080cccattccta cgtggcacaa accttcatg 11092061341DNAArtificial sequencesynthetic sequence 206atgacttctt cagtacatga gctctctgat aacaatgaaa gtcatgcgaa gaaagaacgt 60ccagattccc aaacccgacc acaggttcct tcaggacgaa gttcggaatc tattgataca 120aactctgtct actcagagcc catggcacat ggattatacc cgtatccaga tccttactac 180agaagcgtct ttgcacagca agcgtatctt ccacatccct atcctggggt ccaattgcag 240ttaatgggaa tgcagcagcc aggagttcca ttgcaatgtg atgcagtcga ggaacctgtt 300tttgttaacg caaagcaata ccatggtata ctcaggcgca ggcaatcccg ggcaaaactt 360gaggcacgaa atagagccat caaagcaaaa aagccataca tgcatgaatc tcggcattta 420catgcgataa gacggccaag aggatgtggt ggccggtttc tcaatgccaa gaaggaaaat 480ggagaccaca aggaggagga ggaggcaacc tctgatgaga acacttcaga agcaagttcc 540agcctcaggt ccgagaaatt agctatggct acttctggtc ctaatggtag atctgcggcc 600gctgccgctg cggcagcggc catggtgagc aagggcgagg agctgttcac cggggtggtg 660cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag 720ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag 780ctgcccgtgc cctggcccac cctcgtgacc accttcggct acggcctgca gtgcttcgcc 840cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac 900gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg 960aagttcgagg gcgacaccct ggataaccga atcgagctga agggcatcga cttcaaggag 1020gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc 1080atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag 1140gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc 1200gtggtgctgc ccgacaacca ctacctgagc taccagtccg ccctgagcaa agaccccaac 1260gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc 1320atggacgagc tgtacaagta a 13412071386DNAArtificial sequencesynthetic sequence 207ccaaaatcta gggttttctt ctcgcccaat ttcacttttc ttctacgaaa ttctccattc 60ctgccggctg tcgggttttc tgaatcgatt ctccttcacc aacttcttct ctggttctgt 120tcgattctga ttttttttca aggtcaattt tttcttctct ttaaactctg caaaatcgtg 180atcgattaaa ttcacctcag ggttttttga tttctgaaag aagttaatct tcttcgaagg 240cgattgcaaa agagtgctct gctgtgaatt tccactgaga tgcaatcaaa accgggaaga 300gaaaacgaag aggaagtcaa taatcaccat gctgttcagc agccgatgat gtatgcagag 360ccctggtgga aaaacaactc ctttggtgtt gtacctcaag cgagaccttc tggaattcca 420tcaaattcct cttctttgga ttgccccaat ggttccgagt caaacgatgt tcattcagca 480tctgaagacg gtgcgttgaa tggtgaaaac gatggcactt ggaaggattc acaagctgca 540acttcctctc gttcagataa tcacggaatg gaaggaaatg acccagcgct ctctatccgt 600aacatgcatg atcagccact tgtacaacca ccagagcttg ttggacacta tatcgcttgt 660gtcccaaacc catatcagga tccatattat gggggattga tgggagcata tggtcatcag 720caattgggtt ttcgtccata tcttggaatg cctcgtgaaa gaacagctct gccacttgac 780atggcacaag agcccgttta tgtgaatgca aagcagtacg agggaattct aaggcgaaga 840aaagcacgtg ccaaggcaga gctagagagg aaagtcatcc gggacagaaa gccatatctt 900cacgagtcaa gacacaagca tgcaatgaga agggcacgag cgagtggagg ccggtttgcg 960aagaaaagtg aggtagaagc gggagaggat gcaggaggga gagacagaga aaggggttca 1020gcaaccaact catcaggctc tgaacaagtt gagacagact ctaatgagac cctgaattct 1080tctggtgcac cataataaaa aaagccaaag ctctgagagg agagagagac acacactttg 1140gctaatataa tccattgcct caaaccggca aatcattctt ggctttttcg tttttgtgtt 1200tgctagttgt tcttgtcaga gtctcatatt gtgtgggttt aacagttatg atgaatgtac 1260aaagagcgag ttatgttagg tgttagattt tggagacaag agacaaagga atagcaagta 1320ggtcttgttt ttattctttg accttttttt tctcttttgc aaaattgaaa aatacgtttg 1380cttaaa 13862084361DNAArtificial sequencesynthetic sequence 208agaatgtagc aatacaaata tatgacggta ccgttatcca tcaccattat atgtatatat 60gtataatttg ataaatattc actttgtgtt tcgtcgtttg cttaataaac agctcatttc 120catggtattg agtcttctat atgcgagaga atcagattcc cgctgggata acaaaagaac 180aaggtactga aaaaaataga caaaactttt ttttaaatta tataagctat aaaagaaaag 240agtatagaga gagattagcc ctactgttta agagggagag agtagggtca ttagggcttt 300agagagagaa gacattcgga ctgtccccac ttgcttttct gtagaataac attatttaaa 360tcttattttt aattaaatat tacaactaaa agaagaaacc aacttttaaa ataaatgcag 420attatatgct ctgacttgga ctaaataaaa cttgcaagta acagtttcaa gtccttttgt 480tttagaactt tttctttcgt agaagtgata aatgattgcc ctagacctga tagattctct 540aaaattctac gtattacagc ataagttacc tcctttattt gactattaga ccatccatat 600tggtgggctt ttagcaaatg ttcttaacaa taattttata atttatttta atgttaagag 660gtttgataat tttttttttt taagagtgta ttttgtttat taaaatgtgt tttgtttctt 720atataagaac caaatcttaa ctattttacc aattaaacat taaatttaaa ttttaatatc 780tctaagaatt atattaagag ccaatataga tgcttttaaa accattggtt gaataaataa 840atctaacctt cttaattatt tctgtgtgaa tattttctaa attttcattt taatttagca 900caatataatc catgttctaa aaagaacaat taacataata tttacaaacc taaaaagatt 960ataaaacaca attttatttt ttacagctta taatgtttta aagttcaggt ttatttttta 1020aaagttcagg tttattacat taggtttgac ttgtaatcat catttatcac aacgatcaaa 1080ctattattac aatcacaata gtagacaaaa tttaggatat atatatatat atataattat 1140gtataaacta tgaacattta aagtgagatt tttcaaaata atatataaat tcaaatagaa 1200atagactatt tggttcttaa atgagagacc cccgaaaaaa tctttttttt tttctcatca 1260agctgtttac atttttagat ataaaatcat attctttata gtttagaata tgaattaaat 1320agttttatat gttattaact tatcataaga tatgcgtgag gttggccaaa aactcatcaa 1380ttaaccaaat aagaaaagta aaattgtatt ttgctttgct aaaaatgtaa atatttcatt 1440gaaaaatgaa aaaggtttag gtaatacaat taagtaaatc ctacaatttt ggttccatgg 1500caaaagaata aaattgtatt gctttggtaa aagttgatcc aactaatata ttcagtagaa 1560actgcaaaac tgaagaaata agtttgttta gtagaattgc tttcggttat gtaatgaata 1620tacatccaaa atggcttttt agtaatgatg tcttttcata ctctttccaa tccctactac 1680tttcagatta tttgtcctac tattatagag atatacgttc gttttcaata atatgaaaag 1740tgatatatat ttaaatagtg tgatatatat ataagttttg caagtgcatc acttcccaaa 1800atcgcataaa tcattaatca tattgtcgaa aacagtataa taacttctta aacgaaaacg 1860cagcgcaatt aaaaataaca actagagata attgacaaaa cattgattaa tatttaccta 1920taagttaatt attgtattta aaatttattt aaagttcata aggaaaacat atgcaaaaat 1980atttatatct aatattttgc tatgttatcc tttttttttt ttacgttatc ctaattttgt 2040ttatcctaat ttgttgtggt taaaatctta ttattgataa aaagagaact tttttttttg 2100tcatcataaa aaagagaact tattacttcg attttaaaat tctatgagcg taggagacaa 2160agaaaaaaaa aataaaaaaa aaaagaagag aaaaatcact tcttttcttc tttttagtcc 2220agatccaaca tattttggat aactaaatga agatttttta aaaaaatata ttttagggta 2280tatataaatc ataatttgaa gcaaatgaaa taaaatccag tttggtaata tataaatatg 2340atttgatggg ttccttgtaa tctctctcta tctattagtt tctcagttat cttttctttg 2400ccagaaatgg cagtgaaggc agtggctgag gagagagttt tttttcttct ttcatgggga 2460aagtaaaact ttgccttgaa gatttctctc ttcaatattt ttctaagact tttgatttca 2520acgaatcact gtccttaacc taaaagcaag aaaaattagc tttatactgg tctttacttt 2580tttttaacat atttattttt atatagttta cttataaaca tagacatacg agtatgggaa 2640tatatagtat

atccaacttc taaataatat ttcgaatagt gataacaaaa ttagcaatac 2700atacggctag tgaaatgttg atcgaataaa cggcactgat gtaatgtact tatcaatttt 2760gataatttta attgtattgt ttttcttttt ttcccacagt attgaactag acaattaaat 2820ttaaagtaaa attatacatt tctttcgttg tgtattaaag taacatgcat aatatcattt 2880tccttcgtac aatcctccaa attgacaatt gatgaattac tttgtcaatc gtaaatgaat 2940ttttctcaag tctgtatact attttcaggg ataaacaggt acaggtgtcc catgcttatt 3000ctcttgatag taacatgtgt cctatgttga gtcaattcta cgttcgaaga agtgctaaca 3060attgttaata gcctcgtata ttattctaat taaaatgcct cgatagattt ggttagtggt 3120ctgaatgtga ttggttattt tttcaagtgg caagaggtct accatctaat attacaatca 3180atcgaccaaa aaggtcgaga acatgataat ggtggcaaat acaaatggtt cattgttgtc 3240taatataaca agccatcagt tgtcactttt taaaaacaat acagaataca agatactttt 3300tttttaaggt aaaatgtgtg tttaatattt tcgtttatat aacaaataaa cagttacatg 3360ttttactcta tgattatatt tatgacattt ttcttcttct taacaacatt tttttcccat 3420aagaacattt acaatagtat taaaactttg attgcaatca aatgttagat cacttattat 3480aaaattacta agactgctat cttttcctat tgacaaaagc gaatccaata tatgttactg 3540aaacaaatgc gtaaattata ctatatggag atctatcggt taattattga gagaatctaa 3600gaaagttttt gagtacaaca gtcctaataa tatcttcaca taccatataa tatacatata 3660tacatataca caaatgtact ttttaaacca acatcagcat acgtatatcc catcaggaaa 3720cttagacttt tgggaattca tggtatgaaa accaaaacca aatgacaaca ttcgatttga 3780tactcccgac ccatggtaaa gaaataacaa attccaatat atctttcact ggactttccg 3840aggcacattc cggttttctc catttcaaga aattgtcaaa aataaattga gatccggttt 3900attacctcaa aaaagaagaa gagaaattac aacattaatt tccgaaaagg cataaatgag 3960aaatcatatt tcagcagaag aacacaaaag agttaagaac ccacagatca cacaacctct 4020gtccatgtct gctttttaca cttttttaaa ataagtttct cctaaaaagt tatttcctat 4080ttataataat ttccttagat ttatcttcct ggtctctctt ctgctgcttc cctctccccc 4140ataactatca ctatttagaa ttttcaatgt ggaaaaggaa gctgattgtt gaagcataaa 4200tcccgggaga ccacttttgc attttcaaat aattaaatta aaccatagat acacacacac 4260agttacttac tcttttaggg tttcccaata aatttatagt actttaatgt gtttcatgat 4320attgatgata aatgctagct gtatttacaa tgggggctcc t 43612091243DNAZea maysG4259 209aaaaaaagaa gcttgccatt tcgctcaggg ccctgcaacg cgcggcagcg cgccacgcgc 60cgagcttggc ttgggactgg gccgcccggc cgcgaggaat aaactcactc ctgccttcat 120acgtatccaa atagccgcgg cagtacgtgt atgtggttag ctatacgcga cctcagctcg 180ggcgcaagct acaacgccga ccaggcgaga agaagcatcg atagtgtgac gagctaaccc 240accagcagca acgtaatcca aatccatgga caaccagccg ctgccctact ccacaggcca 300gccccctgcc cccggaggag ccccggtggc gggcatgcct ggcgcggccg gcctcccacc 360cgtgccgcac caccacctgc tccagcagca gcaggcccag ctgcaggcgt tctgggcgta 420ccagcgccag gaggcggagc gcgcgtccgc gtcggacttc aagaaccacc agctgcctct 480ggcccggatc aagaagatca tgaaggccga cgaggacgtg cgcatgatct ccgccgaggc 540gcccgtgctg ttcgccaagg cctgcgagct cttcatcctc gagctcacta tccgctcctg 600gctccacgcc gaggagaaca agcgccgcac cctgcagcgc aacgacgtcg ccgcggccat 660cgcgcgcacc gacgtcttcg atttcctcgt agacatcgtg ccccgcgagg aggccaagga 720ggagcccggc agcgccctcg gcttcgcggc gcctgggacc ggcgtcgtcg gggctggcgc 780cccgggcggg gcgccagccg ccgggatgcc ctactactat ccgccgatgg ggcagccggc 840gccgatgatg ccggcctggc atgttccggc ctgggacccg gcctggcagc aaggggcagc 900ggatgtcgat cagagcggca gcttcagcga ggaaggacaa gggtttggag caggccatgg 960cggcgccgct agcttccctc ctgcgcctcc gacctccgag tgatcgatcg gcgcgtctct 1020tggtcctggc ctcctggctt agctacatgt gcatgatgtc aatcgttcaa tgtgccatgc 1080tgtgtatatt ctacagcaaa cgtggtaatg gagctgctat gcatacagaa cgaataaggc 1140gtgacgtgtg agaccgtaag agtacgtagt actaatatgt agatgcacgt gacgtgccaa 1200ttaatcaaag attaacatgc agttaattaa ttagatcctc cct 1243210245PRTZea maysG4259 polypeptide (domain in aa coordinates 70-135) 210Met Asp Asn Gln Pro Leu Pro Tyr Ser Thr Gly Gln Pro Pro Ala Pro 1 5 10 15 Gly Gly Ala Pro Val Ala Gly Met Pro Gly Ala Ala Gly Leu Pro Pro 20 25 30 Val Pro His His His Leu Leu Gln Gln Gln Gln Ala Gln Leu Gln Ala 35 40 45 Phe Trp Ala Tyr Gln Arg Gln Glu Ala Glu Arg Ala Ser Ala Ser Asp 50 55 60 Phe Lys Asn His Gln Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys 65 70 75 80 Ala Asp Glu Asp Val Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe 85 90 95 Ala Lys Ala Cys Glu Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp 100 105 110 Leu His Ala Glu Glu Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val 115 120 125 Ala Ala Ala Ile Ala Arg Thr Asp Val Phe Asp Phe Leu Val Asp Ile 130 135 140 Val Pro Arg Glu Glu Ala Lys Glu Glu Pro Gly Ser Ala Leu Gly Phe 145 150 155 160 Ala Ala Pro Gly Thr Gly Val Val Gly Ala Gly Ala Pro Gly Gly Ala 165 170 175 Pro Ala Ala Gly Met Pro Tyr Tyr Tyr Pro Pro Met Gly Gln Pro Ala 180 185 190 Pro Met Met Pro Ala Trp His Val Pro Ala Trp Asp Pro Ala Trp Gln 195 200 205 Gln Gly Ala Ala Asp Val Asp Gln Ser Gly Ser Phe Ser Glu Glu Gly 210 215 220 Gln Gly Phe Gly Ala Gly His Gly Gly Ala Ala Ser Phe Pro Pro Ala 225 230 235 240 Pro Pro Thr Ser Glu 245 21166PRTZea maysG4259 conserved domain 211Leu Pro Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val 1 5 10 15 Arg Met Ile Ser Ala Glu Ala Pro Val Leu Phe Ala Lys Ala Cys Glu 20 25 30 Leu Phe Ile Leu Glu Leu Thr Ile Arg Ser Trp Leu His Ala Glu Glu 35 40 45 Asn Lys Arg Arg Thr Leu Gln Arg Asn Asp Val Ala Ala Ala Ile Ala 50 55 60 Arg Thr 65 2121505DNAZea maysG4261 212gcgcgaggga gagacagagt gaggaaacga gggaaggaga cgacgcgctc gcctattggc 60cgccggctcc gctccttcgc gcccagtgcg acggccacgg cctgagcggc gctgccagca 120aggcggctag tatgagcagc atggagtcgc ggccgggccg aacgaacctg gtggagccca 180tagggcacgg cgccgcgctg ccgtccggcg gccaggcagt gcagccgtgg tggacgagct 240ccggggctgt gctcggtgca gtctcgccag ccgtcgtggc ggtggcgccc gggagcggga 300cggggattag cctgtcgagc agcccggcag gtggtagtgg tggtggcggc gcggctaaag 360gagccgcgag tgacgagagc agcgaggatt cacggagatc tggggaacca aaagatggaa 420gcgctagtca agaaaagaac catgccacat cgcagatacc cgctctggcg ccagagtatt 480tggcaccata ctcgcagctg gaactgaacc aatcaattgc ttctgcagca tatcagtacc 540cagatcctta ctatgcaggc atggttgctc cctatggaag tcatgctgtg gctcattttc 600agctacctgg actaactcaa tctcgaatgc cattacctct tgaagtatcc gaggagcctg 660tttatgtaaa tgccaagcag taccatggta tcttaagacg acggcagtcc cgtgctaagg 720ctgaacttga gaaaaaggtg gtcaaagcca gaaagccata ccttcacgag tctcgtcatc 780agcacgcgat gaggagggca agaggaaacg ggggacgctt cctgaacaca aagaaaagtg 840acagtggtgc tcccaatgga ggcgaaaacg ccgagcatct ccatgtccct cccgacttac 900tacagctacg acagaacgag gcttgaagta gcggtatggc tctggcatcc ttgaacagca 960gttcctgtcc acgggcgtag gcattcgaga ccggattcat atagctctcc acagcatacg 1020cgcagccatc tctgcggtaa cgcacgttct cctgaacgag ctttgtagcg agataggtat 1080gcaagtgcaa tctgggcgca ggaatccatc atcaagtgcc caatgcccat ggggtaggta 1140cgctgtttca ggcaattcat tcttggcttt cacgttccac ccttgtgtaa ctggtgtgtt 1200gtaaatgtgt ggaaaactaa gcttgtgctc tgtatcgggc cgttcagcgg aactgcaaaa 1260cgcctgtata attaagatcg aactttggat taactcggta atgctttgtc tggttttctt 1320ttagcttttc aactgtaaca cggccacagc tgattcatgt gatgtgcttg ctaatattta 1380aataaacacc ttgacccggc cgggcgcgga gtaattttat attttttata ttcgggagtc 1440cacacaatcg tgtaaggttc ctgcgaacca gttctgactt taattgaacc gcccggattc 1500atatg 1505213264PRTZea maysG4261 polypeptide (domain in aa coordinates 175-231) 213Met Ser Ser Met Glu Ser Arg Pro Gly Arg Thr Asn Leu Val Glu Pro 1 5 10 15 Ile Gly His Gly Ala Ala Leu Pro Ser Gly Gly Gln Ala Val Gln Pro 20 25 30 Trp Trp Thr Ser Ser Gly Ala Val Leu Gly Ala Val Ser Pro Ala Val 35 40 45 Val Ala Val Ala Pro Gly Ser Gly Thr Gly Ile Ser Leu Ser Ser Ser 50 55 60 Pro Ala Gly Gly Ser Gly Gly Gly Gly Ala Ala Lys Gly Ala Ala Ser 65 70 75 80 Asp Glu Ser Ser Glu Asp Ser Arg Arg Ser Gly Glu Pro Lys Asp Gly 85 90 95 Ser Ala Ser Gln Glu Lys Asn His Ala Thr Ser Gln Ile Pro Ala Leu 100 105 110 Ala Pro Glu Tyr Leu Ala Pro Tyr Ser Gln Leu Glu Leu Asn Gln Ser 115 120 125 Ile Ala Ser Ala Ala Tyr Gln Tyr Pro Asp Pro Tyr Tyr Ala Gly Met 130 135 140 Val Ala Pro Tyr Gly Ser His Ala Val Ala His Phe Gln Leu Pro Gly 145 150 155 160 Leu Thr Gln Ser Arg Met Pro Leu Pro Leu Glu Val Ser Glu Glu Pro 165 170 175 Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg Arg Gln 180 185 190 Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val Lys Ala Arg Lys 195 200 205 Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg Ala Arg 210 215 220 Gly Asn Gly Gly Arg Phe Leu Asn Thr Lys Lys Ser Asp Ser Gly Ala 225 230 235 240 Pro Asn Gly Gly Glu Asn Ala Glu His Leu His Val Pro Pro Asp Leu 245 250 255 Leu Gln Leu Arg Gln Asn Glu Ala 260 21457PRTZea maysG4261 conserved domain 214Glu Pro Val Tyr Val Asn Ala Lys Gln Tyr His Gly Ile Leu Arg Arg 1 5 10 15 Arg Gln Ser Arg Ala Lys Ala Glu Leu Glu Lys Lys Val Val Lys Ala 20 25 30 Arg Lys Pro Tyr Leu His Glu Ser Arg His Gln His Ala Met Arg Arg 35 40 45 Ala Arg Gly Asn Gly Gly Arg Phe Leu 50 55 21516PRTArtificial sequencederived from wheat, rye, and tomato 215Pro Lys Xaa Pro Ala Gly Arg Xaa Lys Phe Xaa Glu Thr Arg His Pro 1 5 10 15 2165PRTarabidopsis thaliana 216Asp Ser Ala Trp Arg 1 5

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed