Synthesis Of 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-n-oxide (dntf) Using 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole

Damavarapu; Reddy S. ;   et al.

Patent Application Summary

U.S. patent application number 15/060928 was filed with the patent office on 2016-09-15 for synthesis of 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-n-oxide (dntf) using 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole. This patent application is currently assigned to U.S. Government as Represented by the Secretary of the Army. The applicant listed for this patent is U.S. Government as Represented by the Secretary of the Army. Invention is credited to Reddy S. Damavarapu, Raja G. Duddu, John H. Hoare.

Application Number20160264534 15/060928
Document ID /
Family ID56881269
Filed Date2016-09-15

United States Patent Application 20160264534
Kind Code A1
Damavarapu; Reddy S. ;   et al. September 15, 2016

SYNTHESIS OF 3,4-BIS(4-NITRO-1,2,5-OXADIAZOL-3-YL)-1,2,5-OXADIAZOLE-N-OXIDE (DNTF) USING 3-CHLOROCARBOHYDROXYMOYL-4-NITRO-1,2,5-OXADIAZOLE

Abstract

A novel method for preparing 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole by reacting 4-amino-3-chlorocarbohydroxymoyl-1,2,5-oxadiazole with H.sub.2O.sub.2 and a tungsten based catalyst and use of the prepared 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole for synthesizing 3,4-Bis(4-nitro-1,2,5-oxadizaol-3-yl)-1,2,5-oxadiazole-N-oxide (DNTF).


Inventors: Damavarapu; Reddy S.; (Hackettstown, NJ) ; Duddu; Raja G.; (Hackettstown, NJ) ; Hoare; John H.; (Hackettstown, NJ)
Applicant:
Name City State Country Type

U.S. Government as Represented by the Secretary of the Army

Picatinny Arsenal

NJ

US
Assignee: U.S. Government as Represented by the Secretary of the Army
Picatinny Arsenal
NJ

Family ID: 56881269
Appl. No.: 15/060928
Filed: March 4, 2016

Related U.S. Patent Documents

Application Number Filing Date Patent Number
62131972 Mar 12, 2015

Current U.S. Class: 1/1
Current CPC Class: C07D 413/14 20130101; C07D 271/08 20130101
International Class: C07D 271/08 20060101 C07D271/08

Goverment Interests



RIGHTS OF THE GOVERNMENT

[0002] The inventions described herein may be manufactured and used by or for the United States Government for government purposes without payment of any royalties.
Claims



1. The process for preparing 3-chlorohydroximoyl-4-nitro-1,2,5-oxadiazole comprising the steps of: (a) reacting 4-amino-3-chlorocarbohydroxymoyl-1,2,5-oxadiazole in the presence of a tungsten based catalyst and aqueous H.sub.2O.sub.2; (b) heating the solution at greater than 30.degree. C. to produce 3-amino-4-chlorohydroximoyl 1-2,4-oxadiazole in solution; (c) isolating the 3-chiorohydroximoyl-4-nitro-1,2,5-oxadiazole from the solution.

2. The process of claim 1 wherein the tungsten based catalyst is (Bmim).sub.4W.sub.10O.sub.23.

3. The compound, 3-chlorohydroximoyl-4-nitro-1,2,5-oxadiazole, prepared according to the process of claim 1.

4. A process for preparing 3,4-Bis(4-nitro-1,2,5-oxadizaol-3-yl)-1,2,5-oxadiazole-N-oxide (DNTF) comprising: (a) dissolving 3-chlorohydroximoyl-4-nitro-1,2,5-oxadiazole prepared according to the process of claim 1 in diethyl ether; (b) adding drop-wise a solution of potassium carbonate; (c) stirring the mixture; (d) isolating the DNTF from the organic layer.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a non-provisional application that claims the benefit of the provisional patent application entitled "Synthesis Method for Preparation of 3,4-Bis(4-nitro-t,2,5-oxadizaol-3-yl)-1,2,5-oxadiazole-N-oxide (DNTF)" filed Mar. 12, 2015, as Ser. No. 62/131,972.

FIELD OF INVENTION

[0003] A process for producing 3,4-Bis(4-nitro-1,2,5-oxadizaol-3-yl)-1,2,5-oxadiazole-N-oxide (DNTF), an energetic material, through a novel process for preparing its precursor 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole.

BACKGROUND OF THE INVENTION

[0004] There has been significant research on the synthesis and development of new energetic materials to meet the needs of U.S. Department of Defense. it is in this context that research has focused on a promising melt-castable energetic material 3,4-Bis(4-nitro-1,2,5-oxadizaol-3-yl)-1,2,5-oxadiazole-N-oxide (DNTF). Synthetic methods for preparing DNTF mainly involve treating 4-amino-3-chlorocarbohydroxymoyl-1,2,5-oxadiazole (chloro oxime) (1) with a base followed by extractive work-up to produce 3,4-bis (aminofurazano) furoxan (furoxofurazane) (2). The resulting furoxofurazane is further oxidized to produce DNTF (4).

[0005] Alternative methods have been explored to prepare a DNTF precursor by reacting 4-amino-3-chlorocarbohydroxymoyl-1,2,5-oxadiazole (chloro oxime)(1) with NaNO2 and an acid to convert the amino group in chloro oxime(1) into the corresponding nitro group in, 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole (3). These experiments, however, were unsuccessful. Thus, a need exists for preparing DNTF using alternative methods. Disclosed herein is a novel method for synthesizing 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole, an intermediate useful for the preparation of DNTF.

SUMMARY OF THE INVENTION

[0006] A novel process for preparing 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole, a precursor, using a tungsten catalyst and aqueous H.sub.2O.sub.2 and methods for synthesizing DNTF using such precursor.

DETAILED DESCRIPTION

[0007] A novel method for synthesis of 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole (3) is disclosed herein. This compound is further reacted with K2CO3 to produce an alternative method for preparing the energetic material DNTF as discussed in further detail below.

##STR00001##

[0008] Preparation of 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole

[0009] 3-chlorocarbohydroxymoyl-4-nitro-1,2, 5-oxadiazole, compound 3, a precursor to DNTF is prepared according to the process illustrated in schematic 1. The amino group of compound 1 was subjected to oxidation using aq. 70% H.sub.2O.sub.2 in presence of a tungsten based catalyst initially at room temperature, followed by heating at 52.degree. C. for 4 h. An extractive work-up followed by removal of solvent afforded a pale yellow liquid. Carbon NMR analysis of this liquid showed a resonance at 158.71 ppm, a triplet due to coupling of the nitro group nitrogen with ring carbon, suggesting the formation of the desired nitro compound 3.

[0010] The identity of the liquid, an ethereal solution, was characterized by reacting it with an aq. potassium carbonate (K.sub.2CO.sub.3) solution. After stirring the reaction mixture at room temperature for 2h followed by an extractive workup and removal of solvent yielded crude DNTF. The crude DNTF was purified by triturating the crude with diethyl ether, and separation of the solid via filtration. The spectral and thermal data of the white solid thus obtained matched with that of the literature reported values.

[0011] Preparation of 3,4-Bis(4-nitro-1,2,5-oxadizaol-3-yl)-1,2,5-oxadiazole-N-oxide, (DNTF).

[0012] A heterogeneous mixture of 3-chlorocarbohydroximoyl-4-amino-1,2,5-oxadiazole (400 mg) in 70% H.sub.2O.sub.2 (10 mL) and (Bmim).sub.4W.sub.10O.sub.23 catalyst (200 mg) was stirred at room temperature for 16 h and then kept at 52.degree. C. for 4 h. The reaction mixture was diluted with water (100 mL) and extracted with ethylacetate (3.times.30 mL). The combined organic layer was washed with water (2.times.50 mL), brine (1.times.50 mL), dried (Na.sub.2SO.sub.4) and filtered. The filtrate was evaporated on a rotary evaporator under vacuum at room temperature to dryness to obtain the product (320 mg, 67% yield) as a colorless liquid. .sup.1H-NMR (acetone-d.sub.6): 13.03 (br S); .sup.13C-NMR (acetone-d.sub.6): 123.74, 145.38 and 158.719 (t).

[0013] The product obtained above, i.e. 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadiazole, was used in the next step without any further purification. The nitro compound (320 mg) was dissolved in diethyl ether (5 ml). To this solution was added at room temperature drop-wise a solution of potassium carbonate (166 mg) in water (3 mL). The reaction mixture was then stirred at room temperature for 2 h. Ether layer was separated and the aqueous layer was extracted with diethylether (2.times.5 mL). The combined organic layer was then washed with water (1.times.5 mL), brine (1.times.5 mL), dried (Na2SO.sub.4) and filtered. The organic solution was evaporated under vacuum at room temperature on a rotary evaporator. The pale yellow crude solid residue thus obtained was triturated with ether (1 mL). The white solid was separated via filtration and air dried. Yield: 68 mg (27% from nitro derivative) m.p.: 107-108.degree. C. (Lit m.p. 108-110.degree. C.)..sup.1a 13C-NMR (acetone-d.sub.6): 104.45, 138.20, 140.55, 143.83, 160.82 (2 C).

[0014] While embodiments have been set forth as illustrated and described above, it is recognized that numerous variations may be made with respect to relative amounts of the constituents in the composition. Therefore, while the invention has been disclosed herein, it will be obvious to those skilled in the art that additions, deletions and modifications can be made without departing from the spirit and scope of this invention, and no undue limits should be imposed, except as to those set forth in the following claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed