Intradermal Administration Of Immunoglobulin G Preparation

ARORA; VIKRAM ;   et al.

Patent Application Summary

U.S. patent application number 15/407139 was filed with the patent office on 2017-08-10 for intradermal administration of immunoglobulin g preparation. The applicant listed for this patent is GRIFOLS WORLDWIDE OPERATIONS LIMITED. Invention is credited to VIKRAM ARORA, KRISTINE BERGSTRAND, RALPH CHRISTIAN CRUMRINE, HONGBIN LI, TODD W. WILLIS.

Application Number20170226191 15/407139
Document ID /
Family ID57944251
Filed Date2017-08-10

United States Patent Application 20170226191
Kind Code A1
ARORA; VIKRAM ;   et al. August 10, 2017

INTRADERMAL ADMINISTRATION OF IMMUNOGLOBULIN G PREPARATION

Abstract

A method for administration of an IgG preparation by an intradermal (ID) route to a subject includes loading with a volume of the IgG preparation an ID delivery device including needles, applying the device to a skin delivery site, using the device to allow dermal penetration of the needles, delivering the volume of the IgG preparation at the skin delivery site, and removing the injection delivery device. The method can be used in the treatment of a disease, such as an immunodeficiency.


Inventors: ARORA; VIKRAM; (RALEIGH, NC) ; CRUMRINE; RALPH CHRISTIAN; (DURHAM, NC) ; BERGSTRAND; KRISTINE; (CHAPEL HILL, NC) ; LI; HONGBIN; (MORRISVILLE, NC) ; WILLIS; TODD W.; (CARY, NC)
Applicant:
Name City State Country Type

GRIFOLS WORLDWIDE OPERATIONS LIMITED

Dublin

IE
Family ID: 57944251
Appl. No.: 15/407139
Filed: January 16, 2017

Related U.S. Patent Documents

Application Number Filing Date Patent Number
62292075 Feb 5, 2016

Current U.S. Class: 1/1
Current CPC Class: A61P 7/04 20180101; A61P 31/18 20180101; A61P 37/04 20180101; C07K 16/00 20130101; A61K 39/00 20130101; A61K 9/0021 20130101; A61K 2039/54 20130101; A61P 37/02 20180101; A61P 35/02 20180101; A61P 37/00 20180101; A61K 2039/505 20130101; A61M 37/00 20130101
International Class: C07K 16/00 20060101 C07K016/00; A61M 37/00 20060101 A61M037/00

Claims



1. A method for administration of an IgG preparation by an intradermal (ID) route to a subject in need thereof, the method comprising: a) loading with a volume of the IgG preparation an ID delivery device comprising needles; b) applying the device to a skin delivery site; c) using the device to allow dermal penetration of the needles; d) delivering the volume of the IgG preparation at the skin delivery site; and e) removing the delivery device.

2. The method according to claim 1, wherein the IgG preparation has an IgG concentration of about 15% to about 30% (w/v).

3. The method according to claim 1, wherein the IgG preparation has an IgG concentration of about 30% (w/v) or higher.

4. The method according to claim 1, wherein a pH of the IgG preparation is about 4.5 to about 8.0.

5. The method according to claim 4, wherein the pH of the IgG preparation is about 6.5.

6. The method according to claim 1, wherein the volume of the IgG preparation is up to about 10 mL per skin delivery site.

7. The method according to claim 6, wherein the volume of the IgG preparation is between about 2 mL and about 8 mL per skin delivery site.

8. The method according to claim 6, wherein the volume of the IgG preparation is between about 4 mL and about 6 mL per skin delivery site.

9. The method according to claim 1, wherein the IgG preparation comprises one or more additional plasma proteins.

10. The method according to claim 1, wherein the subject is a pediatric patient.

11. The method according to claim 1, wherein the subject is a non-pediatric patient.

12. The method according to claim 1, wherein the subject is in need of treatment for a disease.

13. The method according to claim 12, wherein the disease is an immunodeficiency.

14. The method according to claim 13, wherein the immunodeficiency is one of a primary immunodeficiency, a secondary immunodeficiency or an acquired immunodeficiency.

15. The method according to claim 1, wherein the IgG preparation comprises an entire IgG molecule, a therapeutically effective fragment of IgG or a combination thereof.
Description



BACKGROUND

[0001] Field

[0002] The present disclosure is related to a method for administration of IgG preparations by the intradermal (ID) route to a patient in need thereof and a composition for administration of IgG preparations by the ID route to a patient.

[0003] Description of the Related Art

[0004] Immunoglobulin G (IgG) is the most abundant immunoglobulin isotype in human serum, comprising approximately 80% of all immunoglobulins. IgG preparations are indicated for the treatment of various diseases such as primary immunodeficiency, in particular congenital agammaglobulinaemia and hypogammaglobulinaemia, idiopathic thrombocytopenic purpura, as an adjuvant in the treatment of Kawasaki's Disease and in transplant of bone marrow, hypogammaglobulinaemia associated with chronic lymphocyte leukaemia as part of HIV infection treatment in pediatric patients, among others.

SUMMARY

[0005] In some embodiments, a method for administration of an IgG preparation by an intradermal (ID) route to a subject in need thereof is provided, the method comprising loading with a volume of the IgG preparation an ID delivery device comprising needles, applying the device to a skin delivery site, using the device to allow dermal penetration of the needles, delivering the volume of the IgG preparation at the skin delivery site, and removing the delivery device.

[0006] In some embodiments of the method, the IgG preparation has an IgG concentration of about 15% to about 30% (w/v). In some embodiments of the method, the IgG preparation has an IgG concentration of about 30% (w/v) or higher.

[0007] In some embodiments of the method, a pH of the IgG preparation is about 4.5 to about 8.0. In some embodiments of the method, the pH of the IgG preparation is about 6.5.

[0008] In some embodiments of the method, the volume of the IgG preparation is up to about 10 mL per skin delivery site. In some embodiments of the method, the volume of the IgG preparation is between about 2 mL and about 8 mL per skin delivery site. In some embodiments of the method, the volume of the IgG preparation is between about 4 mL and about 6 mL per skin delivery site.

[0009] In some embodiments of the method, the IgG preparation comprises one or more additional plasma proteins.

[0010] In some embodiments of the method, the subject is a pediatric patient. In some embodiments of the method, the subject is a non-pediatric patient.

[0011] In some embodiments, a composition comprising an IgG preparation for treatment of a disease in a subject in need thereof is provided.

[0012] In some embodiments of the composition, a concentration of IgG in the IgG preparation is about 15% to about 30% (w/v). In some embodiments of the composition, the concentration of IgG in the IgG preparation is about 30% (w/v) or higher.

[0013] In some embodiments, the composition has a pH of about 4.5 and about 8.0. In some embodiments of the composition, the pH is about 6.5.

[0014] In some embodiments of the composition, the subject is a pediatric patient. In some embodiments of the composition, the subject is a non-pediatric patient.

[0015] In some embodiments of the composition, the disease is an immunodeficiency. In some embodiments of the composition, the immunodeficiency is one of a primary immunodeficiency, a secondary immunodeficiency or an acquired immunodeficiency.

[0016] In some embodiments of the composition, the IgG preparation comprises an entire IgG molecule, a therapeutically effective fragment of IgG or a combination thereof.

[0017] In some embodiments of the composition, the IgG preparation comprises one or more additional plasma proteins.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The present disclosure is described below in reference to the following figures.

[0019] FIG. 1 shows a line graph of plasma human IgG pharmacokinetics at 0-24 h in young farm pigs that were administered an IgG preparation (20 mg/kg) by the IV (n=4), SC (n=4) and ID (n=3) routes.

[0020] FIG. 2 shows a line graph of plasma human IgG pharmacokinetics at 0-240 h in young farm pigs that were administered an IgG preparation (20 mg/kg) by the IV (n=4), SC (n=4) and ID (n=3) routes

DETAILED DESCRIPTION

[0021] At present there is high demand for immunoglobulin G (IgG) which is polyvalent with a wide spectrum of human antibodies and has total functionality (neutralizing capacity, opsonization, half-life conserved), with intact molecules (integrity of the crystallizable Fc fragment) and a normal distribution of IgG subclasses identical or equivalent to natural plasma.

[0022] The usual routes for the therapeutic administration of IgG preparations include intravenous (IV), subcutaneous (SC) and intramuscular (IM). In addition, IgG may be administered by other routes such as the oral, nasal (inhaled) or topical routes. IV administration has become the standard approach for IgG supplementation in many countries, including the United States.

[0023] However, although IV administration offers the most useful therapeutic indications, for example, for the treatment of primary immunodeficiencies or for variable common immunodeficiency (deficit of IgG and IgA subclasses), secondary or acquired immunodeficiencies (for example infection by viruses such as cytomegalovirus, herpes zoster, human immunodeficiency) and diseases of an autoimmune origin (thrombocytopenic purpura, Kawasaki's Syndrome, for example), delivery of plasma-derived protein therapies such as IgG (Immune globulin G) to patients by IV administration route can be associated with infusion-related adverse effects such as flushing, fever, chills and diarrhea. IV infusions also require trained and qualified personnel to administer.

[0024] The current primary alternative to IV administration route for patients for IgG is the subcutaneous (SC) route. However, the SC route has been associated with slow progression to peak plasma concentration (T.sub.max), low plasma area-under-curve (AUC), as well as pain and discomfort.

[0025] The intradermal (ID) route, also known as transdermal delivery or percutaneous permeation, is a non-invasive delivery route which is advantageous for the administration of many drugs and/or biologics. ID delivery also overcomes many of the challenges associated with subcutaneous injection by greatly reducing patient discomfort, needle anxiety, risk of accidental needle stick injury to the personnel administering the injection and issues surrounding sharps disposal. In addition, ID systems allow for self-administration, provide sustained release of drugs and/or biologics for periods of time up to one week, and improve patient compliance. Furthermore, ID delivery systems are generally inexpensive.

[0026] Despite these many advantages, the ID delivery of drugs is confined to classes of molecules compatible with absorption through the skin. Delivery of therapeutic proteins is not typically viable with traditional ID delivery, as the skin provides an effective protective barrier to these molecules even in the presence of absorption-enhancing excipients. For example, it has been difficult to exploit the ID route to deliver macromolecules.

[0027] In addition, although much progress has been made in the development of systems for ID delivery, most commercially available devices that provide ID delivery of liquid formulations remain confined to relatively small volumes, typically less than 200 .mu.L. This makes the intradermal systems not to be considered as a viable alternative for IgG therapy in which grams of proteins have to be administered daily.

[0028] However, Burton et al. (Burton S. A. et al., Pharmaceutical Research, Vol. 28, Issue 1, pp. 31-40, (2011)) disclosed intradermal delivery into swine of up to 1.5 mL of a variety of formulations including a polyclonal antibody at a concentration of 57 mg/mL during 5-20 minutes using a microneedle delivery device. The amount of polyclonal antibody delivered with this system (approximately 85 mg) is still very low to be considered as an option for IgG therapy in which, for example, a patient with myositis is typically prescribed with 0.4 to 40 gm/kg over five days, which can be repeated every 4-6 weeks.

[0029] The present disclosure provides a method for ID administration of plasma proteins in general and IgG in particular. The method of the present disclosure overcomes the above-mentioned problems and limitations.

Method

[0030] The ID route can provide a novel method for allowing self-administration of IgG. Thus, in some embodiments, the present disclosure provides a method for administration of IgG preparations by the ID route. In some embodiments, the method provides for self-administration of IgG preparations by the ID route. In some embodiments, the method provides a superior plasma pharmacokinetic profile of IgG as compared to the SC route. In some embodiments, the method provides a superior plasma pharmacokinetic profile of IgG with a faster T.sub.max as compared to the SC route.

[0031] In some embodiments, the method provides improved steady state IgG plasma levels due to more frequent dosing regimen, such as a convenient daily injection of IgG. In some embodiments, the method minimizes infusion-related adverse events, such as pain and discomfort related to infusion. In some embodiments, the method improves patient ease of administration and compliance.

[0032] In some embodiments, the method for administration of an IgG preparation by intradermal route comprises: [0033] a) loading with a volume of the IgG preparation an ID delivery device comprising needles; [0034] b) applying the device to a skin delivery site; [0035] c) using the device to allow dermal penetration of the needles; [0036] d) delivering the volume of the IgG preparation at the skin delivery site; and [0037] e) removing the delivery device.

[0038] In some embodiments, an ID delivery device comprising needles suitable for the method of administration of the present disclosure is provided.

[0039] In some embodiments, the skin delivery site is proximal to where treatment is desired. In some embodiments, the skin delivery site is distal to where treatment is desired. In some embodiments, the skin delivery site is where it is convenient to administer a drug. In some embodiments, the skin delivery site is where it is convenient to administer a drug and proximal to where treatment is desired. In some embodiments, the skin delivery site is where it is convenient to administer a drug and distal to where treatment is desired. In some embodiments, the skin delivery site is convenient for self-administration. In some embodiments, the skin delivery site is convenient for drug administration for the person administering a drug.

[0040] In some embodiments, the method allows for the administration of a volume of up to about 10 mL per site. In some embodiments, the volume is between about 2 mL and about 8 mL per site. In some embodiments, the volume is between about 4 mL and about 6 mL per site. In some embodiments, the volume is about 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 mL per site.

[0041] In some embodiments, the volume is dependent on the injection solution characteristics. In some embodiments, the volume is dependent on the viscosity of the IgG preparation. In some embodiments, the volume is dependent on the IgG concentration in the IgG preparation. In some embodiments, the volume is dependent on the limitation of the selected ID injection device.

[0042] The duration of therapy by the method can vary, without limitation, on the nature of a disease, age of a subject, frequency of administration, dose of IgG preparation, patient compliance, quality and effectiveness of the IgG preparation.

[0043] In some embodiments, the duration and frequency of administration depend on, without limitation, the amount of IgG administered, how rapidly the IgG preparation is administered and the pharmacokinetics and pharmacodynamics of the IgG preparation. For example, in some embodiments, the duration of treatment can range from about 1 day to about 28 days. In some embodiments, the duration of treatment can be for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days. In some embodiments, the duration of treatment can be for about 1 week to about 52 weeks. In some embodiments, the duration of treatment can be for about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks. In some embodiments, the duration of treatment is indefinite, for example, the lifetime of a patient. In some embodiments, the frequency of administration is daily. In some embodiments, the frequency of administration is once, twice, thrice or four times daily. In some embodiments, the frequency of administration is daily and the duration of treatment is indefinite. In some embodiments, the frequency of administration is once, twice, thrice or four times daily and the duration of treatment is indefinite.

[0044] In some embodiments of the present method, a daily administration regimen would result in more stable plasma concentrations of IgG as compared to IV infusion or SC administration every 3-4 weeks.

[0045] In some embodiments, the method comprises using the IgG preparation for the treatment of a disease. In some embodiments, the disease comprises primary immunodeficiency. In some embodiments, the primary immunodeficiency comprises congenital agammaglobulinaemia and hypogammaglobulinaemia and idiopathic thrombocytopenic purpura. In some embodiments, the primary immunodeficiency is a pediatric primary immunodeficiency. In some embodiments, the pediatric primary immunodeficiency is hypogammaglobulinaemia associated with chronic lymphocyte leukaemia. In some embodiments, the pediatric primary immunodeficiency is hypogammaglobulinaemia associated with chronic lymphocyte leukaemia as part of HIV infection treatment in pediatric patients.

[0046] In some embodiments, the immunodeficiency is a variable common immunodeficiency. In some embodiments, the variable common immunodeficiency is deficiency of the IgG subclass. In some embodiments, the immunodeficiency is a secondary or acquired immunodeficiency. In some embodiments, the secondary or acquired immunodeficiency is due to infection, for example, by viruses such as cytomegalovirus, herpes zoster virus, human immunodeficiency virus. In some embodiments, the secondary or acquired immunodeficiency is due to a disease of autoimmune origin, for example, thrombocytopenic purpura, Kawasaki's Syndrome. In some embodiments, the IgG preparation can be used as an adjuvant in the treatment of Kawasaki's disease and in bone marrow transplant.

[0047] In some embodiments, the method comprises treatment of immunodeficiency in a patient. In some embodiments, the immunodeficiency is primary immunodeficiency. In some embodiments, the immunodeficiency is primary immunodeficiency in a pediatric patient. In some embodiments of the method for treating primary immunodeficiency, the concentration of IgG is about 15% to about 30% (w/v). In some embodiments of the method for treating primary immunodeficiency, the concentration of IgG is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30% (w/v). In some embodiments of the method for treating primary immunodeficiency, the concentration of IgG is about 30% (w/v) or higher. In some embodiments of the method, the IgG preparation has a pH of about 4.5 to about 8.0. In some embodiments of the method, the IgG preparation has a pH of about 6.5. In some embodiments of the method, the IgG preparation has a pH of about 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25, 7.5, 7.75 or 8.0.

[0048] In some embodiments, the age of the subject is from about 10, 15 or 18 years to about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70 years. In some embodiments, the age of the subject is lower than about 10 years. In some embodiments, the age of the subject is higher than about 70 years. In some embodiments, the method enables treatment of pediatric patients. In some embodiments, the age of the pediatric patient can range from about 1 day to about 18 years. In some embodiments, the sex of the subject is a male. In some embodiments, the sex of the subject is a female.

[0049] In some embodiments, the method can be practiced in a hospital, a nursing home, an old age home or a pediatric care facility. In some embodiments, the method can be practiced at home. In some embodiments, the method comprises self-administration, administration by a health care worker or administration by a family member.

[0050] In some embodiments, the present disclosure provides a method for the delivery of a therapeutic plasma protein to a patient in need thereof. In some embodiments, the therapeutic plasma protein is an entire IgG. In some embodiments, the therapeutic plasma protein is a therapeutic fragment of an IgG. In some embodiments, the present disclosure provides a method for self-administration of a therapeutic plasma protein. For example, in some embodiments, a patient with a primary immunodeficiency could self-administer a therapeutic plasma protein such as IgG at home rather than going to a clinic for IV administration of the therapeutic plasma protein. The present method provides an administration route that is convenient and less painful as compared to other routes of administration and therefore could lead to greater patient compliance.

Composition

[0051] In some embodiments, the composition is an IgG preparation. In some embodiments, the composition is an IgG solution. In some embodiments, the concentration of IgG can be between about 15% and about 30% (w/v). In some embodiments, the concentration is about 7% to about 14%. In some embodiments, the concentration is about 23% to about 30%. In some embodiments, the concentration is about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30% (w/v). In some embodiments, the concentration is about 30% or higher.

[0052] In some embodiments, the composition comprises the entire IgG molecule. In some embodiments, the composition comprises IgG fragments that are therapeutically effective. In some embodiments, the composition can comprise additional antibody types such as IgM, IgA or a combination thereof.

[0053] In some embodiments, the composition comprises IgG for the treatment of immunodeficiency in a patient in need thereof. In some embodiments, the composition for treating immunodeficiency has an IgG concentration of about 15% to about 30% (w/v). In some embodiments, the composition for treating immunodeficiency has an IgG concentration of about 30% (w/v) or higher. In some embodiments, the composition for treating immunodeficiency has a pH of about 4.5 to about 8.0. In some embodiments, the composition for treating immunodeficiency has a pH of about 6.5. In some embodiments, the immunodeficiency is primary immunodeficiency. In some embodiments, the immunodeficiency is primary immunodeficiency in a pediatric patient.

[0054] In some embodiments, the pH of the IgG solution can be between about 4.5 and about 8.0. In some embodiments, the pH is about 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25 7.5, 7.75 or 8.0. In some embodiments, the pH is about 6.5. The pH of the IgG preparation does not cause scabbing of the skin at administration site and is well tolerated.

[0055] In some embodiments, the composition is delivered at a skin delivery site that is proximal to where treatment is desired. In some embodiments, the composition is delivered at a skin delivery site that is distal to where treatment is desired. In some embodiments, the skin delivery site is where it is convenient to administer a drug. In some embodiments, the skin delivery site is where it is convenient to administer a drug and proximal to where treatment is desired. In some embodiments, the skin delivery site is where it is convenient to administer a drug and distal to where treatment is desired. In some embodiments, the skin delivery site is convenient for self-administration. In some embodiments, the skin delivery site is convenient for drug administration for the person administering a drug.

[0056] In some embodiments, the composition is administered at a volume of up to about 10 mL per site. In some embodiments, the volume is between about 2 mL and about 8 mL per site. In some embodiments, the volume is between about 4 mL and about 6 mL per site. In some embodiments, the volume is about 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 mL per site.

[0057] In some embodiments, the volume is dependent on the injection solution characteristics. In some embodiments, the volume is dependent on the viscosity of the IgG preparation. In some embodiments, the volume is dependent on the IgG concentration in the IgG preparation. In some embodiments, the volume is dependent on the limitation of the selected ID injection device.

[0058] In some embodiments, the duration and frequency of administration of the composition depend on, without limitation, the amount of IgG administered, how rapidly the IgG preparation is administered and the pharmacokinetics and pharmacodynamics of the IgG preparation. For example, in some embodiments, the duration of treatment can range from about 1 day to about 28 days. In some embodiments, the duration of treatment can be for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 days. In some embodiments, the duration of treatment can be for about 1 week to about 52 weeks. In some embodiments, the duration of treatment can be for about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks. In some embodiments, the duration of treatment is indefinite, for example, the lifetime of a patient. In some embodiments, the frequency of administration is daily. In some embodiments, the frequency of administration is once, twice, thrice or four times daily. In some embodiments, the frequency of administration is daily and the duration of treatment is indefinite. In some embodiments, the frequency of administration is once, twice, thrice or four times daily and the duration of treatment is indefinite.

[0059] In some embodiments, the composition comprises an IgG preparation for the treatment of a disease. In some embodiments, the disease comprises primary immunodeficiency. In some embodiments, the primary immunodeficiency comprises congenital agammaglobulinaemia and hypogammaglobulinaemia and idiopathic thrombocytopenic purpura. In some embodiments, the primary immunodeficiency is a pediatric primary immunodeficiency. In some embodiments, the pediatric primary immunodeficiency is hypogammaglobulinaemia associated with chronic lymphocyte leukaemia. In some embodiments, the pediatric primary immunodeficiency is hypogammaglobulinaemia associated with chronic lymphocyte leukaemia as part of HIV infection treatment in pediatric patients.

[0060] In some embodiments, the immunodeficiency is a variable common immunodeficiency. In some embodiments, the variable common immunodeficiency is deficiency of the IgG subclass. In some embodiments, the immunodeficiency is a secondary or acquired immunodeficiency. In some embodiments, the secondary or acquired immunodeficiency is due to infection, for example, by viruses such as cytomegalovirus, herpes zoster virus, human immunodeficiency virus. In some embodiments, the secondary or acquired immunodeficiency is due to a disease of autoimmune origin, for example, thrombocytopenic purpura, Kawasaki's Syndrome. In some embodiments, the IgG preparation can be used as an adjuvant in the treatment of Kawasaki's disease and in bone marrow transplant.

[0061] In some embodiments, the composition comprises treatment of immunodeficiency in a patient. In some embodiments, the immunodeficiency is primary immunodeficiency. In some embodiments, the immunodeficiency is primary immunodeficiency in a pediatric patient. In some embodiments, the composition is for treating primary immunodeficiency, the concentration of IgG is about 15% to about 22% (w/v). In some embodiments, the composition is for treating primary immunodeficiency, the concentration of IgG is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30% (w/v). In some embodiments of the composition for treating primary immunodeficiency, the concentration of IgG is about 30% (w/v) or higher. In some embodiments of the composition, the IgG preparation has a pH of about 4.5 to about 8.0. In some embodiments of the composition, the IgG preparation has a pH of about 6.5. In some embodiments of the composition, the IgG preparation has a pH of about 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25, 7.5, 7.75 or 8.0.

[0062] In some embodiments, the age of the subject is from about 18 years to about 70 years. The age of the subject may be 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70 years. In some embodiments, the age of the subject is lower than about 18 years. In some embodiments, the age of the subject is higher than about 70 years. In some embodiments, the composition enables treatment of pediatric patients. In some embodiments, the age of the pediatric patient can range from about 1 day to about 18 years. In some embodiments, the sex of the subject is a male. In some embodiments, the sex of the subject is a female.

[0063] In some embodiments, the composition can be administered in a hospital, a nursing home, an old age home or a pediatric care facility. In some embodiments, the composition can be administered at home. In some embodiments, the composition can be self-administered, administered by a health care worker or administered by a family member.

EXAMPLES

Example 1

Administration of an IgG Preparation to Pigs Via IV, SC and ID

[0064] Young farm pigs (20-25 kg) were administered with IgG (20 mg/kg) by the IV (n=4), SC (n=4) and ID (n=3) routes. Venous blood samples were obtained at 2, 30 and 60 min; 3 and 6 hours and then daily for 10 days after IgG administration for measurement of human-specific IgG by immunoassay.

[0065] As shown in FIG. 1, the ID route had faster uptake of IgG into the plasma compartment as compared to the SC route. The plasma concentration of IgG approached C.sub.max within 1 hour after administration by the ID route, whereas C.sub.max for the SC route was not achieved for 24 hours. FIG. 1 and FIG. 2 show the time course of plasma IgG after administration by IV, ID and SC routes. The same plasma pharmacokinetic data are shown 0-24 hours (FIG. 1) as well as on a compressed X-axis over 10 days (FIG. 2). Clearly, 24 hours onwards in this experimental model, the plasma levels of IgG are similar irrespective of the route of administration. Thus, the elimination half-life (T.sup.1/2) for all three routes is very similar.

Example 2

Influence of IgG Preparation pH on the Delivery Site

[0066] To evaluate the influence of the IgG preparation pH on the delivery site, 2 mL of Gamunex.RTM. and IGSC 20% IgG formulations (Grifols Therapeuctics Inc., USA) both at pH 4.0, and IGIM-S/D (Grifols Therapeuctics Inc., USA) at pH 6.5, were administered to young farm pigs.

[0067] Three days following 2 mL administration of IgG, the low pH administration causes scabbing of the skin at administration site whereas neutral pH IgG appears to have good tolerability.

Example 3

Pediatric Treatment

[0068] The method according to the present disclosure can be used for treating a pediatric patient with a primary immunodeficiency. The weight of the patient is about 25 kg. The typical dose range for such a patient is about 300 to about 800 mg/kg body weight over about 4 weeks. This does can be achieved using the present method with one ID administration of about 2 mL or about 4 mL of a concentrated IgG preparation. The concentrated IgG preparation has a concentration of IgG of about 16.5% or about 20% (w/v).

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed