Composite Panel for Joining with a Clinch Joint and Method of Forming a Clinch Joint

FREIS; Amanda Kay ;   et al.

Patent Application Summary

U.S. patent application number 15/082554 was filed with the patent office on 2016-07-21 for composite panel for joining with a clinch joint and method of forming a clinch joint. The applicant listed for this patent is Ford Global Technologies, LLC. Invention is credited to Aindrea McKelvey CAMPBELL, Amanda Kay FREIS, Daniel Quinn HOUSTON.

Application Number20160207282 15/082554
Document ID /
Family ID53520583
Filed Date2016-07-21

United States Patent Application 20160207282
Kind Code A1
FREIS; Amanda Kay ;   et al. July 21, 2016

Composite Panel for Joining with a Clinch Joint and Method of Forming a Clinch Joint

Abstract

An assembly comprising a first composite fiber reinforced part that is joined to a second part by a clinch joint. The first part includes a first layer of resin that is reinforced with fibers and a second layer of resin that is devoid of fibers and applied to one side of the first layer of fiber reinforced resin. The second part contacts the first layer of the first part. The first part and second part are joined by a clinch joint including a pressed out portion that is pressed into a clinching portion. The second layer of resin contains the fibers in the first part.


Inventors: FREIS; Amanda Kay; (Ann Arbor, MI) ; CAMPBELL; Aindrea McKelvey; (Beverly Hills, MI) ; HOUSTON; Daniel Quinn; (Dearborn, MI)
Applicant:
Name City State Country Type

Ford Global Technologies, LLC

Dearborn

MI

US
Family ID: 53520583
Appl. No.: 15/082554
Filed: March 28, 2016

Related U.S. Patent Documents

Application Number Filing Date Patent Number
14155694 Jan 15, 2014 9346241
15082554

Current U.S. Class: 1/1
Current CPC Class: B32B 15/18 20130101; B32B 2307/726 20130101; B29C 66/723 20130101; B29K 2995/0068 20130101; B32B 7/05 20190101; B32B 1/00 20130101; B29C 66/21 20130101; B29C 66/8322 20130101; B32B 15/08 20130101; B32B 15/20 20130101; B32B 2605/00 20130101; B32B 2262/101 20130101; Y10T 29/4998 20150115; B32B 7/08 20130101; B29C 65/56 20130101; B29L 2031/30 20130101; Y10T 428/24545 20150115; B29C 66/721 20130101; B29C 66/54 20130101; B32B 27/20 20130101; Y10T 428/24521 20150115; B32B 2607/00 20130101; B29C 65/608 20130101; B32B 27/08 20130101; B32B 2262/106 20130101; B29C 66/1312 20130101
International Class: B32B 7/04 20060101 B32B007/04; B29C 65/00 20060101 B29C065/00; B32B 7/08 20060101 B32B007/08; B32B 27/20 20060101 B32B027/20; B32B 15/18 20060101 B32B015/18; B32B 15/20 20060101 B32B015/20; B32B 27/08 20060101 B32B027/08; B29C 65/56 20060101 B29C065/56; B32B 15/08 20060101 B32B015/08

Claims



1. An assembly comprising: a first part including: a first layer of resin reinforced with fibers; a second layer of resin applied to one side of the first layer; and a second part contacting the first layer of the first part, joined by a clinch joint including a pressed-out portion of the first part pressed into a clinching portion of the second part, wherein the second layer of resin retains the fibers within the first part.

2. The assembly of claim 1 wherein the first part is formed in a compression molding process with the first layer being formed in a first step and the second layer being applied to the first layer after the first layer is formed.

3. The assembly of claim 1 wherein the first part is formed in a compression molding process with the first layer and the second layer being formed in a single step, wherein the second layer is formed against a textured surface of a compression molding die that inhibits the fibers from entering the second layer.

4. The assembly of claim 1 wherein the second layer is provided to a partial area on the one side of the first layer where the clinch joint joins the first part to the second part.

5. The assembly of claim 1 wherein a plurality of clinch joints are formed to join the first part to the second part and the second layer is provided to a plurality of partial areas on the one side of the first layer where the clinch joints join the first part to the second part.

6. The assembly of claim 1 wherein the second layer of resin covers the one side of the first layer.

7. The assembly of claim 1 wherein the fibers are selected from a group consisting essentially of: carbon fibers; glass fibers; talc; and natural fibers.

8. The assembly of claim 1 wherein the second part is formed of a material selected from a group consisting essentially of: steel; aluminum; magnesium; and composite resin.

9. A method of forming a clinch joint for joining a plurality of panels comprising: molding a first part that includes a first layer of resin reinforced with fibers; molding a second layer of resin onto one side of the first layer of resin; assembling a second part to the first layer of the first part; and joining the first part to the second part by pressing a pressed-out portion of the first part into a clinching portion of the second part, wherein the second layer of resin inhibits the fibers in the first layer from protruding from the first part proximate the clinch joint.

10. The method of claim 9 wherein the molding steps are performed in a compression molding process wherein the first layer is formed in a first step and the second layer is applied to the first layer in a second step after the first layer is formed.

11. The method of claim 9 wherein the molding steps are performed in a compression molding process wherein the first layer and the second layer are formed in a single step, and wherein the second layer is formed against a textured surface of a compression molding die that inhibits the fibers from entering the second layer.

12. The method of claim 9 wherein the step of molding the second layer further comprises molding the second layer to a partial area on the one side of the first layer where the clinch joint joins the first part to the second part.

13. The method of claim 9 wherein a plurality of clinch joints are formed to join the first part to the second part and wherein the step of molding the second layer further comprises molding the second layer to a plurality of partial areas on the one side of the first layer where the clinch joints join the first part to the second part.

14. The method of claim 9 wherein the step of molding the second layer further comprises molding the second layer covering one side of the first layer.

15. The method of claim 9 wherein the fibers are selected from a group consisting essentially of: carbon fibers; glass fibers; talc; and natural fibers.

16. An assembly comprising: a first panel including a composite layer of resin and fibers, and a fiber-free layer of resin applied to the composite layer; and a second panel contacting and joined to the composite layer by a clinch joint, wherein the fiber-free layer prevents the fibers in the composite layer from being exposed due to the clinch joint.

17. The assembly of claim 16 wherein the clinch joint further includes a pressed-out portion of the first panel that is disposed within a clinching portion of the second panel.

18. The assembly of claim 16 wherein the first panel further includes a first flange and the second panel further includes a second flange that is disposed against the first flange, wherein the clinch joint connects the first flange to the second flange.

19. The assembly of claim 18 wherein the clinch joint further includes a pressed-out portion of the first flange that is disposed within a clinching portion of the second flange.

20. The assembly of claim 16 wherein the fiber-free layer and the second panel sandwich the composite layer therebetween.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 14/155,694, filed Jan. 15, 2014, currently pending, the disclosure of which is hereby incorporated in its entirety by reference herein.

TECHNICAL FIELD

[0002] A composite panel and method of making the composite panel that is adapted to be joined to another panel with a clinch joint.

BACKGROUND

[0003] Composite panels are used to manufacture structural and body panels for vehicles and in other products. Composite panels are made of polymeric resins that are reinforced with carbon fibers, glass fibers, natural fibers, or the like. Composite panels are strong, light weight and may be used in a wide variety of product applications.

[0004] Composite panels may be assembled to other panels made of aluminum, steel or composites. Common fasteners, rivets or clinch joints may be used to join the panels together. One problem with clinch joints is that the reinforcing fibers may break through the surface of the composite panel. Carbon or natural fiber reinforcing fibers may absorb moisture if they break through the surface of the composite panel. Fibers that absorb moisture can be objectionable because they may cause corrosion and may weaken the joints. Carbon fibers when exposed to moisture may cause galvanic corrosion when they come into contact with metal parts or fasteners.

[0005] The above problems and other problems are addressed by this disclosure as summarized below.

SUMMARY

[0006] According to one aspect of this disclosure, an assembly is provided that is joined by a clinch joint. The assembly comprises a first part including a first layer of resin reinforced with fibers and a second layer of resin applied to one side of the first layer of resin. A second part contacts the first layer of first part and is joined to the first part by the clinch joint. The clinch joint includes a pressed-out portion of the first part that is pressed into a clinching portion of the second panel with the second layer of resin containing the fibers in the first part.

[0007] According to other aspects of this disclosure as it relates to the assembly, the first part may be formed in a compression molding process with the first layer being formed in a first step and the second layer being applied to the first layer after the first layer is formed. Alternatively, the first part may be formed in a compression molding process with the first layer and the second layer being formed in a single step. The second layer may be formed against a textured surface of a compression molding die that inhibits the fibers from entering the second layer.

[0008] The second layer may be provided on a partial area on the one side of the first layer where the clinch joint joins the first part to the second part. A plurality of clinch joints may be formed to join the first part to the second part and the second layer may be provided on a plurality of partial areas on the one side of the first layer where the clinch joints join the first part to the second part. Alternatively, the second layer may be provided on the entire one side of the first layer.

[0009] The fibers may be carbon fibers, glass fibers, talc, or natural fibers. The second part may be formed of steel, aluminum, magnesium, or composite resin.

[0010] According to another aspect of this disclosure, a method is provided for forming a clinch joint for joining a plurality of panels. The method comprises molding a first part that includes a first layer of resin reinforced with fibers. A second layer of resin is molded onto one side of the first layer of resin. A second part is assembled to the first layer of first part and the first part is joined to the second part by pressing a pressed-out portion of the first part into a clinching portion of the second panel. The second layer of resin inhibits the fibers in the first layer from protruding from the first part in the area of the clinch joint.

[0011] According to other aspects of the method, the molding steps may be performed in a compression molding process wherein the first layer is formed in a first step and the second layer is applied to the first layer in a second step after the first layer is formed. Alternatively, the molding steps may be performed in a compression molding process wherein the first layer and the second layer are formed in a single step, and wherein the second layer is formed against a textured surface of a compression molding die that inhibits the fibers from entering the second layer.

[0012] The step of molding the second layer may further comprise molding the second layer to a partial area on the one side of the first layer where the clinch joint joins the first part to the second part. A plurality of clinch joints may be formed to join the first part to the second part and the step of molding the second layer may further comprise molding the second layer to a plurality of partial areas on the one side of the first layer where the clinch joints join the first part to the second part. Alternatively, the step of molding the second layer may further comprise molding the second layer on one entire side of the first layer.

[0013] According to another aspect of this disclosure, an assembly including a first composite panel formed of a fiber reinforced resin that has no fibers in a predetermined intended clinch joint forming area. A clinch joint formed in the intended clinch joining area joins the first panel to a second panel and exposed fibers are avoided on the clinch joint.

[0014] The above aspects and other aspects of this disclosure are described in greater detail below with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a fragmentary perspective view of a prior art clinch joint joining a composite fiber reinforced panel to another panel.

[0016] FIG. 2 is a cross-sectional view taken along the line 2-2 in FIG. 1.

[0017] FIG. 3 is a fragmentary perspective view of a clinch joint joining a composite fiber reinforced panel to another panel in accordance with one aspect of this disclosure.

[0018] FIG. 4 is a cross-sectional view taken along the line 4-4 in FIG. 3.

[0019] FIG. 5 is a fragmentary perspective view of a plurality of clinch joints in a flange of a composite fiber reinforced panel that has a fiber-free coating of resin applied to one side being joined to a mating flange of another panel.

[0020] FIG. 6 is a fragmentary perspective view of a plurality of clinch joints in a flange of a composite fiber reinforced panel that has a fiber-free coating of a resin applied to only selected portions of the flange being joined to a mating flange of another panel.

[0021] FIGS. 7A and 7B are fragmentary cross-sectional views of alternative embodiments of a first composite panel that has fiber reinforcements in resin except where a clinch joint is to be formed.

[0022] FIGS. 8A and 8B are fragmentary cross-sectional views of the panels shown in FIGS. 7A and 7B, respectively, being joined to a second panel by a clinch joint.

DETAILED DESCRIPTION

[0023] A detailed description of the illustrated embodiments of the present invention is provided below. The disclosed embodiments are examples of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale. Some features may be exaggerated or minimized to show details of particular components. The specific structural and functional details disclosed in this application are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art how to practice the invention.

[0024] Referring to FIGS. 1 and 2, a prior art clinch joint 10 is shown connecting a fiber reinforced composite panel 12 to a substrate panel 14. The panels 12, 14 are partially shown in FIGS. 1 and 2. The clinch joint 10 would in most cases be located in a flange area of a larger panel.

[0025] The stippling in FIG. 1 is provided to denote exposed fibers 16 that are exposed in the course of forming the clinch joint 10. Fibers from the fiber reinforced panel 12 may extend into the clinch joint 10, as shown in FIG. 2. The exposed fibers 16 may absorb moisture and lead to a reduction in the holding force of the clinch joint 10. The fibers, especially if they are carbon fibers, may also result in galvanic corrosion as water or other moisture absorbed by the fibers 16 comes into contact with metal parts or fasteners.

[0026] Referring to FIGS. 3 and 4, an improved clinch joint 20 is shown that is directed to solving the problem of exposed fibers in the clinch joint 10 described with reference to FIGS. 1 and 2. The improved clinch joint 20 is formed in an encased fiber reinforced composite part 22, or first part. The first part 22 is connected to a substrate panel 24, or second part, by the clinch joint 20. The fiber reinforced part 22 includes a layer 25 that is reinforced with fibers 26. This layer 25 is also referred to in this disclosure as a first layer. The layer reinforced with fibers 26 may be reinforced with carbon fibers, glass fibers, natural fibers, or talc that are encased in a resin composition.

[0027] A neat resin layer 28, or second layer, forms part of the fiber reinforced composite part 22. The neat resin layer 28 consists essentially of the resin used to form the fiber reinforced composite part 22.

[0028] The fiber reinforced composite part 22 is preferably formed in a compression molding operation in a compression molding die. The compression molding die may include a textured surface on the surface facing the resin layer 28. The textured surface may function to exclude fibers from the layer reinforced with fibers 26 and thereby form the neat resin layer 28. Compression molding tools for forming fiber reinforced composite parts are well known and such tools are also well known that include a textured surface for esthetics.

[0029] The improved clinch joint 20 includes a pressed out portion 30 formed in the fiber reinforced composite part 22. The pressed out portion 30 is pressed into a clinching portion 32 formed in the substrate panel 24. The neat resin layer 28 encases the fibers 26 that would otherwise be exposed during the clinching operation in the pressed out portion 30 and provides the desired fiber-free smooth interior surface 36 of the clinch joint 20. By encasing the fibers 26 with the neat resin layer 28, the tendency of any fibers 26 to become exposed within the clinch joint 20 is eliminated or at least minimized and thereby reduces the chance of moisture being absorbed by the fibers 26 in the layer 25 reinforced by the fibers 26.

[0030] The neat resin layer 28 is preferably 0.5 to 1.5 mm thick. The thickness of the encased fiber reinforced composite part 22 is preferably 0.5 to 6 mm thick and typically from 2.5 to 3 mm thick. The substrate panel 24 is preferably 0.5 to 6 mm thick and typically between 2.5 to 3 mm thick. The substrate layer is preferably metal such as aluminum, steel, magnesium, or may also be another fiber reinforced composite part.

[0031] Referring to FIG. 5, an assembly 40 is partially shown that includes an inner panel 42 and an outer panel 44 that are joined together by an inner flange 46 and an outer flange 48. As shown in FIG. 5, the resin layer 28 is provided on the top surface and is indicated by shading stripes extending across the entire top surface to denote a smooth resin surface. A plurality of clinch joints 20 are shown connecting the inner flange 46 to the outer flange 48 with the inner flange clinching a pressed out portion 30 of the outer flange 48.

[0032] Referring to FIG. 6, an assembly 40 is shown that includes an inner panel 42 that is married to an outer panel 44. An inner flange 46 of the inner panel 42 is connected by a clinch joint 20 to the outer flange 48 of the outer panel 44. A partial area 50 of the outer flange 48 is provided with a textured surface 52. The textured surface 52 is formed in the compression molding operation by providing an orange peel textured surface on the surface of the compression molding die that forms the textured surface 52 on the outer flange 48. Other types of textured surfaces may also be formed in the compression molding operation.

[0033] Referring to FIGS. 7A and 7B, alternative embodiments of a composite panel 60 are illustrated that are formed of a polymeric resin 62 and reinforced with fiber reinforcements 64 in FIG. 7A. In FIG. 7B, a fiber mat 65 is shown embedded in the resin 62 to illustrate an alternative to the loose fibers 64. An intended clinch joint location 66 consists essentially of pure or neat resin 62. The surrounding portions of the panel 60 include the fiber reinforcements 64 or fiber mat 65. While discontinuous, or loose fiber reinforcements 64 may be used, a woven mat of fiber having cut-outs in the intended clinch joint locations 66 may be easier to process. The woven mat 65 also may be braided or stitched continuous fiber reinforcements 64.

[0034] Referring to FIGS. 8A and 8B, the composite panels 60 are illustrated after a clinch joint 68 is formed to join the composite panel 60 and a second panel 70. The composite panel 60 includes a pressed out portion 72 that is received in a clinching portion 74 of the second panel 70. The clinch joint 68 does not have any exposed fibers because no fiber reinforcements 64 (in FIG. 8A) or fiber mat 65 (shown in FIG. 8B) are disposed in the intended clinch joint locations 66.

[0035] While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed