Method For Initial Filling Of Cooling Circuits And Vehicle

ERLACHER; Manuel ;   et al.

Patent Application Summary

U.S. patent application number 14/969055 was filed with the patent office on 2016-06-16 for method for initial filling of cooling circuits and vehicle. The applicant listed for this patent is MAGNA STEYR Fahrzeugtechnik AG & Co KG. Invention is credited to Manuel ERLACHER, Bernhard HOFER.

Application Number20160169083 14/969055
Document ID /
Family ID52144408
Filed Date2016-06-16

United States Patent Application 20160169083
Kind Code A1
ERLACHER; Manuel ;   et al. June 16, 2016

METHOD FOR INITIAL FILLING OF COOLING CIRCUITS AND VEHICLE

Abstract

A method for first filling of cooling circuits of a motor vehicle. During a filling sequence, the cooling circuits are connected via at least one fluid-conductive connection established therebetween, and are filled simultaneously by via the fluid-conductive connection. The fluid-conductive connection is permanently closed after the filling sequence.


Inventors: ERLACHER; Manuel; (Radenthein, AT) ; HOFER; Bernhard; (Graz, AT)
Applicant:
Name City State Country Type

MAGNA STEYR Fahrzeugtechnik AG & Co KG

Graz

AT
Family ID: 52144408
Appl. No.: 14/969055
Filed: December 15, 2015

Current U.S. Class: 123/41.01 ; 141/1
Current CPC Class: F01P 11/04 20130101; F01P 11/0209 20130101; F01P 11/0204 20130101
International Class: F01P 11/02 20060101 F01P011/02; F01P 11/04 20060101 F01P011/04

Foreign Application Data

Date Code Application Number
Dec 15, 2014 EP 14197916.1

Claims



1. A method for first filling of cooling circuits of a motor vehicle with at least two cooling circuits, the method comprising: connecting, during a filling sequence, the at least two cooling circuits via at least one fluid-conductive connection established between the at least two cooling circuits; simultaneously filling the at least two cooling circuits via the at least one fluid-conductive connection; and permanently closing the fluid-conductive connection after the filling sequence.

2. The method of claim 1, wherein after filling, the fluid-conductive connection is permanently closed by closure of one or more shut-off valves.

3. The method of claim 1, wherein: the connecting is conducted through a connecting line; and after filling, the connecting line remains in or is removed from the motor vehicle.

4. The method of claim 1, wherein: the connecting is conducted through a connecting line; and return lines of the at least two cooling circuits are connected together via the connecting line.

5. The method of claim 1, wherein: the connecting is conducted through a connecting line; and heat exchangers of the at least two cooling circuits are connected together via the connecting line.

6. The method of claim 1, wherein: the connecting is conducted through a connecting line; and the connecting line has a length that is less than 15 cm, and remains in the motor vehicle after the filling sequence.

7. The method of claim 1, wherein: the connecting is conducted through a connecting line; and the connecting line has a length that is greater than 15 cm and is removed from the motor vehicle after the filling sequence.

8. A motor vehicle, comprising: at least two cooling circuits; a connecting line to establish at least one fluid-conductive connection between the at least two cooling circuits; and a closure device to permanently close the at least one fluid-conductive connection.

9. The motor vehicle of claim 8, wherein the closure device comprises at least one shut-off valve arranged in the connecting line or in a region where the connecting line joins a respective one of the at least two cooling circuits.

10. The motor vehicle of claim 8, wherein the closure device comprises at least one shut-off valve arranged in a region where the connecting line joins a respective one of the at least two cooling circuits.

11. The motor vehicle of claim 8, wherein: each cooling circuit includes a heat exchanger; and the connecting line connects adjacent heat exchangers, or a heat exchanger to an adjacent one of the at least two cooling circuit lines.

12. The motor vehicle of claim 8, wherein the at least two cooling circuits are connected together fluid-conductively in series or in parallel.

13. The motor vehicle of claim 8, wherein the connecting line has a first coupling part at both ends thereof for insertion of a connecting line of a corresponding second coupling part on one of the at least two cooling circuits.

14. The motor vehicle of claim 8, wherein the connecting line has a first coupling part and a second coupling part, each configured such that on removal of the first coupling part from the second coupling part, the fluid-conductive connection is permanently closed.

15. The motor vehicle of claim 8, wherein: the connecting line has a first coupling part and a second coupling part having a sealing element, a sealing seat, and an elastic element; and the second coupling part is configured such that on removal of the first coupling part from the second coupling part, the sealing element is pressed against the sealing seat by the elastic element.

16. The motor vehicle of claim 8, wherein: the connecting line has a first coupling part having a needle, and a second coupling part having a sealing element and a sealing seat; and the needle, on approach of the first coupling part to the second coupling part, presses the sealing element away from the sealing seat.

17. The motor vehicle of claim 16, wherein: the needle has a sealing cone and/or is spring-loaded by an elastic element; when the first coupling part and the second coupling part are connected together, the fluid-conductive connection is opened; and when the first coupling part is withdrawn from the second coupling part, the fluid-conductive connection is closed again.

18. The motor vehicle of claim 8, wherein: the connecting line has a first coupling part and a second coupling part; the first coupling part and the second coupling part are configured such that when the first coupling part and the second coupling part are connected, a seal is created therebetween before the fluid-conductive connection is opened; and when the first coupling part and the second coupling part are moved apart, the fluid-conductive connection is closed before the seal therebetween is broken.

19. A motor vehicle, comprising: a plurality of cooling circuits; a connecting line to establish a fluid-conductive connection between the cooling circuits, the connecting line having coupling parts to connect the connecting line to a corresponding one of the cooling circuits; and a closure device at both ends of the connecting line to permanently close the fluid-conductive connection.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority 35 U.S.C. .sctn.119 to European Patent Publication No. EP14197916.1 (filed on Dec. 15, 2014), which is hereby incorporated by reference in its complete entirety.

TECHNICAL FIELD

[0002] Embodiments relate to a method for first filling of the cooling circuits of a motor vehicle with at least two cooling circuits, and such a motor vehicle with at least two cooling circuits.

BACKGROUND

[0003] The use of cooling circuits for cooling components of a motor vehicle has been known for a long time. A coolant, for example water, circulating in the circuit is guided along the components to be cooled, where it heats up and dissipates the absorbed heat again to a heat sink, for example by via a heat exchanger. On production of the cooling circuit, the necessary coolant must be introduced into the cooling circuit once as the first filling.

[0004] Many vehicles use two or more separate cooling circuits, for example hybrid vehicles, for cooling components of the internal combustion engine firstly and components of the electric drive secondly. For example, the same coolant may be used in the cooling circuits at different temperatures. On production of vehicles with several cooling circuits, normally a separate filling plant for each cooling circuit is installed in the motor vehicle assembly line.

[0005] German Patent Publication No. DE 10 2005 035 532 A1 describes a device for first filling of a fluid circuit, in particular a cooling circuit of an internal combustion engine for motor vehicles, comprising a small circuit and a large circuit which are switched by via a thermostat with a thermostat plate and a thermostat seat. Using the thermostat, it is possible to fill two cooling circuits alternately in the same filling process, controlled by the coolant temperature.

[0006] This device for first filling, however, is complex and costly to produce and only functions with coolants at different temperatures.

SUMMARY

[0007] Embodiments relate to a method for first filling of the cooling circuits of a motor vehicle with at least two cooling circuits, which is simple and economic to implement, and a motor vehicle with at least two cooling circuits which is prepared for such a method.

[0008] Embodiments relate to a method for first filling of the cooling circuits of a motor vehicle with at least two cooling circuits, which includes connecting, during filling, at least two cooling circuits via at least one fluid-conductive connection established between the two cooling circuits and including a connecting line, and simultaneously filling the at least two cooling circuits via this fluid-conductive connection, wherein the fluid-conductive connection is permanently closed after filling.

[0009] In accordance with embodiments, the first filling of the cooling circuits, which is normally carried out during production of the motor vehicle, thus takes place simultaneously since, during the first filling, the cooling circuits are connected together via a fluid-conductive connecting line so that the cooling medium can flow from one cooling circuit to the other cooling circuit, normally separated during operation of the motor vehicle. The fluid-conductive connection is closed after the first filling, so that after the first filling, there is no further fluidic connection between the cooling circuits via the connecting line. Since on first filling, according to the invention, the same coolant overflows into the other cooling circuit, the two cooling circuits normally use the same coolant.

[0010] Refinements of the invention are specified in the dependent claims, the description and the enclosed drawings.

[0011] In accordance with embodiments, a method for first filling of cooling circuits of a motor vehicle with at least two cooling circuits, the method comprising: connecting, during a filling sequence, the at least two cooling circuits via at least one fluid-conductive connection established between the at least two cooling circuits; simultaneously filling the at least two cooling circuits via the at least one fluid-conductive connection; and permanently closing the fluid-conductive connection after the filling sequence.

[0012] In accordance with embodiments, a motor vehicle, comprising: at least two cooling circuits; a connecting line to establish at least one fluid-conductive connection between the at least two cooling circuits; and a closure device to permanently close the at least one fluid-conductive connection.

[0013] In accordance with embodiments, a motor vehicle, comprising: a plurality of cooling circuits; a connecting line to establish a fluid-conductive connection between the cooling circuits, the connecting line having coupling parts to connect the connecting line to a corresponding one of the cooling circuits; and a closure device at both ends of the connecting line to permanently close the fluid-conductive connection.

[0014] In accordance with embodiments, the fluid-conductive connection is permanently closed by closure of one or two shut-off valves. For instance, two shut-off valves may be used, wherein one shut-off valve is assigned to each end of the connecting line. The shut-off valves may be closed irreversibly using a special tool.

[0015] After filling, the connecting line may remain in the motor vehicle or be removed from the motor vehicle. In particular, longer connecting lines, for example, longer than 15 cm, may be removed to save weight and cost.

[0016] For example, return lines of the two cooling circuits may be connected together via the connecting line, or respective heat exchangers of the two cooling circuits connected together via the connecting line.

[0017] In accordance with embodiments, a motor vehicle may have at least two cooling circuits, at least one fluid-conductive connection is established between the two cooling circuits, wherein the fluid-conductive connection comprises a connecting line and a closure device for permanent closure of the fluid-conductive connection between the two cooling circuits.

[0018] In accordance with embodiments, the connecting line may be a connecting hose.

[0019] In accordance with embodiments, the closure device for permanent closure may comprise at least one shut-off valve, wherein the shut-off valve is arranged in the connecting line or in a region where the connecting line joins the cooling circuit. In particular, if the connecting line is removed after the first filling, the shut-off valve may be arranged on the motor vehicle itself.

[0020] In accordance with embodiments, the connecting line may connect adjacent regions of the two cooling circuits, in particular, two adjacent heat exchangers, or a heat exchanger to an adjacent cooling circuit line of the other cooling circuit. In this way, the connecting line may be formed shorter in length, such as, for example, less than 50 cm, or less than 15 cm.

[0021] In accordance with embodiments, the cooling circuits may be connected together fluid-conductively in series, or in parallel by the connecting line or plurality of connecting lines. In that way, on first filling of several cooling circuits, the coolant either overflows from one cooling circuit into the next adjacent cooling circuit or overflows to several or all cooling circuits simultaneously.

[0022] In accordance with embodiments, the connecting line may have a first coupling part at least at one of its ends, such as, for example, at both ends, for insertion of the connecting line in a corresponding second coupling part on one of the cooling circuits. A plug-in connection is therefore established between connecting line and cooling circuit.

[0023] In accordance with embodiments, the first and the second coupling parts are configured such that on removal of the first coupling part from the second coupling part, the fluid-conductive connection is permanently closed.

[0024] In accordance with embodiments, the second coupling part is configured such that on removal of the first coupling part from the second coupling part, a sealing element in the second coupling part is pressed against a sealing seat by a first elastic element, for example a spring.

[0025] In accordance with embodiments, the first coupling part may have a needle which, on approach to the second coupling part, presses a sealing element of the second coupling part away from its sealing seat. The form of the needle is not restricted as long as the needle can reach the sealing element and press this away from its sealing position.

[0026] In accordance with embodiments, the first and second coupling parts are configured such that when the two coupling parts are brought together, a seal is created between the coupling parts before the fluid-conductive connection is opened, and when the two coupling parts are moved apart, the fluid-conductive connection is closed before a seal between the coupling parts is broken.

DRAWINGS

[0027] Embodiments will be illustrated by way of example in the drawings and explained in the description below.

[0028] FIG. 1 illustrates a diagrammatic view of a cooling circuit arrangement of a motor vehicle, in accordance with embodiments.

[0029] FIG. 2 illustrates a diagrammatic view of a cooling circuit arrangement in a motor vehicle, in accordance with embodiments.

[0030] FIG. 3 illustrates coupling parts for connection of one end of a connecting line to a cooling circuit, in four stages of bringing the coupling parts together, in accordance with embodiments.

[0031] FIG. 4 illustrates a connecting line with coupling parts at both ends, in accordance with embodiments.

DESCRIPTION

[0032] FIGS. 1 and 2 illustrates alternative cooling circuit arrangements in a motor vehicle in accordance with embodiments, each with an enlarged detail depiction of the region around the connecting line 4 in the framed region which is shown at the bottom left.

[0033] As illustrated in FIG. 1, a plurality of cooling circuits 1, 2, 3 which each comprise a heat exchanger 7, 8, 9. A longer connecting line 5, such as, for example, a connecting hose, is established as a fluid-conductive connection between the lines of the second cooling circuit 2 and the third cooling circuit 3. The fluid-conductive connection may be permanently closed by via shut-off valves 6, such as, for example, non-return valves. The shut-off valves 6 are arranged at both ends of the connecting line 5.

[0034] During a first filling of the cooling circuit 1, 2, 3, the fluid-conductive connections via the connecting lines 4 and 5 are opened so that the cooling circuits are filled simultaneously with the same coolant. After the first filling and closure of the shut-off valves 6, the longer connecting line 5 may be removed from the motor vehicle.

[0035] On the first filling, a fluid-conductive connection is established between the heat exchangers 7, 8 of the first cooling circuit 1 and the second cooling circuit 2 via the connecting line 4, such as, for example, a hose with hose clamps, which is clearly visible in the detail enlargement of FIG. 1. After the first filling, the shut-off valves 6 may be closed using, for example, a special tool. The connecting line 4 may remain in the motor vehicle after the first filling.

[0036] The arrangement of FIG. 2 differs from that of FIG. 1 only in that the longer connecting line 5 is here also established from heat exchanger to heat exchanger, namely, between the heat exchanger 8 of the second cooling circuit 2 and the heat exchanger 9 of the third cooling circuit 3.

[0037] As illustrated in FIG. 3, coupling parts 10, 11 for connection of one end of a connecting line 5 to the first cooling circuit 1, in four stages of bringing the coupling parts 10, 11 together. The second coupling part 11 formed on the first cooling circuit 1 has a ball as a sealing element 12, which is pressed against a sealing seat 14 by a first elastic element 13, such as, for example, a spring. The sealing seat 14 is formed at the end of the second coupling part 11 which faces the first coupling part 10. The sealing seat 14 has a central opening through which a needle 15, formed on the first coupling part 10, can protrude when the two coupling parts 10, 11 are brought together in order to press against the sealing element 12, and hence push this away from its sealing seat 14.

[0038] The needle 15 comprises a sealing cone 18 which seals between the first coupling part 10 and the needle 15. The needle 15 in turn is preferably spring-loaded by a second elastic element 17, and thus presses the needle 15 or cone 18 onto the sealing face or sealing seat of the first coupling part 10, and without further force action closes the fluid-conductive connection of the first coupling part 10.

[0039] When the coupling parts 10, 11 are brought together, the needle 15 is pressed against the sealing element 12 of the second coupling part 11, whereby the needle 15 is moved away from the sealing seat of the first coupling part 10. On further movement of the first coupling part 10 against the second coupling part 11, after overcoming the force of the first elastic element 13, the sealing element 12 is also moved away from the sealing seat 14 and hence opens a fluid-conductive connection. It is advantageous here if the second elastic element 17 has a spring constant that is less than the spring constant of the first elastic element 13, so that, for example, the sealing face between the needle 15 and the sealing seat of the first coupling part 10 opens first, then the sealing element 12 following.

[0040] When the two coupling parts 10, 11 are brought together, a ring seal 16 creates a seal between the coupling parts 10, 11 before the fluid-conductive connection is opened, so that the coolant can flow through the second coupling part 11, as indicated by arrows on the far right of the view in FIG. 3. When the two coupling parts 10, 11 are moved apart, the fluid-conductive connection is closed before the seal between the coupling parts 10, 11 is broken.

[0041] At least one of the two coupling parts 10, 11 may have a radially peripheral ring 19, by which one or more balls 20 can be pressed against a outer radially peripheral groove 21 formed on the other coupling part 10, 11, so that the balls 20 engage in the groove 21 and the two coupling parts 10, 11 are fixed together. For this, the radially peripheral ring 19 may have a conical form on the side facing the balls 20, in order to press the balls 20 into the groove 21 on axial movement of the coupling parts 10, 11.

[0042] As illustrated in FIG. 4, the entire connecting line 5 with the first coupling parts 10 at both ends and the respective counterpieces, the second coupling parts 11 which are formed on the cooling circuits 1 and 2.

[0043] The term "coupled" or "connected" may be used herein to refer to any type of relationship, direct or indirect, between the components in question, and may apply to electrical, mechanical, fluid, optical, electromagnetic, electromechanical or other connections. In addition, the terms "first," "second, etc. are used herein only to facilitate discussion, and carry no particular temporal or chronological significance unless otherwise indicated.

[0044] This written description uses examples to disclose the invention, including the preferred embodiments, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of embodiments is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims. Aspects from the various embodiments described, as well as other known equivalents for each such aspects, may be mixed and matched by one of ordinary skill in the art to construct additional embodiments and techniques in accordance with principles of this application.

LIST OF REFERENCE SIGNS

[0045] 1 Cooling circuit [0046] 2 Cooling circuit [0047] 3 Cooling circuit [0048] 4 Connecting line [0049] 5 Connecting line [0050] 6 Shut-off valve [0051] 7 Heat exchanger [0052] 8 Heat exchanger [0053] 9 Heat exchanger [0054] 10 First coupling part [0055] 11 Second coupling part [0056] 12 Sealing element [0057] 13 First elastic element [0058] 14 Sealing seat [0059] 15 Needle [0060] 16 Ring seal [0061] 17 Second elastic element [0062] 18 Sealing cone [0063] 19 Radially peripheral ring [0064] 20 Ball [0065] 21 Groove

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed