Method of gas, oil, and mineral production using a clean process system and method

Vandigriff; John Edward ;   et al.

Patent Application Summary

U.S. patent application number 14/756683 was filed with the patent office on 2017-03-30 for method of gas, oil, and mineral production using a clean process system and method. The applicant listed for this patent is Einar Arvid Orbeck, JR., John Edward Vandigriff. Invention is credited to Einar Arvid Orbeck, JR., John Edward Vandigriff.

Application Number20170089188 14/756683
Document ID /
Family ID58408701
Filed Date2017-03-30

United States Patent Application 20170089188
Kind Code A1
Vandigriff; John Edward ;   et al. March 30, 2017

Method of gas, oil, and mineral production using a clean process system and method

Abstract

The invention is a system and process for providing a clean, non-contaminating process, for producing fracturing of shale, limestone, sands and other geological and mining formations to release natural gas, oil and minerals within a formation. The system used in the process produces on site the energy required to induce fracturing, removing natural gas and oil, and to recycle fluids used in fracturing for additional use. Removable storage provides the necessary materials to provide fracturing, removal and processing of the fracturing liquids for addition use at one or more sites, and to provide processing, storage and transportation of the resulting natural gas and oil.


Inventors: Vandigriff; John Edward; (Carrollton, TX) ; Orbeck, JR.; Einar Arvid; (Las Vegas, NV)
Applicant:
Name City State Country Type

Vandigriff; John Edward
Orbeck, JR.; Einar Arvid

Carrollton
Las Vegas

TX
NV

US
US
Family ID: 58408701
Appl. No.: 14/756683
Filed: September 30, 2015

Current U.S. Class: 1/1
Current CPC Class: E21B 43/26 20130101; Y02P 90/70 20151101; E21B 43/164 20130101; E21B 43/2405 20130101
International Class: E21B 43/24 20060101 E21B043/24; E21B 43/26 20060101 E21B043/26; E21B 43/16 20060101 E21B043/16

Claims



1. A method of providing fracturing in a well bore, to produce at least one of natural gas and oil, having vertical and horizontal well bore regions, injecting liquid CO2 into the well bore; Injecting pressurized steam into the carbonated water to cause fracturing of the walls of the well; the proportion of liquid CO2 and steam being in the range of 60-80% liquid CO2 and 20-40% steam by volume.

2. The method according to claim 1, wherein the well bore has vertical and horizontal portions and a pipe in the well extends into the vertical and horizontal portions of the well bore; Wherein, pressurized steam is injected into the horizontal region of the well bore through peripheral openings in the pipe in the horizontal region of the well bore; and Injecting Fracking sand.

3. The method according to claim 1 wherein the liquid CO2 is refrigerated prior to injecting it into the well.

4. The method according to claim 1, wherein at least one of natural gas and oil, carbonated water, and any released CO2 are removed from the well, the carbonated water and CO2 being separated from at least one of natural gas and oil, and processed for further use.

5. (canceled)

6. A method of providing fracturing in a well bore, to produce at least one of natural gas and oil; injecting refrigerated carbonated water into the well bore; injecting pressurized steam into a region of the well bore through peripheral openings in a pipe extending downward into the well bore and into a horizontal region of the well bore.

7. The method according to claim 6, wherein the peripheral openings in the pipe are spaced apart to maximize the insertion of the pressurized steam in equal portions along the length of the horizontal portion of the pipe, the openings being spaced apart in decreasing spaces between the openings.

8. The method according to claim 1 including the triggering of a sensor valve when a sufficient amount of liquid CO2 has been released into the well bore to close off the insertion of cooled CO2 liquid CO2 and opening a second valve to allow pressurized steam to be injected into the well to rapidly expand the liquid CO2.

9. A system for producing fracturing in a well bore utilizing only refrigerated carbonated water, sand, and pressurized steam, comprising: a well bore having a vertical and horizontal regions; a pipe extending downward in the vertical region and into the horizontal region; a storage unit for holding refrigerated carbonated water for injection into the well; a steam generator for injecting pressurized steam into the carbonated water for producing fracturing in the well; and separator for removing at least one of gas and oil released during the fracturing process.

10. The system according to claim 9, including an isolation plug to prevent the pressurized steam, contaminates and carbonated water from moving up the vertical portion of the well, and increasing the pressure in any portion of the well bore to produce greater fracturing in the well.

11. The system according to claim 9, including a seal at the top of the well to prevent any gases and other materials from leaving the well and entering the atmosphere.

12. (canceled)

13. The system according to claim 9, where any materials removed from the well bore pass through a particulate filter to remove particulate material from fluids removed from the well.

14. The system according to claim 13, wherein the system includes at least two particulate filters, only one filter being used at a time so that the one that is not being used can be cleaned for future use.
Description



[0001] This is a continuation-in-part application of Ser. No. 14/121,591, filed Sep. 22, 2014.

FIELD OF THE INVENTION

[0002] The invention relates to a method and system for producing fracturing of shale and oil sands, and mineral containing material to release natural gases and oil utilizing CO.sub.2 and a steam process without using other chemical contaminants.

BACKGROUND OF THE INVENTION

[0003] Most fracturing processes use various chemicals in their process to recover gas and oil. For example, U.S. Pat. No. 8,733,439 uses CO.sub.2, but also used H.sub.2O.sub.2 (hydrogen peroxide) which, when used medically in small amounts, is considered a mild antiseptic, and can be used as a bleaching agent. Hydrogen peroxide can be used for certain industrial or environmental purposes as well, because it can provide the effects of bleaching without the potential damage of chlorine-based agents. Because this substance can be unstable in high concentrations, it must be used with care. In higher concentrations, it can create strong chemical reactions when it interacts with other agents, and it can damage the skin or eyes of persons working with it. The use in wells may contaminate underground water if there is seepage into ground water. This patent also uses other chemicals that include Fe, Co, Ni and similar chemicals.

[0004] Other processes also use various chemicals, particulate material, and other catalysts which can contaminate water sources such as wells and aquifers. These processes utilize a large amount of water which often is not or cannot be recycled because of the toxic chemicals contained therein.

SUMMARY OF THE INVENTION

[0005] An object of the invention is to provide a clean, non-contaminating process for producing fracturing of shale, limestone, sands, and other geological and mining formations to release natural gas and oil within a well, and to break up any mineral containing material.

[0006] Another object of the invention is to provide a system to produce on site the energy required to induce fracturing, removing natural gas and oil, and to recycle fluids used in fracturing for additional use.

[0007] Another object of the invention is to provide for movable storage of fracturing liquids for additional use at one or more sites.

[0008] The technical advance represented by the invention as well as the objects thereof will become apparent from the following description of a preferred embodiment of the invention when considered in conjunction with the accompanying drawings, and the novel features set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 illustrates a diagram of the basis system of the invention and the process associated therewith.

[0010] FIG. 2 illustrates additional features which may be utilized with the present invention.

[0011] FIG. 3 illustrates a well configuration in which frozen CO.sub.2 is inserted into a well and then expanded by pressurized steam to cause fracturing of the walls of the well.

[0012] FIGS. 4a and 4b illustrate two types of insertion tubes.

DESCRIPTION OF A PREFERRED EMBODIMENT

[0013] FIG. 1 illustrates the system and method for producing clean fracturing in a natural gas and oil well. The well has a vertical drill bore and or pipe casing 1a and a horizontal drill bore or pipe casing 1b extending horizontally from the lower end of vertical drill bore and or pipe casing 1a. This is the standard method of drilling wells. Inserted in the well is vertical pipe or tube 2a which extends the length of vertical well bore 1a and then extends horizontally, 2b, into the horizontal well bore 1b. Well bore 1a is then caped at the top with seal 15. This is to prevent any gasses or other material from escaping out into the atmosphere and surrounding area. This system is an example that can be used with the claimed fracturing process. Modification of the system and other configurations may be used with the fracturing process.

[0014] The rest of the system is described as follows. Clean water is supplied through input 14 through a processing system 8, which includes a three way valve. The water is directed through 23 into pipe 9 and then in to storage container 5, which cools (or refrigerates) the carbonated the water, using the CO.sub.2 from portable storage container 6.

[0015] The refrigerated carbonated water from container 5 is then directed, through pipe 10 and valve 10b, into the well at opening 10a. This carbonated water flows downward into the well and fills the horizontal portion 1b with carbonated water. The carbonated water in container 5 is refrigerated to keep the carbonated water cool, or partially frozen so as to prevent vaporization of the CO.sub.2 from the water while it is being injected into the well. The carbonated water may be lightly frozen to provide an icy slush. Sand can be injected into the wellbore alone, or with the carbonated water to aid in the fracturing process. In the fracturing process the water and CO.sub.2 need to be chilled and under high pressure. To reach the necessary pressure for fracturing there will be a need of about 60-80% liquid CO.sub.2 and 20-40% steam. Frozen or refrigerated CO.sub.2, steam and water in these percentages may be used in these percentages to produce the required pressure for fracturing.

[0016] To produce the required fracturing, the overall composition of the CO.sub.2, steam and water would be, for example 500 k gallons. The three compounds would be supplied as follows: 30-40% CO.sub.2 (ice or liquid) (150-200 k), 10-20% steam (50-100 k), and 50% water (250K).

[0017] There are two possible processes to accomplish the fracturing. One is to put carbonated water into the well shaft and CO.sub.2 gas is introduced. The total mixture is put in high pressure just above the freezing temperature. This allows more CO.sub.2 to dissolve into the water and when the percentages are right. The CO.sub.2 will then separate into liquid CO.sub.2 and water. Both will be introduced into the wellbore with steam to create an explosion, thus producing the fracturing.

[0018] A Second Process is about the Same at the First Process, However, the Liquid CO.sub.2 is Introduced into the System at the Beginning Rather than Later.

[0019] Once the well, particularly the horizontal portion 1b is filled with the carbonated water (frozen or refrigerated), then pressurized steam, generated in steam generator 4, is injected into the well though valve 3 into pipes or tubes 2a and 2b. Pipe/tube 2b has openings 16 around it periphery and along its length to distribute the steam throughout horizontal well bore 1b. The pressurized steam causes the carbonated water to literally explode creating a great pressure in the well causing fracturing of the walls of the well bore, thus releasing natural gas/oil from the underground sources. To keep all of the pressurized steam from exiting through the first holes at the beginning 2c of horizontal pipe 2b, there are fewer holes at the start of horizontal pipe 2c to prevent exiting of a large quantity of pressurized gas. The number of holes increases towards the 2d end of the horizontal pipe. This progressive increasing of holes helps to evenly distribute the pressurized gas throughout the horizontal portion 1b of the well.

[0020] After the fracturing process, the remaining carbonated water, any loose sand, and the gas/oil is then pumped upward though well bore 1a and pipe 2a through pipes 11a and 11b to valve 11c and though pipe 11 into processing unit 7, which may have storage capacity. Processing unit 7 filters out any particulate material and separates the gas/oil and CO.sub.2 from the remaining water. The CO.sub.2 can be returned through pipe 28 to the CO.sub.2 storage tank 6 for reuse. The gas/oil is then stored or directed out pipe 13 for storage and/or transportation to another storage facility.

[0021] To prevent the particulate filter 7 from becoming clogged with particulate material, there could be at least two parallel particulate filters. One would be used at a time. When the flow of gas/petroleum/CO2 decreases to a lower determined level through the particulate filter, a sensor would detect this lower level and would switch the flow through a parallel filter. There would be a notification of this change, and the clogged filter could be cleaned to remove the particulate for use again.

[0022] The separated water is then passed through pipe 12 into processing system 8. The water can be directed back into the system though valve 21 for reuse, as needed, for additional fracturing of the well. The water can also be processed to clean it, removing any and all chemical and/or foreign matter from the well and then sent through pipe 14 for storage and/or another use.

[0023] All of the units, Steam generator 4, carbonated water unit 5, CO.sub.2 unit 6, separator 7 and processing system may all be portable units for use at other locations. The units may be incorporated in one movable unit for movement to other drilling sites.

[0024] To prevent excess pressure that would cause over fracturing in the well, a pressure sensor 30 measures the pressure. If the pressure exceeds a predetermined amount, then release valve 31 would open, and stay open, as long as the pressure exceeds the predetermined amount. When the pressure is reduced, then valve 31 would close.

[0025] As an alternative to using carbonated water, refrigerated CO.sub.2 can be injected into the well bore and then expanded with the pressurized steam. This would limit the amount of carbonated water needed in the well bore. Since steam is vaporized water, after the steam is injected into the refrigerated CO.sub.2, it would cool and become carbonated water. Additional steam injected into the refrigerated CO.sub.2 would cause it to expand and cause fracturing. This would limit the amount of carbonated water to be removed from the well for cleaning and future use.

[0026] FIG. 2 illustrates the system and method for producing clean fracturing in a natural gas and oil well as in FIG. 1 with the following differences in the system and method. In the vertical part of the wellbore 1a, an isolation plug 19 is placed near the bottom of the vertical portion 1a of the well bore, or in any part of horizontal well bore 1b. The location of the isolation plug is determined where the fracturing of the well is to begin. Since carbonated water cannot be inserted into the well after the isolation plug seal 19 is in place, the valve 3 of FIG. 1 is replaced with valve 20. The carbonated water is then passed through pipe 17 into valve 20 into pipe 2a to insert the carbonated water into the well bore. The carbonated water will flow downward through pipe 2a and horizontal pipe 2b and into the well out openings 16 and out the end 2d of horizontal pipe 2b into the well bore. The pressurized steam from steam generator 4 is directed through valve 20 into pipe 2a and 2b. The steam is then evenly distributed into horizontal well bore 1b through openings 16, as in FIG. 1, providing pressure to producing the fracturing required to release the natural gas or oil from the surrounding areas. The advantage of using isolation plug 19 is that the pressure cannot pass upward into vertical well bore 1a, or unwanted areas of 1b, providing a greater pressure in the localized horizontal portion of 1b of the well bore, increasing the fracturing pressure and increasing the result of the fracturing, releasing more natural gas and/or oil.

[0027] Isolation plug 19 could include a pressure sensor 38 and release valve 39 to prevent the pressure from exceeding a predetermined amount, to prevent over fracturing. The isolation plug can be later removed or drilled out to allow flow in well bore 1a.

[0028] After the fracturing process, the remaining carbonated water, any loose sand or other particulate material, and the gas/oil may be pumped upward though pipe 2a and well bore 1a through pipes 11a and 11b to valve 11c, and then through pipe 11 into processing unit 7.

[0029] FIG. 3 illustrates a well configuration in which frozen CO.sub.2 is inserted into a pipe 45 and then expanded by pressurized steam to cause fracturing of the walls of the well bore 1b. This configuration involves cooling CO.sub.2 in unit 50 to a temperature greater than or equal to -109 degrees F. and injecting a snow like compound into well bore 1b. This is achieved through a flexible composite material or metal alloy insertion hose or tube 51 and 45, which can be the same as tube 2a, FIG. 2, attached via a delivery hose or tubing from the surface. The cooled CO.sub.2 is released into the well bore through the perforations 43 in the insertion tube 42, or by use of, or with a perforating gun. When sufficient amounts of cooled CO.sub.2 are achieved, a CO.sub.2 sensor and release valve 41 immediately closes off the CO.sub.2 induction and triggers a steam pressure sensor and release valve 40 for high pressure steam to immediately be injected through the same flexible perforated composite or metal alloy insertion tube 45. A pressure containment plate 46 seals the lower portion of the well to prevent pressure from rising upward to the top of the well. This process creates a catalytic reaction that rapidly heats and expands the cooled CO.sub.2 causing the fracturing of the shale or other geological formation being addressed. This process can be carried out in one large stage or in multiple stages, depending upon the specific characteristics of the geological formation being fractured, and can be repeated until the required desire of fracturing is achieved. This configuration can be used in combination with the basic system shown in FIG. 2 where the assembly in FIG. 3 replaces the structure at the lower end of tube 2a, or any part of horizontal 1b of FIG. 2.

[0030] Pipe 45, in FIG. 3 may have several configurations and partitions for inserting the fracturing materials into the well. FIGS. 4a and 4b below, shows two possible configurations. Other configurations are possible to individually insert the fracturing materials in the order necessary to provide the fracturing.

[0031] The carbonated water, frozen CO.sub.2, and steam are alternately inserted though valve 20a.

[0032] The system of FIG. 1 could be used to extract minerals other than gas and oil. In this configuration, there would be extreme fracturing to break up the mineral containing soil/rock in the structure. The mineral containing soil/rock would be vacuumed up out of the structure where the minerals could be separated from the soil/rock. This process would use a vacuum system similar to that used to mine minerals from the sea bottom. In this instance, the pressure system and release valves would not be used.

[0033] FIGS. 4a and 4b illustrate two types of insertion tubes. FIGS. 4a and 4b are cross sectional views taken at A-A in FIG. 3.

[0034] FIG. 4a shows concentric used to insert particulate frozen CO.sub.2, pressurized steam and carbonated water and fracking sand as needed. The outer structure is the well bore structure into which the concentric tubes are inserted.

[0035] FIG. 4b shows parallel tubes into which pressurized steam, carbonated water and particulate frozen CO.sub.2 are injected into the well bore structure.

[0036] These two configurations are examples for inducing the fracturing material. Other configurations may be used, for example some of the tubes may be used for more than one insertion path, different injection materials may be switched between the injection paths.

[0037] The valves 3, 20, 20a, 10b and 11c and tubes 2a and 2b in FIGS. 1, 2 and 3 may remain onsite for future use.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed